International Nuclear Information System (INIS)
Carinena, Jose F; Ranada, Manuel F; Santander, Mariano
2007-01-01
The equation of the orbits (in the configuration space) and of the hodographs (in the 'momentum' plane) for the 'curved' Kepler and harmonic oscillator systems, living in a configuration space of any constant curvature and either signature type, are derived by purely algebraic means. This result extends to the 'curved' Kepler or harmonic oscillator for the classical Hamilton derivation of the orbits of the Euclidean Kepler problem through its hodographs. In both cases, the fundamental property allowing these derivations to work is the superintegrability of the 'curved' Kepler and harmonic oscillator, no matter whether the constant curvature of the configuration space is zero or not, or whether the configuration space metric is Riemannian or Lorentzian. In the 'curved' case the basic result does not refer to the 'velocity hodograph' but to the 'momentum hodograph'; both coincide in a Euclidean configuration space, but only the latter is unambiguously defined in all curved spaces
Curved twistor spaces and H-space
International Nuclear Information System (INIS)
Tod, K.P.
1980-01-01
The curved twistor space construction of Penrose for anti-self-dual solutions to the Einstein vacuum equations is described. Curved twistor spaces are defined and it is shown with the aid of an example how to obtain them by deforming the complex structure of regions of flat twistor space. The connection of this procedure with Newman's H-space construction via asymptotic twistor space is outlined. (Auth.)
Quantum fields in curved space
International Nuclear Information System (INIS)
Birrell, N.D.; Davies, P.C.W.
1982-01-01
The book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Quantum field theory in Minkowski space, quantum field theory in curved spacetime, flat spacetime examples, curved spacetime examples, stress-tensor renormalization, applications of renormalization techniques, quantum black holes and interacting fields are all discussed in detail. (U.K.)
Elementary particles in curved spaces
International Nuclear Information System (INIS)
Lazanu, I.
2004-01-01
The theories in particle physics are developed currently, in Minkowski space-time starting from the Poincare group. A physical theory in flat space can be seen as the limit of a more general physical theory in a curved space. At the present time, a theory of particles in curved space does not exist, and thus the only possibility is to extend the existent theories in these spaces. A formidable obstacle to the extension of physical models is the absence of groups of motion in more general Riemann spaces. A space of constant curvature has a group of motion that, although differs from that of a flat space, has the same number of parameters and could permit some generalisations. In this contribution we try to investigate some physical implications of the presumable existence of elementary particles in curved space. In de Sitter space (dS) the invariant rest mass is a combination of the Poincare rest mass and the generalised angular momentum of a particle and it permits to establish a correlation with the vacuum energy and with the cosmological constant. The consequences are significant because in an experiment the local structure of space-time departs from the Minkowski space and becomes a dS or AdS space-time. Discrete symmetry characteristics of the dS/AdS group suggest some arguments for the possible existence of the 'mirror matter'. (author)
International Nuclear Information System (INIS)
John, R.W.
1987-01-01
First, in connection with their construction due to Hadamard, the mathematical and physical meaning of covariant Green's functions in relativistic gravitational fields - according to Einstein: on curved space-time - is discussed. Then, in the case of a general static spherically symmetric space-time the construction equations for a scalar Green's function are cast into symmetry-adapted form providing a convenient starting point for an explicit calculation of the Hadamard building elements. In applying the obtained basic scheme to a special one-parameter family of model metrics one succeeds in advancing to the explicit exact calculation of tail-term coefficients of a massless Green's function which are simultaneously coefficients in the Schwinger-De Witt expansion of the Feynman propagator for the corresponding massive Klein-Gordon equation on curved space-time. (author)
Classical optics and curved spaces
International Nuclear Information System (INIS)
Bailyn, M.; Ragusa, S.
1976-01-01
In the eikonal approximation of classical optics, the unit polarization 3-vector of light satisfies an equation that depends only on the index, n, of refraction. It is known that if the original 3-space line element is d sigma 2 , then this polarization direction propagates parallely in the fictitious space n 2 d sigma 2 . Since the equation depends only on n, it is possible to invent a fictitious curved 4-space in which the light performs a null geodesic, and the polarization 3-vector behaves as the 'shadow' of a parallely propagated 4-vector. The inverse, namely, the reduction of Maxwell's equation, on a curve 'dielectric free) space, to a classical space with dielectric constant n=(-g 00 ) -1 / 2 is well known, but in the latter the dielectric constant epsilon and permeability μ must also equal (-g 00 ) -1 / 2 . The rotation of polarization as light bends around the sun by utilizing the reduction to the classical space, is calculated. This (non-) rotation may then be interpreted as parallel transport in the 3-space n 2 d sigma 2 [pt
Covariant quantizations in plane and curved spaces
International Nuclear Information System (INIS)
Assirati, J.L.M.; Gitman, D.M.
2017-01-01
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
Covariant quantizations in plane and curved spaces
Energy Technology Data Exchange (ETDEWEB)
Assirati, J.L.M. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P.N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil)
2017-07-15
We present covariant quantization rules for nonsingular finite-dimensional classical theories with flat and curved configuration spaces. In the beginning, we construct a family of covariant quantizations in flat spaces and Cartesian coordinates. This family is parametrized by a function ω(θ), θ element of (1,0), which describes an ambiguity of the quantization. We generalize this construction presenting covariant quantizations of theories with flat configuration spaces but already with arbitrary curvilinear coordinates. Then we construct a so-called minimal family of covariant quantizations for theories with curved configuration spaces. This family of quantizations is parametrized by the same function ω(θ). Finally, we describe a more wide family of covariant quantizations in curved spaces. This family is already parametrized by two functions, the previous one ω(θ) and by an additional function Θ(x,ξ). The above mentioned minimal family is a part at Θ = 1 of the wide family of quantizations. We study constructed quantizations in detail, proving their consistency and covariance. As a physical application, we consider a quantization of a non-relativistic particle moving in a curved space, discussing the problem of a quantum potential. Applying the covariant quantizations in flat spaces to an old problem of constructing quantum Hamiltonian in polar coordinates, we directly obtain a correct result. (orig.)
Optimization on Spaces of Curves
DEFF Research Database (Denmark)
Møller-Andersen, Jakob
in Rd, and methods to solve the initial and boundary value problem for geodesics allowing us to compute the Karcher mean and principal components analysis of data of curves. We apply the methods to study shape variation in synthetic data in the Kimia shape database, in HeLa cell nuclei and cycles...... of cardiac deformations. Finally we investigate a new application of Riemannian shape analysis in shape optimization. We setup a simple elliptic model problem, and describe how to apply shape calculus to obtain directional derivatives in the manifold of planar curves. We present an implementation based...
Quantum fields in curved space-times
International Nuclear Information System (INIS)
Ashtekar, A.; Magnon, A.
1975-01-01
The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)
Matter fields in curved space-time
International Nuclear Information System (INIS)
Viet, Nguyen Ai; Wali, Kameshwar C.
2000-01-01
We study the geometry of a two-sheeted space-time within the framework of non-commutative geometry. As a prelude to the Standard Model in curved space-time, we present a model of a left- and a right- chiral field living on the two sheeted-space time and construct the action functionals that describe their interactions
Black hole entropy, curved space and monsters
International Nuclear Information System (INIS)
Hsu, Stephen D.H.; Reeb, David
2008-01-01
We investigate the microscopic origin of black hole entropy, in particular the gap between the maximum entropy of ordinary matter and that of black holes. Using curved space, we construct configurations with entropy greater than the area A of a black hole of equal mass. These configurations have pathological properties and we refer to them as monsters. When monsters are excluded we recover the entropy bound on ordinary matter S 3/4 . This bound implies that essentially all of the microstates of a semiclassical black hole are associated with the growth of a slightly smaller black hole which absorbs some additional energy. Our results suggest that the area entropy of black holes is the logarithm of the number of distinct ways in which one can form the black hole from ordinary matter and smaller black holes, but only after the exclusion of monster states
Principal normal indicatrices of closed space curves
DEFF Research Database (Denmark)
Røgen, Peter
1999-01-01
A theorem due to J. Weiner, which is also proven by B. Solomon, implies that a principal normal indicatrix of a closed space curve with nonvanishing curvature has integrated geodesic curvature zero and contains no subarc with integrated geodesic curvature pi. We prove that the inverse problem alw...
Quaternion wave equations in curved space-time
Edmonds, J. D., Jr.
1974-01-01
The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.
Path Integrals and Anomalies in Curved Space
International Nuclear Information System (INIS)
Louko, Jorma
2007-01-01
Bastianelli and van Nieuwenhuizen's monograph 'Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaume and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a
Energy Technology Data Exchange (ETDEWEB)
McGreevy, John Austen; /Stanford U., Phys. Dept.
2005-07-06
This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry, both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe
Electromagnetic wave propagating along a space curve
Lai, Meng-Yun; Wang, Yong-Long; Liang, Guo-Hua; Wang, Fan; Zong, Hong-Shi
2018-03-01
By using the thin-layer approach, we derive the effective equation for the electromagnetic wave propagating along a space curve. We find intrinsic spin-orbit, extrinsic spin-orbit, and extrinsic orbital angular-momentum and intrinsic orbital angular-momentum couplings induced by torsion, which can lead to geometric phase, spin, and orbital Hall effects. And we show the helicity inversion induced by curvature that can convert a right-handed circularly polarized electromagnetic wave into a left-handed polarized one, vice versa. Finally, we demonstrate that the gauge invariance of the effective dynamics is protected by the geometrically induced gauge potential.
Zero-point field in curved spaces
International Nuclear Information System (INIS)
Hacyan, S.; Sarmiento, A.; Cocho, G.; Soto, F.
1985-01-01
Boyer's conjecture that the thermal effects of acceleration are manifestations of the zero-point field is further investigated within the context of quantum field theory in curved spaces. The energy-momentum current for a spinless field is defined rigorously and used as the basis for investigating the energy density observed in a noninertial frame. The following examples are considered: (i) uniformly accelerated observers, (ii) two-dimensional Schwarzschild black holes, (iii) the Einstein universe. The energy spectra which have been previously calculated appear in the present formalism as an additional contribution to the energy of the zero-point field, but particle creation does not occur. It is suggested that the radiation produced by gravitational fields or by acceleration is a manifestation of the zero-point field and of the same nature (whether real or virtual)
Quantum electrodynamics in curved space-time
International Nuclear Information System (INIS)
Buchbinder, I.L.; Gitman, D.M.; Fradkin, E.S.
1981-01-01
The lagrangian of quantum electrodynamics in curved space-time is constructed and the interaction picture taking into account the external gravitational field exactly is introduced. The transform from the Heisenberg picture to the interaction picture is carried out in a manifestly covariant way. The properties of free spinor and electromagnetic quantum fields are discussed and conditions under which initial and final creation and annihilation operators are connected by unitarity transformation are indicated. The derivation of Feynman's rules for quantum processes are calculated on the base of generalized normal product of operators. The way of reduction formula derivations is indicated and the suitable Green's functions are introduced. A generating functional for this Green's function is defined and the system of functional equations for them is obtained. The representation of different generating funcationals by means of functional integrals is introduced. Some consequences of S-matrix unitary condition are considered which leads to the generalization of the optic theorem
F(α) curves: Experimental results
International Nuclear Information System (INIS)
Glazier, J.A.; Gunaratne, G.; Libchaber, A.
1988-01-01
We study the transition to chaos at the golden and silver means for forced Rayleigh-Benard (RB) convection in mercury. We present f(α) curves below, at, and above the transition, and provide comparisons to the curves calculated for the one-dimensional circle map. We find good agreement at both the golden and silver means. This confirms our earlier observation that for low amplitude forcing, forced RB convection is well described by the one-dimensional circle map and indicates that the f(α) curve is a good measure of the approach to criticality. For selected subcritical experimental data sets we calculate the degree of subcriticality. We also present both experimental and calculated results for f(α) in the presence of a third frequency. Again we obtain agreement: The presence of random noise or a third frequency narrows the right-hand (negative q) side of the f(α) curve. Subcriticality results in symmetrically narrowed curves. We can also distinguish these cases by examining the power spectra and Poincare sections of the time series
Mannheim Curves in Nonflat 3-Dimensional Space Forms
Directory of Open Access Journals (Sweden)
Wenjing Zhao
2015-01-01
Full Text Available We consider the Mannheim curves in nonflat 3-dimensional space forms (Riemannian or Lorentzian and we give the concept of Mannheim curves. In addition, we investigate the properties of nonnull Mannheim curves and their partner curves. We come to the conclusion that a necessary and sufficient condition is that a linear relationship with constant coefficients will exist between the curvature and the torsion of the given original curves. In the case of null curve, we reveal that there are no null Mannheim curves in the 3-dimensional de Sitter space.
On harmonic curvatures of a Frenet curve in Lorentzian space
International Nuclear Information System (INIS)
Kuelahci, Mihriban; Bektas, Mehmet; Erguet, Mahmut
2009-01-01
In this paper, we consider curves of AW(k)-type, 1 ≤ k ≤ 3, in Lorentzian space. We give curvature conditions of these kind of curves. Furthermore, we study harmonic curvatures of curves of AW(k)-type. We investigate that under what conditions AW(k)-type curves are helix. Some related theorems and corollaries are also proved.
Particles and Dirac-type operators on curved spaces
International Nuclear Information System (INIS)
Visinescu, Mihai
2003-01-01
We review the geodesic motion of pseudo-classical particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. From the covariantly constant Killing-Yano tensors of this space we construct three new Dirac-type operators which are equivalent with the standard Dirac operator. Finally the Runge-Lenz operator for the Dirac equation in this background is expressed in terms of the fourth Killing-Yano tensor which is not covariantly constant. As a rule the covariantly constant Killing-Yano tensors realize certain square roots of the metric tensor. Such a Killing-Yano tensor produces simultaneously a Dirac-type operator and the generator of a one-parameter Lie group connecting this operator with the standard Dirac one. On the other hand, the not covariantly constant Killing-Yano tensors are important in generating hidden symmetries. The presence of not covariantly constant Killing-Yano tensors implies the existence of non-standard supersymmetries in point particle theories on curved background. (author)
Curves of restricted type in euclidean spaces
Directory of Open Access Journals (Sweden)
Bengü Kılıç Bayram
2014-01-01
Full Text Available Submanifolds of restricted type were introduced in [7]. In the present study we consider restricted type of curves in Em. We give some special examples. We also show that spherical curve in S2(r C E3 is of restricted type if and only if either ƒ(s is constant or a linear function of s of the form ƒ(s = ±s + b and every closed W - curve of rank k and of length 2(r in E2k is of restricted type.
Geometrical properties of negatively curved spaces. A revival
International Nuclear Information System (INIS)
Signore, R.L.
2000-01-01
The negatively curved space is generally kept in the background behind the much more popular positively curved space. The goal of the article is to re-establish a balance between these two different spaces. In the first part, negatively curved space is considered in se, some of its geometric properties are investigated and its Minkowskian properties emphasized. The Lobatchevsky-Bolyai geometry is also illustrated. In a second part, space is assumed to be in expansion in an inflation are. World lines, null geodesics, particle horizon, event horizon are considered
Intertwined Hamiltonians in two-dimensional curved spaces
International Nuclear Information System (INIS)
Aghababaei Samani, Keivan; Zarei, Mina
2005-01-01
The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincare half plane (AdS 2 ), de Sitter plane (dS 2 ), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle
N =4 supersymmetric mechanics on curved spaces
Kozyrev, Nikolay; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen; Sutulin, Anton
2018-04-01
We present N =4 supersymmetric mechanics on n -dimensional Riemannian manifolds constructed within the Hamiltonian approach. The structure functions entering the supercharges and the Hamiltonian obey modified covariant constancy equations as well as modified Witten-Dijkgraaf-Verlinde-Verlinde equations specified by the presence of the manifold's curvature tensor. Solutions of original Witten-Dijkgraaf-Verlinde-Verlinde equations and related prepotentials defining N =4 superconformal mechanics in flat space can be lifted to s o (n )-invariant Riemannian manifolds. For the Hamiltonian this lift generates an additional potential term which, on spheres and (two-sheeted) hyperboloids, becomes a Higgs-oscillator potential. In particular, the sum of n copies of one-dimensional conformal mechanics results in a specific superintegrable deformation of the Higgs oscillator.
Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.
2006-01-01
The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.
Feynman propagator in curved space-time
International Nuclear Information System (INIS)
Candelas, P.; Raine, D.J.
1977-01-01
The Wick rotation is generalized in a covariant manner so as to apply to curved manifolds in a way that is independent of the analytic properties of the manifold. This enables us to show that various methods for defining a Feynman propagator to be found in the literature are equivalent where they are applicable. We are also able to discuss the relation between certain regularization methods that have been employed
Vector mass in curved space-times
International Nuclear Information System (INIS)
Maia, M.D.
The use of the Poincare-symmetry appears to be incompatible with the presence of the gravitational field. The consequent problem of the definition of the mass operator is analysed and an alternative definition based on constant curvature tangent spaces is proposed. In the case where the space-time has no killing vector fields, four independent mass operators can be defined at each point. (Author) [pt
Decay curves in coupled, reverberant spaces
DEFF Research Database (Denmark)
Balin, Jamilla; Nolan, Melanie; Fernandez Grande, Efren
2016-01-01
This study investigates the effect of panel and boundary diffusers in a reverberant space. Diffusers are usually mounted in a reverberation chamber to increase the diffuse sound field as recommended in Annex A of ISO 354. The ISO is not specific about the location or the material of the panels; t...
Integrable Flows for Starlike Curves in Centroaffine Space
Directory of Open Access Journals (Sweden)
Annalisa Calini
2013-03-01
Full Text Available We construct integrable hierarchies of flows for curves in centroaffine R^3 through a natural pre-symplectic structure on the space of closed unparametrized starlike curves. We show that the induced evolution equations for the differential invariants are closely connected with the Boussinesq hierarchy, and prove that the restricted hierarchy of flows on curves that project to conics in RP^2 induces the Kaup-Kuperschmidt hierarchy at the curvature level.
Optimization of ACC system spacing policy on curved highway
Ma, Jun; Qian, Kun; Gong, Zaiyan
2017-05-01
The paper optimizes the original spacing policy when adopting VTH (Variable Time Headway), proposes to introduce the road curve curvature K to the spacing policy to cope with following the wrong vehicle or failing to follow the vehicle owing to the radar limitation of curve in ACC system. By utilizing MATLAB/Simulink, automobile longitudinal dynamics model is established. At last, the paper sets up such three common cases as the vehicle ahead runs at a uniform velocity, an accelerated velocity and hits the brake suddenly, simulates these cases on the curve with different curvature, analyzes the curve spacing policy in the perspective of safety and vehicle following efficiency and draws the conclusion whether the optimization scheme is effective or not.
Characterizations of Space Curves According to Bishop Darboux Vector in Euclidean 3-Space E3
Huseyin KOCAYIGIT; Ali OZDEMIR
2014-01-01
In this paper, we obtained some characterizations of space curves according to Bihop frame in Euclidean 3-space E3 by using Laplacian operator and Levi-Civita connection. Furthermore, we gave the general differential equations which characterize the space curves according to the Bishop Darboux vector and the normal Bishop Darboux vector.
The evolution of space curves by curvature and torsion
International Nuclear Information System (INIS)
Richardson, G; King, J R
2002-01-01
We apply Lie group based similarity methods to the study of a new, and widely relevant, class of objects, namely motions of a space curve. In particular, we consider the motion of a curve evolving with a curvature κ and torsion τ dependent velocity law. We systematically derive the Lie point symmetries of all such laws of motion and use these to catalogue all their possible similarity reductions. This calculation reveals special classes of law with high degrees of symmetry (and a correspondingly large number of similarity reductions). Of particular note is one class which is invariant under general linear transformations in space. This has potential applications in pattern and signal recognition
Renormalization of the δ expansion in curved space-time
International Nuclear Information System (INIS)
Cho, H.T.
1991-01-01
Renormalization of a recently proposed δ expansion for a self-interacting scalar field theory in curved space-time is examined. The explicit calculation is carried out up to order δ 2 , which indicates that the expansion is renormalizable, but reduces to essentially the λφ 4 theory when the cutoff is removed. A similar conclusion has been reached in a previous paper where the case of flat space-time is considered
Second order elastic metrics on the shape space of curves
DEFF Research Database (Denmark)
Bauer, Martin; Bruveris, Martins; Harms, Philipp
2015-01-01
Second order Sobolev metrics on the space of regular unparametrized planar curves have several desirable completeness properties not present in lower order metrics, but numerics are still largely missing. In this paper, we present algorithms to numerically solve the initial and boundary value......, due to its generality, it could be applied to more general spaces of mapping. We demonstrate the effectiveness of our approach by analyzing a collection of shapes representing physical objects....
Quantum field theory in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Davies, P C.W. [King' s Coll., London (UK)
1976-09-30
It is stated that recent theoretical developments indicate that the presence of gravity (curved space-time) can give rise to important new quantum effects, such as cosmological particle production and black-hole evaporation. These processes suggest intriguing new relations between quantum theory, thermodynamics and space-time structure and encourage the hope that a better understanding of a full quantum theory of gravity may emerge from this approach.
Constructing Delaunay triangulations along space-filling curves
Buchin, K.; Fiat, A.; Sanders, P.
2009-01-01
Incremental construction con BRIO using a space-filling curve order for insertion is a popular algorithm for constructing Delaunay triangulations. So far, it has only been analyzed for the case that a worst-case optimal point location data structure is used which is often avoided in implementations.
Particle creation amplification in curved space due to thermal effects
International Nuclear Information System (INIS)
Laciana, C. E.
1997-01-01
A physical system composed by a scalar field minimally coupled to gravity and a thermal reservoir as in thermo field dynamics, all of them in curved space-time, is considered. When the formalism of thermo field dynamics is generalized to the above case, an amplification in the number of created particles is predicted
Classical model of the Dirac electron in curved space
International Nuclear Information System (INIS)
Barut, A.O.; Pavsic, M.
1987-01-01
The action for the classical model of the electron exhibiting Zitterbewegung is generalized to curved space by introducing a spin connection. The dynamical equations and the symplectic structure are given for several different choices of the variables. In particular, we obtain the equation of motion for spin and compare it with the Papapetrou equation. (author)
SPITZER SPACE TELESCOPE MID-IR LIGHT CURVES OF NEPTUNE
Energy Technology Data Exchange (ETDEWEB)
Stauffer, John; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William [Spitzer Science Center (SSC), California Institute of Technology, Pasadena, CA 91125 (United States); Marley, Mark S. [NASA Ames Research Center, Space Sciences and Astrobiology Division, MS245-3, Moffett Field, CA 94035 (United States); Gizis, John E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Kirkpatrick, J. Davy [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Simon, Amy A. [NASA Goddard Space Flight Center, Solar System Exploration Division (690.0), 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Wong, Michael H. [University of California, Department of Astronomy, Berkeley CA 94720-3411 (United States)
2016-11-01
We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μ m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μ m and 0.6 mag at 4.5 μ m. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μ m) and W2 (4.6 μ m) from the Wide-feld Infrared Survey Explorer ( WISE )/ NEOWISE archive at six epochs in 2010–2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler / K 2 in the visible (amplitude ∼0.02 mag) or at 845 nm with the Hubble Space Telescope ( HST ) in 2015 and at 763 nm in 2016 (amplitude ∼0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K 2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μ m filters.
String dynamics in curved space-time revisited
International Nuclear Information System (INIS)
Marrakchi, A.L.; Singh, L.P.
1989-09-01
The equations of motion of the general background of curved space-time, Einstein's equations, are derived simply by demanding the renormalized energy-momentum tensor of a bosonic string propagating in this background to be traceless. The energy-momentum tensor of such a string is then separable into a holomorphic and an antiholomorphic parts as a consequence of the conformal invariance of the theory regained at the quantum level. (author). 8 refs
Observer-dependent quantum vacua in curved space. II
International Nuclear Information System (INIS)
Castagnino, M.A.; Sztrajman, J.B.
1989-01-01
An observer-dependent Hamiltonian is introduced in order to describe massless spin-1 particles in curved space-times. The vacuum state is defined by means of Hamiltonian diagonalization and minimization, which turns out to be equivalent criteria. This method works in an arbitrary geometry, although a condition on the fluid of observers is required. Computations give the vacua commonly accepted in the literature
Mass Formulae for Broken Supersymmetry in Curved Space-Time
Ferrara, Sergio
2016-01-01
We derive the mass formulae for ${\\cal N}=1$, $D=4$ matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to de Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing.
The energy-momentum operator in curved space-time
International Nuclear Information System (INIS)
Brown, M.R.; Ottewill, A.C.
1983-01-01
It is argued that the only meaningful geometrical measure of the energy-momentum of states of matter described by a free quantum field theory in a general curved space-time is that provided by a normal ordered energy-momentum operator. The finite expectation values of this operator are contrasted with the conventional renormalized expectation values and it is further argued that the use of renormalization theory is inappropriate in this context. (author)
Double covering of diffeomorphisms for superstrings in generic curved space
International Nuclear Information System (INIS)
Ne'eman, Y.; Sijacki, D.
1986-01-01
The embedding of the superstring in a generic curved space involves the use of world-spinors behaving according to the (infinite) unitary representations of SL-bar(10,R), the double-covering of the linear group on R 10 . A supersymmetric extrension is provided by the embedding of GL-bar(10,R) in the supergroup GQ-bar(10,R) whose flat limit reproduces Poincare supersymmetry
Generalized Wigner functions in curved spaces: A new approach
International Nuclear Information System (INIS)
Kandrup, H.E.
1988-01-01
It is well known that, given a quantum field in Minkowski space, one can define Wigner functions f/sub W//sup N/(x 1 ,p 1 ,...,x/sub N/,p/sub N/) which (a) are convenient to analyze since, unlike the field itself, they are c-number quantities and (b) can be interpreted in a limited sense as ''quantum distribution functions.'' Recently, Winter and Calzetta, Habib and Hu have shown one way in which these flat-space Wigner functions can be generalized to a curved-space setting, deriving thereby approximate kinetic equations which make sense ''quasilocally'' for ''short-wavelength modes.'' This paper suggests a completely orthogonal approach for defining curved-space Wigner functions which generalizes instead an object such as the Fourier-transformed f/sub W/ 1 (k,p), which is effectively a two-point function viewed in terms of the ''natural'' creation and annihilation operators a/sup dagger/(p-(12k) and a(p+(12k). The approach suggested here lacks the precise phase-space interpretation implicit in the approach of Winter or Calzetta, Habib, and Hu, but it is useful in that (a) it is geared to handle any ''natural'' mode decomposition, so that (b) it can facilitate exact calculations at least in certain limits, such as for a source-free linear field in a static spacetime
Results of Casting in Severe Curves in Infantile Scoliosis.
Stasikelis, Peter J; Carpenter, Ashley M
2018-04-01
Previous work has demonstrated best results for casting in infantile scoliosis when the curves are small and the child begins casting under 2 years of age. This study examines if casting can delay the need for growth friendly instrumentation in severe curves (50 to 106 degrees) and how the comorbidities of syrinx or genetic syndromes affected outcomes. All children undergoing casting for scoliosis at a single institution over an 8-year period were examined. Inclusion criteria included initial curve at first casting of ≥50 degrees, age ≤3 years at the start of casting, and a minimum follow-up of 3 years. Of 148 children undergoing casting during this period, 44 met our inclusion criteria. All children underwent magnetic resonance imaging. Ten children with a syrinx were identified. Ten children had known genetic syndromes (2 who also had a syrinx). The 26 children without these comorbidities were considered idiopathic. Curve magnitude ranged from 50 to 106 degrees. Nine of the 26 (35%) children in the children with idiopathic curves demonstrated resolution of their curves, while only 3 of the remaining 18 (17%) did. Of the children that did not have resolution of their curves, 14 were maintained over the entire follow-up period to within 15 degrees of their initial curve and 13 were improved 15 degrees or more. Only 5 children had an increase of 15 degrees or more over the follow-up period and 4 of these have undergone growth friendly instrumentation after a mean delay from initial cast of 71 months (range, 18 to 100 mo). This study demonstrates that even in severe curves, casting was effective in delaying instrumentation in all cases, and led to curve resolution of the curves in 12 of 44 children. Level III-case control study.
Spontaneous symmetry breaking in curved space-time
International Nuclear Information System (INIS)
Toms, D.J.
1982-01-01
An approach dealing with some of the complications which arise when studying spontaneous symmetry breaking beyond the tree-graph level in situations where the effective potential may not be used is discussed. These situations include quantum field theory on general curved backgrounds or in flat space-times with non-trivial topologies. Examples discussed are a twisted scalar field in S 1 xR 3 and instabilities in an expanding universe. From these it is seen that the topology and curvature of a space-time may affect the stability of the vacuum state. There can be critical length scales or times beyond which symmetries may be broken or restored in certain cases. These features are not present in Minkowski space-time and so would not show up in the usual types of early universe calculations. (U.K.)
Lie-Hamilton systems on curved spaces: a geometrical approach
Herranz, Francisco J.; de Lucas, Javier; Tobolski, Mariusz
2017-12-01
A Lie-Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot-Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie-Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules.
Mannheim Partner D-Curves in the Euclidean 3-space
Directory of Open Access Journals (Sweden)
Mustafa Kazaz
2015-02-01
Full Text Available In this paper, we consider the idea of Mannheim partner curves for curves lying on surfaces. By considering the Darboux frames of surface curves, we define Mannheim partner D-curves and give the characterizations for these curves. We also find the relations between geodesic curvatures, normal curvatures and geodesic torsions of these associated curves. Furthermore, we show that definition and characterizations of Mannheim partner D-curves include those of Mannheim partner curves in some special cases.
Induced gravity in quantum theory in a curved space
International Nuclear Information System (INIS)
Etim, E.
1983-01-01
The reason for interest in the unorthodox view of first order (about R(x)) gravity as a matter-induced quantum effect is really to find an argument not to quantise it. According to this view quantum gravity should be constructed with an action which is, at least, quadratic in the scalar curvature R(x). Such a theory will not contain a dimensional parameter, like Newton's constant, and would probably be renormalisable. This lecture is intended to acquaint the non-expert with the phenomenon of induction of the scalar curvature term in the matter Lagrangian in a curved space in both relativistic and non-relativistic quantum theories
Aspects of quantum field theory in curved space-time
International Nuclear Information System (INIS)
Fulling, S.A.
1989-01-01
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the Klein 'paradox', particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalization of the stress tensor. (author)
Aspects of quantum field theory in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Fulling, S.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mathematics)
1989-01-01
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the Klein 'paradox', particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalization of the stress tensor. (author).
Massless fields in curved space-time: The conformal formalism
International Nuclear Information System (INIS)
Castagnino, M.A.; Sztrajman, J.B.
1986-01-01
A conformally invariant theory for massless quantum fields in curved space-time is formulated. We analyze the cases of spin-0, - 1/2 , and -1. The theory is developed in the important case of an ''expanding universe,'' generalizing the particle model of ''conformal transplantation'' known for spin-0 to spins- 1/2 and -1. For the spin-1 case two methods introducing new conformally invariant gauge conditions are stated, and a problem of inconsistency that was stated for spin-1 is overcome
Mass formulae for broken supersymmetry in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Ferrara, Sergio [Theoretical Physics Department, CERN, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, U.C.L.A, Los Angeles, CA (United States); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)
2016-11-15
We derive the mass formulae for N = 1, D = 4 matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to De Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
An Alternative to Wave Mechanics on Curved Spaces
Tomaschitz, R
1992-01-01
Geodesic motion in infinite spaces of constant negative curvature provides for the first time an example where a basically quantum mechanical quantity, a ground-state energy, is derived from Newtonian mechanics in a rigorous, non-semiclassical way. The ground state energy emerges as the Hausdorff dimension of a quasi-self-similar curve at infinity of three-dimensional hyperbolic space H in which our manifolds are embedded and where their universal covers are realized. This curve is just the locus of the limit set L(G) of the Kleinian group G of covering transformations, which determines the bounded trajectories in the manifold; all of them lie in the quotient C(L)/G, C(L) being the hyperbolic convex hull of L(G). The three-dimensional hyperbolic manifolds we construct can be visualized as thickened surfaces, topological products I x S, I a finite open interval, the fibers S compact Riemann surfaces. We give a short derivation of the Patterson formula connecting the ground-state energy with the Hausdorff dimen...
An alternative to wave mechanics on curved spaces
International Nuclear Information System (INIS)
Tomaschitz, R.
1992-01-01
Geodesic motion in infinite spaces of constant negative curvature provides for the first time an example where a basically quantum mechanical quantity, a ground-state energy, is derived from Newtonian mechanics in a rigorous, non-semiclassical way. The ground state energy emerges as the Hausdorff dimension of a quasi-self-similar curve at infinity of three-dimensional hyperbolic space H 3 in which our manifolds are embedded and where their universal covers are realized. This curve is just the locus of the limit set Λ(Γ) of the Kleinian group Γ of covering transformations, which determines the bounded trajectories in the manifold; all of them lie in the quotient C(Λ)/Γ, C(Γ) being the hyperbolic convex hull of Λ(Γ). The three-dimensional hyperbolic manifolds we construct can be visualized as thickened surfaces, topological products IxS, I a finite open interval, the fibers S compact Riemann surfaces. We give a short derivation of the Patterson formula connecting the ground-state energy with the Hausdorff dimension δ of Λ, and give various examples for the calculation of δ from the tessellations of the boundary of H 3 , induced by the universal coverings of the manifolds. 33 refs., 13 figs., 2 tabs
Exactly solvable string models of curved space-time backgrounds
International Nuclear Information System (INIS)
Russo, J.G.
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)
INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G13
Directory of Open Access Journals (Sweden)
HANDAN OZTEKIN
2016-12-01
Full Text Available In this paper, we study inextensible ows of curves in 3-dimensional pseudo- Galilean space. We give necessary and sucient conditions for inextensible ows of curves according to equiform geometry in pseudo-Galilean space.
Stochastic quantization of geometrodynamic curved space-time
International Nuclear Information System (INIS)
Prugovecki, E.
1981-01-01
It is proposed that quantum rather than classical test particles be used in recent operational definitions of space-time. In the resulting quantum space-time the role of test particle trajectories is taken over by propagators. The introduced co-ordinate values are stochastic rather than deterministic, the afore-mentioned propagators providing probability amplitudes describing fluctuations of measured co-ordinates around their mean values. It is shown that, if a geometrodynamic point of view based on 3 + 1 foliations of space-time is adopted, self-consistent families of propagators for quantum test particles in free fall can be constructed. The resulting formalism for quantum space-time is outlined and the quantization of spatially flat Robertson-Walker space-times is provided as an illustration. (author)
Momentum-subtraction renormalization techniques in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-10-01
Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should.
Momentum-subtraction renormalization techniques in curved space-time
International Nuclear Information System (INIS)
Foda, O.
1987-01-01
Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should
Point splitting in a curved space-time background
International Nuclear Information System (INIS)
Liggatt, P.A.J.; Macfarlane, A.J.
1979-01-01
A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)
Curved-space classical solutions of a massive supermatrix model
International Nuclear Information System (INIS)
Azuma, Takehiro; Bagnoud, Maxime
2003-01-01
We investigate here a supermatrix model with a mass term and a cubic interaction. It is based on the super Lie algebra osp(1 vertical bar 32,R), which could play a role in the construction of the eleven-dimensional M-theory. This model contains a massive version of the IIB matrix model, where some fields have a tachyonic mass term. Therefore, the trivial vacuum of this theory is unstable. However, this model possesses several classical solutions where these fields build noncommutative curved spaces and these solutions are shown to be energetically more favorable than the trivial vacuum. In particular, we describe in details two cases, the SO(3)xSO(3)xSO(3) (three fuzzy 2-spheres) and the SO(9) (fuzzy 8-sphere) classical backgrounds
The method of covariant symbols in curved space-time
International Nuclear Information System (INIS)
Salcedo, L.L.
2007-01-01
Diagonal matrix elements of pseudodifferential operators are needed in order to compute effective Lagrangians and currents. For this purpose the method of symbols is often used, which however lacks manifest covariance. In this work the method of covariant symbols, introduced by Pletnev and Banin, is extended to curved space-time with arbitrary gauge and coordinate connections. For the Riemannian connection we compute the covariant symbols corresponding to external fields, the covariant derivative and the Laplacian, to fourth order in a covariant derivative expansion. This allows one to obtain the covariant symbol of general operators to the same order. The procedure is illustrated by computing the diagonal matrix element of a nontrivial operator to second order. Applications of the method are discussed. (orig.)
Vacuum quantum effect for curved boundaries in static Robertson-Walker space-time
International Nuclear Information System (INIS)
Setare, M.R.; Sadeghi, J.
2009-01-01
The energy-momentum tensor for a massless conformally coupled scalar field in the region between two curved boundaries in k=-1 static Robertson-Walker space-time is investigated. We assume that the scalar field satisfies the Dirichlet boundary condition on the boundaries. k=-1 Robertson-Walker space is conformally related to the Rindler space, as a result we can obtain vacuum expectation values of energy-momentum tensor for conformally invariant field in Robertson-Walker space from the corresponding Rindler counterpart by the conformal transformation.
Comparison of embrittlement trend curves to high fluence surveillance results
International Nuclear Information System (INIS)
Bogaert, A.S.; Gerard, R.; Chaouadi, R.
2011-01-01
In the regulatory justification of the integrity of the reactor pressure vessels (RPV) for long term operation, use is made of predictive formulas (also called trend curves) to evaluate the RPV embrittlement (expressed in terms of RTNDT shifts) in function of fluence, chemical composition and in some cases temperature, neutron flux or product form. It has been shown recently that some of the existing or proposed trend curves tend to underpredict high dose embrittlement. Due to the scarcity of representative surveillance data at high dose, some test reactor results were used in these evaluations and raise the issue of representativeness of the accelerated test reactor irradiations (dose rate effects). In Belgium the surveillance capsules withdrawal schedule was modified in the nineties in order to obtain results corresponding to 60 years of operation or more with the initial surveillance program. Some of these results are already available and offer a good opportunity to test the validity of the predictive formulas at high dose. In addition, advanced surveillance methods are used in Belgium like the Master Curve, increased tensile tests, and microstructural investigations. These techniques made it possible to show the conservatism of the regulatory approach and to demonstrate increased margins, especially for the first generation units. In this paper the surveillance results are compared to different predictive formulas, as well as to an engineering hardening model developed at SCK.CEN. Generally accepted property-to-property correlations are critically revisited. Conclusions are made on the reliability and applicability of the embrittlement trend curves. (authors)
Local differential geometry of null curves in conformally flat space-time
International Nuclear Information System (INIS)
Urbantke, H.
1989-01-01
The conformally invariant differential geometry of null curves in conformally flat space-times is given, using the six-vector formalism which has generalizations to higher dimensions. This is then paralleled by a twistor description, with a twofold merit: firstly, sometimes the description is easier in twistor terms, sometimes in six-vector terms, which leads to a mutual enlightenment of both; and secondly, the case of null curves in timelike pseudospheres or 2+1 Minkowski space we were only able to treat twistorially, making use of an invariant differential found by Fubini and Cech. The result is the expected one: apart from stated exceptional cases there is a conformally invariant parameter and two conformally invariant curvatures which, when specified in terms of this parameter, serve to characterize the curve up to conformal transformations. 12 refs. (Author)
Consistent Lorentz violation in flat and curved space
International Nuclear Information System (INIS)
Dvali, Gia; Pujolas, Oriol; Redi, Michele
2007-01-01
Motivated by the severity of the bounds on Lorentz violation in the presence of ordinary gravity, we study frameworks in which Lorentz violation does not affect the spacetime geometry. We show that there are at least two inequivalent classes of spontaneous Lorentz breaking that even in the presence of gravity result in Minkowski space. The first one generically corresponds to the condensation of tensor fields with tachyonic mass, which in turn is related to ghost condensation. In the second class, realized by the Dvali-Gabadadze-Porrati model or theories of massive gravitons, spontaneous Lorentz breaking is induced by the expectation value of sources. The generalization to de Sitter space is also discussed
Stress energy of elastic globe in curved space and a slip-out force
International Nuclear Information System (INIS)
Sokolov, S.N.
