WorldWideScience

Sample records for space construction system

  1. Space construction base control system

    Science.gov (United States)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  2. Computer aided system engineering for space construction

    Science.gov (United States)

    Racheli, Ugo

    1989-01-01

    This viewgraph presentation covers the following topics. Construction activities envisioned for the assembly of large platforms in space (as well as interplanetary spacecraft and bases on extraterrestrial surfaces) require computational tools that exceed the capability of conventional construction management programs. The Center for Space Construction is investigating the requirements for new computational tools and, at the same time, suggesting the expansion of graduate and undergraduate curricula to include proficiency in Computer Aided Engineering (CAE) though design courses and individual or team projects in advanced space systems design. In the center's research, special emphasis is placed on problems of constructability and of the interruptability of planned activity sequences to be carried out by crews operating under hostile environmental conditions. The departure point for the planned work is the acquisition of the MCAE I-DEAS software, developed by the Structural Dynamics Research Corporation (SDRC), and its expansion to the level of capability denoted by the acronym IDEAS**2 currently used for configuration maintenance on Space Station Freedom. In addition to improving proficiency in the use of I-DEAS and IDEAS**2, it is contemplated that new software modules will be developed to expand the architecture of IDEAS**2. Such modules will deal with those analyses that require the integration of a space platform's configuration with a breakdown of planned construction activities and with a failure modes analysis to support computer aided system engineering (CASE) applied to space construction.

  3. Space construction system analysis. Part 2: Cost and programmatics

    Science.gov (United States)

    Vonflue, F. W.; Cooper, W.

    1980-01-01

    Cost and programmatic elements of the space construction systems analysis study are discussed. The programmatic aspects of the ETVP program define a comprehensive plan for the development of a space platform, the construction system, and the space shuttle operations/logistics requirements. The cost analysis identified significant items of cost on ETVP development, ground, and flight segments, and detailed the items of space construction equipment and operations.

  4. Space station system analysis study. Part 3: Documentation. Volume 2: Technical report. [structural design and construction

    Science.gov (United States)

    1977-01-01

    An analysis of construction operation is presented as well as power system sizing requirements. Mission hardware requirements are reviewed in detail. Space construction base and design configurations are also examined.

  5. A widely adaptable habitat construction system utilizing space resources

    Science.gov (United States)

    Wykes, Harry B.

    1993-01-01

    This study suggests that the cost of providing accommodations for various manned activities in space may be reduced by the extensive use of resources that are commonly found throughout the solar system. Several concepts are proposed for converting these resources into simple products with many uses. Concrete is already being considered as a possible moonbase material. Manufacturing equipment should be as small and simple as possible, which leads to the idea of molding it into miniature modules that can be produced and assembled in large numbers to create any conceivable shape. Automated equipment could build up complex structures by laying down layer after layer in a process resembling stereolithography. These tiny concrete blocks handle compression loads and provide a barrier to harmful radiation. They are joined by a web of tension members that could be made of wire or fiber-reinforced plastic. The finished structure becomes air-tight with the addition of a flexible liner. Wire can be made from the iron modules found in lunar soil. In addition to its structural role, a relatively simple apparatus can bend and weld it into countless products like chairs and shelving that would otherwise need to be supplied from Earth. Wire woven into a loose blanket could be an effective micrometeoroid shield, tiny wire compression beams could be assembled into larger beams which in turn form larger beams to create very large space-frame structures. A technology developed with lunar materials could be applied to the moons of Mars or the asteroids. To illustrate its usefulness several designs for free-flying habitats are presented. They begin with a minimal self-contained living unit called the Cubicle. It may be multiplied into clusters called Condos. These are shown in a rotating tether configuration that provides a substitute for gravity. The miniature block proposal is compared with an alternate design based on larger triangular components and a tetrahedral geometry. The

  6. Large size space construction for space exploitation

    Science.gov (United States)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  7. Construction in Occupied Spaces

    Directory of Open Access Journals (Sweden)

    Ward Andrew E.

    2017-06-01

    Full Text Available Conducting construction activities in occupied environments presents a great challenge due to the additional logistical requirements and the presence of the building occupants. The aim of this research is to gather and evaluate the means and methods to successfully plan, manage, and execute construction activities in occupied spaces in an effort to provide consolidated industry tools and strategies for maintaining a schedule and minimizing the impact on the occupants. The methodology of the research utilizes an exploratory approach to gather qualitative data. The data was collected through interviews with industry professionals to identify industry best practices. The semi-structured interviews provided a platform for the documents, lessons learned, and the techniques and strategies used for occupied construction by the construction industry. The information obtained in the interview process identified six themes that are critical to achieving and maintaining quality in occupied construction. These themes of the schedule, cost, customer satisfaction, planning, fire/life safety and utilities, and contractor management are reviewed in detail, and the paper discusses how to manage each element. The analysis and extracted management techniques, procedures and strategies can be used by the construction industry for future projects by focusing on the critical aspects of occupied construction and the manner in which to succeed with it.

  8. Construction in Occupied Spaces

    Science.gov (United States)

    Ward, Andrew E.; Azhar, Salman; Khalfan, Malik

    2017-06-01

    Conducting construction activities in occupied environments presents a great challenge due to the additional logistical requirements and the presence of the building occupants. The aim of this research is to gather and evaluate the means and methods to successfully plan, manage, and execute construction activities in occupied spaces in an effort to provide consolidated industry tools and strategies for maintaining a schedule and minimizing the impact on the occupants. The methodology of the research utilizes an exploratory approach to gather qualitative data. The data was collected through interviews with industry professionals to identify industry best practices. The semi-structured interviews provided a platform for the documents, lessons learned, and the techniques and strategies used for occupied construction by the construction industry. The information obtained in the interview process identified six themes that are critical to achieving and maintaining quality in occupied construction. These themes of the schedule, cost, customer satisfaction, planning, fire/life safety and utilities, and contractor management are reviewed in detail, and the paper discusses how to manage each element. The analysis and extracted management techniques, procedures and strategies can be used by the construction industry for future projects by focusing on the critical aspects of occupied construction and the manner in which to succeed with it.

  9. Constructing Healthcare Spaces

    DEFF Research Database (Denmark)

    Harty, Chris; Holm Jacobsen, Peter; Tryggestad, Kjell

    2015-01-01

    into the project organisation. The theoretical contribution concerns the ways in which project visualisations plays an active role in developing novel conceptions of space and how these are mobilized in the process of on-boarding, in terms of 1. Design space (especially the engagement of users in the design...

  10. The Challenge of Space Infrastructure Construction

    Science.gov (United States)

    Howe, A. Scott; Colombano, Silvano P.

    2010-01-01

    This paper reviews the range of technologies that will contribute to the construction of space infrastructure that will both enable and, in some cases, provide the motivation for space exploration. Five parts are addressed: Managing complexity, robotics based construction, materials acquisition, manufacturing, and self-sustaining systems.

  11. Power system for production, construction, life support and operations in space

    International Nuclear Information System (INIS)

    Sovie, R.J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed

  12. Fluid management in space construction

    Science.gov (United States)

    Snyder, Howard

    1989-01-01

    The low-g fluids management group with the Center for Space Construction is engaged in active research on the following topics: gauging; venting; controlling contamination; sloshing; transfer; acquisition; and two-phase flow. Our basic understanding of each of these topics at present is inadequate to design space structures optimally. A brief report is presented on each topic showing the present status, recent accomplishings by our group and our plans for future research. Reports are presented in graphic and outline form.

