WorldWideScience

Sample records for space cryogenic applications

  1. Cryogenic characterization of LEDs for space application

    Science.gov (United States)

    Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu

    2017-09-01

    In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.

  2. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    Science.gov (United States)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  3. Thin Aerogel as a Spacer in Multi-Layer Insulation for Cryogenic Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Long duration storage of large quantities of cryogenic fluids for propulsion, power, and life-support is an essential requirement for long-term missions into space....

  4. Towards Cryogenic Liquid-Vapor Energy Storage Units for space applications

    Science.gov (United States)

    Afonso, Josiana Prado

    With the development of mechanical coolers and very sensitive cryogenic sensors, it could be interesting to use Energy Storage Units (ESU) and turn off the cryocooler to operate in a free micro vibration environment. An ESU would also avoid cryogenic systems oversized to attenuate temperature fluctuations due to thermal load variations which is useful particularly for space applications. In both cases, the temperature drift must remain limited to keep good detector performances. In this thesis, ESUs based on the high latent heat associated to liquid-vapor phase change to store energy have been studied. To limit temperature drifts while keeping small size cell at low temperature, a potential solution consists in splitting the ESU in two volumes: a low temperature cell coupled to a cryocooler cold finger through a thermal heat switch and an expansion volume at room temperature to reduce the temperature increase occurring during liquid evaporation. To obtain a vanishing temperature drift, a new improvement has been tested using two-phase nitrogen: a controlled valve was inserted between the two volumes in order to control the cold cell pressure. In addition, a porous material was used inside the cell to turn the ESU gravity independent and suitable for space applications. In this case, experiments reveal not fully understood results concerning both energy storage and liquid-wall temperature difference. To capture the thermal influence of the porous media, a dedicated cell with poorly conductive lateral wall was built and operated with two-phase helium. After its characterization outside the saturation conditions (conduction, convection), experiments were performed, with and without porous media, heating at the top or the bottom of the cell with various heat fluxes and for different saturation temperatures. In parallel, a model describing the thermal response for a cell containing liquid and vapor with a porous medium heated at the top ("against gravity") was developed

  5. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  6. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  7. Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications: Speed, Torque and Efficiency Measurements

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Valiente-Blanco, Ignacio; Cristache, Cristian; Alvarez-Valenzuela, Marco-Antonio; Sanchez-Garcia-Casarrubios, Juan

    2015-09-01

    Harmonic Drives are widely used in space mainly because of their compactness, large reduction ratio ad zero backlash. However, their use in extreme environments like in cryogenic temperatures is still a challenge. Lubrication, lifetime and fatigue are still issues under these conditions.The MAGDRIVE project, funded by the EU Space FP7 was devoted to test a new concept of harmonic drive reducer. By using the magnetic distance force interactions of magnets and ferromagnetic materials, all the conventional mechanical elements of a Harmonic Drives (teeth, flexspline and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between any moving parts prevents wear, lubricants are no longer required and the operational life time is greatly increased. As the magnetic transmission is continuous there is no backlash in the reduction. MAG SOAR Company is already providing contactless mechanical components for space applications able to operate in a wide range of temperatures.In this paper the tests results of a -1:20 ratio MAGDRIVE prototype are reported. In these tests successful operation at 40 K and 10-3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 Nm and efficiency higher than 75% at 3000 rpm were demonstrated. The maximum tested input speed was 3000 rpm -six times the previous existing record for harmonic drives at cryogenic temperature.

  8. Hybrid Aerogel-MLI Insulation System for Cryogenic Storage in Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of the NASA space program includes longer and more invasive missions into space, with a goal to return to the moon's surface by the year 2015. Long...

  9. Replacement of corrosion protection chromate primers and paints used in cryogenic applications on the Space Shuttle with wire arc sprayed aluminum coatings

    Science.gov (United States)

    Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.

    1995-01-01

    With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.

  10. Application of Model Based Prognostics to Pneumatic Valves in a Cryogenic Propellant Loading Testbed

    Data.gov (United States)

    National Aeronautics and Space Administration — Pneumatic-actuated valves are critical components in many applications, including cryogenic propellant loading for space operations. For these components, failures...

  11. Electromagnetic dampers for cryogenic applications

    Science.gov (United States)

    Brown, Gerald V.; Dirusso, Eliseo

    1988-01-01

    Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

  12. In-Space Cryogenic VOST Connect/Disconnect, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel cryogenic couplings will be designed, fabricated and tested. Intended for in-space use at cryogenic propellant depots, the couplings are based on patented...

  13. Cryogenics

    International Nuclear Information System (INIS)

    Fradkov, A.B.

    1991-01-01

    The application of cryogenics in various areas of science and technology is related in a popular way. Utilization of cryogenics in the following production processes is described: separation of air, gas mixtures; production of helium; separation of hydrogen isotopes; production of deuterium. Applications of cryogenics in refrigerating engineering, superconductivity and high-energy physics, controlled thermonuclear fusion, superconducting electric motors and electric energy storages are considered

  14. Cryogenic system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design

  15. Cryogenics

    International Nuclear Information System (INIS)

    Shukla, R.K.

    1990-01-01

    Cryogenics refers to the coldest area known in nature. This temperature range has an upper limit arbitrarily defined as -100 degrees C (-250 degrees C by some) and a lower limit of absolute zero. These limits separate it from the temperature range generally used in refrigerating engineering. One important application of cryogenics is the separation ad purification of air into its various components (oxygen, nitrogen, argon, and the rare gases). Other important developments have been the large-scale production of liquid hydrogen; helium extraction from natural gas; storage and transport of liquefied gases such as oxygen, argon, nitrogen, helium, neon, xenon, and hydrogen; liquefaction of natural gas for ocean transport and peak shaving; and many new types of cryogenic refrigeration devices. This paper introduces the topic of cryogenic engineering. Cryogenic processes generally range from ambient conditions to the boiling point of the cryogenic fluid. Cryogenic cycles also incorporate two or more pressure levels. These properties must also cover the vapor, vapor-liquid, and sometimes the solid regions. Therefore, the physical properties of fluids over a great range of temperatures and pressures must be known. Solubility of contaminants must be known in order to design for their removal. The main physical properties for design purposes are those usually used in unit operations, such as fluid flow, heat transfer, and the like, in addition to those directly related to the Joule-Thomson effect and expansion work. Properties such as density, viscosity, thermal conductivity, heat capacity, enthalpy, entropy, vapor pressure, and vapor-liquid equilibriums are generally obtained in graphical, tabular, or equation form, as a function of temperature and pressure

  16. Deep Space Cryogenic Power Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Technology Application, Inc. (TAI) is proposing to demonstrate feasibility of implementing silicon germanium (SiGe) strained-gate technology in the power...

  17. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  18. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  19. Characterization of titanium alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Reytier, M.; Kircher, F.; Levesy, B.

    2002-01-01

    Titanium alloys are employed in the design of superconducting magnet support systems for their high mechanical strength associated with their low thermal conductivity. But their use requires a careful attention to their crack tolerance at cryogenic temperature. Measurements have been performed on two extra low interstitial materials (Ti-5Al-2.5Sn ELI and Ti-6Al-4V ELI) with different thickness and manufacturing process. The investigation includes the tensile properties at room and liquid helium temperatures using smooth and notched samples. Moreover, the fracture toughness has been determined at 4.2 K using Compact Tension specimens. The microstructure of the different alloys and the various fracture surfaces have also been studied. After a detailed description of the experimental procedures, practical engineering characteristics are given and a comparison of the different titanium alloys is proposed for cryogenic applications

  20. Simple Spreadsheet Thermal Models for Cryogenic Applications

    Science.gov (United States)

    Nash, Alfred

    1995-01-01

    Self consistent circuit analog thermal models that can be run in commercial spreadsheet programs on personal computers have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. these models have been used to analyze the SIRTF Telescope Test Facility (STTF). The facility has been brought on line for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison between the models' predictions and actual performance of this facility will be presented.

  1. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  2. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    Science.gov (United States)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  3. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  4. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  5. Advanced Insulation Materials for Cryogenic Propellant Storage Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc responds to the NASA solicitation Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9-01, "Long Term Cryogenic...

  6. Cryogenic techniques for large superconducting magnets in space

    International Nuclear Information System (INIS)

    Green, M.A.

    1988-12-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points. Both of these methods will extend the ASTROMAG cryogenic operating life from 2 years to almost 4 years. 14 refs., 8 figs., 4 tabs

  7. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    Science.gov (United States)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  8. CFRP mirror technology for cryogenic space interferometry: review and progress to date

    Science.gov (United States)

    Jones, Martyn L.; Walker, David; Naylor, David A.; Veenendaal, Ian T.; Gom, Brad G.

    2016-07-01

    The FP7 project, FISICA (Far Infrared Space Interferometer Critical Assessment), called for the investigation into the suitability of Carbon fiber Reinforced Plastic (CFRP) for a 2m primary mirror. In this paper, we focus on the major challenge for application, the development of a mirror design that would maintain its form at cryogenic temperatures. In order to limit self-emission the primary is to be cooled to 4K whilst not exceeding a form error of 275nm PV. We then describe the development of an FEA model that utilizes test data obtained from a cryogenic test undertaken at the University of Lethbridge on CFRP samples. To conclude, suggestions are made in order to advance this technology to be suitable for such an application in order to exploit the low density and superior specific properties of polymeric composites.

  9. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    Science.gov (United States)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  10. Cryogenic techniques for large superconducting magnets in space

    Science.gov (United States)

    Green, M. A.

    1989-01-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points.

  11. Cryogenics

    International Nuclear Information System (INIS)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V.

    1997-01-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  12. Cryogenic Photogrammetry and Radiometry for the James Webb Space Telescope Microshutters

    Science.gov (United States)

    Chambers, Victor J.; Morey, Peter A.; Zukowski, Barbara J.; Kutyrev, Alexander S.; Collins, Nicholas R.

    2012-01-01

    The James Webb Space Telescope (JWST) relies on several innovations to complete its five year mission. One vital technology is microshutters, the programmable field selectors that enable the Near Infrared Spectrometer (NIRSpec) to perform multi-object spectroscopy. Mission success depends on acquiring spectra from large numbers of galaxies by positioning shutter slits over faint targets. Precise selection of faint targets requires field selectors that are both high in contrast and stable in position. We have developed test facilities to evaluate microshutter contrast and alignment stability at their 35K operating temperature. These facilities used a novel application of image registration algorithms to obtain non-contact, sub-micron measurements in cryogenic conditions. The cryogenic motion of the shutters was successfully characterized. Optical results also demonstrated that shutter contrast far exceeds the NIRSpec requirements. Our test program has concluded with the delivery of a flight-qualified field selection subsystem to the NIRSpec bench.

  13. Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings

    Science.gov (United States)

    Johnson, Wesley Louis

    2010-01-01

    varied. The simplest method of determining the thermal performance of MLI at cryogenic temperature is by boil-off calorimetry. Several blankets were procured and tested at various layer densities at the Cryogenics Test Laboratory at Kennedy Space Center. The densities that the blankets were tested over covered a wide range of layer densities including the analytical minimum. Several of the blankets were tested at the same insulation thickness while changing the layer density (thus a different number of reflector layers). Optimizing the layer density of multilayer insulation systems for heat transfer would remove a layer density from the complex method of designing such insulation systems. Additional testing was performed at various warm boundary temperatures and pressures. The testing and analysis was performed to simplify the analysis of cryogenic thermal insulation systems. This research was funded by the National Aeronautics and Space Administration's Exploration Technology Development Program's Cryogenic Fluid Management Project

  14. The scope of additive manufacturing in cryogenics, component design, and applications

    Science.gov (United States)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-12-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that allow for light-weight, cost optimized designs with short turnaround times. The potential for cost reductions from bulk materials machined to tight tolerances has become obvious. Furthermore, additive manufacturing opens doors and design space for cryogenic components that to date did not exist or were not possible in the past, using bulk materials along with elaborate and expensive machining processes, e.g. micromachining. The cryogenic engineer now faces the challenge to design toward those new additive manufacturing capabilities. Additionally, re-thinking designs toward cost optimization and fast implementation also requires detailed knowledge of mechanical and thermal properties at cryogenic temperatures. In the following we compile the information available to date and show a possible roadmap for additive manufacturing applications of parts and components typically used in cryogenic engineering designs.

  15. Production and Innovative Applications of Cryogenic Solid Pellets

    International Nuclear Information System (INIS)

    Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

    1999-01-01

    For over two decades Oak Ridge National Laboratory has been developing cryogenic pellet injectors for fueling hot, magnetic fusion plasmas. Cryogenic solid pellets of all three hydrogen isotopes have been produced in a size range of 1- to 10-mm diameter and accelerated to speeds from <100 to ∼3000 m/s. The pellets have been formed discretely by cryocondensation in gun barrels and also by extrusion of cryogenic solids at mass flow rates up to ∼0.26 g/s and production rates up to ten pellets per second. The pellets traverse the hot plasma in a fraction of a millisecond and continuously ablate, providing fresh hydrogenic fuel to the interior of the plasma. From this initial application, uses of this technology have expanded to include (1) cryogenic xenon drops or solids for use as a debris-less target in a laser plasma source of X-rays for advanced lithography systems, (2) solid argon and carbon dioxide pellets for surface cleaning or decontamination, and (3) methane pellets in a liquid hydrogen bath for use as an innovative moderator of cold neutrons. Methods of production and acceleration/transport of these cryogenic solids will be described, and examples will be given of their use in prototype systems

  16. Thallous and cesium halide materials for use in cryogenic applications

    International Nuclear Information System (INIS)

    Lawless, W.N.

    1983-01-01

    Certain thallous and cesium halides, either used alone or in combination with other ceramic materials, are provided in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous and cesium halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated or extruded onto substrates or wires. (author)

  17. (abstract) Simple Spreadsheet Thermal Models for Cryogenic Applications

    Science.gov (United States)

    Nash, A. E.

    1994-01-01

    Self consistent circuit analog thermal models, that can be run in commercial spreadsheet programs on personal computers, have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. These models have been used to analyze the Cryogenic Telescope Test Facility (CTTF). The facility will be on line in early 1995 for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison of the model predictions and actual performance of this facility will be presented.

  18. Resistive coating for current conductors in cryogenic applications

    International Nuclear Information System (INIS)

    Hirayama, C.; Wagner, G.R.

    1982-01-01

    This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu2S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors

  19. Numerical study of emergency cryogenics gas relief into confined spaces

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation.

  20. Lightweight, Cost Effective LOX Compatible Aerogel Insulation Material for Cryogenic Fluid Transfer Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy-efficient cryogenic insulation is an imperative requirement for the future of space travel. In order to advance the space program, NASA must find cost...

  1. Development of multifunctional electronic modules for cryogenic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gust, Norbert; Kade, Andreas; Klier, Juergen [Institut fuer Luft- und Kaeltetechnik (ILK) gemeinuetzige Gesellschaft mbH, Dresden (Germany)

    2017-07-01

    A new universal cryogenic measurement system has been developed which can measure resistance and voltages with high precision (< 0.025 %) and low noise (-88 dB) at low powers (< 1 nW) in a high electromagnetic interference environment. The system is effectively designed and equipped with noise and distortion suppressing electronics and algorithms. It can be extended with cryogenic multiplexers for up to 80 sensors, which can be directly mounted inside cryostats for reduced wiring. The size of the devices is relatively small (handheld), low power (< 2 W), can operate on battery and has easy access to calibration and sensor data. Sensor types are not limited and it can be used to measure, e.g., temperature, voltage, magnetic field, pressure and level simultaneously. Within this paper we present our developments and first measurement results. The key components which we describe in detail are cold multiplexers and smart measurement bridges for a wide field of applications.

  2. ABS 3D printed solutions for cryogenic applications

    Science.gov (United States)

    Bartolomé, E.; Bozzo, B.; Sevilla, P.; Martínez-Pasarell, O.; Puig, T.; Granados, X.

    2017-03-01

    3D printing has become a common, inexpensive and rapid prototyping technique, enabling the ad hoc fabrication of complex shapes. In this paper, we demonstrate that 3D printed objects in ABS can be used at cryogenic temperatures, offering flexible solutions in different fields. Firstly, a thermo-mechanical characterization of ABS 3D printed specimens at 77 K is reported, which allowed us to delimit the type of cryogenic uses where 3D printed pieces may be implemented. Secondly, we present three different examples where ABS 3D printed objects working at low temperatures have provided specific solutions: (i) SQUID inserts for angular magnetometry (low temperature material characterization field); (ii) a cage support for a metamaterial ;magnetic concentrator; (superconductivity application), and (iii) dedicated tools for cryopreservation in assisted reproductive techniques (medicine field).

  3. Application of risk-based inspection methods for cryogenic equipment

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Risk-based Inspection (RBI) is widely applied across the world as part of Pressure Equipment Integrity Management, especially in the oil and gas industry, to generally reduce costs compared with time-based approaches and assist in assigning resources to the most critical equipment. One of the challenges in RBI is to apply it for low temperature and cryogenic applications, as there are usually no degradation mechanisms by which to determine a suitable probability of failure in the overall risk assessment. However, the assumptions used for other degradation mechanisms can be adopted to determine, qualitatively and semi-quantitatively, a consequence of failure within the risk assessment. This can assist in providing a consistent basis for the assumptions used in ensuring adequate process safety barriers and determining suitable sizing of relief devices. This presentation will discuss risk-based inspection in the context of cryogenic safety, as well as present some of the considerations for the risk assessme...

  4. Photosensitive Gaseous Detectors for Cryogenic Temperature Applications

    CERN Document Server

    Periale, L; Iacobaeus, C; Lund-Jensen, B; Picchi, P; Pietropaolo, F

    2007-01-01

    There are several proposals and projects today for building LXe Time Projection Chambers (TPCs) for dark matter search. An important element of these TPCs are the photomultipliers operating either inside LXe or in vapors above the liquid. We have recently demonstrated that photosensitive gaseous detectors (wire type and hole-type) can operate perfectly well until temperatures of LN2. In this paper results of systematic studies of operation of the photosensitive version of these detectors (combined with reflective or semi-transparent CsI photocathodes) in the temperature interval of 300-150 K are presented. In particular, it was demonstrated that both sealed and flushed by a gas detectors could operate at a quite stable fashion in a year/time scale. Obtained results, in particular the long-term stability of photosensitive gaseous detectors, strongly indicate that they can be cheap and simple alternatives to photomultipliers or avalanche solid-state detectors in LXe TPC applications.

  5. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    Science.gov (United States)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  6. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Christopher Winnefeld

    2018-01-01

    Full Text Available In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.

  7. Opto-mechanical design for transmission optics in cryogenic space instrumentation

    Science.gov (United States)

    Kroes, Gabby; Venema, Lars; Navarro, Ramón

    2017-11-01

    NOVA is involved in the development and realization of various optical astronomical instruments for groundbased as well as space telescopes, with a focus on nearand mid-infrared instrumentation. NOVA has developed a suite of scientific instruments with cryogenic optics for the ESO VLT and VLTI instruments: VISIR, MIDI, the SPIFFI 2Kcamera for SINFONI, X-shooter and MATISSE. Other projects include the cryogenic optics for MIRI for the James Webb Space Telescope and several E-ELT instruments. Mounting optics is always a compromise between firmly fixing the optics and preventing stresses within the optics. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations, temperature ranges, during launch, transport or earthquake. On the other hand, the fixings can induce deformations and sometimes birefringence in the optics and thus cause optical errors. Even cracking or breaking of the optics is a risk, especially when using brittle infrared optical materials at the cryogenic temperatures required in instruments for infrared astronomy, where differential expansion of various materials amounts easily to several millimeters per meter. Special kinematic mounts are therefore needed to ensure both accurate positioning and low stress. This paper concentrates on the opto-mechanical design of optics mountings, especially for large transmission optics in cryogenic circumstances in space instruments. It describes the development of temperature-invariant ("a-thermal") kinematic designs, their implementation in ground based instrumentation and ways to make them suitable for space instruments.

  8. Cryotribology: Development of cryotribological theories and application to cryogenic devices

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Y.; Michael, P. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Rabinowicz, E. (Massachusetts Inst. of Tech., Cambridge, MA (United States) Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab.)

    1992-09-15

    High-performance superconducting solenoids are susceptible to premature quenches, or superconducting to normal state transitions, due to abrupt conductor movements within the winding. Abrupt motions involving 5{approximately}10{mu}m conductor displacements dissipate sufficient energy to trigger a quench. Sliding and mechanical behaviors of materials at cryogenic temperatures have been experimentally examined. After accounting for changes in the sliding materials' low-temperature strength properties, we have found that the adhesion theory of friction and wear remains applicable at cryogenic temperatures. The adhesion friction theory suggests two methods for controlling unsteady sliding motions. The first involves the selection of sliding materials whose friction coefficients increase with increasing sliding speed. A number of material pairs have been examined for positive friction-velocity characteristics. This materials-based approach to frictional stabilization does not seem a viable option at 4.2 K. The second altemative is to preprogram the force conditions within high-risk regions of the winding to regulate the occurrence of unsteady sliding motions. Structural models are proposed to account for unsteady conductor motions on a variety of dimensional scales. The models are used to design a small superconducting solenoid. Performance of this solenoid suggests that force-based motion control is a potentially viable design approach for achieving successful dry-wound magnets.

  9. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  10. An Overview of SBIR Phase 2 In-Space Propulsion and Cryogenic Fluids Management

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in In-Space Propulsion and Cryogenic Fluids Management which is one of six core competencies at NASA Glenn Research Center. There are nineteen technologies featured with emphasis on a wide spectrum of applications such as high-performance Hall thruster support system, thruster discharge power converter, high-performance combustion chamber, ion thruster design tool, green liquid monopropellant thruster, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  11. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  12. Boomerang project: structural calculations and verifications of mechanical support of space cryogenic system

    International Nuclear Information System (INIS)

    Zucchini, A.; Orsi, R.

    1995-12-01

    The Boomerang (Ballon Observations of Millimetric Extragalactic radiation ANd Geophysics) experiment is an international effort to measure the Cosmic Microwave Background anisotropy on angular scales of 20' to 4x, with unprecedent sensitivity, sky and spectral coverage. The telescope will be flown from Antarctica by NASA-NSBF with a long duration stratospheric balloon (1-3 weeks), and is scheduled for flight in 1996. Space cryogenic systems need adeguate mechanical support to survive the large accelerations and vibrations induced during launch and landing. Static and modal analyses were carried out in order to assist the design of the mechanical support of the space cryogenic system. This report describes the models and the results of the FEM analyses carried out for different design solutions (kevlar cords or fiber-glass cylinders) of the cryostat support structure

  13. To Ensure the Integrity of the Cryogenic Propellant Depot Tank Within the Expected Radiation and Space Debris Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — HyPerComp Engineering, Inc. (HEI) proposes to develop well characterized, structurally reliable filament wound composite pressure vessels for use in both cryogenic...

  14. MEMS Sensor Arrays for Cryogenic Propellant Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — KWJ offers this proposal for a low-power, practical and versatile MEMS sensor platform for NASA applications. The proposed nano-sensor platform is ultra-low power...

  15. Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)

    Science.gov (United States)

    Lee, J. H.; Brooks, W. F.

    1984-01-01

    The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.

  16. New application of superconductors: High sensitivity cryogenic light detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544 Princeton, NJ (United States); Bellini, F.; Casali, N. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Castellano, M.G. [Istituto di Fotonica e Nanotecnologie – CNR, Via Cineto Romano 42, 00156 Roma (Italy); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cosmelli, C.; Cruciani, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); D' Addabbo, A. [INFN – Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) 67010 (Italy); Di Domizio, S. [INFN – Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Martinez, M. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, Zaragoza 50009 (Spain); Tomei, C. [INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); and others

    2017-02-11

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm{sup 2} substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  17. Mechanical properties of carbon fibre reinforced thermoplastics for cryogenic applications

    International Nuclear Information System (INIS)

    Ahlborn, K.

    1989-01-01

    The high specific strength, the high specific stiffness and the excellent fatigue behaviour favours carbon fibre reinforced plastics (CFRP) as a supplement to metals for low temperature applications. The weakest link in the composite is the polymeric matrix, which is preloaded by thermal tensile strains and becomes brittle at low temperatures. Tough thermoplastic polymers show a higher cryogenic fracture strain than commonly used epoxy-matrix systems. Two carbon fibre reinforced tough thermoplastics (PEEK, PC) were tested at 293 K, 77 K and 5 K by tensile, bending and fatigue loading. It has been found, that the toughness of the matrices generally improves the static strength at low temperatures. In bidirectionally reinforced thermoplastics, transversal cracks appear in the matrix or in the boundary layer at composite strains below 0,2%, originated by the thermal preloading. The formation and development of the cracks depend on the fibre-matrix-bond and on the thickness of the composite layers. Fibre-misalignment results in a poor tension-tension fatigue endurance limit of less than 50% of the static strength. Further developments in the manufacturing process are necessary to improve the homogeneity of the composite structure in order to increase the long term fatigue behaviour. (orig.) [de

  18. New application of superconductors: High sensitivity cryogenic light detectors

    International Nuclear Information System (INIS)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M.G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; Di Domizio, S.; Martinez, M.; Tomei, C.

    2017-01-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm"2 substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  19. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  20. Innovative Ultra-High Efficiency Cryogenic Actuators for Rocket Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The SBIR Phase I project will develop advanced ultra-high efficiency cryogenic actuators for NASA cryogenic fluid transfer application. The actuator will have low...

  1. Insulation design of cryogenic bushing for superconducting electric power applications

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.Y., E-mail: koojy@hanyang.ac.kr [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Y.J.; Shin, W.J.; Kim, Y.H. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Kim, J.T. [Department of Electrical Engineering, Daejin University, Pocheon 487-711 (Korea, Republic of); Lee, B.W. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, S.H., E-mail: k720lsh@kins.re.kr [Expert Group Electric and Control Department, Korea Institute of Nuclear Safety, Daejeon 305-600 (Korea, Republic of)

    2013-01-15

    Highlights: ► In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. ► We focused on the comparative study of breakdown characteristics of different electrode materials. ► Puncture and creepage breakdown characteristics were analyzed based on the withstand voltage. ► We obtained the basic design factors of extra high voltage condenser bushing. ► We obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic environment. -- Abstract: Recently, the superconductivity projects to develop commercial superconducting devices for extra high voltage transmission lines have been undergoing in many countries. One of the critical components to be developed for high voltage superconducting devices, including superconducting transformers, cables, and fault current limiters, is a high voltage bushing, to supply high current to devices without insulating difficulties, that is designed for cryogenic environments. Unfortunately, suitable bushings for HTS equipment were not fully developed for some cryogenic insulation issues. Such high voltage bushings would need to provide electrical insulation capabilities from room temperature to cryogenic temperatures. In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. First, the dielectric strength of three kinds of metals has been measured with uniform and non-uniform electrodes by withstand voltage of impulse and AC breakdown test in LN{sub 2}. Second, puncture breakdown voltage of glass fiber reinforced plastics (GFRPs) plates has been analyzed with non-uniform electrodes. Finally, creepage discharge voltages were measured according to the configuration of non-uniform and uniform electrode on the FRP plate. From the test results, we obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic

  2. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    Science.gov (United States)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  3. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  4. Design of cryogenic tanks for space vehicles shell structures analytical modeling

    Science.gov (United States)

    Copper, Charles; Mccarthy, K.; Pilkey, W. D.; Haviland, J. K.

    1991-01-01

    The initial objective was to study the use of superplastically formed corrugated hat section stringers and frames in place of integrally machined stringers over separate frames for the tanks of large launch vehicles subjected to high buckling loads. The ALS was used as an example. The objective of the follow-on project was to study methods of designing shell structures subjected to severe combinations of structural loads and thermal gradients, with emphasis on new combinations of structural arrangements and materials. Typical applications would be to fuselage sections of high speed civil transports and to cryogenic tanks on the National Aerospace Plane.

  5. Application of cryogenic grinding to achieve homogenization of transuranic wastes

    International Nuclear Information System (INIS)

    Atkins, W.H.; Hill, D.D.; Lucero, M.E.; Jaramillo, L.; Martinez, H.E.