1990-01-01
The energy of stresses in an elastic globe in the flat space and in curved space is expressed through scalar invariants of the curved space. This energy creates an additional force acting on elastic bodies in a gravitational field. 4 refs
A miniature microcontroller curve tracing circuit for space flight testing transistors.
Prokop, N; Greer, L; Krasowski, M; Flatico, J; Spina, D
2015-02-01
This paper describes a novel miniature microcontroller based curve tracing circuit, which was designed to monitor the environmental effects on Silicon Carbide Junction Field Effect Transistor (SiC JFET) device performance, while exposed to the low earth orbit environment onboard the International Space Station (ISS) as a resident experiment on the 7th Materials on the International Space Station Experiment (MISSE7). Specifically, the microcontroller circuit was designed to operate autonomously and was flown on the external structure of the ISS for over a year. This curve tracing circuit is capable of measuring current vs. voltage (I-V) characteristics of transistors and diodes. The circuit is current limited for low current devices and is specifically designed to test high temperature, high drain-to-source resistance SiC JFETs. The results of each I-V data set are transmitted serially to an external telemetered communication interface. This paper discusses the circuit architecture, its design, and presents example results.
Aspects of quantum field theory in curved space-time
Fulling, Stephen A
1989-01-01
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology
An index formula for the self-linking number of a space curve
DEFF Research Database (Denmark)
Røgen, Peter
2008-01-01
Given an embedded closed space curve with non-vanishing curvature, its self-linking number is defined as the linking number between the original curve and a curve pushed slightly off in the direction of its principal normals. We present an index formula for the self-linking number in terms of the...
DUAL TIMELIKE NORMAL AND DUAL TIMELIKE SPHERICAL CURVES IN DUAL MINKOWSKI SPACE
ÖNDER, Mehmet
2009-01-01
Abstract: In this paper, we give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space and we show that every dual timelike normal curve is also a dual timelike spherical curve. Keywords: Normal curves, Dual Minkowski 3-Space, Dual Timelike curves. Mathematics Subject Classifications (2000): 53C50, 53C40. DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL TIMELIKE KÜRESEL EĞRİLER Özet: Bu çalışmada, dual Minkowski 3-...
What have we learned from quantum field theory in curved space-time
International Nuclear Information System (INIS)
Fulling, S.A.
1984-01-01
The paper reviews the quantum field theory in curved space-time. Field quantization in gravitational backgrounds; particle creation by black holes; Hawking radiation; quantum field theory in curved space-time; covariant renormalization of the stress-energy-momentum tensor; quantum field theory and quantum gravity; are all discussed. (U.K.)
Modeling of Triangular Lattice Space Structures with Curved Battens
Chen, Tzikang; Wang, John T.
2005-01-01
Techniques for simulating an assembly process of lattice structures with curved battens were developed. The shape of the curved battens, the tension in the diagonals, and the compression in the battens were predicted for the assembled model. To be able to perform the assembly simulation, a cable-pulley element was implemented, and geometrically nonlinear finite element analyses were performed. Three types of finite element models were created from assembled lattice structures for studying the effects of design and modeling variations on the load carrying capability. Discrepancies in the predictions from these models were discussed. The effects of diagonal constraint failure were also studied.
Consistency Results for the ROC Curves of Fused Classifiers
National Research Council Canada - National Science Library
Bjerkaas, Kristopher
2004-01-01
.... An established performance quantifier is the Receiver Operating Characteristic (ROC) curve, which allows one to view the probability of detection versus the probability of false alarm in one graph...
Ghost neutrinos as test fields in curved space-time
International Nuclear Information System (INIS)
Audretsch, J.
1976-01-01
Without restricting to empty space-times, it is shown that ghost neutrinos (their energy-momentum tensor vanishes) can only be found in algebraically special space-times with a neutrino flux vector parallel to one of the principal null vectors of the conformal tensor. The optical properties are studied. There are no ghost neutrinos in the Kerr-Newman and in spherically symmetric space-times. The example of a non-vacuum gravitational pp-wave accompanied by a ghost neutrino pp-wave is discussed. (Auth.)
Quantum Dynamics of Test Particle in Curved Space-Time
International Nuclear Information System (INIS)
Piechocki, W.
2002-01-01
To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)
Geodesics on a hot plate: an example of a two-dimensional curved space
International Nuclear Information System (INIS)
Erkal, Cahit
2006-01-01
The equation of the geodesics on a hot plate with a radially symmetric temperature profile is derived using the Lagrangian approach. Numerical solutions are presented with an eye towards (a) teaching two-dimensional curved space and the metric used to determine the geodesics (b) revealing some characteristics of two-dimensional curved spacetime and (c) providing insight into understanding the curved space which emerges in teaching relativity. In order to provide a deeper insight, we also present the analytical solutions and show that they represent circles whose characteristics depend on curvature of the space, conductivity and the coefficient of thermal expansion
Geodesics on a hot plate: an example of a two-dimensional curved space
Energy Technology Data Exchange (ETDEWEB)
Erkal, Cahit [Department of Geology, Geography, and Physics, University of Tennessee, Martin, TN 38238 (United States)
2006-07-01
The equation of the geodesics on a hot plate with a radially symmetric temperature profile is derived using the Lagrangian approach. Numerical solutions are presented with an eye towards (a) teaching two-dimensional curved space and the metric used to determine the geodesics (b) revealing some characteristics of two-dimensional curved spacetime and (c) providing insight into understanding the curved space which emerges in teaching relativity. In order to provide a deeper insight, we also present the analytical solutions and show that they represent circles whose characteristics depend on curvature of the space, conductivity and the coefficient of thermal expansion.
Quantum field theory in curved space-time
International Nuclear Information System (INIS)
Najmi, A.-H.
1982-09-01
The problem of constructing states for quantum field theories in nonstationary background space-times is set out. A formalism in which the problem of constructing states can be attacked more easily than at present is presented. The ansatz of energy-minimization as a means of constructing states is formulated in this formalism and its general solution for the free scalar field is found. It has been known, in specific cases, that such states suffer from the problem of unitary inequivalence (the pathology). An example in Minowski space-time is presented in which global operators, such as the particle-number operator, do not exist but all physical observables, such as the renormalized energy density are finite. This model has two Fock-sectors as its space of physical states. A simple extension of this model, i.e. enlarging the Fock-space of states is found not to remedy the pathology: in a Robertson-Walker space-time the quantum field acquires an infinite amount of renormalized energy density to the future of the hypersurface on which the energy density is minimized. Finally, the solution of the ansatz of energy minimization for the free, massive Hermitian fermion field is presented. (author)
Exactly solvable string models of curved space-time backgrounds
Russo, J.G.; Russo, J G; Tseytlin, A A
1995-01-01
We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.
Dead space and slope indices from the expiratory carbon dioxide tension-volume curve
A.H. Kars (Alice); J.M. Bogaard (Jan); Th. Stijnen (Theo); J. de Vries; A.F.M. Verbraak (Anton); C. Hilvering
1997-01-01
textabstractThe slope of phase 3 and three noninvasively determined dead space estimates derived from the expiratory carbon dioxide tension (PCO2) versus volume curve, including the Bohr dead space (VD,Bohr), the Fowler dead space (VD,Fowler) and pre-interface expirate
The fiber bundle formalism for the quantization in curved spaces
International Nuclear Information System (INIS)
Wyrozumski, T.
1989-01-01
We set up a geometrical formulation of the canonical quantization of free Klein-Gordon field on a gravitational background. We introduce the notion of the Bogolubov bundle as the principal fiber bundle over the space of all Cauchy surfaces belonging to some fixed foliation of space-time, with the Bogolubov group as the structure group, as a tool in considering local Bogolubov transformations. Sections of the associated complex structure bundle have the meaning of attaching Hilbert spaces to Cauchy surfaces. We single out, as physical, sections defined by the equation of parallel transport on the Bogolubov bundle. The connection is then subjected to a certain nonlinear differential equation. We find a particular solution, which happens to coincide with a formula given by L.Parker for Robertson-Walker space-times. Finally, we adopt the adiabatic hypothesis as the physical input to the formalism and fix in this way a free parameter in the connection. Concluding, we comment on a possible geometrical interpretation of the regularization of stress-energy tensor and on generalizations of the formalism toward quantum gravity. 14 refs. (Author)
Homology of the open moduli space of curves
DEFF Research Database (Denmark)
Madsen, Ib Henning
2012-01-01
This is a survey on the proof of a generalized version of the Mumford conjecture obtained in joint work with M. Weiss stating that a certain map between some classifying spaces which a priori have different natures induces an isomorphism at the level of integral homology. We also discuss our proo...
The wave equation on a curved space-time
International Nuclear Information System (INIS)
Friedlander, F.G.
1975-01-01
It is stated that chapters on differential geometry, distribution theory, and characteristics and the propagation of discontinuities are preparatory. The main matter is in three chapters, entitled: fundamental solutions, representation theorems, and wave equations on n-dimensional space-times. These deal with general construction of fundamental solutions and their application to the Cauchy problem. (U.K.)
Central extensions for the Weyl CCR in Curved space
International Nuclear Information System (INIS)
Emch, G.G.
1993-01-01
For non-necessarily flat homogeneous configuration spaces, we illustrate how the cohomological choices made in the definition a Weyl group of the CCR are reflected in the momentum map for the action of this group on its co-adjoint orbit of maximal dimension. (Author) 8 refs
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.
A study of potential energy curves from the model space quantum Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Ohtsuka, Yuhki; Ten-no, Seiichiro, E-mail: tenno@cs.kobe-u.ac.jp [Department of Computational Sciences, Graduate School of System Informatics, Kobe University, Nada-ku, Kobe 657-8501 (Japan)
2015-12-07
We report on the first application of the model space quantum Monte Carlo (MSQMC) to potential energy curves (PECs) for the excited states of C{sub 2}, N{sub 2}, and O{sub 2} to validate the applicability of the method. A parallel MSQMC code is implemented with the initiator approximation to enable efficient sampling. The PECs of MSQMC for various excited and ionized states are compared with those from the Rydberg-Klein-Rees and full configuration interaction methods. The results indicate the usefulness of MSQMC for precise PECs in a wide range obviating problems concerning quasi-degeneracy.
Singularities of lightcone pedals of spacelike curves in Lorentz-Minkowski 3-space
Directory of Open Access Journals (Sweden)
Chen Liang
2016-01-01
Full Text Available In this paper, geometric properties of spacelike curves on a timelike surface in Lorentz-Minkowski 3-space are investigated by applying the singularity theory of smooth functions from the contact viewpoint.
Families of bitangent planes of space curves and minimal non-fibration families
Lubbes, Niels
2014-01-01
A cone curve is a reduced sextic space curve which lies on a quadric cone and does not pass through the vertex. We classify families of bitangent planes of cone curves. The methods we apply can be used for any space curve with ADE singularities, though in this paper we concentrate on cone curves. An embedded complex projective surface which is adjoint to a degree one weak Del Pezzo surface contains families of minimal degree rational curves, which cannot be defined by the fibers of a map. Such families are called minimal non-fibration families. Families of bitangent planes of cone curves correspond to minimal non-fibration families. The main motivation of this paper is to classify minimal non-fibration families. We present algorithms which compute all bitangent families of a given cone curve and their geometric genus. We consider cone curves to be equivalent if they have the same singularity configuration. For each equivalence class of cone curves we determine the possible number of bitangent families and the number of rational bitangent families. Finally we compute an example of a minimal non-fibration family on an embedded weak degree one Del Pezzo surface.
On quantum field theory in curved space-time
International Nuclear Information System (INIS)
Hajicek, P.
1976-01-01
It is well known that the existence of quanta or particles of a given field is directly revealed by only a subset of all possible experiments with the field. It is considered a class of such experiments performable at any regular point of any space-time, which includes all terrestrial particle experiments as well as asymptotic observations of an evaporating black hole. A definition based on this class keeps the quanta observable and renders the notion of particle relative and local. Any complicated mathematics is avoided with the intention to emphasize the physical ideas
Quantum field theory in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Hajicek, P [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
1976-06-11
It is well known that the existence of quanta or particles of a given field is directly revealed by only a subset of all possible experiments with the field. A class of such experiments performable at any regular point of any space-time is considered, which includes all terrestrial particle experiments as well as asymptotic observations of an evaporating black hole. A definition based on this class keeps the quanta observable and renders the notion of particle relative and local. Any complicated mathematics is avoided with the intention to emphasize the physical ideas.
Discrete mKdV and discrete sine-Gordon flows on discrete space curves
International Nuclear Information System (INIS)
Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro
2014-01-01
In this paper, we consider the discrete deformation of the discrete space curves with constant torsion described by the discrete mKdV or the discrete sine-Gordon equations, and show that it is formulated as the torsion-preserving equidistant deformation on the osculating plane which satisfies the isoperimetric condition. The curve is reconstructed from the deformation data by using the Sym–Tafel formula. The isoperimetric equidistant deformation of the space curves does not preserve the torsion in general. However, it is possible to construct the torsion-preserving deformation by tuning the deformation parameters. Further, it is also possible to make an arbitrary choice of the deformation described by the discrete mKdV equation or by the discrete sine-Gordon equation at each step. We finally show that the discrete deformation of discrete space curves yields the discrete K-surfaces. (paper)
The quantum null energy condition in curved space
Fu, Zicao; Koeller, Jason; Marolf, Donald
2017-11-01
The quantum null energy condition (QNEC) is a conjectured bound on components (Tkk = Tab ka k^b) of the stress tensor along a null vector k a at a point p in terms of a second k-derivative of the von Neumann entropy S on one side of a null congruence N through p generated by k a . The conjecture has been established for super-renormalizeable field theories at points p that lie on a bifurcate Killing horizon with null tangent k a and for large-N holographic theories on flat space. While the Koeller-Leichenauer holographic argument clearly yields an inequality for general ( p, k^a) , more conditions are generally required for this inequality to be a useful QNEC. For d≤slant 3 , for arbitrary backgroud metric we show that the QNEC is naturally finite and independent of renormalization scheme when the expansion θ of N at the point p vanishes. This is consistent with the original QNEC conjecture which required θ and the shear σab to satisfy θ \\vert _p= \\dotθ\\vert p =0 , σab\\vert _p=0 . But for d=4, 5 more conditions than even these are required. In particular, we also require the vanishing of additional derivatives and a dominant energy condition. In the above cases the holographic argument does indeed yield a finite QNEC, though for d≥slant6 we argue these properties to fail even for weakly isolated horizons (where all derivatives of θ, σab vanish) that also satisfy a dominant energy condition. On the positive side, a corrollary to our work is that, when coupled to Einstein-Hilbert gravity, d ≤slant 3 holographic theories at large N satisfy the generalized second law (GSL) of thermodynamics at leading order in Newton’s constant G. This is the first GSL proof which does not require the quantum fields to be perturbations to a Killing horizon.
Thermodynamics in Curved Space-Time and Its Application to Holography
Directory of Open Access Journals (Sweden)
Yong Xiao
2015-03-01
Full Text Available The thermodynamic behaviors of a system living in a curved space-time are different from those of a system in a flat space-time. We have investigated the thermodynamics for a system consisting of relativistic massless bosons. We show that a strongly curved metric will produce a large enhancement of the degrees of freedom in the formulae of energy and entropy of the system, as a comparison to the case in a flat space-time. We are mainly concerned with its implications to holography, including the derivations of holographic entropy and holographic screen.
Observer-dependent quantum vacua in curved space
International Nuclear Information System (INIS)
Castagnino, M.; Ferraro, R.
1986-01-01
An observer-dependent Hamiltonian is introduced. The vacuum state is defined by means of Hamiltonian diagonalization and minimization, which result to be equivalent criteria. This method encompasses a great number of known vacuum definitions, and works in an arbitrary geometry if the observer's field satisfies certain properties
Quantum mechanical path integrals in curved spaces and the type-A trace anomaly
Energy Technology Data Exchange (ETDEWEB)
Bastianelli, Fiorenzo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università di Modena e Reggio Emilia,Via Campi 213/A, I-41125 Modena (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Vassura, Edoardo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)
2017-04-10
Path integrals for particles in curved spaces can be used to compute trace anomalies in quantum field theories, and more generally to study properties of quantum fields coupled to gravity in first quantization. While their construction in arbitrary coordinates is well understood, and known to require the use of a regularization scheme, in this article we take up an old proposal of constructing the path integral by using Riemann normal coordinates. The method assumes that curvature effects are taken care of by a scalar effective potential, so that the particle lagrangian is reduced to that of a linear sigma model interacting with the effective potential. After fixing the correct effective potential, we test the construction on spaces of maximal symmetry and use it to compute heat kernel coefficients and type-A trace anomalies for a scalar field in arbitrary dimensions up to d=12. The results agree with expected ones, which are reproduced with great efficiency and extended to higher orders. We prove explicitly the validity of the simplified path integral on maximally symmetric spaces. This simplified path integral might be of further use in worldline applications, though its application on spaces of arbitrary geometry remains unclear.
Dead space and slope indices from the expiratory carbon dioxide tension-volume curve
Kars, Alice; Bogaard, Jan; Stijnen, Theo; Vries, J.; Verbraak, Anton; Hilvering, C.
1997-01-01
textabstractThe slope of phase 3 and three noninvasively determined dead space estimates derived from the expiratory carbon dioxide tension (PCO2) versus volume curve, including the Bohr dead space (VD,Bohr), the Fowler dead space (VD,Fowler) and pre-interface expirate (PIE), were investigated in 28 healthy control subjects, 12 asthma and 29 emphysema patients (20 severely obstructed and nine moderately obstructed) with the aim to establish diagnostic value. Because breath volume and frequenc...
Sector models—A toolkit for teaching general relativity: I. Curved spaces and spacetimes
International Nuclear Information System (INIS)
Zahn, C; Kraus, U
2014-01-01
Teaching the general theory of relativity to high school or undergraduate students must be based on an approach that is conceptual rather than mathematical. In this paper we present such an approach that requires no more than elementary mathematics. The central idea of this introduction to general relativity is the use of so-called sector models. Sector models describe curved spaces the Regge calculus way by subdivision into blocks with euclidean geometry. This procedure is similar to the approximation of a curved surface by flat triangles. We outline a workshop for high school and undergraduate students that introduces the notion of curved space by means of sector models of black holes. We further describe the extension to sector models of curved spacetimes. The spacetime models are suitable for learners with a basic knowledge of special relativity. The teaching materials presented in this paper are available online for teaching purposes at www.spacetimetravel.org. (paper)
Broadband giant-refractive-index material based on mesoscopic space-filling curves
Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa
2016-08-01
The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain 1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.
A simple method for one-loop renormalization in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Markkanen, Tommi [Helsinki Institute of Physics and Department of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland); Tranberg, Anders, E-mail: tommi.markkanen@helsinki.fi, E-mail: anders.tranberg@uis.no [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)
2013-08-01
We present a simple method for deriving the renormalization counterterms from the components of the energy-momentum tensor in curved space-time. This method allows control over the finite parts of the counterterms and provides explicit expressions for each term separately. As an example, the method is used for the self-interacting scalar field in a Friedmann-Robertson-Walker metric in the adiabatic approximation, where we calculate the renormalized equation of motion for the field and the renormalized components of the energy-momentum tensor to fourth adiabatic order while including interactions to one-loop order. Within this formalism the trace anomaly, including contributions from interactions, is shown to have a simple derivation. We compare our results to those obtained by two standard methods, finding agreement with the Schwinger-DeWitt expansion but disagreement with adiabatic subtractions for interacting theories.
On the principle of gauge invariance in the field theory with curved momentum space
International Nuclear Information System (INIS)
Mir-Kasimov, R.M.
1990-11-01
The gauge transformations consistent with the hypothesis of the curved momentum space are considered. In this case the components of the electromagnetic field are not commuting. The finite-difference analogue of the D'Alambert equation is derived. (author). 5 refs
Divergence identities in curved space-time. A resolution of the stress-energy problem
International Nuclear Information System (INIS)
Yilmaz, H.; Tufts Univ., Medford, MA
1989-01-01
It is noted that the joint use of two basic differential identities in curved space-time, namely. 1) the Einstein-Hilbert identity (1915), and 2) the identity of P. Freud (1939), permits a viable alternative to general relativity and a resolution of the field stress-energy' problem of the gravitational theory. (orig.)
Killing vectors and covariant operators of momenta for fermion in curved space.
Energy Technology Data Exchange (ETDEWEB)
Fomin, P I; Zemlyakov, A T
1996-12-31
The operators of linear and angular momenta of fermion in symmetric curved space with killing vectors are constructed in the form covariant in respect to transformations of coordinates and local tetrad. Some applications of this formalism are considered. 14 refs., 1 figs.
Killing vectors and covariant operators of momenta for fermion in curved space
International Nuclear Information System (INIS)
Fomin, P.I.; Zemlyakov, A.T.
1995-01-01
The operators of linear and angular momenta of fermion in symmetric curved space with killing vectors are constructed in the form covariant in respect to transformations of coordinates and local tetrad. Some applications of this formalism are considered. 14 refs., 1 figs
A Numerical Framework for Sobolev Metrics on the Space of Curves
DEFF Research Database (Denmark)
Bauer, Martin; Bruveris, Martins; Harms, Philipp
2017-01-01
Statistical shape analysis can be done in a Riemannian framework by endowing the set of shapes with a Riemannian metric. Sobolev metrics of order two and higher on shape spaces of parametrized or unparametrized curves have several desirable properties not present in lower order metrics...
Maximal superintegrability of the generalized Kepler-Coulomb system on N-dimensional curved spaces
International Nuclear Information System (INIS)
Ballesteros, Angel; Herranz, Francisco J
2009-01-01
The superposition of the Kepler-Coulomb potential on the 3D Euclidean space with three centrifugal terms has recently been shown to be maximally superintegrable (Verrier and Evans 2008 J. Math. Phys. 49 022902) by finding an additional (hidden) integral of motion which is quartic in the momenta. In this paper, we present the generalization of this result to the N-dimensional spherical, hyperbolic and Euclidean spaces by making use of a unified symmetry approach that makes use of the curvature parameter. The resulting Hamiltonian, formed by the (curved) Kepler-Coulomb potential together with N centrifugal terms, is shown to be endowed with 2N - 1 functionally independent integrals of the motion: one of them is quartic and the remaining ones are quadratic. The transition from the proper Kepler-Coulomb potential, with its associated quadratic Laplace-Runge-Lenz N-vector, to the generalized system is fully described. The role of spherical, nonlinear (cubic) and coalgebra symmetries in all these systems is highlighted
A local-to-global singularity theorem for quantum field theory on curved space-time
International Nuclear Information System (INIS)
Radzikowski, M.J.; York Univ.
1996-01-01
We prove that if a reference two-point distribution of positive type on a time orientable curved space-time (CST) satisfies a certain condition on its wave front set (the ''class P M,g condition'') and if any other two-point distribution (i) is of positive type, (ii) has the same antisymmetric part as the reference modulo smooth function and (iii) has the same local singularity structure, then it has the same global singularity structure. In the proof we use a smoothing, positivity-preserving pseudo-differential operator the support of whose symbol is restricted to a certain conic region which depends on the wave front set of the reference state. This local-to-global theorem, together with results published elsewhere, leads to a verification of a conjecture by Kay that for quasi-free states of the Klein-Gordon quantum field on a globally hyperbolic CST, the local Hadamard condition implies the global Hadamard condition. A counterexample to the local-to-global theorem on a strip in Minkowski space is given when the class P M,g condition is not assumed. (orig.)
Dirac Hamiltonian and Reissner-Nordström metric: Coulomb interaction in curved space-time
Noble, J. H.; Jentschura, U. D.
2016-03-01
We investigate the spin-1 /2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordström space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordström geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational and electrogravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electrogravitational correction terms to the potential proportional to αnG , where α is the fine-structure constant and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic coupling. The resulting spectrum of radially symmetric, electrostatically bound systems (with gravitational corrections) is evaluated for example cases.
Non-Abelian bosonization as a nonholonomic transformation from a flat to a curved field space
International Nuclear Information System (INIS)
Kleinert, H.
1997-01-01
There exists a simple rule by which path integrals for the motion of a point particle in a flat space can be transformed correctly into those in a curved space. This rule arose from well-established methods in the theory of plastic deformations, where crystals with defects are described mathematically by applying active nonholonomic coordinate transformations to ideal crystals. In the context of time-sliced path integrals, this has given rise to a quantum equivalence principle which determines the short-time action and functional integration measure of fluctuating orbits in spaces with curvature and torsion. The nonholonomic transformations have a nontrivial Jacobian which in curved spaces produces an additional energy proportional to the curvature scalar, thereby canceling an equal term found earlier by DeWitt in his formulation of Feynman close-quote s time-sliced path integral in curved space. The importance of this cancelation has been documented in various systems (H-atom, particle on the surface of a sphere, spinning top). Here we point out its relevance to the bosonization of a non-Abelian one-dimensional quantum field theory, whose fields live in a flat field space. The bosonized version is a quantum-mechanical path integral of a point particle moving in a space with constant curvature. The additional term introduced by the Jacobian is crucial for the identity between original and bosonized theory. A useful bosonization tool is the so-called Hubbard endash Stratonovich formula for which we find a nonabelian version. copyright 1997 Academic Press, Inc
New superintegrable models with position-dependent mass from Bertrand's Theorem on curved spaces
Energy Technology Data Exchange (ETDEWEB)
Ballesteros, A; Herranz, F J [Departamento de Fisica, Universidad de Burgos, E-09001 Burgos (Spain); Enciso, A [Departamento de Fisica Teorica II, Universidad Complutense, E-28040 Madrid (Spain); Ragnisco, O; Riglioni, D, E-mail: angelb@ubu.es, E-mail: aenciso@fis.ucm.es, E-mail: fjherranz@ubu.es, E-mail: ragnisco@fis.uniroma3.it, E-mail: riglioni@fis.uniroma3.it [Dipartimento di Fisica, Universita di Roma Tre and Instituto Nazionale di Fisica Nucleare sezione di Roma Tre, Via Vasca Navale 84, I-00146 Roma (Italy)
2011-03-01
A generalized version of Bertrand's theorem on spherically symmetric curved spaces is presented. This result is based on the classification of (3+1)-dimensional (Lorentzian) Bertrand spacetimes, that gives rise to two families of Hamiltonian systems defined on certain 3-dimensional (Riemannian) spaces. These two systems are shown to be either the Kepler or the oscillator potentials on the corresponding Bertrand spaces, and both of them are maximally superintegrable. Afterwards, the relationship between such Bertrand Hamiltonians and position-dependent mass systems is explicitly established. These results are illustrated through the example of a superintegrable (nonlinear) oscillator on a Bertrand-Darboux space, whose quantization and physical features are also briefly addressed.
How the geometric calculus resolves the ordering ambiguity of quantum theory in curved space
International Nuclear Information System (INIS)
Pavsic, Matej
2003-01-01
The long standing problem of the ordering ambiguity in the definition of the Hamilton operator for a point particle in curved space is naturally resolved by using the powerful geometric calculus based on Clifford algebra. The momentum operator is defined to be the vector derivative (the gradient) multiplied by -i; it can be expanded in terms of basis vectors γ μ as p = -iγ μ ∂ μ . The product of two such operators is unambiguous, and such is the Hamiltonian which is just the d'Alembert operator in curved space; the curvature scalar term is not present in the Hamiltonian if we confine our consideration to scalar wavefunctions only. It is also shown that p is Hermitian and a self-adjoint operator: the presence of the basis vectors γ μ compensates the presence of √|g| in the matrix elements and in the scalar product. The expectation value of such an operator follows the classical geodetic line
Gauge anomaly with vector and axial-vector fields in 6D curved space
Yajima, Satoshi; Eguchi, Kohei; Fukuda, Makoto; Oka, Tomonori
2018-03-01
Imposing the conservation equation of the vector current for a fermion of spin 1/2 at the quantum level, a gauge anomaly for the fermion coupling with non-Abelian vector and axial-vector fields in 6D curved space is expressed in tensorial form. The anomaly consists of terms that resemble the chiral U(1) anomaly and the commutator terms that disappear if the axial-vector field is Abelian.
Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.
2013-09-01
The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its
Lagrangian Curves on Spectral Curves of Monopoles
International Nuclear Information System (INIS)
Guilfoyle, Brendan; Khalid, Madeeha; Ramon Mari, Jose J.
2010-01-01
We study Lagrangian points on smooth holomorphic curves in TP 1 equipped with a natural neutral Kaehler structure, and prove that they must form real curves. By virtue of the identification of TP 1 with the space LE 3 of oriented affine lines in Euclidean 3-space, these Lagrangian curves give rise to ruled surfaces in E 3 , which we prove have zero Gauss curvature. Each ruled surface is shown to be the tangent lines to a curve in E 3 , called the edge of regression of the ruled surface. We give an alternative characterization of these curves as the points in E 3 where the number of oriented lines in the complex curve Σ that pass through the point is less than the degree of Σ. We then apply these results to the spectral curves of certain monopoles and construct the ruled surfaces and edges of regression generated by the Lagrangian curves.
Holographic description of curved-space quantum field theory and gravity
Energy Technology Data Exchange (ETDEWEB)
Uhlemann, Christoph Frank
2012-12-12
The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these
Holographic description of curved-space quantum field theory and gravity
International Nuclear Information System (INIS)
Uhlemann, Christoph Frank
2012-01-01
The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these
3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries
DEFF Research Database (Denmark)
Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah
2014-01-01
The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA...
Abstracts, Third Space Processing Symposium, Skylab results
1974-01-01
Skylab experiments results are reported in abstracts of papers presented at the Third Space Processing Symposium. Specific areas of interest include: exothermic brazing, metals melting, crystals, reinforced composites, glasses, eutectics; physics of the low-g processes; electrophoresis, heat flow, and convection demonstrations flown on Apollo missions; and apparatus for containerless processing, heating, cooling, and containing materials.
Polygonal approximation and scale-space analysis of closed digital curves
Ray, Kumar S
2013-01-01
This book covers the most important topics in the area of pattern recognition, object recognition, computer vision, robot vision, medical computing, computational geometry, and bioinformatics systems. Students and researchers will find a comprehensive treatment of polygonal approximation and its real life applications. The book not only explains the theoretical aspects but also presents applications with detailed design parameters. The systematic development of the concept of polygonal approximation of digital curves and its scale-space analysis are useful and attractive to scholars in many fi
Renormalization of non-abelian gauge theories in curved space-time
International Nuclear Information System (INIS)
Freeman, M.D.
1984-01-01
We use indirect, renormalization group arguments to calculate the gravitational counterterms needed to renormalize an interacting non-abelian gauge theory in curved space-time. This method makes it straightforward to calculate terms in the trace anomaly which first appear at high order in the coupling constant, some of which would need a 4-loop calculation to find directly. The role of gauge invariance in the theory is considered, and we discuss briefly the effect of using coordinate-dependent gauge-fixing terms. We conclude by suggesting possible applications of this work to models of the very early universe
Parabolic section and distance excess of space curves applied to protein structure classification
DEFF Research Database (Denmark)
Røgen, Peter; Karlsson, Per W.
2008-01-01
Proteins are long chain molecules that fold up into beautiful and complicated three-dimensional structures before fulfilling their biological functions in the living organisms. With the aim of providing an efficient tool for describing the proteins' native folds, we present a global geometric mea...... measure of a space curve. This geometric measure allows us to define descriptors of protein structures that quantify how parallel the secondary structure elements of a protein are. These descriptors are C-2 in deformations of the protein structure, are evaluated very fast and reliably...
Dirac equation in 5- and 6-dimensional curved space-time manifolds
International Nuclear Information System (INIS)
Vladimirov, Yu.S.; Popov, A.D.
1984-01-01
The program of plotting unified multidimensional theory of gravitation, electromagnetism and electrically charged matter with transition from 5-dimensional variants to 6-dimensional theory possessing signature (+----+) is developed. For recording the Dirac equation in 5- and 6-dimensional curved space-time manifolds the tetrad formalism and γ-matrix formulation of the General Relativity Theory are used. It is shown that the 6-dimensional theory case unifies the two private cases of 5-dimensional theory and corresponds to two possibilities of the theory developed by Kadyshevski
On renormalisation of the quantum stress tensor in curved space-time by dimensional regularisation
International Nuclear Information System (INIS)
Bunch, T.S.
1979-01-01
Using dimensional regularisation, a prescription is given for obtaining a finite renormalised stress tensor in curved space-time. Renormalisation is carried out by renormalising coupling constants in the n-dimensional Einstein equation generalised to include tensors which are fourth order in derivatives of the metric. Except for the special case of a massless conformal field in a conformally flat space-time, this procedure is not unique. There exists an infinite one-parameter family of renormalisation ansatze differing from each other in the finite renormalisation that takes place. Nevertheless, the renormalised stress tensor for a conformally invariant field theory acquires a nonzero trace which is independent of the renormalisation ansatz used and which has a value in agreement with that obtained by other methods. A comparison is made with some earlier work using dimensional regularisation which is shown to be in error. (author)
On renormalisation of lambda phi4 field theory in curved space-time
International Nuclear Information System (INIS)
Bunch, T.S.; Panangaden, P.
1980-01-01
An explicit renormalisation of all second-order physical processes occurring in lambdaphi 4 field theory in conformally flat space-time, including vacuum-to-vacuum processes, is performed. Although divergences dependent on the definition of the vacuum state appear in some Feynman diagrams, physical amplitudes obtained by summing all diagrams which contribute to a single physical process are independent of these divergences. Consequently, the theory remains renormalisable in curved space-time, at least to second order in lambda. Renormalisations of the mass m, the coupling constant lambda and the constant xi which couples the field to the Ricci scalar are required to make two- and four-particle creation amplitudes finite. (author)
A new form of the calibration curve in radiochromic dosimetry. Properties and results
Energy Technology Data Exchange (ETDEWEB)
Tamponi, Matteo, E-mail: mtamponi@aslsassari.it; Bona, Rossana; Poggiu, Angela; Marini, Piergiorgio [Medical Physics Unit, ASL Sassari, Via Enrico de Nicola, Sassari 07100 (Italy)
2016-07-15
Purpose: This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. Methods: The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer–Lambert law and a simple modeling of the film. The new calibration curve has been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. Results: The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. Conclusions: The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the
A new form of the calibration curve in radiochromic dosimetry. Properties and results
International Nuclear Information System (INIS)
Tamponi, Matteo; Bona, Rossana; Poggiu, Angela; Marini, Piergiorgio
2016-01-01
Purpose: This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. Methods: The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer–Lambert law and a simple modeling of the film. The new calibration curve has been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. Results: The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. Conclusions: The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the
Results of dosimetric measurements in space missions
Reitz, G.; Beaujean, R.; Heilmann, C.; Kopp, J.; Leicher, M.; Strauch, K.
Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rates were determined of each exposure. The dose equivalent received by the Payload specialists (PSs) were calculated from the measurements, they range from 190 muSv d^-1 to 770 muSv d^-1. Finally, a preliminary investigation of results from a particle telescope of two silicon detectors, first used in the last BIORACK mission on STS 76, is reported.
International Nuclear Information System (INIS)
Strohmaier, Alexander; Verch, Rainer; Wollenberg, Manfred
2002-01-01
We show in this article that the Reeh-Schlieder property holds for states of quantum fields on real analytic curved space-times if they satisfy an analytic microlocal spectrum condition. This result holds in the setting of general quantum field theory, i.e., without assuming the quantum field to obey a specific equation of motion. Moreover, quasifree states of the Klein-Gordon field are further investigated in the present work and the (analytic) microlocal spectrum condition is shown to be equivalent to simpler conditions. We also prove that any quasifree ground or KMS state of the Klein-Gordon field on a stationary real analytic space-time fulfills the analytic microlocal spectrum condition
Comparison of the effect of two freeze-thawing curves for porcine semen. Preliminary results
Directory of Open Access Journals (Sweden)
Caldevilla M
2016-12-01
Full Text Available Results obtained in fertility and litter size using frozen-thawed porcine semen are far from those obtained with natural service or artificial insemination of cooled semen. The objective of this study was to evaluate freeze-thawing of porcine semen comparing the traditional slow method to a rapid curve of temperature descent, using two cryoprotectants. Six males of proven fertility (n=6, r=2 were used. Semen was obtained using the gloved-hand technique and was transported to the laboratory at 17 ºC diluted in Androstar® plus. Samples were centrifuged 15 minutes at 800 g and re-diluted in: a 5% dimethylformamide, 11% lactose, 20% egg yolk, 0.5% Equex or b 3% glycerol, 11% lactose, 20% egg yolk, 0.5% Equex. The semen was frozen in 0.5 ml straws up to a final concentration of 300 millions sperm /ml using either a modified slow traditional Westendorff curve or a rapid curve. In both cases thawing was carried out at 37 ºC during 1 minute. Kinetic motility parameters were evaluated using a CASA system (ISAS v1, Proiser®, Spain. Sperm viability and acrosome status were evaluated using the FITC-PNA/PI stain. The results were analyzed using a factorial design (analysis ofvariance with two factors, with two levels for each one and using the male as a blocking factor. No interaction was observed between the parameters. No significant differences (p> 0.05 were observed between curves or between cryoprotectants neither in any of the kinetic motility parameters evaluated nor in sperm viability and acrosome status. No significant differences (p> 0.05 were observed between curves or between cryoprotectants in sperm morphology in thawed porcine semen. Taking into account the results obtained, the rapid curve would be the practical choice as it is, faster and more manageable for fieldwork in any pig farm.
Geometro-stochastic quantization of gauge fields in curved space-time
International Nuclear Information System (INIS)
Prugovecki, E.
1988-01-01
It is shown that the geometro-stochastic method of quantization of massive fields in curved space-time can be extended to the massless cases of electromagnetic fields and general Yang-Mills fields. The Fock fibres of the massive case are replaced in the present context by fibres with indefinite inner products, such as Gupta-Bleuler fibres in the electromagnetic case. The quantum space-time form factor used in the massive case gives rise in the present case to quantum gauge frames whose elements are generalized coherent states corresponding to pseudounitary spin-one representations of direct products of the Poincare group with the U(1), SU(N) or other internal gauge groups. Quantum connections are introduced on bundles of second-quantized frames, and the corresponding parallel transport is expressed in terms of path integrals for quantum frame propagators. In the Yang-Mills case, these path integral make use of Faddeev-Popov quantum frames. It is shown, however, that in the present framework the ghost fields that give rise to these frames possess a geometric interpretation related to the presence of a super-gauge group that, in addition to the external Poincare and Yang-Mills gauge degrees of freedom, involves also the internal ones related to choices of gauge bases within the quantum fibres
On Bäcklund transformation and vortex filament equation for null Cartan curve in Minkowski 3-space
Energy Technology Data Exchange (ETDEWEB)
Grbović, Milica, E-mail: milica.grbovic@kg.ac.rs; Nešović, Emilija, E-mail: nesovickg@sbb.rs [University of Kragujevac, Faculty of Science, Department of Mathematics and Informatics (Serbia)
2016-12-15
In this paper we introduce Bäcklund transformation of a null Cartan curve in Minkowski 3-space as a transformation which maps a null Cartan helix to another null Cartan helix, congruent to the given one. We also give the sufficient conditions for a transformation between two null Cartan curves in the Minkowski 3-space such that these curves have equal constant torsions. By using the Da Rios vortex filament equation, based on localized induction approximation, we derive the vortex filament equation for a null Cartan curve and obtain evolution equation for it’s torsion. As an application, we show that Cartan’s frame vectors generate new solutions of the Da Rios vortex filament equation.
Minimally invasive estimation of ventricular dead space volume through use of Frank-Starling curves.