  13. A Concept of Constructing a Common Information Space for High Tech Programs Using Information Analytical Systems

    Science.gov (United States)

    Zakharova, Alexandra A.; Kolegova, Olga A.; Nekrasova, Maria E.

    2016-04-01

    The paper deals with the issues in program management used for engineering innovative products. The existing project management tools were analyzed. The aim is to develop a decision support system that takes into account the features of program management used for high-tech products: research intensity, a high level of technical risks, unpredictable results due to the impact of various external factors, availability of several implementing agencies. The need for involving experts and using intelligent techniques for information processing is demonstrated. A conceptual model of common information space to support communication between members of the collaboration on high-tech programs has been developed. The structure and objectives of the information analysis system “Geokhod” were formulated with the purpose to implement the conceptual model of common information space in the program “Development and production of new class mining equipment - “Geokhod”.

  14. Activities of the Center for Space Construction

    Science.gov (United States)

    1993-01-01

    The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar

  15. Space construction engineering - A new career field

    Science.gov (United States)

    Hagler, T.

    1979-01-01

    Opportunities for engineers in the design and construction of future large space structures are outlined. Possible space structures for the 1980's include a large mirror to reflect sunlight to earth for night lighting, an antenna for a personal communications system, a deep space communications relay system and a large passive radiometer to measure soil moisture. Considerations in the design of such structures include the lack of gravity, allowing structures to be built with much less supporting weight, the cost of transportation to orbit, leading to the use of aluminum or composite materials stored on reels and attached to a beam builder, and the required surface accuracy in the presence of thermal stresses. Construction factors to consider include the use of astronauts and remote manipulators in assembly, both of which have been demonstrated to be feasible.

  16. Particle System Based Adaptive Sampling on Spherical Parameter Space to Improve the MDL Method for Construction of Statistical Shape Models

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2013-01-01

    Full Text Available Minimum description length (MDL based group-wise registration was a state-of-the-art method to determine the corresponding points of 3D shapes for the construction of statistical shape models (SSMs. However, it suffered from the problem that determined corresponding points did not uniformly spread on original shapes, since corresponding points were obtained by uniformly sampling the aligned shape on the parameterized space of unit sphere. We proposed a particle-system based method to obtain adaptive sampling positions on the unit sphere to resolve this problem. Here, a set of particles was placed on the unit sphere to construct a particle system whose energy was related to the distortions of parameterized meshes. By minimizing this energy, each particle was moved on the unit sphere. When the system became steady, particles were treated as vertices to build a spherical mesh, which was then relaxed to slightly adjust vertices to obtain optimal sampling-positions. We used 47 cases of (left and right lungs and 50 cases of livers, (left and right kidneys, and spleens for evaluations. Experiments showed that the proposed method was able to resolve the problem of the original MDL method, and the proposed method performed better in the generalization and specificity tests.

  17. Constructing a European Governance Space

    DEFF Research Database (Denmark)

    Pontoppidan, Caroline Aggestam; Alijarde, Isabel Brusca; Chow, Danny

    Financial crisis has emphasized the need for harmonized public sector accounts in Europe. After a public consultation on the suitability of the IPSAS for EU Member States, the European Commission considers that the proper way is the development of European Union Standards adapted to IPSAS (renaming....... On the basis of that discussion, Eurostat launched another public consultation named; ‘Towards implementing European Public Sector Accounting Standards for EU member states-Public consultation on future EPSAS governance principles and structures’. This paper seeks to provide an in-depth understanding...... of the negotiations and interactions that took place prior to, during and after the issuance of the public consultation on the ‘Suitability of IPSAS’. The focus of this paper is therefore on a systematic analysis of the construction of regional-transnational governance of public sector accounting, using the EPSAS...

  18. Construction of the Hunveyor-Husar space probe model system for planetary science education and analog studies and simulations in universities and colleges of Hungary.

    Science.gov (United States)

    Bérczi, Sz.; Hegyi, S.; Hudoba, Gy.; Hargitai, H.; Kokiny, A.; Drommer, B.; Gucsik, A.; Pintér, A.; Kovács, Zs.

    Several teachers and students had the possibility to visit International Space Camp in the vicinity of the MSFC NASA in Huntsville Alabama USA where they learned the success of simulators in space science education To apply these results in universities and colleges in Hungary we began a unified complex modelling in planetary geology robotics electronics and complex environmental analysis by constructing an experimental space probe model system First a university experimental lander HUNVEYOR Hungarian UNiversity surVEYOR then a rover named HUSAR Hungarian University Surface Analyser Rover has been built For Hunveyor the idea and example was the historical Surveyor program of NASA in the 1960-ies for the Husar the idea and example was the Pathfinder s rover Sojouner rover The first step was the construction of the lander a year later the rover followed The main goals are 1 to build the lander structure and basic electronics from cheap everyday PC compatible elements 2 to construct basic experiments and their instruments 3 to use the system as a space activity simulator 4 this simulator contains lander with on board computer for works on a test planetary surface and a terrestrial control computer 5 to harmonize the assemblage of the electronic system and instruments in various levels of autonomy from the power and communication circuits 6 to use the complex system in education for in situ understanding complex planetary environmental problems 7 to build various planetary environments for application of the

  19. HITACHI construction CAE system

    International Nuclear Information System (INIS)

    Yoshida, M.

    1994-01-01

    Construction and maintenance of nuclear power plants have important problems such as shortening the construction period and reducing the construction cost. Recently, the problem of insufficient construction labor has arisen, and as drastic strategic development has become a necessary counter-measure. The following four principles are included in the measures to be taken for efficient execution of the construction work within the short construction period: (1) reduction of on-site work and expansion of module block making, (2)improvement of the accuracy of the on-site work process, adjustment and expansion of the work in parallel with the construction process, (3)improvement of efficiency of the on-site work and mechanization and automation of the work, (4)improvement of the accuracy of the management of the construction. A three dimensional simulation system plant construction plan CAE, comprising five modules has been developed. A project management system was also developed to improve the accuracy and efficiency of management work in the field

  20. Constructing Common Space From Fiction

    DEFF Research Database (Denmark)

    van Haeren, Kristen Danielle

    contemporary forms of digitization composed of regulatory standards, systems and computerized modes of making. Heidegger in Being and Time (1996) describes world as something that should be understood as a familiar context of meaning. He describes how a world created through processes of summarization......-Fantastic Machine is to be able to allow one to escape reality and float like dust above the sea of the objective world. As a point of departure, Calvino’s machine will be metaphorically applied to three social housing estates within Copenhagen, as a part of the Reconfiguring Welfare Landscape project currently...

  1. Sparse suffix tree construction in small space

    DEFF Research Database (Denmark)

    Bille, Philip; Fischer, Johannes; Gørtz, Inge Li

    2013-01-01

    the correct tree with high probability. We then give a Las-Vegas algorithm which also uses O(b) space and runs in the same time bounds with high probability when b = O(√n). Furthermore, additional tradeoffs between the space usage and the construction time for the Monte-Carlo algorithm are given......., which may be of independent interest, that allows to efficiently answer b longest common prefix queries on suffixes of T, using only O(b) space. We expect that this technique will prove useful in many other applications in which space usage is a concern. Our first solution is Monte-Carlo and outputs...