    1996-08-01

    This paper describes work done at Los Alamos National Laboratory (LANL) in collaboration with the Department of Energy Rocky Flats Field Office (DOE/RFFO) and with the National Institute of Standards and Technology (NIST), Boulder, Colorado. Researchers on this project have developed a method for cryogenic grinding of mixed wastes to homogenize and, thereby, to acquire a representative sample of the materials. There are approximately 220,000 waste drums owned by the Rocky Flats Environmental Technology Site (RFETS)-50,000 at RFETS and 170,000 at the Idaho National Engineering Laboratory. The cost of sampling the heterogeneous distribution of waste in each drum is prohibitive. In an attempt to produce a homogeneous mixture of waste that would reduce greatly the cost of sampling, researchers at NIST and RFETS are developing a cryogenic grinder. The Los Alamos work herein described addresses the implementation issues of the task. The first issue was to ascertain whether samples of the open-quotes small particleclose quotes mixtures of materials present in the waste drums at RFETS were representative of actual drum contents. Second, it was necessary to determine at what temperature the grinding operation must be performed in order to minimize or to eliminate the release of volatile organic compounds present in the waste. Last, it was essential to evaluate any effect the liquid cryogen might have on the structural integrity and ventilation capacity of the glovebox system. Results of this study showed that representative samples could be and had been obtained, that some release of organics occurred below freezing because of sublimation, and that operation of the cryogenic grinding equipment inside the glovebox was feasible

  6. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    Science.gov (United States)

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  7. National and International Security Applications of Cryogenic Detectors - Mostly Nuclear Safeguards

    International Nuclear Information System (INIS)

    Rabin, Michael W.

    2009-01-01

    As with science, so with security--in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  8. National and International Security Applications of Cryogenic Detectors—Mostly Nuclear Safeguards

    Science.gov (United States)

    Rabin, Michael W.

    2009-12-01

    As with science, so with security—in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  9. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    International Nuclear Information System (INIS)

    Rabin, Michael W.

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  10. Evaluation of high temperature superconductive thermal bridges for space borne cryogenic detectors

    Science.gov (United States)

    Scott, Elaine P.

    1996-01-01

    Infrared sensor satellites are used to monitor the conditions in the earth's upper atmosphere. In these systems, the electronic links connecting the cryogenically cooled infrared detectors to the significantly warmer amplification electronics act as thermal bridges and, consequently, the mission lifetimes of the satellites are limited due to cryogenic evaporation. High-temperature superconductor (HTS) materials have been proposed by researchers at the National Aeronautics and Space Administration Langley's Research Center (NASA-LaRC) as an alternative to the currently used manganin wires for electrical connection. The potential for using HTS films as thermal bridges has provided the motivation for the design and the analysis of a spaceflight experiment to evaluate the performance of this superconductive technology in the space environment. The initial efforts were focused on the preliminary design of the experimental system which allows for the quantitative comparison of superconductive leads with manganin leads, and on the thermal conduction modeling of the proposed system. Most of the HTS materials were indicated to be potential replacements for the manganin wires. In the continuation of this multi-year research, the objectives of this study were to evaluate the sources of heat transfer on the thermal bridges that have been neglected in the preliminary conductive model and then to develop a methodology for the estimation of the thermal conductivities of the HTS thermal bridges in space. The Joule heating created by the electrical current through the manganin wires was incorporated as a volumetric heat source into the manganin conductive model. The radiative heat source on the HTS thermal bridges was determined by performing a separate radiant interchange analysis within a high-T(sub c) superconductor housing area. Both heat sources indicated no significant contribution on the cryogenic heat load, which validates the results obtained in the preliminary conduction

  11. NASA space applications of high-temperature superconductors

    Science.gov (United States)

    Heinen, Vernon O.; Sokoloski, Martin M.; Aron, Paul R.; Bhasin, Kul B.

    1992-01-01

    The application of superconducting technology in space has been limited by the requirement of cooling to near liquid helium temperatures. The only means of attaining these temperatures has been with cryogenic fluids which severely limits mission lifetime. The development of materials with superconducting transition temperatures (T sub c) above 77 K has made superconducting technology more attractive and feasible for employment in aerospace systems. Potential applications of high-temperature superconducting technology in cryocoolers and remote sensing, communications, and power systems are discussed.

  12. Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures

    Science.gov (United States)

    Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng

    2018-03-01

    Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.

  13. The scope of additive manufacturing in cryogenics, component design, and applications

    NARCIS (Netherlands)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-01-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that

  14. Visualization in cryogenic environment: Application to two-phase studies

    Science.gov (United States)

    Rousset, Bernard; Chatain, Denis; Puech, Laurent; Thibault, Pierre; Viargues, François; Wolf, Pierre-Etienne

    2009-10-01

    This paper reviews recent technical developments devoted to the study of cryogenic two-phase fluids. These techniques span from simple flow visualization to quantitative measurements of light scattering. It is shown that simple flow pattern configurations are obtained using classical optical tools (CCD cameras, endoscopes), even in most severe environments (high vacuum, high magnetic field). Quantitative measurements include laser velocimetry, particle sizing, and light scattering analysis. In the case of magnetically compensated gravity boiling oxygen, optical access is used to control the poistioning of a bubble subject to buoyancy forces in an experimental cell. Flow visualization on a two-phase superfluid helium pipe-flow, performed as a support of LHC cooldown studies, leads to flow pattern characterization. Visualization includes stratified and atomized flows. Thanks to the low refractive index contrast between the liquid and its vapor, quantitative results on droplet densities can be obtained even in a multiple scattering regime.

  15. An Overview of In-Space Propulsion and Cryogenics Fluids Management Efforts for 2014 SBIR Phases I and II

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency programs. This report highlights 11 of the innovative SBIR 2014 Phase I and II projects from 2010 to 2012 that focus on one of NASA Glenn Research Center's six core competencies-In-Space Propulsion and Cryogenic Fluids Management. The technologies cover a wide spectrum of applications such as divergent field annular ion engines, miniature nontoxic nitrous oxide-propane propulsion, noncatalytic ignition systems for high-performance advanced monopropellant thrusters, nontoxic storable liquid propulsion, and superconducting electric boost pumps for nuclear thermal propulsion. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  16. Phase stability of high manganese austenitic steels for cryogenic applications

    CERN Document Server

    Couturier, K

    2000-01-01

    The aim of this work is to study the austenitic stability against a' martensitic transformation of three non-magnetic austenitic steels : a new stainless steel X2CrMnNiMoN 19-12-11-1 grade, a traditional X8CrMnNiN 19-11-6 grade and a high manganese X8MnCrNi 28-7-1 grade. Measurements of relative magnetic susceptibility at room temperature are performed on strained tensile specimens at 4.2 K. A special extensometer for high precision strain measurements at low temperature has been developed at CERN to test specimens up to various levels of plastic strain. Moreover, the high precision strain recording of the extensometer enables a detailed study of the serrated yield phenomena associated with 4.2 K tensile testing and their influence on the evolution of magnetic susceptibility. The results show that high Mn contents increase the stability of the austenitic structure against a' martensitic transformation, while keeping high strength at cryogenic temperature. Moreover, proper elaboration through primary and possi...

  17. Applications of non-cryogenic portable EDXRF systems in archaeometry

    International Nuclear Information System (INIS)

    Cesareo, R.; Castellano, A.; Dabrowski, A.

    1996-01-01

    In this paper the most relevant developments in the realisation of portable energy-dispersive X-ray fluorescence (EDXRF) equipments are discussed. In particular, the latest advances in non-cryogenic (Peltier cooled) X-ray detectors and miniaturised X-ray generators are shown. The energy resolution of the new detection systems is adequate to resolve the characteristic X-ray emission lines of contiguous elements. This small size and low power make the system ideal for portable instrumentation and have stimulated the development of small- and low-power X-ray generators which can be used for the excitation of fluorescence radiation in a broad energy range (5-40 keV). Finally, the use of EDXRF related to archaeometric research (pigments in ancient paintings and major elements in the metal alloys) is emphasised. Recent results obtained with new HgI 2 and silicon PIN detector systems combined with miniaturised highly stable air-cooled X-ray generators are described. (orig.)

  18. Asymmetric Conductance Thermoelectric Cooling Modules for Cryogenic Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric coolers (TECs) have long been noted for their compact construction, high reliability, and clean, quiet operation, and they are now widely used in...

  19. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    Science.gov (United States)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  20. Application of Object-Based Industrial Controls for Cryogenics

    CERN Document Server

    Casas-Cubillos, J; Gomes, P; Pezzetti, M; Sicard, Claude Henri; Varas, F J

    2002-01-01

    The first application of the CERN Unified Industrial Control system (UNICOS) has been developed for the 1.8 K refrigerator at point 1.8 in mid-2001. This paper presents the engineering methods used for application development, in order to reach the objectives of maintainability and reusability, in the context of a development done by an external consortium of engineering firms. It will also review the lessons learned during this first development and the improvements planned for the next applications.

  1. A camac-based intelligent subsystem for ATLAS example application: cryogenic monitoring and control

    International Nuclear Information System (INIS)

    Pardo, R.; Kawarasaki, Y.; Wasniewski, K.

    1985-01-01

    A subunit of the CAMAC accelerator control system of ATLAS for monitoring and, eventually, controlling the cryogenic refrigeration and distribution facility is under development. This development is the first application of a philosophy of distributed intelligence which will be applied throughout the ATLAS control system. The control concept is that of an intelligent subunit of the existing ATLAS CAMAC control highway. A single board computer resides in an auxiliary crate controller which allows access to all devices within the crate. The local SBC can communicate to the host over the CAMAC highway via a protocol involving the use of memory in the SBC which can be accessed from the host in a DMA mode. This provides a mechanism for global communications, such as for alarm conditions, as well as allowing the cryogenic system to respond to the demands of the accelerator system

  2. Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications

    Science.gov (United States)

    Ramalingam, R.; Boguhn, D.; Fillinger, H.; Schlachter, S. I.; Süßer, M.

    2014-01-01

    In some cryogenic process measurement applications, for example, in hydrogen technology and in high temperature superconductor based generators, there is a need of robust temperature sensors. These sensors should be able to measure the large temperature range of 20 - 500 K with reasonable resolution and accuracy. Thin film PT 1000 sensors could be a choice to cover this large temperature range. Twenty one sensors selected from the same production batch were tested for their temperature sensitivity which was then compared with different batch sensors. Furthermore, the sensor's stability was studied by subjecting the sensors to repeated temperature cycles of 78-525 K. Deviations in the resistance were investigated using ice point calibration and water triple point calibration methods. Also the study of directional oriented intense static magnetic field effects up to 8 Oersted (Oe) were conducted to understand its magneto resistance behaviour in the cryogenic temperature range from 77 K - 15 K. This paper reports all investigation results in detail.

  3. CAMAC-based intelligent subsystem for ATLAS example application: cryogenic monitoring and control

    International Nuclear Information System (INIS)

    Pardo, R.; Kawarasaki, Y.; Wasniewski, K.

    1985-01-01

    A subunit of the CAMAC accelerator control system of ATLAS for monitoring and, eventually, controlling the cryogenic refrigeration and distribution facility is under development. This development is the first application of a philosophy of distributed intelligence which will be applied throughout the ATLAS control system. The control concept is that of an intelligent subunit of the existing ATLAS CAMAC control highway. A single board computer resides in an auxiliary crate controller which allows access to all devices within the crate. The local SBC can communicate to the host over the CAMAC highway via a protocol involving the use of memory in the SBC which can be accessed from the host in a DMA mode. This provides a mechanism for global communications, such as for alarm conditions, as well as allowing the cryogenic system to respond to the demands of the accelerator system

  4. Permeability and flammability study of composite sandwich structures for cryogenic applications

    Science.gov (United States)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures

  5. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    Science.gov (United States)

    Fast, R. W.

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250

  6. Technology Applications that Support Space Exploration

    Science.gov (United States)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  7. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  8. Boron carbide-carbon composites and composites for cryogenic applications

    International Nuclear Information System (INIS)

    Sheinberg, H.

    1979-01-01

    Because of its neutronic properties, high hardness, and high melting temperature, boron carbide (B 4 C) is widely used at the Los Alamos Scientific Laboratory. However because of its hardness and mode of manufacture, it is expensive to machine finish to tight dimensional specifictions. For some neutronic applications, a density considerably below the theoretical 2.52 Mg/m 3 was acceptable, and this relaxation in density specification permitted addition of carbon as a second phase to reduce machining costs. We conducted an experimental program to prepare 50.8-mm-diam by 34.8-mm-thick cylinders of B 4 C and B 4 C-C composites with concentrations of carbon varying from 5.5 to 30 volume percent. Additionally we used three forms of carbon, natural flake graphite, synthetic graphite flour, and a fine furnace black as the source of the second phase. We determined the sound velocity, compressive strength, coefficient of thermal expansion, electrical resistivity, and microstructure as functions of composition. Additionally, an enriched boron ( 10 B)-carbon composite was studied as an alternate material

  9. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications

    Science.gov (United States)

    Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M. L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-12-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs.

  10. Cellular concrete: a potential load-bearing insulation for cryogenic applications

    International Nuclear Information System (INIS)

    Richard, T.G.; Dobogai, J.A.; Gerhardt, T.D.; Young, W.C.

    1975-01-01

    The need for low cost, low thermal conductivity, high strength insulation suitable for cryogenic applications is becoming more evident. An investigation of the potential of cellular concretes to fulfill this function was initiated. A review of the thermal and mechanical characteristics of foamed plastics and cellular concrete is presented along with relative cost comparisons. Test data from preliminary investigations is presented to define the influence of material constituents, density, and temperature on the mechanical and thermal response of cellular concrete. Specimen densities range from 0.64 to 1.44 gr/cc. The influence of temperature variations from 22 0 C to -196 0 C is reported for selected densities

  11. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  12. Bistable Mechanisms for Space Applications.

    Science.gov (United States)

    Zirbel, Shannon A; Tolman, Kyler A; Trease, Brian P; Howell, Larry L

    2016-01-01

    Compliant bistable mechanisms are monolithic devices with two stable equilibrium positions separated by an unstable equilibrium position. They show promise in space applications as nonexplosive release mechanisms in deployment systems, thereby eliminating friction and improving the reliability and precision of those mechanical devices. This paper presents both analytical and numerical models that are used to predict bistable behavior and can be used to create bistable mechanisms in materials not previously feasible for compliant mechanisms. Materials compatible with space applications are evaluated for use as bistable mechanisms and prototypes are fabricated in three different materials. Pin-puller and cutter release mechanisms are proposed as potential space applications.

  13. Towards Supercapacitors in Space Applications

    OpenAIRE

    Buergler Brandon; Faure Bertrand; Latif David; Diblik Lukas; Vasina Petr; Gineste Valéry; Simcak Marek

    2017-01-01

    Supercapacitors offer a wide range of applications for space flight. The aim of this activity was to pursue life tests on commercial off the shelf (COTS) supercapacitors from different manufacturers, to evaluate their performance after long term vacuum exposure and to investigate balancing designs for the use of these cells in banks of supercapacitors (BOSC). This study enabled to select the most suitable part for space applications and to confirm the design rules at unit level and deratings ...

  14. Feasibility of Carbon Fiber/PEEK Composites for Cryogenic Fuel Tank Applications

    Science.gov (United States)

    Doyle, K.; Doyle, A.; O Bradaigh, C. M.; Jaredson, D.

    2012-07-01

    This paper investigates the feasibility of CF/PEEK composites for manufacture of cryogenic fuel tanks for Next Generation Space Launchers. The material considered is CF/PEEK tape from Suprem SA and the proposed manufacturing process for the fuel tank is Automated Tape Placement. Material characterization was carried out on test laminates manufactured in an autoclave and also by Automated Tape Placement with in-situ consolidation. The results of the two processes were compared to establish if there is any knock down in properties for the automated tape placement process. A permeability test rig was setup with a helium leak detector and the effect of thermal cycling on the permeability properties of CF/PEEK was measured. A 1/10th scale demonstrator was designed and manufactured consisting of a cylinder manufactured by automated tape placement and an upper dome manufactured by autoclave processing. The assembly was achieved by Amorphous Interlayer Bonding with PEI.

  15. Optimization of a cryogenic current comparator for the application as beam monitor

    International Nuclear Information System (INIS)

    Geithner, Rene

    2013-01-01

    Aim of the present thesis was to improve by the application of new materials and concepts the noise-limited resolution as well as the band width of a cryogenic current comparator for the measurement of the time behavior of smallest beam currents, consisting of a superconducting meander-shaped screening, a superconducting pick-up coil, a superconducting matching transformer, and a SQID sensor, and to reduce its sensitivity against mechanical oscillations. because of this the present thesis deals with the systematic study of the magnetic properties of ferromagnetic materials and their noise contributions for the application in pick-up coils respectively transformers. The main topic of this thesis layed thereby on the characterization of novel amorphous as well as nanocrystalline materials at low temperatures, for which hitherto no reliable values were present in the literature.

  16. A low cost support post for SSC quadrupole magnets and other cryogenic applications

    International Nuclear Information System (INIS)

    Hiller, M.W.; Kunz, R.J.; Lehmann, G.A.; Nilles, M.J.

    1994-01-01

    An injection molded support post has been designed and tested for use in the cryostat of the 5.4 meter long SSC Collider Quadrupole Magnet (CQM). This glass reinforced thermoplastic support is less costly than the complex alternative post designs that consist of filament wound tubes with thermal shrink fit metallic end pieces. The near net shape injection molding process delivers customized components at production rates suitable for present and proposed large scale cryogenic projects such as large accelerators, SMES, and Maglev. In addition, standard shapes (plates, tubes, threaded rods, and fasteners) comprised of this composite are available as catalog items. This paper presents the design considerations, material testing, and validation of predicted structural performance through component testing. Test results reported herein include compressive strength validations as well as previously unreported creep, thermal conductivity, and thermal contraction data. A delineated reliability method is discussed for verifying compliance with apportioned reliability targets using a synthesis of the FEA and test data. Also the design approach and data presented here can be extended toward the design of low cost mass produced supports for other cryogenic applications

  17. Tether applications for space station

    Science.gov (United States)

    Nobles, W.

    1986-01-01

    A wide variety of space station applications for tethers were reviewed. Many will affect the operation of the station itself while others are in the category of research or scientific platforms. One of the most expensive aspects of operating the space station will be the continuing shuttle traffic to transport logistic supplies and payloads to the space station. If a means can be found to use tethers to improve the efficiency of that transportation operation, it will increase the operating efficiency of the system and reduce the overall cost of the space station. The concept studied consists of using a tether to lower the shuttle from the space station. This results in a transfer of angular momentum and energy from the orbiter to the space station. The consequences of this transfer is studied and how beneficial use can be made of it.

  18. Towards Supercapacitors in Space Applications

    Directory of Open Access Journals (Sweden)

    Buergler Brandon

    2017-01-01

    Full Text Available Supercapacitors offer a wide range of applications for space flight. The aim of this activity was to pursue life tests on commercial off the shelf (COTS supercapacitors from different manufacturers, to evaluate their performance after long term vacuum exposure and to investigate balancing designs for the use of these cells in banks of supercapacitors (BOSC. This study enabled to select the most suitable part for space applications and to confirm the design rules at unit level and deratings at component level, which need to be applied. All those complementary results have paved the way to the on-going activities related to Nesscap 10F qualification and associated modular Bank Of Supercapacitors development for space applications.

  19. Acquisition/expulsion system for earth orbital propulsion system study. Volume 1: Summary report. [cryogenic storage and fuel flow regulation system for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    Design, construction, and quality control tests on a dual screen liner device for the space shuttle orbiter cryogenic fuel tank and feedliner system are summarized. The dual stainless steel mesh of the device encloses eight liquid fuel channels and provides the liquid/vapor interface stability required for low gravity orbits.

  20. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  1. Space time problems and applications

    DEFF Research Database (Denmark)

    Dethlefsen, Claus

    models, cubic spline models and structural time series models. The development of state space theory has interacted with the development of other statistical disciplines.   In the first part of the Thesis, we present the theory of state space models, including Gaussian state space models, approximative...... analysis of non-Gaussian models, simulation based techniques and model diagnostics.   The second part of the Thesis considers Markov random field models. These are spatial models applicable in e.g. disease mapping and in agricultural experiments. Recently, the Gaussian Markov random field models were...... techniques with importance sampling.   The third part of the Thesis contains applications of the theory. First, a univariate time series of count data is analysed. Then, a spatial model is used to compare wheat yields. Weed count data in connection with a project in precision farming is analysed using...

  2. MEMS for Space Flight Applications

    Science.gov (United States)

    Lawton, R.

    1998-01-01

    Micro-Electrical Mechanical Systems (MEMS) are entering the stage of design and verification to demonstrate the utility of the technology for a wide range of applications including sensors and actuators for military, space, medical, industrial, consumer, automotive and instrumentation products.

  3. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  4. Investigations of space charge effects in the cryogenic gas filled stopping cell for the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Heisse, Fabian [IKTP, TU Dresden (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Dickel, Timo; Plass, Wolfgang; Geissel, Hans; Scheidenberger, Christoph [II. Physikalisches Institut, JLU Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Reiter, Moritz Pascal; Rink, Ann-Kathrin [II. Physikalisches Institut, JLU Giessen (Germany); Zuber, Kai [IKTP, TU Dresden (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2015-07-01

    At the FRS Ion Catcher experiment precision mass measurements of short lived projectile and fission fragments are performed. Therefore highly charged ions with relativistic energies need to be thermalized to kinetic energies of several eV. This process takes place in the cryogenic gas filled stopping cell (CSC). All stopping cells suffer at large ion rates under space charge effects, which lead to decreasing efficiencies and can also influence the extraction time. Thus the understanding of space charge effects is of greatest importance to make full use of the higher yields at future rare ion beam facilities like FAIR. For this purpose simulation with the software SIMION {sup registered} concerning space charge effects were done. In this presentation the calculated transport efficiency of the CSC for different intensities, electric fields and spill structures are discussed and compared with measured results. Furthermore an outlook and first results of the simulation for the new CSC for the Low-Energy Branch at FAIR are given.

  5. Lightweight, High-Flow, Low Connection-Force, In-Space Cryogenic Propellant Coupling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Three of the key abilities needed for making future NASA and commercial in-space transportation systems more affordable and capable are: a) the ability to 'live off...

  6. Lightweight, High-Flow, Low Connection-Force, In-Space Cryogenic Propellant Coupling, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Three of the key abilities needed for making future NASA and commercial launch and in-space transportation systems more affordable and capable are: a) the ability to...

  7. National Institute of Occupational Safety and Health (NIOSH) Partnered Development of Cryogenic Life Support Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic life support technology, used by NASA to protect crews working around hazardous gases soon could be called on for a number of life-saving applications as...

  8. Fundamentals of cryogenic engineering

    CERN Document Server

    Mukhopadhyay, Mamata

    2014-01-01

    The author, with her vast and varied experience in teaching and allied fields, clearly enunciates the behaviour and various properties of common cryogenic fluids, methods of liquefaction, and separation and applications of cryogens with thermodynamic analysis for process selection. This profusely illustrated study with clear-cut diagrams and process charts, should serve not only as a textbook for students but also as an excellent reference for researchers and practising engineers on design of cryogenic refrigeration, and liquefaction and separation process plants for various applications.

  9. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    Science.gov (United States)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  10. Evaluation of carbon fiber composites fabricated using ionic liquid based epoxies for cryogenic fluid applications

    Directory of Open Access Journals (Sweden)

    R.N. Grugel

    Full Text Available Utilizing tanks fabricated from fiber reinforced polymeric composites for storing cryogenic fluids such as liquid oxygen and liquid hydrogen is of great interest to NASA as considerable weight savings can be gained. Unfortunately such composites, especially at cryogenic temperatures, develop a mismatch that initiates detrimental delamination and crack growth, which promotes leaking. On-going work with ionic liquid-based epoxies appears promising in mitigating these detrimental effects. Some recent results are presented and discussed. Keywords: Ionic liquid, Carbon fiber, Epoxy, COPV, Cryogenic fluids

  11. Development of Pulse Tube Cryocoolers at SITP for Space Application

    Science.gov (United States)

    Zhang, Ankuo; Wu, Yinong; Liu, Shaoshuai; Yu, Huiqin; Yang, Baoyu

    2018-05-01

    Over the last 10 years, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, has developed very high-efficiency pulse tube cryocoolers (PTCs) for aerospace applications. These PTCs can provide cooling power from milliwatt scale to tens of watts over a range of temperatures from 30 to 170 K and can be used to cool a variety of detectors in space applications (such as quantum interference devices, radiometers and ocean color sensors) that must operate at a specific cryogenic temperature to increase the signal-to-noise ratio, sensitivity and optical resolution. This paper reviews the development of single-stage PTCs over a range of weights from 1.6 to 12 kg that offer cooling powers at the cold temperature range from 40 to 170 K. In addition, a two-stage 30 K-PTC is under development.

  12. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    Science.gov (United States)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  13. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  14. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  15. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  16. Shape Memory Alloy Cryogenic Transfer Coupling for Space Depot Docking Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objective of the proposed effort is to establish the feasibility of using shape memory alloy (SMA) actuators for selected components of the automatic...

  17. Cryogenic implications of orbit selection of the Space Infrared Telescope Facility (SIRTF)

    International Nuclear Information System (INIS)

    Lee, J.H.; Brooke, W.F.; Maa, S.

    1986-01-01

    The Infrared Astronomical Satellite (IRAS) which completed the first all sky survey in the infrared demonstrated the tremendous advantage of space-based infrared astronomy. The ability to cool the telescope optics and focal plane to liquid helium temperatures and the absence of atmospheric disturbances which cause ''seeing'' effects resulted in the discovery of 250,000 IR sources and many interesting phenomena including dust clouds around Vega and the infrared ''cirrus'' at 100 μm. To realize the true benefit of space infrared astronomy, NASA is now studying the Space Infrared Telescope Facility, a long-life space-based observatory, to follow up on the survey results of IRAS. The choice of orbits is a critical program decision. The objective of this paper is to compare the performance of an all superfluid helium SIRTF system in the two possible orbit inclinations, polar orbit (99 0 ) and the low inclination orbit (28.5 0 )

  18. Cryogenic Vibration Damping Mechanisms for Space Telescopes and Interferometers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In its mission to understand how galaxies, stars, and planetary systems form, NASA's Origins Technology Program calls for advances in "enabling component and...

  19. Surface Tension Confines Cryogenic Liquid

    Science.gov (United States)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  20. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  1. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  2. Green Application for Space Power

    Science.gov (United States)

    Robinson, Joel

    2015-01-01

    Most space vehicle auxiliary power units (APUs) use hydrazine propellant for generating power. Hydrazine is a toxic, hazardous fuel that requires special safety equipment and processes for handling and loading. In recent years, there has been development of two green propellants (less toxic) that could enable their use in APUs. The Swedish government, in concert with the Swedish Space Corporation, has developed a propellant based on ammonium dinitramide (LMP-103S) that was flown on the Prisma spacecraft in 2010. The United States Air Force (USAF) has been developing a propellant based on hydroxylammonium nitrate (AFM315E) that is scheduled to fly on the Green Propellant Infusion Mission in the spring of 2016 to demonstrate apogee and reaction control thrusters. However, no one else in the Agency is currently pursuing use of green propellants for application to the APUs. Per the TA-01 Launch Propulsion Roadmap, the Space Technology Mission Directorate had identified the need to have a green propellant APU by 2015. This is our motivation for continuing activities.

  3. Risk assessment of cryogenic installations – implementation, applicability of methodologies and challenges at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    For the safe design of a cryogenic installation, it is essential to carry out a comprehensive hazard identification and risk estimate in order to put in place the necessary control measures for an adequate risk mitigation. According to CERN Safety Rules, it is mandatory that the organic unit owning a cryogenic facility conducts and documents a risk assessment. This requirement is also given by the European Directive 2014/68/EU to manufacturers of pressure equipment. During the talk, some of the challenges CERN faces in the development of risk assessments across the broad array of activities involving cryogenic equipment in the organization will be discussed. Challenges such as the choice of the best-suited risk assessment methodology based on the features and complexity of the installation/activities, the efforts to develop tools to facilitate hazard identification, risk analysis and definition of related measures to protect the health and safety of workers, such as streamlined guidelines, forms and check...