Directory of Open Access Journals (Sweden)
Shaun Davidson
Full Text Available This paper develops a means of more easily and less invasively estimating ventricular dead space volume (Vd, an important, but difficult to measure physiological parameter. Vd represents a subject and condition dependent portion of measured ventricular volume that is not actively participating in ventricular function. It is employed in models based on the time varying elastance concept, which see widespread use in haemodynamic studies, and may have direct diagnostic use. The proposed method involves linear extrapolation of a Frank-Starling curve (stroke volume vs end-diastolic volume and its end-systolic equivalent (stroke volume vs end-systolic volume, developed across normal clinical procedures such as recruitment manoeuvres, to their point of intersection with the y-axis (where stroke volume is 0 to determine Vd. To demonstrate the broad applicability of the method, it was validated across a cohort of six sedated and anaesthetised male Pietrain pigs, encompassing a variety of cardiac states from healthy baseline behaviour to circulatory failure due to septic shock induced by endotoxin infusion. Linear extrapolation of the curves was supported by strong linear correlation coefficients of R = 0.78 and R = 0.80 average for pre- and post- endotoxin infusion respectively, as well as good agreement between the two linearly extrapolated y-intercepts (Vd for each subject (no more than 7.8% variation. Method validity was further supported by the physiologically reasonable Vd values produced, equivalent to 44.3-53.1% and 49.3-82.6% of baseline end-systolic volume before and after endotoxin infusion respectively. This method has the potential to allow Vd to be estimated without a particularly demanding, specialised protocol in an experimental environment. Further, due to the common use of both mechanical ventilation and recruitment manoeuvres in intensive care, this method, subject to the availability of multi-beat echocardiography, has the potential to
An application of modular inclusion to quantum field theory in curved space-time
International Nuclear Information System (INIS)
Summers, S.J.; Verch, R.
1993-09-01
Applying recent results by Borchers connecting geometric modular action, modular inclusion and the spectrum condition, earlier results by Kay and Wald concerning the temperature of physically significant states of the linear Hermitean scalar field propagating in the background of a space-time with a bifurcate Killing horizon are generalized. (orig.)
p-Curve and Effect Size: Correcting for Publication Bias Using Only Significant Results.
Simonsohn, Uri; Nelson, Leif D; Simmons, Joseph P
2014-11-01
Journals tend to publish only statistically significant evidence, creating a scientific record that markedly overstates the size of effects. We provide a new tool that corrects for this bias without requiring access to nonsignificant results. It capitalizes on the fact that the distribution of significant p values, p-curve, is a function of the true underlying effect. Researchers armed only with sample sizes and test results of the published findings can correct for publication bias. We validate the technique with simulations and by reanalyzing data from the Many-Labs Replication project. We demonstrate that p-curve can arrive at conclusions opposite that of existing tools by reanalyzing the meta-analysis of the "choice overload" literature. © The Author(s) 2014.
Non-sky-averaged sensitivity curves for space-based gravitational-wave observatories
International Nuclear Information System (INIS)
Vallisneri, Michele; Galley, Chad R
2012-01-01
The signal-to-noise ratio (SNR) is used in gravitational-wave observations as the basic figure of merit for detection confidence and, together with the Fisher matrix, for the amount of physical information that can be extracted from a detected signal. SNRs are usually computed from a sensitivity curve, which describes the gravitational-wave amplitude needed by a monochromatic source of given frequency to achieve a threshold SNR. Although the term 'sensitivity' is used loosely to refer to the detector's noise spectral density, the two quantities are not the same: the sensitivity includes also the frequency- and orientation-dependent response of the detector to gravitational waves and takes into account the duration of observation. For interferometric space-based detectors similar to LISA, which are sensitive to long-lived signals and have constantly changing position and orientation, exact SNRs need to be computed on a source-by-source basis. For convenience, most authors prefer to work with sky-averaged sensitivities, accepting inaccurate SNRs for individual sources and giving up control over the statistical distribution of SNRs for source populations. In this paper, we describe a straightforward end-to-end recipe to compute the non-sky-averaged sensitivity of interferometric space-based detectors of any geometry. This recipe includes the effects of spacecraft motion and of seasonal variations in the partially subtracted confusion foreground from Galactic binaries, and it can be used to generate a sampling distribution of sensitivities for a given source population. In effect, we derive error bars for the sky-averaged sensitivity curve, which provide a stringent statistical interpretation for previously unqualified statements about sky-averaged SNRs. As a worked-out example, we consider isotropic and Galactic-disk populations of monochromatic sources, as observed with the 'classic LISA' configuration. We confirm that the (standard) inverse-rms average sensitivity
Jowett, Charlie R J; Bedi, Harvinder S
Minimally invasive surgery is increasing in popularity. It is relevant in hallux valgus surgery owing to the potential for reduced disruption of the soft tissues and improved wound healing. We present our results and assess the learning curve of the minimally invasive Chevron Akin operation for hallux valgus. A total of 120 consecutive feet underwent minimally invasive Chevron Akin for symptomatic hallux valgus, of which 14 were excluded. They were followed up for a mean of 25 (range 18 to 38) months. The patients were clinically assessed using the American Orthopaedic Foot and Ankle Society score. Complications and patient satisfaction were recorded. The radiographs were analyzed and measurements recorded for hallux valgus and intermetatarsal angle correction. The mean age of the patients undergoing surgery was 55 (range 25 to 81) years. Of the 78 patients, 76 (97.4%) were female and 2 (2.6%) were male; 28 (35.9%) cases were bilateral. The mean American Orthopaedic Foot and Ankle Society score improved from 56 (range 23 to 76) preoperatively to 87 (range 50 to 100) postoperatively (p technique. They display a steep associated learning curve. However, the results are promising, and the learning curve is comparable to that for open hallux valgus surgery. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Regularization and renormalization of quantum field theory in curved space-time
International Nuclear Information System (INIS)
Bernard, C.; Duncan, A.
1977-01-01
It is proposed that field theories quantized in a curved space-time manifold can be conveniently regularized and renormalized with the aid of Pauli-Villars regulator fields. The method avoids the conceptual difficulties of covariant point-separation approaches, by starting always from a manifestly generally covariant action, and the technical limitations of the dimensional reqularization approach, which requires solution of the theory in arbitrary dimension in order to go beyond a weak-field expansion. An action is constructed which renormalizes the weak-field perturbation theory of a massive scalar field in two space-time dimensions--it is shown that the trace anomaly previously found in dimensional regularization and some point-separation calculations also arises in perturbation theory when the theory is Pauli-Villars regulated. One then studies a specific solvable two-dimensional model of a massive scalar field in a Robertson-Walker asymptotically flat universe. It is shown that the action previously considered leads, in this model, to a well defined finite expectation value for the stress-energy tensor. The particle production (less than 0 in/vertical bar/theta/sup mu nu/(x,t)/vertical bar/0 in greater than for t → + infinity) is computed explicitly. Finally, the validity of weak-field perturbation theory (in the appropriate range of parameters) is checked directly in the solvable model, and the trace anomaly computed in the asymptotic regions t→ +- infinity independently of any weak field approximation. The extension of the model to higher dimensions and the renormalization of interacting (scalar) field theories are briefly discussed
Wang, Yong-Long; Jiang, Hua; Zong, Hong-Shi
2017-08-01
In the spirit of the thin-layer quantization approach, we give the formula of the geometric influences of a particle confined to a curved surface embedded in three-dimensional Euclidean space. The geometric contributions can result from the reduced commutation relation between the acted function depending on normal variable and the normal derivative. According to the formula, we obtain the geometric potential, geometric momentum, geometric orbital angular momentum, geometric linear Rashba, and cubic Dresselhaus spin-orbit couplings. As an example, a truncated cone surface is considered. We find that the geometric orbital angular momentum can provide an azimuthal polarization for spin, and the sign of the geometric Dresselhaus spin-orbit coupling can be flipped through the inclination angle of generatrix.
Three dimensional range geometry and texture data compression with space-filling curves.
Chen, Xia; Zhang, Song
2017-10-16
This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.
Torelli groups, extended Johnson homomorphisms, and new cycles on the moduli space of curves
DEFF Research Database (Denmark)
Morita, Shigeyuki; Penner, Robert
modulo N are derived for all N. Furthermore, the first Johnson homomorphism, which is defined from the classical Torelli group to the third exterior power of the homology of the surface, is shown to lift to an explicit canonical 1-cocycle of the Teichmueller space. The main tool for these results...... cocycle lifts of the higher Johnson homomorphisms....
Zero-rest-mass fields in an algebraically special curved space-time
Energy Technology Data Exchange (ETDEWEB)
Fordy, A P [King' s Coll., London (UK). Dept. of Mathematics
1977-04-01
Zero-rest-mass higher-spin fields in algebraically special vacuum back-ground space-times are considered. It is shown that the algebraic speciality of the background metric strongly restricts the form of the solutions of these fields. These results are used to study perturbations of the Schwarzschild black hole.
Quantum field theory in spaces with closed time-like curves
International Nuclear Information System (INIS)
Boulware, D.G.
1992-01-01
Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon
Quantum mechanics in curved space-time and its consequences for the theory on the flat space-time
International Nuclear Information System (INIS)
Tagirov, E.A.
1997-01-01
Thus, the structure is extracted from the initial general-relativistic setting of the quantum theory of the scalar field φ that can be considered as quantum mechanics in V 1,3 in the Schroedinger picture, which includes relativistic corrections not only in the Hamiltonian of the Schroedinger equation but also in the operators of primary observables. In the terms pertaining to these corrections the operators differ from their counterparts resulting from quantization of a classical spinless particle. In general, they do not commute at all and thus the quantum phase space loses the feature that half its coordinates retain a manifold structure, which Biedenharn called 'a miracle of quantization'. This non-commutativity expands up to the exact (in the sense 'non-asymptotic in c -2 ') quantum mechanics of a free motion in the Minkowski space-time if curvilinear coordinates are taken as observables, which are necessary if non-inertial frames of references are considered
A MAPLE Package for Energy-Momentum Tensor Assessment in Curved Space-Time
International Nuclear Information System (INIS)
Murariu, Gabriel; Praisler, Mirela
2010-01-01
One of the most interesting problem which remain unsolved, since the birth of the General Theory of Relativity (GR), is the energy-momentum localization. All our reflections are within the Lagrange formalism of the field theory. The concept of the energy-momentum tensor for gravitational interactions has a long history. To find a generally accepted expression, there have been different attempts. This paper is dedicated to the investigation of the energy-momentum problem in the theory of General Relativity. We use Einstein [1], Landau-Lifshitz [2], Bergmann-Thomson [3] and Moller's [4] prescriptions to evaluate energy-momentum distribution. In order to cover the huge volume of computation and, bearing in mind to make a general approaching for different space-time configurations, a MAPLE application to succeed in studying the energy momentum tensor was built. In the second part of the paper for two space-time configuration, the comparative results were presented.
Presic-Boyd-Wong Type Results in Ordered Metric Spaces
Directory of Open Access Journals (Sweden)
Satish Shukla
2014-04-01
Full Text Available The purpose of this paper is to prove some Presic-Boyd-Wong type fixed point theorems in ordered metric spaces. The results of this paper generalize the famous results of Presic and Boyd-Wong in ordered metric spaces. We also initiate the homotopy result in product spaces. Some examples are provided which illustrate the results proved herein.
Determination of Sight Distance on a Combined Crest and Circular Curve in a Three Dimensional Space
Directory of Open Access Journals (Sweden)
Chiu Liu, PhD, PE, PTOE
2012-06-01
Full Text Available The sight distance (SD on a two-dimensional (2-d curve, namely, a vertical curve or a horizontal curve, has been well understood and documented for roadway geometric design in literature. In reality, three-dimensional (3-d curves can be found along ramps, connectors, and often mountain roads. The sight distance on these 3-d curves, which may vary with driver's location, has not been tackled in literature on an exact analytic setting. By integrating human-vehicle-roadway interaction, the formulas for computing the SD on a 3-d curve are derived the first time on an analytic framework. The crest curve SD that has been used in various literatures, can be deduced from these derived formulas as special limiting cases. Practitioners can easily apply theses user-friendly formulas or equations on a Microsoft Excel spread sheet to calculate 3-d SD on a roadway with sufficient roadside clearance. In addition, this framework can be extended easily to cope with various scenarios in which obstacles partially blocking driver's sight are present in a roadway environment.
Nonlinear Dynamic of Curved Railway Tracks in Three-Dimensional Space
Liu, X.; Ngamkhanong, C.; Kaewunruen, S.
2017-12-01
On curved tracks, high-pitch noise pollution can often be a considerable concern of rail asset owners, commuters, and people living or working along the rail corridor. Inevitably, wheel/rail interface can cause a traveling source of sound and vibration, which spread over a long distance of rail network. The sound and vibration can be in various forms and spectra. The undesirable sound and vibration on curves is often called ‘noise,’ includes flanging and squealing noises. This paper focuses on the squeal noise phenomena on curved tracks located in urban environments. It highlights the effect of curve radii on lateral track dynamics. It is important to note that rail freight curve noises, especially for curve squeals, can be observed almost everywhere and every type of track structures. The most pressing noise appears at sharper curved tracks where excessive lateral wheel/rail dynamics resonate with falling friction states, generating a tonal noise problem, so-call ‘squeal’. Many researchers have carried out measurements and simulations to understand the actual root causes of the squeal noise. Most researchers believe that wheel resonance over falling friction is the main cause, whilst a few others think that dynamic mode coupling of wheel and rail may also cause the squeal. Therefore, this paper is devoted to systems thinking the approach and dynamic assessment in resolving railway curve noise problems. The simulations of railway tracks with different curve radii will be carried out to develop state-of-the-art understanding into lateral track dynamics, including rail dynamics, cant dynamics, gauge dynamics and overall track responses.
Probabilistic G-Metric space and some fixed point results
Directory of Open Access Journals (Sweden)
A. R. Janfada
2013-01-01
Full Text Available In this note we introduce the notions of generalized probabilistic metric spaces and generalized Menger probabilistic metric spaces. After making our elementary observations and proving some basic properties of these spaces, we are going to prove some fixed point result in these spaces.
International Nuclear Information System (INIS)
Brown, M.R.; Ottewill, A.C.
1986-01-01
We present the symmetric Hadamard representation for scalar and photon Feynman Green's functions. We use these representations to give a simple definition for their associated renormalized stress tensors. We investigate the connection between the accuracy of the WKB approximation and the vanishing of the trace anomaly for these fields. We show that, although for scalars there is a direct connection, this is not true for photons, and we discuss the relevance of these results to the approximation of renormalized stress tensors in static Einstein space-times
True fir spacing trials: 10-year results.
Robert O. Curtis
2008-01-01
Eighteen precommercial thinning trials were established in true fir-hemlock stands in the Olympic Mountains and the west side of the Cascade Range during the period 1987 through 1994. This paper updates a previous report, with results for the first 10 years after establishment. Results are given for (1) all trees, (2) the largest 80 per acre of any species, and (3)...
Deriving Sight Distance on a Compound Sag and Circular Curve in a Three Dimensional Space
Directory of Open Access Journals (Sweden)
Chiu Liu, PhD, PE, PTOE
2012-09-01
Full Text Available Insufficient roadway sight distance (SD may become a contribution factor to traffic collisions or other unsafe traffic maneuvers. The sight distance (SD for a two-dimensional (2-d sag or circular curve has been addressed in detail in various traffic engineering literatures. Although three-dimensional (3-d compound sag and circular curves are often found along ramps, connectors, and mountain roads, the sight distances for these compound curves are yet to be analyzed on an exact analytic setting. By considering human-vehicle-roadway interaction, the formulas for computing the SD on a 3-d curve are derived the first time on a unified analytic framework. The 2-d sag curve SD can also be deduced from these derived formulas as special limiting cases. Practitioners can easily program these formulas or equations on a user-friendly Microsoft Excel spread sheet to calculate 3-d SD on most roadways with roadside clearance. This framework can be extended to estimate SD on roadways with obstacles partially blocking vehicle headlight beams. 6.
MPL-A program for computations with iterated integrals on moduli spaces of curves of genus zero
Bogner, Christian
2016-06-01
We introduce the Maple program MPL for computations with multiple polylogarithms. The program is based on homotopy invariant iterated integrals on moduli spaces M0,n of curves of genus 0 with n ordered marked points. It includes the symbol map and procedures for the analytic computation of period integrals on M0,n. It supports the automated computation of a certain class of Feynman integrals.
Directory of Open Access Journals (Sweden)
Zhang Guowei
2014-01-01
Full Text Available Based on a full-scale bookcase fire experiment, a fire development model is proposed for the whole process of localized fires in large-space buildings. We found that for localized fires in large-space buildings full of wooden combustible materials the fire growing phases can be simplified into a t2 fire with a 0.0346 kW/s2 fire growth coefficient. FDS technology is applied to study the smoke temperature curve for a 2 MW to 25 MW fire occurring within a large space with a height of 6 m to 12 m and a building area of 1 500 m2 to 10 000 m2 based on the proposed fire development model. Through the analysis of smoke temperature in various fire scenarios, a new approach is proposed to predict the smoke temperature curve. Meanwhile, a modified model of steel temperature development in localized fire is built. In the modified model, the localized fire source is treated as a point fire source to evaluate the flame net heat flux to steel. The steel temperature curve in the whole process of a localized fire could be accurately predicted by the above findings. These conclusions obtained in this paper could provide valuable reference to fire simulation, hazard assessment, and fire protection design.
Results of dosimetric measurements in space missions
International Nuclear Information System (INIS)
Reitz, G.; Strauch, K.; Beaujean, R.; Kopp, J.; Leicher, M.; Heilmann, C.
1997-01-01
Detector packages consisting of thermoluminescence detectors (TLDs), nuclear emulsions and plastic nuclear track detectors were exposed in different locations inside spacecraft. The detector systems, which supplement each other in their registration characteristics, allow the recording of biologically relevant portions of the radiation field independently. Results are presented and compared with calculations. Dose equivalents for the astronauts have been calculated based on the measurements; they lie between 190 μSv.d -1 and 860 μSv.d -1 . (author)
Dynamical processes in space: Cluster results
Directory of Open Access Journals (Sweden)
C. P. Escoubet
2013-06-01
Full Text Available After 12 years of operations, the Cluster mission continues to successfully fulfil its scientific objectives. The main goal of the Cluster mission, comprised of four identical spacecraft, is to study in three dimensions small-scale plasma structures in key plasma regions of the Earth's environment: solar wind and bow shock, magnetopause, polar cusps, magnetotail, plasmasphere and auroral zone. During the course of the mission, the relative distance between the four spacecraft has been varied from 20 km to 36 000 km to study the scientific regions of interest at different scales. Since summer 2005, new multi-scale constellations have been implemented, wherein three spacecraft (C1, C2, C3 are separated by 10 000 km, while the fourth one (C4 is at a variable distance ranging between 20 km and 10 000 km from C3. Recent observations were conducted in the auroral acceleration region with the spacecraft separated by 1000s km. We present highlights of the results obtained during the last 12 years on collisionless shocks, magnetopause waves, magnetotail dynamics, plasmaspheric structures, and the auroral acceleration region. In addition, we highlight Cluster results on understanding the impact of Coronal Mass Ejections (CME on the Earth environment. We will also present Cluster data accessibility through the Cluster Science Data System (CSDS, and the Cluster Active Archive (CAA, which was implemented to provide a permanent and public archive of high resolution Cluster data from all instruments.
A motion of spacelike curves in the Minkowski 3-space and the KdV equation
International Nuclear Information System (INIS)
Ding Qing; Wang Wei; Wang Youde
2010-01-01
This Letter shows that soliton solutions to KdV equation describe a motion of spacelike curves in R 2,1 with initial data being suitably restricted. This gives a different geometric interpretation of KdV from that given recently by Musso and Nicolodi, and gives a unified geometric explanation for KdV and MKdV.
Families of bitangent planes of space curves and minimal non-fibration families
Lubbes, Niels
2014-01-01
. Such families are called minimal non-fibration families. Families of bitangent planes of cone curves correspond to minimal non-fibration families. The main motivation of this paper is to classify minimal non-fibration families. We present algorithms which
International Nuclear Information System (INIS)
Hawking, S.W.; King, A.R.; McCarthy, P.J.
1976-01-01
A new topology is proposed for strongly causal space--times. Unlike the standard manifold topology (which merely characterizes continuity properties), the new topology determines the causal, differential, and conformal structures of space--time. The topology is more appealing, physical, and manageable than the topology previously proposed by Zeeman for Minkowski space. It thus seems that many calculations involving the above structures may be made purely topological
First-order invariants and cohomology of spaces of embeddings of self-intersecting curves in Rn
International Nuclear Information System (INIS)
Vasiliev, V A
2005-01-01
We study the cohomology of the space of generic immersions R 1 →R n , n≥3, with a fixed set of transversal self-intersections. In particular, we study isotopy invariants of such immersions when n=3, calculate the lower cohomology groups of this space for n>3, and define and calculate the groups of first-order invariants of such immersions for n=3. We investigate the representability of these invariants by rational combinatorial formulae that generalize the classical formula for the linking number of two curves in R 3 . We prove the existence of such combinatorial formulae with half-integer coefficients and construct the topological obstruction to their integrality. As a corollary, it is proved that one of the basic 4th order knot invariants cannot be represented by an integral Polyak-Viro formula. The structure of the cohomology groups under investigation depends on the existence of a planar curve with a given self-intersection type. On the other hand, one can use the self-intersection type to construct automatically a chain complex calculating these cohomology groups. This gives a simple homological criterion for the existence of such a planar curve
The Impact of Grading on a Curve: Assessing the Results of Kulick and Wright's Simulation Analysis
Bailey, Gary L.; Steed, Ronald C.
2012-01-01
Kulick and Wright concluded, based on theoretical mathematical simulations of hypothetical student exam scores, that assigning exam grades to students based on the relative position of their exam performance scores within a normal curve may be unfair, given the role that randomness plays in any given student's performance on any given exam.…
Formula giving the J-R curve from the results of one experimental test
International Nuclear Information System (INIS)
Roche, R.L.
1980-01-01
At the onset of crack propagation, the J value can be obtained from the load-deflection curve given by testing one sample. The formula used for the computation of this J value is not valid when stable propagation occurs. This paper proposes modified formula applicable for the determination of J values during plastic tearing
New fixed and periodic point results on cone metric spaces
Directory of Open Access Journals (Sweden)
Ghasem Soleimani Rad
2014-05-01
Full Text Available In this paper, several xed point theorems for T-contraction of two maps on cone metric spaces under normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.
Nearly auto-parallel maps and conservation laws on curved spaces
International Nuclear Information System (INIS)
Vacaru, S.
1994-01-01
The theory of nearly auto-parallel maps (na-maps, generalization of conformal transforms) of Einstein-Cartan spaces is formulated. The transformation laws of geometrical objects and gravitational and matter field equations under superpositions of na-maps are considered. A special attention is paid to the very important problem of definition of conservation laws for gravitational fields. (Author)
Best Proximity Point Results in Complex Valued Metric Spaces
Directory of Open Access Journals (Sweden)
Binayak S. Choudhury
2014-01-01
complex valued metric spaces. We treat the problem as that of finding the global optimal solution of a fixed point equation although the exact solution does not in general exist. We also define and use the concept of P-property in such spaces. Our results are illustrated with examples.
General-Covariant Quantum Mechanics of Dirac Particle in Curved Space-Times
International Nuclear Information System (INIS)
Tagirov, Eh.A.
1994-01-01
A general covariant analog of the standard non-relativistic Quantum Mechanics with relativistic corrections in normal geodesic frames in the general Riemannian space-time is constructed for the Dirac particle. Not only the Pauli equation with hermitian Hamiltonian and the pre-Hilbert structure of space of its solutions but also the matrix elements of hermitian operators of momentum, (curvilinear) spatial coordinates and spin of the particle are deduced as general-covariant asymptotic approximation in c -2 , c being the velocity of light, to their naturally determined general-relativistic pre images. It is shown that the Hamiltonian in the Pauli equation originated by the Dirac equation is unitary equivalent to the operator of energy, originated by the metric energy-momentum tensor of the spinor field. Commutation and other properties of the observables connected with the considered change of geometrical background of Quantum Mechanics are briefly discussed. 7 refs
A new formalism for Dirac-like theories with curved space-time
International Nuclear Information System (INIS)
Halliday, D.W.
1992-01-01
This paper develops a formalism for Dirac-like equations (linear complex differential equations, linear in all derivatives), allowing for general coordinate and open-quotes spin-spaceclose quotes (internal space) transformations. A correspondence principle is also developed by requiring solutions to the Dirac-like equations to be solutions to a Klein-Gordon equation that is likewise generally invariant. Through this treatment, previous generalizations of the Dirac equation are incorporated, and various aspects of these methods are analyzed. Furthermore, the Yang-Mills-like gauge fields allowed, or required, by the formalism are expressed, and found to be associated with much larger symmetries than most would desire, suggesting either there has been much greater symmetry breaking than expected, or else few of the particles accepted as fundamental really are. It is also found that unless the space-time is open-quotes parallelizableclose quotes (so there exist fields that are everywhere parallel transported into themselves, which is not generally the case), or some of the wave function components (and separately some of the Yang-Mills fields) are interdependent, one cannot have the Dirac gamma operators commuting with the momentum operators, while simultaneously having a spin-space metric that is compatible with the Yang-Mills fields
The Physics of Type Ia Supernova Light Curves. I. Analytic Results and Time Dependence
International Nuclear Information System (INIS)
Pinto, Philip A.; Eastman, Ronald G.
2000-01-01
We develop an analytic solution of the radiation transport problem for Type Ia supernovae (SNe Ia) and show that it reproduces bolometric light curves produced by more detailed calculations under the assumption of a constant-extinction coefficient. This model is used to derive the thermal conditions in the interior of SNe Ia and to study the sensitivity of light curves to various properties of the underlying supernova explosions. Although the model is limited by simplifying assumptions, it is adequate for demonstrating that the relationship between SNe Ia maximum-light luminosity and rate of decline is most easily explained if SNe Ia span a range in mass. The analytic model is also used to examine the size of various terms in the transport equation under conditions appropriate to maximum light. For instance, the Eulerian and advective time derivatives are each shown to be of the same order of magnitude as other order v/c terms in the transport equation. We conclude that a fully time-dependent solution to the transport problem is needed in order to compute SNe Ia light curves and spectra accurate enough to distinguish subtle differences of various explosion models. (c) 2000 The American Astronomical Society
Wigner functions and density matrices in curved spaces as computational tools
International Nuclear Information System (INIS)
Habib, S.; Kandrup, H.E.
1989-01-01
This paper contrasts two alternative approaches to statistical quantum field theory in curved spacetimes, namely (1) a canonical Hamiltonian approach, in which the basic object is a density matrix ρ characterizing the noncovariant, but globally defined, modes of the field; and (2) a Wigner function approach, in which the basic object is a Wigner function f defined quasilocally from the Hadamard, or correlation, function G 1 (x 1 , x 2 ). The key object is to isolate on the conceptual biases underlying each of these approaches and then to assess their utility and limitations in effecting concerete calculations. The following questions are therefore addressed and largely answered. What sort of spacetimes (e.g., de Sitter or Friedmann-Robertson-Walker) are comparatively eas to consider? What sorts of objects (e.g., average fields or renormalized stress energies) are easy to compute approximately? What, if anything, can be computed exactly? What approximations are intrinsic to each approach or convenient as computational tools? What sorts of ''field entropies'' are natural to define? copyright 1989 Academic Press, Inc
Study of spontaneously broken conformal symmetry in curved space-times
International Nuclear Information System (INIS)
Janson, M.M.
1977-05-01
Spontaneous breakdown of Weyl invariance (local scale invariance) in a conformally-invariant extension of a gauge model for weak and electromagnetic interactions is considered. The existence of an asymmetric vacuum for the Higgs field, phi, is seen to depend on the space-time structure via the Gursey-Penrose term, approximately phi + phi R, in the action. (R denotes the scalar curvature.) The effects of a prescribed space-time structure on spontaneously broken Weyl invariance is investigated. In a cosmological space-time, it is found that initially, in the primordial fireball, the symmetry must hold exactly. Spontaneous symmetry breaking (SSB) develops as the universe expands and cools. Consequences of this model include a dependence of G/sub F/, the effective weak interaction coupling strength, on ''cosmic time.'' It is seen to decrease monotonically; in the present epoch (G/sub F//G/sub F/)/sub TODAY/ approximately less than 10 -10 (year) -1 . The effects of the Schwarzschild geometry on SSB are explored. In the interior of a neutron star the Higgs vacuum expectation value, and consequently G/sub F/, is found to have a radial dependence. The magnitude of this variation does not warrant revision of present models of neutron star structures. Another perspective on the problem considered a theory of gravitation (conformal relativity) to be incorporated in the conformally invariant gauge model of weak and electromagnetic interactions. If SSB develops, the vacuum gravitational field equations are the Einstein field equations with a cosmological constant. The stability of the asymmetric vacuum solution is investigated to ascertain whether SSB can occur
Quantization of the minimal and non-minimal vector field in curved space
Toms, David J.
2015-01-01
The local momentum space method is used to study the quantized massive vector field (the Proca field) with the possible addition of non-minimal terms. Heat kernel coefficients are calculated and used to evaluate the divergent part of the one-loop effective action. It is shown that the naive expression for the effective action that one would write down based on the minimal coupling case needs modification. We adopt a Faddeev-Jackiw method of quantization and consider the case of an ultrastatic...
Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results
International Nuclear Information System (INIS)
Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F.; Melo, Ana Maria M.A.
2017-01-01
It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)
Validation of dose-response calibration curve for X-Ray field of CRCN-NE/CNEN: preliminary results
Energy Technology Data Exchange (ETDEWEB)
Silva, Laís Melo; Mendonç, Julyanne Conceição de Goes; Andrade, Aida Mayra Guedes de; Hwang, Suy F.; Mendes, Mariana Esposito; Lima, Fabiana F., E-mail: falima@cnen.gov.br, E-mail: mendes_sb@hotmail.com [Centro Regional de Ciências Nucleares, (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Melo, Ana Maria M.A., E-mail: july_cgm@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, PE (Brazil). Centro Acadêmico de Vitória
2017-07-01
It is very important in accident investigations that accurate estimating of absorbed dose takes place, so that it contributes to medical decisions and overall assessment of long-term health consequences. Analysis of chromosome aberrations is the most developed method for biological monitoring, and frequencies of dicentric chromosomes are related to absorbed dose of human peripheral blood lymphocytes using calibration curves. International Atomic Energy Agency (IAEA) recommends that each biodosimetry laboratory sets its own calibration curves, given that there are intrinsic differences in protocols and dose interpretations when using calibration curves produced in other laboratories, which could add further uncertainties to dose estimations. The Laboratory for Biological Dosimetry CRCN-NE recently completed dose-response calibration curves for X ray field. Curves of chromosomes dicentrics and dicentrics plus rings were made using Dose Estimate. This study aimed to validate the calibration curves dose-response for X ray with three irradiated samples. Blood was obtained by venipuncture from healthy volunteer and three samples were irradiated by x-rays of 250 kVp with different absorbed doses (0,5Gy, 1Gy and 2Gy). The irradiation was performed at the CRCN-NE/CNEN Metrology Service with PANTAK X-ray equipment, model HF 320. The frequency of dicentric and centric rings chromosomes were determined in 500 metaphases per sample after cultivation of lymphocytes, and staining with Giemsa 5%. Results showed that the estimated absorbed doses are included in the confidence interval of 95% of real absorbed dose. These Dose-response calibration curves (dicentrics and dicentrics plus rings) seems valid, therefore other tests will be done with different volunteers. (author)
Advanced stellar compass deep space navigation, ground testing results
DEFF Research Database (Denmark)
Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn
2006-01-01
Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....
Supersymmetric D3/D7 for holographic flavors on curved space
International Nuclear Information System (INIS)
Karch, Andreas; Robinson, Brandon; Uhlemann, Christoph F.
2015-01-01
We derive a new class of supersymmetric D3/D7 brane configurations, which allow to holographically describe N=4 SYM coupled to massive N=2 flavor degrees of freedom on spaces of constant curvature. We systematically solve the κ-symmetry condition for D7-brane embeddings into AdS_4-sliced AdS_5×S"5, and find supersymmetric embeddings in a simple closed form. Up to a critical mass, these embeddings come in surprisingly diverse families, and we present a first study of their (holographic) phenomenology. We carry out the holographic renormalization, compute the one-point functions and attempt a field-theoretic interpretation of the different families. To complete the catalog of supersymmetric D3/D7 configurations, we construct analogous embeddings for flavored N=4 SYM on S"4 and dS_4.
Energy Technology Data Exchange (ETDEWEB)
Szkody, Paula; Mukadam, Anjum S. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Toloza, Odette; Gänsicke, Boris T.; Pala, Anna F. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Dai, Zhibin [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Waagen, Elizabeth O. [AAVSO, 48 Bay State Rd, Cambridge, MA 02138 (United States); Godon, Patrick; Sion, Edward M., E-mail: szkody@astro.washington.edu [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)
2017-03-01
Time-tag ultraviolet data obtained on the Hubble Space Telescope in 2013 reveal interesting variability related to the white dwarf spin in the two cataclysmic variables RZ Leo and CC Scl. RZ Leo shows a period at 220 s and its harmonic at 110 s, thus identifying it as a likely Intermediate Polar (IP). The spin signal is not visible in a short single night of ground-based data in 2016, but the shorter exposures in that data set indicate a possible partial eclipse. The much larger UV amplitude of the spin signal in the known IP CC Scl allows the spin of 389 s, previously only seen at outburst, to be visible at quiescence. Spectra created from the peaks and troughs of the spin times indicate a hotter temperature of several thousand degrees during the peak phases, with multiple components contributing to the UV light.
Llanos, Viviana Carolina; Otero, Maria Rita; Rojas, Emmanuel Colombo
2015-01-01
This paper presents the results of a research, which proposes the introduction of the teaching by Research and Study Paths (RSPs) into Argentinean secondary schools within the frame of the Anthropologic Theory of Didactics (ATD). The paths begin with the study of "Q[subscript 0]: How to operate with any curves knowing only its graphic…
Results and Analysis from Space Suit Joint Torque Testing
Matty, Jennifer
2010-01-01
This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.
Merzlikin, Boris S.; Shapiro, Ilya L.; Wipf, Andreas; Zanusso, Omar
2017-12-01
Using covariant methods, we construct and explore the Wetterich equation for a nonminimal coupling F (ϕ )R of a quantized scalar field to the Ricci scalar of a prescribed curved space. This includes the often considered nonminimal coupling ξ ϕ2R as a special case. We consider the truncations without and with scale- and field-dependent wave-function renormalization in dimensions between four and two. Thereby the main emphasis is on analytic and numerical solutions of the fixed point equations and the behavior in the vicinity of the corresponding fixed points. We determine the nonminimal coupling in the symmetric and spontaneously broken phases with vanishing and nonvanishing average fields, respectively. Using functional perturbative renormalization group methods, we discuss the leading universal contributions to the RG flow below the upper critical dimension d =4 .
International Nuclear Information System (INIS)
Liggatt, P.A.J.; Macfarlane, A.J.
1978-01-01
A prescription is given for point-splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current which can be differentiated straightforwardly, and that it involves a natural way of averaging (four dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g. to spin -3/2 Rarita-Schwinger fermions. (author)
International Nuclear Information System (INIS)
Moreno, C.
1977-01-01
In stationary space--times V/sub n/ x R with compact space-section manifold without boundary V/sub n/, the Klein--Gordon equation is solved by the one-parameter group of unitary operators generated by the energy operator i -1 T -1 in the Sobolev spaces H/sup l/(V/sub n/) x H/sup l/(V/sub n/). The canonical symplectic and complex structures of the associated dynamical system are calculated. The existence and the uniqueness of the Lichnerowicz kernel are established. The Hilbert spaces of positive and negative frequency-part solutions defined by means of this kernel are constructed
International Nuclear Information System (INIS)
Salle, Beatrice; Cremers, David A.; Maurice, Sylvestre; Wiens, Roger C.
2005-01-01
Recently, there has been an increasing interest in the laser-induced breakdown spectroscopy (LIBS) technique for stand-off detection of geological samples for use on landers and rovers to Mars, and for other space applications. For space missions, LIBS analysis capabilities must be investigated and instrumental development is required to take into account constraints such as size, weight, power and the effect of environmental atmosphere (pressure and ambient gas) on flight instrument performance. In this paper, we study the in-situ LIBS method at reduced pressure (7 Torr CO 2 to simulate the Martian atmosphere) and near vacuum (50 mTorr in air to begin to simulate the Moon or asteroids' pressure) as well as at atmospheric pressure in air (for Earth conditions and comparison). Here in-situ corresponds to distances on the order of 150 mm in contrast to stand-off analysis at distance of many meters. We show the influence of the ambient pressure on the calibration curves prepared from certified soil and clay pellets. In order to detect simultaneously all the elements commonly observed in terrestrial soils, we used an Echelle spectrograph. The results are discussed in terms of calibration curves, measurement precision, plasma light collection system efficiency and matrix effects
International Nuclear Information System (INIS)
Li Shidong; Aref, Ibrahim; Walker, Eleanor; Movsas, Benjamin
2007-01-01
Purpose: To determine the effects of the prescription depth, cylinder size, treatment length, tip space, and curved end on high-dose-rate vaginal brachytherapy (HDR-VBT) of endometrial cancer. Methods and Materials: Treatment plans were prescribed and optimized based on points at the cylinder surface or at 0.5-cm depth. Cylinder sizes ranging from 2 to 4 cm in diameter, and treatment lengths ranging from 3 to 8 cm were used. Dose points in various depths were precisely defined along the cylinder dome. The given dose and dose uniformity to a depth of interest were measured by the mean dose (MD) and standard deviation (SD), respectively, among the dose points belonging to the depth. Dose fall-off beyond the 0.5 cm treatment depth was determined by the ratio of MD at 0.75-cm depth to MD at 0.5-cm depth. Results: Dose distribution varies significantly with different prescriptions. The surface prescription provides more uniform doses at all depths in the target volume, whereas the 0.5-cm depth prescription creates larger dose variations at the cylinder surface. Dosimetric uncertainty increases significantly (>30%) with shorter tip space. Extreme hot (>150%) and cold spots (<60%) occur if no optimization points were placed at the curved end. Conclusions: Instead of prescribing to a depth of 0.5 cm, increasing the dose per fraction and prescribing to the surface with the exact surface points around the cylinder dome appears to be the optimal approach
Dark Energy Survey Year 1 results: curved-sky weak lensing mass map
Chang, C.; Pujol, A.; Mawdsley, B.; Bacon, D.; Elvin-Poole, J.; Melchior, P.; Kovács, A.; Jain, B.; Leistedt, B.; Giannantonio, T.; Alarcon, A.; Baxter, E.; Bechtol, K.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bonnett, C.; Busha, M. T.; Rosell, A. Carnero; Castander, F. J.; Cawthon, R.; da Costa, L. N.; Davis, C.; De Vicente, J.; DeRose, J.; Drlica-Wagner, A.; Fosalba, P.; Gatti, M.; Gaztanaga, E.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Hoyle, B.; Huff, E. M.; Jarvis, M.; Jeffrey, N.; Kacprzak, T.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Prat, J.; Rau, M. M.; Rollins, R. P.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Samuroff, S.; Sánchez, C.; Sevilla-Noarbe, I.; Sheldon, E.; Troxel, M. A.; Varga, T. N.; Vielzeuf, P.; Vikram, V.; Wechsler, R. H.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Estrada, J.; Neto, A. Fausti; Fernandez, E.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Kirk, D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Martini, P.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Neilsen, E.; Nichol, R. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Walker, A. R.; Wester, W.; Zhang, Y.
2018-04-01
We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than the previous work, is constructed over a contiguous ≈1500 deg2, covering a comoving volume of ≈10 Gpc3. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogues, METACALIBRATION and IM3SHAPE, with sources at redshift 0.2 < z < 1.3, and in each of four bins in this range. In the highest signal-to-noise map, the ratio between the mean signal to noise in the E-mode map and the B-mode map is ˜1.5 (˜2) when smoothed with a Gaussian filter of σG = 30 (80) arcmin. The second and third moments of the convergence κ in the maps are in agreement with simulations. We also find no significant correlation of κ with maps of potential systematic contaminants. Finally, we demonstrate two applications of the mass maps: (1) cross-correlation
Dark Energy Survey Year 1 Results: Curved-Sky Weak Lensing Mass Map
Energy Technology Data Exchange (ETDEWEB)
Chang, C.; et al.