  2. A constructive presentation of rigged Hilbert spaces

    International Nuclear Information System (INIS)

    Celeghini, Enrico

    2015-01-01

    We construct a rigged Hilbert space for the square integrable functions on the line L2(R) adding to the generators of the Weyl-Heisenberg algebra a new discrete operator, related to the degree of the Hermite polynomials. All together, continuous and discrete operators, constitute the generators of the projective algebra io(2). L 2 (R) and the vector space of the line R are shown to be isomorphic representations of such an algebra and, as both these representations are irreducible, all operators defined on the rigged Hilbert spaces L 2 (R) or R are shown to belong to the universal enveloping algebra of io(2). The procedure can be extended to orthogonal and pseudo-orthogonal spaces of arbitrary dimension by tensorialization.Circumventing all formal problems the paper proposes a kind of toy model, well defined from a mathematical point of view, of rigged Hilbert spaces where, in contrast with the Hilbert spaces, operators with different cardinality are allowed. (paper)

  3. The Space Station as a Construction Base for Large Space Structures

    Science.gov (United States)

    Gates, R. M.

    1985-01-01

    The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.

  4. The construction and space qualification of the control electronics for the tracker detector cooling system of the AMS-02 experiment

    International Nuclear Information System (INIS)

    Menichelli, M.; Accardo, L.; Alberti, G.; Bardet, M.; Battiston, R.; Blasko, S.; He, Z.; Koutsenko, V.; Lebedev, A.; Ni, J.; Papi, A.; Pauw, A.; Van Ess, J.; Wang, Z.; Zhang, D.; Zwartbol, T.

    2010-01-01

    This article describes the control electronics for the silicon tracker cooling system in the AMS-02 apparatus. It also contains a brief description of the cooling system itself necessary for the description of the electronics. The tracker cooling system includes a set of various sensors and actuators which are necessary for bringing the tracker detector to a uniform temperature at which it can operate correctly. In order to test the system performing the various qualification activities we have built also an Electronic Ground support equipment (EGSE). The EGSE should simulate the behaviour of all sensors and actuators previously mentioned.

  5. Construction of spaces of kinematic quantum states for field theories via projective techniques

    International Nuclear Information System (INIS)

    Okołów, Andrzej

    2013-01-01

    We present a method of constructing a space of quantum states for a field theory: given phase space of a theory, we define a family of physical systems each possessing a finite number of degrees of freedom, next we define a space of quantum states for each finite system, finally using projective techniques we organize all these spaces into a space of quantum states which corresponds to the original phase space. This construction is kinematic in this sense that it bases merely on the structure of the phase space of a theory and does not take into account possible constraints on the space. The construction is a generalization of a construction by Kijowski—the latter one is limited to theories of linear phase spaces, while the former one is free of this limitation. The method presented in this paper enables to construct a space of quantum states for the teleparallel equivalent of general relativity. (paper)

  6. MODULAR CONSTRUCTION SYSTEM EVALUATION

    International Nuclear Information System (INIS)

    Gillespie, S.

    2002-01-01

    The purpose of this study is to respond to U.S. Department of Energy (DOE) Technical Direction Letter (TDL) 02-003 (Waisley 2001), which directs Bechtel SAIC Company, LLC (BSC) to complete a design study to recommend repository design options to support receipt and/or emplacement of any or all of the following: commercial spent nuclear fuel (CSNF), high-level radioactive waste (HLW), DOE-managed spent nuclear fuel (DSNF) (including naval spent nuclear fuel [SNF]), and immobilized plutonium (if available), as soon as practicable, but no later than 2010. From the possible design options, a recommended approach will be determined for further evaluation to support the preliminary design of the repository. This study integrates the results of the repository Design Evolution Study (Rowe 2002) with supporting studies concerning national transportation options (BSC 2002b) and Nevada transportation options (Gehner 2002). The repository Design Evolution Study documents the processes used to reevaluate the design, construction, operation, and cost of the repository in response to TDL 02-003 (Waisley 2001), and to determine possible repository conceptual design options. The transportation studies evaluate the national and Nevada transportation options that support the repository conceptual design options. An evaluation methodology was established, based on Program-level requirements developed for the study in reference BSC 2001a, to allow the repository and system design options to be evaluated on a consistent basis. The transportation options and the design components were integrated into system design implementation options, which were evaluated using receipt and emplacement scenarios. The scenarios tested the ability of the design concept to adapt to changes in funding, waste receipt rate, and Nevada rail transportation availability. The results of the evaluation (in terms of system throughput, cost, and schedule) were then compared to the Program-level requirements, and

  7. Metric space construction for the boundary of space-time

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1986-01-01

    A distance function between points in space-time is defined and used to consider the manifold as a topological metric space. The properties of the distance function are investigated: conditions under which the metric and manifold topologies agree, the relationship with the causal structure of the space-time and with the maximum lifetime function of Wald and Yip, and in terms of the space of causal curves. The space-time is then completed as a topological metric space; the resultant boundary is compared with the causal boundary and is also calculated for some pertinent examples

  8. Constructive approaches to the space NPP designing

    International Nuclear Information System (INIS)

    Eremin, A.G.; Korobkov, L.S.; Matveev, A.V.; Trukhanov, Yu.L.; Pyshko, A.P.

    2000-01-01

    An example of designing a space NPP intended for power supply of telecommunication satellite is considered. It is shown that the designing approach based on the introduction of a leading criterion and dividing the design problems in two independent groups (reactor with radiation shield and equipment module) permits to develop the optimal design of a space NPP [ru

  9. Orbifold construction of the modes of the Poincare dodecahedral space

    International Nuclear Information System (INIS)

    Lachieze-Rey, Marc; Weeks, Jeffrey

    2008-01-01

    We provide a new construction of the modes of the Poincare dodecahedral space S 3 /I*. The construction uses the Hopf map, Maxwell's multipole vectors and orbifolds. In particular, the *235-orbifold serves as a parameter space for the modes of S 3 /I*, shedding new light on the geometrical significance of the dimension of each space of k-modes, as well as on the modes themselves

  10. Orbifold construction of the modes of the Poincare dodecahedral space

    Energy Technology Data Exchange (ETDEWEB)

    Lachieze-Rey, Marc [Astroparticule et Cosmologie (APC), CNRS-UMR 7164 (France); Weeks, Jeffrey [15 Farmer Street, Canton, New York (United States)

    2008-07-25

    We provide a new construction of the modes of the Poincare dodecahedral space S{sup 3}/I*. The construction uses the Hopf map, Maxwell's multipole vectors and orbifolds. In particular, the *235-orbifold serves as a parameter space for the modes of S{sup 3}/I*, shedding new light on the geometrical significance of the dimension of each space of k-modes, as well as on the modes themselves.

  11. Space Van system update

    Science.gov (United States)

    Cormier, Len

    1992-07-01

    The Space Van is a proposed commercial launch vehicle that is designed to carry 1150 kg to a space-station orbit for a price of $1,900,000 per flight in 1992 dollars. This price includes return on preoperational investment. Recurring costs are expected to be about $840,000 per flight. The Space Van is a fully reusable, assisted-single-stage-to orbit system. The most innovative new feature of the Space Van system is the assist-stage concept. The assist stage uses only airbreathing engines for vertical takeoff and vertical landing in the horizontal attitude and for launching the rocket-powered orbiter stage at mach 0.8 and an altitude of about 12 km. The primary version of the orbiter is designed for cargo-only without a crew. However, a passenger version of the Space Van should be able to carry a crew of two plus six passengers to a space-station orbit. Since the Space Van is nearly single-stage, performance to polar orbit drops off significantly. The cargo version should be capable of carrying 350 kg to a 400-km polar orbit. In the passenger version, the Space Van should be able to carry two crew members - or one crew member plus a passenger.