  4. Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity

    International Nuclear Information System (INIS)

    Szczygieł, Ireneusz; Stanek, Wojciech; Szargut, Jan

    2016-01-01

    LNG (liquefied natural gas) delivered by means of sea-ships is pressurized and then regasified before its introduction to the system of pipelines. The utilization of cryogenic exergy of LNG for electricity production without combustion of any its portion is analyzed. For the conversion of LNG cryogenic exergy into electricity, the Stirling engine is proposed to be applied. The theoretical thermodynamic model of Stirling engine has been applied. This model is used to investigate the influence of pinch temperature in heat exchangers, engine compression ratio and dead volumes ratios on the thermodynamic parameters of the Stirling engine. The results of simulation represent the input data for investigations of thermodynamic performance of the proposed system. In order to evaluate the thermodynamic performance of the proposed process, an exergy analysis has been applied. The exergy efficiency and influence of design and operational parameters on exergy losses are determined for each of the proposed system configurations. The obtained results represent the background for advanced exergy-based analyses, including thermo-ecological cost. - Highlights: • Application of Stirling engine in LNG regasification. • Thermodynamic model of Stirling engine for cryogenic exergy recovery is applied. • Sensitivity analysis of operational parameters on system behaviour is applied. • Exergy analysis is conducted.

  5. Advanced Materials for Space Applications

    Science.gov (United States)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  6. Space tug applications. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    This article is the final report of the conceptual design efforts for a 'space tug'. It includes preliminary efforts, mission analysis, configuration analysis, impact analysis, and conclusions. Of the several concepts evaluated, the nuclear bimodal tug was one of the top candidates, with the two options being the NEBA-1 and NEBA-3 systems. Several potential tug benefits were identified during the mission analysis. The tug enables delivery of large (>3,500 kg) payloads to the outer planets and it increases the GSO delivery capability by 20% relative to current systems. By providing end of life disposal, the tug can be used to extend the life of existing space assets. It can also be used to reboost satellites which were not delivered to their final orbit by the launch system. A specific mission model is the key to validating the tug concept. Once a mission model can be established, mission analysis can be used to determine more precise propellant quantities and burn times. In addition, the specific payloads can be evaluated for mass and volume capability with the launch systems. Results of the economic analysis will be dependent on the total years of operations and the number of missions in the mission model. The mission applications evaluated during this phase drove the need for large propellant quantities and thus did not allow the payloads to step down to smaller and less expensive launch systems

  7. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  8. [Application of in situ cryogenic Raman spectroscopy to analysis of fluid inclusions in reservoirs].

    Science.gov (United States)

    Chen, Yong; Lin, Cheng-yan; Yu, Wen-quan; Zheng, Jie; Wang, Ai-guo

    2010-01-01

    Identification of salts is a principal problem for analysis of fluid inclusions in reservoirs. The fluid inclusions from deep natural gas reservoirs in Minfeng sub-sag were analyzed by in situ cryogenic Raman spectroscopy. The type of fluid inclusions was identified by Raman spectroscopy at room temperature. The Raman spectra show that the inclusions contain methane-bearing brine aqueous liquids. The fluid inclusions were analyzed at -180 degrees C by in situ cryogenic Raman spectroscopy. The spectra show that inclusions contain three salts, namely NaCl2, CaCl2 and MgCl2. Sodium chloride is most salt component, coexisting with small calcium chloride and little magnesium chloride. The origin of fluids in inclusions was explained by analysis of the process of sedimentation and diagenesis. The mechanism of diagenesis in reservoirs was also given in this paper. The results of this study indicate that in situ cryogenic Raman spectroscopy is an available method to get the composition of fluid inclusions in reservoirs. Based on the analysis of fluid inclusions in reservoirs by in situ cryogenic Raman spectroscopy with combination of the history of sedimentation and diagenesis, the authors can give important evidence for the type and mechanism of diagenesis in reservoirs.

  9. Intelligent tutoring systems for space applications

    Science.gov (United States)

    Luckhardt-Redfield, Carol A.

    1990-01-01

    Artificial Intelligence has been used in many space applications. Intelligent tutoring systems (ITSs) have only recently been developed for assisting training of space operations and skills. An ITS at Southwest Research Institute is described as an example of an ITS application for space operations, specifically, training console operations at mission control. A distinction is made between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed and future training requirements and potential ITS solutions are described.

  10. Characterisation of diode-connected SiGe BiCMOS HBTs for space applications

    Science.gov (United States)

    Venter, Johan; Sinha, Saurabh; Lambrechts, Wynand

    2016-02-01

    Silicon-germanium (SiGe) bipolar complementary metal-oxide semiconductor (BiCMOS) transistors have vertical doping profiles reaching deeper into the substrate when compared to lateral CMOS transistors. Apart from benefiting from high-speed, high current gain and low-output resistance due to its vertical profile, BiCMOS technology is increasingly becoming a preferred technology for researchers to realise next-generation space-based optoelectronic applications. BiCMOS transistors have inherent radiation hardening, to an extent predictable cryogenic performance and monolithic integration potential. SiGe BiCMOS transistors and p-n junction diodes have been researched and used as a primary active component for over the last two decades. However, further research can be conducted with diode-connected heterojunction bipolar transistors (HBTs) operating at cryogenic temperatures. This work investigates these characteristics and models devices by adapting standard fabrication technology components. This work focuses on measurements of the current-voltage relationship (I-V curves) and capacitance-voltage relationships (C-V curves) of diode-connected HBTs. One configuration is proposed and measured, which is emitterbase shorted. The I-V curves are measured for various temperature points ranging from room temperature (300 K) to the temperature of liquid nitrogen (77 K). The measured datasets are used to extract a model of the formed diode operating at cryogenic temperatures and used as a standard library component in computer aided software designs. The advantage of having broad-range temperature models of SiGe transistors becomes apparent when considering implementation of application-specific integrated circuits and silicon-based infrared radiation photodetectors on a single wafer, thus shortening interconnects and lowering parasitic interference, decreasing the overall die size and improving on overall cost-effectiveness. Primary applications include space-based geothermal

  11. Novel Photobioreactor Development for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Capability for controlled and efficient cultivation of microbial cells in microgravity environments opens the possibility for a plethora of applications. One such...

  12. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication.

    Science.gov (United States)

    Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun

    2014-01-01

    Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Development of a camera casing suited for cryogenic and vacuum applications

    Science.gov (United States)

    Delaquis, S. C.; Gornea, R.; Janos, S.; Lüthi, M.; von Rohr, Ch Rudolf; Schenk, M.; Vuilleumier, J.-L.

    2013-12-01

    We report on the design, construction, and operation of a PID temperature controlled and vacuum tight camera casing. The camera casing contains a commercial digital camera and a lighting system. The design of the camera casing and its components are discussed in detail. Pictures taken by this cryo-camera while immersed in argon vapour and liquid nitrogen are presented. The cryo-camera can provide a live view inside cryogenic set-ups and allows to record video.

  14. Experimental study on the thermal hydraulic performance of plate-fin heat exchangers for cryogenic applications

    Science.gov (United States)

    Jiang, Qingfeng; Zhuang, Ming; Zhang, Qiyong; Zhu, Zhigang; Geng, Maofei; Sheng, Linhai; Zhu, Ping

    2018-04-01

    Efficient and compact plate-fin heat exchangers are critical for large-scale helium liquefaction/refrigeration systems as they constitute major part in the cold box. This study experimentally explores the heat transfer and pressure drop behaviors of helium gas at low temperature in four types of plate-fin channels, namely offset-strip and perforated fins, with different geometrical parameters. A series of cryogenic experiments at approximately liquid nitrogen temperature are carried out to measure the Colburn j factors and Fanning friction f factors with a wide range of Reynolds number. Besides, to reveal the performance variations under different operating temperatures, comparative experiments respectively conducted at room temperature and liquid nitrogen temperature are implemented. The results show that in comparison with the performance data at room temperature, most of j factors are relatively smaller perhaps because the lower aluminum thermal conductivity and higher Prandtl Number at low temperature. Meanwhile, the f factors corresponding to cryogenic conditions exhibit slightly larger even though the core pressure drops show considerable reductions. In contrast to the calculated results from the frequently-used performance curves (Chen and Shen, 1993), the Root Mean Squared Errors of j and f values are correlated within 8.38% and 6.97% for one perforated fin core, 41.29% and 34.97% for three OSF cores, respectively. For OSFs, further comparisons with the previous empirical correlations from literatures are conducted to verify the accuracy of each correlation. Generally, most of the calculated results predict acceptably within the deviations of ±25% for the j factors, while the predicted results express relatively large deviations for the f factors. Therefore, it may be revealed that most of the existing correlations were not able to accurately predict the experimental data in consideration of the performance differences under realistic cryogenic operating

  15. Automation of the software production process for multiple cryogenic control applications

    OpenAIRE

    Fluder, Czeslaw; Lefebvre, Victor; Pezzetti, Marco; Plutecki, Przemyslaw; Tovar-González, Antonio; Wolak, Tomasz

    2018-01-01

    The development of process control systems for the cryogenic infrastructure at CERN is based on an automatic software generation approach. The overall complexity of the systems, their frequent evolution as well as the extensive use of databases, repositories, commercial engineering software and CERN frameworks have led to further efforts towards improving the existing automation based software production methodology. A large number of control system upgrades were successfully performed for th...

  16. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  17. Green Applications for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft propulsion and power for many decades has relied on Hydrazine monopropellant technology for auxiliary power units (APU), orbital circularization, orbit...

  18. Mechanical Properties of Low Density Alloys at Cryogenic Temperatures

    International Nuclear Information System (INIS)

    Jiao, X. D.; Liu, H. J.; Li, L. F.; Yang, K.

    2006-01-01

    Low-density alloys include aluminum alloys, titanium alloys and magnesium alloys. Aluminum alloys and titanium alloys have been widely investigated and used as structural materials for cryogenic applications because of their light weight and good low-temperature mechanical properties.For aerospace applications, persistent efforts are being devoted to reducing weight and improving performance. Magnesium alloys are the lightest structural alloys among those mentioned above. Therefore, it is necessary to pay attention to magnesium alloys and to investigate their behaviors at cryogenic temperatures. In this paper, we have investigated the mechanical properties and microstructures of some magnesium alloys at cryogenic temperatures. Experimental results on both titanium and magnesium alloys are taken into account in considering these materials for space application

  19. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  20. Phase Sensitive Measurements of Ferromagnetic Josephson Junctions for Cryogenic Memory Applications

    Science.gov (United States)

    Niedzielski, Bethany Maria

    A Josephson junction is made up of two superconducting layers separated by a barrier. The original Josephson junctions, studied in the early 1960's, contained an insulating barrier. Soon thereafter, junctions with normal-metal barriers were also studied. Ferromagnetic materials were not even theoretically considered as a barrier layer until around 1980, due to the competing order between ferromagnetic and superconducting systems. However, many exciting physical phenomena arise in hybrid superconductor/ferromagnetic devices, including devices where the ground state phase difference between the two superconductors is shifted by pi. Since their experimental debut in 2001, so-called pi junctions have been demonstrated by many groups, including my own, in systems with a single ferromagnetic layer. In this type of system, the phase of the junction can be set to either 0 or pi depending on the thickness of the ferromagnetic layer. Of interest, however, is the ability to control the phase of a single junction between the 0 and pi states. This was theoretically shown to be possible in a system containing two ferromagnetic layers (spin-valve junctions). If the materials and their thicknesses are properly chosen to manipulate the electron pair correlation function, then the phase state of a spin-valve Josephson junction should be capable of switching between the 0 and ? phase states when the magnetization directions of the two ferromagnetic layers are oriented in the antiparallel and parallel configurations, respectively. Such a phase-controllable junction would have immediate applications in cryogenic memory, which is a necessary component to an ultra-low power superconducting computer. A fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. The goal of this work was to experimentally verify this prediction for a phase-controllable ferromagnetic Josephson junction. To address this

  1. Cryotribology: Development of cryotribological theories and application to cryogenic devices. Interim report, June 15, 1985--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Y.; Michael, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Rabinowicz, E. [Massachusetts Inst. of Tech., Cambridge, MA (United States)]|[Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab.

    1992-09-15

    High-performance superconducting solenoids are susceptible to premature quenches, or superconducting to normal state transitions, due to abrupt conductor movements within the winding. Abrupt motions involving 5{approximately}10{mu}m conductor displacements dissipate sufficient energy to trigger a quench. Sliding and mechanical behaviors of materials at cryogenic temperatures have been experimentally examined. After accounting for changes in the sliding materials` low-temperature strength properties, we have found that the adhesion theory of friction and wear remains applicable at cryogenic temperatures. The adhesion friction theory suggests two methods for controlling unsteady sliding motions. The first involves the selection of sliding materials whose friction coefficients increase with increasing sliding speed. A number of material pairs have been examined for positive friction-velocity characteristics. This materials-based approach to frictional stabilization does not seem a viable option at 4.2 K. The second altemative is to preprogram the force conditions within high-risk regions of the winding to regulate the occurrence of unsteady sliding motions. Structural models are proposed to account for unsteady conductor motions on a variety of dimensional scales. The models are used to design a small superconducting solenoid. Performance of this solenoid suggests that force-based motion control is a potentially viable design approach for achieving successful dry-wound magnets.

  2. Application of Molecular Adsorber Coatings in Chamber A for the James Webb Space Telescope

    Science.gov (United States)

    Abraham, Nithin S.

    2017-01-01

    As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test facility called Chamber A. This presentation summarizes the background, fabrication, installation, chemical analysis test results, and future plans for the MAC technology, which was effectively used to protect the JWST test equipment from vacuum chamber contamination. As a coating made of highly porous zeolite materials, the Molecular Adsorber Coating (MAC) was developed to capture outgassed molecular contaminants, such as hydrocarbons and silicones. For spaceflight applications, the adsorptive capabilities of the coating can alleviate on-orbit outgassing concerns on or near sensitive surfaces and instruments within the spacecraft. Similarly, this sprayable paint technology has proven to be significantly beneficial for ground-based space applications, in particular, for vacuum chamber environments. This presentation describes the application of the MAC technology for the James Webb Space Telescope (JWST) at NASA Johnson Space Center (JSC). The coating was used as a mitigation tool to entrap outgassed contaminants, specifically silicone-based diffusion pump oil, from within JSCs cryogenic optical vacuum chamber test

  3. Development and application of cryogenic radiometry with hard X-rays

    International Nuclear Information System (INIS)

    Gerlach, Martin

    2008-01-01

    To establish cryogenic radiometry with hard X-ray radiation for photon energies of up to 60 keV, a novel type of cavity absorber had to be developed for the cryogenic radiometer SYRES I, which is deployed by the Physikalisch-Technische Bundesanstalt (PTB) as primary standard detector at the electron storage ring BESSY II. This new type of cavity absorber allows for the complete absorption of hard X-ray radiation in combination with an appropriate sensitivity and an adequate time constant for the measurement of synchrotron radiation at BESSY II. As the process of fabrication of different types of absorbers is very time-consuming, the interaction of hard X-ray radiation with different absorber materials and geometries was studied intensively by using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a wavelength shifter beamline at BESSY II with a calibrated energy dispersive detector. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in a cavity absorber with a gold base 550 μm in thickness and a cylindrical shell made of copper 90 μm in thickness to reduce losses caused by fluorescence and scattered radiation. Monochromatized synchrotron radiation of high spectral purity was then used to calibrate semiconductor photodiodes, which can be used as compact and inexpensive secondary standard detectors, against a cryogenic radiometer, covering the entire photon energy range of three beamlines from 50 eV to 60 keV with relative uncertainties of less than 0.5 %. Furthermore the spatial homogeneity of the spectral responsivity, the transmittance and the linearity of the photodiodes was investigated. Through a direct comparison of the free-air ionization chamber PK100, a primary detector standard of PTB used in dosimetry, and the cryogenic radiometer SYRES

  4. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  5. Cryogenic process simulation

    International Nuclear Information System (INIS)

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems

  6. New conceptual method in maintenance with application in cryogenics pilot plant (CPP)

    International Nuclear Information System (INIS)

    Anghel, Vasile

    2006-01-01

    Full text: This study concluded with a series of suggestions concerning the methodology of maintaining a Cryogenics Nuclear Plant where the maintenance is either fundamental or only of importance. The implementation of this methodology can be achieved in two main steps. The first step concerns the conception of the scientific basis for maintenance, while the second step regards the implementation. The first step describes the management of maintenance in conditions of quality, risk and cost constraints. The conditions are established on the basis of a project of research in maintenance. The second step notifies the aspects of design and technology in maintenance of nuclear industrial units. The nuclear complex technical systems of the Cryogenics Pilot Plant at ICSI - Rm Valcea implies the development of some dedicated software, to ensure the designing, realization and operation of the plant, and prototypes of integrated software modules, to ensure the systems operation during of the life cycle. The implementation method is based on vibration analyses and mechanical studies while a flexible data acquisition system for monitoring, and control must be developed as a platform to ensure a more precise diagnosis and prediction of machinery malfunction. With a flexible data acquisition and analysis system in operation it is possible to easily increase the number of input channels. (author)

  7. Excellence method in maintenance with application for cryogenic nuclear unit (EMAC)

    International Nuclear Information System (INIS)

    Anghel, Vasile

    2006-01-01

    Full text: Cryogenic Nuclear Plant (CNP) has as main objectives the development of a technology for the removal of tritium from heavy water used in nuclear plants of CANDU type and finding of a methodology for complete inspection of the equipment used in the presence of tritium at very low temperatures. These aims imply achieving two main stages. The first stage concerns the maintenance conception on a scientific basis, while the second stage concerns the implementation. The first stage implies the management of maintenance in constraints relating to quality, risk and cost. The second stage regards the aspect of design and technology of CNP maintenance. The solution adequate with this conception will lead to a solution viable for implementation. The operative maintenance will be based on RCM (Reliability Centered Maintenance), using NOLAN and HEAP 1978 methodologies. The integrated maintenance through research and implementation demonstrates the design, realization of equipment, the dynamic and and the static complex uses of EMAC in CNP. It is a method of conception and implementation that integrates maintenance for the life cycle in the considered cryogenics systems. The implementation is achieved by means of the software LabVIEW applied to the specific objectives of the Program for Operative Maintenance in Temporal Dynamic Regime (POMTDR). (author)

  8. Thermoacoustic refrigerator for space applications

    Science.gov (United States)

    Garrett, Steven L.; Adeff, Jay A.; Hofler, Thomas J.

    1993-10-01

    A new spacecraft cryocooler which uses resonant high-amplitude sound waves in inert gases to pump heat is described. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). A space-qualified thermoacoustic refrigerator was flown on the Space Shuttle Discovery (STS-42) in January, 1992. It was entirely autonomous, had no sliding seals, required no lubrication, used mostly low-tolerance machined parts, and contained no expensive components. Thermoacoustics is shown to be a competitive candidate for food refrigerator/freezers and commercial/residential air conditioners. The design and performance of the Space Thermo/Acoustic Refrigerator (STAR) is described.

  9. Ethernet for Space Flight Applications

    Science.gov (United States)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will

  10. MEMS applications in space exploration

    Science.gov (United States)

    Tang, William C.

    1997-09-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  11. Topological vector spaces and their applications

    CERN Document Server

    Bogachev, V I

    2017-01-01

    This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. In addition, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.

  12. Advanced lightweight optics development for space applications

    International Nuclear Information System (INIS)

    Bilbro, James W.

    1998-01-01

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed

  13. A gamma- and X-ray detector for cryogenic, high magnetic field applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.L., E-mail: roblcoop@indiana.edu [Indiana University, Bloomington, IN 47408 (United States); Alarcon, R. [Arizona State University, Tempe, AZ 85287 (United States); Bales, M.J. [University of Michigan, Ann Arbor, MI 48109 (United States); Bass, C.D. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Beise, E.J. [University of Maryland, College Park, MD 20742 (United States); Breuer, H., E-mail: breuer@enp.umd.edu [University of Maryland, College Park, MD 20742 (United States); Byrne, J. [University of Sussex, Brighton, BN1 9QH (United Kingdom); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Coakley, K.J. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Dewey, M.S.; Fu, C. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Gentile, T.R., E-mail: thomas.gentile@nist.gov [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Mumm, H.P.; Nico, J.S. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); O' Neill, B. [Arizona State University, Tempe, AZ 85287 (United States); Pulliam, K. [Tulane University, New Orleans, LA 70118 (United States); Thompson, A.K. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States)

    2012-11-01

    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector are presented, as well as information on operation of APDs at cryogenic temperatures.

  14. Constitutive modelling of stainless steels for cryogenic applications. Strain induced martensitic transformation

    CERN Document Server

    Garion, C

    2001-01-01

    The 300-series stainless steels are metastable austenitic alloys: martensitic transformation occurs at low temperatures and/or when plastic strain fields develop in the structures. The transformation influences the mechanical properties of the material. The present note aims at proposing a set of constitutive equations describing the plastic strain induced martensitic transformation in the stainless steels at cryogenic temperatures. The constitutive modelling shall create a bridge between the material sciences and the structural analysis. For the structures developing and accumulating plastic deformations at sub-zero temperatures, it is of primary importance to be able to predict the intensity of martensitic transformation and its effect on the material properties. In particular, the constitutive model has been applied to predict the behaviour of the components of the LHC interconnections, the so-called bellows expansion joints (the LHC mechanical compensation system).

  15. Application of FLEET Velocimetry in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel

    Science.gov (United States)

    Burns, Ross A.; Danehy, Paul M.; Halls, Benjamin R.; Jiang, Naibo

    2015-01-01

    Femtosecond laser electronic excitation and tagging (FLEET) velocimetry is demonstrated in a large-scale transonic cryogenic wind tunnel. Test conditions include total pressures, total temperatures, and Mach numbers ranging from 15 to 58 psia, 200 to 295 K, and 0.2 to 0.75, respectively. Freestream velocity measurements exhibit accuracies within 1 percent and precisions better than 1 m/s. The measured velocities adhere closely to isentropic flow theory over the domain of temperatures and pressures that were tested. Additional velocity measurements are made within the tunnel boundary layer; virtual trajectories traced out by the FLEET signal are indicative of the characteristic turbulent behavior in this region of the flow, where the unsteadiness increases demonstrably as the wall is approached. Mean velocities taken within the boundary layer are in agreement with theoretical velocity profiles, though the fluctuating velocities exhibit a greater deviation from theoretical predictions.

  16. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  17. Ricor's anniversary of 50 innovative years in cryogenic technology

    Science.gov (United States)

    Filis, Avishai; Segal, Victor; Pundak, Nachman; Bar Haim, Zvi; Danziger, Menachem

    2017-05-01

    Ricor cryogenics was founded in 1967 and since then it has focused on innovative technologies in the cryogenic field. The paper reviews the initial research and development efforts invested in various technologies that have yielded products such as Cryostats for Mossbauer Effect measurement, Liquid gas Dewar containers, Liquid helium vacuum transfer tubes, Cryosurgery and other innovative products. The major registered patents that matured to products such as a magnetic vacuum valve operator, pumped out safety valve and other innovations are reviewed here. As a result of continuous R and D investment, over the years a new generation of innovative Stirling cryogenic products has developed. This development began with massive split slip-on coolers and has progressed as far as miniature IDDCA coolers mainly for IR applications. The accumulated experience in Stirling technology is used also as a platform for developing self-contained water vapor pumps known as MicroStar and NanoStar. These products are also used in collaboration with a research institute in the field of High Temperature Superconductors. The continuous growth in the cryogenic products range and the need to meet market demands have motivated the expansion, of Ricor's manufacturing facility enabling it to become a world leader in the cryocooler field. To date Ricor has manufactured more than 120,000 cryocoolers. The actual cryogenic development efforts and challenges are also reviewed, mainly in the field of long life cryocoolers, ruggedized products, miniaturization and products for space applications.

  18. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  19. Chemical sensors for space applications

    Science.gov (United States)

    Bonting, Sjoerd L.

    1992-01-01

    The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.

  20. Future superconductivity applications in space - A review

    Science.gov (United States)

    Krishen, Kumar; Ignatiev, Alex

    High temperature superconductor (HISC) materials and devices can provide immediate applications for many space missions. The in-space thermal environment provides an opportunity to develop, test, and apply this technology to enhance performance and reliability for many applications of crucial importance to NASA. Specifically, the technology development areas include: (1) high current power transmission, (2) microwave components, devices, and antennas, (3) microwave, optical, and infrared sensors, (4) signal processors, (5) submillimeter wave components and systems, (6) ultra stable space clocks, (7) electromagnetic launch systems, and (8) accelerometers and position sensors for flight operations. HTSC is expected to impact NASA's Lunar Bases, Mars exploration, Mission to Earth, and Planetary exploration programs providing enabling and cost-effect technology. A review of the space applications of the HTSC technology is presented. Problem areas in technology development needing special attention are identified.

  1. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C; Jimenez D, J; Cejudo A, J; Hernandez M, V [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  2. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  3. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    Science.gov (United States)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  4. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  5. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  6. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  7. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  8. MCNP Simulations of Measurement of Insulation Compaction in the Cryogenic Rocket Fuel Tanks at Kennedy Space Center by Fast/Thermal Neutron Techniques

    Science.gov (United States)

    Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.

    2010-01-01

    MCNP simulations have been run to evaluate the feasibility of using a combination of fast and thermal neutrons as a nondestructive method to measure of the compaction of the perlite insulation in the liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC). Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. When heated it expands from four to twenty times its original volume which makes it very useful for thermal insulation. The cryogenic tanks at Kennedy Space Center are spherical with outer diameters of 69-70 feet and lined with a layer of expanded perlite with thicknesses on the order of 120 cm. There is evidence that some of the perlite has compacted over time since the tanks were built 1965, affecting the thermal properties and possibly also the structural integrity of the tanks. With commercially available portable neutron generators it is possible to produce simultaneously fluxes of neutrons in two energy ranges: fast (14 Me V) and thermal (25 me V). The two energy ranges produce complementary information. Fast neutrons produce gamma rays by inelastic scattering, which is sensitive to Fe and O. Thermal neutrons produce gamma rays by prompt gamma neutron activation (PGNA) and this is sensitive to Si, Al, Na, K and H. The compaction of the perlite can be measured by the change in gamma ray signal strength which is proportional to the atomic number densities of the constituent elements. The MCNP simulations were made to determine the magnitude of this change. The tank wall was approximated by a I-dimensional slab geometry with an 11/16" outer carbon steel wall, an inner stainless wall and 120 cm thick perlite zone. Runs were made for cases with expanded perlite, compacted perlite or with various void fractions. Runs were also made to simulate the effect of adding a moderator. Tallies were made for decay-time analysis from t=0 to 10 ms; total detected gamma

  9. Environmental Development Plan (EDP): space applications

    International Nuclear Information System (INIS)

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  10. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  11. Fundamentals and applications of dry CO2 cryogenic aerosol for photomask cleaning

    Science.gov (United States)

    Varghese, Ivin; Balooch, Mehdi; Bowers, Charles W.

    2010-09-01

    There is a dire need for the removal of all printable defects on lithography masks. As the technology node advances, smaller particles need to be efficiently removed from smaller features without any damage or adders. CO2 cryogenic aerosol cleaning is a dry, residue-free and chemically inert technique that doesn't suffer from disadvantages of conventional wet cleaning methods such as transmission/reflectivity loss, phase change, CD change, haze/progressive defects, and/or limitation on number of cleaning cycles. Ultra-pure liquid CO2 when dispensed through an optimally designed nozzle results in CO2 clusters that impart the required momentum for defect removal. Historically nanomachining debris removal has been established with this technique. Several improvements have been incorporated for cleaning of advanced node masks, which has enabled Full Mask Final Clean, a new capability that has been successfully demonstrated. The properties of the CO2 clusters can be captured utilizing the Phase Doppler Anemometry (PDA) and effect of varying process and design parameters can be verified. New nozzles have been designed to widen the cleaning process window for advanced node optical masks, without any damage to the weak primary features and/or sub-resolution assist features (SRAFs). This capability has been experimentally proven for high aspect ratio SRAFs e.g. 2.79 (52nm wide by 145 nm tall) as well as SRAFs 45nm wide by 73 nm tall. In this paper, 100% removal of soft defects that would have printed on advanced node masks is demonstrated. No printed defects larger than 50nm is observed after the CO2 cleaning. Stability of the cleaning and handling mechanisms has been demonstrated over the last 4.5 months in a production environment. The CO2 cleaning technique is expected to be effective for more advanced masks and Extreme Ultra-Violet (EUV) lithography.