2017-08-04
We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than previous work, is constructed over a contiguous $\\approx1,500 $deg$^2$, covering a comoving volume of $\\approx10 $Gpc$^3$. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogs, Metacalibration and Im3shape, with sources at redshift $0.2
Low-energy effective action in nonperturbative electrodynamics in curved space-time
International Nuclear Information System (INIS)
Avramidi, Ivan G.; Fucci, Guglielmo
2009-01-01
We study the heat kernel for the Laplace-type partial differential operator acting on smooth sections of a complex spin-tensor bundle over a generic n-dimensional Riemannian manifold. Assuming that the curvature of the U(1) connection (that we call the electromagnetic field) is constant, we compute the first two coefficients of the nonperturbative asymptotic expansion of the heat kernel which are of zero and the first order in Riemannian curvature and of arbitrary order in the electromagnetic field. We apply these results to the study of the effective action in nonperturbative electrodynamics in four dimensions and derive a generalization of the Schwinger's result for the creation of scalar and spinor particles in electromagnetic field induced by the gravitational field. We discover a new infrared divergence in the imaginary part of the effective action due to the gravitational corrections, which seems to be a new physical effect.
International Nuclear Information System (INIS)
Peter, I. J.
1995-06-01
The work deals with space-times with fixed background metric. The topics were arranged in a straight course, the first chapter collects basic facts on Lorentzian manifolds as time-orientability, causal structure, ... Further free neutral scalar fields and spinor fields described by the Klein-Gordon equation resp. the Dirac equation are dealt with. Having in mind the construction of the Weyl algebra and the Fermi algebra in the second chapter, it was put emphasis on the structure of the spaces of solutions of these equations: In the first case the space of solutions is a symplectic vector space in a canonical manner, in the second case a Hilbert space. It was made some effort to stay as general as possible. Most of the material in the second chapter already exists for several years, but it is largely scattered over various journal articles. In the third chapter the construction of a vacuum on the special example of deSitter universe is described. A close investigation of a recent work by J. Bros and U. Moschella made it possible to refine a result concerning temperature felt by an accelerated observer in deSitter space. The last part of this thesis is concerned with vacua for spinor fields on the two-dimensional deSitter universe. A procedure introduced by R. Haag, H. Narnhofer and U. Stein for four dimensional space-times does not seem to work in two dimensions. (author)
International Nuclear Information System (INIS)
Hejja, I.; Apathy, J.; Deme, S.
1997-01-01
The Pille dosimeter developed in Hungary for space applications is described briefly, and its two versions are presented for the two space flights. The results of the EUROMIR mission in 1995-1996 are discussed for positional dosimetric applications. The characteristic dose rates at various space stations in the Salyut range are displayed. The NASAMIR4 mission between January 1997 and September 1998 are also discussed from the dosimetric point of view. The results of the measurements are presented and a preliminary analysis is reported. (R.P.)
First results of saturation curve measurements of heat-resistant steel using GEANT4 and MCNP5 codes
International Nuclear Information System (INIS)
Hoang, Duc-Tam; Tran, Thien-Thanh; Le, Bao-Tran; Vo, Hoang-Nguyen; Chau, Van-Tao; Tran, Kim-Tuyet; Huynh, Dinh-Chuong
2015-01-01
A gamma backscattering technique is applied to calculate the saturation curve and the effective mass attenuation coefficient of material. A NaI(Tl) detector collimated by collimator of large diameter is modeled by Monte Carlo technique using both MCNP5 and GEANT4 codes. The result shows a good agreement in response function of the scattering spectra for the two codes. Based on such spectra, the saturation curve of heat-resistant steel is determined. The results represent a strong confirmation that it is appropriate to use the detector collimator of large diameter to obtain the scattering spectra and this work is also the basis of experimental set-up for determining the thickness of material. (author)
Indian Academy of Sciences (India)
void hilbert(int r, int d, int t, int u, int i, int h, int &x, int &y). { if(i >0). { i- -; hilbert ( d,r, u,e ,i,h,x,y); move(r ,h,x,y); hilbert(r,d,t,u,i,h,x,y); move ( d,h,x,y); hilbert(r,d,e,u,i ...
Haines, R. F.
1975-01-01
The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.
International Nuclear Information System (INIS)
Rahimah Abdul Rahim; Noriah Jamal; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Nelly Bo Nai Lee
2010-01-01
This study aims at establishing an in-vitro 60 Co dose calibration curve using Fluorescent In-Situ Hybridization assay technique for the Malaysian National Bio dosimetry Laboratory. Blood samples collected from a female healthy donor were irradiated with several doses of 60 Co radiation. Following culturing of lymphocytes, microscopic slides are prepared, denatured and hybridized. The frequencies of translocation are estimated in the metaphases. A calibration curve was then generated using a regression technique. It shows a good fit to a linear-quadratic model. The results of this study might be useful in estimating absorbed dose for the individual exposed to ionizing radiation retrospectively. This information may be useful as a guide for medical treatment for the assessment of possible health consequences. (author)
International Research Results and Accomplishments From the International Space Station
Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka;
2016-01-01
In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will
Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program
Risin, Diana; Stepaniak, P. C.; Grounds, D. J.
2011-01-01
As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of
International Nuclear Information System (INIS)
Vlasov, A.A.
1988-01-01
The necessity of covariant connection of plane space metrics in the gravity theory ''on a plane background'' is underlined. It is shown that this connection in the relativistic gravity theory results in its difference from the general relativity theory ''on a plane background''
NASA Space Radiation Risk Project: Overview and Recent Results
Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.;
2015-01-01
The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.
Energy Technology Data Exchange (ETDEWEB)
Kalia, Vivek [University of Vermont Medical Center, Department of Radiology, Burlington, VT (United States); Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States); Fritz, Benjamin [University Medical Center Freiburg, Department of Radiology, Freiburg im Breisgau (Germany); Johnson, Rory [Siemens Healthcare USA, Inc, Cary, NC (United States); Gilson, Wesley D. [Siemens Healthcare USA, Inc, Baltimore, MD (United States); Raithel, Esther [Siemens Healthcare GmbH, Erlangen (Germany); Fritz, Jan [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States)
2017-09-15
To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. (orig.)
International Nuclear Information System (INIS)
Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D.; Raithel, Esther; Fritz, Jan
2017-01-01
To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. (orig.)
Directory of Open Access Journals (Sweden)
Clare Stawski
2017-12-01
Full Text Available According to the “aerobic capacity model,” endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ and increasing at ambient temperatures (Ta below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles (Myodes glareolus have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (Tb during exposure to high Ta. To test these hypotheses we measured the RMR and Tb of selected and control voles at Ta from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the Tb of selected lines within the TNZ was greater than the Tb of control lines, particularly at the maximum measured Ta of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT is significantly lower in the selected lines, the LCT (26.1°C does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (−28.6°C than in control lines (−20.2°C. Thus, selection for high aerobic exercise performance, even though operating under
Stawski, Clare; Koteja, Paweł; Sadowska, Edyta T
2017-01-01
According to the "aerobic capacity model," endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ) and increasing at ambient temperatures (T a ) below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles ( Myodes glareolus ) have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (T b ) during exposure to high T a . To test these hypotheses we measured the RMR and T b of selected and control voles at T a from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the T b of selected lines within the TNZ was greater than the T b of control lines, particularly at the maximum measured T a of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT) is significantly lower in the selected lines, the LCT (26.1°C) does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (-28.6°C) than in control lines (-20.2°C). Thus, selection for high aerobic exercise performance, even though operating under thermally
New Results from AMS on the International Space Station
CERN. Geneva
2014-01-01
The Alpha Magnetic Spectrometer is a precision particle physics detector. It was installed on the International Space Station on May 19, 2011. Results on electrons and positrons from the first 41 billion events will be presented. This includes the behavior of the positron fraction as a function of energy and the observation that the positron fraction reaches its maximum at energy 275 +/- 32 GeV. The measurement of the positron flux and the electron flux shows that both fluxes change their behavior at 30 GeV but the fluxes are significantly different in their magnitude and energy dependence. The combined (e+ + e-) flux will also be presented.
Space Launch System Base Heating Test: Experimental Operations & Results
Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael
2016-01-01
NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....
Energy Technology Data Exchange (ETDEWEB)
Okura, M. [Dynax Co., Tokyo (Japan); Maeda, T.; Tachi, S. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering
1998-10-31
For binocular visual space, the horizontal line seen as a straight line on the subjective frontoparallel plane does not always agree with the physically straight line, and the shape thereof depends on distance from the observer. This phenomenon is known as a Helmhotz`s horopter. The same phenomenon may occur also in binaural space, which depends on distance to an acoustic source. This paper formulates a scaler addition model that explains auditory horopter by using two items of information: sound pressure and interaural time difference. Furthermore, this model was used to perform simulations on different learning domains, and the following results were obtained. It was verified that the distance dependence of the auditory horopter can be explained by using the above scaler addition model; and difference in horopter shapes among the subjects may be explained by individual difference in learning domains of spatial position recognition. In addition, such an auditory model was shown not to include as short distance as in the learning domain in the auditory horopter model. 21 refs., 6 figs.
Levan, P.
2010-09-01
Geosynchronous objects appear as unresolved blurs even when observed with the largest ground-based telescopes. Due to the lack of any spatial detail, two or more objects appearing at similar brightness levels within the spectral bandpass they are observed are difficult to distinguish. Observing a changing pattern of such objects from one time epoch to another showcases the deficiencies in associating individual objects before and after the configuration change. This paper explores solutions to this deficiency in the form of spectral (under small business innovative research) and phase curve analyses. The extension of the technique to phase curves proves to be a powerful new capability.
Directory of Open Access Journals (Sweden)
Nejc Bezak
2018-02-01
Full Text Available In the case of ungauged catchments, different procedures can be used to derive the design hydrograph and design peak discharge, which are crucial input data for the design of different hydrotechnical engineering structures, or the production of flood hazard maps. One of the possible approaches involves using a hydrological model where one can calculate the design hydrograph through the design of a rainfall event. This study investigates the impact of the design rainfall on the combined one-dimensional/two-dimensional (1D/2D hydraulic modelling results. The Glinščica Stream catchment located in Slovenia (central Europe is used as a case study. Ten different design rainfall events were compared for 10 and 100-year return periods, where we used Huff curves for the design rainfall event definition. The results indicate that the selection of the design rainfall event should be regarded as an important step, since the hydraulic modelling results for different scenarios differ significantly. In the presented experimental case study, the maximum flooded area extent was twice as large as the minimum one, and the maximum water velocity over flooded areas was more than 10 times larger than the minimum one. This can lead to the production of very different flood hazard maps, and consequently planning very different flood protection schemes.
Blum, Alexander; Lalli, Roberto; Renn, M Jürgen
2015-09-01
The history of the theory of general relativity presents unique features. After its discovery, the theory was immediately confirmed and rapidly changed established notions of space and time. The further implications of general relativity, however, remained largely unexplored until the mid 1950s, when it came into focus as a physical theory and gradually returned to the mainstream of physics. This essay presents a historiographical framework for assessing the history of general relativity by taking into account in an integrated narrative intellectual developments, epistemological problems, and technological advances; the characteristics of post-World War II and Cold War science; and newly emerging institutional settings. It argues that such a framework can help us understand this renaissance of general relativity as a result of two main factors: the recognition of the untapped potential of general relativity and an explicit effort at community building, which allowed this formerly disparate and dispersed field to benefit from the postwar changes in the scientific landscape.
New results and techniques in space radio astronomy.
Alexander, J. K.
1971-01-01
The methods and results of early space radioastronomy experiments are reviewed, with emphasis on the RAE 1 spacecraft which was designed specifically and exclusively for radio astronomical studies. The RAE 1 carries two gravity-gradient-stabilized 229-m traveling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range with a time resolution of 0.5 sec and an absolute accuracy of plus or minus 25%. Observations of solar bursts at frequencies down to 0.2 MHz provide new information on the density, plasma velocity, and dynamics of coronal streamers out to distances greater than 50 solar radii. New information on the distribution of the ionized component of the interstellar medium is being obtained from galactic continuum background maps at frequencies around 4 MHz. Cosmic noise background spectra measured down to 0.5 MHz produce new estimates on the interstellar flux of cosmic rays, on magnetic fields in the galactic halo, and on distant extragalactic radio sources.
Exoplanets -New Results from Space and Ground-based Surveys
Udry, Stephane
The exploration of the outer solar system and in particular of the giant planets and their environments is an on-going process with the Cassini spacecraft currently around Saturn, the Juno mission to Jupiter preparing to depart and two large future space missions planned to launch in the 2020-2025 time frame for the Jupiter system and its satellites (Europa and Ganymede) on the one hand, and the Saturnian system and Titan on the other hand [1,2]. Titan, Saturn's largest satellite, is the only other object in our Solar system to possess an extensive nitrogen atmosphere, host to an active organic chemistry, based on the interaction of N2 with methane (CH4). Following the Voyager flyby in 1980, Titan has been intensely studied from the ground-based large telescopes (such as the Keck or the VLT) and by artificial satellites (such as the Infrared Space Observatory and the Hubble Space Telescope) for the past three decades. Prior to Cassini-Huygens, Titan's atmospheric composition was thus known to us from the Voyager missions and also through the explorations by the ISO. Our perception of Titan had thus greatly been enhanced accordingly, but many questions remained as to the nature of the haze surrounding the satellite and the composition of the surface. The recent revelations by the Cassini-Huygens mission have managed to surprise us with many discoveries [3-8] and have yet to reveal more of the interesting aspects of the satellite. The Cassini-Huygens mission to the Saturnian system has been an extraordinary success for the planetary community since the Saturn-Orbit-Insertion (SOI) in July 2004 and again the very successful probe descent and landing of Huygens on January 14, 2005. One of its main targets was Titan. Titan was revealed to be a complex world more like the Earth than any other: it has a dense mostly nitrogen atmosphere and active climate and meteorological cycles where the working fluid, methane, behaves under Titan conditions the way that water does on
Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission
Kuzmicz-Cieslak, M.; Pavlis, E. C.
2011-12-01
The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.
Environment modelling in near Earth space: Preliminary LDEF results
Coombs, C. R.; Atkinson, D. R.; Wagner, J. D.; Crowell, L. B.; Allbrooks, M.; Watts, A. J.
1992-01-01
Hypervelocity impacts by space debris cause not only local cratering or penetrations, but also cause large areas of damage in coated, painted or laminated surfaces. Features examined in these analyses display interesting morphological characteristics, commonly exhibiting a concentric ringed appearance. Virtually all features greater than 0.2 mm in diameter possess a spall zone in which all of the paint was removed from the aluminum surface. These spall zones vary in size from approximately 2 - 5 crater diameters. The actual craters in the aluminum substrate vary from central pits without raised rims, to morphologies more typical of craters formed in aluminum under hypervelocity laboratory conditions for the larger features. Most features also possess what is referred to as a 'shock zone' as well. These zones vary in size from approximately 1 - 20 crater diameters. In most cases, only the outer-most layer of paint was affected by this impact related phenomenon. Several impacts possess ridge-like structures encircling the area in which this outer-most paint layer was removed. In many ways, such features resemble the lunar impact basins, but on an extremely reduced scale. Overall, there were no noticeable penetrations, bulges or spallation features on the backside of the tray. On Row 12, approximately 85 degrees from the leading edge (RAM direction), there was approximately one impact per 15 cm(exp 2). On the trailing edge, there was approximately one impact per 72 cm(exp 2). Currently, craters on four aluminum experiment trays from Bay E09, directly on the leading edge are being measured and analyzed. Preliminary results have produced more than 2200 craters on approximately 1500 cm(exp 2) - or approximately 1 impact per 0.7 cm(exp 2).
Preflight and postflight microbiological results from 25 space shuttle crews
Pierson, Duane L.; Bassinger, Virginia J.; Molina, Thomas C.; Gunter, Emelie G.; Groves, Theron O.; Cioletti, Louis J.; Mishra, S. K.
1993-01-01
Clinical-microbiological investigations are an important aspect of the crew health stabilization program. To ensure that space crews have neither active nor latent infections, clinical specimens, including throat and nasal swabs and urine samples, are collected at 10 days (L-10) and 2days (L-2) before launch, and immediately after landing (L+0). All samples are examined for the presence of bacteria and fungi. In addition, fecal samples are collected at L-10 and examined for bacteria, fungi and parasites. This paper describes clinical-microbiological findings from 144 astronauts participating in 25 Space Shuttle missions spanning Space Transportation System (STS)-26 to STS-50. The spectrum of microbiological findings from the specimens included 25 bacterial and 11 fungal species. Among the bacteria isolated most frequently were Staphylococcus aureus, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Proteus mirabilis and Streptococcus agalactiae. Candida albicans was the most frequently isolated fungal pathogen.
Last results of MADRAS, a space active optics demonstrator
Laslandes, Marie; Hourtoule, Claire; Hugot, Emmanuel; Ferrari, Marc; Devilliers, Christophe; Liotard, Arnaud; Lopez, Céline; Chazallet, Frédéric
2017-11-01
The goal of the MADRAS project (Mirror Active, Deformable and Regulated for Applications in Space) is to highlight the interest of Active Optics for the next generation of space telescope and instrumentation. Wave-front errors in future space telescopes will mainly come from thermal dilatation and zero gravity, inducing large lightweight primary mirrors deformation. To compensate for these effects, a 24 actuators, 100 mm diameter deformable mirror has been designed to be inserted in a pupil relay. Within the project, such a system has been optimized, integrated and experimentally characterized. The system is designed considering wave-front errors expected in 3m-class primary mirrors, and taking into account space constraints such as compactness, low weight, low power consumption and mechanical strength. Finite Element Analysis allowed an optimization of the system in order to reach a precision of correction better than 10 nm rms. A dedicated test-bed has been designed to fully characterize the integrated mirror performance in representative conditions. The test set up is made of three main parts: a telescope aberrations generator, a correction loop with the MADRAS mirror and a Shack-Hartman wave-front sensor, and PSF imaging. In addition, Fizeau interferometry monitors the optical surface shape. We have developed and characterized an active optics system with a limited number of actuators and a design fitting space requirements. All the conducted tests tend to demonstrate the efficiency of such a system for a real-time, in situ wave-front. It would allow a significant improvement for future space telescopes optical performance while relaxing the specifications on the others components.
Energy Technology Data Exchange (ETDEWEB)
Fertitta, E.; Paulus, B. [Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany); Barcza, G.; Legeza, Ö. [Strongly Correlated Systems “Lendület” Research Group, Wigner Research Centre for Physics, P.O. Box 49, Budapest (Hungary)
2015-09-21
The method of increments (MoI) has been employed using the complete active space formalism in order to calculate the dissociation curve of beryllium ring-shaped clusters Be{sub n} of different sizes. Benchmarks obtained through different quantum chemical methods including the ab initio density matrix renormalization group were used to verify the validity of the MoI truncation which showed a reliable behavior for the whole dissociation curve. Moreover we investigated the size dependence of the correlation energy at different interatomic distances in order to extrapolate the values for the periodic chain and to discuss the transition from a metal-like to an insulator-like behavior of the wave function through quantum chemical considerations.
Energy Technology Data Exchange (ETDEWEB)
Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Adamo, Angela [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schaerer, Daniel [Université de Toulouse, UPS-OMP, IRAP, F-31000 Toulouse (France); Verhamme, Anne; Orlitová, Ivana [Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, CH-1290 Versoix (Switzerland); Mas-Hesse, J. Miguel; Otí-Floranes, Héctor [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Cannon, John M.; Pardy, Stephen [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Atek, Hakim [Laboratoire dAstrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Kunth, Daniel [Institut d' Astrophysique de Paris, UMR 7095, CNRS and UPMC, 98 bis Bd Arago, F-75014 Paris (France); Laursen, Peter [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Herenz, E. Christian, E-mail: matthew@astro.su.se [Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)
2014-02-10
We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f{sub esc}{sup Lyα} of 80%; such objects have not previously been reported at low-z.
International Nuclear Information System (INIS)
Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger; Adamo, Angela; Schaerer, Daniel; Verhamme, Anne; Orlitová, Ivana; Mas-Hesse, J. Miguel; Otí-Floranes, Héctor; Cannon, John M.; Pardy, Stephen; Atek, Hakim; Kunth, Daniel; Laursen, Peter; Herenz, E. Christian
2014-01-01
We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f esc Lyα of 80%; such objects have not previously been reported at low-z.
DEFF Research Database (Denmark)
Uznir, U.; Anton, François; Suhaibah, A.
2013-01-01
, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects......The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...... modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert’s curve, preserves the Lebesgue measure and is Lipschitz...
Psychosocial issues in space: results from Shuttle/Mir
Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Bostrom, A.; Kozerenko, O.; Sled, A.; Marmar, C. R.
2001-01-01
Important psychosocial issues involving tension, cohesion, leader support, and displacement of negative emotions were evaluated in a 4 1/2-year study involving five U.S. and four Russian Shuttle/Mir space missions. Weekly mood and group climate questionnaires were completed by five U.S. astronauts, eight Russian cosmonauts, and 42 U.S. and 16 Russian mission control subjects. There were few findings that supported our hypothesized changes in tension, cohesion, and leader support in crew and ground subjects using various time models, although crewmembers reported decreasing leader support in the 2nd half of the missions, and astronauts showed some evidence of a novelty effect in the first few weeks. There was no evidence suggesting a 3rd quarter effect among crewmembers on any of the 21 subscales evaluated. In contrast, there was strong evidence to support the hypothesized displacement of tension and negative emotions from crewmembers to mission control personnel and from mission control personnel to management. There were several significant differences in response between Americans vs. Russians, crewmembers vs. mission control personnel, and subjects in this study vs. people in comparable groups on Earth. Subject responses before, during, and after the missions were similar, and we did not find evidence for asthenia in space. Critical incidents that were reported generally dealt with events on-board the Mir and interpersonal conflicts, although most of the responses were from a relatively small number of subjects. Our findings have implications for future training and lead to a number of countermeasures.
Directory of Open Access Journals (Sweden)
Janusz Charatonik
1991-11-01
Full Text Available Results concerning contractibility of curves (equivalently: of dendroids are collected and discussed in the paper. Interrelations tetween various conditions which are either sufficient or necessary for a curve to be contractible are studied.
International Nuclear Information System (INIS)
Mendonca, Julyanne C.G.; Mendes, Mariana E.; Hwang, Suy F.; Lima, Fabiana F.; Santos, Neide
2014-01-01
The cytogenetic study has the chromosomal alterations as biomarkers in absorbed dose estimation by the body of individuals involved in exposure to ionizing radiation by interpreting a dose response calibration curve. Since the development of the technique to the analysis of data, you can see protocol characteristics, leading the International Atomic Energy Agency indicate that any laboratory with intention to carry out biological dosimetry establish their own calibration curves. The Biological Dosimetry Laboratory of the Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN), Brazil, recently established the calibration curve related to gamma radiation ( 60 Co). Thus, this work aimed to start the validation of this calibration curve from samples of three different blood donors which were irradiated with an absorbed known single dose of 1 Gy. Samples were exposed to 60 Co source (Glaucoma 220) located in the Department of Nuclear Energy (DEN/UFPE). After fixation with methanol and acetic acid and 5% Giemsa staining, the frequency of chromosomal alterations (dicentric chromosomes, acentric rings and fragments) were established from reading of 500 metaphases per sample and doses were estimated using Dose Estimate program. The results showed that, using the dose-response curve calibration for dicentrics, the dose absorbed estimated for the three individuals ranged from 0.891 - 1,089Gy, taking into account the range of confidence of 95%. By using the dose-response curve for dicentrics added to rings and for the same interval of confidence the doses ranged from 0,849 - 1,081Gy. Thus, the estimative encompassed known absorbed dose the three individuals in confidence interval of 95%. These preliminary results seems to demonstrate that dicentric dose-response curves and dicentrics plus rings established by CRCN-NE / CNEN are valid for dose estimation in exposed individuals. This validation will continue with samples from different individuals at different doses
Method of construction spatial transition curve
Directory of Open Access Journals (Sweden)
S.V. Didanov
2013-04-01
Full Text Available Purpose. The movement of rail transport (speed rolling stock, traffic safety, etc. is largely dependent on the quality of the track. In this case, a special role is the transition curve, which ensures smooth insertion of the transition from linear to circular section of road. The article deals with modeling of spatial transition curve based on the parabolic distribution of the curvature and torsion. This is a continuation of research conducted by the authors regarding the spatial modeling of curved contours. Methodology. Construction of the spatial transition curve is numerical methods for solving nonlinear integral equations, where the initial data are taken coordinate the starting and ending points of the curve of the future, and the inclination of the tangent and the deviation of the curve from the tangent plane at these points. System solutions for the numerical method are the partial derivatives of the equations of the unknown parameters of the law of change of torsion and length of the transition curve. Findings. The parametric equations of the spatial transition curve are calculated by finding the unknown coefficients of the parabolic distribution of the curvature and torsion, as well as the spatial length of the transition curve. Originality. A method for constructing the spatial transition curve is devised, and based on this software geometric modeling spatial transition curves of railway track with specified deviations of the curve from the tangent plane. Practical value. The resulting curve can be applied in any sector of the economy, where it is necessary to ensure a smooth transition from linear to circular section of the curved space bypass. An example is the transition curve in the construction of the railway line, road, pipe, profile, flat section of the working blades of the turbine and compressor, the ship, plane, car, etc.
Directory of Open Access Journals (Sweden)
Angelo G. Aulisa
2017-10-01
Full Text Available Abstract Background The factors influencing curve behavior following bracing are incompletely understood and there is no agreement if scoliotic curves stop progressing with skeletal maturity. The aim of this study was to evaluate the loss of the scoliotic curve correction in patients treated with bracing during adolescence and to compare patient outcomes of under and over 30 Cobb degrees, 10 years after brace removal. Methods We reviewed 93 (87 female of 200 and nine patients with adolescent idiopathic scoliosis (AIS who were treated with the Lyon or PASB brace at a mean of 15 years (range 10–35. All patients answered a simple questionnaire (including work status, pregnancy, and pain and underwent clinical and radiological examination. The population was divided into two groups based on Cobb degrees ( 30°. Statistical analysis was performed to test the efficacy of our hypothesis. Results The patients underwent a long-term follow-up at a mean age of 184.1 months (±72.60 after brace removal. The pre-brace scoliotic mean curve was 32.28° (± 9.4°; after treatment, the mean was 19.35° and increased to a minimum of 22.12° in the 10 years following brace removal. However, there was no significant difference in the mean Cobb angle between the end of weaning and long term follow-up period (p = 0.105. The curve angle of patients who were treated with a brace from the beginning was reduced by 13° during the treatment, but the curve size lost 3° at the follow-up period. The groups over 30° showed a pre-brace scoliotic mean curve of 41.15°; at the end of weaning, the mean curve angle was 25.85° and increased to a mean of 29.73° at follow-up; instead, the groups measuring ≤ 30° showed a pre-brace scoliotic mean curve of 25.58°; at the end of weaning, it was reduced to a mean of 14.24° and it increased to 16.38° at follow-up. There was no significant difference in the mean progression of curve magnitude between the ≤ 30° and
AMS-02 in space: physics results, overview, and challenges
Tomassetti, Nicola; AMS Collaboration
2015-08-01
The Alpha Magnetic Spectrometer (AMS-02) is a state of the art particle detector measuring cosmic rays (CRs) on the International Space Station (ISS) since May 19th 2011. AMS-02 identifies CR leptons and nuclei in the energy range from hundreds MeV to few TeV per nucleon. Several sub-detector systems allow for redundant particle identification with unprecedented precision, a powerful lepton-hadron separation, and a high purity of the antimatter signal. The new AMS-02 leptonic data from 1 to 500 GeV are presented and discussed. These new data indicate that new sources of CR leptons need to be included to describe the observed spectra at high energies. Explanations of this anomaly may be found either in dark-matter particles annihilation or in the existence of nearby astrophysical sources of e±. Future data at higher energies and forthcoming measurements on the antiproton spectrum and the boron-to-carbon ratio will be crucial in providing the discrimination among the different scenario.
International Nuclear Information System (INIS)
Winter, J.
1985-01-01
A covariant generalization of the Wigner transformation of quantum equations is proposed for gravitating many-particle systems, which modifies the Einstein-Liouville equations for the coupled gravity-matter problem by inclusion of quantum effects of the matter moving in its self-consistent classical gravitational field, in order to extend their realm of validity to higher particle densities. The corrections of the Vlasov equation (Liouville equation in one-particle phase space) are exhibited as combined effects of quantum mechanics and the curvature of space-time arranged in a semiclassical expansion in powers of h 2 , the first-order term of which is explicitly calculated. It is linear in the Riemann tensor and in its gradient; the Riemann tensor occurs in a similar position as the tensor of the Yang-Mills field strength in a corresponding Vlasov equation for systems with local gauge invariance in the purely classical limit. The performance of the Wigner transformation is based on expressing the equation of motion for the two-point function of the Klein-Gordon field, in particular the Beltrami operator, in terms of a midpoint and a distance vector covariantly defined for the two points. This implies the calculation of deviations of the geodesic between these points, the standard concept of which has to be refined to include infinitesimal variations of the second order. A differential equation for the second-order deviation is established
Gauge field configurations in curved spacetimes (II)
International Nuclear Information System (INIS)
Boutaleb-Joutei, H.; Chakrabarti, A.; Comtet, A.
1979-05-01
One continues the study of gauge field configurations in curved spaces, using the formalism and results of a previous paper. A class of static, finite action, selfdual solutions of SU(2) gauge fields on a Euclidean section of de Sitter space is presented. The action depends on a continuous parameter. The spin connection solution is obtained as a particular case and a certain passage to the limiting case of a flat space is shown to reproduce the Euclidean Prasad-Sommerfield solution. The significance and possible interest of such solutions are discussed. The results are then generalized to a non-Einstein but conformally flat space, including de Sitter space as an Einstein limit. Next Baecklund type transformations are constructed starting from selfduality constraints for such curved spaces. These transformations are applied to the above mentioned solutions. The last two sections contain remarks on solutions with a background Robinson-Bertotti metric and on static, axially symmetric solutions respectively
True fir-hemlock spacing trials: design and first results.
Robert O. Curtis; Gary W. Clendenen; Jan A. Henderson
2000-01-01
A series of 18 precommercial thinning trials was established in true fir-hemlock stands in the Olympic Mountains and along the west side of the Cascade Range in Washington and Oregon from 1987 through 1994. This paper documents establishment of these installations and presents some preliminary observations and results. Substantial differences in growth rates in height...
Tüllmann, Ralph; Arbinger, Christian; Baskcomb, Stuart; Berdermann, Jens; Fiedler, Hauke; Klock, Erich; Schildknecht, Thomas
2016-01-01
There are high expectations for a globally growing market of commercial space travel which is likely to turn in the next 10 to 20 years into a multi-billion Euro business. Those growth expectations are also backed up by OneWeb’s order of about 700 small satellites which are likely to be brought into LEO via air launches and by a continuously growing LEO launch rate showing an increase of about 60% in the last decade. Advances in electric propulsion and spacecraft design (CubeSats) hel...
Compact Hilbert Curve Index Algorithm Based on Gray Code
Directory of Open Access Journals (Sweden)
CAO Xuefeng
2016-12-01
Full Text Available Hilbert curve has best clustering in various kinds of space filling curves, and has been used as an important tools in discrete global grid spatial index design field. But there are lots of redundancies in the standard Hilbert curve index when the data set has large differences between dimensions. In this paper, the construction features of Hilbert curve is analyzed based on Gray code, and then the compact Hilbert curve index algorithm is put forward, in which the redundancy problem has been avoided while Hilbert curve clustering preserved. Finally, experiment results shows that the compact Hilbert curve index outperforms the standard Hilbert index, their 1 computational complexity is nearly equivalent, but the real data set test shows the coding time and storage space decrease 40%, the speedup ratio of sorting speed is nearly 4.3.
Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan
2017-09-01
To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.
Alexeev, Valery; Clemens, C Herbert; Beauville, Arnaud
2008-01-01
This book is devoted to recent progress in the study of curves and abelian varieties. It discusses both classical aspects of this deep and beautiful subject as well as two important new developments, tropical geometry and the theory of log schemes. In addition to original research articles, this book contains three surveys devoted to singularities of theta divisors, of compactified Jacobians of singular curves, and of "strange duality" among moduli spaces of vector bundles on algebraic varieties.
The extension of quadrupled xed point results in K-metric spaces
Directory of Open Access Journals (Sweden)
Ghasem Soleimani Rad
2014-05-01
Full Text Available Recently, Rahimi et al. [Comp. Appl. Math. 2013, In press] dened the conceptof quadrupled xed point in K-metric spaces and proved several quadrupled xed point theorems for solid cones on K-metric spaces. In this paper some quadrupled xed point results for T-contraction on K-metric spaces without normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.
International Nuclear Information System (INIS)
Zanca, Federica; Hillis, Stephen L.; Claus, Filip; Van Ongeval, Chantal; Celis, Valerie; Provoost, Veerle; Yoon, Hong-Jun; Bosmans, Hilde
2012-01-01
Purpose: From independently conducted free-response receiver operating characteristic (FROC) and receiver operating characteristic (ROC) experiments, to study fixed-reader associations between three estimators: the area under the alternative FROC (AFROC) curve computed from FROC data, the area under the ROC curve computed from FROC highest rating data, and the area under the ROC curve computed from confidence-of-disease ratings. Methods: Two hundred mammograms, 100 of which were abnormal, were processed by two image-processing algorithms and interpreted by four radiologists under the FROC paradigm. From the FROC data, inferred-ROC data were derived, using the highest rating assumption. Eighteen months afterwards, the images were interpreted by the same radiologists under the conventional ROC paradigm; conventional-ROC data (in contrast to inferred-ROC data) were obtained. FROC and ROC (inferred, conventional) data were analyzed using the nonparametric area-under-the-curve (AUC), (AFROC and ROC curve, respectively). Pearson correlation was used to quantify the degree of association between the modality-specific AUC indices and standard errors were computed using the bootstrap-after-bootstrap method. The magnitude of the correlations was assessed by comparison with computed Obuchowski-Rockette fixed reader correlations. Results: Average Pearson correlations (with 95% confidence intervals in square brackets) were: Corr(FROC, inferred ROC) = 0.76[0.64, 0.84] > Corr(inferred ROC, conventional ROC) = 0.40[0.18, 0.58] > Corr (FROC, conventional ROC) = 0.32[0.16, 0.46]. Conclusions: Correlation between FROC and inferred-ROC data AUC estimates was high. Correlation between inferred- and conventional-ROC AUC was similar to the correlation between two modalities for a single reader using one estimation method, suggesting that the highest rating assumption might be questionable.
Negrini, Stefano; Donzelli, Sabrina; Lusini, Monia; Zaina, Fabio
2012-01-01
Recently it has been shown that idiopathic scoliosis (IS) curves can be reduced with bracing, and it has been proposed that this could be useful in non-surgically treated high degree curves even after Risser 3. Moreover, bracing has been shown to be able to improve aesthetics, and this could be another reason to treat some patients with cosmetic needs. Our aim is to preliminary check if results can be obtained in IS patients after Risser 3. Design. Retrospective uncontrolled cohort study. Inclusion criteria. All IS patients treated on a voluntary basis for aesthetic reasons and/or for curve reduction; Risser 4-5 at start; end of treatment reached. Population. 34 females and 2 males, age 16.2±1.6 years, Cobb angle 27.6°±8.9°. Treatment. Lyon or SPoRT braces 18 to 24 hours/day, specific SEAS exercises, rapid weaning (2-3 hours every 6 months). Outcome criteria: SRS (unchanged; worsened over 6°; over 45° at the end of treatment; surgically treated), radiographic and clinical. Statistics. ANOVA and chi-test. The reported compliance during the 2.8 ± 1.1 treatment years was 95.1%, while residual growth was 0.9 ± 1.1 cm. Improvements were found in 39% of this cohort, (46% in curves over 30°). Only 1 patient progressed 6°. We found highly statistically significant reductions of maximal (-4.4°), thoracic (-6.0°) and thoracolumbar (-6.6°) curves. Statistically significant improvements were found for Aesthetic Index. Before 20 years of age, even in skeletally mature patients, it is possible to reach radiographic and aesthetic improvements, although not as good as during growth. Correction is based on bone growth, but ligaments and neuromuscular control of posture can also be involved.
International Nuclear Information System (INIS)
Mikhajlova, N.N.; Aristova, I.L.; Germanova, T.I.
2001-01-01
A large amount of digital seismic data from the permanent and temporary seismic stations was acquired in the result of detonation of large chemical explosions at Semipalatinsk Test Site. All the records were collected, systematized and processed, and databases were created. Travel-time curves for regional Pn, Pg, Sn and Lg waves were created and compared with the ones used in routine earthquake processing practice. (author)
A note on 'Some results on the IF-normed spaces'
International Nuclear Information System (INIS)
Saadati, Reza
2009-01-01
Recently, Lael and Nourouzi [Some results on the IF-normed spaces. Chaos, Solitons and Fractals 2006; doi:10.1016/j.chaos.2006.10.019] introduced and studied a new notation of IF-normed spaces by using the idea of intuitionistic fuzzy normed spaces due to Saadati and Park [On the intuitionistic fuzzy topological spaces. Chaos, Solitons and Fractals 2006;27:331-44], a special continuous t-norm i.e. min and a special continuous s-norm i.e. max. In this note, we consider the modified definition of IF-normed space i.e. LF-normed spaces and prove the open mapping and closed graph theorems for this space using arbitrary continuous t-norm.
Directory of Open Access Journals (Sweden)
Rodrigo de Souza
2014-02-01
Full Text Available The objective of this study was to evaluate the use of calcium salts of fatty acids (CSFA to increase the dietary energy levels for Saanen goats and their effects on the lactation curve, dry matter intake, body weight, and economic results of the goats. Twenty multiparous goats, weighing an average of 63.5±10.3 kg, were randomly assigned to one of four treatment groups, each receiving one of the following dietary energy levels: a control diet consisting of 2.6 Mcal of metabolizable energy per kg of dry matter (Mcal ME/kg DM or a test diet supplemented with CSFA (Lactoplus® to obtain 2.7, 2.8, or 2.9 Mcal ME/kg DM. Goats were housed in individual stalls and were fed and milked twice daily. The animals were evaluated until 180 days in milk by measuring dry matter intake and milk yield. These measurements were used to calculate feed efficiencies and the cost-benefit ratio of diet and lactation curves using Wood's nonlinear model. Increasing dietary energy levels showed no effect on body weight. Supplementation with CSFA did not limit dry matter intake; however, it changed the shape of the lactation curve by promoting a late peak lactation with a longer duration. Milk yields at 180 days in milk had a quadratic increase with a maximum energy level at 2.85 Mcal ME/kg DM. Increasing the dietary energy level for Saanen goats using CSFA changes their lactation curves, with the best milk production achieved with a 2.85 Mcal ME/kg DM diet; however, the greatest economic results were obtained with a 2.7 Mcal ME/kg DM diet.
Chou, Kai-Seng
2001-01-01
Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results.The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson''s convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem.Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.
Spurious results from Fourier analysis of data with closely spaced frequencies
International Nuclear Information System (INIS)
Loumos, G.L.; Deeming, T.J.
1978-01-01
It is shown how erroneous results can occur using some period-finding methods, such as Fourier analysis, on data containing closely spaced frequencies. The frequency spacing accurately resolvable with data of length T is increased from the standard value of about 1/T quoted in the literature to approximately 1.5/T. (Auth.)
Directory of Open Access Journals (Sweden)
Ethan A. Benardete
2015-01-01
Full Text Available Background: The requirements for a comprehensive stroke center (CSC include the capability to perform endovascular stroke therapy (EST. EST is a complex process requiring early identification of appropriate patients and effective delivery of intervention. In order to provide prompt intervention for stroke, CSCs have been established away from large academic centers in community-based hospitals. We hypothesized that quantifiable improvements would occur during the first 2 years of a community-based CSC as the processes and personnel evolved. We report the results over time of EST at a new community-based CSC. Methods: We have retrospectively analyzed demographic data and outcome metrics of EST from the initiation phase of a new community-based CSC. Data was divided into year 1 and year 2. Statistical analysis (Student's t test and Fisher's exact test was performed to compare the patient population and outcomes across the two time periods. Outcome variables included the thrombolysis in cerebral infarction (TICI score, a change in the NIH stroke scale score and the modified Rankin Scale (mRS score. Analysis of variance (ANOVA was used to statistically analyze the relationship between population variables and outcome. Computed tomography (CT angiography and CT perfusion analysis were used to select patients for EST. Approximately half of the patients undergoing EST were excluded from receiving intravenous recombinant tissue plasminogen activator (IV rt-PA by standard criteria, while the other half showed no sign of improvement following 1 h of IV rt-PA treatment. Mechanical thrombolysis with a stentriever was performed in the majority of cases with or without intra-arterial medication. The majority of treated occlusions were in the middle cerebral artery. Results: A total of 18 patients underwent EST during year 1 and year 2. A statistically significant increase in good outcomes (mRS score ≤2 at discharge was seen from year 1 to year 2 (p = 0
Simulating Supernova Light Curves
International Nuclear Information System (INIS)
Even, Wesley Paul; Dolence, Joshua C.