  12. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  13. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  14. Constructing space-time pdfs in Geosciences

    Energy Technology Data Exchange (ETDEWEB)

    Christakos, G.; Angulo, J. M.; Yu, H.L.

    2011-07-01

    The focus of this work is the comparative analysis of techniques for constructing multivariate probability density function (Mv-pdf) models that can be used in a variety of geo mathematics applications. The paper is concerned with formal and substantive model building methods. The former includes models that are speculative and analytically tractable, whereas the latter is based on substantive knowledge synthesis. More specifically, the present work focuses on the factoras and copulas techniques of Mv-pdf building, and their comparative analysis. It also discusses a substantive Mv-pdf building method that generates models on the basis of natural knowledge bases and takes into account the contextual and contextual domain of the in situ situation. The methods are compared in terms of a simulation study. (Author) 39 refs.

  15. Constructing Delaunay triangulations along space-filling curves

    NARCIS (Netherlands)

    Buchin, K.; Fiat, A.; Sanders, P.

    2009-01-01

    Incremental construction con BRIO using a space-filling curve order for insertion is a popular algorithm for constructing Delaunay triangulations. So far, it has only been analyzed for the case that a worst-case optimal point location data structure is used which is often avoided in implementations.

  16. Space elevator systems level analysis

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. It involves new, untried technologies in most of its subsystems. Thus the successful construction of the SE requires a significant amount of development, This in turn implies a high level of risk for the SE. This paper will present a systems level analysis of the SE by subdividing its components into their subsystems to determine their level of technological maturity. such a high-risk endeavor is to follow a disciplined approach to the challenges. A systems level analysis informs this process and is the guide to where resources should be applied in the development processes. It is an efficient path that, if followed, minimizes the overall risk of the system's development. systems level analysis is that the overall system is divided naturally into its subsystems, and those subsystems are further subdivided as appropriate for the analysis. By dealing with the complex system in layers, the parameter space of decisions is kept manageable. Moreover, A rational way to manage One key aspect of a resources are not expended capriciously; rather, resources are put toward the biggest challenges and most promising solutions. This overall graded approach is a proven road to success. The analysis includes topics such as nanotube technology, deployment scenario, power beaming technology, ground-based hardware and operations, ribbon maintenance and repair and climber technology.

  17. Tensegrity Approaches to In-Space Construction of a 1g Growable Habitat

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal seeks to design a rotating habitat with a robotic system that constructs the structure and provides a habitat growth capability. The tensegrity...

  18. A procedure for the incremental construction of a knowledge space

    NARCIS (Netherlands)

    Stefanutti, L.; Koppen, M.G.M.

    2003-01-01

    Knowledge spaces are structures for the efficient assessment of the knowledge state of a student in a given field of knowledge. Existing procedures for constructing a knowledge space by querying an expert assume that the domain of questions is known in advance, and that it is fixed during the whole

  19. Air barrier systems: Construction applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrault, J.C

    1989-01-01

    An examination is presented of how ordinary building materials can be used in an innovative manner to design, detail, and construct effective air barrier systems for common types of walls. For residential construction, the air drywall approach uses the interior gypsum board as the main component of the wall air barrier system. Joints between the gypsum board and adjacent materials or assemblies are sealed by gaskets. In commercial construction, two different techniques are employed for using gypsum board as air barrier material: the accessible drywall and non-accessible drywall approaches. The former is similar to the air drywall approach except that high performance sealants are used instead of gaskets. In the latter approach, exterior drywall sheathing is the main component of the air barrier system; joints between boards are taped and joints between boards and other components are sealed using elastomeric membrane strips. For various types of commercial and institutional buildings, metal air barrier systems are widely used and include pre-engineered curtain walls or sheet metal walls. Masonry wall systems are regarded as still the most durable, fireproof, and soundproof wall type available but an effective air barrier system has typically been difficult to implement. Factory-made elastomeric membranes offer the potential to provide airtightness to masonry walls. These membranes are applied on the entire masonry wall surface and are used to make airtight connections with other building components. Two types of product are available: thermofusible and peel-and-stick membranes. 5 figs.

  20. Fluid management in the optimization of space construction

    Science.gov (United States)

    Snyder, Howard

    1990-01-01

    Fluid management impacts strongly on the optimization of space construction. Large quantities of liquids are needed for propellants and life support. The mass of propellant liquids is comparable to that required for the structures. There may be a strong dynamic interaction between the stored liquids and the space structure unless the design minimizes the interaction. The constraints of cost and time required optimization of the supply/resupply strategy. The proper selection and design of the fluid management methods for: slosh control; stratification control; acquisition; transfer; gauging; venting; dumping; contamination control; selection of tank configuration and size; the storage state and the control system can improve the entire system performance substantially. Our effort consists of building mathematical/computer models of the various fluid management methods and testing them against the available experimental data. The results of the models are used as inputs to the system operations studies. During the past year, the emphasis has been on modeling: the transfer of cryogens; sloshing and the storage configuration. The work has been intermeshed with ongoing NASA design and development studies to leverage the funds provided by the Center.

  1. Communications among elements of a space construction ensemble

    Science.gov (United States)

    Davis, Randal L.; Grasso, Christopher A.

    1989-01-01

    Space construction projects will require careful coordination between managers, designers, manufacturers, operators, astronauts, and robots with large volumes of information of varying resolution, timeliness, and accuracy flowing between the distributed participants over computer communications networks. Within the CSC Operations Branch, we are researching the requirements and options for such communications. Based on our work to date, we feel that communications standards being developed by the International Standards Organization, the CCITT, and other groups can be applied to space construction. We are currently studying in depth how such standards can be used to communicate with robots and automated construction equipment used in a space project. Specifically, we are looking at how the Manufacturing Automation Protocol (MAP) and the Manufacturing Message Specification (MMS), which tie together computers and machines in automated factories, might be applied to space construction projects. Together with our CSC industrial partner Computer Technology Associates, we are developing a MAP/MMS companion standard for space construction and we will produce software to allow the MAP/MMS protocol to be used in our CSC operations testbed.

  2. Semiotics of constructed complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Landauer, C.; Bellman, K.L.

    1996-12-31

    The scope of this paper is limited to software and other constructed complex systems mediated or integrated by software. Our research program studies foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. There have really been only two theoretical approaches that have helped us understand and develop computational systems: mathematics and linguistics. We show how semiotics can also play a role, whether we think of it as part of these other theories or as subsuming one or both of them. We describe our notion of {open_quotes}computational semiotics{close_quotes}, which we define to be the study of computational methods of dealing with symbols, show how such a theory might be formed, and describe what we might get from it in terms of more interesting use of symbols by computing systems. This research was supported in part by the Federal Highway Administration`s Office of Advanced Research and by the Advanced Research Projects Agency`s Software and Intelligent Systems Technology Office.