  12. Development of the microphone array measurement technique for application to cryogenic wind tunnels; Entwicklung der Mikrofonarraymesstechnik fuer die experimentelle Anwendung in kryogenen Windkanaelen

    Energy Technology Data Exchange (ETDEWEB)

    Ahlefeldt, Thomas

    2013-02-01

    The present work deals with the development of the microphone array measurement technique for application to cryogenic wind tunnels at temperatures down to 100 K. In contrast to conventional wind tunnels, in cryogenic wind tunnels the Reynolds number can be changed independent of the Mach number. Therefore the applicability of the microphone array measurement technique to cryogenic wind tunnels allows the independent investigation of Mach and Reynolds number effects for aeroacoustic sources. For this purpose two microphone arrays suitable for cryogenic application have been developed. A small array was used for a validation experiment using a single-rod configuration as an aeroacoustic noise source; the experience gained therefrom being then used to develop a larger array. This array was used to finally demonstrate the applicability of the measuring technology to an airplane half model. For the development of both arrays several factors had to be considered, such as, for example, the contraction arising from the low temperatures and the influence of the temperature on the microphone frequency response. In the validation experiment, acoustic array measurements have been performed using the small microphone array with 21 microphones in a cryogenic wind tunnel for various Mach and Reynolds numbers, using a single-rod configuration. The aeroacoustic source induced by the rod could be identified by the microphone.array at ambient as well as at cryogenic temperatures. The radiated sound powers were compared with predictions from two models: one model was based on a dimensional analysis of the measured data without taking into consideration the Reynolds number. The measured data with this model could be better fitted by a speed law with the exponent 6.7 rather than the expected 6.0. The second model was based on an analytical model for sound radiation from a single-rod configuration which took into account variables dependent on the Reynolds number. The comparison with

  13. Surface tension confined liquid cryogen cooler

    International Nuclear Information System (INIS)

    Castles, S.H.; Schein, M.E.

    1989-01-01

    A cryogenic cooler is described for use in craft such as launch, orbital and space vehicles subject to changes in orientation and conditions of vibration and weightlessness comprising: an insulated tank; a porous open celled sponge-like material disposed substantially throughout the contained volume of the insulated tank; a cryogenic fluid disposed within the sponge-like material; a cooling finger immersed in the cryogenic fluid, the finger extending from inside the insulated tank externally to an outside source such as an instrument detector for the purpose of transmitting heat from the outside source into the cryogenic fluid; means for filling the insulated tank with cryogenic fluid; and means for venting vaporized cryogenic fluid from the insulated tank

  14. Modelling and control of a cryogenic refrigerator: Application to the 800 W at 4.5 K cryogenic station of the CEA Grenoble

    International Nuclear Information System (INIS)

    Clavel, Fanny

    2011-01-01

    This thesis is concerned with the development of a novel control scheme on a helium refrigerator subject to high pulsed loads. Such disturbance will happen during the cooling of the superconductive magnet, used in tokamak configuration. A dynamical model of a cryogenic station, which offers a cooling capacity of 800 W at 4.5 K, has been produced. The modelling is based on the theoretical equations of thermodynamics, thermal physics and hydraulics and takes into account the non linear properties of helium at low temperature. Based on this model, a new control strategy has been developed for each of the two parts of the refrigerator: the warm compression system and the cold box. Experimental results show significant improvement with multivariable controllers as compared with the PIDs in the presence of high pulsed loads. An observer of the thermal load of the helium bath has also been developed. The model is constructed by identification using internal measures of the refrigerator. It can be used as condition monitoring tool for operators. (author)

  15. Electronics Modeling and Design for Cryogenic and Radiation Hard Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with a focus on very low temperature and...

  16. Carbon/Liquid Crystal Polymer Prepreg for Cryogenic and High-Temp Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — KaZaK Composites proposes to develop a pultrusion process to produce carbon fiber / liquid crystal polymer (LCP) prepreg, a first for this category of materials and...

  17. Cryogenic photodetectors

    Science.gov (United States)

    Chardin, G.

    2000-03-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  18. Cryogenic photodetectors

    CERN Document Server

    Chardin, G

    2000-01-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  19. Cryogenic dark matter search (CDMS II): Application of neural networks and wavelets to event analysis

    Energy Technology Data Exchange (ETDEWEB)

    Attisha, Michael J. [Brown U.

    2006-01-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. This dissertation presents the CDMS detector technology and the commissioning of two towers of detectors at the deep underground site in Soudan, Minnesota. CDMS detectors comprise crystals of Ge and Si at temperatures of 20 mK which provide ~keV energy resolution and the ability to perform particle identification on an event by event basis. Event identification is performed via a two-fold interaction signature; an ionization response and an athermal phonon response. Phonons and charged particles result in electron recoils in the crystal, while neutrons and WIMPs result in nuclear recoils. Since the ionization response is quenched by a factor ~ 3(2) in Ge(Si) for nuclear recoils compared to electron recoils, the relative amplitude of the two detector responses allows discrimination between recoil types. The primary source of background events in CDMS arises from electron recoils in the outer 50 µm of the detector surface which have a reduced ionization response. We develop a quantitative model of this ‘dead layer’ effect and successfully apply the model to Monte Carlo simulation of CDMS calibration data. Analysis of data from the two tower run March-August 2004 is performed, resulting in the world’s most sensitive limits on the spin-independent WIMP-nucleon cross-section, with a 90% C.L. upper limit of 1.6 × 10-43 cm2 on Ge for a 60 GeV WIMP. An approach to performing surface event discrimination using neural networks and wavelets is developed. A Bayesian methodology to classifying surface events using neural networks is found to provide an optimized method based on minimization of the expected dark matter limit. The discrete wavelet analysis of CDMS phonon pulses improves surface event discrimination in conjunction with the neural

  20. The Application of Cryogenic Laser Physics to the Development of High Average Power Ultra-Short Pulse Lasers

    Directory of Open Access Journals (Sweden)

    David C. Brown

    2016-01-01

    Full Text Available Ultrafast laser physics continues to advance at a rapid pace, driven primarily by the development of more powerful and sophisticated diode-pumping sources, the development of new laser materials, and new laser and amplification approaches such as optical parametric chirped-pulse amplification. The rapid development of high average power cryogenic laser sources seems likely to play a crucial role in realizing the long-sought goal of powerful ultrafast sources that offer concomitant high peak and average powers. In this paper, we review the optical, thermal, thermo-optic and laser parameters important to cryogenic laser technology, recently achieved laser and laser materials progress, the progression of cryogenic laser technology, discuss the importance of cryogenic laser technology in ultrafast laser science, and what advances are likely to be achieved in the near-future.

  1. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  2. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  3. Solar cells for space applications (part 2)

    International Nuclear Information System (INIS)

    Gomez, T.J.

    1992-01-01

    This lecture focusses on qualification and verification tests and procedures on solar cells designed for space applications. The series of tests should produce orbital performance under determined illumination, temperature and irradiance. Tests are divided in outdoor and laboratory experiments. Environmental tests include durability, qualification (mechanical and electrical), I-V curves, Spectral response

  4. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  5. Progress in space weather predictions and applications

    Science.gov (United States)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  6. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  7. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  8. The Effects of Doping and Processing on the Thermoelectric Properties of Platinum Diantimonide Based Materials for Cryogenic Peltier Cooling Applications

    Science.gov (United States)

    Waldrop, Spencer Laine

    The study of thermoelectrics is nearly two centuries old. In that time a large number of applications have been discovered for these materials which are capable of transforming thermal energy into electricity or using electrical work to create a thermal gradient. Current use of thermoelectric materials is in very niche applications with contemporary focus being upon their capability to recover waste heat. A relatively undeveloped region for thermoelectric application is focused upon Peltier cooling at low temperatures. Materials based on bismuth telluride semiconductors have been the gold standard for close to room temperature applications for over sixty years. For applications below room temperature, semiconductors based on bismuth antimony reign supreme with few other possible materials. The cause of this diculty in developing new, higher performing materials is due to the interplay of the thermoelectric properties of these materials. The Seebeck coecient, which characterizes the phenomenon of the conversion of heat to electricity, the electrical conductivity, and the thermal conductivity are all interconnected properties of a material which must be optimized to generate a high performance thermoelectric material. While for above room temperature applications many advancements have been made in the creation of highly ecient thermoelectric materials, the below room temperature regime has been stymied by ill-suited properties, low operating temperatures, and a lack of research. The focus of this work has been to investigate and optimize the thermoelectric properties of platinum diantimonide, PtSb2, a nearly zero gap semiconductor. The electronic properties of PtSb2 are very favorable for cryogenic Peltier applications, as it exhibits good conductivity and large Seebeck coecient below 200 K. It is shown that both n- and p-type doping may be applied to this compound to further improve its electronic properties. Through both solid solution formation and processing

  9. Hybrid Electrostatic/Flextensional Deformable Membrane Mirror for Lightweight, Large Aperture and Cryogenic Space Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes innovative hybrid electrostatic/flextensional membrane deformable mirror capable of large amplitude aberration correction for large...

  10. Defining the coupled effects of cryogenic, space-radiation, and hypervelocity impact damamge on COPV's, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The intent of the proposed effort is to investigate the detailed composite overwrapped pressure vessel (COPV) performance characteristics after being subject to...

  11. Image slicer manufacturing: from space application to mass production

    Science.gov (United States)

    Bonneville, Christophe; Cagnat, Jean-François; Laurent, Florence; Prieto, Eric; Ancourt, Gérard

    2004-09-01

    This presentation aims to show technical and industrial inputs to be taking into account for Image Slicer systems design and development for different types of projects from space application to mass production for multi-IFU instruments. Cybernétix has a strong experience of precision optics assembled thanks to molecular adhesion and have already manufactured 6 prototypes of image slicer subsystem (prototypes of NIRSPEC-IFU, IFS for JWST, MUSE ...) in collaboration with the Laboratoire d"Astrophysique de Marseille (LAM) and the Centre de Recherche Astronomique de Lyon (CRAL). After a brief presentation of the principle of manufacturing and assembly, we will focus on the different performances achieved in our prototypes of slicer mirrors, pupil and slit mirrors lines: an accuracy on centre of curvature position better than 15 arsec has been obtained for a stack of 30 slices. The contribution of the slice stacking to this error is lower than 4 arcsec. In spite of very thin surfaces (~ 0.9 x 40 mm for instance), a special process allows to guarantee a surface roughness about 5 nm and very few digs on the slice borders. The WFE of the mini-mirror can also be measured at a stage of the manufacturing. Different environmental tests have shown the withstanding of these assemblies to cryogenic temperature (30 K). Then, we will describe the different solutions (spherical, flat, cylindrical surfaces) and characteristics of an image slicer that can influence difficulties of manufacturing and metrology, cost, schedule and risks with regard to fabrication. Finally, the study of a mass production plan for MUSE (CRAL) composed of 24 Image Slicers of 38 slices, that"s to say 912 slices, will be exposed as an example of what can be do for multi-module instruments.

  12. Space Weather Research Towards Applications in Europe

    CERN Document Server

    Lilensten, Jean

    2007-01-01

    This book shows the state of the art in Europe on a very new discipline, Space Weather. This discipline lies at the edge between science and industry. This book reflects such a position, with theoretic papers and applicative papers as well. It is divided into 5 chapters. Each chapter starts with a short introduction, which shows the coherence of a given domain. Then, 4 to 5 contributions written by the best specialists in Europe give detailed hints of a hot topic in space weather. From the reading of this book, it becomes evident that space weather is a living discipline, full of promises and already full of amazing realizations. The strength of Europe is clear through the book, but it is also clear that this discipline is world wide.

  13. Submonotone mappings in Banach spaces and applications

    International Nuclear Information System (INIS)

    Georgiev, P.G.

    1995-11-01

    The notions 'submonotone' and 'strictly submonotone' mapping, introduced by J. Spingarn in R n , are extended in a natural way to arbitrary Banach spaces. Several results about monotone operators are proved for submonotone and strictly submonotone ones: Rockafellar's result about local boundedness of monotone operators; Kenderov's result about single-valuedness and upper-semicontinuity almost everywhere of monotone operators in Asplund spaces; minimality (as w * - cusco mappings) of maximal strictly submonotone mappings, etc. It is shown that subdifferentials of various classes non-convex functions defined as pointwise suprema of quasi-differentiable functions possess submonotone properties. Results about generic differentiability of such functions are obtained (among them are new generalizations of an Ekeland and Lebourg's theorem). Applications are given to the properties of the distance function in a Banach space with uniformly Gateaux differentiable norm. (author). 29 refs

  14. LDR cryogenics

    Science.gov (United States)

    Nast, T.

    1988-01-01

    A brief summary from the 1985 Large Deployable Reflector (LDR) Asilomar 2 workshop of the requirements for LDR cryogenic cooling is presented. The heat rates are simply the sum of the individual heat rates from the instruments. Consideration of duty cycle will have a dramatic effect on cooling requirements. There are many possible combinations of cooling techniques for each of the three temperatures zones. It is clear that much further system study is needed to determine what type of cooling system is required (He-2, hybrid or mechanical) and what size and power is required. As the instruments, along with their duty cycles and heat rates, become better defined it will be possible to better determine the optimum cooling systems.

  15. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  16. Cryogenic Insulation Standard Data and Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of...

  17. Cryogenic MEMS Pressure Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  18. Applications of quantum entanglement in space

    International Nuclear Information System (INIS)

    Ursin, R.; Aspelmeyer, M.; Jennewein, T.; Zeilinger, A.

    2005-01-01

    Full text: Quantum entanglement is at the heart of quantum physics. At the same time it is the basis for novel quantum communication schemes, such as quantum cryptography over long distances. Bringing quantum entanglement to the space environment will open a new range of fundamental physics experiments, and will provide unique opportunities for quantum communication applications over long distances. We proposed tests of quantum communication in space, whereby an entangled photon Source is placed onboard the ISS, and two entangled photons are transmitted via a simultaneous down link and received at two distant ground stations. Furthermore, performing a series of consecutive single down links with separate ground stations will enable a test of establishing quantum cryptography even on a global scale. This Space-QUEST proposal was submitted within ESA's OA-2004 and was rated as 'outstanding' because of both, a novel and imaginative scientific content and for technological applications of quantum cryptography respectively. We intend to explore the possibilities to send, receive and manipulate single entangled photon pairs using telescopes, reflectors and high-power lasers over a distance of some tens of kilometers up to 100 kilometers experimentally. A distance of approx. 10 kilometer would already correspond to one atmospheric equivalent and would thus imply the feasibility of installing a ground to satellite link. We are already collaborating with European Space Agency ESA, to investigate and outline the accommodation of a quantum communication terminal in existing optical terminals for satellite communication. (author)

  19. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  20. Proceedings of the 26th International Cryogenic Engineering Conference - International Cryogenic Material Conference 2016

    Science.gov (United States)

    Datta, T. S.; Sharma, R. G.; Kar, S.

    2017-02-01

    Session There were 6 plenary talks delivered by the eminent scientist/ technologists. The topics on which these talks were delivered were Cryogenics for Indian Space Programme, The Cold Chain, Super-fluid Cooling Technology, Review on Superconducting Materials in China, Review on Cryogenics and Superconductivity for present day MRI and finally the Mendelssohn Award lecture on the 50 years of Cryogenics and Superconductivity for High Energy Physics. Other than the plenary talks, there were 102 oral presentations covered in 18 technical sessions, out of which 21 were Invited Talks. Each session was dedicated to a specific topic like Large Scale Cryogenics, Cryogenics for Accelerators, Fusion and Space, Cryocoolers, Heat Transfer, Cryogenic Instrumentation, Superconducting Materials, Superconducting Magnets & Cavities, Power Applications, LNG & Safety etc. In addition to oral presentations there were three poster sessions spread over three days and a total of 250 posters were displayed. 4. Award Session There was a dedicated session on Award Ceremony. Dr Haishan Cao, post doctoral researcher at the University of Twente, The Netherlands received the 2016 Klipping Award for his work on Micro-machined Joule-Thomson coolers. The ICMC Cryogenic Material Awardee for Excellence (2016) was Prof. Kazumasa Iida, Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University. Japan. The paper published in ” Cryogenics 72 (2015), p 111-121 by J. Bartlett, G. Hardy, and I.D. Hepburn, titled “Performance of a fast response miniature Adiabatic Demagnetization Refrigerator using a single crystal tungsten magneto resistive heat switch” was selected for the best paper award. The prestigious 2016 Mendelssohn Award was given to Dr. Philippe Lebrun of CERN, Geneva, Switzerland for his life-long contribution to Cryogenics and Superconductivity for accelerator programme. Each awardees was also presented with a complimentary book from Springer Nature through

  1. Low-Cost Manufacturing Technique for Advanced Regenerative Cooling for In-Space Cryogenic Engines, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed effort is to use selective laser melting (SLM, an additive manufacturing technique) to manufacture a hot fire-capable, water-cooled spool...

  2. Low-Cost Manufacturing Technique for Advanced Regenerative Cooling for In-Space Cryogenic Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed effort is to demonstrate feasibility of using selective laser melting (SLM, an emerging manufacturing technique) to manufacture a subscale...

  3. Commercial Application of In-Space Assembly

    Science.gov (United States)

    Lymer, John; Hanson, Mark; Tadros, Al; Boccio, Joel; Hollenstein, Bruno; Emerick, Ken; Doughtery, Sean; Doggett, Bill; Dorsey, John T.; King, Bruce D.; hide

    2016-01-01

    In-Space assembly (ISA) expands the opportunities for cost effective emplacement of systems in space. Currently, spacecraft are launched into space and deploy into their operational configuration through a carefully choreographed sequence of operations. The deployment operation dictates the arrangement of the primary systems on the spacecraft, limiting the ability to take full advantage of launch vehicles volume and mass capability. ISA enables vastly different spacecraft architectures and emplacement scenarios to be achieved, including optimal launch configurations ranging from single launch and assembly to on-orbit aggregation of multiple launches at different orbital locations and times. The spacecraft can be visited at different orbital locations and times to effect expansion and maintenance of an operational capability. To date, the primary application of ISA has been in large programs funded by government organizations, such as the International Space Station. Recently, Space Systems Loral (SSL) led a study funded by the Defense Advanced Research Projects Agency (DARPA), called Dragonfly, to investigate the commercial applicability and economic advantages of ISA. In the study, it was shown that ISA enables SSL to double the capability of a commercial satellite system by taking advantage of alternate packaging approaches for the reflectors. The study included an ultra-light-weight robotic system, derived from Mars manipulator designs, to complete assembly of portions of the antenna system using a tool derived from DARPA orbital express and National Aeronautics and Space Administration (NASA) automated structural assembly experience. The mechanical connector that enables robotic ISA takes advantage of decades of development by NASA from the 1970's to 1980's during the Space Station Freedom program, the precursor to the ISS. The mechanical connector was originally designed for rapid astronaut assembly while also providing a high quality structural connection

  4. Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

    2014-02-18

    The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

  5. Thermoacoustic power systems for space applications

    International Nuclear Information System (INIS)

    Backhaus, S.N.; Tward, E.; Pedach, M.

    2001-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (W/kg). Thermoacoustic engines can convert high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, these engines are low mass and promise to be highly reliable. Coupling a thermoacoustic engine to a low-mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Data will be presented on the first tests of a demonstration thermoacoustic engine designed for the 100-Watt power range.

  6. Varied line-space gratings and applications

    International Nuclear Information System (INIS)

    McKinney, W.R.

    1991-01-01

    This paper presents a straightforward analytical and numerical method for the design of a specific type of varied line-space grating system. The mathematical development will assume plane or nearly-plane spherical gratings which are illuminated by convergent light, which covers many interesting cases for synchrotron radiation. The gratings discussed will have straight grooves whose spacing varies across the principal plane of the grating. Focal relationships and formulae for the optical grating-pole-to-exist-slit distance and grating radius previously presented by other authors will be derived with a symbolic algebra system. It is intended to provide the optical designer with the tools necessary to design such a system properly. Finally, some possible advantages and disadvantages for application to synchrotron to synchrotron radiation beamlines will be discussed

  7. Evaluation of Magnetoresistive RAM for Space Applications

    Science.gov (United States)

    Heidecker, Jason

    2014-01-01

    Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.

  8. Nuclear Cross Sections for Space Radiation Applications

    Science.gov (United States)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  9. Discussion about photodiode architectures for space applications

    Science.gov (United States)

    Gravrand, O.; Destefanis, G.; Cervera, C.; Zanatta, J.-P.; Baier, N.; Ferron, A.; Boulade, O.

    2017-11-01

    Detection for space application is very demanding on the IR detector: all wavelengths, from visible-NIR (2- 3um cutoff) to LWIR (10-12.5um cutoff), even sometimes VLWIR (15um cutoff) may be of interest. Moreover, various scenarii are usually considered. Some are imaging applications where the focal plane array (FPA) is used as an optical element to sense an image. However, the FPA may also be used in spectrometric applications where light is triggered on the different pixels depending on its wavelength. In some cases, star pointing is another use of FPAs where the retina is used to sense the position of the satellite. In all those configurations, we might distinguish several categories of applications: • low flux applications where the FPA is staring at space and the detection occurs with only a few number of photons. • high flux applications where the FPA is usually staring at the earth. In this case, the black body emission of the earth and its atmosphere ensures usually a large number of photons to perform the detection. Those two different categories are highly dimensioning for the detector as it usually determines the level of dark current and quantum efficiency (QE) requirements. Indeed, high detection performance usually requires a large number of integrated photons such that high QE is needed for low flux applications, in order to limit the integration time as much as possible. Moreover, dark current requirement is also directly linked to the expected incoming flux, in order to limit as much as possible the SNR degradation due to dark charges vs photocharges. Note that in most cases, this dark current is highly depending on operating temperature which dominates detector consumption. A classical way to mitigate dark current is to cool down the detector to very low temperatures. This paper won't discuss the need for wavefront sensing where the number of detected photons is low because of a very narrow integration window. Rigorously, this kind of

  10. Do Space Requirement Applicable in Private Preschools?

    Directory of Open Access Journals (Sweden)

    Salleh Naziah Muhamad

    2016-01-01

    Full Text Available Working or studying in a comfortable environment enhances not only well-being, but also satisfaction and therefore increase the productivity and learning. The numbers of private preschool in Malaysia boost every year. Frequently they operate in premises that have been fully refurbished. This has invited the questions on the building capability and space condition to provide a good environment to the children during the learning activities. Most of the building was refurbished to enhance it applicability as a school. Yet, these adaptive-reused buildings are doubtful. This research focused to identify the characteristics of the buildings’ physical and condition as well as the scenario of refurbished private preschool in accordance with the standard. Observation particularly on space and pupils density either it is reckoning with the authorities’ requirements. Most of the building was refurbished to enhance it applicability as a school. The data obtained from the observation and staff’s interview to 237 preschool (771 classrooms. The data revealed in most of preschools, the occupants in the classrooms were over the limit regulating by the authority. The data obtained was analyzed to become a reference and benchmark to the authorities to prepare the private preschool’s applications.

  11. Cryogenic implications for DT

    International Nuclear Information System (INIS)

    Souers, P.C.

    1977-10-01

    Cryogenic hydrogen data is being compiled for magnetic fusion engineering. Many physical properties of DT can be extrapolated from H 2 and D 2 values. The phase diagram properties of the D 2 -DT-T 2 mixture are being measured. Three properties which will be greatly affected by tritium should be measured. In order of their perceived importance, they are: (1) solid thermal conductivity, (2) solid mechanical strength, and (3) gaseous electrical conductivity. The most apparent need for DT data is in Tokomak fuel pellet injection. Cryopumping and distillation applications are also considered

  12. Third Conference on Artificial Intelligence for Space Applications, part 2

    Science.gov (United States)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  13. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    Science.gov (United States)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  14. High-energy-beam welding of type 316LN stainless steel for cryogenic applications

    International Nuclear Information System (INIS)

    Siewert, T.A.; Gorni, D.; Kohn, G.

    1988-01-01

    Laser and electron beam welds in 25-mm-thick AISI 316LN specimens containing 0.16 wt.$% N were evaluated for fusion reactor applications and their mechanical properties were compared with those of welds generated by lower productivity processes such as shielded-metal-arc and gas-metal-arc welding. Tensile tests were performed on transverse tensile specimens at 4 K. For both welding processes the fractures occurred in the base metal at a strength level near 950 MPa. This indicated that the weld and heat affected zone had a strength similar to that of the base metal. The 4 K weld fracture toughness was only slightly less than that for the base metal and comparable to the best values achieved with conventional welding processes in 316Ln weld metal. The Charpy V-notch absorbed energies averaged near 70 J at 76 K. Metallographic analysis revealed cellular and fully austenitic solidification with little porosity and no evidence of hot cracking

  15. Cryogenic explosion environment modeling and testing of space shuttle and light-weight radioisotope heater unit interactions

    International Nuclear Information System (INIS)

    Johnson, E.W.

    1985-10-01

    In order to assess the risk to the world's populace in the event of a Space Shuttle accident when radioisotope-containing heat sources are on board, testing of that system must be performed to determine release point, environments required, and the size distribution of the released fuel. To evaluate the performance of the Light-Weight Radioisotope Heater Unit (LWRHU) (101 of these 1-W items are placed on the Galileo spacecraft which will be launched from the Space Shuttle), some high-velocity impact and flyer plate testing was carried out. The results showed that a bare urania-fueled LWRHU clad (approximately 1-mm thick platinum-30 wt % rhodium alloy) will withstand 1100 m/s flyer plate (3.5-mm thick aluminum) impacts and 330 m/s impacts upon the Space Shuttle floor (approximately 12-mm thick aluminum) without rupture or fuel release. Velocities in the order of 600 m/s on a steel surface will cause clad failure with fuel release. The fuel breakup patterns were characterized as to quantity in a specific size range. These data were employed in the formal Safety Analysis Report for the LWRHU to support the planned 1986 Galileo launch. 19 figs

  16. Nonvolatile Memory Technology for Space Applications

    Science.gov (United States)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  17. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  18. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  19. MEMS Micro-Valve for Space Applications

    Science.gov (United States)

    Chakraborty, I.; Tang, W. C.; Bame, D. P.; Tang, T. K.

    1998-01-01

    We report on the development of a Micro-ElectroMechanical Systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micropropulsion, in-situ chemical analysis of other planets, or micro-fluidics experiments in micro-gravity. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. We at JPL are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range.

  20. Operation of large cryogenic systems

    International Nuclear Information System (INIS)

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab

  1. Cryogenic detectors for particle physics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-11-01

    A comprehensive introduction to cryogenic detector developments for particle physics is presented, covering conventional detectors cooled to low temperature (scintillators and semiconductors), superconductive and thermal sensitive devices, as well as the basics of cold electronics. After giving a critical overview of current work, we elaborate on possible new ways for further improvements and briefly evaluate the feasibility of the main proposed applications

  2. Evolution of new materials for space applications

    International Nuclear Information System (INIS)

    Purdy, D.M.