2016-01-01
This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth's atmosphere.
Simulating Supernova Light Curves
Energy Technology Data Exchange (ETDEWEB)
Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-05
This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.
Signature Curves Statistics of DNA Supercoils
Shakiban, Cheri; Lloyd, Peter
2004-01-01
In this paper we describe the Euclidean signature curves for two dimensional closed curves in the plane and their generalization to closed space curves. The focus will be on discrete numerical methods for approximating such curves. Further we will apply these numerical methods to plot the signature curves related to three-dimensional simulated DNA supercoils. Our primary focus will be on statistical analysis of the data generated for the signature curves of the supercoils. We will try to esta...
Preliminary results of a test of a longitudinal phase-space monitor
International Nuclear Information System (INIS)
Kikutani, Eiji; Funakoshi, Yoshihiro; Kawamoto, Takashi; Mimashi, Toshihiro
1994-01-01
A prototype of a longitudinal phase-space monitor has been developed in TRISTAN Main Ring at KEK. The principle of the monitor and its basic components are explained. Also a result of a preliminary beam test is given. (author)
IGMtransmission: Transmission curve computation
Harrison, Christopher M.; Meiksin, Avery; Stock, David
2015-04-01
IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.
Spychalski, Michał; Skulimowski, Aleksander; Dziki, Adam; Saito, Yutaka
2017-12-01
Up to date we lack a detailed description of the colorectal endoscopic submucosal dissection (ESD) learning curve, that would represent the experience of the Western center. The aim of this study was to define the critical points of the learning curve and to draw up lesions qualification guidelines tailored to the endoscopists experience. We have carried out a single center prospective study. Between June 2013 and December 2016, 228 primary colorectal lesions were managed by ESD procedure. In order to create a learning curve model and to carry out the analysis the cases were divided into six periods, each consisting of 38 cases. The overall en bloc resection rate was 79.39%. The lowest en bloc resection rate (52.36%) was observed in the first period. After completing 76 procedures, the resection rate surged to 86% and it was accompanied by the significant increase in the mean procedure speed of ≥9 cm 2 /h. Lesions localization and diameter had a signification impact on the outcomes. After 76 procedures, en bloc resection rate of 90.9 and 90.67% were achieved for the left side of colon and rectum, respectively. In the right side of colon statistically significant lower resection rate of 67.57% was observed. We have proved that in the setting of the Western center, colorectal ESD can yield excellent results. It seems that the key to the success during the learning period is 'tailoring' lesions qualification guidelines to the experience of the endoscopist, as lesions diameter and localization highly influence the outcomes.
Geometric invariant theory for polarized curves
Bini, Gilberto; Melo, Margarida; Viviani, Filippo
2014-01-01
We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5curves. If 2curves. We also analyze in detail the critical values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseu...
International Nuclear Information System (INIS)
Sun Yuanyuan; Cheng Zhigang; Dong Lei; Zhang Guoming; Wang Yang; Liang Ping
2012-01-01
Objective: To compare temperature curve and ablation zone between 915- and 2450-MHz cooled-shaft microwave antenna in ex vivo porcine livers. Materials and methods: The 915- and 2450-MHz microwave ablation and thermal monitor system were used in this study. A total of 56 ablation zones and 280 temperature data were obtained in ex vivo porcine livers. The output powers were 50, 60, 70, and 80 W and the setting time was 600 s. The temperature curve of every temperature spot, the short- and long-axis diameters of the coagulation zones were recorded and measured. Results: At all four power output settings, the peak temperatures of every temperature spot had a tendency to increase accordingly as the MW output power was increased, and except for 5 mm away from the antenna, the peak temperatures for the 915 MHz cooled-shaft antenna were significantly higher than those for the 2450 MHz cooled-shaft antenna (p < 0.05). Meanwhile, the short- and long-axis diameters for the 915 MHz cooled-shaft antenna were significantly larger than those for the 2450 MHz cooled-shaft antenna (p < 0.05). Conclusion: The 915 MHz cooled-shaft antenna can yield a significantly larger ablation zone and achieve higher temperature in ablation zone than a 2450 MHz cooled-shaft antenna in ex vivo porcine livers.
Vacuum polarization in curved spacetime
International Nuclear Information System (INIS)
Guy, R.W.
1979-01-01
A necessary step in the process of understanding the quantum theory of gravity is the calculation of the stress-energy tensor of quantized fields in curved space-times. The determination of the stress tensor, a formally divergent object, is made possible in this dissertation by utilizing the zeta-function method of regularization and renormalization. By employing this scheme's representation of the renormalized effective action functional, an expression of the stress tensor for a massless, conformally invariant scalar field, first given by DeWitt, is derived. The form of the renormalized stress tensor is first tested in various examples of flat space-times. It is shown to vanish in Minkowski space and to yield the accepted value of the energy density in the Casimir effect. Next, the stress tensor is calculated in two space-times of constant curvature, the Einstein universe and the deSitter universe, and the results are shown to agree with those given by an expression of the stress tensor that is valid in conformally flat space-times. This work culminates in the determination of the stress tensor on the horizon of a Schwarzschild black hole. This is accomplished by approximating the radial part of the eigen-functions and the metric in the vicinity of the horizon. The stress tensor at this level approximation is found to be pure trace. The approximated forms of the Schwarzschild metric describes a conformally flat space-time that possesses horizons
Differential geometry curves, surfaces, manifolds
Kohnel, Wolfgang
2002-01-01
This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. Special topics that are explored include Frenet frames, ruled surfaces, minimal surfaces and the Gauss-Bonnet theorem. The second part is an introduction to the geometry of general manifolds, with particular emphasis on connections and curvature. The final two chapters are insightful examinations of the special cases of spaces of constant curvature and Einstein manifolds. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra.
Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing
Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.
1990-01-01
During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.
Directory of Open Access Journals (Sweden)
Paulo Prochno
2004-07-01
Full Text Available Learning curves have been studied for a long time. These studies provided strong support to the hypothesis that, as organizations produce more of a product, unit costs of production decrease at a decreasing rate (see Argote, 1999 for a comprehensive review of learning curve studies. But the organizational mechanisms that lead to these results are still underexplored. We know some drivers of learning curves (ADLER; CLARK, 1991; LAPRE et al., 2000, but we still lack a more detailed view of the organizational processes behind those curves. Through an ethnographic study, I bring a comprehensive account of the first year of operations of a new automotive plant, describing what was taking place on in the assembly area during the most relevant shifts of the learning curve. The emphasis is then on how learning occurs in that setting. My analysis suggests that the overall learning curve is in fact the result of an integration process that puts together several individual ongoing learning curves in different areas throughout the organization. In the end, I propose a model to understand the evolution of these learning processes and their supporting organizational mechanisms.
Directory of Open Access Journals (Sweden)
Sutawanir Darwis
2012-05-01
Full Text Available Empirical decline curve analysis of oil production data gives reasonable answer in hyperbolic type curves situations; however the methodology has limitations in fitting real historical production data in present of unusual observations due to the effect of the treatment to the well in order to increase production capacity. The development ofrobust least squares offers new possibilities in better fitting production data using declinecurve analysis by down weighting the unusual observations. This paper proposes a robustleast squares fitting lmRobMM approach to estimate the decline rate of daily production data and compares the results with reservoir simulation results. For case study, we usethe oil production data at TBA Field West Java. The results demonstrated that theapproach is suitable for decline curve fitting and offers a new insight in decline curve analysis in the present of unusual observations.
Assessing and Adapting Scientific Results for Space Weather Research to Operations (R2O)
Thompson, B. J.; Friedl, L.; Halford, A. J.; Mays, M. L.; Pulkkinen, A. A.; Singer, H. J.; Stehr, J. W.
2017-12-01
Why doesn't a solid scientific paper necessarily result in a tangible improvement in space weather capability? A well-known challenge in space weather forecasting is investing effort to turn the results of basic scientific research into operational knowledge. This process is commonly known as "Research to Operations," abbreviated R2O. There are several aspects of this process: 1) How relevant is the scientific result to a particular space weather process? 2) If fully utilized, how much will that result improve the reliability of the forecast for the associated process? 3) How much effort will this transition require? Is it already in a relatively usable form, or will it require a great deal of adaptation? 4) How much burden will be placed on forecasters? Is it "plug-and-play" or will it require effort to operate? 5) How can robust space weather forecasting identify challenges for new research? This presentation will cover several approaches that have potential utility in assessing scientific results for use in space weather research. The demonstration of utility is the first step, relating to the establishment of metrics to ensure that there will be a clear benefit to the end user. The presentation will then move to means of determining cost vs. benefit, (where cost involves the full effort required to transition the science to forecasting, and benefit concerns the improvement of forecast reliability), and conclude with a discussion of the role of end users and forecasters in driving further innovation via "O2R."
Cousineau, Sarah M
2005-01-01
Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.
Microparticle impacts in space: Results from Solar Max and shuttle witness plate inspections
Mckay, David S.
1989-01-01
The Solar Maximum Satellite developed electronic problems after operating successfully in space for several years. Astronauts on Space Shuttle mission STS-41C retrieved the satellite into the orbiter cargo bay, replaced defective components, and re-deployed the repaired satellite into orbit. The defective components were returned to Earth for study. The space-exposed surfaces were examined. The approach and objectives were to: document morphology of impact; find and analyze projectile residue; classify impact by origin; determine flux distribution; and determine implications for space exposure. The purpose of the shuttle witness plate experiment was to detect impacts from PAM D2 solid rocket motor; determine flux and size distribution of particles; and determine abrasion effects on various conditions. Results are given for aluminum surfaces, copper surfaces, stainless steel surfaces, Inconel surfaces, and quartz glass surfaces.
International Nuclear Information System (INIS)
Gottschalk, Hanno; Hack, Thomas-Paul
2009-12-01
Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a φ p -theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gottschalk, Hanno [Bonn Univ. (Germany). Inst. fuer Angewandte Mathematik; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2009-12-15
Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a {phi}{sup p}-theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)
Sensuality test result for application to space foods of the disaster food
Katayama, Naomi; Okano, Yukimi; Kondou, Syouko
2016-07-01
The human became able to stay in the space for a long term. This is very important to step forward to the first step for Mars emigration. The long-term stay in the space has a big great stress. The space foods are important to keep a body and mind from those stress. The maintenance of the function of the astronaut of immunity and a meal for the hormone to keep the balance are necessary. As for both the space foods and the disaster meal, room-temperature preservation is possible for a long term. However, the taste is important to even disaster food. The person is repeated if not delicious and cannot eat disaster foods. The sensuality test result about the taste of the disaster food is important. Melon bun, Strawberry jam bun, Cream bun, Maple caramel, Bean-jam bun, Croissant, Croissant Rich, Ogura croissant, Buran croissant, Waffle, Maple waffle, Buran waffle, Strawberry milk waffle, Chocolate bun A cream bun is special. The bean-jam bun is very familiar bread for a Japanese. Because a lot of dietary fibers were good for health as for the buran croissant, an evaluation was high. We think that it is similar in the space foods. It is necessary to think about a universal meal in the space foods. We think that it is necessary to prepare the food which a person of the whole world likes.
James Webb Space Telescope Optical Telescope Element Mirror Development History and Results
Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.
2012-01-01
In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.
Methodology and results of a space station education pilot programme in the primary school
Mirra, G.; Mirra, C.
Potential users of the Space Station Freedom are now still in the Primary School. Subject studies 1 have shown that a robust familiarization programme has to be developed in order to increase public awareness on the microgravity environment and its capabilities to perform unique science. At the same time, several surveys 2 have demonstrated that elementary school students are showing the greatest interest and enthusiasm in space related activities among all school students. With these boundary conditions, a pilot programme, aimed at verifying the capabilities of young primary school pupils (aged between 10 and 12) in understanding why one performs research in space, has been conceived. In order to overcome the lack of space training of school teachers, an expert in space operations joined a group of elementary teachers to activate this program: merging the necessary didactic and technical capabilities. Consequently, the aim of the program becomes two folded: •generate critical thinking and problem solving capacities as well as inventiveness in children making them aware on the use of space to improve life on Earth. •identify the key issues for the definition of a robust space utilization educational programme. The programme has been managed by MARS Center. the Italian User Support Center for the Space Station utilization, and the institute "Speranzas" in the nearby of Naples, Italy. MARS Center, in particular, is responsible towards the national agency ASI, Agenzia Spaziale Italiana, of the execution of the promotional activity towards all the possible target groups: young students are among these groups. This programme started in late 1992 and is currently ongoing. The objective of this paper is to provide a description of the methodology and the reasons of such a programme with a snapshot on the preliminary results and future trends. Means used as supporting tools, such as films, posters and role plays are herein depicted as well as statistics on the pupils
International Nuclear Information System (INIS)
BEEBE - WANG, J.; LUCCIO, A.U.; D IMPERIO, N.; MACHIDA, S.
2002-01-01
Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed
Energy Technology Data Exchange (ETDEWEB)
BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.
2002-06-03
Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.
Directory of Open Access Journals (Sweden)
Bhavana Deshpande
2017-11-01
Full Text Available The main objective of this research article is to establish some coincidence point theorem for $g$-non-decreasing mappings under generalized $(\\psi ,\\theta ,\\varphi $-contraction on a partially ordered metric space. Furthermore, we show how multidimensional results can be seen as a simple consequences of our unidimensional coincidence point theorem. Our results modify, improve, sharpen, enrich and generalize various known results.
Elliptic curves for applications (Tutorial)
Lange, T.; Bernstein, D.J.; Chatterjee, S.
2011-01-01
More than 25 years ago, elliptic curves over finite fields were suggested as a group in which the Discrete Logarithm Problem (DLP) can be hard. Since then many researchers have scrutinized the security of the DLP on elliptic curves with the result that for suitably chosen curves only exponential
Some results of the effect of space flight factors on Drosophila melanogaster
International Nuclear Information System (INIS)
Filatova, L.P.; Vaulina, E.N.
1983-01-01
Chromosomal effects of space flight factors were investigated in Drosophila melanogaster flown aboard the Salyut 6 orbital station. Drosophila males heterozygous for four linked traits were exposed to space flight conditions for periods of eight days, and the progeny when the males were mated with homozygous recessive females were compared with those from control flies exposed to the same vibration and acceleration environment, and the progeny of laboratory controls. Increases in recombination and nondisjunction frequencies were observed in the flies exposed to the space environment, with recombinant flies also found in the F1 generation of the vibration and acceleration controls. Results suggest that it is the action of heavy particles that accounts for the major portion of the genetic effects observed. 17 references
Multiple Hypothesis Tracking (MHT) for Space Surveillance: Results and Simulation Studies
Singh, N.; Poore, A.; Sheaff, C.; Aristoff, J.; Jah, M.
2013-09-01
tracking performance compared to existing methods at a lower computational cost, especially for closely-spaced objects, in realistic multi-sensor multi-object tracking scenarios over multiple regimes of space. Specifically, we demonstrate that the prototype MHT system can accurately and efficiently process tens of thousands of UCTs and angles-only UCOs emanating from thousands of objects in LEO, GEO, MEO and HELO, many of which are closely-spaced, in real-time on a single laptop computer, thereby making it well-suited for large-scale breakup and tracking scenarios. This is possible in part because complexity reduction techniques are used to control the runtime of MHT without sacrificing accuracy. We assess the performance of MHT in relation to other tracking methods in multi-target, multi-sensor scenarios ranging from easy to difficult (i.e., widely-spaced objects to closely-spaced objects), using realistic physics and probabilities of detection less than one. In LEO, it is shown that the MHT system is able to address the challenges of processing breakups by analyzing multiple frames of data simultaneously in order to improve association decisions, reduce cross-tagging, and reduce unassociated UCTs. As a result, the multi-frame MHT system can establish orbits up to ten times faster than single-frame methods. Finally, it is shown that in GEO, MEO and HELO, the MHT system is able to address the challenges of processing angles-only optical observations by providing a unified multi-frame framework.
Hozo, Iztok; Tsalatsanis, Athanasios; Djulbegovic, Benjamin
2018-02-01
Decision curve analysis (DCA) is a widely used method for evaluating diagnostic tests and predictive models. It was developed based on expected utility theory (EUT) and has been reformulated using expected regret theory (ERG). Under certain circumstances, these 2 formulations yield different results. Here we describe these situations and explain the variation. We compare the derivations of the EUT- and ERG-based formulations of DCA for a typical medical decision problem: "treat none," "treat all," or "use model" to guide treatment. We illustrate the differences between the 2 formulations when applied to the following clinical question: at which probability of death we should refer a terminally ill patient to hospice? Both DCA formulations yielded identical but mirrored results when treatment effects are ignored; they generated significantly different results otherwise. Treatment effect has a significant effect on the results derived by EUT DCA and less so on ERG DCA. The elicitation of specific values for disutilities affected the results even more significantly in the context of EUT DCA, whereas no such elicitation was required within the ERG framework. EUT and ERG DCA generate different results when treatment effects are taken into account. The magnitude of the difference depends on the effect of treatment and the disutilities associated with disease and treatment effects. This is important to realize as the current practice guidelines are uniformly based on EUT; the same recommendations can significantly differ if they are derived based on ERG framework. © 2016 The Authors. Journal of Evaluation in Clinical Practice Published by John Wiley & Sons Ltd.
Energy Technology Data Exchange (ETDEWEB)
Hegedűs, Árpád; Konczer, József [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)
2016-08-09
In this paper, we solved numerically the Quantum Spectral Curve (QSC) equations corresponding to some twist-2 single trace operators with even spin from the sl(2) sector of AdS{sub 5}/CFT{sub 4} correspondence. We describe all technical details of the numerical method which are necessary to implement it in C++ language. In the S=2,4,6,8 cases, our numerical results confirm the analytical results, known in the literature for the first 4 coefficients of the strong coupling expansion for the anomalous dimensions of twist-2 operators. In the case of the Konishi operator, due to the high precision of the numerical data we could give numerical predictions to the values of two further coefficients, as well. The strong coupling behaviour of the coefficients c{sub a,n} in the power series representation of the P {sub a}-functions is also investigated. Based on our numerical data, in the regime, where the index of the coefficients is much smaller than λ{sup 1/4}, we conjecture that the coefficients have polynomial index dependence at strong coupling. This allows one to propose a strong coupling series representation for the P-functions being valid far enough from the real short cut. In the paper the qualitative strong coupling behaviour of the P-functions at the branch points is also discussed.
Ruttley, Tara; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka;
2016-01-01
In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011 (Expeditions 0 through 30). International Space Station Research Accomplishments: An Analysis of Results. From 2000-2011 is a collection of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/iss- science) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated by cooperation and linking with the results tracking activities of each partner. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. This content is obtained through extensive and regular journal and patent database searches, and input provided by the ISS international partners ISS scientists themselves. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It rejects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a
Transformation of localized necking of strain space into stress space for advanced high strength steel sheet
Nakwattanaset, Aeksuwat; Suranuntchai, Surasak
2018-03-01
Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.
The coronas-F space mission key results for solar terrestrial physics
2014-01-01
This volume is the updated and extended translation of the Russian original. It presents the results of observations of solar activity and its effects in the Earth space environment carried out from July 2001 to December 2005 on board the CORONAS-F space mission. The general characteristics of the CORONAS-F scientific payload are provided with a description of the principal experiments. The main results focus on the global oscillations of the Sun (p-modes), solar corona, solar flares, solar cosmic rays, Earth’s radiation belts, and upper atmosphere. The book will be welcomed by students, post-graduates, and scientists working in the field of solar and solar-terrestrial physics. This English edition is supplemented by sections presenting new results of the SPIRIT and TESIS experiments under the CORONAS solar program, as well as from the SONG experiment onboard the CORONAS-F satellite.
Integrated visualization of simulation results and experimental devices in virtual-reality space
International Nuclear Information System (INIS)
Ohtani, Hiroaki; Ishiguro, Seiji; Shohji, Mamoru; Kageyama, Akira; Tamura, Yuichi
2011-01-01
We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research. (author)
Global Attractivity Results for Mixed-Monotone Mappings in Partially Ordered Complete Metric Spaces
Directory of Open Access Journals (Sweden)
Kalabušić S
2009-01-01
Full Text Available We prove fixed point theorems for mixed-monotone mappings in partially ordered complete metric spaces which satisfy a weaker contraction condition than the classical Banach contraction condition for all points that are related by given ordering. We also give a global attractivity result for all solutions of the difference equation , where satisfies mixed-monotone conditions with respect to the given ordering.
Results of a Prospective Echocardiography Trial in International Space Station Crew
Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.
2009-01-01
In the framework of an operationally oriented investigation, we conducted a prospective trial of a standard clinical echocardiography protocol in a cohort of long-duration crewmembers. The resulting primary and processed data appear to have no precedents. Our tele-echocardiography paradigm, including just-in-time e-training methods, was also assessed. A critical review of the imaging technique, equipment and setting limitations, and quality assurance is provided, as well as the analysis of "space normal" data.
Directory of Open Access Journals (Sweden)
Yu. I. Logachev
2013-01-01
Full Text Available Selected activities aimed to investigate cosmic ray fluxes and to contribute to the understanding of the mechanisms behind, over a long-time period using space research tools in the former USSR/Russia and Slovakia, are reviewed, and some of the results obtained are presented. As the selection is connected with the institutes where the authors are working, it represents only a partial review of this wide topic.
Directory of Open Access Journals (Sweden)
Pedro Brandão
2015-06-01
• In the development of design practice and studio teaching methods We shall see in this paper how interdisciplinary approaches correspond to new and complex urban transformations, focusing on the importance of actors’ interaction processes, combining professional and non-professional knowledge and theory-practice relations. Therefore, we aim at a deepening in public space area of knowledge under the growing complexity of urban life. We see it as a base for further development of collaborative projects and their implications on community empowerment and urban governance at local level. Motivations of this line of work are persistent in several ongoing research projects, aiming to: - Understand public space as a cohesion factor both in urban life and urban form - Manage processes and strategies as elements of urban transformation, - Stimulate the understanding of actors’ roles in urban design practices. - Favoring the questioning of emerging aspects of urban space production… The paper presents and analyses processes, methods and results from civic participation projects developed in the neighbourhood of Barò de Viver (Barcelona and in the District of Marvila (Lisbon. In the first case, a long process initiated in 2004 and partially completed in 2011, neighbours developed the projects "Memory Wall" and Ciutat d'Asuncion Promenade as part of identity construction in public space, in collaboration with a team of facilitators from CrPolis group. In the second case, different participatory processes dated from 2001 and 2003 have resulted in the implementation of a specific identity urban brand and communication system with an ongoing project of "maps" construction according to the neighbours perception and representation systems. We may conclude that processes of urban governance require more active participation of citizens in projects regarding the improvement of quality of life. At the same time, the implementation of these processes requires a clear
Comparing the Resulted Strategies from the SWOT and the SPACE (Electricity Company as Case Study
Directory of Open Access Journals (Sweden)
Abolfazl Sherafat
2013-04-01
Full Text Available The present study was aimed to compare the implementation of two models in terms of strategic planning. In order to this, firstly, several field studies have been done in terms of the SWOT and the SPACE analysis. In the next step, a team of the meddle and senior managers that have studied in terms of SWOT analysis seek to identify the organization’s strengths, weaknesses, opportunities, and threats and then develop their related strategies. They also develop and indicate the SPACE questionnaire. Based on the results of this questionnaire and determining the organization’s strategic position, they strive to develop the appropriate strategies. Finally, the strategies that have been derived from these models were compared to each other and their strengths and weaknesses were analyzed.
Differential geometry and topology of curves
Animov, Yu
2001-01-01
Differential geometry is an actively developing area of modern mathematics. This volume presents a classical approach to the general topics of the geometry of curves, including the theory of curves in n-dimensional Euclidean space. The author investigates problems for special classes of curves and gives the working method used to obtain the conditions for closed polygonal curves. The proof of the Bakel-Werner theorem in conditions of boundedness for curves with periodic curvature and torsion is also presented. This volume also highlights the contributions made by great geometers. past and present, to differential geometry and the topology of curves.
A minicourse on moduli of curves
International Nuclear Information System (INIS)
Looijenga, E.
2000-01-01
These are notes that accompany a short course given at the School on Algebraic Geometry 1999 at the ICTP, Trieste. A major goal is to outline various approaches to moduli spaces of curves. In the last part I discuss the algebraic classes that naturally live on these spaces; these can be thought of as the characteristic classes for bundles of curves. (author)
Curve Matching with Applications in Medical Imaging
DEFF Research Database (Denmark)
Bauer, Martin; Bruveris, Martins; Harms, Philipp
2015-01-01
In the recent years, Riemannian shape analysis of curves and surfaces has found several applications in medical image analysis. In this paper we present a numerical discretization of second order Sobolev metrics on the space of regular curves in Euclidean space. This class of metrics has several...
Hunter, Walter M.
This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…
Energy Technology Data Exchange (ETDEWEB)
Lippoldt, Stefan
2016-01-21
chapter of this thesis is devoted to fermions in curved background spacetimes and, in particular, catalyzed symmetry breaking. This phenomenon arises from a parametric enhancement of critical fluctuations independently of the coupling strength. Symmetry-breaking fermionic long-range fluctuations exhibit such an enhancement on negatively curved spaces, as is known from mean-field studies. We study gravitational catalysis from the viewpoint of the functional renormalization group using the 3d Gross-Neveu model as a specific example. We observe gravitational catalysis towards a phase of broken discrete chiral symmetry both on a maximally symmetric spacetime (AdS) and on a purely spatially curved manifold (Lobachevsky plane) with constant negative curvature. The resulting picture for gravitational catalysis obtained from the renormalization group flow is closely related to that of magnetic catalysis. As an application, we estimate the curvature required for subcritical systems of finite length to acquire a gravitionally catalyzed mass gap.
Mohamed, Rachid; Raman, Maitreyi; Anderson, John; McLaughlin, Kevin; Rostom, Alaa; Coderre, Sylvain
2014-01-01
BACKGROUND: Although workplace workload assessments exist in different fields, an endoscopy-specific workload assessment tool is lacking. OBJECTIVE: To validate such a workload tool and use it to map the progression of novice trainees in gastroenterology in performing their first endoscopies. METHODS: The National Aeronautics and Space Administration Task Load Index (NASA-TLX) workload assessment tool was completed by eight novice trainees in gastroenterology and 10 practicing gastroenterologists/surgeons. An exploratory factor analysis was performed to construct a streamlined endoscopy-specific task load index, which was subsequently validated. The ‘Endoscopy Task Load Index’ was used to monitor progression of trainee exertion and self-assessed performance over their first 40 procedures. RESULTS: From the factor analysis of the NASA-TLX, two principal components emerged: a measure of exertion and a measure of self-efficacy. These items became the components of the newly validated Endoscopy Task Load Index. There was a steady decline in self-perceived exertion over the training period, which was more rapid for gastroscopy than colonoscopy. The self-efficacy scores for gastroscopy rapidly increased over the first few procedures, reaching a plateau after this period of time. For colonoscopy, there was a progressive increase in reported self-efficacy over the first three quartiles of procedures, followed by a drop in self-efficacy scores over the final quartile. DISCUSSION: The present study validated an Endoscopy Task Load Index that can be completed in <1 min. Practical implications of such a tool in endoscopy education include identifying periods of higher perceived exertion among novice endoscopists, facilitating appropriate levels of guidance from trainers. PMID:24619638
Gambicorti, Lisa; D'Amato, Francesco; Vettore, Christian; Duò, Fabrizio; Guercia, Alessio; Patauner, Christian; Biasi, Roberto; Lisi, Franco; Riccardi, Armando; Gallieni, Daniele; Lazzarini, Paolo; Tintori, Matteo; Zuccaro Marchi, Alessandro; Pereira do Carmo, Joao
2017-11-01
The aim of this work is to describe the latest results of new technological concepts for Large Aperture Telescopes Technology (LATT) using thin deployable lightweight active mirrors. This technology is developed under the European Space Agency (ESA) Technology Research Program and can be exploited in all the applications based on the use of primary mirrors of space telescopes with large aperture, segmented lightweight telescopes with wide Field of View (FOV) and low f/#, and LIDAR telescopes. The reference mission application is a potential future ESA mission, related to a space borne DIAL (Differential Absorption Lidar) instrument operating around 935.5 nm with the goal to measure water vapor profiles in atmosphere. An Optical BreadBoard (OBB) for LATT has been designed for investigating and testing two critical aspects of the technology: 1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch. The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented.
New generation of space capabilities resulting from US/RF cooperative efforts
Humpherys, Thomas; Misnik, Victor; Sinelshchikov, Valery; Stair, A. T., Jr.; Khatulev, Valery; Carpenter, Jack; Watson, John; Chvanov, Dmitry; Privalsky, Victor
2006-09-01
Previous successful international cooperative efforts offer a wealth of experience in dealing with highly sensitive issues, but cooperative remote sensing for monitoring and understanding the global environmental is in the national interest of all countries. Cooperation between international partners is paramount, particularly with the Russian Federation, due to its technological maturity and strategic political and geographical position in the world. Based on experience gained over a decade of collaborative space research efforts, continued cooperation provides an achievable goal as well as understanding the fabric of our coexistence. Past cooperative space research efforts demonstrate the ability of the US and Russian Federation to develop a framework for cooperation, working together on a complex, state-of-the-art joint satellite program. These efforts consisted of teams of scientists and engineers who overcame numerous cultural, linguistic, engineering approaches and different political environments. Among these major achievements are: (1) field measurement activities with US satellites MSTI and MSX and the Russian RESURS-1 satellite, as well as the joint experimental use of the US FISTA aircraft; (2) successful joint Science, Conceptual and Preliminary Design Reviews; (3) joint publications of scientific research technical papers, (4) Russian investment in development, demonstration and operation of the Monitor-E spacecraft (Yacht satellite bus), (5) successful demonstration of the conversion of the SS-19 into a satellite launch system, and (6) negotiation of contractual and technical assistant agreements. This paper discusses a new generation of science and space capabilities available to the Remote Sensing community. Specific topics include: joint requirements definition process and work allocation for hardware and responsibility for software development; the function, description and status of Russian contributions in providing space component prototypes
Energy Technology Data Exchange (ETDEWEB)
Castellani, Marco; Giuli, Massimiliano, E-mail: massimiliano.giuli@univaq.it [University of L’Aquila, Department of Information Engineering, Computer Science and Mathematics (Italy)
2016-02-15
We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered.
International Nuclear Information System (INIS)
Castellani, Marco; Giuli, Massimiliano
2016-01-01
We study pseudomonotone and quasimonotone quasivariational inequalities in a finite dimensional space. In particular we focus our attention on the closedness of some solution maps associated to a parametric quasivariational inequality. From this study we derive two results on the existence of solutions of the quasivariational inequality. On the one hand, assuming the pseudomonotonicity of the operator, we get the nonemptiness of the set of the classical solutions. On the other hand, we show that the quasimonoticity of the operator implies the nonemptiness of the set of nonzero solutions. An application to traffic network is also considered
NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992
Ma, Chopo; Ryan, James W.; Caprette, Douglas S.
1994-01-01
The Goddard VLBI group reports the results of analyzing Mark 3 data sets acquired from 110 fixed and mobile observing sites through the end of 1992 and available to the Space Geodesy Program. Two large solutions were used to obtain site positions, site velocities, baseline evolution for 474 baselines, earth rotation parameters, nutation offsets, and radio source positions. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for the 89 baselines that were observed in 1992 and positions at 1988.0 are presented for all fixed stations and mobile sites. Positions are also presented for quasar radio sources used in the solutions.
Latest Results from the AMS Experiment on the International Space Station
CERN. Geneva
2018-01-01
In seven years on the Space Station, AMS has collected more than 115 billion charged cosmic rays with energies up to multi TeV. The measured positron spectra agrees well with dark matter models. The energy dependence of elementary particles (electrons, positrons, protons and antiprotons) as well as the rigidity dependence of primary cosmic rays and secondary cosmic rays are unique and distinct. These results require a new understanding of the cosmos.
The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results
Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.
1989-01-01
The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.
The Space Station photovoltaic panels plasma interaction test program - Test plan and results
Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.
1990-01-01
The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.
Bubble Collision in Curved Spacetime
International Nuclear Information System (INIS)
Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han
2014-01-01
We study vacuum bubble collisions in curved spacetime, in which vacuum bubbles were nucleated in the initial metastable vacuum state by quantum tunneling. The bubbles materialize randomly at different times and then start to grow. It is known that the percolation by true vacuum bubbles is not possible due to the exponential expansion of the space among the bubbles. In this paper, we consider two bubbles of the same size with a preferred axis and assume that two bubbles form very near each other to collide. The two bubbles have the same field value. When the bubbles collide, the collided region oscillates back-and-forth and then the collided region eventually decays and disappears. We discuss radiation and gravitational wave resulting from the collision of two bubbles
RESULTS OF THE FIRST RUN OF THE NASA SPACE RADIATION LABORATORY AT BNL
International Nuclear Information System (INIS)
BROWN, K.A.; AHRENS, L.; BRENNAN, J.M.
2004-01-01
The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The results of commissioning of this new facility were reported in [l]. In this report we will describe the results of the first run. The NSRL is capable of making use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. Many modes of operation were explored during the first run, demonstrating all the capabilities designed into the system. Heavy ion intensities from 100 particles per pulse up to 12 x 10 9 particles per pulse were delivered to a large variety of experiments, providing a dose range up to 70 Gy/min over a 5 x 5 cm 2 area. Results presented will include those related to the production of beams that are highly uniform in both the transverse and longitudinal planes of motion [2
Directory of Open Access Journals (Sweden)
Ehab Malkawi
2014-01-01
Full Text Available The classical free Lagrangian admitting a constant of motion, in one- and two-dimensional space, is generalized using the Caputo derivative of fractional calculus. The corresponding metric is obtained and the fractional Christoffel symbols, Killing vectors, and Killing-Yano tensors are derived. Some exact solutions of these quantities are reported.
Preliminary results on the dynamics of large and flexible space structures in Halo orbits
Colagrossi, Andrea; Lavagna, Michèle
2017-05-01
The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around
New results on embeddings of polyhedra and manifolds in Euclidean spaces
International Nuclear Information System (INIS)
Repovs, D; Skopenkov, A B
1999-01-01
The aim of this survey is to present several classical results on embeddings and isotopies of polyhedra and manifolds in R m . We also describe the revival of interest in this beautiful branch of topology and give an account of new results, including an improvement of the Haefliger-Weber theorem on the completeness of the deleted product obstruction to embeddability and isotopy of highly connected manifolds in R m (Skopenkov) as well as the unimprovability of this theorem for polyhedra (Freedman, Krushkal, Teichner, Segal, Skopenkov, and Spiez) and for manifolds without the necessary connectedness assumption (Skopenkov). We show how algebraic obstructions (in terms of cohomology, characteristic classes, and equivariant maps) arise from geometric problems of embeddability in Euclidean spaces. Several classical and modern results on completeness or incompleteness of these obstructions are stated and proved. By these proofs we illustrate classical and modern tools of geometric topology (engulfing, the Whitney trick, van Kampen and Casson finger moves, and their generalizations)
First Look at Results from the Metal Oxide Space Cloud (MOSC) Experiment
Caton, R. G.; Pedersen, T. R.; Parris, R. T.; Groves, K. M.; Bernhardt, P. A.; Cannon, P. S.
2013-12-01
During the moon down period from 28 April to 10 May 2013, the NASA Sounding Rocket Program successfully completed a series of two launches from the Kwajalein Atoll for the Air Force Research Laboratory's Metal Oxide Space Cloud (MOSC) experiment. Payloads on both Terrier Improved Orion rockets flown during the mission included two 5 kg of canisters of Samarium (Sm) powder in a thermite mix for immediate expulsion and vaporization and a two-frequency Coherent Electromagnetic Radio Tomography (CERTO) beacon provided by the Naval Research Laboratory. The launches were carefully timed for dusk releases of Sm vapor at preselected altitudes creating artificially generated layers lasting several hours. A host of ground sensors were deployed to fully probe and characterize the localized plasma cloud produced as a result of charge exchange with the background oxygen (Sm + O → SmO+ + e-). In addition to incoherent scatter probing of the ionization cloud with the ALTAIR radar, ground diagnostics included GPS and CERTO beacon receivers at five locations in the Marshall Islands. Researchers from QinetiQ and the UK MOD participated in the MOSC experiment with the addition of an HF transmitting system and an array of receivers distributed across multiple islands to examine the response of the HF propagation environment to the artificially generated layer. AFRL ground equipment included a pair of All-Sky Imagers, optical spectrographs, and two DPS-4D digisondes spaced ~200 km apart providing vertical and oblique soundings. As the experimental team continues to evaluate the data, this paper will present a first look at early results from the MOSC experiment. Data collected will be used to improve existing models and tailor future experiments targeted at demonstrating the ability to temporarily control the RF propagation environment through an on-demand modification of the ionosphere. Funding for the launch was provided by the DoD Space Test Program.
Energy Technology Data Exchange (ETDEWEB)
Mendonca, Julyanne C.G.; Mendes, Mariana E.; Hwang, Suy F.; Lima, Fabiana F. [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Santos, Neide, E-mail: july_cgm@yahoo.com.br [Universidade Federal de Pernambuco (CCB/UFPE), Recife, PE (Brazil). Departamento de Genetica
2014-07-01
The cytogenetic study has the chromosomal alterations as biomarkers in absorbed dose estimation by the body of individuals involved in exposure to ionizing radiation by interpreting a dose response calibration curve. Since the development of the technique to the analysis of data, you can see protocol characteristics, leading the International Atomic Energy Agency indicate that any laboratory with intention to carry out biological dosimetry establish their own calibration curves. The Biological Dosimetry Laboratory of the Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN), Brazil, recently established the calibration curve related to gamma radiation ({sup 60}Co). Thus, this work aimed to start the validation of this calibration curve from samples of three different blood donors which were irradiated with an absorbed known single dose of 1 Gy. Samples were exposed to {sup 60}Co source (Glaucoma 220) located in the Department of Nuclear Energy (DEN/UFPE). After fixation with methanol and acetic acid and 5% Giemsa staining, the frequency of chromosomal alterations (dicentric chromosomes, acentric rings and fragments) were established from reading of 500 metaphases per sample and doses were estimated using Dose Estimate program. The results showed that, using the dose-response curve calibration for dicentrics, the dose absorbed estimated for the three individuals ranged from 0.891 - 1,089Gy, taking into account the range of confidence of 95%. By using the dose-response curve for dicentrics added to rings and for the same interval of confidence the doses ranged from 0,849 - 1,081Gy. Thus, the estimative encompassed known absorbed dose the three individuals in confidence interval of 95%. These preliminary results seems to demonstrate that dicentric dose-response curves and dicentrics plus rings established by CRCN-NE / CNEN are valid for dose estimation in exposed individuals. This validation will continue with samples from different individuals at different doses.
Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions
Newhouse, Marilyn E.; McDougal, John; Barley, Bryan; Stephens Karen; Fesq, Lorraine M.