  3. Construction of non-Abelian gauge theories on noncommutative spaces

    International Nuclear Information System (INIS)

    Jurco, B.; Schupp, P.; Moeller, L.; Wess, J.; Max-Planck-Inst. fuer Physik, Muenchen; Humboldt-Univ., Berlin; Schraml, S.; Humboldt-Univ., Berlin

    2001-01-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  4. Construction of non-Abelian gauge theories on noncommutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B.; Schupp, P. [Sektion Physik, Muenchen Univ. (Germany); Moeller, L.; Wess, J. [Sektion Physik, Muenchen Univ. (Germany); Max-Planck-Inst. fuer Physik, Muenchen (Germany); Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Schraml, S. [Sektion Physik, Muenchen Univ. (Germany)

    2001-06-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  5. Determination of Geometric Parameters of Space Steel Constructions

    Directory of Open Access Journals (Sweden)

    Jitka Suchá

    2005-06-01

    Full Text Available The paper contains conclusions of the PhD thesis „Accuracy of determination of geometric parameters of space steel construction using geodetic methods“. Generally it is a difficult task with high requirements for the accuracy and reliability of results, i.e. space coordinates of assessed points on a steel construction. A solution of this task is complicated by the effects of atmospheric influences to begin with the temperature, which strongly affects steel constructions. It is desirable to eliminate the influence of the temperature for the evaluation of the geometric parameters. A choice of an efficient geodetic method, which fulfils demanding requirements, is often affected with a constrained place in an immediate neighbourhood of the measured construction. These conditions disable the choice of efficient points configuration of a geodetic micro network, e.g. the for forward intersection. In addition, points of a construction are often hardly accessible and therefore marking is difficult. The space polar method appears efficient owing to the mentioned reasons and its advantages were increased with the implementation of self-adhesive reflex targets for the distance measurement which enable the ermanent marking of measured points already in the course of placing the construction.

  6. Group theoretical construction of planar noncommutative phase spaces

    Energy Technology Data Exchange (ETDEWEB)

    Ngendakumana, Ancille, E-mail: nancille@yahoo.fr; Todjihoundé, Leonard, E-mail: leonardt@imsp.uac.org [Institut de Mathématiques et des Sciences Physiques (IMSP), Porto-Novo (Benin); Nzotungicimpaye, Joachim, E-mail: kimpaye@kie.ac.rw [Kigali Institute of Education (KIE), Kigali (Rwanda)

    2014-01-15

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given.

  7. Group theoretical construction of planar noncommutative phase spaces

    International Nuclear Information System (INIS)

    Ngendakumana, Ancille; Todjihoundé, Leonard; Nzotungicimpaye, Joachim

    2014-01-01

    Noncommutative phase spaces are generated and classified in the framework of centrally extended anisotropic planar kinematical Lie groups as well as in the framework of noncentrally abelian extended planar absolute time Lie groups. Through these constructions the coordinates of the phase spaces do not commute due to the presence of naturally introduced fields giving rise to minimal couplings. By symplectic realizations methods, physical interpretations of generators coming from the obtained structures are given

  8. Data recovery program to mitigate the effects of the construction of space transportation system facilities on seven archaeological sites on Vandenberg Air Force Base, Santa Barbara County, California

    International Nuclear Information System (INIS)

    Glassow, M.A.

    1979-01-01

    A plan is proposed for the recovery of data from three prehistoric habitation sites, 4-SBa-539, 670, and 931, which will be adversely affected by the Space Transportation System Project, Vandenberg Air Force Base, California. Phase II testing suggests that SBa-539 and 670, fall within the Late Period, AD 1000 to European contact, with a possible Middle-Period component at 670, while SBa-931, radiocarbon-dated to BC 6000, represents the Early Period, or Millingstone Horizon, of Southern California prehistory. Excavation will utilize conventional fine scale techniques and specialized sample collection. Data analysis will provide information on prehistoric subsistence and settlement patterns, inter-regional trade, and functions of distinctive artifact types. Cultural change will be identified and comparisons made between cultural developments of Vandenberg and neighboring regions

  9. Construction and experimental verification of a novel flexible thermal control system configuration for the autonomous on-orbit services of space missions

    International Nuclear Information System (INIS)

    Guo, Wei; Li, Yunhua; Li, Yun-Ze; Wang, Sheng-Nan; Zhong, Ming-Liang; Wang, Ji-Xiang; Zhang, Jia-Xun

    2017-01-01

    Highlights: • A novel flexible thermal control system (F-TCS) for spacecraft on-orbit services is proposed. • Systemic construction and reconfiguration operating mechanism are highlighted. • Thermal-hydraulic performances of the F-TCS are investigated both numerically and experimentally. • The F-TCS has the vast potential for spacecrafts autonomous thermal management. - Abstract: This paper proposed a novel flexible thermal control system (F-TCS) configuration for realizing thermal management for spacecrafts autonomous on-orbit service (A-OOS) demands. With a dual-ring topology which composes of a heat collecting bus, a heat dissipating bus, connection brunches and inter-platform service interfaces, the F-TCS may realize not only self-reconfiguration operations but also providing heat dissipation resources for other spacecrafts or cabins. The F-TCS hydraulic and thermal dynamics were modeled, a verification testbed was also established to validate the F-TCS thermal control performance. Focused on investigating the self-reconfiguration and thermal control cooperative operations, several typical A-OOS cases were imposed on the F-TCS, numerical simulations and experimental validations were respectively implemented. Both results demonstrated that the meticulously designed F-TCS is capable of offering self-topological reconfiguration with fast time response and robust temperature control performances, high systemic heat transfer efficiency is also recommended from the point of view of energy saving. The F-TCS is suggested as a promising solution for A-OOS owing to its higher reliability and promising autonomous maintenance potential which is suitable for future spacecrafts thermal management requirements.

  10. SYSTEMIC INNOVATION IN CONSTRUCTION: THE

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    -based. This approach evaluates the outcome of the program against the main intentions formulated in the tender material. Drawing on systemic innovation theory an alternative evaluative approach is suggested which focuses on the build-up of organizational and institutional resources to support the development...... of an emerging ICT trajectory. While the result-based evaluation points to some weaknesses in the quality of the best-practice and cross-organizational elements of the case-material, the systemic approach point to some important sideeffects of the program, such as the stabilization and enrolment of the industry......This paper offers an evaluation of a best practice program called ‘Best in Construction’ (BiC) which aimed to identify and document cases of successful ICT use in the Danish construction industry. The program is evaluated using two different approaches. The first approach is result...

  11. Application of statistical distribution theory to launch-on-time for space construction logistic support

    Science.gov (United States)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  12. Incorporating civil-defense shelter space in new underground construction

    International Nuclear Information System (INIS)

    Chester, C.V.

    1981-01-01

    At the present time, the population of the US is approximately ten times more vulnerable to nuclear weapons than the Soviet population. This vulnerability can be reduced rapidly by urban evacuation in a crisis. However, the need to keep the essential economy running in a crisis, as well as coping with attacks on short warning, makes the construction of shelter space where people live very desirable. This can be done most economically by slightly modifying underground construction intended for peacetime use. The designer must consider all elements of the emergency environment when designing the space. Provisions must be made for emergency egress, light and ventilation (without elecric power), blast closures, water, sanitation, and food. The option of upgrading the space in a crisis should be considered. An example is given

  13. Research into command, control, and communications in space construction

    Science.gov (United States)

    Davis, Randal

    1990-01-01

    Coordinating and controlling large numbers of autonomous or semi-autonomous robot elements in a space construction activity will present problems that are very different from most command and control problems encountered in the space business. As part of our research into the feasibility of robot constructors in space, the CSC Operations Group is examining a variety of command, control, and communications (C3) issues. Two major questions being asked are: can we apply C3 techniques and technologies already developed for use in space; and are there suitable terrestrial solutions for extraterrestrial C3 problems? An overview of the control architectures, command strategies, and communications technologies that we are examining is provided and plans for simulations and demonstrations of our concepts are described.