    1983-01-01

    The implications of spacecraft design requirements for materials technology are surveyed, with a focus on current trends and future needs. Criteria for materials selection are discussed, including contamination control (low-outgassing materials), electrical and thermal characteristics, structural stiffness, safety requirements, and survivability (under natural space conditions for longer periods and under potential hostile particle-beam or laser attack). The applications and potential of polymer-matrix, metal-matrix and ceramic-matrix composites are discussed and compared. While polymer-matrix-material applications are seen as extendable by using high-stiffness fibers and improving ultraviolet protection, the greatest potential is seen in the development of the metal-matrix and ceramic-matrix composites, as used in the Space Shuttle. A need for cheaper, lighter, more radiation-resistant and less contamination-prone thermal-control coatings than the present optical-solar-reflector tiles, silica fabric, and indium-tin-oxide coating is projected. Methods for the analysis of structural defects in viscoelastic electrical components are presented. The materials requirements of larger and more powerful future spacecraft are evaluated. 17 references

  3. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  4. STAIF96: space technology and applications international forum. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1996-01-01

    These proceedings represent papers presented at the Space Technology and Applications International Forum-STAIF. STAIF-96 hosted four technical conferences sharing the common interest in space exploration, technology, and commercialization. Topics discussed include space station, space transportation, materials processing in space, commercial forum, space power, commercial space ports, microelectronics, automation of robotics-space application, remote sensing, small business innovative research and communications. There were 243 papers presented at the forum, and 138 have been abstracted for the Energy Science and Technology database. STAIF-96 was partly sponsored by the U.S. Department of Energy

  5. Health Management Applications for International Space Station

    Science.gov (United States)

    Alena, Richard; Duncavage, Dan

    2005-01-01

    Traditional mission and vehicle management involves teams of highly trained specialists monitoring vehicle status and crew activities, responding rapidly to any anomalies encountered during operations. These teams work from the Mission Control Center and have access to engineering support teams with specialized expertise in International Space Station (ISS) subsystems. Integrated System Health Management (ISHM) applications can significantly augment these capabilities by providing enhanced monitoring, prognostic and diagnostic tools for critical decision support and mission management. The Intelligent Systems Division of NASA Ames Research Center is developing many prototype applications using model-based reasoning, data mining and simulation, working with Mission Control through the ISHM Testbed and Prototypes Project. This paper will briefly describe information technology that supports current mission management practice, and will extend this to a vision for future mission control workflow incorporating new ISHM applications. It will describe ISHM applications currently under development at NASA and will define technical approaches for implementing our vision of future human exploration mission management incorporating artificial intelligence and distributed web service architectures using specific examples. Several prototypes are under development, each highlighting a different computational approach. The ISStrider application allows in-depth analysis of Caution and Warning (C&W) events by correlating real-time telemetry with the logical fault trees used to define off-nominal events. The application uses live telemetry data and the Livingstone diagnostic inference engine to display the specific parameters and fault trees that generated the C&W event, allowing a flight controller to identify the root cause of the event from thousands of possibilities by simply navigating animated fault tree models on their workstation. SimStation models the functional power flow

  6. Application of Deep Cryogenic Treatment to Uncoated Tungsten Carbide Inserts in the Turning of AISI 304 Stainless Steel

    Science.gov (United States)

    Özbek, Nursel Altan; Çİçek, Adem; Gülesİn, Mahmut; Özbek, Onur

    2016-12-01

    This study investigated the effects of deep cryogenic treatment (DCT) on the wear performance of uncoated tungsten carbide inserts. AISI 304 austenitic stainless steel, widely used in industry, was selected as the workpiece material. Cutting experiments showed that the amount of wear significantly increased with increasing cutting speed. In addition, it was found that DCT contributed to the wear resistance of the turning inserts. The treated turning inserts were less worn by 48 and 38 pct in terms of crater wear and notch wear, respectively, whereas they exhibited up to 18 pct superior wear performance in terms of flank wear. This was attributed to the precipitation of new and finer η-carbides and their homogeneous distribution in the microstructure of the tungsten carbide material after deep cryogenic treatment. Analyses via image processing, hardness measurements, and SEM observations confirmed these findings.

  7. Green Applications for Space Power Project

    Science.gov (United States)

    Robinson, Joel (Principal Investigator)

    2014-01-01

    Spacecraft propulsion and power for many decades has relied on Hydrazine monopropellant technology for auxiliary power units (APU), orbital circularization, orbit raising/lowering and attitude control. However, Hydrazine is toxic and therefore requires special ground handling procedures to ensure launch crew safety. The Swedish Company ECAPS has developed a technology based upon the propellant Ammonium Dinitramide (ADN) that offers higher performance, higher density and reduced ground handling support than Hydrazine. This blended propellant is called LMP-103S. Currently, the United States Air Force (USAF) is pursuing a technology based on Hydroxyl Ammonium Nitrate (HAN, otherwise known as AF-M315E) with industry partners Aerojet and Moog. Based on the advantages offered by these propellants, MSFC should explore powering APU's with these propellants. Due to the availability of space hardware, the principal investigator has found a collection of USAF hardware, that will act as a surrogate, which operates on a Hydrazine derivative. The F-16 fighter jet uses H-70 or 30% diluted Hydrazine for an Emergency Power Unit (EPU) which supplies power to the plane. The PI has acquired two EPU's from planes slated for destruction at the Davis Monthan AFB. This CIF will include a partnership with 2 other NASA Centers who are individually seeking seed funds from their respective organizations: Kennedy Space Center (KSC) and Dryden Flight Research Center (DFRC). KSC is preparing for future flights from their launch pads that will utilize green propellants and desire a low-cost testbed in which to test and calibrate new leak detection sensors. DFRC has access to F-16's which can be used by MSFC & KSC to perform a ground test that demonstrates emergency power supplied to the jet. Neither of the green propellant alternatives have been considered nor evaluated for an APU application. Work has already been accomplished to characterize and obtain the properties of these 2 propellants

  8. Surface tension confined liquid cryogen cooler

    Science.gov (United States)

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  9. A hall for assembly and cryogenic tests

    International Nuclear Information System (INIS)

    Beaunier, J.; Buhler, S.; Caruette, A.; Chevrollier, R.; Junquera, T.; Le Scornet, J.C.

    1999-01-01

    Cryodrome, an assembly hall and the testing ground for cryogenic equipment and R and D experiments for the superconducting cavities is going to be transformed for its future missions. The cryogenic utilities, especially the He low pressure pumping capacity, was rearranged and extended to a new area. Space was provided to install CRYHOLAB, a new horizontal cryostat for cavity testing. Automatic control and supervision of the utilities and the experimental area are rebuilt and updated. (authors)

  10. Large-Scale Demonstration of Liquid Hydrogen Storage with Zero Boiloff for In-Space Applications

    Science.gov (United States)

    Hastings, L. J.; Bryant, C. B.; Flachbart, R. H.; Holt, K. A.; Johnson, E.; Hedayat, A.; Hipp, B.; Plachta, D. W.

    2010-01-01

    Cryocooler and passive insulation technology advances have substantially improved prospects for zero-boiloff cryogenic storage. Therefore, a cooperative effort by NASA s Ames Research Center, Glenn Research Center, and Marshall Space Flight Center (MSFC) was implemented to develop zero-boiloff concepts for in-space cryogenic storage. Described herein is one program element - a large-scale, zero-boiloff demonstration using the MSFC multipurpose hydrogen test bed (MHTB). A commercial cryocooler was interfaced with an existing MHTB spray bar mixer and insulation system in a manner that enabled a balance between incoming and extracted thermal energy.

  11. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  12. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  13. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  14. Radioisotope thermionic converters for space applications

    International Nuclear Information System (INIS)

    Miskolczy, G.; Lieb, D.P.

    1990-01-01

    The recent history of radioisotope thermionics is reviewed, with emphasis on the U.S. programs, and the prospects for the future are assessed. In radioisotope thermionic converters the emitter heat is generated by the decay of a radioactive isotope. The thermionic converter emitter is mounted directly on a capsule containing the isotope. The rest of the capsule is generally insulated to reduce thermal loss. The development of isotope-fueled thermionic power systems for space application has been pursued since the late 1950's. The U.S. effort was concentrated on modular systems with alpha emitters as the isotope heat source. In the SNAP-13 program, the heat sources were Cerium isotopes and each module produced about 100 watts. The converters were planar diodes and the capsule was insulated with multi-foil insulation

  15. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  16. Wireless Power Transfer for Space Applications

    Science.gov (United States)

    Ramos, Gabriel Vazquez; Yuan, Jiann-Shiun

    2011-01-01

    This paper introduces an implementation for magnetic resonance wireless power transfer for space applications. The analysis includes an equivalent impedance study, loop material characterization, source/load resonance coupling technique, and system response behavior due to loads variability. System characterization is accomplished by executing circuit design from analytical equations and simulations using Matlab and SPICE. The theory was validated by a combination of different experiments that includes loop material consideration, resonance coupling circuits considerations, electric loads considerations and a small scale proof-of-concept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The prototype provided about 4.5 W of power to the load at a separation of -5 cm from the source using a power amplifier rated for 7 W.

  17. Magnetoresistive magnetometer for space science applications

    International Nuclear Information System (INIS)

    Brown, P; Beek, T; Carr, C; O’Brien, H; Cupido, E; Oddy, T; Horbury, T S

    2012-01-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz −1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm 3 , respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012. (paper)

  18. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    Science.gov (United States)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  19. Low temperature high frequency coaxial pulse tube for space application

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Aurelia; Charles, Ivan; Rousset, Bernard; Duval, Jean-Marc [SBT, UMR-E CEA / UJF-Grenoble 1, INAC, 17, rue des Martyrs, Grenoble, F-38054 (France); Daniel, Christophe [CNES, 18, avenue Edouard Belin, Toulouse, F-31401 (France)

    2014-01-29

    The 4K stage is a critical step for space missions. The Hershel mission is using a helium bath, which is consumed day by day (after depletion, the space mission is over) while the Plank mission is equipped with one He4 Joule-Thomson cooler. Cryogenic chain without helium bath is a challenge for space missions and 4.2K Pulse-Tube working at high frequency (around 30Hz) is one option to take it up. A low temperature Pulse-Tube would be suitable for the ESA space mission EChO (Exoplanet Characterisation Observatory, expected launch in 2022), which requires around 30mW cooling power at 6K; and for the ESA space mission ATHENA (Advanced Telescope for High ENergy Astrophysics), to pre-cool the sub-kelvin cooler (few hundreds of mW at 15K). The test bench described in this paper combines a Gifford-McMahon with a coaxial Pulse-Tube. A thermal link is joining the intercept of the Pulse-Tube and the second stage of the Gifford-McMahon. This intercept is a separator between the hot and the cold regenerators of the Pulse-Tube. The work has been focused on the cold part of this cold finger. Coupled with an active phase shifter, this Pulse-Tube has been tested and optimized and temperatures as low as 6K have been obtained at 30Hz with an intercept temperature at 20K.

  20. LV-IMLI: Integrated MLI/Aeroshell for Cryogenic Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants have the highest energy density of any rocket fuel, and are used in most NASA and commercial launch vehicles to power their ascent. Cryogenic...

  1. Characterization of associate spaces of weighted Lorentz spaces with applications

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Pick, L.; Soudský, F.

    2014-01-01

    Roč. 224, č. 1 (2014), s. 1-23 ISSN 0039-3223 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : weighted Lorentz spaces * weighted inequalities * non-increasing rearragement * Banach function space Subject RIV: BA - General Mathematics Impact factor: 0.610, year: 2014 http://journals.impan.gov.pl/sm/Inf/224-1-1.html

  2. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  3. Radiation applications in NDT in space program

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1994-01-01

    Non-destructive testing (NDT) and evaluation play an important role in the qualification of sub-systems and components in space programme. NDT is carried out at various stages of manufacturing of components and also prior to end use to ensure a high degree of reliability. Penetrating radiations such as X-rays, γ-rays and neutrons are extensively used for the radiographic inspection of components, sub-systems and assemblies in both the launch vehicles and satellites. Both low and high energy radiations are employed for the evaluation of the above components depending on their size and nature. Real time radiography (RTR) and computed tomography (CT) are also used in certain specific applications where more detailed information is needed. Neutron radiography is employed for the inspection of pyro-devices used in separation, destruct and satellite deployment systems. Besides their use for non-destructive testing purposes, the radiation sources are also used for various special applications like solid propellant slurry flow measurement simulation of radiation environment on components used in the satellites and also for studying migration of ingredients in solid rocket motor. (author). 12 refs., 6 figs

  4. Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines

    Science.gov (United States)

    Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath

    2017-04-01

    The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.

  5. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  6. Spray-on foam insulations for launch vehicle cryogenic tanks

    Science.gov (United States)

    Fesmire, J. E.; Coffman, B. E.; Meneghelli, B. J.; Heckle, K. W.

    2012-04-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200-260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different

  7. Advanced Insulation Techniques for Cryogenic Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to store large amounts of cryogenic fluids for long durations has a profound effect on the success of many future space programs using these fluids for...

  8. Use of Shuttle Heritage Hardware in Space Launch System (SLS) Application-Structural Assessment

    Science.gov (United States)

    Aggarwal, Pravin; Booker, James N.

    2018-01-01

    NASA is moving forward with the development of the next generation system of human spaceflight to meet the Nation's goals of human space exploration. To meet these goals, NASA is aggressively pursuing the development of an integrated architecture and capabilities for safe crewed and cargo missions beyond low-Earth orbit. Two important tenets critical to the achievement of NASA's strategic objectives are Affordability and Safety. The Space Launch System (SLS) is a heavy-lift launch vehicle being designed/developed to meet these goals. The SLS Block 1 configuration (Figure 1) will be used for the first Exploration Mission (EM-1). It utilizes existing hardware from the Space Shuttle inventory, as much as possible, to save cost and expedite the schedule. SLS Block 1 Elements include the Core Stage, "Heritage" Boosters, Heritage Engines, and the Integrated Spacecraft and Payload Element (ISPE) consisting of the Launch Vehicle Stage Adapter (LVSA), the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), and an Interim Cryogenic Propulsion Stage (ICPS) for Earth orbit escape and beyond-Earth orbit in-space propulsive maneuvers. When heritage hardware is used in a new application, it requires a systematic evaluation of its qualification. In addition, there are previously-documented Lessons Learned (Table -1) in this area cautioning the need of a rigorous evaluation in any new application. This paper will exemplify the systematic qualification/assessment efforts made to qualify the application of Heritage Solid Rocket Booster (SRB) hardware in SLS. This paper describes the testing and structural assessment performed to ensure the application is acceptable for intended use without having any adverse impact to Safety. It will further address elements such as Loads, Material Properties and Manufacturing, Testing, Analysis, Failure Criterion and Factor of Safety (FS) considerations made to reach the conclusion and recommendation.

  9. New Generation Power System for Space Applications

    Science.gov (United States)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  10. Cryogenics system: strategy to achieve nominal performance and reliable operation

    CERN Document Server

    Bremer, J; Casas, J; Claudet, S; Delikaris, D; Delruelle, N; Ferlin, G; Fluder, C; Perin, A; Perinic, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the overcapacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the "cannibalization" of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of ...

  11. Weldability of thermally grain-refined Fe-12Ni-0.25Ti for cryogenic structural applications

    International Nuclear Information System (INIS)

    Williams, D.E.

    1980-02-01

    The weldability of a research alloy designed for structural use in liquid helium temperature, cryogenic environments was investigated. Plates of iron-12 weight percent nickel-0.25 weight percent titanium were grain refined by the four-step, grain refining thermal treatment developed for this alloy and welded with Inconel Number 92 weld wire using the Gas Metal Arc (GMA) welding process with argon-15% helium gas shielding. Both a single pass and a double-sided, 2 pass electron beam (EB) weld were also made without filler metal addition. Weldments were radiographed and sectioned and the charpy V-notch specimens removed were tested at liquid nitrogen and helium temperatures

  12. Development and application of cryogenic radiometry with hard X-rays; Entwicklung und Anwendung der Kryoradiometrie mit harter Roentgenstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Martin

    2008-06-06

    To establish cryogenic radiometry with hard X-ray radiation for photon energies of up to 60 keV, a novel type of cavity absorber had to be developed for the cryogenic radiometer SYRES I, which is deployed by the Physikalisch-Technische Bundesanstalt (PTB) as primary standard detector at the electron storage ring BESSY II. This new type of cavity absorber allows for the complete absorption of hard X-ray radiation in combination with an appropriate sensitivity and an adequate time constant for the measurement of synchrotron radiation at BESSY II. As the process of fabrication of different types of absorbers is very time-consuming, the interaction of hard X-ray radiation with different absorber materials and geometries was studied intensively by using the Monte Carlo simulation code Geant4. The accuracy of the simulations was verified comparing them to scattering experiments performed at a wavelength shifter beamline at BESSY II with a calibrated energy dispersive detector. It was shown that Geant4 describes the photo-effect, including fluorescence as well as Compton- and Rayleigh scattering, with high accuracy. The simulations and experiments resulted in a cavity absorber with a gold base 550 {mu}m in thickness and a cylindrical shell made of copper 90 {mu}m in thickness to reduce losses caused by fluorescence and scattered radiation. Monochromatized synchrotron radiation of high spectral purity was then used to calibrate semiconductor photodiodes, which can be used as compact and inexpensive secondary standard detectors, against a cryogenic radiometer, covering the entire photon energy range of three beamlines from 50 eV to 60 keV with relative uncertainties of less than 0.5 %. Furthermore the spatial homogeneity of the spectral responsivity, the transmittance and the linearity of the photodiodes was investigated. Through a direct comparison of the free-air ionization chamber PK100, a primary detector standard of PTB used in dosimetry, and the cryogenic radiometer

  13. An Overview of Recent Cryogenic Fluid Management Developments

    Science.gov (United States)

    Hedayat, A.; Johnson, W. L.; Stephens, J. R.

    2017-01-01

    Long-term storage, supply, and transfer of cryogenic fluids are critical capabilities needed to advance the human exploration of space. Technologies and advanced development programs have been pursued to address issues likely to confront the designers and developers of future cryogenic fluid management (CFM) subsystems and propulsion systems. NASA and aerospace industries have continued to conduct research and development for the propulsion applications of cryogenic fluids. From the well known in-space applications, to new applications involving superconducting motors within multiple different aircraft, and a renewed interest in production of oxygen on Mars, NASA continues to probe cryogenic applications within propulsion. This article presents brief reviews of several of the current CFM efforts to support future space missions. NASA GRC is currently focusing on understanding some of the finer points in the application of multilayer insulation. GRC recently finished the activation of a new calorimeter that operates at 20 K with a warm boundary that can operate either around 90 K or at 300 K. Current testing is focused on investigating multiple different seam concepts, initially between temperatures of 300 K and 20 K, and between 20 K and 90 K. One of the larger recent NASA investments has been on the Structural Heat Intercept, Insulation, and Vibration Experiment Rig (SHIIVER). SHIIVER is a 4 m diameter tank that is approximately 1/2 scale of the planned upper stage of the new Space Launch System (SLS) rocket. SHIIVER is focused on demonstrating the thermal benefits of multilayer insulation on the tank domes and boil-off vapor cooling on structural cylinders that hold the tank in-line on the rocket. It will also quantify any damage that may incur during the acoustic environment of over 160 decibels that SLS will experience on its trip to Earth orbit. In support of the possible production of oxygen out of the Mars' atmosphere, a team comprised of four NASA centers

  14. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    Science.gov (United States)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  15. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, huge detectors and accelerators. With the termination of the LHC, CERN will in fact become the world’s largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. Monday 5.12.2005 Introduction: From History to Modern Refrigeration Cycles (Goran Perinic) Tuesday 6.12.2005 Refrigerants, Standard Cryostats, Cryogenic Des...

  16. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. From history to modern refrigeration cycles (1/5) Refrigerants, standard cryostats, cryogenic design (2/5) Heat transfer and insulation (3/5) Safety in cryoge...

  17. Nano-Engineered Hierarchical Advanced Composite Materials for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Composites are widely used throughout aerospace engineering and in numerous other applications where structures that possess high strength and toughness properties...

  18. Application of PLC to dynamic control system for liquid He cryogenic pumping facility on JT-60U NBI system

    International Nuclear Information System (INIS)

    Honda, A.; Okano, F.; Ooshima, K.; Akino, N.; Kikuchi, K.; Tanai, Y.; Takenouchi, T.; Numazawa, S.; Ikeda, Y.

    2008-01-01

    The control system of the cryogenic facility in the JT-60 NBI system has been replaced by employing the PLC (Programmable Logic Controller) and SCADA (Supervisory Control And Data Acquisition) system. The original control system was constructed about 20 years ago by specifying the DCS (Distributed Control System) computer to deal with ∼400 feedback loops. Recently, troubles on this control system have increased due to its age-induced deterioration. To maintain the high reliability of the cryogenic facility, a new control system has been planned with the PLC and SCADA systems. Their attractive features include high market availability and cost-effectiveness, however, the use of PLC for such a large facility with ∼400 feedback loops has not been established because of insufficient processing capability of the early PLC. Meanwhile, the recent progress in the PLC enables to use the FBD (function block diagram) programming language for 500 function blocks. By optimizing the function blocks and connecting them in the FBD language, the feedback loops have been successfully replaced from DCS to PLC without a software developer. Moreover, an oscillation of the liquid He level, which often occurs during the cooldown mode of the cryopumps, can be automatically stabilized by easily adding a new process program in the PLC. At present, the new control system has worked well

  19. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  20. Neutron detection with cryogenics and semiconductors

    International Nuclear Information System (INIS)

    Bell, Zane W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.; Burger, Arnold; Woodfield, Brian F.; Niedermayr, Thomas; Dragos Hau, I.; Labov, Simon E.; Friedrich, Stephan; Geoffrey West, W.; Pohl, Kenneth R.; Berg, Lodewijk van den

    2005-01-01

    The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI 2 for direct detection of neutrons. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  2. Cryogenic turbulence

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2005-01-01

    Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.

  3. Cryogenics for LDR

    Science.gov (United States)

    Kittel, Peter

    1988-01-01

    Three cryogenic questions of importance to Large Deployable Reflector (LDR) are discussed: the primary cooling requirement, the secondary cooling requirement, and the instrument changeout requirement.

  4. Intelligent spaces the application of pervasive ICT

    CERN Document Server

    Steventon, Alan

    2010-01-01

    This book sets out a vision of 'intelligent spaces' and describes the progress that has been made towards realisation. The context for Intelligent Spaces (or iSpaces) is the world where ICT (Information and Communication Technology) and sensor systems disappear as they become embedded into physical objects and the spaces in which we live, work and play. The ultimate vision is that this embedded technology provides us with intelligent and contextually relevant support, augmenting our lives and experience of the physical world in a benign and non-intrusive manner. The ultimate vision is challeng

  5. Multifunctional Graphene Nanocomposite Foams for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Materials combined with a small amount of nanoparticles offer new possibilities in the synthesizing of multifunctional materials. One novel nanomaterial is graphene...

  6. Space Handbook: Astronautics and its Applications

    National Research Council Canada - National Science Library

    Buchheim, Robert W

    2007-01-01

    ... in the space environment, rocket vehicles, propulsion systems, propellants, internal power sources, structures and materials, flight path and orientation control, guidance, communication, observation...

  7. Robotic Fish Technology and Its Applications to Space Mechatronics

    OpenAIRE

    Yamamoto, Ikuo; Shin, Nobuhiro; Oka, Taishi; Matsui, Miki

    2014-01-01

    The authors have developed a shark ray robotic fish based on biomimetic approaches. The paper describes the newly developed robotic fish technology and its application to mechatronics in the space. It is found that robotic fish technology creates not only new underwater robotics, but also the next generation space mechatronics for geological survey of lunar/planets and dust cleaning in the space station.

  8. Successfully Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  9. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  10. Application of space benefits to education

    Science.gov (United States)

    Dannenberg, K. K.; Ordway, F. I., III

    1972-01-01

    Information on the conducting of a teacher workshop is presented. This educational pilot project updated instruction material, used improved teaching techniques, and increased student motivation. The NASA/MSFC industrial facilities, and the displays at the Alabama Space and Rocket Center (ASRC) were key elements of the program, including a permanent exhibit, at the latter, on selected benefits accruing from the space program.

  11. Swarm Products and Space Weather Applications

    DEFF Research Database (Denmark)

    Stolle, Claudia; Olsen, Nils; Martini, Daniel

    The Swarm satellite constellation mission provides high precision magnetic field data and models and other observations that enable us to explore near Earth space for example in terms of in situ electron density and electric fields. On board GPS observables can be used for sounding ionospheric...... in aeronomy and space weather. We will emphasize results from the Swarm mission....

  12. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  13. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  14. Second Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Dollman, Thomas (Compiler)

    1988-01-01

    The proceedings of the conference are presented. This second conference on Artificial Intelligence for Space Applications brings together a diversity of scientific and engineering work and is intended to provide an opportunity for those who employ AI methods in space applications to identify common goals and to discuss issues of general interest in the AI community.

  15. Development and application of an ultratrace method for speciation of organotin compounds in cryogenically archived and homogenized biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Point, David; Davis, W.C.; Christopher, Steven J.; Ellisor, Michael B.; Pugh, Rebecca S.; Becker, Paul R. [Hollings Marine Laboratory, National Institute of Standards and Technology, Analytical Chemistry Division, Charleston, SC (United States); Donard, Olivier F.X. [Laboratoire de Chimie Analytique BioInorganique et Environnement UMR 5034 du CNRS, Pau (France); Porter, Barbara J.; Wise, Stephen A. [National Institute of Standards and Technology, Analytical Chemistry Division, Gaithersburg, MD (United States)

    2007-04-15

    An accurate, ultra-sensitive and robust method for speciation of mono, di, and tributyltin (MBT, DBT, and TBT) by speciated isotope-dilution gas chromatography-inductively coupled plasma-mass spectrometry (SID-GC-ICPMS) has been developed for quantification of butyltin concentrations in cryogenic biological materials maintained in an uninterrupted cryo-chain from storage conditions through homogenization and bottling. The method significantly reduces the detection limits, to the low pg g{sup -1} level (as Sn), and was validated by using the European reference material (ERM) CE477, mussel tissue, produced by the Institute for Reference Materials and Measurements. It was applied to three different cryogenic biological materials - a fresh-frozen mussel tissue (SRM 1974b) together with complex materials, a protein-rich material (whale liver control material, QC03LH03), and a lipid-rich material (whale blubber, SRM 1945) containing up to 72% lipids. The commutability between frozen and freeze-dried materials with regard to spike equilibration/interaction, extraction efficiency, and the absence of detectable transformations was carefully investigated by applying complementary methods and by varying extraction conditions and spiking strategies. The inter-method results enabled assignment of reference concentrations of butyltins in cryogenic SRMs and control materials for the first time. The reference concentrations of MBT, DBT, and TBT in SRM 1974b were 0.92 {+-} 0.06, 2.7 {+-} 0.4, and 6.58 {+-} 0.19 ng g{sup -1} as Sn (wet-mass), respectively; in SRM 1945 they were 0.38 {+-} 0.06, 1.19 {+-} 0.26, and 3.55 {+-} 0.44 ng g{sup -1}, respectively, as Sn (wet-mass). In QC03LH03, DBT and TBT concentrations were 30.0 {+-} 2.7 and 2.26 {+-} 0.38 ng g{sup -1} as Sn (wet-mass). The concentration range of butyltins in these materials is one to three orders of magnitude lower than in ERM CE477. This study demonstrated that cryogenically processed and stored biological materials are

  16. Application of AE technique for on-line monitoring of quenching in racetrack superconducting coil at cryogenic environment

    International Nuclear Information System (INIS)

    Lee, Jun Hyun; Lee, Min Rae; Shon, Myung Hwan; Kwon, Young Kil

    1998-01-01

    An acoustic emission(AE) technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2 K. The ultimate goal is to ensure the safety and reliability of large superconducting magnet systems by being able to identity and locate the sources of quench in superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current. It was found in this study that there was good correlation between quench current and AE parameters. The source location of quenching in superconducting magnet was also discussed on the hashing of correlation between magnet voltage and AE energy.

  17. Material and structural mechanical modelling and reliability of thin-walled bellows at cryogenic temperatures. Application to LHC compensation system

    CERN Document Server

    Garion, Cédric; Skoczen, Blazej

    The present thesis is dedicated to the behaviour of austenitic stainless steels at cryogenic temperatures. The plastic strain induced martensitic transformation and ductile damage are taken into account in an elastic-plastic material modelling. The kinetic law of →’ transformation and the evolution laws of kinematic/isotropic mixed hardening are established. Damage issue is analysed by different ways: mesoscopic isotropic or orthotropic model and a microscopic approach. The material parameters are measured from 316L fine gauge sheet at three levels of temperature: 293 K, 77 K and 4.2 K. The model is applied to thin-walled corrugated shell, used in the LHC interconnections. The influence of the material properties on the stability is studied by a modal analysis. The reliability of the components, defined by the Weibull distribution law, is analysed from fatigue tests. The impact on reliability of geometrical imperfections and thermo-mechanical loads is also analysed.

  18. Effect of hydrostatic pressure application at cryogenic temperatures on the properties of VT1-0 alloy

    International Nuclear Information System (INIS)

    Khajmovich, P.A; Shulgin, N.A.; Chernyaeva, E.V.