2010-01-01
Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the
Directory of Open Access Journals (Sweden)
Perisano Carlo
2009-09-01
Full Text Available Abstract Background The effectiveness of conservative treatment of scoliosis is controversial. Some studies suggest that brace is effective in stopping curve progression, whilst others did not report such an effect. The purpose of the present study was to effectiveness of Progressive Action Short Brace (PASB in the correction of thoraco-lumbar curves, in agreement with the Scoliosis Research Society (SRS Committee on Bracing and Nonoperative Management Standardisation Criteria. Methods Fifty adolescent females (mean age 11.8 ± 0.5 years with thoraco-lumbar curve and a pre-treatment Risser score ranging from 0 to 2 have been enrolled. The minimum duration of follow-up was 24 months (mean: 55.4 ± 44.5 months. Antero-posterior radiographs were used to estimate the curve magnitude (CM and the torsion of the apical vertebra (TA at 5 time points: beginning of treatment (t1, one year after the beginning of treatment (t2, intermediate time between t1 and t4 (t3, end of weaning (t4, 2-year minimum follow-up from t4 (t5. Three situations were distinguished: curve correction, curve stabilisation and curve progression. The Kruskal Wallis and Spearman Rank Correlation tests have been used as statistical tests. Results CM mean value was 29,30 ± 5,16 SD at t1 and 14,67 ± 7,65 SD at t5. TA was 12.70 ± 6,14 SD at t1 and 8,95 ± 5,82 at t5. The variation between measures of Cobb and Perdriolle degrees at t1,2,3,4,5 and between CM t5-t1 and TA t5-t1 were significantly different. Curve correction was accomplished in 94% of patients, whereas a curve stabilisation was obtained in 6% of patients. Conclusion The PASB, due to its peculiar biomechanical action on vertebral modelling, is highly effective in correcting thoraco-lumbar curves.
Role of HZE particles in space flight - Results from spaceflight and ground-based experiments
Energy Technology Data Exchange (ETDEWEB)
Buecker, H.; Facius, R.
1981-09-01
Selected results from experiments investigating the potentially specific radiobiological importance of the cosmic HZE (equals high Z, energetic) particles are discussed. Results from the Biostack space flight experiments, which were designed to meet the experimental requirements imposed by the microdosimetric nature of this radiation field, clearly indicate the existence of radiation mechanisms which become effective only at higher values of LET (linear energy transfer). Accelerator irradiation studies are reviewed which conform with this conjecture. The recently discovered production of 'micro-lesions' in mammalian tissues by single HZE particles is possibly the most direct evidence. Open questions concerning the establishment of radiation standards for manned spaceflight, such as late effects, interaction with flight dynamic parameters, and weightlessness, are indicated.
Sacrum and Space. Hierotopy of Cephalonia Island (Preliminary Results of the Pilot Study
Directory of Open Access Journals (Sweden)
Ewa Maria Kocój
2017-12-01
Full Text Available The Byzantine and post-Byzantine cultural heritage of Greek islands and peninsulas is still a blank slate for most Europeans. Only a few scholars from outside Greece focus their scientific studies on artefacts and anything which could be considered as so-called intangible cultural heritage of the humanity. The objective of the study was to investigate the hierotopy of the religious heritage of Cephalonia. I was interested in whether the island has hierotopic spaces, saturated with special power and the resulting special creation in the islanders’ minds. I searched for the beliefs about the origins of these places, extraordinary events, or the related sacred figures and organizations of spaces in the places used by Cephalonians for religious worship. The article uses qualitative methods of scientific research applied from the emic perspectives (free interviews, explicit and implicit participatory observation, photographic documentation and analysis of visual material. The research also focused on the secondary (historic and ethnographic sources as well as on resources available on the Internet. The study has shown that an important role in Cephalonians’ religious imagination is played by the insular nature of the region and the elements: the sea surrounding the land and the earthquakes which cyclically strike the island. These specific natural conditions have given birth to local legends and hierotopic creations of places of religious worship. They have formed the pantheon of the holy figures, whose presence is emphasized by the specific hierotopy of the places of religious worship built on the island.
Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.
2010-01-01
Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.
International Nuclear Information System (INIS)
Sholtis, J.A. Jr.; Gray, L.B.; Huff, D.A.; Klug, N.P.; Winchester, R.O.
1991-01-01
The recent 6 October 1990 launch and deployment of the nuclear-powered Ulysses spacecraft from the Space Shuttle Discovery culminated an extensive safety review and evaluation effort by the Interagency Nuclear Safety Review Panel (INSRP). After more than a year of detailed independent review, study, and analysis, the INSRP prepared a Safety Evaluation Report (SER) on the Ulysses mission, in accordance with Presidential Directive-National Security Council memorandum 25. The SER, which included a review of the Ulysses Final Safety Analysis Report (FSAR) and an independent characterization of the mission risks, was used by the National Aeronautics and Space Administration (NASA) in its decision to request launch approval as well as by the Executive Office of the President in arriving at a launch decision based on risk-benefit considerations. This paper provides an overview of the Ulysses mission and the conduct as well as the results of the INSRP evaluation. While the mission risk determined by the INSRP in the SER was higher than that characterized by the Ulysses project in the FSAR, both reports indicated that the radiological risks were relatively small. In the final analysis, the SER proved to be supportive of a positive launch decision. The INSRP evaluation process has demonstrated its effectiveness numerous times since the 1960s. In every case, it has provided the essential ingredients and perspective to permit an informed launch decision at the highest level of our Government
Directory of Open Access Journals (Sweden)
Susanne Gannon
2012-12-01
Full Text Available Where else can educational research begin and end, if not with the body of the researcher, if not with the particular material/ corporeal/ affective assemblages that this body is and has been part of? This paper traces the mutual constitution of bodies, identities and landscapes through memory as the body of this educator travels through multiple scenes of geo-spatial-temporal movement, and down the east coast of Australia. This movement parallels the movement from being a school teacher to becoming an academic. Throughout the paper landscape is foregrounded, and the body in landscape is evoked through poetic and literary modes of writing around the themes of learning and losing. The body in landscape is not merely the body of the writer. Other bodies in the landscape include ‘the curve of the snake’ - the row of protective hills that were said to protect her tropical home from cyclones – and the ‘scene of the crocodile’ – the rock that hung over the valley she passed on her way to school that she had learned of from Indigenous teachers. The political and ethical consequences of memory work, of body and place writing, and of genres of writing in educational research, are also considered. The paper argues for an embodied and reflexive literacy of place that incorporates multiple modes of knowing, being and writing.
Preliminary results of the Vega-1 and Vega-2 space probes rendezvous with the Halley comet
International Nuclear Information System (INIS)
Anon.
1986-01-01
Preliminary results of the Halley comet investigation using the Vega-1 and Vega-2 space probes which passed on the 6th and 9th of March, 1986 the comet nucleus at a distance of 9000 and 8200 respectively, are presented. The comet nucleus appeared to be one of the darkest bodies of the Solar system: its albedo is just about 4%. The IR spectrum analysis has shown, that water and carbon dioxide appear to be the main components of the comet material. Mass analysis points out to the presence in the comet dust of iron, oxygen and silicon. It is ascertained, that about 30 t of water vapors and about 5-10 t of dust are evaporated from the comet nucleus surface in one second. Solar wind interaction with the comet streched atmosphere was investigated
Defining Learning Space in a Serious Game in Terms of Operative and Resultant Actions
Martin, Michael W.; Shen, Yuzhong
2012-01-01
This paper explores the distinction between operative and resultant actions in games, and proposes that the learning space created by a serious game is a function of these actions. Further, it suggests a possible relationship between these actions and the forms of cognitive load imposed upon the game player. Association of specific types of cognitive load with respective forms of actions in game mechanics also presents some heuristics for integrating learning content into serious games. Research indicates that different balances of these types of actions are more suitable for novice or experienced learners. By examining these relationships, we can develop a few basic principles of game design which have an increased potential to promote positive learning outcomes.
Gravity Probe B: final results of a space experiment to test general relativity.
Everitt, C W F; DeBra, D B; Parkinson, B W; Turneaure, J P; Conklin, J W; Heifetz, M I; Keiser, G M; Silbergleit, A S; Holmes, T; Kolodziejczak, J; Al-Meshari, M; Mester, J C; Muhlfelder, B; Solomonik, V G; Stahl, K; Worden, P W; Bencze, W; Buchman, S; Clarke, B; Al-Jadaan, A; Al-Jibreen, H; Li, J; Lipa, J A; Lockhart, J M; Al-Suwaidan, B; Taber, M; Wang, S
2011-06-03
Gravity Probe B, launched 20 April 2004, is a space experiment testing two fundamental predictions of Einstein's theory of general relativity (GR), the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection started 28 August 2004 and ended 14 August 2005. Analysis of the data from all four gyroscopes results in a geodetic drift rate of -6601.8±18.3 mas/yr and a frame-dragging drift rate of -37.2±7.2 mas/yr, to be compared with the GR predictions of -6606.1 mas/yr and -39.2 mas/yr, respectively ("mas" is milliarcsecond; 1 mas=4.848×10(-9) rad).
ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements
Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.;
2009-01-01
ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.
Results of cosmic ray intensity measurements by the ''Luna-19'' space probe
International Nuclear Information System (INIS)
Chuchkov, E.A.; Lyubimov, G.P.; Myagchenkova, O.G.; Novichkova, A.D.; Pereslegina, N.V.; Kontor, N.N.; Nikolaev, A.G.
1975-01-01
Results are reviewed of measurements of low energy cosmic-ray characteristics obtained by means of the equipment installed on the ''Luna-19'' space station over the period from 28 November, 1971 to August 20, 1972. Proton fluxes with the energy of 1-5, 5-10, 10-40 MeV were mainly detected. A brief analysis both of individual events in cosmic rays and the general variation of intensity over the period from 1971 to 1972 is presented. Solar and geophysical data are used for the analysis. It is demonstrated that the period of the ''Luna-19'' operation corresponded to the secondary (anomalous) maximum on the decay of the solar activity in the 20th cycle. Assumptions concerning the nature of this maximum are formulated
Tinker, Michael L.
1998-01-01
Application of the free-suspension residual flexibility modal test method to the International Space Station Pathfinder structure is described. The Pathfinder, a large structure of the general size and weight of Space Station module elements, was also tested in a large fixed-base fixture to simulate Shuttle Orbiter payload constraints. After correlation of the Pathfinder finite element model to residual flexibility test data, the model was coupled to a fixture model, and constrained modes and frequencies were compared to fixed-base test. modes. The residual flexibility model compared very favorably to results of the fixed-base test. This is the first known direct comparison of free-suspension residual flexibility and fixed-base test results for a large structure. The model correlation approach used by the author for residual flexibility data is presented. Frequency response functions (FRF) for the regions of the structure that interface with the environment (a test fixture or another structure) are shown to be the primary tools for model correlation that distinguish or characterize the residual flexibility approach. A number of critical issues related to use of the structure interface FRF for correlating the model are then identified and discussed, including (1) the requirement of prominent stiffness lines, (2) overcoming problems with measurement noise which makes the antiresonances or minima in the functions difficult to identify, and (3) the use of interface stiffness and lumped mass perturbations to bring the analytical responses into agreement with test data. It is shown that good comparison of analytical-to-experimental FRF is the key to obtaining good agreement of the residual flexibility values.
Observing with a space-borne gamma-ray telescope: selected results from INTEGRAL
International Nuclear Information System (INIS)
Schanne, Stephane
2006-01-01
The International Gamma-Ray Astrophysics Laboratory, i.e. the INTEGRAL satellite of ESA, in orbit since about 3 years, performs gamma-ray observations of the sky in the 15 keV to 8 MeV energy range. Thanks to its imager IBIS, and in particular the ISGRI detection plane based on 16384 CdTe pixels, it achieves an excellent angular resolution (12 arcmin) for point source studies with good continuum spectrum sensitivity. Thanks to its spectrometer SPI, based on 19 germanium detectors maintained at 85 K by a cryogenic system, located inside an active BGO veto shield, it achieves excellent spectral resolution of about 2 keV for 1 MeV photons, which permits astrophysical gamma-ray line studies with good narrow-line sensitivity. In this paper we review some goals of gamma-ray astronomy from space and present the INTEGRAL satellite, in particular its instruments ISGRI and SPI. Ground and in-flight calibration results from SPI are presented, before presenting some selected astrophysical results from INTEGRAL. In particular results on point source searches are presented, followed by results on nuclear astrophysics, exemplified by the study of the 1809 keV gamma-ray line from radioactive 26 Al nuclei produced by the ongoing stellar nucleosynthesis in the Galaxy. Finally a review on the study of the positron-electron annihilation in the Galactic center region, producing 511 keV gamma-rays, is presented
The Successful Conclusion of the Deep Space 1 Mission: Important Results without a Flashy Title
Rayman, Marc D.
2002-01-01
direct scientific return, the comet encounter is of engineering value to other missions planning comet encounters. With the successful conclusion of its extended mission, DS1 undertook a hyperextended mission. This phase of its flight was dedicated to final testing of the advanced technologies on board. With the mission at more than three times its planned lifetime, this offered an excellent opportunity to obtain unplanned data on the effects of long-term operation in space. All nine of the hardware technologies were used during the hyperextended mission, with a focus on the ion propulsion system. Following this period of extremely aggressive testing, with no further technology or science objectives, the mission was terminated on December 18, 2001, with the powering off of the spacecraft s transmitter, although the receiver was left on. By the end of its mission, DS1 had returned a wealth of important science data and engineering data for future missions. It did so following the shortest time from pre-phase A through launch of any NASA interplanetary mission in the modern era and the lowest cost of any NASA interplanetary mission ever conducted (measured in same year dollars, including the launch cost). This paper will describe the encounter with comet Borrelly, the hyperextended mission, and summarize the overall results of the Deep Space 1 project.
Simpson, Ewan; Andronikou, Savvas; Vedajallam, Schadie; Chacko, Anith; Thai, Ngoc Jade
2016-09-01
Hypoxic-ischaemic encephalopathy is optimally imaged with brain MRI in the neonatal period. However neuroimaging is often also performed later in childhood (e.g., when parents seek compensation in cases of alleged birth asphyxia). We describe a standardised technique for creating two curved reconstructions of the cortical surface to show the characteristic surface changes of hypoxic-ischaemic encephalopathy in children imaged after the neonatal period. The technique was applied for 10 cases of hypoxic-ischaemic encephalopathy and also for age-matched healthy children to assess the visibility of characteristic features of hypoxic-ischaemic encephalopathy. In the abnormal brains, fissural or sulcal widening was seen in all cases and ulegyria was identifiable in 7/10. These images could be used as a visual aid for communicating MRI findings to clinicians and other interested parties.
Preliminary results from a four-working space, double-acting piston, Stirling engine controls model
Daniele, C. J.; Lorenzo, C. F.
1980-01-01
A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.
Multi-GNSS signal-in-space range error assessment - Methodology and results
Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André
2018-06-01
The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.
DEFF Research Database (Denmark)
Bernstein, Daniel J.; Birkner, Peter; Lange, Tanja
2013-01-01
-arithmetic level are as follows: (1) use Edwards curves instead of Montgomery curves; (2) use extended Edwards coordinates; (3) use signed-sliding-window addition-subtraction chains; (4) batch primes to increase the window size; (5) choose curves with small parameters and base points; (6) choose curves with large...
SMART-1 technology, scientific results and heritage for future space missions
Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team
2018-02-01
ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive
International Nuclear Information System (INIS)
Taylor, D.S.; Wisner, E.R.; Kuesis, B.S.; Smith, S.G.; O'Brien, T.R.
1993-01-01
A 2-year-old Arabian filly was presented for evaluation after falling backwards. The injury was manifest radiographically by the presence of air within the subarachnoid space of the calvarium and the cervical spinal canal. Radiographic findings resulted from communication of the sphenopalatine sinus with the subarachnoid space as a sequela to a fracture involving the presphenoid bone
Radiation Test Results on COTS and non-COTS Electronic Devices for NASA-JSC Space Flight Projects
Allums, Kimberly K.; O'Neill, P. M.; Reddell, B. D.; Nguyen, K. V.; Bailey, C. R.
2012-01-01
This presentation reports the results of recent proton and heavy ion Single Event Effect (SEE) testing on a variety of COTS and non-COTs electronic devices and assemblies tested for the Space Shuttle, International Space Station (ISS) and Multi-Purpose Crew Vehicle (MPCV).
Intersection numbers of spectral curves
Eynard, B.
2011-01-01
We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.
Psychosocial issues on-orbit: results from two space station programs
Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Marmar, C. R.
PURPOSE Psychosocial issues affecting people working in isolated and confined environments such as spacecraft can jeopardize mental health and mission safety Our team has completed two large NASA-funded studies involving missions to the Mir and International Space Stations where crewmembers were on-orbit for four to seven months Combining these two datasets allows us to generalize across these two settings and maximize statistical power in testing our hypotheses This paper presents results from three sets of hypotheses concerning possible changes in mood and social climate over time displacement of negative emotions to outside monitoring personnel and the task and support roles of the leader METHODS The combined sample of 216 participants included 13 American astronauts 17 Russian cosmonauts and 150 U S and 36 Russian mission control personnel Subjects completed a weekly questionnaire that included items from the Profile of Mood States the Group Environment Scale and the Work Environment Scale producing 20 subscale scores The analytic strategy included piecewise linear regression and general linear modeling and it accounted for the effects of multiple observations per person and multiple analyses RESULTS There was little evidence to suggest that universal changes in levels of mood and group climate occurred among astronauts and cosmonauts over time Although a few individuals experienced decrements in the second half of the mission the majority did not However there was evidence that subjects displaced negative emotions to outside
Mohamed, Rachid; Raman, Maitreyi; Anderson, John; McLaughlin, Kevin; Rostom, Alaa; Coderre, Sylvain
2014-03-01
Although workplace workload assessments exist in different fields, an endoscopy-specific workload assessment tool is lacking. To validate such a workload tool and use it to map the progression of novice trainees in gastroenterology in performing their first endoscopies. The National Aeronautics and Space Administration Task Load Index (NASA-TLX) workload assessment tool was completed by eight novice trainees in gastroenterology and 10 practicing gastroenterologists⁄surgeons. An exploratory factor analysis was performed to construct a streamlined endoscopy-specific task load index, which was subsequently validated. The 'Endoscopy Task Load Index' was used to monitor progression of trainee exertion and self-assessed performance over their first 40 procedures. From the factor analysis of the NASA-TLX, two principal components emerged: a measure of exertion and a measure of self-efficacy. These items became the components of the newly validated Endoscopy Task Load Index. There was a steady decline in self-perceived exertion over the training period, which was more rapid for gastroscopy than colonoscopy. The self-efficacy scores for gastroscopy rapidly increased over the first few procedures, reaching a plateau after this period of time. For colonoscopy, there was a progressive increase in reported self-efficacy over the first three quartiles of procedures, followed by a drop in self-efficacy scores over the final quartile. The present study validated an Endoscopy Task Load Index that can be completed in <1 min. Practical implications of such a tool in endoscopy education include identifying periods of higher perceived exertion among novice endoscopists, facilitating appropriate levels of guidance from trainers.
MR-guided biopsies of lesions in the retroperitoneal space: technique and results
International Nuclear Information System (INIS)
Zangos, S.; Eichler, K.; Wetter, A.; Lehnert, T.; Hammerstingl, R.; Diebold, T.; Reichel, P.; Herzog, C.; Mack, M.G.; Vogl, T.J.; Hansmann, M.-L.
2006-01-01
The purpose of this study was to evaluate the safety and precision of MRI-guided biopsies of retroperitoneal space-occupying tumors in an open low-field system. In 30 patients with indistinct retroperitoneal tumors [paraaortic lesion (n=20), kidney (n=2), suprarenal gland (n=3) and pancreas (n=5)] MR-guided biopsies were performed using a low-field system (0.2 T, Magnetom Concerto, Siemens, Germany). For the monitoring of the biopsies T1-weighted FLASH sequences (TR/TE=160/5 ms; 90 ) were used in all patients and modified FLASH sequences (TR/TE=160/13 ms; 90 ) in ten patients. After positioning of the needle in the tumors 114 biopsy specimens were acquired in coaxial technique with 16-gauge cutting needles (Somatex, Germany). The biopsies were successfully performed in all patients without vascular or organ injuries. The visualization of the aortic blood flow with MRI facilitated the biopsy procedures of paraaortic lesions. The size of the lesions ranged from 1.6 to 7.5 cm. The median distance of the biopsy access path was 10.4 cm. Adequate specimens were obtained in 28 cases (93.3%) resulting in a correct histological classification of 27 lesions (90%). In conclusion, MR-guided biopsies of retroperitoneal lesions using an open low-field system can be performed safely and accurately and is an alternative to CT-guided biopsies. (orig.)
HF propagation results from the Metal Oxide Space Cloud (MOSC) experiment
Joshi, Dev; Groves, Keith M.; McNeil, William; Carrano, Charles; Caton, Ronald G.; Parris, Richard T.; Pederson, Todd R.; Cannon, Paul S.; Angling, Matthew; Jackson-Booth, Natasha
2017-06-01
With support from the NASA sounding rocket program, the Air Force Research Laboratory launched two sounding rockets in the Kwajalein Atoll, Marshall Islands in May 2013 known as the Metal Oxide Space Cloud experiment. The rockets released samarium metal vapor at preselected altitudes in the lower F region that ionized forming a plasma cloud. Data from Advanced Research Project Agency Long-range Tracking and Identification Radar incoherent scatter radar and high-frequency (HF) radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. The HF radio wave ray-tracing toolbox PHaRLAP along with ionospheric models constrained by electron density profiles measured with the ALTAIR radar have been used to successfully model the effects of the cloud on HF propagation. Up to three new propagation paths were created by the artificial plasma injections. Observations and modeling confirm that the small amounts of ionized material injected in the lower F region resulted in significant changes to the natural HF propagation environment.
Thin film CdTe solar cells by close spaced sublimation: Recent results from pilot line
International Nuclear Information System (INIS)
Siepchen, B.; Drost, C.; Späth, B.; Krishnakumar, V.; Richter, H.; Harr, M.; Bossert, S.; Grimm, M.; Häfner, K.; Modes, T.; Zywitzki, O.; Morgner, H.
2013-01-01
CdTe is an attractive material to produce high efficient and low cost thin film solar cells. The semiconducting layers of this kind of solar cell can be deposited by the Close Spaced Sublimation (CSS) process. The advantages of this technique are high deposition rates and an excellent utilization of the raw material, leading to low production costs and competitive module prices. CTF Solar GmbH is offering equipment and process knowhow for the production of CdTe solar modules. For further improvement of the technology, research is done at a pilot line, which covers all relevant process steps for manufacture of CdTe solar cells. Herein, we present the latest results from the process development and our research activities on single functional layers as well as for complete solar cell devices. Efficiencies above 13% have already been obtained with Cu-free back contacts. An additional focus is set on different transparent conducting oxide materials for the front contact and a Sb 2 Te 3 based back contact. - Highlights: ► Laboratory established on industrial level for CdTe solar cell research ► 13.0% cell efficiency with our standard front contact and Cu-free back contact ► Research on ZnO-based transparent conducting oxide and Sb 2 Te 3 back contacts ► High resolution scanning electron microscopy analysis of ion polished cross section
Preliminary results of Physiological plant growth modelling for human life support in space
Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline
2012-07-01
Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the
International Nuclear Information System (INIS)
Chilingarian, Ashot; Arakelyan, Karen; Avakyan, Karen; Bostanjyan, Nikolaj; Chilingaryan, Suren; Pokhsraryan, D; Sargsyan, D; Reymers, A
2013-01-01
Space Environmental Viewing and Analysis Network is a worldwide network of identical particle detectors located at middle and low latitudes aimed to improve fundamental research of space weather conditions and to provide short- and long-term forecasts of the dangerous consequences of space storms. SEVAN detected changing fluxes of different species of secondary cosmic rays at different altitudes and latitudes, thus turning SEVAN into a powerful integrated device used to explore solar modulation effects. Till to now the SEVAN modules are installed at Aragats Space Environmental Centre in Armenia (3 units at altitudes 800, 2000 and 3200 m a.s.l.), Bulgaria (Moussala), Croatia and India (New-Delhi JNU.) and now under installation in Slovakia, LomnitskySchtit). Recently SEVAN detectors were used for research of new high-energy phenomena originated in terrestrial atmosphere – Thunderstorm Ground Enhancements (TGEs). In 2011 first joint measurements of solar modulation effects were detected by SEVAN network, now under analysis.
Twisted Vector Bundles on Pointed Nodal Curves
Indian Academy of Sciences (India)
Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.
Comparing the Resulted Strategies from the SWOT and the SPACE (Electricity Company as Case Study)
Abolfazl Sherafat; Khadijeh Yavari; Sayyed Mohammad Reza Davoodi; Nima Bozorgzadeh
2013-01-01
The present study was aimed to compare the implementation of two models in terms of strategic planning. In order to this, firstly, several field studies have been done in terms of the SWOT and the SPACE analysis. In the next step, a team of the middle and senior managers that have studied in terms of SWOT analysis seek to identify the organization’s strengths, weaknesses, opportunities, and threats and then develop their related strategies. They also develop and indicate the SPACE questionnai...
Double Lacunary Density and Some Inclusion Results in Locally Solid Riesz Spaces
Directory of Open Access Journals (Sweden)
S. A. Mohiuddine
2013-01-01
Full Text Available We define the notions of double statistically convergent and double lacunary statistically convergent sequences in locally solid Riesz space and establish some inclusion relations between them. We also prove an extension of a decomposition theorem in this setup. Further, we introduce the concepts of double θ-summable and double statistically lacunary summable in locally solid Riesz space and establish a relationship between these notions.
Active shield technology for space craft protection revisited in new laboratory results and analysis
Bamford, R.; Gibson, K. J.; Thornton, A. T.; Bradford, J.; Bingham, R.; Gargate, L.; Silva, L. O.; Fonseca, R. A.; Hapgood, M.; Norberg, C.; Todd, T.; Stamper, R.
2009-04-01
Energetic ions in the solar wind plasma are a known hazard to both spacecraft electronics and to astronaut's health. Of primary concern is the exposure to keV--MeV protons on manned space flights to the Moon and Mars that extend over long periods of time. Attempts to protect the spacecraft include active shields that are reminiscent of Star Trek "deflector" shields. Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding the spacecraft forming a "mini magnetosphere". Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the Solar Wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity, and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small "hole" in a Solar Wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared to a 3D particle-in-cell ‘hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers. [1] [1] R Bamford et al., "The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection." 2008 Plasma Phys. Control. Fusion 50 124025 (11pp) doi: 10.1088/0741-3335/50/12/124025
Vertex algebras and algebraic curves
Frenkel, Edward
2004-01-01
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book co...
Brain Perivascular Spaces as Biomarkers of Vascular Risk: Results from the Northern Manhattan Study.
Gutierrez, J; Elkind, M S V; Dong, C; Di Tullio, M; Rundek, T; Sacco, R L; Wright, C B
2017-05-01
Dilated perivascular spaces in the brain are associated with greater arterial pulsatility. We hypothesized that perivascular spaces identify individuals at higher risk for systemic and cerebral vascular events. Stroke-free participants in the population-based Northern Manhattan Study had brain MR imaging performed and were followed for myocardial infarction, any stroke, and death. Imaging analyses distinguished perivascular spaces from lesions presumably ischemic. Perivascular spaces were further subdivided into lesions with diameters of ≤3 mm (small perivascular spaces) and >3 mm (large perivascular spaces). We calculated relative rates of events with Poisson models and hazard ratios with Cox proportional models. The Northern Manhattan Study participants who had MR imaging data available for review ( n = 1228; 59% women, 65% Hispanic; mean age, 71 ± 9 years) were followed for an average of 9 ± 2 years. Participants in the highest tertile of the small perivascular space score had a higher relative rate of all deaths (relative rate, 1.38; 95% CI, 1.01-1.91), vascular death (relative rate, 1.87; 95% CI, 1.12-3.14), myocardial infarction (relative rate, 2.08; 95% CI, 1.01-4.31), any stroke (relative rate, 1.79; 95% CI, 1.03-3.11), and any vascular event (relative rate, 1.74; 95% CI, 1.18-2.56). After we adjusted for confounders, there was a higher risk of vascular death (hazard ratio, 1.06; 95% CI, 1.01-1.11), myocardial infarction (hazard ratio, 2.22; 95% CI, 1.12-4.42), and any vascular event (hazard ratio, 1.04; 95% CI, 1.01-1.08) with higher small perivascular space scores. In this multiethnic, population-based study, participants with a high burden of small perivascular spaces had increased risk of vascular events. By gaining pathophysiologic insight into the mechanism of perivascular space dilation, we may be able to propose novel therapies to better prevent vascular disorders in the population. © 2017 by American Journal of Neuroradiology.
Metric space construction for the boundary of space-time
International Nuclear Information System (INIS)
Meyer, D.A.
1986-01-01
A distance function between points in space-time is defined and used to consider the manifold as a topological metric space. The properties of the distance function are investigated: conditions under which the metric and manifold topologies agree, the relationship with the causal structure of the space-time and with the maximum lifetime function of Wald and Yip, and in terms of the space of causal curves. The space-time is then completed as a topological metric space; the resultant boundary is compared with the causal boundary and is also calculated for some pertinent examples
Chrysoulakis, Nektarios; Marconcini, Mattia; Gastellu-Etchegorry, Jean-Philippe; Grimmond, Sue; Feigenwinter, Christian; Lindberg, Fredrik; Del Frate, Fabio; Klostermann, Judith; Mitraka, Zina; Esch, Thomas; Landier, Lucas; Gabey, Andy; Parlow, Eberhard; Olofson, Frans
2017-04-01
The H2020-Space project URBANFLUXES (URBan ANthrpogenic heat FLUX from Earth observation Satellites) investigates the potential of Copernicus Sentinels to retrieve anthropogenic heat flux, as a key component of the Urban Energy Budget (UEB). URBANFLUXES advances the current knowledge of the impacts of UEB fluxes on urban heat island and consequently on energy consumption in cities. In URBANFLUXES, the anthropogenic heat flux is estimated as a residual of UEB. Therefore, the rest UEB components, namely, the net all-wave radiation, the net change in heat storage and the turbulent sensible and latent heat fluxes are independently estimated from Earth Observation (EO), whereas the advection term is included in the error of the anthropogenic heat flux estimation from the UEB closure. The Discrete Anisotropic Radiative Transfer (DART) model is employed to improve the estimation of the net all-wave radiation balance, whereas the Element Surface Temperature Method (ESTM), adjusted to satellite observations is used to improve the estimation the estimation of the net change in heat storage. Furthermore the estimation of the turbulent sensible and latent heat fluxes is based on the Aerodynamic Resistance Method (ARM). Based on these outcomes, QF is estimated by regressing the sum of the turbulent heat fluxes versus the available energy. In-situ flux measurements are used to evaluate URBANFLUXES outcomes, whereas uncertainties are specified and analyzed. URBANFLUXES is expected to prepare the ground for further innovative exploitation of EO in scientific activities (climate variability studies at local and regional scales) and future and emerging applications (sustainable urban planning, mitigation technologies) to benefit climate change mitigation/adaptation. This study presents the results of the second phase of the project and detailed information on URBANFLUXES is available at: http://urbanfluxes.eu
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.
2016-12-01
Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) and its Optical Transient Detector (OTD) predecessor that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) spanning a period from May 1995 through April 2015. As an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense (DoD) Space Test Program-Houston 5 (STP-H5) mission. The STP-H5 payload containing LIS is scheduled launch from NASA's Kennedy Space Center to the ISS in November 2016, aboard the SpaceX Cargo Resupply Services-10 (SpaceX-10) mission, installed in the unpressurized "trunk" of the Dragon spacecraft. After the Dragon is berth to ISS Node 2, the payload will be removed from the trunk and robotically installed in a nadir-viewing location on the external truss of the ISS. Following installation on the ISS, the LIS Operations Team will work with the STP-H5 and ISS Operations Teams to power-on LIS and begin instrument checkout and commissioning. Following successful activation, LIS orbital operations will commence, managed from the newly established LIS Payload Operations Control Center (POCC) located at the National Space Science Technology Center (NSSTC) in Huntsville, AL. The well-established and robust processing, archival, and distribution infrastructure used for TRMM was easily adapted to the ISS mission, assuring that lightning
New configuration factors for curved surfaces
International Nuclear Information System (INIS)
Cabeza-Lainez, Jose M.; Pulido-Arcas, Jesus A.
2013-01-01
Curved surfaces have not been thoroughly considered in radiative transfer analysis mainly due to the difficulties arisen in the integration process and perhaps because of the lack of spatial vision of the researchers. It is a fact, especially for architectural lighting, that when concave geometries appear inside a curved space, they are mostly avoided. In this way, a vast repertoire of significant forms is neglected and energy waste is evident. Starting from the properties of volumes enclosed by the minimum number of surfaces, the authors formulate, with little calculus, new simple laws, which enable them to discover a set of configuration factors for caps and various segments of the sphere. The procedure is subsequently extended to previously unimagined surfaces as the paraboloid, the ellipsoid or the cone. Appropriate combination of the said forms with right truncated cones produces several complex volumes, often used in architectural and engineering creations and whose radiative performance could not be accurately predicted for decades. To complete the research, a new method for determining interreflections in curved volumes is also presented. Radiative transfer simulation benefits from these findings, as the simplicity of the results has led the authors to create innovative software more efficient for design and evaluation and applicable to emerging fields like LED lighting. -- Highlights: ► Friendly revision of fundamentals of radiative transfer. ► New configuration factors for curved surfaces obtained without calculus. ► New method for interreflections in curved geometries. ► Enhanced simulation algorithms. ► Fast comparison of radiative performances of surfaces
Space flight research leading to the development of enhanced plant products: Results from STS-94
Stodieck, Louis S.; Hoehn, Alex; Heyenga, A. Gerard
1998-01-01
Products derived from plants, such as foods, pharmaceuticals, lumber, paper, oils, etc., are pervasive in everyday life and generate revenues in the hundreds of billions of dollars. Research on space-grown plants has the potential to alter quantities, properties and types of plant-derived products in beneficial ways. Research on space grown plants may help expand the utilization of this resource for Earth based benefit to an even greater extent. The use of space flight conditions may help provide a greater understanding and ultimate manipulation of the metabolic and genetic control of commercially important plant products. Companies that derive and sell plant products could significantly benefit from investing in space research and development. A flight investigation was conducted on the Shuttle mission STS-94 to establish the initial experimental conditions necessary to test the hypothesis that the exposure of certain plant forms to an adequate period of microgravity may divert the cell metabolic expenditure on structural compounds such as lignin to alternative secondary metabolic compounds which are of commercial interest. Nine species of plants were grown for 16 days in the Astro/Plant Generic Bioprocessing Apparatus (Astro/PGBA) under well-controlled environmental conditions. Approximately half of the plant species exhibited significant growth comparable with synchronous ground controls. The other flight plant species were stunted and showed signs of stress with the cause still under investigation. For the plants that grew well, analyses are underway and are expected to demonstrate the potential for space flight biotechnology research.
Energy Technology Data Exchange (ETDEWEB)
Lepechinsky, D; Parlange, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
Dispersion curves including the effect of collisions have been calculated with a 7090 IBM computer for several types of laboratory hydrogen plasmas; Te = Ti = 1 eV; Te = 1 eV, Ti = 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti 10 eV, with neutral gas pressures of 10{sup -1}, 10{sup -3} and 10{sup -4} mmHg and electron densities of 10{sup 10}, 10{sup 13} and eventually 10{sup 15} el/cc. The corresponding collision frequencies with neutrals and between electrons and ions have been derived using appropriate relationships The dispersion equations used correspond to the macroscopic treatment. The real and imaginary parts of the wave number K are presented as a function of real values of the frequency {omega}, for electrostatic and electromagnetic waves and for e.m. waves propagating parallel to a permanent magnetic field of 500 gauss and 12.5 Kgauss. (authors) [French] Des courbes de dispersion tenant compte de l'effet des collisions ont ete calculees a l'aide d'un ordinateur IBM 7090 pour differents types de plasmas d'hydrogene se presentant au laboratoire; les temperatures electroniques et ioniques envisagees ont ete les suivantes: Te = Ti = 1 Ev; Te = 1 eV, Ti 0,1 eV; Te = 10 eV, Ti = 2 eV; Te = 50 eV, Ti = 10 eV; les pressions de neutres - de 10{sup -1}, 10{sup -3} et 10{sup -4} mmHg; les densites electroniques - de 10{sup 10}, 10{sup 13} et eventuellement de 10{sup 15} el/cc. Les frequences de collision avec les neutres et entre electrons et ions ont ete evaluees en fonction de ces donnees. Les equations, de dispersion utilisees correspondant au traitement macroscopique. On presente les valeurs des parties reelle et imaginaire du nombre d'ondes K en fonction de valeurs reelles de la frequence {omega} pour les ondes electrostatiques et electromagnetiques et pour les ondes e.m. se propageant parallelement a un champ magnetique permanent de 500 gauss et de 12,5 kgauss. (auteurs)
Existence Results for Differential Inclusions with Nonlinear Growth Conditions in Banach Spaces
Directory of Open Access Journals (Sweden)
Messaoud Bounkhel
2013-01-01
Full Text Available In the Banach space setting, the existence of viable solutions for differential inclusions with nonlinear growth; that is, ẋ(t∈F(t,x(t a.e. on I, x(t∈S, ∀t∈I, x(0=x0∈S, (*, where S is a closed subset in a Banach space , I=[0,T], (T>0, F:I×S→, is an upper semicontinuous set-valued mapping with convex values satisfying F(t,x⊂c(tx+xp, ∀(t,x∈I×S, where p∈ℝ, with p≠1, and c∈C([0,T],ℝ+. The existence of solutions for nonconvex sweeping processes with perturbations with nonlinear growth is also proved in separable Hilbert spaces.
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.
2017-12-01
Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such
Hurwitz numbers, moduli of curves, topological recursion, Givental's theory and their relations
Spitz, L.
2014-01-01
The study of curves is an important area of research in algebraic geometry and mathematical physics. In my thesis I study so-called moduli spaces of curves; these are spaces that parametrize all curves with some specified properties. In particular, I study maps from curves to other spaces, recursive
Morse theory on timelike and causal curves
International Nuclear Information System (INIS)
Everson, J.; Talbot, C.J.
1976-01-01
It is shown that the set of timelike curves in a globally hyperbolic space-time manifold can be given the structure of a Hilbert manifold under a suitable definition of 'timelike.' The causal curves are the topological closure of this manifold. The Lorentzian energy (corresponding to Milnor's energy, except that the Lorentzian inner product is used) is shown to be a Morse function for the space of causal curves. A fixed end point index theorem is obtained in which a lower bound for the index of the Hessian of the Lorentzian energy is given in terms of the sum of the orders of the conjugate points between the end points. (author)
Experimental results of a 3 k Wh thermochemical heat storage module for space heating application
Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't
2014-01-01
A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span
A ponderosa pine-lodgepole pine spacing study in central Oregon: results after 20 years.
K.W. Seidel
1989-01-01
The growth response after 20 years from an initial spacing study established in a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex Loud.) plantation was measured in central Oregon. The study was designed to compare the growth rates of pure ponderosa pine, pure lodgepole pine, and a...
Directory of Open Access Journals (Sweden)
Samet Bessem
2011-01-01
Full Text Available Abstract In this article, we establish coincidence point and common fixed point theorems for mappings satisfying a contractive inequality which involves two generalized altering distance functions in ordered complete metric spaces. As application, we study the existence of a common solution to a system of integral equations. 2000 Mathematics subject classification. Primary 47H10, Secondary 54H25
Some Fixed Point Results for Caristi Type Mappings in Modular Metric Spaces with an Application
Directory of Open Access Journals (Sweden)
Duran Turkoglu
2016-08-01
Full Text Available In this paper we give Caristi type fixed point theorem in complete modular metric spaces. Moreover we give a theorem which can be derived from Caristi type. Also an application for the bounded solution of funcional equations is investigated.
Gage, R; Wilson, N; Signal, L; Barr, M; Mackay, C; Reeder, A; Thomson, G
2018-05-16
Shade in public spaces can lower the risk of and sun burning and skin cancer. However, existing methods of auditing shade require travel between sites, and sunny weather conditions. This study aimed to evaluate the feasibility of free computer software-Google Earth-for assessing shade in urban open spaces. A shade projection method was developed that uses Google Earth street view and aerial images to estimate shade at solar noon on the summer solstice, irrespective of the date of image capture. Three researchers used the method to separately estimate shade cover over pre-defined activity areas in a sample of 45 New Zealand urban open spaces, including 24 playgrounds, 12 beaches and 9 outdoor pools. Outcome measures included method accuracy (assessed by comparison with a subsample of field observations of 10 of the settings) and inter-rater reliability. Of the 164 activity areas identified in the 45 settings, most (83%) had no shade cover. The method identified most activity areas in playgrounds (85%) and beaches (93%) and was accurate for assessing shade over these areas (predictive values of 100%). Only 8% of activity areas at outdoor pools were identified, due to a lack of street view images. Reliability for shade cover estimates was excellent (intraclass correlation coefficient of 0.97, 95% CI 0.97-0.98). Google Earth appears to be a reasonably accurate and reliable and shade audit tool for playgrounds and beaches. The findings are relevant for programmes focused on supporting the development of healthy urban open spaces.