  14. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    Science.gov (United States)

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  15. Space stations systems and utilization

    CERN Document Server

    Messerschmid, Ernst

    1999-01-01

    The design of space stations like the recently launched ISS is a highly complex and interdisciplinary task. This book describes component technologies, system integration, and the potential usage of space stations in general and of the ISS in particular. It so adresses students and engineers in space technology. Ernst Messerschmid holds the chair of space systems at the University of Stuttgart and was one of the first German astronauts.

  16. Co-constructing space and place in clinical nursing education

    DEFF Research Database (Denmark)

    Kjær, Malene; Raudaskoski, Pirkko Liisa; Sørensen, Erik Elgaard

    2018-01-01

    throughout their learning period. The purpose of this study was to investigate the importance of place for the encounters between students and supervisors in clinical nursing. The paper at hand shows how different spaces such as a hallway, an office and being by the patients’ bedside prompts different...... interactional strategies. Through the use of video ethnography and nexus analysis, we show how the participants’ who orient to them in their interaction treat details in the settings – like a missing chair – or documents, as semiotic fields. Thus we find that the students, nurses and patients co......-construct the space at hand into a place for different daily nursing activities....

  17. Construction of fuzzy spaces and their applications to matrix models

    Science.gov (United States)

    Abe, Yasuhiro

    Quantization of spacetime by means of finite dimensional matrices is the basic idea of fuzzy spaces. There remains an issue of quantizing time, however, the idea is simple and it provides an interesting interplay of various ideas in mathematics and physics. Shedding some light on such an interplay is the main theme of this dissertation. The dissertation roughly separates into two parts. In the first part, we consider rather mathematical aspects of fuzzy spaces, namely, their construction. We begin with a review of construction of fuzzy complex projective spaces CP k (k = 1, 2, · · ·) in relation to geometric quantization. This construction facilitates defining symbols and star products on fuzzy CPk. Algebraic construction of fuzzy CPk is also discussed. We then present construction of fuzzy S 4, utilizing the fact that CP3 is an S2 bundle over S4. Fuzzy S4 is obtained by imposing an additional algebraic constraint on fuzzy CP3. Consequently it is proposed that coordinates on fuzzy S4 are described by certain block-diagonal matrices. It is also found that fuzzy S8 can analogously be constructed. In the second part of this dissertation, we consider applications of fuzzy spaces to physics. We first consider theories of gravity on fuzzy spaces, anticipating that they may offer a novel way of regularizing spacetime dynamics. We obtain actions for gravity on fuzzy S2 and on fuzzy CP3 in terms of finite dimensional matrices. Application to M(atrix) theory is also discussed. With an introduction of extra potentials to the theory, we show that it also has new brane solutions whose transverse directions are described by fuzzy S 4 and fuzzy CP3. The extra potentials can be considered as fuzzy versions of differential forms or fluxes, which enable us to discuss compactification models of M(atrix) theory. In particular, compactification down to fuzzy S4 is discussed and a realistic matrix model of M-theory in four-dimensions is proposed.

  18. Potential of Progressive Construction Systems in Slovakia

    Science.gov (United States)

    Kozlovska, Maria; Spisakova, Marcela; Mackova, Daniela

    2017-10-01

    Construction industry is a sector with rapid development. Progressive technologies of construction and new construction materials also called modern methods of construction (MMC) are developed constantly. MMC represent the adoption of construction industrialisation and the use of prefabrication of components in building construction. One of these modern methods is also system Varianthaus, which is based on, insulated concrete forms principle and provides complete production plant for wall, ceiling and roof elements for a high thermal insulation house construction. Another progressive construction system is EcoB, which represents an insulated precast concrete panel based on combination of two layers, insulation and concrete, produced in a factory as a whole. Both modern methods of construction are not yet known and wide-spread in the Slovak construction market. The aim of this paper is focused on demonstration of MMC using potential in Slovakia. MMC potential is proved based on comparison of the selected parameters of construction process - construction costs and construction time. The subject of this study is family house modelled in three material variants - masonry construction (as a representative of traditional methods of construction), Varianthaus and EcoB (as the representatives of modern methods of construction). The results of this study provide the useful information in decision-making process for potential investors of construction.

  19. SYSTEM OF STANDARTIZATION OF CONSTRUCTION OPERATIONS ARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Oleynik Pavel Pavlovich

    2012-10-01

    Full Text Available In the proposed article, management of construction operations is represented as a multi-level system; it is considered with the framework of projects including new construction, restructuring and overhaul of buildings and structures. The system of management of construction operations is to be composed of the following three constituent parts. They include a construction and assembling entity, project and operations, and a procurement base. Such matters as the quality of construction products, purchase (lease of building machinery and vehicles are incorporated into the level of the construction and assembling entity. The project level comprises such components of construction operations management as pre-construction preparation of a project, methods and forms of construction management, preparatory works, management of construction activities, real-time operations control, construction quality control, etc. The level of operations and the procurement base covers the needs for materials and equipment, their purchase and procurement, as well as the warehouse management. The main elements of the standardization system are identified. Standards of construction operations management are explained, including 1. General Provisions; 2. Preparation and performance of construction and assembling works; 3. New construction. Building site organization; 4. Demolition (dismantling of buildings and structures; 5. Rules of preparation for acceptance and commissioning of completed residential buildings. The prospects for the further development of the system of standardization of construction operations management are outlined

  20. Validation of Autonomous Space Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — System validation addresses the question "Will the system do the right thing?" When system capability includes autonomy, the question becomes more pointed. As NASA...

  1. Validity of Sensory Systems as Distinct Constructs

    OpenAIRE

    Su, Chia-Ting; Parham, L. Diane

    2014-01-01

    Confirmatory factor analysis testing whether sensory questionnaire items represented distinct sensory system constructs found, using data from two age groups, that such constructs can be measured validly using questionnaire data.

  2. Additive Construction with Mobile Emplacement (ACME) / Automated Construction of Expeditionary Structures (ACES) Materials Delivery System (MDS)

    Science.gov (United States)

    Mueller, R. P.; Townsend, I. I.; Tamasy, G. J.; Evers, C. J.; Sibille, L. J.; Edmunson, J. E.; Fiske, M. R.; Fikes, J. C.; Case, M.

    2018-01-01

    The purpose of the Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the Dry Goods Delivery System (DGDS) structure to create an integrated and automated Materials Delivery System (MDS) for 3D printing structures with ordinary Portland cement (OPC) concrete. ACES 3 is a prototype for 3-D printing barracks for soldiers in forward bases, here on Earth. The LGDS supports ACES 3 by storing liquid materials, mixing recipe batches of liquid materials, and working with the Dry Goods Feed System (DGFS) previously developed for ACES 2, combining the materials that are eventually extruded out of the print nozzle. Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of Engineers (USACE) and supported by NASA. The equivalent 3D printing system for construction in space is designated Additive Construction with Mobile Emplacement (ACME) by NASA.