    2015-01-01

    Attempt was made to determine the influence of hydrostatic pressure on the properties of the alloy VT1-0 at cryogenic temperatures both under straining of the alloy and without it. Hardening of the material is observed only in that part of the specimen, which experienced a deformation, while the very exposure of the alloy under hydrostatic pressure does not lead to strengthening of the material. At the same time, measurements of acoustic emission (AE) show that in the near-surface layers the forces of hydrostatic compression alone, i.e. without a deformation, cause some changes in the structure, which stipulate an increase of the energy and (to a lesser extent) of the median frequency of AE signals. An explanation of this phenomenon is suggested

  19. Fifth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  20. Artificial intelligence applications in space and SDI: A survey

    Science.gov (United States)

    Fiala, Harvey E.

    1988-01-01

    The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI.

  1. The Cryogenic Impact Resistant Evaluation of Composite Materials for Use in Composite Pressure Vessels with an Additional Cryogenic Bonding Scope, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The intent of the proposed effort is to investigate the detailed composite material performance characteristics after being subjected to cryogenic temperatures and...

  2. MOSFET's for Cryogenic Amplifiers

    Science.gov (United States)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  3. MFTF magnet cryogenics

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1981-07-01

    The prime requirement of the cryogenics of the magnets is to assure a superconducting state for the magnet coils, a large task considering their enormous size. The following presentation addresses the principal topics that have been considered in this cryogenic design

  4. Space Operations Learning Center Facebook Application

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the

  5. Modular Actuators for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocketstar Robotics is proposing the development of a modern dual drive actuator. Rocketstar has put together numerous modern concepts for modular actuators that...

  6. Bio-manufacturing for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-duration human exploration and habitation on other planets such as Mars will require not only bringing supplies, but also the ability to use local resources to...

  7. Compact variable rate laser for space application

    Data.gov (United States)

    National Aeronautics and Space Administration — We will focus on the development and test of high reliable, radiation tolerant, compact laser for planetary mission.  The laser will be able to operate at variable...

  8. Thin film coatings for space electrical power system applications

    Science.gov (United States)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  9. Topology with applications topological spaces via near and far

    CERN Document Server

    Naimpally, Somashekhar A

    2013-01-01

    The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and...

  10. 3rd Symposium on Space Optical Instruments and Applications

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This volume contains selected and expanded contributions presented at the 3rd Symposium on Space Optical Instruments and Applications in Beijing, China June 28 – 29, 2016. This conference series is organised by the Sino-Holland Space Optical Instruments Laboratory, a cooperation platform between China and the Netherlands. The symposium focused on key technological problems of optical instruments and their applications in a space context. It covered the latest developments, experiments and results regarding theory, instrumentation and applications in space optics. The book is split across five topical sections. The first section covers space optical remote sensing system design, the second advanced optical system design, the third remote sensor calibration and measurement. Remote sensing data processing and information extraction is then presented, followed by a final section on remote sensing data applications. .

  11. The Status of Development of Electromagnetic Pumps for Space Application

    International Nuclear Information System (INIS)

    Kwak, J. S.; Kim, K. H.; Jeong, J. S.; Kim, Hee Reyoung

    2013-01-01

    Korea lunched this research as a part of the small nuclear power generation technology development for space. In this study, investigated are the basic principle and types of electromagnetic pump and the trend of electromagnetic pump technology development in foreign nations. The survey and analysis give the understanding of the suitability and prospect of electromagnetic pumps as space application technology in Korea. The analysis on the status of the development of electromagnetic pumps was carried out for the application to space environment. It was found that USA was approaching the research and development of electromagnetic pumps for space application. Most electromagnetic pumps surveyed have the efficiency between 35% and 50% where that of AC conduction pump is less than 6%. Further study was thought to have to be given for the mechanical and material characteristics, and the applicability of electromagnetic pumps for space nuclear reactor

  12. Solar EUV irradiance for space weather applications

    Science.gov (United States)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  13. The ESA Space Weather Applications Pilot Project

    Science.gov (United States)

    Glover, A.; Hilgers, A.; Daly, E.

    Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field

  14. Ground Robotic Hand Applications for the Space Program study (GRASP)

    Science.gov (United States)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  15. Optoelectronic devices product assurance guideline for space application

    Science.gov (United States)

    Bensoussan, A.; Vanzi, M.

    2017-11-01

    New opportunities are emerging for the implementation of hardware sub-systems based on OptoElectronic Devices (OED) for space application. Since the end of this decade the main players for space systems namely designers and users including Industries, Agencies, Manufacturers and Laboratories are strongly demanding of adequate strategies to qualify and validate new optoelectronics products and sub-systems [1]. The long term space application mission will require to address either inter-satellite link (free space communication, positioning systems, tracking) or intra-satellite connectivity/flexibility/reconfigurability or high volume of data transfer between equipment installed into payload.

  16. Tensile and Compressive Mechanical Behavior of IM7/PETI-5 at Cryogenic Temperatures

    OpenAIRE

    Whitley, Karen Suzanne

    2002-01-01

    In order for future space transportation vehicles to be considered economically viable, the extensive use of lightweight materials is critical. For spacecraft with liquid fueled rocket engines, one area identified as a potential source for significant weight reduction is the replacement of traditional metallic cryogenic fuel tanks with newer designs based on polymer matrix composites. For long-term applications such as those dictated by manned, reusable launch vehicles, an efficient cryo-ta...

  17. Space Applications of Mass Spectrometry. Chapter 31

    Science.gov (United States)

    Hoffman, John H.; Griffin, Timothy P.; Limero, Thomas; Arkin, C. Richard

    2010-01-01

    Mass spectrometers have been involved in essentially all aspects of space exploration. This chapter outlines some of these many uses. Mass spectrometers have not only helped to expand our knowledge and understanding of the world and solar system around us, they have helped to put man safely in space and expand our frontier. Mass spectrometry continues to prove to be a very reliable, robust, and flexible analytical instrument, ensuring that its use will continue to help aid our investigation of the universe and this small planet that we call home.

  18. Application of advanced technology to space automation

    Science.gov (United States)

    Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

    1979-01-01

    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

  19. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  20. Applications of MEMS for Space Exploration

    Science.gov (United States)

    Tang, William C.

    1998-03-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. Micro Electro Mechanical Systems (MEMS) is one of the key enabling technologies to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  1. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  2. Fourth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.

  3. Potential refractory alloy requirements for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.

    1984-01-01

    In reviewing design requirements for refractory alloys for space nuclear applications, several key points are identified. First, the successful utilization of refractory alloys is considered an enabling requirement for the successful deployment of high efficiency, lightweight, and small space nuclear systems. Second, the recapture of refractory alloy nuclear technology developed in the 1960s and early 1970s appears to be a pacing activity in the successful utilization of refractory alloys. Third, the successful application of refractory alloys for space nuclear applications will present a significant challenge to both the materials and the systems design communities

  4. Super-dense teleportation for space applications

    Science.gov (United States)

    Zeitler, Chris; Graham, Trent M.; Chapman, Joseph; Bernstein, Herbert; Kwiat, Paul G.

    2016-03-01

    Establishing a quantum communication network would provide advantages in areas such as security and information processing. Such a network would require the implementation of quantum teleportation between remote parties. However, for photonic "qudits" of dimension greater than two, this teleportation always fails due to the inability to carry out the required quantum Bell-state measurement. A quantum communication protocol called Superdense Teleportation (SDT) can allow the reconstruction of a state without the usual 2-photon Bell-state measurements, enabling the protocol to succeed deterministically even for high dimensional qudits. This technique restricts the class of states transferred to equimodular states, a type of superposition state where each term can differ from the others in phase but not in amplitude; this restricted space of transmitted states allows the transfer to occur deterministically. We report on our implementation of SDT using photon pairs that are entangled in both polarization and temporal mode. After encoding the phases of the desired equimodular state on the signal photon, we perform a complete tomography on the idler photon to verify that we properly prepared the chosen state. Beyond our tabletop demonstration, we are working towards an implementation between a space platform in low earth orbit and a ground telescope, to demonstrate the feasibility of space-based quantum communication. We will discuss the various challenges presented by moving the experiment out of the laboratory, and our proposed solutions to make Superdense Teleportation realizable in the space setting.

  5. Telerobotic technology for nuclear and space applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs

  6. Low-Noise Active Decoupling Circuit and its Application to 13C Cryogenic RF Coils at 3T

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Søvsø Szocska Hansen, Esben; Laustsen, Christoffer

    2017-01-01

    We analyze the loss contributions in a small, 50-mm-diameter receive-only coil for carbon-13 (13C) magnetic resonance imaging at 3 T for 3 different circuits, which, including active decoupling, are compared in terms of their Q-factors and signal-to-noise ratio (SNR). The results show that a circ......We analyze the loss contributions in a small, 50-mm-diameter receive-only coil for carbon-13 (13C) magnetic resonance imaging at 3 T for 3 different circuits, which, including active decoupling, are compared in terms of their Q-factors and signal-to-noise ratio (SNR). The results show...... that a circuit using unsegmented tuning and split matching capacitors can provide 20% SNR enhancement at room temperature compared with that using more traditional designs. The performance of the proposed circuit was also measured when cryogenically cooled to 105 K, and an additional 1.6-fold SNR enhancement...... was achieved on a phantom. The enhanced circuit performance is based on the low capacitance needed to match to 50 when coil losses are low, which significantly reduces the proportion of the current flowing through the matching network and therefore minimizes this loss contribution. This effect makes...

  7. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  8. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  9. Cryogenics will cool LHC

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Results of the investigation into the cryogenic regulating line (QRL) performed by the LHC laboratory are presented. It is projected that eight cryogenic units located in five places around the LHC ring will provide superconducting magnets by liquid helium through eight cryogenic regulating lines of 3.2 km each. All QRL zones remain to be independent. CERN uses three test units with the aim of the certification of chosen constructions and verification of their thermal and mechanical efficiency before starting full-scale production [ru

  10. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  11. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  12. Gram staining apparatus for space station applications

    Science.gov (United States)

    Molina, T. C.; Brown, H. D.; Irbe, R. M.; Pierson, D. L.

    1990-01-01

    A self-contained, portable Gram staining apparatus (GSA) has been developed for use in the microgravity environment on board the Space Station Freedom. Accuracy and reproducibility of this apparatus compared with the conventional Gram staining method were evaluated by using gram-negative and gram-positive controls and different species of bacteria grown in pure cultures. A subsequent study was designed to assess the performance of the GSA with actual specimens. A set of 60 human and environmental specimens was evaluated with the GSA and the conventional Gram staining procedure. Data obtained from these studies indicated that the GSA will provide the Gram staining capability needed for the microgravity environment of space.

  13. Do Space Requirement Applicable in Private Preschools?

    OpenAIRE

    Salleh Naziah Muhamad; Agus Salim Nuzaihan Aras; Kamaruzzaman Syahrul Nizam; Mahyuddin Norhayati

    2016-01-01

    Working or studying in a comfortable environment enhances not only well-being, but also satisfaction and therefore increase the productivity and learning. The numbers of private preschool in Malaysia boost every year. Frequently they operate in premises that have been fully refurbished. This has invited the questions on the building capability and space condition to provide a good environment to the children during the learning activities. Most of the building was refurbished to enhance it ap...

  14. High Effectiveness Heat Exchanger for Cryogenic Refrigerators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  15. Sprayable Thermal Insulation for Cryogenic Tanks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sprayable Thermal Insulation for Cryogenic Tanks (STICT) is a thermal management system applied by either an automated or manual spraying process with less...

  16. Sprayable Thermal Insulation for Cryogenic Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation addressed in this proposal is Sprayable Thermal Insulation for Cryogenic Tanks, or STICT. This novel system could be applied in either an automated or...

  17. Small Scroll Pump for Cryogenic Liquids, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a compact, reliable, light weight, electrically driven pump capable of pumping cryogenic liquids, based on scroll pump technology. This pump will...

  18. Spinning-Scroll Pump for Cryogenic Feed System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an efficient, compact, lightweight, reliable, electric-driven, cryogenic spinning scroll pump (CSSP) capable of pumping liquid methane or oxygen at...

  19. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  20. Third Conference on Artificial Intelligence for Space Applications, part 1

    Science.gov (United States)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  1. High Performance Computing Software Applications for Space Situational Awareness

    Science.gov (United States)

    Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.

    The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.

  2. Analogue and Mixed-Signal Integrated Circuits for Space Applications

    CERN Document Server

    2014-01-01

    The purpose of AMICSA 2014 (organised in collaboration of ESA and CERN) is to provide an international forum for the presentation and discussion of recent advances in analogue and mixed-signal VLSI design techniques and technologies for space applications.

  3. Designing Interaction Spaces for Rich Internet Applications with UML

    DEFF Research Database (Denmark)

    Dolog, Peter; Stage, Jan

    2007-01-01

    In this paper, we propose a new method for designing rich internet applications. The design process uses results from an object-oriented analysis and employs interaction spaces as the basic abstraction mechanism. State diagrams are employed as refinements of interaction spaces and task models...

  4. Cryogenic Piezo Actuators for Lightweight, Large Aperture, Deployable Membrane Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal piezoelectric actuators are proposed to enable large stroke, high precision, shape control for cryogenic lightweight deployable membrane mirror...

  5. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  6. Flextensional Microactuators for Large-Aperture Lightweight Cryogenic Deformable Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes large stroke and high precision single crystal flextensional piezoelectric microactuators for cryogenic optic devices such as large...

  7. Cryogenic Fluid Transfer Components Using Single Crystal Piezoelectric Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid transfer components using single crystal piezoelectric actuators are proposed to enable low thermal mass, minimal heat leak, low power consumption...

  8. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    Science.gov (United States)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  9. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  10. Closed-Loop Optimal Control Implementations for Space Applications

    Science.gov (United States)

    2016-12-01

    with standard linear algebra techniques if is converted to a diagonal square matrix by multiplying by the identity matrix, I , as was done in (1.134...OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS by Colin S. Monk December 2016 Thesis Advisor: Mark Karpenko Second Reader: I. M...COVERED Master’s thesis, Jan-Dec 2016 4. TITLE AND SUBTITLE CLOSED-LOOP OPTIMAL CONTROL IMPLEMENTATIONS FOR SPACE APPLICATIONS 5. FUNDING NUMBERS

  11. Challenges for Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2013-01-01

    Effectively transitioning science knowledge to useful applications relevant to space weather has become important. The effort to transition scientific knowledge to a useful application is not a research nor is it operations, but an activity that connects two. Successful transitioning must be an intentional effort with a clear goal and measureable outcome. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  12. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  13. Cryogenic propulsion for lunar and Mars missions

    Science.gov (United States)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  14. Frequency stabilized lasers for space applications

    Science.gov (United States)

    Lieber, Mike; Adkins, Mike; Pierce, Robert; Warden, Robert; Wallace, Cynthia; Weimer, Carl

    2014-09-01

    metrology, spectroscopy, atomic clocks and geodesy. This technology will be a key enabler to several proposed NASA science missions. Although lasers such as Q-switched Nd-YAG are now commonly used in space, other types of lasers - especially those with narrow linewidth - are still few in number and more development is required to advance their technology readiness. In this paper we discuss a reconfigurable laser frequency stabilization testbed, and end-to-end modeling to support system development. Two important features enabling testbed flexibility are that the controller, signal processing and interfaces are hosted on a field programmable gate array (FPGA) which has spacequalified equivalent parts, and secondly, fiber optic relay of the beam paths. Given the nonlinear behavior of lasers, FPGA implementation is a key system reliability aspect allowing on-orbit retuning of the control system and initial frequency acquisition. The testbed features a dual sensor system, one based upon a high finesse resonator cavity which provides relative stability through Pound-Drever-Hall (PDH) modulation and secondly an absolute frequency reference by dither locking to an acetylene gas cell (GC). To provide for differences between ground and space implementation, we have developed an end-to-end Simulink/ Matlab®-based control system model of the testbed components including the important noise sources. This model is in the process of being correlated to the testbed data which then can be used for trade studies, and estimation of space-based performance and sensitivities. A 1530 nm wavelength semiconductor laser is used for this initial work.

  15. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  16. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  17. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  18. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  19. Brush Seals for Cryogenic Applications: Performance, Stage Effects, and Preliminary Wear Results in LN2 and LH2

    Science.gov (United States)

    Proctor, Margaret P.; Walker, James F.; Perkins, H. Douglas; Hoopes, Joan F.; Williamson, G. Scott

    1996-01-01

    Brush seals are compliant contacting seals and have significantly lower leakage than labyrinth seals in gas turbine applications. Their long life and low leakage make them candidates for use in rocket engine turbopumps. Brush seals, 50.8 mm (2 in.) in diameter with a nominal 127-micron (0.005-in.) radial interference, were tested in liquid nitrogen (LN2) and liquid hydrogen (LH2) at shaft speeds up to 35,000 and 65,000 rpm, respectively, and at pressure drops up to 1.21 MPa (175 psid) per brush. A labyrinth seal was also tested in liquid nitrogen to provide a baseline. The LN2 leakage rate of a single brush seal with an initial radial shaft interference of 127 micron (0.005 in.) measured one-half to one-third the leakage rate of a 12-tooth labyrinth seal with a radial clearance of 127 micron (0.005 in.). Two brushes spaced 7.21 micron (0.248 in.) apart leaked about one-half as much as a single brush, and two brushes tightly packed together leaked about three-fourths as much as a single brush. The maximum measured groove depth on the Inconel 718 rotor with a surface finish of 0.81 micron (32 microinch) was 25 micron (0.0010 in.) after 4.3 hr of shaft rotation in liquid nitrogen. The Haynes-25 bristles wore approximately 25 to 76 micron (0.001 to 0.003 in.) under the same conditions. Wear results in liquid hydrogen were significantly different. In liquid hydrogen the rotor did not wear, but the bristle material transferred onto the rotor and the initial 127 micron (0.005 in.) radial interference was consumed. Relatively high leakage rates were measured in liquid hydrogen. More testing is required to verify the leakage performance, to validate and calibrate analysis techniques, and to determine the wear mechanisms. Performance, staging effects, and preliminary wear results are presented.

  20. GMSK Modulation for Deep Space Applications

    Science.gov (United States)

    Shambayati, Shervin; Lee, Dennis K.

    2012-01-01

    Due to scarcity of spectrum at 8.42 GHz deep space Xband allocation, many deep space missions are now considering the use of higher order modulation schemes instead of the traditional binary phase shift keying (BPSK). One such scheme is pre-coded Gaussian minimum shift keying (GMSK). GMSK is an excellent candidate for deep space missions. GMSK is a constant envelope, bandwidth efficien modulation whose frame error rate (FER) performance with perfect carrier tracking and proper receiver structure is nearly identical to that of BPSK. There are several issues that need to be addressed with GMSK however. Specificall, we are interested in the combined effects of spectrum limitations and receiver structure on the coded performance of the X-band link using GMSK. The receivers that are typically used for GMSK demodulations are variations on offset quadrature phase shift keying (OQPSK) receivers. In this paper we consider three receivers: the standard DSN OQPSK receiver, DSN OQPSK receiver with filte ed input, and an optimum OQPSK receiver with filte ed input. For the DSN OQPSK receiver we show experimental results with (8920, 1/2), (8920, 1/3) and (8920, 1/6) turbo codes in terms of their error rate performance. We also consider the tracking performance of this receiver as a function of data rate, channel code and the carrier loop signal-to-noise ratio (SNR). For the other two receivers we derive theoretical results that will show that for a given loop bandwidth, a receiver structure, and a channel code, there is a lower data rate limit on the GMSK below which a higher SNR than what is required to achieve the required FER on the link is needed. These limits stem from the minimum loop signal-to-noise ratio requirements on the receivers for achieving lock. As a result of this, for a given channel code and a given FER, there could be a gap between the maximum data rate that BPSK can support without violating the spectrum limits and the minimum data rate that GMSK can support

  1. Technical presentation: BGM Cryogenic Engineering Limited

    CERN Multimedia

    Caroline Laignel - FI Department

    2006-01-01

    13 - 14 June 2006 TECHNICAL PRESENTATION BGM Cryogenic Engineering Limited 09:00 - 18:00, 60-2-016, Main Building. Presentation on BGM: 11:00 - 12:00, 60-2-016, Main Building. BGM Cryogenic Engineering Limited manufactures assemblies, sub-assemblies and machined components for the cryogenic technology sector. The primary markets served include superconducting magnets used in the healthcare sector (eg MRI body scanners), spectroscopy and NMR equipment for numerous R & D and technology applications, high vacuum applications and particle physics research. BGM has specialist assembly capability including stainless steel and aluminium welding, vacuum testing, electromechanical assembly and metal finishing. BGM offers a ‘one stop shop'facility to satisfy any customer requirement. Through our design partner we can offer a full design and modelling service, including 3D modelling and production of 2D drawings on your own borders. We can conduct heat load and force calculations and advise on the best...

  2. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  3. Cryogenic Propellant Feed System Analytical Tool Development

    Science.gov (United States)

    Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.

    2011-01-01

    The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.

  4. Critical spaces for quasilinear parabolic evolution equations and applications

    Science.gov (United States)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  5. Acoustic levitation and manipulation for space applications

    Science.gov (United States)

    Wang, T. G.

    1979-01-01

    A wide spectrum of experiments to be performed in space in a microgravity environment require levitation and manipulation of liquid or molten samples. A novel acoustic method has been developed at JPL for controlling liquid samples without physical contacts. This method utilizes the static pressure generated by three orthogonal acoustic standing waves excited within an enclosure. Furthermore, this method will allow the sample to be rotated and/or oscillated by modifying the phase angles and/or the amplitude of the acoustic field. This technique has been proven both in our laboratory and in a microgravity environment provided by KC-135 flights. Samples placed within our chamber driven at (1,0,0), (0,1,0), and (0,0,1), modes were indeed levitated, rotated, and oscillated.

  6. Multimegawatt disk generator system for space applications

    International Nuclear Information System (INIS)

    Solbes, A.; Iwata, H.

    1988-01-01

    The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output

  7. Solar Stirling for deep space applications

    International Nuclear Information System (INIS)

    Mason, Lee S.

    2000-01-01

    A study was performed to quantify the performance of solar thermal power systems for deep space planetary missions. The study incorporated projected advances in solar concentrator and energy conversion technologies. These technologies included inflatable structures, lightweight primary concentrators, high efficiency secondary concentrators, and high efficiency Stirling convertors. Analyses were performed to determine the mass and deployed area of multihundred watt solar thermal power systems for missions out to 40 astronomical units. Emphasis was given to system optimization, parametric sensitivity analyses, and concentrator configuration comparisons. The results indicated that solar thermal power systems are a competitive alternative to radioisotope systems out to 10 astronomical units without the cost or safety implications associated with nuclear sources

  8. Rotating film radiators for space applications

    International Nuclear Information System (INIS)

    Koenig, D.R.

    1985-01-01

    A new class of light-weight radiators is described. This radiator consists of a thin rotating envelope that contains the working fluid. The envelope can have many shapes including redundant, foldable configurations. The working fluid, which may be a liquid or a condensable vapor, impinges on the inside surface of the radiator and is driven as a film to the periphery by centrifugal force. Heat is radiated to space by the outer surface of the envelope. Pumps located on the periphery then return the liquid to the power converter. For a 100-MW radiator operating at 800 K, specific mass approx.0.1 kg/kW and mass density approx.2 kg/m 2 may be achievable. 7 refs., 4 figs., 4 tabs

  9. Application of SDI technology in space propulsion

    International Nuclear Information System (INIS)

    Klein, A.J.

    1992-01-01

    Numerous technologies developed by the DOD within the SDI program are now available for adaptation to the requirements of commercial spacecraft; SDI has accordingly organized the Technology Applications Information System data base, which contains nearly 2000 nonproprietary abstracts on SDI technology. Attention is here given to such illustrative systems as hydrogen arcjets, ammonia arcjets, ion engines, SSTO launch vehicles, gel propellants, lateral thrusters, pulsed electrothermal thrusters, laser-powered rockets, and nuclear propulsion

  10. Subscale Winged Rocket Development and Application to Future Reusable Space Transportation

    Directory of Open Access Journals (Sweden)

    Koichi YONEMOTO

    2018-03-01

    Full Text Available Kyushu Institute of Technology has been studying unmanned suborbital winged rocket called WIRES (WInged REusable Sounding rocket and its research subjects concerning aerodynamics, NGC (Navigation, Guidance and Control, cryogenic composite tanks etc., and conducting flight demonstration of small winged rocket since 2005. WIRES employs the original aerodynamic shape of HIMES (HIghly Maneuverable Experimental Sounding rocket studied by ISAS (Institute of Space and Astronautical Science of JAXA (Japan Aerospace Exploration Agency in 1980s. This paper presents the preliminary design of subscale non-winged and winged rockets called WIRES#013 and WIRES#015, respectively, that are developed in collaboration with JAXA, USC (University of Southern California, UTEP (University of Texas at El Paso and Japanese industries. WIRES#013 is a conventional pre-test rocket propelled by two IPA-LOX (Isopropyl Alcohol and Liquid Oxygen engines under development by USC. It has the total length of 4.6m, and the weight of 1000kg to reach the altitude of about 6km. The flight objective is validation of the telemetry and ground communication system, recovery parachute system, and launch operation of liquid engine. WIRES#015, which has the same length of WIRES#013 and the weight of 1000kg, is a NGC technology demonstrator propelled by a fully expander-cycle LOX-Methane engine designed and developed by JAXA to reach the altitude more than 6km. The flight tests of both WIRES#013 and WIRES#015 will be conducted at the launch facility of FAR (Friends of Amateur Rocketry, Inc., which is located at Mojave Desert of California in United States of America, in May 2018 and March 2019 respectively. After completion of WIRES#015 flight tests, the suborbital demonstrator called WIRES-X will be developed and its first flight test well be performed in 2020. Its application to future fully reusable space transportation systems, such as suborbital space tour vehicles and two

  11. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  12. Application of Digital Radiography to Weld Inspection for the Space Shuttle External Fuel Tank

    Science.gov (United States)

    Ussery, Warren

    2009-01-01

    This slide presentation reviews NASA's use of digital radiography to inspect the welds of the external tanks used to hold the cryogenic fuels for the Space Shuttle Main Engines. NASA has had a goal of replacing a significant portion of film used to inspect the welds, with digital radiography. The presentation reviews the objectives for converting to a digital system from film, the characteristics of the digital system, the Probability of detection study, the qualification and implementation of the system.

  13. The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1992-01-01

    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications.

  14. Infrared detectors and test technology of cryogenic camera

    Science.gov (United States)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  15. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  16. Applications of Space-Time Duality

    Science.gov (United States)

    Plansinis, Brent W.

    The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms

  17. Radio Frequency Plasma Applications for Space Propulsion

    International Nuclear Information System (INIS)

    Baity, F.W. Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-01-01

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the efficient use of both the propellant mass and power. Efficient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process

  18. Multimegawatt disk generator system for space applications

    International Nuclear Information System (INIS)

    Solbes, H.; Iwata, H.

    1988-01-01

    The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output. Critical development issues relevant to the development of such power systems are identified and discussed. A R and D plan aimed at establishing the technical feasibility of the proposed system is also presented

  19. Intelligent computational systems for space applications

    Science.gov (United States)

    Lum, Henry; Lau, Sonie

    Intelligent computational systems can be described as an adaptive computational system integrating both traditional computational approaches and artificial intelligence (AI) methodologies to meet the science and engineering data processing requirements imposed by specific mission objectives. These systems will be capable of integrating, interpreting, and understanding sensor input information; correlating that information to the "world model" stored within its data base and understanding the differences, if any; defining, verifying, and validating a command sequence to merge the "external world" with the "internal world model"; and, controlling the vehicle and/or platform to meet the scientific and engineering mission objectives. Performance and simulation data obtained to date indicate that the current flight processors baselined for many missions such as Space Station Freedom do not have the computational power to meet the challenges of advanced automation and robotics systems envisioned for the year 2000 era. Research issues which must be addressed to achieve greater than giga-flop performance for on-board intelligent computational systems have been identified, and a technology development program has been initiated to achieve the desired long-term system performance objectives.

  20. Precision segmented reflectors for space applications

    Science.gov (United States)

    Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.

    1990-08-01

    A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.