SOHO celebrates its first year in space with new results on the solar wind
1996-12-01
space, and sees it carrying intermittent bright patches corresponding with relatively dense concentrations of solar material. These gusts are milder than the occasional mass ejections also seen by LASCO, which accompany great convulsions in the solar magnetic field. SOHO's solar wind analyser CELIAS has detected many previously unrecorded elements and isotopes among the charged atoms of the solar wind. The solar wind mapper, SWAN, observes the widespread effects of solar wind particles as they interact with the atoms of an interstellar breeze blowing into the solar system. Yet the results on the solar wind represent only a fraction of SOHO's achievements so far, with twelve sets of instruments observing everything from oscillations deep inside the Sun, to the solar influence on energetic cosmic rays coming from the Galaxy. Stealing the show in helioseismology SOHO is a project of international cooperation between the European Space Agency and NASA. The spacecraft was built in Europe and instrumented by scientists on both sides of the Atlantic. NASA launched SOHO and provides the ground stations and an operations centre at the Goddard Space Flight Center near Washington. SOHO has an uninterrupted view of the Sun from a halo orbit around Lagrangian Point N 1 where the gravity of the Sun and the Earth are in balance, 1,500,000 kilometres out on the sunward side of the Earth. The spacecraft's engineering has proved to be excellent and no practical difficulty is anticipated in keeping SOHO operational into the sunspot maximum expected in 2000-2001. SOHO was launched on 2 December 1995. Check-out observations with some instruments began just a few days later. SOHO attained its L1 halo orbit on 14 February 1996, and commissioning was formally completed on 16 April. Already the first results were showing unprecedented images of the solar atmosphere, of the heliosphere filled by the solar wind, and even of the Sun's interior as revealed by oscillations due to sound waves in the
Conformal anomalies in curved space--time
Energy Technology Data Exchange (ETDEWEB)
Duncan, A.
1976-11-01
The general form of the conformal anomaly in a dimensionally regularized theory of massless fermions in a background metric is shown to be determined by the first few terms of weak field perturbation theory.
Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.
1983-01-01
Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.
Recent results from advanced research on space solar cells at NASA
Flood, Dennis J.
1990-01-01
The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.
Change of Cr-39(DOP) track detector response as a result of space exposure
International Nuclear Information System (INIS)
Yadav, J.S.; Singh, R.K.
1990-01-01
The response functions for CR-39(DOP) plastic track detectors are calculated, using the simplex method for nonlinear least squares fit, from experimental data obtained from accelerator beams as well as space exposure. The average detector sensitivity is reduced by over 30% in the case of space exposure. The average charge shift for the oxygen group is one charge unit, and it increases with particle charge. The effect decreases with restricted energy loss, which is contrary to that observed in the registration temperature effect. We have discussed various environmental parameters which may produce the observed effect. The registration temperature effect may account for the observed effect (within the errors) for the worst case (temperature) analysis. However, a more reasonable estimate suggests that both the registration temperature as well as pressure during exposure contribute to the observed effect. To discriminate between the separate contributions, further experimental data is needed. (author)
Confinement has no effect on visual space perception: The results of the Mars-500 experiment
Czech Academy of Sciences Publication Activity Database
Šikl, Radovan; Šimeček, Michal
2014-01-01
Roč. 76, č. 2 (2014), s. 438-451 ISSN 1943-3921 R&D Projects: GA ČR(CZ) GAP407/12/2528 Institutional support: RVO:68081740 Keywords : visual space perception * perspective * Mars-500 * size judgment * size constancy * confinement Subject RIV: AN - Psychology Impact factor: 2.168, year: 2014 http://dx.doi.org/10.3758/s13414-013-0594-y
Interaction of Space Suits with Windblown Soil: Preliminary Mars Wind Tunnel Results
Marshall, J.; Bratton, C.; Kosmo, J.; Trevino, R.
1999-09-01
Experiments in the Mars Wind Tunnel at NASA Ames Research Center show that under Mars conditions, spacesuit materials are highly susceptible to dust contamination when exposed to windblown soil. This effect was suspected from knowledge of the interaction of electrostatically adhesive dust with solid surfaces in general. However, it is important to evaluate the respective roles of materials, meteorological and radiation effects, and the character of the soil. The tunnel permits evaluation of dust contamination and sand abrasion of space suits by simulating both pressure and wind conditions on Mars. The long-term function of space suits on Mars will be primarily threatened by dust contamination. Lunar EVA activities caused heavy contamination of space suits, but the problem was never seriously manifest because of the brief utilization of the suits, and the suits were never reused. Electrostatically adhering dust grains have various detrimental effects: (1) penetration and subsequent wear of suit fabrics, (2) viewing obscuration through visors and scratching/pitting of visor surfaces, (3) penetration, wear, and subsequent seizing-up of mechanical suit joints, (4) changes in albedo and therefore of radiation properties of external heat-exchanger systems, (5) changes in electrical conductivity of suit surfaces which may affect tribocharging of suits and create spurious discharge effects detrimental to suit electronics/radio systems. Additional information is contained in the original.
Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results
Lee, Seokcheon
2018-02-01
Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.
51Cr - erythrocyte survival curves
International Nuclear Information System (INIS)
Paiva Costa, J. de.
1982-07-01
Sixteen patients were studied, being fifteen patients in hemolytic state, and a normal individual as a witness. The aim was to obtain better techniques for the analysis of the erythrocytes, survival curves, according to the recommendations of the International Committee of Hematology. It was used the radiochromatic method as a tracer. Previously a revisional study of the International Literature was made in its aspects inherent to the work in execution, rendering possible to establish comparisons and clarify phonomena observed in cur investigation. Several parameters were considered in this study, hindering both the exponential and the linear curves. The analysis of the survival curves of the erythrocytes in the studied group, revealed that the elution factor did not present a homogeneous answer quantitatively to all, though, the result of the analysis of these curves have been established, through listed programs in the electronic calculator. (Author) [pt
Path integrals on curved manifolds
International Nuclear Information System (INIS)
Grosche, C.; Steiner, F.
1987-01-01
A general framework for treating path integrals on curved manifolds is presented. We also show how to perform general coordinate and space-time transformations in path integrals. The main result is that one has to subtract a quantum correction ΔV ∝ ℎ 2 from the classical Lagrangian L, i.e. the correct effective Lagrangian to be used in the path integral is L eff = L-ΔV. A general prescription for calculating the quantum correction ΔV is given. It is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined by the midpoint prescription. The general framework is illustrated by several examples: The d-dimensional rotator, i.e. the motion on the sphere S d-1 , the path integral in d-dimensional polar coordinates, the exact treatment of the hydrogen atom in R 2 and R 3 by performing a Kustaanheimo-Stiefel transformation, the Langer transformation and the path integral for the Morse potential. (orig.)
New results on order and spacing of levels for two- and three-body systems
International Nuclear Information System (INIS)
Grosse, H.; Martin, A.; Richard, J.M.; Taxil, P.
1987-01-01
The authors propose sufficient conditions on the potential binding a two-body system to compare; the energy of a state with angular momentum iota+1 to the average of the energies of the neighbouring states with angular momentum iota, the spacings of the successive iota = O excitations. Applications to quarkonium physics are given. The authors also find a condition giving the sign of the parameter Δ controlling the pattern of levels obtained by perturbing the lowest positive parity excitation of a three-body system bound by harmonic oscillator two body forces
Simulating Coupling Complexity in Space Plasmas: First Results from a new code
Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.
2005-12-01
The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal
The successful conclusion of the Deep Space 1 Mission: important results without a flashy title
Rayman, M. D.
2002-01-01
In September 2001, Deep Space 1 (DS1) completed a high-risk and flawless encounter with comet 19P/Borrelly. Its data provide a detailed view of this comet and offere surprising and exciting insights. With this successful conclusion of its extended mission, DS1 undertook a hyperextended mission. Following this period of extremely agressive testing, with no further technology or science objectives, the mission was terminated on December 18, 2001, with the powering off of the spacecraft's trnasmitter, although the receiver was left on. By the end of its mission, DS1 had returned a wealth of important science data and engineering data for future missions.
Automation and robotics for the Space Exploration Initiative: Results from Project Outreach
Gonzales, D.; Criswell, D.; Heer, E.
1991-01-01
A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.
Phase 3 study of selected tether applications in space. Volume 2: Study results
1986-01-01
Engineering designs were developed relative to a tethered launch assist from the Shuttle for payloads up to 10,000 kg mass and the tethering of a 15,000 kg science platform from the space station. These designs are used for a cost benefit analysis which assesses the feasibility of using such systems as a practical alternative to what would otherwise be accomplished by conventional means. The term conventional as related to both these applications is intended to apply to the use of some form(s) of chemical propulsion system.
Principal Curves on Riemannian Manifolds.
Hauberg, Soren
2016-09-01
Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.
Summary results of the first United States manned orbital space flight
Glenn, J. H. Jr
1963-01-01
This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.
New results from the AMS experiment on the International Space Station
CERN. Geneva
2016-01-01
The Alpha Magnetic Spectrometer, AMS, is a general purpose high energy particle phys- ics detector. It was installed on the International Space Station, ISS, on 19 May 2011 to conduct a unique long duration mission of fundamental physics research in space. Knowledge of the precise rigidity dependence of the proton and helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. Pre- cise measurements of the proton and of the helium flux in primary cosmic rays with rigidities (momentum/charge) up to the TV scale are presented and the detailed varia- tion with rigidity of the flux spectral indices will be discussed. A precision measurement by AMS of the antiproton flux and antiproton-to-proton ratio in primary cosmic rays in the rigidity range from 1 to 450 GV is presented. This measurement increases the precision of the previous observations and significantly extends their rigidity range. It shows that the antiproton-to-proton ratio remains constant above ∼60 GV. In a...
Ait-Haddou, Rachid; Sakane, Yusuke; Nomura, Taishin
2013-01-01
We show that the generalized Bernstein bases in Müntz spaces defined by Hirschman and Widder (1949) and extended by Gelfond (1950) can be obtained as pointwise limits of the Chebyshev–Bernstein bases in Müntz spaces with respect to an interval [a,1][a,1] as the positive real number a converges to zero. Such a realization allows for concepts of curve design such as de Casteljau algorithm, blossom, dimension elevation to be transferred from the general theory of Chebyshev blossoms in Müntz spaces to these generalized Bernstein bases that we termed here as Gelfond–Bernstein bases. The advantage of working with Gelfond–Bernstein bases lies in the simplicity of the obtained concepts and algorithms as compared to their Chebyshev–Bernstein bases counterparts.
Ait-Haddou, Rachid
2013-02-01
We show that the generalized Bernstein bases in Müntz spaces defined by Hirschman and Widder (1949) and extended by Gelfond (1950) can be obtained as pointwise limits of the Chebyshev–Bernstein bases in Müntz spaces with respect to an interval [a,1][a,1] as the positive real number a converges to zero. Such a realization allows for concepts of curve design such as de Casteljau algorithm, blossom, dimension elevation to be transferred from the general theory of Chebyshev blossoms in Müntz spaces to these generalized Bernstein bases that we termed here as Gelfond–Bernstein bases. The advantage of working with Gelfond–Bernstein bases lies in the simplicity of the obtained concepts and algorithms as compared to their Chebyshev–Bernstein bases counterparts.
Directory of Open Access Journals (Sweden)
René Pellissier
2012-01-01
Full Text Available This paper explores the notion ofjump ing the curve,following from Handy 's S-curve onto a new curve with new rules policies and procedures. . It claims that the curve does not generally lie in wait but has to be invented by leadership. The focus of this paper is the identification (mathematically and inferentially ofthat point in time, known as the cusp in catastrophe theory, when it is time to change - pro-actively, pre-actively or reactively. These three scenarios are addressed separately and discussed in terms ofthe relevance ofeach.
Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer
2009-01-01
This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.
International Nuclear Information System (INIS)
Dobrowolski, Tomasz
2012-01-01
The constant curvature one and quasi-one dimensional Josephson junction is considered. On the base of Maxwell equations, the sine–Gordon equation that describes an influence of curvature on the kink motion was obtained. It is showed that the method of geometrical reduction of the sine–Gordon model from three to lower dimensional manifold leads to an identical form of the sine–Gordon equation. - Highlights: ► The research on dynamics of the phase in a curved Josephson junction is performed. ► The geometrical reduction is applied to the sine–Gordon model. ► The results of geometrical reduction and the fundamental research are compared.
Results of experimental study on detritiation of atmosphere in large space
International Nuclear Information System (INIS)
Kobayashi, Kazuhiro; Hayashi, Takumi; Iwai, Yasunori; Nishi, Masataka
2001-01-01
In order to obtain data on tritium removal from the atmosphere of a room, which is needed for designing a reliable effective atmosphere detritiation system in a fusion reactor and for detailed analysis on its safety, intentional tritium release experiments have been carried out in a controlled space called Caisson under various atmosphere conditions at the Tritium Process Laboratory (TPL) in Japan Atomic Energy Research Institute (JAERI). In case there is no tritiated water vapor in the released tritium gas, tritium was ideally removed by constant ventilation in spite of atmospheric conditions and residence time. On the other hand, when tritiated water vapor existed in the released tritium, residual contamination on the wall of the Caisson was detected and it was found that it depended on the initial humidity in the Caisson. This tritium removal behavior was successfully analyzed by considering the adsorption and desorption reaction rates of tritiated water on the wall by the constant ventilation
Analysis of remote operating systems for space-based servicing operations. Volume 2: Study results
1985-01-01
The developments in automation and robotics have increased the importance of applications for space based servicing using remotely operated systems. A study on three basic remote operating systems (teleoperation, telepresence and robotics) was performed in two phases. In phase one, requirements development, which consisted of one three-month task, a group of ten missions were selected. These included the servicing of user equipment on the station and the servicing of the station itself. In phase two, concepts development, which consisted of three tasks, overall system concepts were developed for the selected missions. These concepts, which include worksite servicing equipment, a carrier system, and payload handling equipment, were evaluated relative to the configurations of the overall worksite. It is found that the robotic/teleoperator concepts are appropriate for relatively simple structured tasks, while the telepresence/teleoperator concepts are applicable for missions that are complex, unstructured tasks.
International Nuclear Information System (INIS)
Sheibley, D.W.
1984-01-01
Fuel cells continue to play a major role in manned spacecraft power generation. The Gemini and Apollo programs used fuel cell power plants as the primary source of mission electrical power, with batteries as the backup. The current NASA use for fuel cells is in the Orbiter program. Here, low temperature alkaline fuel cells provide all of the on-board power with no backup power source. Three power plants per shipset are utilized; the original power plant contained 32-cell substacks connected in parallel. For extended life and better power performance, each power plant now contains three 32-cell substacks connected in parallel. One of the possible future applications for fuel cells will be for the proposed manned Space Station in low earth orbit (LEO)(1, 2, 3). By integrating a water electrolysis capability with a fuel cell (a regenerative fuel cell system), a multikilowatt energy storage capability ranging from 35 kW to 250 kW can be achieved. Previous development work on fuel cell and electrolysis systems would tend to minimize the development cost of this energy storage system. Trade studies supporting initial Space Station concept development clearly show regenerative fuel cell (RFC) storage to be superior to nickel-cadmium and nickel-hydrogen batteries with regard to subsystem weight, flexibility in design, and integration with other spacecraft systems when compared for an initial station power level ranging from 60 kW to 75 kW. The possibility of scavenging residual O 2 and H 2 from the Shuttle external tank for use in fuel cells for producing power also exists
Path integral quantization of the Aharonov-Bohm-Coulomb system in momentum space
International Nuclear Information System (INIS)
Lin, De-Hone
2001-01-01
The Coulomb system with a charge moving in the fields of Ahanorov and Bohm is quantized via path integral in momentum space. Due to the dynamics of the system in momentum space being in curve space, our result not only gives the Green function of this interesting system in momentum space but provides the second example to answer an open problem of quantum dynamics in curved spaces posed by DeWitt in 1957: We find that the physical Hamiltonian in curved spaces does not contain the Riemannian scalar curvature R
Hakvoort, Britt; van den Boer, Madelon; Leenaars, Tineke; Bos, Petra; Tijms, Jurgen
2017-01-01
Recently, increased interletter spacing (LS) has been studied as a way to enhance reading fluency. It is suggested that increased LS improves reading performance, especially in poor readers. Theoretically, these findings are well substantiated as a result of diminished crowding effects. Empirically,
Directory of Open Access Journals (Sweden)
Selvaraj Suganya
2016-01-01
Full Text Available A recent nonlinear alternative for multivalued contractions in Fréchet spaces thanks to Frigon fixed point theorem consolidated with semigroup theory is utilized to examine the existence results for fractional neutral integrodifferential inclusions (FNIDI with state-dependent delay (SDD. An example is described to represent the hypothesis.
Test for the statistical significance of differences between ROC curves
International Nuclear Information System (INIS)
Metz, C.E.; Kronman, H.B.
1979-01-01
A test for the statistical significance of observed differences between two measured Receiver Operating Characteristic (ROC) curves has been designed and evaluated. The set of observer response data for each ROC curve is assumed to be independent and to arise from a ROC curve having a form which, in the absence of statistical fluctuations in the response data, graphs as a straight line on double normal-deviate axes. To test the significance of an apparent difference between two measured ROC curves, maximum likelihood estimates of the two parameters of each curve and the associated parameter variances and covariance are calculated from the corresponding set of observer response data. An approximate Chi-square statistic with two degrees of freedom is then constructed from the differences between the parameters estimated for each ROC curve and from the variances and covariances of these estimates. This statistic is known to be truly Chi-square distributed only in the limit of large numbers of trials in the observer performance experiments. Performance of the statistic for data arising from a limited number of experimental trials was evaluated. Independent sets of rating scale data arising from the same underlying ROC curve were paired, and the fraction of differences found (falsely) significant was compared to the significance level, α, used with the test. Although test performance was found to be somewhat dependent on both the number of trials in the data and the position of the underlying ROC curve in the ROC space, the results for various significance levels showed the test to be reliable under practical experimental conditions
Considerations for reference pump curves
International Nuclear Information System (INIS)
Stockton, N.B.
1992-01-01
This paper examines problems associated with inservice testing (IST) of pumps to assess their hydraulic performance using reference pump curves to establish acceptance criteria. Safety-related pumps at nuclear power plants are tested under the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section 11. The Code requires testing pumps at specific reference points of differential pressure or flow rate that can be readily duplicated during subsequent tests. There are many cases where test conditions cannot be duplicated. For some pumps, such as service water or component cooling pumps, the flow rate at any time depends on plant conditions and the arrangement of multiple independent and constantly changing loads. System conditions cannot be controlled to duplicate a specific reference value. In these cases, utilities frequently request to use pump curves for comparison of test data for acceptance. There is no prescribed method for developing a pump reference curve. The methods vary and may yield substantially different results. Some results are conservative when compared to the Code requirements; some are not. The errors associated with different curve testing techniques should be understood and controlled within reasonable bounds. Manufacturer's pump curves, in general, are not sufficiently accurate to use as reference pump curves for IST. Testing using reference curves generated with polynomial least squares fits over limited ranges of pump operation, cubic spline interpolation, or cubic spline least squares fits can provide a measure of pump hydraulic performance that is at least as accurate as the Code required method. Regardless of the test method, error can be reduced by using more accurate instruments, by correcting for systematic errors, by increasing the number of data points, and by taking repetitive measurements at each data point
Directory of Open Access Journals (Sweden)
Felipe S. Rossi
2008-01-01
Full Text Available INTRODUCTION: Studies comparing high frequency oscillatory and conventional ventilation in acute respiratory distress syndrome have used low values of positive end-expiratory pressure and identified a need for better recruitment and pulmonary stability with high frequency. OBJECTIVE: To compare conventional and high frequency ventilation using the lower inflection point of the pressure-volume curve as the determinant of positive end-expiratory pressure to obtain similar levels of recruitment and alveolar stability. METHODS: After lung lavage of adult rabbits and lower inflection point determination, two groups were randomized: conventional (positive end-expiratory pressure = lower inflection point; tidal volume=6 ml/kg and high frequency ventilation (mean airway pressures= lower inflection point +4 cmH2O. Blood gas and hemodynamic data were recorded over 4 h. After sacrifice, protein analysis from lung lavage and histologic evaluation were performed. RESULTS: The oxygenation parameters, protein and histological data were similar, except for the fact that significantly more normal alveoli were observed upon protective ventilation. High frequency ventilation led to lower PaCO2 levels. DISCUSSION: Determination of the lower inflection point of the pressure-volume curve is important for setting the minimum end expiratory pressure needed to keep the airways opened. This is useful when comparing different strategies to treat severe respiratory insufficiency, optimizing conventional ventilation, improving oxygenation and reducing lung injury. CONCLUSIONS: Utilization of the lower inflection point of the pressure-volume curve in the ventilation strategies considered in this study resulted in comparable efficacy with regards to oxygenation and hemodynamics, a high PaCO2 level and a lower pH. In addition, a greater number of normal alveoli were found after protective conventional ventilation in an animal model of acute respiratory distress syndrome.
Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio
2017-01-01
In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.
Image scaling curve generation
2012-01-01
The present invention relates to a method of generating an image scaling curve, where local saliency is detected in a received image. The detected local saliency is then accumulated in the first direction. A final scaling curve is derived from the detected local saliency and the image is then
Image scaling curve generation.
2011-01-01
The present invention relates to a method of generating an image scaling curve, where local saliency is detected in a received image. The detected local saliency is then accumulated in the first direction. A final scaling curve is derived from the detected local saliency and the image is then
Tempo curves considered harmful
Desain, P.; Honing, H.
1993-01-01
In the literature of musicology, computer music research and the psychology of music, timing or tempo measurements are mostly presented in the form of continuous curves. The notion of these tempo curves is dangerous, despite its widespread use, because it lulls its users into the false impression
Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.
2013-12-01
To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron
Space Technology 5 Multi-point Measurements of Near-Earth Magnetic Fields: Initial Results
Slavin, James A.; Le, G.; Strangeway, R. L.; Wang, Y.; Boardsen, S.A.; Moldwin, M. B.; Spence, H. E.
2007-01-01
The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.
Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.
Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M
2014-12-01
In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.
Laffer Curves and Home Production
Directory of Open Access Journals (Sweden)
Kotamäki Mauri
2017-06-01
Full Text Available In the earlier related literature, consumption tax rate Laffer curve is found to be strictly increasing (see Trabandt and Uhlig (2011. In this paper, a general equilibrium macro model is augmented by introducing a substitute for private consumption in the form of home production. The introduction of home production brings about an additional margin of adjustment – an increase in consumption tax rate not only decreases labor supply and reduces the consumption tax base but also allows a substitution of market goods with home-produced goods. The main objective of this paper is to show that, after the introduction of home production, the consumption tax Laffer curve exhibits an inverse U-shape. Also the income tax Laffer curves are significantly altered. The result shown in this paper casts doubt on some of the earlier results in the literature.
Curve Digitizer – A software for multiple curves digitizing
Directory of Open Access Journals (Sweden)
Florentin ŞPERLEA
2010-06-01
Full Text Available The Curve Digitizer is software that extracts data from an image file representing a graphicand returns them as pairs of numbers which can then be used for further analysis and applications.Numbers can be read on a computer screen stored in files or copied on paper. The final result is adata set that can be used with other tools such as MSEXCEL. Curve Digitizer provides a useful toolfor any researcher or engineer interested in quantifying the data displayed graphically. The image filecan be obtained by scanning a document
Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.
2015-12-01
Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.
Shell-model results in fp and fpg9/2 spaces for 61,63,65Co isotopes
International Nuclear Information System (INIS)
Srivastava, P. C.; Kota, V. K. B.
2011-01-01
Low-lying spectra and several high-spin states of odd-even 61,63,65 Co isotopes are calculated in two different shell-model spaces. First set of calculations have been carried out in fp-shell valence space (full fp space for 63,65 Co and a truncated one for 61 Co) using two recently derived fp-shell interactions, namely GXPF1A and KB3G, with 40 Ca as core. Similarly, the second set of calculations have been performed in fpg 9/2 valence space using an fpg effective interaction due to Sorlin et al., with 48 Ca as core and imposing a truncation. It is seen that the results of GXPF1A and KB3G are reasonable for 61,63 Co. For 65 Co, shell-model results show that the fpg interaction adopted in the study is inadequate and also points out that it is necessary to include orbitals higher than 1g 9/2 for neutron-rich Co isotopes.
Semiclassical scalar propagators in curved backgrounds: Formalism and ambiguities
International Nuclear Information System (INIS)
Grain, J.; Barrau, A.
2007-01-01
The phenomenology of quantum systems in curved space-times is among the most fascinating fields of physics, allowing--often at the gedankenexperiment level--constraints on tentative theories of quantum gravity. Determining the dynamics of fields in curved backgrounds remains, however, a complicated task because of the highly intricate partial differential equations involved, especially when the space metric exhibits no symmetry. In this article, we provide--in a pedagogical way--a general formalism to determine this dynamics at the semiclassical order. To this purpose, a generic expression for the semiclassical propagator is computed and the equation of motion for the probability four-current is derived. Those results underline a direct analogy between the computation of the propagator in general relativistic quantum mechanics and the computation of the propagator for stationary systems in nonrelativistic quantum mechanics. A possible application of this formalism to curvature-induced quantum interferences is also discussed
Theoretical Current-Voltage Curve in Low-Pressure Cesium Diode for Electron-Rich Emission
Coldstein, C. M.
1964-01-01
Although considerable interest has been shown in the space-charge analysis of low-pressure (collisionless case) thermionic diodes, there is a conspicuous lack in the presentation of results in a way that allows direct comparison with experiment. The current-voltage curve of this report was, therefore, computed for a typical case within the realm of experimental interest. The model employed in this computation is shown in Fig. 1 and is defined by the limiting potential distributions [curves (a) and (b)]. Curve (a) represents the potential V as a monotonic function of position with a slope of zero at the anode; curve (b) is similarly monotonic with a slope of zero at the cathode. It is assumed that by a continuous variation of the anode voltage, the potential distributions vary continuously from one limiting form to the other. Although solutions for infinitely spaced electrodes show that spatically oscillatory potential distributions may exist, they have been neglected in this computation.
Buonanno, Paolo; Fergusson, Leopoldo; Vargas, Juan Fernando
2014-01-01
We document the existence of a Crime Kuznets Curve in US states since the 1970s. As income levels have risen, crime has followed an inverted U-shaped pattern, first increasing and then dropping. The Crime Kuznets Curve is not explained by income inequality. In fact, we show that during the sample period inequality has risen monotonically with income, ruling out the traditional Kuznets Curve. Our finding is robust to adding a large set of controls that are used in the literature to explain the...
Laboratory plasma interactions experiments: Results and implications to future space systems
Leung, Philip
1986-01-01
The experimental results discussed show the significance of the effects caused by spacecraft plasma interactions, in particular the generation of Electromagnetic Interference. As the experimental results show, the magnitude of the adverse effects induced by Plasma Interactions (PI) will be more significant for spacecraft of the next century. Therefore, research is needed to control possible adverse effects. Several techniques to control the selected PI effects are discussed. Tests, in the form of flight experiments, are needed to validate these proposed ideas.
Additional results on space environmental effects on polymer matrix composites: Experiment A0180
International Nuclear Information System (INIS)
Tennyson, R.C.
1992-01-01
Additional experimental results on the atomic oxygen erosion of boron, Kevlar, and graphite fiber reinforced epoxy matrix composites are presented. Damage of composite laminates due to micrometeoroid/debris impacts is also examined with particular emphasis on the relationship between damage area and actual hole size due to particle penetration. Special attention is given to one micrometeoroid impact on an aluminum base plate which resulted in ejecta visible on an adjoining vertical flange structure
Calibration curves for biological dosimetry
International Nuclear Information System (INIS)
Guerrero C, C.; Brena V, M. . E-mail cgc@nuclear.inin.mx
2004-01-01
The generated information by the investigations in different laboratories of the world, included the ININ, in which settles down that certain class of chromosomal leisure it increases in function of the dose and radiation type, has given by result the obtaining of calibrated curves that are applied in the well-known technique as biological dosimetry. In this work is presented a summary of the work made in the laboratory that includes the calibrated curves for gamma radiation of 60 Cobalt and X rays of 250 k Vp, examples of presumed exposure to ionizing radiation, resolved by means of aberration analysis and the corresponding dose estimate through the equations of the respective curves and finally a comparison among the dose calculations in those people affected by the accident of Ciudad Juarez, carried out by the group of Oak Ridge, USA and those obtained in this laboratory. (Author)
Rational points on elliptic curves
Silverman, Joseph H
2015-01-01
The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of this book. Topics covered include the geometry and ...
THE RELATIONS BETWEEN MORPHOLOGICAL SPACE AND THE ATHLETES’ JUMPING AND THROWING EVENTS RESULT
Directory of Open Access Journals (Sweden)
Igor Stanojević
2014-12-01
Full Text Available The sample included 200 primary school students in the region of Prokuplje, male, aged 13 and 14 years, who, in addition to regular physical education classes, were included in the sports clubs training activities. The variables sample included 13 anthropometric measures as a set of predictors and four specific-motor tests of jumping (high jump and long jump and throwing events (shot put and javelin, as well as a set of criteria. The aim of this research was to examine the relation of morphological characteristics with the jumping and throwing events results, with elementary school students as athletes. Determining the relations and influence between the morphological characteristics and the specific motor skills was obtained by applying the canonical-correlation and regression analysis. The research of canonical correlation analysis results showed that there are statistically significant interlinks between canonical factors of morphological dimension Can. 0.81% (p = .000 and the results of examinee’s specific-motor skills in a long running jump, running high jump, shot put and javelin. Regression analysis results show that the morphological dimensions have an important prediction of the results of examinee’s specific-motor skills.
Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.
2005-01-01
In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.
Dimension counts for singular rational curves via semigroups
Cotterill, Ethan; Feital, Lia; Martins, Renato Vidal
2015-01-01
We study singular rational curves in projective space, deducing conditions on their parametrizations from the value semigroups $\\sss$ of their singularities. In particular, we prove that a natural heuristic for the codimension of the space of nondegenerate rational curves of arithmetic genus $g>0$ and degree $d$ in $\\mb{P}^n$, viewed as a subspace of all degree-$d$ rational curves in $\\mb{P}^n$, holds whenever $g$ is small.
Projection-based curve clustering
International Nuclear Information System (INIS)
Auder, Benjamin; Fischer, Aurelie
2012-01-01
This paper focuses on unsupervised curve classification in the context of nuclear industry. At the Commissariat a l'Energie Atomique (CEA), Cadarache (France), the thermal-hydraulic computer code CATHARE is used to study the reliability of reactor vessels. The code inputs are physical parameters and the outputs are time evolution curves of a few other physical quantities. As the CATHARE code is quite complex and CPU time-consuming, it has to be approximated by a regression model. This regression process involves a clustering step. In the present paper, the CATHARE output curves are clustered using a k-means scheme, with a projection onto a lower dimensional space. We study the properties of the empirically optimal cluster centres found by the clustering method based on projections, compared with the 'true' ones. The choice of the projection basis is discussed, and an algorithm is implemented to select the best projection basis among a library of orthonormal bases. The approach is illustrated on a simulated example and then applied to the industrial problem. (authors)
Directory of Open Access Journals (Sweden)
Kožul Nataša
2014-01-01
Full Text Available In the broadest sense, yield curve indicates the market's view of the evolution of interest rates over time. However, given that cost of borrowing it closely linked to creditworthiness (ability to repay, different yield curves will apply to different currencies, market sectors, or even individual issuers. As government borrowing is indicative of interest rate levels available to other market players in a particular country, and considering that bond issuance still remains the dominant form of sovereign debt, this paper describes yield curve construction using bonds. The relationship between zero-coupon yield, par yield and yield to maturity is given and their usage in determining curve discount factors is described. Their usage in deriving forward rates and pricing related derivative instruments is also discussed.
U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...
International Nuclear Information System (INIS)
Gruhn, C.R.
1981-05-01
An alternative utilization is presented for the gaseous ionization chamber in the detection of energetic heavy ions, which is called Bragg Curve Spectroscopy (BCS). Conceptually, BCS involves using the maximum data available from the Bragg curve of the stopping heavy ion (HI) for purposes of identifying the particle and measuring its energy. A detector has been designed that measures the Bragg curve with high precision. From the Bragg curve the range from the length of the track, the total energy from the integral of the specific ionization over the track, the dE/dx from the specific ionization at the beginning of the track, and the Bragg peak from the maximum of the specific ionization of the HI are determined. This last signal measures the atomic number, Z, of the HI unambiguously
McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)
2002-01-01
The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.
DEFF Research Database (Denmark)
Georgieva Yankova, Ginka; Federici, Paolo
This report describes power curve measurements carried out on a given turbine in a chosen period. The measurements are carried out in accordance to IEC 61400-12-1 Ed. 1 and FGW Teil 2.......This report describes power curve measurements carried out on a given turbine in a chosen period. The measurements are carried out in accordance to IEC 61400-12-1 Ed. 1 and FGW Teil 2....
Lupisella, Mark L.; Mueller, Thomas
2016-01-01
This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015
Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.
Afouxenidis, D; Polymeris, G S; Tsirliganis, N C; Kitis, G
2012-05-01
This paper exploits the possibility of using commercial software for thermoluminescence and optically stimulated luminescence curve deconvolution analysis. The widely used software package Microsoft Excel, with the Solver utility has been used to perform deconvolution analysis to both experimental and reference glow curves resulted from the GLOw Curve ANalysis INtercomparison project. The simple interface of this programme combined with the powerful Solver utility, allows the analysis of complex stimulated luminescence curves into their components and the evaluation of the associated luminescence parameters.
Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program
International Nuclear Information System (INIS)
Afouxenidis, D.; Polymeris, G. S.; Tsirliganis, N. C.; Kitis, G.
2012-01-01
This paper exploits the possibility of using commercial software for thermoluminescence and optically stimulated luminescence curve deconvolution analysis. The widely used software package Microsoft Excel, with the Solver utility has been used to perform deconvolution analysis to both experimental and reference glow curves resulted from the Glow Curve Analysis Intercomparison project. The simple interface of this programme combined with the powerful Solver utility, allows the analysis of complex stimulated luminescence curves into their components and the evaluation of the associated luminescence parameters. (authors)
Ryan, J. W.; Ma, C.; Caprette, D. S.
1993-01-01
The Goddard VLBI group reports the results of analyzing 1648 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1991, and available to the Crustal Dynamics Project. Two large solutions were used to obtain Earth rotation parameters, nutation offsets, radio source positions, site positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis for 1979 to 1995, inclusive. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for 200 baselines, and individual length determinations are presented for an additional 356 baselines. This report includes 155 quasar radio sources, 96 fixed stations and mobile sites, and 556 baselines.
Results of vapor space monitoring of flammable gas Watch List tanks
International Nuclear Information System (INIS)
Wilkins, N.E.
1997-01-01
This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization Systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, release rate, and ventilation rate) is also discussed
Results of Vapor Space Monitoring of Flammable Gas Watch List Tanks
Energy Technology Data Exchange (ETDEWEB)
MCCAIN, D.J.
2000-09-27
This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, released rate, and ventilation rate) is also discussed.
Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.
2016-12-01
Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first
MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle.
Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; André, Yves; Baghi, Quentin; Bergé, Joël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice; Chhun, Ratana; Christophe, Bruno; Cipolla, Valerio; Damour, Thibault; Danto, Pascale; Dittus, Hansjoerg; Fayet, Pierre; Foulon, Bernard; Gageant, Claude; Guidotti, Pierre-Yves; Hagedorn, Daniel; Hardy, Emilie; Huynh, Phuong-Anh; Inchauspe, Henri; Kayser, Patrick; Lala, Stéphanie; Lämmerzahl, Claus; Lebat, Vincent; Leseur, Pierre; Liorzou, Françoise; List, Meike; Löffler, Frank; Panet, Isabelle; Pouilloux, Benjamin; Prieur, Pascal; Rebray, Alexandre; Reynaud, Serge; Rievers, Benny; Robert, Alain; Selig, Hanns; Serron, Laura; Sumner, Timothy; Tanguy, Nicolas; Visser, Pieter
2017-12-08
According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10^{-15} precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ(Ti,Pt)=[-1±9(stat)±9(syst)]×10^{-15} (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.
MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle
Touboul, Pierre; Métris, Gilles; Rodrigues, Manuel; André, Yves; Baghi, Quentin; Bergé, Joël; Boulanger, Damien; Bremer, Stefanie; Carle, Patrice; Chhun, Ratana; Christophe, Bruno; Cipolla, Valerio; Damour, Thibault; Danto, Pascale; Dittus, Hansjoerg; Fayet, Pierre; Foulon, Bernard; Gageant, Claude; Guidotti, Pierre-Yves; Hagedorn, Daniel; Hardy, Emilie; Huynh, Phuong-Anh; Inchauspe, Henri; Kayser, Patrick; Lala, Stéphanie; Lämmerzahl, Claus; Lebat, Vincent; Leseur, Pierre; Liorzou, Françoise; List, Meike; Löffler, Frank; Panet, Isabelle; Pouilloux, Benjamin; Prieur, Pascal; Rebray, Alexandre; Reynaud, Serge; Rievers, Benny; Robert, Alain; Selig, Hanns; Serron, Laura; Sumner, Timothy; Tanguy, Nicolas; Visser, Pieter
2017-12-01
According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10-15 precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives δ (Ti ,Pt )=[-1 ±9 (stat)±9 (syst)]×10-15 (1 σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations.
Italy: the first European country to forbid smoking in closed spaces. First results.
Laurendi, G; Galeone, D; Spizzichino, L; Vasselli, S; D'Argenio, P
2007-04-01
Second-hand smoke is a well-known risk factor for several diseases, including lung cancer, chronic obstructive pulmonary disease, asthma. Evidence exists that smoke-free policies have an effect on reducing or eliminating the exposure to second-hand smoke, decreasing the prevalence of smokers, encouraging smokers to quit or preventing the initiation of smoking, and reducing cigarettes consumption among smokers. Italy has been the first European country to forbid smoking in closed places, also in working areas not open to the public, as protection to the health of the entire population. This article describes the first results obtained from the application of this new law, the positive effects and unexpected modifications in the behaviour and social habits of the Italian people, thus, revealing itself an important instrument to protect public health.
Antimatter and Dark Matter Search in Space: BESS-Polar Results
Mitchell, John W.; Yamamoto, Akira
2009-01-01
The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.
Nonlinear gravitons and curved twistor theory
International Nuclear Information System (INIS)
Penrose, R.
1976-01-01
A new approach to the quantization of general relativity is suggested in which a state consisting of just one graviton can be described, but in a way which involves both the curvature and nonlinearities of Einstein's theory. It is felt that this approach can be justified solely on its own merits but it also receives striking encouragement from another direction: a surprising mathematical result enables one to construct the general such nonlinear gravitation state from a curved twistor space, the construction being given in terms of one arbitrary holomorphic function of three complex variables. In this way, the approach fits naturally into the general twistor program for the description of quantized fields. (U.K.)
International Nuclear Information System (INIS)
White, Maurice A.; Qiu Songgang; Augenblick, Jack E.
2000-01-01
Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)
White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.
2000-01-01
Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .
Chullen, Cinda; Conger, Bruce; McMillin, Summer; Vonau, Walt; Kanne, Bryan; Korona, Adam; Swickrath, Mike
2016-01-01
NASA is developing an advanced portable life support system (PLSS) to meet the needs of a new NASA advanced space suit. The PLSS is one of the most critical aspects of the space suit providing the necessary oxygen, ventilation, and thermal protection for an astronaut performing a spacewalk. The ventilation subsystem in the PLSS must provide sufficient carbon dioxide (CO2) removal and ensure that the CO2 is washed away from the oronasal region of the astronaut. CO2 washout is a term used to describe the mechanism by which CO2 levels are controlled within the helmet to limit the concentration of CO2 inhaled by the astronaut. Accumulation of CO2 in the helmet or throughout the ventilation loop could cause the suited astronaut to experience hypercapnia (excessive carbon dioxide in the blood). A suited manikin test apparatus (SMTA) integrated with a space suit ventilation test loop was designed, developed, and assembled at NASA in order to experimentally validate adequate CO2 removal throughout the PLSS ventilation subsystem and to quantify CO2 washout performance under various conditions. The test results from this integrated system will be used to validate analytical models and augment human testing. This paper presents the system integration of the PLSS ventilation test loop with the SMTA including the newly developed regenerative Rapid Cycle Amine component used for CO2 removal and tidal breathing capability to emulate the human. The testing and analytical results of the integrated system are presented along with future work.
Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz
Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the
Inverse Diffusion Curves Using Shape Optimization.
Zhao, Shuang; Durand, Fredo; Zheng, Changxi
2018-07-01
The inverse diffusion curve problem focuses on automatic creation of diffusion curve images that resemble user provided color fields. This problem is challenging since the 1D curves have a nonlinear and global impact on resulting color fields via a partial differential equation (PDE). We introduce a new approach complementary to previous methods by optimizing curve geometry. In particular, we propose a novel iterative algorithm based on the theory of shape derivatives. The resulting diffusion curves are clean and well-shaped, and the final image closely approximates the input. Our method provides a user-controlled parameter to regularize curve complexity, and generalizes to handle input color fields represented in a variety of formats.
Simon, Amy A; Rowe, Jason F; Gaulme, Patrick; Hammel, Heidi B; Casewell, Sarah L; Fortney, Jonathan J; Gizis, John E; Lissauer, Jack J; Morales-Juberias, Raul; Orton, Glenn S; Wong, Michael H; Marley, Mark S
2016-02-01
Observations of Neptune with the Kepler Space Telescope yield a 49 day light curve with 98% coverage at a 1 minute cadence. A significant signature in the light curve comes from discrete cloud features. We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-m telescope at 1.65 microns and Hubble Space Telescope visible imaging acquired nine months later. This direct comparison validates the feature latitudes assigned to the K2 light curve periods based on Neptune's zonal wind profile, and confirms observed cloud feature variability. Although Neptune's clouds vary in location and intensity on short and long timescales, a single large discrete storm seen in Keck imaging dominates the K2 and Hubble light curves; smaller or fainter clouds likely contribute to short-term brightness variability. The K2 Neptune light curve, in conjunction with our imaging data, provides context for the interpretation of current and future brown dwarf and extrasolar planet variability measurements. In particular we suggest that the balance between large, relatively stable, atmospheric features and smaller, more transient, clouds controls the character of substellar atmospheric variability. Atmospheres dominated by a few large spots may show inherently greater light curve stability than those which exhibit a greater number of smaller features.
The Green functions in curved spacetime
International Nuclear Information System (INIS)
Buchbinder, I.L.; Kirillova, E.N.; Odinstov, S.D.
1987-01-01
The theory of a free scalar field with conformal coupling in curved spacetime with some special metrics is considered. The integral representations for the green function G-tilde in the form of integrals with Schwinger-De Witt kernel over contours in the complex plane of proper time are obtained. It is shown how the transitions from a unique Green function in Euclidean space to different Green functions in Minkowski space and vice versa can be carried out. (author)
DEFF Research Database (Denmark)
Gómez Arranz, Paula; Vesth, Allan
This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere......This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...
Remote sensing used for power curves
International Nuclear Information System (INIS)
Wagner, R; Joergensen, H E; Paulsen, U S; Larsen, T J; Antoniou, I; Thesbjerg, L
2008-01-01
Power curve measurement for large wind turbines requires taking into account more parameters than only the wind speed at hub height. Based on results from aerodynamic simulations, an equivalent wind speed taking the wind shear into account was defined and found to reduce the power standard deviation in the power curve significantly. Two LiDARs and a SoDAR are used to measure the wind profile in front of a wind turbine. These profiles are used to calculate the equivalent wind speed. The comparison of the power curves obtained with the three instruments to the traditional power curve, obtained using a cup anemometer measurement, confirms the results obtained from the simulations. Using LiDAR profiles reduces the error in power curve measurement, when these are used as relative instrument together with a cup anemometer. Results from the SoDAR do not show such promising results, probably because of noisy measurements resulting in distorted profiles
Curved electromagnetic missiles
International Nuclear Information System (INIS)
Myers, J.M.; Shen, H.M.; Wu, T.T.
1989-01-01
Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given
Algebraic curves and cryptography
Murty, V Kumar
2010-01-01
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
Learning from uncertain curves
DEFF Research Database (Denmark)
Mallasto, Anton; Feragen, Aasa
2017-01-01
We introduce a novel framework for statistical analysis of populations of nondegenerate Gaussian processes (GPs), which are natural representations of uncertain curves. This allows inherent variation or uncertainty in function-valued data to be properly incorporated in the population analysis. Us...
DEFF Research Database (Denmark)
Federici, Paolo; Kock, Carsten Weber
This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...
DEFF Research Database (Denmark)
Vesth, Allan; Kock, Carsten Weber
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....
DEFF Research Database (Denmark)
Federici, Paolo; Vesth, Allan
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....
DEFF Research Database (Denmark)
Villanueva, Héctor; Gómez Arranz, Paula
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...
Groot, L.F.M.|info:eu-repo/dai/nl/073642398
2008-01-01
The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across
DEFF Research Database (Denmark)
Gómez Arranz, Paula; Wagner, Rozenn
This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...
DEFF Research Database (Denmark)
Vesth, Allan; Kock, Carsten Weber
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...
Textbook Factor Demand Curves.
Davis, Joe C.
1994-01-01
Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)
Bernstein, D.J.; Birkner, P.; Lange, T.; Peters, C.P.
2013-01-01
This paper introduces EECM-MPFQ, a fast implementation of the elliptic-curve method of factoring integers. EECM-MPFQ uses fewer modular multiplications than the well-known GMP-ECM software, takes less time than GMP-ECM, and finds more primes than GMP-ECM. The main improvements above the
DEFF Research Database (Denmark)
Federici, Paolo; Kock, Carsten Weber
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine...
High-resolution mapping of yield curve shape and evolution for high porosity sandstones
Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.
2017-12-01
The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.
Learning curves in energy planning models
Energy Technology Data Exchange (ETDEWEB)
Barreto, L; Kypreos, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
This study describes the endogenous representation of investment cost learning curves into the MARKAL energy planning model. A piece-wise representation of the learning curves is implemented using Mixed Integer Programming. The approach is briefly described and some results are presented. (author) 3 figs., 5 refs.
Deep-learnt classification of light curves
DEFF Research Database (Denmark)
Mahabal, Ashish; Gieseke, Fabian; Pai, Akshay Sadananda Uppinakudru
2017-01-01
Astronomy light curves are sparse, gappy, and heteroscedastic. As a result standard time series methods regularly used for financial and similar datasets are of little help and astronomers are usually left to their own instruments and techniques to classify light curves. A common approach is to d...
De Groh, Kim K.; Banks, Bruce A.; Yi, Grace T.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.; Asmar, Olivia C.; Leneghan, Halle A.; Sechkar, Edward A.
2016-01-01
Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. Two spaceflight experiments, the Polymers Experiment and the Zenith Polymers Experiment, were developed to determine the AO E(sub y) of various polymers flown in ram, wake or zenith orientations in LEO. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). The experiments included Kapton H(TradeMark) witness samples for AO fluence determination in ram and zenith orientations. The Polymers Experiment also included samples to determine whether AO erosion of high and low ash containing polymers is dependent on fluence. This paper provides an overview of the MISSE 7 mission, a description of the flight experiments with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) values ranged from 7.99x10(exp -28)cu cm/atom for TiO2/Al2O3 coated Teflon(TradeMark) fluorinated ethylene propylene (FEP) flown in the ram orientation to 1.22x10(exp -23cu cm/atom for polyvinyl alcohol (PVOH) flown in the zenith orientation. The E(sub y) of similar samples flown in different orientations has been compared to help determine solar exposure and associated heating effects on AO erosion. The E(sub y) data from these ISS spaceflight experiments provides valuable information for LEO spacecraft design purposes.
Trembach, Vera
2014-01-01
Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.
Directory of Open Access Journals (Sweden)
Salabura Piotr
2017-01-01
Full Text Available HADES experiment at GSI is the only high precision experiment probing nuclear matter in the beam energy range of a few AGeV. Pion, proton and ion beams are used to study rare dielectron and strangeness probes to diagnose properties of strongly interacting matter in this energy regime. Selected results from p + A and A + A collisions are presented and discussed.
Kinlaw, Dennis C.; Eads, Jeannette
1992-01-01
It is apparent to everyone associated with the Nation's aeronautics and space programs that the challenge of continuous improvement can be reasonably addressed only if NASA and its contractors act together in a fully integrated and cooperative manner that transcends the traditional boundaries of proprietary interest. It is, however, one thing to assent to the need for such integration and cooperation; it is quite another thing to undertake the hard tasks of turning such a need into action. Whatever else total quality management is, it is fundamentally a team-centered and team-driven process of continuous improvement. The introduction of total quality management at KSC, therefore, has given the Center a special opportunity to translate the need for closer integration and cooperation among all its organizations into specific initiatives. One such initiative that NASA and its contractors have undertaken at KSC is a NASA/Contractor team-centered Total Quality Management Seminar. It is this seminar which is the subject of this paper. The specific purposes of this paper are to describe the following: Background, development, and evolution of Kennedy Space Center's Total Quality Management Seminar; Special characteristics of the seminar; Content of the seminar; Meaning and utility of a team-centered design for TQM training; Results of the seminar; Use that one KSC contractor, EG&G Florida, Inc. has made of the seminar in its Total Quality Management initiative; and Lessons learned.
Ishin, Artem; Perevalova, Natalia; Voeykov, Sergey; Khakhinov, Vitaliy
2017-12-01
Global and regional networks of GNSS receivers have been successfully used for geophysical research for many years; the number of continuous GNSS stations in the world is steadily growing. The article presents the first results of the use of a new regional network of GNSS stations (SibNet) in active space experiments. The Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) has established this network in the South Baikal region. We describe in detail SibNet, characteristics of receivers in use, parameters of antennas and methods of their installation. We also present the general structure of observation site and the plot of coverage of the receiver operating zone at 50-55° latitudes by radio paths. It is shown that the selected location of receivers allows us to detect ionospheric irregularities of various scales. The purpose of the active space experiments was to reveal and record parameters of the ionospheric irregu larities caused by effects from jet streams of Progress cargo spacecraft. The mapping technique enabled us to identify weak, vertically localized ionospheric irregularities and associate them with the Progress spacecraft engine impact. Thus, it has been shown that SibNet deployed in the Southern Baikal region is an effective instrument for monitoring ionospheric conditions.
Walker, Judy L
2000-01-01
When information is transmitted, errors are likely to occur. Coding theory examines efficient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes, one can see how to define new codes based on divisors on algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, inclu...
Energy Technology Data Exchange (ETDEWEB)
Groot, L. [Utrecht University, Utrecht School of Economics, Janskerkhof 12, 3512 BL Utrecht (Netherlands)
2008-11-15
The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across countries. These tools allow policy-makers and the general public to grasp at a single glance the impact of conventional distribution rules such as equal caps or grandfathering, or more sophisticated ones, on the distribution of greenhouse gas emissions. Second, using the Samuelson rule for the optimal provision of a public good, the Pareto-optimal distribution of carbon emissions is compared with the distribution that follows if countries follow Nash-Cournot abatement strategies. It is shown that the Pareto-optimal distribution under the Samuelson rule can be approximated by the equal cap division, represented by the diagonal in the Lorenz curve diagram.
Computation of undulator tuning curves
International Nuclear Information System (INIS)
Dejus, Roger J.
1997-01-01
Computer codes for fast computation of on-axis brilliance tuning curves and flux tuning curves have been developed. They are valid for an ideal device (regular planar device or a helical device) using the Bessel function formalism. The effects of the particle beam emittance and the beam energy spread on the spectrum are taken into account. The applicability of the codes and the importance of magnetic field errors of real insertion devices are addressed. The validity of the codes has been experimentally verified at the APS and observed discrepancies are in agreement with predicted reduction of intensities due to magnetic field errors. The codes are distributed as part of the graphical user interface XOP (X-ray OPtics utilities), which simplifies execution and viewing of the results
Curved canals: Ancestral files revisited
Directory of Open Access Journals (Sweden)
Jain Nidhi
2008-01-01
Full Text Available The aim of this article is to provide an insight into different techniques of cleaning and shaping of curved root canals with hand instruments. Although a plethora of root canal instruments like ProFile, ProTaper, LightSpeed ® etc dominate the current scenario, the inexpensive conventional root canal hand files such as K-files and flexible files can be used to get optimum results when handled meticulously. Special emphasis has been put on the modifications in biomechanical canal preparation in a variety of curved canal cases. This article compiles a series of clinical cases of root canals with curvatures in the middle and apical third and with S-shaped curvatures that were successfully completed by employing only conventional root canal hand instruments.
Invariance for Single Curved Manifold
Castro, Pedro Machado Manhaes de
2012-01-01
Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.
Invariance for Single Curved Manifold
Castro, Pedro Machado Manhaes de
2012-08-01
Recently, it has been shown that, for Lambert illumination model, solely scenes composed by developable objects with a very particular albedo distribution produce an (2D) image with isolines that are (almost) invariant to light direction change. In this work, we provide and investigate a more general framework, and we show that, in general, the requirement for such in variances is quite strong, and is related to the differential geometry of the objects. More precisely, it is proved that single curved manifolds, i.e., manifolds such that at each point there is at most one principal curvature direction, produce invariant is surfaces for a certain relevant family of energy functions. In the three-dimensional case, the associated energy function corresponds to the classical Lambert illumination model with albedo. This result is also extended for finite-dimensional scenes composed by single curved objects. © 2012 IEEE.
Pelce, Pierre
1989-01-01
In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.
David G. Blanchflower; Andrew J. Oswald
1992-01-01
The paper provides evidence for the existence of a negatively sloped locus linking the level of pay to the rate of regional (or industry) unemployment. This "wage curve" is estimated using microeconomic data for Britain, the US, Canada, Korea, Austria, Italy, Holland, Switzerland, Norway, and Germany, The average unemployment elasticity of pay is approximately -0.1. The paper sets out a multi-region efficiency wage model and argues that its predictions are consistent with the data.
Anatomical curve identification
Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise
2015-01-01
Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943
Estimating Corporate Yield Curves
Antionio Diaz; Frank Skinner
2001-01-01
This paper represents the first study of retail deposit spreads of UK financial institutions using stochastic interest rate modelling and the market comparable approach. By replicating quoted fixed deposit rates using the Black Derman and Toy (1990) stochastic interest rate model, we find that the spread between fixed and variable rates of interest can be modeled (and priced) using an interest rate swap analogy. We also find that we can estimate an individual bank deposit yield curve as a spr...
Vo, Martin
2017-08-01
Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
Strange Curves, Counting Rabbits, & Other Mathematical Explorations
Ball, Keith
2011-01-01
How does mathematics enable us to send pictures from space back to Earth? Where does the bell-shaped curve come from? Why do you need only 23 people in a room for a 50/50 chance of two of them sharing the same birthday? In Strange Curves, Counting Rabbits, and Other Mathematical Explorations, Keith Ball highlights how ideas, mostly from pure math, can answer these questions and many more. Drawing on areas of mathematics from probability theory, number theory, and geometry, he explores a wide range of concepts, some more light-hearted, others central to the development of the field and used dai
Current 2-μm dial measurements of atmospheric CO2 and expected results from space using new MCT APDS
Dumas, A.; Gibert, F.; Rothman, J.; Édouart, D.; Le Mounier, F.; Cénac, C.
2017-11-01
In the framework of CO2 monitoring in the Atmospheric Boundary Layer (ABL), a ground-based 2-μm Differential Absorption Lidar (DIAL) has been developed at the Laboratoire de Météorologie Dynamique (LMD) in Palaiseau. In order to derive flux information, this system has been set up with coherent detection, which allows to combine CO2 density measurements with wind velocity measurements. On the other hand, new advances in the field of Mercury Cadmium Tellure (MCT) Avalanche Photodiodes (APDs) open the way for high-precision measurements in direct detection ultimately from space. In this study, we first report on state of the art measurements obtained with the current coherent DIAL system before presenting expected results for a similar laser transmitter equipped with MCT APDs. For this latter part, we use a numerical model which relies on APDs performance data provided by the Laboratoire d'Électronique et de Technologie de l'Information (LETI).
DEFF Research Database (Denmark)
Jacobsen, Steffen; Jensen, Trine W; Bach-Mortensen, Pernille
2007-01-01
inconclusive. The present cross-sectional study investigated the relationship between reduced bone mineral density (BMD), as a surrogate parameter of endogenous estrogen status assessed by digital x-ray radiogrammetry, and reduced minimum hip joint space width (JSW). DESIGN: Standardized hand radiographs...... of the Copenhagen Osteoarthritis Study cohort of 3,913 adults (1,470 male/2,443 female) with a mean age of 60 years (range, 18-92) were analyzed using X-Posure digital software, version 2.0 (Sectra-Pronosco). The system is operator independent. From 1,200 individual measurements per radiograph, mean BMD...... was calculated. Minimum hip JSW was assessed on standardized pelvic radiographs. RESULTS: Digital x-ray radiogrammetry BMD decreased in both men and women after the age of 45 years, progressively more so in women. Although minimum hip JSW in men remained relatively unaltered throughout life, a marked decline...
Designing an ASIP for cryptographic pairings over Barreto-Naehrig curves
Kammler, D.; Zhang, D.; Schwabe, P.; Scharwaechter, H.; Langenberg, M.; Auras, D.; Ascheid, G.; Mathar, R.; Clavier, C.; Gaj, K.
2009-01-01
This paper presents a design-space exploration of an application-specific instruction-set processor (ASIP) for the computation of various cryptographic pairings over Barreto-Naehrig curves (BN curves). Cryptographic pairings are based on elliptic curves over finite fields—in the case of BN curves a
Reddell, Brandon; Bailey, Chuck; Nguyen, Kyson; O'Neill, Patrick; Gaza, Razvan; Patel, Chirag; Cooper, Jaime; Kalb, Theodore
2017-01-01
We present the results of SEE testing with high energy protons and with low and high energy heavy ions. This paper summarizes test results for components considered for Low Earth Orbit and Deep Space applications.
Bauer, Johann; Wehland, Markus; Pietsch, Jessica; Sickmann, Albert; Weber, Gerhard; Grimm, Daniela
2016-06-01
In a series of studies, human thyroid and endothelial cells exposed to real or simulated microgravity were analyzed in terms of changes in gene expression patterns or protein content. Due to the limitation of available cells in many space research experiments, comparative and control experiments had to be done in a serial manner. Therefore, detected genes or proteins were annotated with gene names and SwissProt numbers, in order to allow searches for interconnections between results obtained in different experiments by different methods. A crosscheck of several studies on the behavior of cytoskeletal genes and proteins suggested that clusters of cytoskeletal components change differently under the influence of microgravity and/or vibration in different cell types. The result that LOX and ISG15 gene expression were clearly altered during the Shenzhou-8 spaceflight mission could be estimated by comparison with the results of other experiments. The more than 100-fold down-regulation of LOX supports our hypothesis that the amount and stability of extracellular matrix have a great influence on the formation of three-dimensional aggregates under microgravity. The approximately 40-fold up-regulation of ISG15 cannot yet be explained in detail, but strongly suggests that ISGylation, an alternative form of posttranslational modification, plays a role in longterm cultures.
Hamilton, David B.; Andrews, Austin K.; Auble, Gregor T.; Ellison, Richard A.; Farmer, Adrian H.; Roelle, James E.
1985-01-01
In the early 1960's, the National Aeronautics and Space Administration (NASA) began purchasing 140,000 acres on Merritt Island, Florida, in order to develop a center for space exploration. Most of this land was acquired to provide a safety and security buffer around NASA facilities. NASA, as the managing agency for the Kennedy Space Center (KSC), is responsible for preventing or controlling environmental pollution from the Federal facilities and activities at the Space Center and is committed to use all practicable means to protect and enhance the quality of the surrounding environment. The Merritt Island National Wildlife Refuge was established in 1963 when management authority for undeveloped lands at KSC was transferred to the U.S. Fish and Wildlife Service. In addition to manage for 11 Federally-listed threatened and endangered species and other resident and migratory fish and wildlife populations, the Refuge has comanagement responsibility for 19,000 acres of mosquito control impoundments and 2,500 acres of citrus groves. The Canaveral National Seashore was developed in 1975 when management of a portion of the coastal lands was transferred from NASA to the National Park Service. This multiagency jurisdiction on Merritt Island has resulted in a complex management environment. The modeling workshop described in this report was conducted May 21-25, 1984, at the Kennedy Space Center to: (1) enhance communication among the agencies with management responsibilities on Merritt Island; (2) integrate available information concerning the development, management, and ecology of Merritt Island; and (3) identify key research and monitoring needs associated with the management and use of the island's resources. The workshop was structured around the formulation of a model that would simulate primary management and use activities on Merritt Island and their effects on upland, impoundment, and estuarine vegetation and associated wildlife. The simulation model is composed of
Univolatility curves in ternary mixtures: geometry and numerical computation
DEFF Research Database (Denmark)
Shcherbakova, Nataliya; Rodriguez-Donis, Ivonne; Abildskov, Jens
2017-01-01
We propose a new non-iterative numerical algorithm allowing computation of all univolatility curves in homogeneous ternary mixtures independently of the presence of the azeotropes. The key point is the concept of generalized univolatility curves in the 3D state space, which allows the main comput...
Uniformization of elliptic curves
Ülkem, Özge; Ulkem, Ozge
2015-01-01
Every elliptic curve E defined over C is analytically isomorphic to C*=qZ for some q ∊ C*. Similarly, Tate has shown that if E is defined over a p-adic field K, then E is analytically isomorphic to K*=qZ for some q ∊ K . Further the isomorphism E(K) ≅ K*/qZ respects the action of the Galois group GK/K, where K is the algebraic closure of K. I will explain the construction of this isomorphism.
Surface growth kinematics via local curve evolution
Moulton, Derek E.
2012-11-18
A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process. © 2012 Springer-Verlag Berlin Heidelberg.
Differential geometry of curves and surfaces
Banchoff, Thomas F
2010-01-01
Students and professors of an undergraduate course in differential geometry will appreciate the clear exposition and comprehensive exercises in this book that focuses on the geometric properties of curves and surfaces, one- and two-dimensional objects in Euclidean space. The problems generally relate to questions of local properties (the properties observed at a point on the curve or surface) or global properties (the properties of the object as a whole). Some of the more interesting theorems explore relationships between local and global properties. A special feature is the availability of accompanying online interactive java applets coordinated with each section. The applets allow students to investigate and manipulate curves and surfaces to develop intuition and to help analyze geometric phenomena.
Roc curves for continuous data
Krzanowski, Wojtek J
2009-01-01
Since ROC curves have become ubiquitous in many application areas, the various advances have been scattered across disparate articles and texts. ROC Curves for Continuous Data is the first book solely devoted to the subject, bringing together all the relevant material to provide a clear understanding of how to analyze ROC curves.The fundamental theory of ROC curvesThe book first discusses the relationship between the ROC curve and numerous performance measures and then extends the theory into practice by describing how ROC curves are estimated. Further building on the theory, the authors prese
Observable Zitterbewegung in curved spacetimes
Kobakhidze, Archil; Manning, Adrian; Tureanu, Anca
2016-06-01
Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.
Observable Zitterbewegung in curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Kobakhidze, Archil, E-mail: archilk@physics.usyd.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW 2006 (Australia); Manning, Adrian, E-mail: a.manning@physics.usyd.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW 2006 (Australia); Tureanu, Anca, E-mail: anca.tureanu@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki (Finland)
2016-06-10
Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.
Devilliers, Christophe; Kroedel, Mathias
2017-11-01
Thales-Alenia-Space and ECM has developed a new SiC ceramic composite to produce very lightweight space mirrors and structure. Cesicmade by ECM has been selected for its own intrinsic properties ( high specific Young modulus, high conductivity , low CTE, high strength for a ceramics) and its large manufacturing capabilities. Recently a full monolithic space instrument for earth observation, with a monolithic Cesicstructure and with Cesicmirrors has been designed, manufactured and space qualified and is now ready for launch. The Cesictelescope assembly has been tested under shock environment, vibration loads, and full qualification thermal environment. All these qualification tests were done directly on the flight model. Extensive development has been also performed to design, size, manufacture and test a very light weight reflector shell made as a single part. This 1 meter reflective shell has an areal density of less than 10 Kg/m2 has been manufactured with its surface grounded to the bi parabolic shape. Such challenging areal density has requested a very thin skin associated with a ribs thickness of less than 2mm. In order to demonstrate the high stability and strength of Cesicthe reflector has been tested successfully under very aggressive environment up to 350°C and also an acoustic test with flight representative levels was successfully performed. To produce future very lightweight space mirrors ECM develop with the support of Thales-Alenia-Space since some years an improved version of Cesicceramic, called HB-Cesic©. HB-Cesicmade by ECM is developed for its higher intrinsic properties, Young modulus, strength and especially its direct polishing capabilities down to 3 nm micro-roughness. One of the major targets for this development was also to overcome size limitations of the C/C raw material of currently around 1x1 m to produce mirror up to 3,5 m diameter out of a single C/C raw material block. Under ESA study a 600 mm mirror with a surface density of only
International Nuclear Information System (INIS)
Farihi, J.; Hoard, D. W.; Wachter, S.
2010-01-01
Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and
Reflected Light Curves of Extrasolar Planets
Green, D.; Matthews, J.; Kuschnig, R.; Seager, S.
The planned launches of ultra-precise photometric satellites such as MOST, COROT and MONS should provide the first opportunity to study the reflected light curves from extrasolar planets. To predict the capabilities of these missions, we have constructed a series of models of such light curves, improving upon the Monte Carlo simulations by Seager et al. (2000). These models include more realistic features such limb darkening of the star and broad band photometry. For specific models, the resulting planet light curves exhibit unique behavior with the variation of radius, inclination and presence or absence of clouds.
Directory of Open Access Journals (Sweden)
H. V. Sasyn
2015-02-01
Full Text Available The article is devoted to the essence and distinctive features of informational war as phenomenon which exists from the old times and became a global resource today. The methods and the tools of informational fight are an integral part of the military conflicts and might result with the tragic outcomes. The problem of informational war in Ukraine and its background have been studied. The author argues that informational attacks against Ukraine have started long ago. They are aimed at loosening of the situation inside the country and creation of a negative image of Ukraine abroad. Pushing of idea of federalization, speculations on Russian as the second official language, the problems of Crimea and Crimea Tatars, allegations of illegal weapons trade during the war between Georgia and Russia, etc. are the examples of Russian informational attacks. The author analyzed the methods and the tools of informational influence used by Russian Federation against Ukraine. The author argues that Russia fights informational war openly andspending huge funds. There were described the main directions and the means of manipulative and psychoinformational technologies of Russian Federation towards Ukraine. The author has suggested the approaches to defense of informational space and national security of Ukraine.
Baxley, Brian T.; Murdoch, Jennifer L.; Swieringa, Kurt A.; Barmore, Bryan E.; Capron, William R.; Hubbs, Clay E.; Shay, Richard F.; Abbott, Terence S.
2013-01-01
The predicted increase in the number of commercial aircraft operations creates a need for improved operational efficiency. Two areas believed to offer increases in aircraft efficiency are optimized profile descents and dependent parallel runway operations. Using Flight deck Interval Management (FIM) software and procedures during these operations, flight crews can achieve by the runway threshold an interval assigned by air traffic control (ATC) behind the preceding aircraft that maximizes runway throughput while minimizing additional fuel consumption and pilot workload. This document describes an experiment where 24 pilots flew arrivals into the Dallas Fort-Worth terminal environment using one of three simulators at NASA?s Langley Research Center. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned time interval, and reported low workload levels. In general, pilots found the FIM concept, procedures, speeds, and interface acceptable. Analysis of the time error and FIM speed changes as a function of arrival stream position suggest the spacing algorithm generates stable behavior while in the presence of continuous (wind) or impulse (offset) error. Concerns reported included multiple speed changes within a short time period, and an airspeed increase followed shortly by an airspeed decrease.
Joshi, D. R.; Groves, K. M.
2015-12-01
The Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud. A host of diagnostic instruments were used to probe and characterize the cloud including the ALTAIR incoherent scatter radar, multiple GPS and optical instruments, satellite radio beacons, and a dedicated network of high frequency (HF) radio links. Data from ALTAIR incoherent scatter radar and HF radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. During the first release the ionosphere was disturbed, rising rapidly and spread F formed within minutes after the release. To address the disturbed conditions present during the first release, we have developed a new method of assimilating oblique ionosonde data to generate the background ionosphere that can have numerous applications for HF systems. The link budget analysis of the received signals from the HF transmitters explains the missing low frequencies in the received signals along the great circle path. Observations and modeling confirm that the small amounts of ionized material injected in the lower-F region resulted in significant changes to the natural propagation environment.
Schwabe, M.; Du, C.-R.; Huber, P.; Lipaev, A. M.; Molotkov, V. I.; Naumkin, V. N.; Zhdanov, S. K.; Zhukhovitskii, D. I.; Fortov, V. E.; Thomas, H. M.
2018-03-01
Complex plasmas are low temperature plasmas that contain microparticles in addition to ions, electrons, and neutral particles. The microparticles acquire high charges, interact with each other and can be considered as model particles for effects in classical condensed matter systems, such as crystallization and fluid dynamics. In contrast to atoms in ordinary systems, their movement can be traced on the most basic level, that of individual particles. In order to avoid disturbances caused by gravity, experiments on complex plasmas are often performed under microgravity conditions. The PK-3 Plus Laboratory was operated on board the International Space Station from 2006 - 2013. Its heart consisted of a capacitively coupled radio-frequency plasma chamber. Microparticles were inserted into the low-temperature plasma, forming large, homogeneous complex plasma clouds. Here, we review the results obtained with recent analyzes of PK-3 Plus data: We study the formation of crystallization fronts, as well as the microparticle motion in, and structure of crystalline complex plasmas. We investigate fluid effects such as wave transmission across an interface, and the development of the energy spectra during the onset of turbulent microparticle movement. We explore how abnormal particles move through, and how macroscopic spheres interact with the microparticle cloud. These examples demonstrate the versatility of the PK-3 Plus Laboratory.
The Perspective Structure of Visual Space
2015-01-01
Luneburg’s model has been the reference for experimental studies of visual space for almost seventy years. His claim for a curved visual space has been a source of inspiration for visual scientists as well as philosophers. The conclusion of many experimental studies has been that Luneburg’s model does not describe visual space in various tasks and conditions. Remarkably, no alternative model has been suggested. The current study explores perspective transformations of Euclidean space as a model for visual space. Computations show that the geometry of perspective spaces is considerably different from that of Euclidean space. Collinearity but not parallelism is preserved in perspective space and angles are not invariant under translation and rotation. Similar relationships have shown to be properties of visual space. Alley experiments performed early in the nineteenth century have been instrumental in hypothesizing curved visual spaces. Alleys were computed in perspective space and compared with reconstructed alleys of Blumenfeld. Parallel alleys were accurately described by perspective geometry. Accurate distance alleys were derived from parallel alleys by adjusting the interstimulus distances according to the size-distance invariance hypothesis. Agreement between computed and experimental alleys and accommodation of experimental results that rejected Luneburg’s model show that perspective space is an appropriate model for how we perceive orientations and angles. The model is also appropriate for perceived distance ratios between stimuli but fails to predict perceived distances. PMID:27648222
Supertori are algebraic curves
International Nuclear Information System (INIS)
Rabin, J.M.; Freund, P.G.O.; Chicago Univ., IL; Chicago Univ., IL
1988-01-01
Super Riemann surfaces of genus 1, with arbitrary spin structures, are shown to be the sets of zeroes of certain polynomial equations in projective superspace. We conjecture that the same is true for arbitrary genus. Properties of superelliptic functions and super theta functions are discussed. The boundary of the genus 1 super moduli space is determined. (orig.)
Quantum field theory in curved spacetime
International Nuclear Information System (INIS)
Gibbons, G.W.
1978-04-01
The purpose of this article is to outline what the extension of such a treatment to curved space entails and to discuss what essentially new features arise when one takes into account the quantum mechanical nature of gravitating systems. I shall throughout assume a classical, unquantized gravitational field and confine the discussion to matter fields although similar techniques and ideas may be applied to 'gravitons' - that is linearized perturbations of the metric propagating on some fixed, unperturbed, background. (orig./WL) [de
Modelling curves of manufacturing feasibilities and demand
Directory of Open Access Journals (Sweden)
Soloninko K.S.
2017-03-01
Full Text Available The authors research the issue of functional properties of curves of manufacturing feasibilities and demand. Settlement of the problem, and its connection with important scientific and practical tasks. According to its nature, the market economy is unstable and is in constant movement. Economy has an effective instrument for explanation of changes in economic environment; this tool is called the modelling of economic processes. The modelling of economic processes depends first and foremost on the building of economic model which is the base for the formalization of economic process, that is, the building of mathematical model. The effective means for formalization of economic process is the creation of the model of hypothetic or imaginary economy. The building of demand model is significant for the market of goods and services. The problem includes the receiving (as the result of modelling definite functional properties of curves of manufacturing feasibilities and demand according to which one can determine their mathematical model. Another problem lies in obtaining majorant properties of curves of joint demand on the market of goods and services. Analysis of the latest researches and publications. Many domestic and foreign scientists dedicated their studies to the researches and building of the models of curves of manufacturing feasibilities and demand. In spite of considerable work of the scientists, such problems as functional properties of the curves and their practical use in modelling. The purpose of the article is to describe functional properties of curves of manufacturing feasibilities and demand on the market of goods and services on the base of modelling of their building. Scientific novelty and practical value. The theoretical regulations (for functional properties of curves of manufacturing feasibilities and demand received as a result of the present research, that is convexity, give extra practical possibilities in a microeconomic
Directory of Open Access Journals (Sweden)
Je Hyun Baekt
2000-01-01
Full Text Available A numerical study is conducted on the fully-developed laminar flow of an incompressible viscous fluid in a square duct rotating about a perpendicular axis to the axial direction of the duct. At the straight duct, the rotation produces vortices due to the Coriolis force. Generally two vortex cells are formed and the axial velocity distribution is distorted by the effect of this Coriolis force. When a convective force is weak, two counter-rotating vortices are shown with a quasi-parabolic axial velocity profile for weak rotation rates. As the rotation rate increases, the axial velocity on the vertical centreline of the duct begins to flatten and the location of vorticity center is moved near to wall by the effect of the Coriolis force. When the convective inertia force is strong, a double-vortex secondary flow appears in the transverse planes of the duct for weak rotation rates but as the speed of rotation increases the secondary flow is shown to split into an asymmetric configuration of four counter-rotating vortices. If the rotation rates are increased further, the secondary flow restabilizes to a slightly asymmetric double-vortex configuration. Also, a numerical study is conducted on the laminar flow of an incompressible viscous fluid in a 90°-bend square duct that rotates about axis parallel to the axial direction of the inlet. At a 90°-bend square duct, the feature of flow by the effect of a Coriolis force and a centrifugal force, namely a secondary flow by the centrifugal force in the curved region and the Coriolis force in the downstream region, is shown since the centrifugal force in curved region and the Coriolis force in downstream region are dominant respectively.
Titration Curves: Fact and Fiction.
Chamberlain, John
1997-01-01
Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…
Reddell, Brandon D.; Bailey, Charles R.; Nguyen, Kyson V.; O'Neill, Patrick M.; Wheeler, Scott; Gaza, Razvan; Cooper, Jaime; Kalb, Theodore; Patel, Chirag; Beach, Elden R.;
2017-01-01
We present the results of Single Event Effects (SEE) testing with high energy protons and with low and high energy heavy ions for electrical components considered for Low Earth Orbit (LEO) and for deep space applications.
Analysis of velocity planning interpolation algorithm based on NURBS curve
Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng
2017-04-01
To reduce interpolation time and Max interpolation error in NURBS (Non-Uniform Rational B-Spline) inter-polation caused by planning Velocity. This paper proposed a velocity planning interpolation algorithm based on NURBS curve. Firstly, the second-order Taylor expansion is applied on the numerator in NURBS curve representation with parameter curve. Then, velocity planning interpolation algorithm can meet with NURBS curve interpolation. Finally, simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished.
Nonlinear dynamical modes of climate variability: from curves to manifolds
Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander
2016-04-01
The necessity of efficient dimensionality reduction methods capturing dynamical properties of the system from observed data is evident. Recent study shows that nonlinear dynamical mode (NDM) expansion is able to solve this problem and provide adequate phase variables in climate data analysis [1]. A single NDM is logical extension of linear spatio-temporal structure (like empirical orthogonal function pattern): it is constructed as nonlinear transformation of hidden scalar time series to the space of observed variables, i. e. projection of observed dataset onto a nonlinear curve. Both the hidden time series and the parameters of the curve are learned simultaneously using Bayesian approach. The only prior information about the hidden signal is the assumption of its smoothness. The optimal nonlinearity degree and smoothness are found using Bayesian evidence technique. In this work we do further extension and look for vector hidden signals instead of scalar with the same smoothness restriction. As a result we resolve multidimensional manifolds instead of sum of curves. The dimension of the hidden manifold is optimized using also Bayesian evidence. The efficiency of the extension is demonstrated on model examples. Results of application to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. http://doi.org/10.1038/srep15510
Lorenz curves in a new science-funding model
Huang, Ding-wei
2017-12-01
We propose an agent-based model to theoretically and systematically explore the implications of a new approach to fund science, which has been suggested recently by J. Bollen et al.[?] We introduce various parameters and examine their effects. The concentration of funding is shown by the Lorenz curve and the Gini coefficient. In this model, all scientists are treated equally and follow the well-intended regulations. All scientists give a fixed ratio of their funding to others. The fixed ratio becomes an upper bound for the Gini coefficient. We observe two distinct regimes in the parameter space: valley and plateau. In the valley regime, the fluidity of funding is significant. The Lorenz curve is smooth. The Gini coefficient is well below the upper bound. The funding distribution is the desired result. In the plateau regime, the cumulative advantage is significant. The Lorenz curve has a sharp turn. The Gini coefficient saturates to the upper bound. The undue concentration of funding happens swiftly. The funding distribution is the undesired results, where a minority of scientists take the majority of funding. Phase transitions between these two regimes are discussed.
Helms, W. Jason; Pohlkamp, Kara M.
2011-01-01
The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.
Directory of Open Access Journals (Sweden)
Sergey A. Cherkis
2007-03-01
Full Text Available A typical solution of an integrable system is described in terms of a holomorphic curve and a line bundle over it. The curve provides the action variables while the time evolution is a linear flow on the curve's Jacobian. Even though the system of Nahm equations is closely related to the Hitchin system, the curves appearing in these two cases have very different nature. The former can be described in terms of some classical scattering problem while the latter provides a solution to some Seiberg-Witten gauge theory. This note identifies the setup in which one can formulate the question of relating the two curves.
Utilization of curve offsets in additive manufacturing
Haseltalab, Vahid; Yaman, Ulas; Dolen, Melik
2018-05-01
Curve offsets are utilized in different fields of engineering and science. Additive manufacturing, which lately becomes an explicit requirement in manufacturing industry, utilizes curve offsets widely. One of the necessities of offsetting is for scaling which is required if there is shrinkage after the fabrication or if the surface quality of the resulting part is unacceptable. Therefore, some post-processing is indispensable. But the major application of curve offsets in additive manufacturing processes is for generating head trajectories. In a point-wise AM process, a correct tool-path in each layer can reduce lots of costs and increase the surface quality of the fabricated parts. In this study, different curve offset generation algorithms are analyzed to show their capabilities and disadvantages through some test cases and improvements on their drawbacks are suggested.