  3. The Organization. Space Symbolic Construction of Sexual Difference

    Directory of Open Access Journals (Sweden)

    Elvia Espinosa

    2012-12-01

    Full Text Available The current work is done under the gender perspective within organizational studies. Gender is used in the social sciences as a category of analysis with a specific meaning: The symbolic and cultural construction of the sexual difference. This construction establishes what is masculine and what is feminine. It sets the “public” space where a paid job could be found and education is ascribed to men, as well as the “private” space where domestic duties are found, maternity, and all that is ascribed to women. This symbolic and cultural construction can be found in the organizational world, but the interactions, result from administrative practices, can modify this gender identity. It is necessary to point out that this article is part of a more general investigation. This investigation was done using a qualitative methodology in which the life histories of female administrators with decision-making positions in their organizations were taken into account. But all research work requires a theoretical reflection. The current work answers such theoretical reflection and showcases some elements to understand the gender category, the organization, and offers also some elements for the possible understanding of gender within the organization and the possibility for reimagining gender identity.

  4. Construction of Algebraic and Difference Equations with a Prescribed Solution Space

    Directory of Open Access Journals (Sweden)

    Moysis Lazaros

    2017-03-01

    Full Text Available This paper studies the solution space of systems of algebraic and difference equations, given as auto-regressive (AR representations A(σβ(k = 0, where σ denotes the shift forward operator and A(σ is a regular polynomial matrix. The solution space of such systems consists of forward and backward propagating solutions, over a finite time horizon. This solution space can be constructed from knowledge of the finite and infinite elementary divisor structure of A(σ. This work deals with the inverse problem of constructing a family of polynomial matrices A(σ such that the system A(σβ(k = 0 satisfies some given forward and backward behavior. Initially, the connection between the backward behavior of an AR representation and the forward behavior of its dual system is showcased. This result is used to construct a system satisfying a certain backward behavior. By combining this result with the method provided by Gohberg et al. (2009 for constructing a system with a forward behavior, an algorithm is proposed for computing a system satisfying the prescribed forward and backward behavior.

  5. Lunar materials for construction of space manufacturing facilities

    Science.gov (United States)

    Criswell, D. R.

    1977-01-01

    Development of industrial operations in deep space would be prohibitively expensive if most of the construction and expendable masses had to be transported from earth. Use of lunar materials reduces the needed investments by a factor of 15 to 20. It is shown in this paper that judicious selection of lunar materials will allow one to obtain hydrogen, nitrogen, carbon, helium and other specific elements critical to the support of life in large space habitats at relatively low costs and lower total investment even further. Necessary selection techniques and extraction schemes are outlined. In addition, tables are presented of the oxide and elemental abundances characteristic of the mare and highland regions of the moon which should be useful in evaluating what can be extracted from the lunar soils.

  6. Innovative Robot Archetypes for In-Space Construction and Maintenance

    Science.gov (United States)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  7. Shared Places, Separate Spaces: Constructing Cultural Spaces through Two National Languages in Finland

    Science.gov (United States)

    From, Tuuli; Sahlström, Fritjof

    2017-01-01

    Finland is a bilingual country with 2 national languages, Finnish and Swedish. The Swedish-speaking school institution aims to protect the minority language by maintaining a monolingual school space. In this article, the construction of linguistic and ethnic difference in educational discourse and practice related to the national languages in…

  8. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  9. Reliability of mobile systems in construction

    Science.gov (United States)

    Narezhnaya, Tamara; Prykina, Larisa

    2017-10-01

    The purpose of the article is to analyze the influence of the mobility of construction production in the article taking into account the properties of reliability and readiness. Basing on the studied systems the effectiveness and efficiency is estimated. The construction system is considered to be the complete organizational structure providing creation or updating of construction facilities. At the same time the production sphere of these systems joins the production on the building site itself, material and technical resources of the construction production and live labour in these spheres within the construction dynamics. The author concludes, that the estimation of the degree of mobility of systems the of construction production makes a great positive effect in the project.

  10. APPLICATION OF SIMPLIFIED TAXATION SYSTEM IN CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    O. S. Golubova

    2011-01-01

    Full Text Available Specificity concerning cost formation of construction work executed by  entities of small business enterprises that use a simplified taxation system has a direct impact on the effectiveness of organization activity. Dozens of business entities applying various taxation systems are involved in the execution of the construction process. For this reason an inclusion of taxes in work cost may have a decisive influence on the selection of a contractor for an object construction.  

  11. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA

    2017-06-01

    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  12. On the Construction of Sorted Reactive Systems

    DEFF Research Database (Denmark)

    Birkedal, Lars; Debois, Søren; Hildebrandt, Thomas

    2008-01-01

    We develop a theory of sorted bigraphical reactive systems. Every application of bigraphs in the literature has required an extension, a sorting, of pure bigraphs. In turn, every such application has required a redevelopment of the theory of pure bigraphical reactive systems for the sorting at hand...... bigraphs. Technically, we give our construction for ordinary reactive systems, then lift it to bigraphical reactive systems. As such, we give also a construction of sortings for ordinary reactive systems. This construction is an improvement over previous attempts in that it produces smaller and much more...

  13. Construction Management Risk System (CMRS for Construction Management (CM Firms

    Directory of Open Access Journals (Sweden)

    Kyungmo Park

    2017-02-01

    Full Text Available After the global financial crisis of 2008, the need for risk management arose because it was necessary to minimize the losses in construction management (CM firms. This was caused by a decreased amount of orders in the Korean CM market, which intensified order competition between companies. However, research results revealed that risks were not being systematically managed owing to the absence of risk management systems. Thus, it was concluded that it was necessary to develop standard operating systems and implement risk management systems in order to manage risks effectively. Therefore, the purpose of this study was to develop a construction risk management system (CRMS for systematically managing risks. For this purpose, the field operation managers of CM firms were interviewed and surveyed in order to define risk factors. Upon this, a risk assessment priority analysis was performed. Finally, a risk management system that comprised seven modules and 20 sub-modules and was capable of responding systematically to risks was proposed. Furthermore, the effectiveness of this system was verified through on-site inspection. This system allows early response to risks, accountability verification and immediate response to legal disputes with clients by managing risk records.

  14. Deep Space Habitat Configurations Based on International Space Station Systems

    Science.gov (United States)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  15. Spaces of Dynamical Systems

    CERN Document Server

    Pilyugin, Sergei Yu

    2012-01-01

    Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.

  16. Quantum systems and symmetric spaces

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1978-01-01

    Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained

  17. Dynamic analysis of space robot remote control system

    Science.gov (United States)

    Kulakov, Felix; Alferov, Gennady; Sokolov, Boris; Gorovenko, Polina; Sharlay, Artem

    2018-05-01

    The article presents analysis on construction of two-stage remote control for space robots. This control ensures efficiency of the robot control system at large delays in transmission of control signals from the ground control center to the local control system of the space robot. The conditions for control stability of and high transparency are found.

  18. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  19. Generalized Lions-Peetre interpolation construction and optimal embedding theorems for Sobolev spaces

    International Nuclear Information System (INIS)

    Ovchinnikov, V I

    2014-01-01

    In the paper, a new description of the generalized Lions-Peetre method of means is found, which enables one to evaluate the interpolation orbits of spaces constructed by this method. The list of these spaces includes all Lorentz spaces with functional parameters, Orlicz spaces, and spaces close to them. This leads in turn to new optimal embedding theorems for Sobolev spaces produced using the Lions-Peetre construction in rearrangement invariant spaces. It turns out that the optimal space of the embedding is also a generalized Lions-Peetre space whose parameters are explicitly evaluated. Bibliography: 18 titles

  20. Manager's assistant systems for space system planning

    Science.gov (United States)

    Bewley, William L.; Burnard, Robert; Edwards, Gary E.; Shoop, James

    1992-01-01

    This paper describes a class of knowledge-based 'assistant' systems for space system planning. Derived from technology produced for the DARPA/USAF Pilot's Associate program, these assistant systems help the human planner by doing the bookkeeping to maintain plan data and executing the procedures and heuristics currently used by the human planner to define, assess, diagnose, and revise plans. Intelligent systems for Space Station Freedom assembly sequence planning and Advanced Launch System modeling will be presented as examples. Ongoing NASA-funded work on a framework supporting the development of such tools will also be described.