  1. Space Reflector Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be

  2. Space Reflector Materials for Prometheus Application

    International Nuclear Information System (INIS)

    J. Nash; V. Munne; LL Stimely

    2006-01-01

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al 2 O 3 ), and magnesium aluminate spinel (MgAl 2 O 4 ) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of ∼5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of ∼10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES and H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be-bearing materials require

  3. New technology innovations with potential for space applications

    Science.gov (United States)

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  4. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  5. Cryogen free low temperature sample environment for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Evans, B E; Down, R B E; Bowden, Z A

    2009-01-01

    Recent increase in liquid helium cost caused by global helium supply problems rose significant concern about affordability of conventional cryogenic equipment. Luckily the progress in cryo-cooler technology offers a new generation of cryogenic systems with significantly reduced consumption and in some cases nearly complete elimination of cryogens. These cryogen-free systems also offer the advantage of operational simplicity and require less space than conventional cryogen-cooled systems. The ISIS facility carries on an internal development program intended to substitute gradually all conventional cryogenic systems with cryogen free systems preferably based on pulse tube refrigerators. A unique feature of this cryo-cooler is the absence of cold moving parts. This considerably reduces vibrations and increases the reliability of the cold head. The program includes few development projects which are aiming to deliver range of cryogen free equipment including top-loading cryostat, superconducting magnets and dilution refrigerators. Here we are going to describe the design of these systems and discuss the results of prototypes testing.

  6. Cryogenic storage tank with built-in pump

    International Nuclear Information System (INIS)

    Zwick, E.B.

    1984-01-01

    A cryogenic storage tank with a built-in pump for pumping cryogen directly from the primary storage container consistent with low boil-off losses of cryogen has an outer vessel, an inner vessel and an evacuated insulation space therebetween. A pump mounting tube assembly extends into the interior of the inner vessel and includes an inner pump mounting tube and an outer pump mounting tube joined at their lower rims to define an insulating jacket between the two tubes. The inner pump mounting tube is affixed at its upper end to the outer vessel while the outer pump mounting tube is affixed at its upper end to the inner vessel. The inner pump mounting tube defines a relatively long heat path into the cryogenic container and is itself insulated from the liquid cryogen by a pocket of trapped gas formed within the inner pump mounting tube by heated cryogen. A pump may be introduced through the inner pump mounting tube and is also insulated against contact with liquid cryogen by the trapped gas such that only the lowermost end of the pump is immersed in cryogen thereby minimizing heat leakage into the tank

  7. Space Shielding Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    R. Lewis

    2006-01-20

    mitigate the risks in LiH development for a project with an aggressive schedule like JIMO, some background or advanced development effort for LiH should be considered for future space reactor projects.

  8. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  9. Space Telecommunications Radio System (STRS) Application Repository Design and Analysis

    Science.gov (United States)

    Handler, Louis M.

    2013-01-01

    The Space Telecommunications Radio System (STRS) Application Repository Design and Analysis document describes the STRS application repository for software-defined radio (SDR) applications intended to be compliant to the STRS Architecture Standard. The document provides information about the submission of artifacts to the STRS application repository, to provide information to the potential users of that information, and for the systems engineer to understand the requirements, concepts, and approach to the STRS application repository. The STRS application repository is intended to capture knowledge, documents, and other artifacts for each waveform application or other application outside of its project so that when the project ends, the knowledge is retained. The document describes the transmission of technology from mission to mission capturing lessons learned that are used for continuous improvement across projects and supporting NASA Procedural Requirements (NPRs) for performing software engineering projects and NASAs release process.

  10. SP-100 nuclear space power systems with application to space commercialization

    International Nuclear Information System (INIS)

    Smith, J.M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power

  11. Designs of pulsed power cryogenic transformers

    International Nuclear Information System (INIS)

    Singh, S.K.; Heyne, C.J.; Hackowrth, D.T.; Shestak, E.J.; Eckels, P.W.; Rogers, J.D.

    1988-01-01

    The Westinghouse Electric Corporation has completed designs of three pulsed power cryogenic transformers of three pulsed power cryogenic transformers for the Los Alamos National Laboratory. These transformers will be configured to transfer their stored energy sequentially to an electro-magnetic launcher and form a three-stage power supply. The pulse transformers will act as two winding energy storage solenoids which provide a high current and energy pulse compression by transforming a 50 kA power supply into a megamp level power supply more appropriate for the electromagnetic launcher duty. This system differs from more traditional transformer applications in that significant current levels do not exists simultaneously in the two windings of the pulse transformer. This paper describes the designs of the pulsed power cryogenic transformers

  12. Cryogen therapy of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors studied the cure of skin cancer in particular cryogen therapy of skin cancer. They noted that cryogen therapy of skin cancer carried new possibilities and improved results of neoplasms treatment

  13. Space Technology and Applications International Forum -1999. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1999-01-01

    These proceedings represent papers presented at the 1999 Space Technology and Applications International Forum (STAIF-99). This is a large conference in terms of the number of hosted technical sessions and the technical papers presented. This year's theme, ''Opportunities and Challenges for the New Millenium,'' covered a broad spectrum of topics in space science and technology that spans the range from basic research, such as thermophysics in microgravity and breakthrough propulsion physics, to the most recent advances in space power and propulsion, space exploration and commercialization, next generation launch systems, and the international effort to deploy and assemble the international space station. STAIF-99 was co-sponsored by the United States Department of Energy. The two-volume proceedings includes 253 articles, out of which 28 have been abstracted for the Energy,Science and Technology database

  14. Classical-physics applications for Finsler b space

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Joshua [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Lehnert, Ralf, E-mail: ralehner@indiana.edu [Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 (United States)

    2015-06-30

    The classical propagation of certain Lorentz-violating fermions is known to be governed by geodesics of a four-dimensional pseudo-Finsler b space parametrized by a prescribed background covector field. This work identifies systems in classical physics that are governed by the three-dimensional version of Finsler b space and constructs a geodesic for a sample non-constant choice for the background covector. The existence of these classical analogues demonstrates that Finsler b spaces possess applications in conventional physics, which may yield insight into the propagation of SME fermions on curved manifolds.

  15. Application of Mobile-ip to Space and Aeronautical Networks

    Science.gov (United States)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  16. Investigation on pseudomorphic InGaAs/InAlAs/InP High Electron Mobility Transistors with regard to cryogenic applications

    International Nuclear Information System (INIS)

    Toennesmann, A.

    2003-03-01

    A wide variety of new data communication applications demand ever-increasing transmission capacities. The InGaAs/InAlAs/InP layer stack based high electron mobility transistor (HEMT) is currently regarded as the most promising active device in communication systems as it has the highest cut-off frequencies of all transistor types. Due to reduced phonon scattering of the charge carriers, the HEMT is expected to exhibit even better noise and high frequency characteristics for operations at cryogenic temperatures, for instance in mixers or oscillators located in satellites or ground based systems with appropriate cooling equipment. This work focuses on the reduction of access resistances and the fabrication of very short gate lengths as the biggest technological challenges realizing highest cut-off frequencies at any temperature. In addition, the reproducibility and robustness of the implemented gate technologies are fundamental criteria for applications. In comparison to other transistor designs, the InAlAs/InGaAs HEMTs are stronger affected by undesirable, partly material dependent, short channel effects like early breakdown, high gate currents, impact ionization, the kink effect, and a shift in the threshold voltage. Measurements at liquid nitrogen temperature on transistors produced in this work provide further insight into the poorly understood interrelationship between these effects. At liquid nitrogen temperature, the cut-off frequency of 180 GHz and the maximum oscillation frequency of 300 GHz of short channel transistors at room temperature increase by 20% and 30%, respectively, while the breakdown voltage remains at high values above 8 V. (orig.)

  17. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  18. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    1995-01-01

    The CEBAF cryogenic system consists of 3 refrigeration systems: Cryogenic Test Facility (CTF), Central Helium Liquefier (CHL), and End Station Refrigerator (ESR). CHL is the main cryogenic system for CEBAF, consisting of a 4.8 kW, 2.0 K refrigerator and transfer line system to supply 2.0 K and 12 kW of 50 K shield refrigeration for the Linac cavity cryostats and 10 g/s of liquid for the end stations. This paper describes the 9-year effort to commission these systems, concentrating on CHL with the cold compressors. The cold compressors are a cold vacuum pump with an inlet temperature of 3 K which use magnetic bearings, thereby eliminating the possibility of air leaks into the subatmospheric He

  19. The Fast Alternative Cryogenic Experiment Testbed

    Science.gov (United States)

    Nash, Alfred; Holmes, Warren

    2000-01-01

    One of the challenges in the area of cryogenics for space exploration in the next millennium is providing the capability for inexpensive, frequent, access to space. Faced with this challenge during the International Space Station (ISS) build era, when other Space Shuttle manifesting opportunities are unavailable, a "proof of concept" cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier. The Hitchhiker siderail carrier is available on a "mass available" basis during the ISS build era. In fact, several hitchhiker payloads flew with the deployment of the Unity module. Hitchhiker siderail carrier payloads have historically flown an average of about four times a year. A hybrid Solid Neon - Superfluid Helium cryostat has been developed with Janis Research Company to accommodate instruments of 16.5 cm diameter and 30 cm. length. This hybrid approach was taken in part to provide adequate on-orbit lifetime for instruments with high (conducted) heat loads from the instrumentation wiring. Mass, volume, lifetime and the launch hold scenario were all design drivers. In addition, with Ball Aerospace and Technologies Corporation, a multichannel VME architecture Germanium Resistance Thermometer (GRT) readout and heater control servo system has been developed. In a flight system, the cryostat and electronics payloads would be umbilically attached in a paired Hitchhiker siderail mount, and permit on-orbit command and telemetry capability. The results of performance tests of both the cryostat, and a helium sample instrument will be presented. The instrument features a self contained, miniaturized, nano-Kelvin resolution High Resolution Thermometer (HRT). This high level of thermal resolution is achieved through the utilization of a dc Superconducting Quantum Interference Device (SQUID). Although developed for the Low Temperature Microgravity Fundamental Physics

  20. [Application of spaced retrieval training on patients with dementia].

    Science.gov (United States)

    Wu, Hua-Shan; Lin, Li-Chan

    2012-10-01

    Dementia causes semantic and episodic memory impairments that limit patients' activities of daily living (ADL) and increase caregiver burden. Spaced retrieval training uses repetitive retrieval to strengthen cognitive and motor skills intuitively in mild / moderate dementia patients who retain preserved implicit / non-declarative memory. This article describes and discusses the operative mechanism, influencing variables, and practical applications of spaced retrieval training. We hope this article increases professional understanding and application of this training approach to improve dementia patient ADL and improve quality of life for both caregivers and patients.

  1. Status of the organic Rankine cycle for space applications

    Science.gov (United States)

    Bland, T. J.; Lacey, P. D.; Sorensen, G. L.

    The Organic Rankine Cycle (ORC) has been under continuous development and evaluation since the 1960s for both terrestrial and space power applications. Recent activities (Bland et al, 1987) have focused primarily on the Space Station's solar dynamic power system and Dynamic Isotope Power Systems (DIPS) applications. This paper addresses ORC-DIPS system level trade studies conducted during the past year and a half. Two companion papers (Bland and Pearson) present more detailed data on specific ORC-DIPS technology issues and testing conducted during the same period.

  2. Cryogenic support member

    International Nuclear Information System (INIS)

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1987-01-01

    A cryogenic support member is described for restraining a cryogenic system comprising; a rod having a depression at a first end. The rod is made of non-metallic material. The non-metallic material has an effectively low thermal conductivity; a metallic plug; and a metallic sleeve. The plug and the sleeve are shrink-fitted to the depression in the rod and assembled thereto such that the plug is disposed inside the depression of the rod. The sleeve is disposed over the depression in the rod and the rod is clamped therebetween. The shrink-fit clamping the rod is generated between the metallic plug and the metallic sleeve

  3. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    Science.gov (United States)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  4. Cryogenics system: strategy to achieve nominal performance and reliable operation

    International Nuclear Information System (INIS)

    Bremer, J.; Brodzinski, K.; Casas, J.; Claudet, S.; Delikaris, D.; Delruelle, N.; Ferlin, G.; Fluder, C.; Perin, A.; Perinic, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the over-capacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the 'cannibalization' of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of interventions (e.g. cryo-magnet removal) which can be done without affecting the operating conditions of the adjacent sector. This creates additional constrains and possible extra down-time in the schedule of the shutdowns including the hardware commissioning. This presentation focuses on the consolidation plan foreseen during the LS1 to improve the performance of the LHC cryogenic system in terms of availability and sectorization. (authors)

  5. Chemical Gas Sensors for Aeronautic and Space Applications 2

    Science.gov (United States)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  6. Chemical Gas Sensors for Aeronautics and Space Applications III

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; hide

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  7. The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1991-01-01

    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.

  8. A radiation hardened digital fluxgate magnetometer for space applications

    Science.gov (United States)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  9. Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank

    Science.gov (United States)

    Werkheiser, Arthur

    2015-01-01

    The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.

  10. Optimization of application execution in the GridSpace environment

    NARCIS (Netherlands)

    Malawski, M.; Kocot, J.; Ryszka, I.; Bubak, M.; Wieczorek, M.; Fahringer, T.

    2008-01-01

    This paper describes an approach to optimization of execution of applications in the GridSpace environment. In this environment operations are invoked on special objects which reside on Grid resources what requires a specific approach to optimization of execution. This approach is implemented in the

  11. Distributed expert systems for ground and space applications

    Science.gov (United States)

    Buckley, Brian; Wheatcraft, Louis

    1992-01-01

    Presented here is the Spacecraft Command Language (SCL) concept of the unification of ground and space operations using a distributed approach. SCL is a hybrid software environment borrowing from expert system technology, fifth generation language development, and multitasking operating system environments. Examples of potential uses for the system and current distributed applications of SCL are given.

  12. Overview of NASA Power Technologies for Space and Aero Applications

    Science.gov (United States)

    Beach, Raymond F.

    2014-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both the space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development.

  13. China national space remote sensing infrastructure and its application

    Science.gov (United States)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  14. Qualification Tests of Micro-camera Modules for Space Applications

    Science.gov (United States)

    Kimura, Shinichi; Miyasaka, Akira

    Visual capability is very important for space-based activities, for which small, low-cost space cameras are desired. Although cameras for terrestrial applications are continually being improved, little progress has been made on cameras used in space, which must be extremely robust to withstand harsh environments. This study focuses on commercial off-the-shelf (COTS) CMOS digital cameras because they are very small and are based on an established mass-market technology. Radiation and ultrahigh-vacuum tests were conducted on a small COTS camera that weighs less than 100 mg (including optics). This paper presents the results of the qualification tests for COTS cameras and for a small, low-cost COTS-based space camera.

  15. Autogenic Feedback Training Applications for Man in Space

    Science.gov (United States)

    Cowings, Patricia S.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. This paper reviews the back-round research and procedures of an experiment designed to prevent space motion sickness in shuttle crewmembers. The preventive method used, Autogenic - Feedback Training (AFT) involves training subjects to control voluntarily several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during around based tests in over 300 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Other applications of AFT described include; (1) a potential treatment for post flight orthostatic intolerance, a serious biomedical problem resulting from long duration exposure to micro-g and (2) improving pilot performance during emergency flying conditions.

  16. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  17. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  18. Cryogenic Fuel Tank Draining Analysis Model

    Science.gov (United States)

    Greer, Donald

    1999-01-01

    One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

  19. Cryogenics Testbed Laboratory Flange Baseline Configuration

    Science.gov (United States)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  20. Chemical Gas Sensors for Aeronautic and Space Applications

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  1. Static and Dynamic Verification of Critical Software for Space Applications

    Science.gov (United States)

    Moreira, F.; Maia, R.; Costa, D.; Duro, N.; Rodríguez-Dapena, P.; Hjortnaes, K.

    Space technology is no longer used only for much specialised research activities or for sophisticated manned space missions. Modern society relies more and more on space technology and applications for every day activities. Worldwide telecommunications, Earth observation, navigation and remote sensing are only a few examples of space applications on which we rely daily. The European driven global navigation system Galileo and its associated applications, e.g. air traffic management, vessel and car navigation, will significantly expand the already stringent safety requirements for space based applications Apart from their usefulness and practical applications, every single piece of onboard software deployed into the space represents an enormous investment. With a long lifetime operation and being extremely difficult to maintain and upgrade, at least when comparing with "mainstream" software development, the importance of ensuring their correctness before deployment is immense. Verification &Validation techniques and technologies have a key role in ensuring that the onboard software is correct and error free, or at least free from errors that can potentially lead to catastrophic failures. Many RAMS techniques including both static criticality analysis and dynamic verification techniques have been used as a means to verify and validate critical software and to ensure its correctness. But, traditionally, these have been isolated applied. One of the main reasons is the immaturity of this field in what concerns to its application to the increasing software product(s) within space systems. This paper presents an innovative way of combining both static and dynamic techniques exploiting their synergy and complementarity for software fault removal. The methodology proposed is based on the combination of Software FMEA and FTA with Fault-injection techniques. The case study herein described is implemented with support from two tools: The SoftCare tool for the SFMEA and SFTA

  2. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  3. Cryogen-free dilution refrigerators

    International Nuclear Information System (INIS)

    Uhlig, K

    2012-01-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4 He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4 He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  4. Cryogen-free dilution refrigerators

    Science.gov (United States)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  5. Research-grade CMOS image sensors for demanding space applications

    Science.gov (United States)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2017-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  6. Assessment of nuclear reactor concepts for low power space applications

    Science.gov (United States)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  7. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-08-01

    Nucler power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  8. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-01-01

    Nuclear power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  9. High density storage of antimatter for space propulsion applications

    International Nuclear Information System (INIS)

    Smith, Gerald A.; Coughlin, Dan P.

    2001-01-01

    The specific energy of antimatter is 180 MJ/μg, making it the largest specific energy density material known to humankind. Three challenges remain to be solved for space propulsion applications: first, sufficient amounts must be made to permit missions into deep space; second, efficient methods must be found to turn the antimatter into thrust and Isp; and third, the antimatter must be stored for long periods of time. This paper addresses the third issue. We discuss conventional (electromagnetic) methods of confining antimatter, as well as unconventional concepts, including the use of quantum effects in materials and antimatter chemistry

  10. 77 FR 8801 - Request for Applications: The Community Forest and Open Space Conservation Program

    Science.gov (United States)

    2012-02-15

    ... DEPARTMENT OF AGRICULTURE Forest Service Request for Applications: The Community Forest and Open Space Conservation Program AGENCY: Forest Service, USDA. ACTION: Request for applications. SUMMARY: The..., requests applications for the Community Forest and Open Space Conservation Program (Community Forest...

  11. Optical Approach to Augment Current Float Sensing Method of Determining Cryogen Fluid Height Within a Tank, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative Imaging and Research, a small technology development company, has teamed with the University of Southern Mississippi Instrument and Cryogenics Research...

  12. Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and...

  13. Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and...

  14. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    Science.gov (United States)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical

  15. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  16. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  17. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  18. Evacuation apparatus with cryogenic pump and trap assembly

    International Nuclear Information System (INIS)

    Mahl, G.

    1980-01-01

    An evacuation apparatus comprising a vessel defining a vacuum chamber therein, vacuumizing means communicating with an opening to said vacuum chamber for selectively drawing a vacuum therein comprising cryogenic pump means disposed closely adjacent to said opening and defined by substantial cryogenically cooled trap surfaces for freezing-out water vapor from air evacuated from said vacuum chamber, said opening being common to said vacuum chamber and to said cryogenic pump means, valve means for selectively opening or closing the opening to said vacuum chamber and movable from a first position within said cryogenic pump means closing said opening to a second position within said cryogenic pump means directly exposing said vacuum chamber to said cryogenic pump means, through said opening, baffle means disposed closely adjacent to the opening to said vacuum chamber for providing substantial open communication to said vacuum chamber and for substantially preventing ingress of contaminants into said vacuum chamber, said baffle means being positioned to provide an optically dense view of said opening when viewed from a downstream side of said baffle means, and a plurality of longitudinally spaced and cryogenically cooled fins mounted in nested relationship within said baffle means and disposed in out-of-contact relationship therewith, said fins being positioned to provide an optically dense view of the downstream side of said baffle means when viewed from said openings. The cryogenic pump is adapted for use in an evacuation apparatus comprising a housing defining an opening to a vacuum chamber, a plurality of metallic plates defining a first chamber therein communicating with said vacuum chamber through said opening and further defining a second chamber at least partially surrounding said first chamber and adapted to be at least partially filled with a cryogenic liqui.d

  19. Lightweight High Efficiency Electric Motors for Space Applications

    Science.gov (United States)

    Robertson, Glen A.; Tyler, Tony R.; Piper, P. J.

    2011-01-01

    Lightweight high efficiency electric motors are needed across a wide range of space applications from - thrust vector actuator control for launch and flight applications to - general vehicle, base camp habitat and experiment control for various mechanisms to - robotics for various stationary and mobile space exploration missions. QM Power?s Parallel Path Magnetic Technology Motors have slowly proven themselves to be a leading motor technology in this area; winning a NASA Phase II for "Lightweight High Efficiency Electric Motors and Actuators for Low Temperature Mobility and Robotics Applications" a US Army Phase II SBIR for "Improved Robot Actuator Motors for Medical Applications", an NSF Phase II SBIR for "Novel Low-Cost Electric Motors for Variable Speed Applications" and a DOE SBIR Phase I for "High Efficiency Commercial Refrigeration Motors" Parallel Path Magnetic Technology obtains the benefits of using permanent magnets while minimizing the historical trade-offs/limitations found in conventional permanent magnet designs. The resulting devices are smaller, lower weight, lower cost and have higher efficiency than competitive permanent magnet and non-permanent magnet designs. QM Power?s motors have been extensively tested and successfully validated by multiple commercial and aerospace customers and partners as Boeing Research and Technology. Prototypes have been made between 0.1 and 10 HP. They are also in the process of scaling motors to over 100kW with their development partners. In this paper, Parallel Path Magnetic Technology Motors will be discussed; specifically addressing their higher efficiency, higher power density, lighter weight, smaller physical size, higher low end torque, wider power zone, cooler temperatures, and greater reliability with lower cost and significant environment benefit for the same peak output power compared to typically motors. A further discussion on the inherent redundancy of these motors for space applications will be provided.

  20. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  1. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  2. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  3. Replicated x-ray optics for space applications

    Science.gov (United States)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.

  4. A Unique Photon Bombardment System for Space Applications

    Science.gov (United States)

    Klein, E. J.

    1993-01-01

    The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.

  5. A review of European applications of artificial intelligence to space

    Science.gov (United States)

    Drummond, Mark (Editor); Stewart, Helen (Editor)

    1993-01-01

    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc.

  6. Proposed advanced satellite applications utilizing space nuclear power systems

    International Nuclear Information System (INIS)

    Bailey, P.G.; Isenberg, L.

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000 kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Safety issues are shown to be identified, and if properly addressed should not pose a hindrance. Applications are summarized for the federal and civilian community. These applications include both low and high altitude satellite surveillance missions, communications satellites, planetary probes, low and high power lunar and planetary base power systems, broad-band global telecommunications, air traffic control, and high-definition television

  7. Adhesive Bonding for Optical Metrology Systems in Space Applications

    International Nuclear Information System (INIS)

    Gohlke, Martin; Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis

    2015-01-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10 -15 range for longer integration times. The EM setup was thermally cycled and vibration tested. (paper)

  8. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  9. Comparison of cryogenic low-pass filters.

    Science.gov (United States)

    Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  10. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  11. Cryogenics for SMES

    International Nuclear Information System (INIS)

    McIntosh, G.E.

    1981-01-01

    A wide-ranging study of superconducting magnetic energy storage (SMES) structural and cryogenic requirements was made. Concepts and computational methods have been developed for all of the major problems in these areas. Design analyses have been made to provide more detailed information on some items and experimental work has been performed to create data bases in the areas of superfluid heat transfer, superfluid dielectric properties, heat transfer from conductors, and in the thermal and mechanical properties of materials at low temperatures. In most cases optimum solutions have not been made because of the developing nature of the overall study but methodology for optimization has been worked out for essentially all SMES cryogenic and structural elements. The selection of 1.8 K cooling and all aluminum systems in bedrock continues to be the best choice

  12. Cryogenic treatment of gas

    Science.gov (United States)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  13. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  14. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  15. Wear-resistant ball bearings for space applications

    Science.gov (United States)

    Boving, H.; Hintermann, H. E.; Hanni, W.; Bondivenne, E.; Boeto, M.; Conde, E.

    1977-01-01

    Ball bearings consisting of steel parts of which the rings are coated with hard, wear resistant, chemical vapor deposited TiC are described. Experiments conducted in ultrahigh vacuum, using cages of various materials with self-lubricating properties, show that such bearings are suitable for space applications. The results of laboratory tests on the ESA Meteosat Radiometer Focalizing mechanism, which contains six coated bearings, are summarized.

  16. Legal Provisions Applicable to the Definition of Outer Space

    Science.gov (United States)

    Thorin, T.

    2002-01-01

    Whether it be the adjective "spatial" or the definition "space", these two terms have, in many respects, a non-identifiable dimension, which serves as a reference point for all players in this field, without being concerned with the exact area of application. This is evident from the vast diversity of corporate names, acronyms, logos and other designations that we often use. Among some of the most worldwide common include: NASA, ISS, ESA, and so on. Without of course forgetting , a field which concerns all legal experts and should not be overlooked is "space law". Thus, it is apparent that although the "space" community (i.e. influential and space- minded governments and relevant international authorities) has been involved in this field over the last few decades, no specific and universally-accepted definition has been adopted to date. Apart from certain demands made or unilateral positions taken by a given state particularly concerned by the matter, it is important to underline that the international community has refrained from making legislation in this area, apart from some rather limited or symbolic provisions introduced. This vagueness, in legal terms, should clearly be taken as the assertion of nationalistic demands, but also shows divergence or even antagonism between states fuelled by hypothetical profits, as was the case when attempts were made to establish maritime boundaries. We can thus by now summarise this issue by asking the following question: "Where does outer space begin?" We shall begin by looking at the sketchy legal references that we have at our disposal, which as lawyers we must use to attempt to find a solution to practical commercial or scientific contingencies which we are increasingly confronted with. Such references include the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies of 10th October 1967, constituting the fundamental space charter

  17. Applications of nuclear-powered thermoelectric generators in space

    International Nuclear Information System (INIS)

    Rowe, D.M.

    1991-01-01

    The source of electrical power which enables information to be transmitted from the space crafts Voyager 1 and 2 back to Earth after a time period of more than a decade and at a distance of more than a billion miles is known as an RTG (radioisotope thermoelectric generator). It utilises the Seebeck effect in producing electricity from heat. In essence it consists of a large number of semiconductor thermocouples connected electrically in series and thermally in parallel. A temperature difference is maintained across the thermocouples by providing a heat source, which in the case of an RTG is a radioactive isotope, and the heat sink is space. The combination of an energy-conversion system, free of moving parts and a long-life, high energy-density heat source, provides a supply of electrical power typically in the range of tens to hundred of watts and which operates reliably over extended periods of time. An electric power source, based upon thermoelectric conversion by which utilises a nuclear reactor as a heat source, has also been deployed in space and a 100-kW system is being developed to provide electrical power to a variety of commercial and military projects including SDI. Developments in thermoelectrics that have taken place in the western world during the past 30 years are primarily due to United States interest and involvement in the exploration of space. This paper reviews US applications of nuclear-powered thermoelectric generators in space. (author)

  18. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  19. Development of magnetostrictive active members for control of space structures

    Science.gov (United States)

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-08-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  20. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  1. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    Brindza, P.; Rode, C.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. These accelerating cavities are arranged in pairs in a cryounit. The ensemble of four cryounits (8 cavities) together with their end caps makes up a complete cryostat called a cryogenic module. The four cryounit helium vessels are cross connected to each other and share a common cryogen supply, radiation shield and insulating vacuum. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2 K and the 4.5 K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0 K at .031 ATM and 4.4 K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  2. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    Science.gov (United States)

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  3. General background and approach to multibody dynamics for space applications

    Science.gov (United States)

    Santini, Paolo; Gasbarri, Paolo

    2009-06-01

    Multibody dynamics for space applications is dictated by space environment such as space-varying gravity forces, orbital and attitude perturbations, control forces if any. Several methods and formulations devoted to the modeling of flexible bodies undergoing large overall motions were developed in recent years. Most of these different formulations were aimed to face one of the main problems concerning the analysis of spacecraft dynamics namely the reduction of computer simulation time. By virtue of this, the use of symbolic manipulation, recursive formulation and parallel processing algorithms were proposed. All these approaches fall into two categories, the one based on Newton/Euler methods and the one based on Lagrangian methods; both of them have their advantages and disadvantages although in general, Newtonian approaches lend to a better understanding of the physics of problems and in particular of the magnitude of the reactions and of the corresponding structural stresses. Another important issue which must be addressed carefully in multibody space dynamics is relevant to a correct choice of kinematics variables. In fact, when dealing with flexible multibody system the resulting equations include two different types of state variables, the ones associated with large (rigid) displacements and the ones associated with elastic deformations. These two sets of variables have generally two different time scales if we think of the attitude motion of a satellite whose period of oscillation, due to the gravity gradient effects, is of the same order of magnitude as the orbital period, which is much bigger than the one associated with the structural vibration of the satellite itself. Therefore, the numerical integration of the equations of the system represents a challenging problem. This was the abstract and some of the arguments that Professor Paolo Santini intended to present for the Breakwell Lecture; unfortunately a deadly disease attacked him and shortly took him

  4. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, J. W.

    1996-01-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  5. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  6. Cryogenics in nuclear reactor technology

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1982-01-01

    The cryogenic technology has significantly contributed to the development of several proven techniques for use in the nuclear power industry. A noteworthy feature is the unique role of cryogenics in minimising the release of radioactive and some chemical pollutants to the environment during the operation of various plants associated with this industry. The salient technological features of several cryogenic processes relevant to the nuclear reactor technology are discussed. (author)

  7. OverView of Space Applications for Environment (SAFE) initiative

    Science.gov (United States)

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  8. OverView of Space Applications for Environment (SAFE) initiative

    International Nuclear Information System (INIS)

    Hamamoto, Ko; Fukuda, Toru; Nukui, Tomoyuki; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi

    2014-01-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes

  9. The Office of Space Science and Applications strategic plan, 1990: A strategy for leadership in space through excellence in space science and applications

    Science.gov (United States)

    1990-01-01

    A strategic plan for the U.S. space science and applications program during the next 5 to 10 years was developed and published in 1988. Based on the strategies developed by the advisory committees of both the National Academy of Science and NASA, the plan balances major, moderate, and small mission initiatives, the utilization of the Space Station Freedom, and the requirements for a vital research base. The Office of Space Science and Applications (OSSA) strategic plan is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy will yield a viable program; and check the strategy for consistency within resource constraints. The OSSA plan is revised annually. This OSSA 1990 Strategic Plan refines the 1989 Plan and represents OSSA's initial plan for fulfilling its responsibilities in two major national initiatives. The Plan is now built on interrelated, complementary strategies for the core space science and applications program, for the U.S. Global Change Research Program, and for the Space Exploration Initiative. The challenge is to make sure that the current level of activity is sustained through the end of this century and into the next. The 1990 Plan presents OSSA's strategy to do this.

  10. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  11. Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector

    Science.gov (United States)

    Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses

    2014-10-01

    An ASIC is developed to control and data quantization for large format NIR/SWIR detector arrays. Both cryogenic and space radiation environment issue are considered during the design. Therefore it can be integrated in the cryogenic chamber, which reduces significantly the vast amount of long wires going in and out the cryogenic chamber, i.e. benefits EMI and noise concerns, as well as the power consumption of cooling system and interfacing circuits. In this paper, we will describe the development of this prototype ASIC for image sensor driving and signal processing as well as the testing in both room and cryogenic temperature.

  12. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  13. Uses of cryogenics in power industry

    Energy Technology Data Exchange (ETDEWEB)

    Jungnickel, H

    1975-05-01

    A review of the present and possible future uses of cryogenic engineering and applied superconductivity. The applications discussed cover: transport of natural gas, superconducting N/sub 2/-filled cable for 275 kV. Cable with Ni/Ti conductor, homopolar machines with dix-type superconducting field coils, and superconducting magnetic propulsion. Important references to original works from different countries describing the latest developments are given.

  14. Common Fixed Points of Mappings and Set-Valued Mappings in Symmetric Spaces with Application to Probabilistic Spaces

    OpenAIRE

    M. Aamri; A. Bassou; S. Bennani; D. El Moutawakil

    2007-01-01

    The main purpose of this paper is to give some common fixed point theorems of mappings and set-valued mappings of a symmetric space with some applications to probabilistic spaces. In order to get these results, we define the concept of E-weak compatibility between set-valued and single-valued mappings of a symmetric space.

  15. MAGDAS Project for Space Weather Research and Application

    International Nuclear Information System (INIS)

    Yumoto, Kiyohumi

    2009-01-01

    The Space Environment Research Center (SERC), Kyushu University, is currently deploying a new ground-based magnetometer network of MAGnetic Data Acqusition System (MAGDAS), in cooperation with about 30 organizations in the world, in order to understand the complex Sun-Earth system for space weather research and application. SERC will conducts MAGDAS observation at 50 stations in the Circum-pan Pacific Magnetometer Network (CPMN) region, and FM-CW radar observation along the 210 deg. magnetic meridian (MM) during the IHY/ILWS/CAWSES periods. This project is actively providing the following space weather monitoring:(1) Global 3-dimensional current system to know electromagnetic coupling of the region 1 and 2 field-aligned currents, auroral electrojet current, Sq current, and equatorial electrojet current. (2) Plasma mass density along the 210 deg. MM to understand plasma environment change during space storms. (3) Ionospheric electric field intensity with 10-sec sampling at L = 1.26 to understand how the external electric field penetrates into the equatorial ionosphere.

  16. GOES-16 Space Weather Data Availability and Applications

    Science.gov (United States)

    Tilton, M.; Rowland, W. F.; Codrescu, S.; Seaton, D. B.; Redmon, R. J.; Hsu, V.

    2017-12-01

    In November 2016, NOAA launched the first in the "R" series of Geostationary Operational Environmental Satellites, GOES-16. Compared to its GOES predecessors, the GOES-R series satellites provide improved in situ measurements of charged particles, higher cadence magnetic field measurements, and enhanced remote sensing of the sun through ultraviolet (UV) imagery and X-ray/UV irradiance. GOES-16 space weather instruments will nominally reach provisional status near the beginning of 2018. After this milestone has been achieved, NOAA's National Centers for Environmental Information (NCEI) will provide archive access to GOES-16 space weather data. This presentation will describe the status of the space weather instruments, including available products and their applicability for forecasters, modelers, academics, spacecraft operators, and other users. It will discuss the available access systems for all levels of data-raw telemetry (Level 0), science measurements in high resolution (L1b), and higher-level (L2+) products developed by NCEI scientists. Finally, it will cover NCEI's efforts to promote space weather awareness through data visualization tools and image dissemination via the Helioviewer project.

  17. Development of Advanced Robotic Hand System for space application

    Science.gov (United States)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  18. Space Solar Power Technology for Lunar Polar Applications

    Science.gov (United States)

    Henley, Mark W.; Howell, Joe T.

    2004-01-01

    The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science

  19. Scientific applications of frequency-stabilized laser technology in space

    Science.gov (United States)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  20. Morphological Control: A Design Principal for Applications in Space Science

    Science.gov (United States)

    Füchslin, R. M.; Dumont, E.; Flumini, D.; Fuchs, H. U.; Hauser, H.; Jaeger, C.; Scheidegger, S.; Schönenberger-Deuel, J.; Lichtensteiger, L.; Luchsinger, R.; Weyland, M.

    Designing robots for applications in space flight requires a different prioritization of design criteria than for systems operating on Earth. In this article, we argue that the field of soft robotics offers novel approaches meeting the specific requirements of space flight. We present one especially promising construction principle, so called Tensairity, in some detail. Tensairity, as the name suggests, takes ideas from Tensegrity, but uses inflatable structures instead of cables and struts. Soft robots pose substantial challenges with respect to control. One way to meet these challenges is given by the concept of morphological computation and control. Morphological computation can be loosely defined as the exploitation of the shape, material properties, and dynamics of a physical system to improve the efficiency of computation and to deal with systems for which it is difficult to construct a virtual representation using a kinematic model. We discuss fundamental aspects of morphological control and their relevance for space flight. Besides low weight, small consumption of space in the inactive state and advantageous properties with respect to intrinsic safety and energy consumption, we discuss how the blurring of the discrimination of hard- and software leads to control strategies that require only very little and very simple electronic circuitry (which is beneficial in an environment with high irradiation). Finally, we present a research strategy that bundles activities in space flight with research and development in medicine, especially for support systems for an aging population, that are faced with similar morphological computing challenges to astronauts. Such a combination meets the demands for research that is not only effective, but also efficient with respect to economic resources.

  1. Cryogenic mechanical properties of Al-Cu-Li-Zr alloy 2090

    International Nuclear Information System (INIS)

    Glazer, J.; Dalder, E.N.C.; Emigh, R.A.; Verzasconi, S.L.; Yu, W.

    1986-01-01

    The mechanical properties of aluminum-lithium alloy 2090-T8E41 were evaluated at 298 K, 77 K, and 4 K. Previously reported tensile and fracture toughness properties at room temperature were confirmed. This alloy exhibits substantially improved properties at cryogenic temperatures; the strength, elongation, fracture toughness and fatigue crack growth resistance all improve simultaneously as the testing temperature decreases. This alloy has cryogenic properties superior to those of aluminum alloys currently used for cryogenic applications

  2. Space Processing Applications Rocket project, SPAR 1. Final report

    International Nuclear Information System (INIS)

    Reeves, F.; Chassay, R.

    1976-12-01

    The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment

  3. Preliminary Evaluation Of Commercial Supercapacitors For Space Applications

    Science.gov (United States)

    Gineste, Valery; Loup, Didier; Mattesco, Patrick; Neugnot, Nicolas

    2011-10-01

    Supercapacitors are identified since years as a new technology enabling energy storage together with high power delivery capability to the system. A recent ESA study [1] led by Astrium has demonstrated the interest of these devices for space application, providing that reliability and end of life performances are demonstrated. A realistic commercial on the shelf (COTS) approach (or with limited design modification approved by potential suppliers) has been favoured (as for batteries). This paper presents preliminary test results done by Astrium on COTS supercapacitors: accelerated life tests, calendar life tests, technology analyses. Based on these results, assessment and lessons learnt are drawn in view of future exhaustive supercapacitor validation and future qualification.

  4. Evaluation of nickel-hydrogen battery for space application

    Science.gov (United States)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  5. Future NASA Power Technologies for Space and Aero Propulsion Applications

    Science.gov (United States)

    Soeder, James F.

    2015-01-01

    To achieve the ambitious goals that NASA has outlined for the next decades considerable development of power technology will be necessary. This presentation outlines the development objectives for both space and aero applications. It further looks at the various power technologies that support these objectives and examines drivers that will be a driving force for future development. Finally, the presentation examines what type of non-traditional learning areas should be emphasized in student curriculum so that the engineering needs of the third decade of the 21st Century are met.

  6. Space Processing Applications rocket project SPAR III. Final report

    International Nuclear Information System (INIS)

    Reeves, F.

    1978-01-01

    This document presents the engineering report and science payload III test report and summarizes the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies

  7. TiAu-based micro-calorimeters for space applications

    International Nuclear Information System (INIS)

    Dirks, B.P.F.; Popescu, M.; Bruijn, M.; Gottardi, L.; Hoevers, H.F.C.; Korte, P.A.J. de; Kuur, J. van der; Ridder, M.; Takei, Y.

    2009-01-01

    We present the latest results of the performance of micro-calorimeters based on transition edge sensors (TESs) for space applications. Sensors based on TiAu superconductive layers with Cu/Bi absorbers are discussed and have been characterized. Different coupling schemes between absorber and TES have been tested leading to an optimal (preferred) design for a new batch of arrays. We discuss the progress on array development for the International X-ray Observatory (IXO) in terms of pixel uniformity and filling factor. Inter-pixel cross-talk is discussed as well.

  8. Kodak AMSD Cryogenic Test Plans

    Science.gov (United States)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  9. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  10. Strategic plan, 1991: A strategy for leadership in space through excellence in space science and applications

    Science.gov (United States)

    1991-01-01

    In 1988, the Office of Space Science and Applications (OSSA) developed and published a Strategic Plan for the United States' space science and applications program during the next 5 to 10 years. The Plan presented the proposed OSSA program for the next fiscal year and defined a flexible process that provides the basis for near-term decisions on the allocation of resources and the planning of future efforts. Based on the strategies that have been developed by the advisory committees both of the National Academy of Sciences and of NASA, the Plan balances major, moderate, and small mission initiatives, the utilization of Space Station Freedom, and the requirements for a vital research base. The Plan can be adjusted to accommodate varying budget levels, both those levels that provide opportunities for an expanded science and applications program, and those that constrain growth. SSA's strategic planning is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy can yield a viable program; and check the strategy for consistency with resource constraints. The outcome of this process is a clear, coherent strategy that meets both NASA's and OSSA's goals, that assures realism in long-range planning and advanced technology development, and that provides sufficient resiliency to respond and adapt to both known and unexpected internal and external realities. The OSSA Strategic Plan is revised annually to reflect the approval of new programs, improved understanding of requirements and issues, and any major changes in the circumstances, both within NASA and external to NASA, in which OSSA initiatives are considered.

  11. The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications

    Science.gov (United States)

    Scott-Monck, J. A.

    1979-01-01

    The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.

  12. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  13. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  14. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  15. Guidelines on Lithium-ion Battery Use in Space Applications

    Science.gov (United States)

    Mckissock, Barbara; Loyselle, Patricia; Vogel, Elisa

    2009-01-01

    This guideline discusses a standard approach for defining, determining, and addressing safety, handling, and qualification standards for lithium-ion (Li-Ion) batteries to help the implementation of the technology in aerospace applications. Information from a variety of other sources relating to Li-ion batteries and their aerospace uses has been collected and included in this document. The sources used are listed in the reference section at the end of this document. The Li-Ion chemistry is highly energetic due to its inherent high specific energy and its flammable electrolyte. Due to the extreme importance of appropriate design, test, and hazard control of Li-ion batteries, it is recommended that all Government and industry users and vendors of this technology for space applications, especially involving humans, use this document for appropriate guidance prior to implementing the technology.

  16. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  17. Lidar technologies for airborne and space-based applications

    International Nuclear Information System (INIS)

    Henson, T.D.; Schmitt, R.L.; Sobering, T.J.; Raymond, T.D.; Stephenson, D.A.

    1994-10-01

    This study identifies technologies required to extend the capabilities of airborne light detection and ranging (lidar) systems and establish the feasibility of autonomous space-based lidars. Work focused on technologies that enable the development of a lightweight, low power, rugged and autonomous Differential Absorption Lidar (DIAL) instruments. Applications for airborne or space-based DIAL include the measurement of water vapor profiles in support of climate research and processing-plant emissions signatures for environmental and nonproliferation monitoring. A computer-based lidar performance model was developed to allow trade studies to be performed on various technologies and system configurations. It combines input from the physics (absorption line strengths and locations) of the problem, the system requirements (weight, power, volume, accuracy), and the critical technologies available (detectors, lasers, filters) to produce the best conceptual design. Conceptual designs for an airborne and space-based water vapor DIAL, and a detailed design of a ground-based water vapor DIAL demonstration system were completed. Future work planned includes the final testing, integration, and operation of the demonstration system to prove the capability of the critical enabling technologies identified

  18. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  19. Temperature Stratification in a Cryogenic Fuel Tank

    Science.gov (United States)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  20. Review of the Space Debris Protection Application on ``TIANGONG-1''

    Science.gov (United States)

    Zhang, Yong; Li, Ming; Han, Zengyao

    Meteoroid and orbital debris (M/OD) is the key factor related to the astronaut safety. The long-term manned spacelab generally adopts protection measures to reduce its hypervelocity impact (HVI) risk. This paper presents the engineering application on“Tiangong-1”,the first long-term spacelab in orbit for China.The application includes the M/OD shielding, active avoidance and mitigation. Firstly, the shielding concepts on“Tiangong-1”manned module and radiator are summarized. Two typical Whipple shields respectively with the 70mm and 50mm standoff are separately utilized for the front cone and cylinder pressurized walls. The ballistic limit Equations (BLE) of these two shieldings are achieved through the HVI tests and numerical simulation. The shields provide the resistance capability of space debris particle.Meanwhile, the M/OD risk is assessed by utilizing the MODAOST to predict the probability of penetration (PP) and probability of critical failure (PCF). The assessment shows that the shielding design meets the safety requirement with the PP of 2.09X10 (-3) and the critical cracking PCF of 3.35X10 (-4) . The radiator,the large-scaled component of manned Spacelab, adopts the Ω-shaped tube to improve the HVI resistance capability with the cost of less mass. Secondly, the orbit transfer strategy is designed not only to meet the requirement of the orbit phase of “Shenzhou” spacecraft but also actively avoid the rendezvous with the cataloged debris in orbit. This strategy is validated through the rendezvous and docking missions of “Shenzhou-8” and “Tiangong-1”,“Shenzhou-9”,“Shenzhou-10”. Thirdly, the mitigation and deactivation concepts are introduced by means of reentry simulation of “Tiangong-1” to protect the space environment and reduce the ground casualty. The space debris protection techniques applied on “Tiangong-1” have been broken through with the successful mission of “Tiangong-1”, and these applied techniques provide

  1. Construction of fuzzy spaces and their applications to matrix models

    Science.gov (United States)

    Abe, Yasuhiro

    Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.

  2. Space Solar Power Technology Demonstration for Lunar Polar Applications

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  3. Characterisation of a LSO scintillation crystal for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Elftmann, Robert; Grunau, Jan; Kulkarni, Shrinivasrao; Martin, Cesar; Wimmer-Schweingruber, Robert F. [IEAP, Christian-Albrechts-Universitaet Kiel (Germany)

    2013-07-01

    Inorganic scintillation crystals coupled with semiconductor detectors are often used in space applications as gamma ray detectors or high energy particle calorimeters. Currently BGO (Bi{sub 4}Ge{sub 3}O{sub 12}) is widely used for this purpose because of its high stopping power, the non hygroscopy and its ruggedness, which is favorable in space applications. Cerium doped LSO (Lu{sub 2}SiO{sub 5}) offers the same benefits with higher light output capabilites and a shorter decay time. In this work a cerium doped LSO scintillation crystal coupled with a photo diode is investigated. The light yield and resolution studies for two different radioactive sources, {sup 207}Bi and {sup 60}Co, are presented. To increase the light collection and consequently the energy resolution, scintillation crystals are wrapped in highly reflective material. The increase in light collection depending on the amount of layers for the LSO crystal along with investigations of quenching effects with alpha particles and the background spectrum, which arises from radioactive cerium isotopes, are also included in this work.

  4. Improved Nuclear Reactor and Shield Mass Model for Space Applications

    Science.gov (United States)

    Robb, Kevin

    2004-01-01

    New technologies are being developed to explore the distant reaches of the solar system. Beyond Mars, solar energy is inadequate to power advanced scientific instruments. One technology that can meet the energy requirements is the space nuclear reactor. The nuclear reactor is used as a heat source for which a heat-to-electricity conversion system is needed. Examples of such conversion systems are the Brayton, Rankine, and Stirling cycles. Since launch cost is proportional to the amount of mass to lift, mass is always a concern in designing spacecraft. Estimations of system masses are an important part in determining the feasibility of a design. I worked under Michael Barrett in the Thermal Energy Conversion Branch of the Power & Electric Propulsion Division. An in-house Closed Cycle Engine Program (CCEP) is used for the design and performance analysis of closed-Brayton-cycle energy conversion systems for space applications. This program also calculates the system mass including the heat source. CCEP uses the subroutine RSMASS, which has been updated to RSMASS-D, to estimate the mass of the reactor. RSMASS was developed in 1986 at Sandia National Laboratories to quickly estimate the mass of multi-megawatt nuclear reactors for space applications. In response to an emphasis for lower power reactors, RSMASS-D was developed in 1997 and is based off of the SP-100 liquid metal cooled reactor. The subroutine calculates the mass of reactor components such as the safety systems, instrumentation and control, radiation shield, structure, reflector, and core. The major improvements in RSMASS-D are that it uses higher fidelity calculations, is easier to use, and automatically optimizes the systems mass. RSMASS-D is accurate within 15% of actual data while RSMASS is only accurate within 50%. My goal this summer was to learn FORTRAN 77 programming language and update the CCEP program with the RSMASS-D model.

  5. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  6. Radiation Tests of Single Photon Avalanche Diode for Space Applications

    Science.gov (United States)

    Moscatelli, Francesco; Marisaldi, Martino; MacCagnani, Piera; Labanti, Claudio; Fuschino, Fabio; Prest, Michela; Berra, Alessandro; Bolognini, Davide; Ghioni, Massimo; Rech, Ivan; hide

    2013-01-01

    Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 micron diameter). Dark counts rate as low as few kHz at -10 degC has been obtained for the 500 micron devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2×10(exp 8) (1 MeV eq) n/cm2 with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degC have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10×10(exp 7) (1 MeV eq) n/cm(exp 2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics.

  7. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...

  8. Wireless Technology Use Case Requirement Analysis for Future Space Applications

    Science.gov (United States)

    Abedi, Ali; Wilkerson, DeLisa

    2016-01-01

    This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.

  9. Ni-Ti Next Generation Bearings for Space Applications

    Science.gov (United States)

    DellaCorte, Christopher

    2018-01-01

    NASA applications challenge traditional bearing materials. The rigors of launch often include heavy shock loads and exposure to corrosive environments (e.g., salt spray). Unfortunately, ball and roller bearings made from hardened steels are vulnerable to Brinell denting and rust which can limit performance and life. Ceramic materials can eliminate corrosion concerns but their high stiffness and extreme hardness actually makes denting problems worse. In this presentation, an emerging superelastic alloy, NiTi, is introduced for rolling element bearing applications. Through a decade of RD, NiTi alloy bearings have been put through a comprehensive series of life and performance tests. Hardness, corrosion, strength, stiffness, and rolling contact fatigue tests have been conducted and reported. Ball bearings ranging in size from 12 to 50mm bore have been successfully engineered and operated over a wide range of speeds and test conditions including being submerged in water. The combination of high hardness, moderate elastic modulus, low density, and intrinsic corrosion immunity provide new possibilities for mechanisms that operate under extreme conditions. Recent preliminary tests indicate that bearings can be made from NiTi alloys that are easily lubricated by conventional oils and greases and exhibit acceptable rolling contact fatigue resistance. This presentation introduces the NiTi materials systems and shows how NASA is using it to alleviate several specific problems encountered in advanced space applications.

  10. Applications of human error analysis to aviation and space operations

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1998-01-01

    For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) we have been working to apply methods of human error analysis to the design of complex systems. We have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. We are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. These applications lead to different requirements when compared with HR.As performed as part of a PSA. For example, because the analysis will begin early during the design stage, the methods must be usable when only partial design information is available. In addition, the ability to perform numerous ''what if'' analyses to identify and compare multiple design alternatives is essential. Finally, since the goals of such human error analyses focus on proactive design changes rather than the estimate of failure probabilities for PRA, there is more emphasis on qualitative evaluations of error relationships and causal factors than on quantitative estimates of error frequency. The primary vehicle we have used to develop and apply these methods has been a series of prqjects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. The first NASA-sponsored project had the goal to evaluate human errors caused by advanced cockpit automation. Our next aviation project focused on the development of methods and tools to apply human error analysis to the design of commercial aircraft. This project was performed by a consortium comprised of INEEL, NASA, and Boeing Commercial Airplane Group. The focus of the project was aircraft design and procedures that could lead to human errors during airplane maintenance

  11. 2nd Biennial Conference on Refrigeration for Cryogenic Sensors and Electronic Systems

    CERN Document Server

    1983-01-01

    This proceedings documents the output of the Second Biennial Conference on Refrigeration for Cryogenic Sensors and Electronic Systems held at the National Aeronautics and Space Administration's Goddard Space Flight Center, Greenbelt, Maryland, on December 7-8, 1982. Building on the first open meeting hosted by the National Bureau of Standards in 1980, the focus of this second meeting was again on low-temperature, closed-cycle cooler technology. However, higher temperature coolers (77 K), with technology applicable to the low temperature coolers, were considered to be within the scope of this meeting. This second conference consisted of 30 papers presented by representatives of industry, government, and academia. The conference proceedings reproduced here was published by the NASA Goddard Space Flight Center in Greenbelt Maryland as NASA Conference Publication 2287.

  12. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  13. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  14. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  15. Integrated heat exchanger design for a cryogenic storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  16. Application of parameters space analysis tools for empirical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Paloma del Barrio, E. [LEPT-ENSAM UMR 8508, Talence (France); Guyon, G. [Electricite de France, Moret-sur-Loing (France)

    2004-01-01

    A new methodology for empirical model validation has been proposed in the framework of the Task 22 (Building Energy Analysis Tools) of the International Energy Agency. It involves two main steps: checking model validity and diagnosis. Both steps, as well as the underlying methods, have been presented in the first part of the paper. In this part, they are applied for testing modelling hypothesis in the framework of the thermal analysis of an actual building. Sensitivity analysis tools have been first used to identify the parts of the model that can be really tested on the available data. A preliminary diagnosis is then supplied by principal components analysis. Useful information for model behaviour improvement has been finally obtained by optimisation techniques. This example of application shows how model parameters space analysis is a powerful tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison with residuals analysis techniques. (author)

  17. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    Science.gov (United States)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  18. Cermet-fueled reactors for multimegawatt space power applications

    International Nuclear Information System (INIS)

    Cowan, C.L.; Armijo, J.S.; Kruger, G.B.; Palmer, R.S.; Van Hoomisson, J.E.

    1988-01-01

    The cermet-fueled reactor has evolved as a potential power source for a broad range of multimegawatt space applications. In particular, the fast spectrum reactor concept can be used to deliver 10s of megawatts of electric power for continuous, long term, unattended operation, and 100s of megawatts of electric power for times exceeding several hundred seconds. The system can also be utilized with either a gas coolant in a Brayton power conversion cycle, or a liquid metal coolant in a Rankine power conversion cycle. Extensive testing of the cermet fuel element has demonstrated that the fuel is capable of operating at very high temperatures under repeated thermal cycling conditions, including transient conditions which approach the multimegawatt burst power requirements. The cermet fuel test performance is reviewed and an advanced cermet-fueled multimegawatt nuclear reactor is described in this paper

  19. HgCdTe APDS for space applications

    Science.gov (United States)

    Rothman, Johan; de Broniol, Eric; Foubert, Kevin; Mollard, Laurent; Péré-Laperne, Nicolas; Salvetti, Frederic; Kerlain, Alexandre; Reibel, Yann

    2017-11-01

    HgCdTe avalanche photodiode focal plane arrays (FPAs) and single element detectors have been developed for a large scope of photon starved applications. The present communication present the characteristics of our most recent detector developments that opens the horizon for low infrared (IR) photon number detection with high information conservation for imaging, atmospheric lidar and free space telecommunications. In particular, we report on the performance of TEC cooled large area detectors with sensitive diameters ranging from 30- 200 μm, characterised by detector gains of 2- 20 V/μW and noise equivalent input power of 0.1-1 nW for bandwidths ranging from 20 to 400 MHz.

  20. Efficient and compact hyperspectral imager for space-borne applications

    Science.gov (United States)

    Pisani, Marco; Zucco, Massimo

    2017-11-01

    In the last decades Hyperspectral Imager (HI) have become irreplaceable space-borne instruments for an increasing number of applications. A number of HIs are now operative onboard (e.g. CHRIS on PROBA), others are going to be launched (e.g. PRISMA, EnMAP, HyspIRI), many others are at the breadboard level. The researchers goal is to realize HI with high spatial and spectral resolution, having low weight and contained dimensions. The most common HI technique is based on the use of a dispersive mean (a grating or a prism) or on the use of band pass filters (tunable or linear variable). These approaches have the advantages of allowing compact devices. Another approach is based on the use of interferometer based spectrometers (Michelson or Sagnac type). The advantage of the latter is a very high efficiency in light collection because of the well-known Felgett and Jaquinot principles.