  1. Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn

    SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.

  2. Space Fission System Test Effectiveness

    International Nuclear Information System (INIS)

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-01-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program

  3. Space Telescope Control System science user operations

    Science.gov (United States)

    Dougherty, H. J.; Rossini, R.; Simcox, D.; Bennett, N.

    1984-01-01

    The Space Telescope science users will have a flexible and efficient means of accessing the capabilities provided by the ST Pointing Control System, particularly with respect to managing the overal acquisition and pointing functions. To permit user control of these system functions - such as vehicle scanning, tracking, offset pointing, high gain antenna pointing, solar array pointing and momentum management - a set of special instructions called 'constructs' is used in conjuction with command data packets. This paper discusses the user-vehicle interface and introduces typical operational scenarios.

  4. Space Station power system issues

    International Nuclear Information System (INIS)

    Giudici, R.J.

    1985-01-01

    Issues governing the selection of power systems for long-term manned Space Stations intended solely for earth orbital missions are covered briefly, drawing on trade study results from both in-house and contracted studies that have been conducted over nearly two decades. An involvement, from the Program Development Office at MSFC, with current Space Station concepts began in late 1982 with the NASA-wide Systems Definition Working Group and continued throughout 1984 in support of various planning activities. The premise for this discussion is that, within the confines of the current Space Station concept, there is good reason to consider photovoltaic power systems to be a venerable technology option for both the initial 75 kW and 300 kW (or much greater) growth stations. The issue of large physical size required by photovoltaic power systems is presented considering mass, atmospheric drag, launch packaging and power transmission voltage as being possible practicality limitations. The validity of searching for a cross-over point necessitating the introduction of solar thermal or nuclear power system options as enabling technologies is considered with reference to programs ranging from the 4.8 kW Skylab to the 9.5 gW Space Power Satellite

  5. Web-based Construction Information Management System

    Directory of Open Access Journals (Sweden)

    David Scott

    2012-11-01

    Full Text Available Centralised information systems that are accessible to all parties in a construction project are powerful tools in the quest to improve efficiency and to enhance the flow of information within the construction industry. This report points out the maturity of the necessary IT technology, the availability and the suitability of existing commercial products.Some of these products have been studied and analysed. An evaluation and selection process based on the functions offered in the products and their utility is presented. A survey of local construction personnel has been used to collect typical weighting data and performance criteria used in the evaluation process.

  6. Brayton cycle space power systems

    International Nuclear Information System (INIS)

    Pietsch, A.; Trimble, S.W.; Harper, A.D.

    1985-01-01

    The latest accomplishments in the design and development of the Brayton Isotope Power System (BIPS) for space applications are described, together with a reexamination of the design/cost tradeoffs with respect to current economic parameters and technology status. The results of tests performed on a ground test version of the flight configuration, the workhorse loop, were used to confirm the performance projections made for the flight system. The results of cost-model analysis indicate that the use of the highest attainable power conversion system efficiency will yield the most cost-effective systems. 13 references

  7. Protective and Catching Safety Systems In Construction

    Directory of Open Access Journals (Sweden)

    Kuzhin Marat

    2017-01-01

    Full Text Available In the article is described application of protective and catching systems in construction. Classification of similar systems, their types and purpose are listed. Dangerous zones on construction site and events to for limiting their influence or protection from the factors. Protective and catching systems is one of the most effective technical equipment, applied in recent time. Protective fences and catching systems are important part in the problem solution. Protective fences protect workers from falling from height. Protective and catching systems allows avoid injuries by workers, also catch debris, fallen from constructing buildings. In regard with continuing development in technical and technological solutions, protective and catching systems require adaptation to a new requirements of construction industry and requirements of normative documents. Technical regulations in the appliance sphere of protective and catching systems requires actualization and aligning with modern normatives. Important role should be given to developing organizational and technological documentation for application of the systems. Scientific studying of technical parameters of fences and protective catching nets also has great interest.

  8. Space station operating system study

    Science.gov (United States)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  9. 3D Oscillator and Coulomb Systems reduced from Kahler spaces

    OpenAIRE

    Nersessian, Armen; Yeranyan, Armen

    2003-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and ...

  10. NUCLEAR THERMIONIC SPACE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R. C.; Rasor, N. S.

    1963-03-15

    The various concepts for utilizing thermionic conversion in space reactor power plants are described and evaluated. The problems (and progress toward their solution) of the in-core concept, particularly, are considered. Progress in thermionic conversion technology is then reviewed from both the hardware and research points of view. Anticipated progress in thermionic conversion and the possible consequences for the performance of electrical propulsion systems are summarized. 46 references. (D.C.W.)

  11. Space Plastic Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot's proposed Space Plastic Recycler (SPR) is an automated closed loop plastic recycling system that allows the automated conversion of disposable ISS...

  12. The construction of fictional space in participatory design practice

    DEFF Research Database (Denmark)

    Dindler, Christian

    2010-01-01

    games of make-believe mediated by props. The motivation for discussing fictional space is traced through ongoing work on designing new exhibition spaces for museums. Through a case study from a participatory design session, it is explored how games of make-believe progress and the role of props...... the process through which participants in participatory design create a design space in which established conventions of everyday practice are altered or suspended. With inspiration from literary theory, it is argued that the production of fictional space may be understood in terms of participants practicing...

  13. Space Station tethered elevator system

    Science.gov (United States)

    Haddock, Michael H.; Anderson, Loren A.; Hosterman, K.; Decresie, E.; Miranda, P.; Hamilton, R.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The tethered elevator is an unmanned, mobile structure which operates on a ten-kilometer tether spanning the distance between Space Station Freedom and a platform. Its capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The report discusses the potential uses, parameters, and evolution of the spacecraft design. Emphasis is placed on the elevator's structural configuration and three major subsystem designs. First, the design of elevator robotics used to aid in elevator operations and tethered experimentation is presented. Second, the design of drive mechanisms used to propel the vehicle is discussed. Third, the design of an onboard self-sufficient power generation and transmission system is addressed.

  14. Autonomous Space Object Catalogue Construction and Upkeep Using Sensor Control Theory

    Science.gov (United States)

    Moretti, N.; Rutten, M.; Bessell, T.; Morreale, B.

    The capability to track objects in space is critical to safeguard domestic and international space assets. Infrequent measurement opportunities, complex dynamics and partial observability of orbital state makes the tracking of resident space objects nontrivial. It is not uncommon for human operators to intervene with space tracking systems, particularly in scheduling sensors. This paper details the development of a system that maintains a catalogue of geostationary objects through dynamically tasking sensors in real time by managing the uncertainty of object states. As the number of objects in space grows the potential for collision grows exponentially. Being able to provide accurate assessment to operators regarding costly collision avoidance manoeuvres is paramount; the accuracy of which is highly dependent on how object states are estimated. The system represents object state and uncertainty using particles and utilises a particle filter for state estimation. Particle filters capture the model and measurement uncertainty accurately, allowing for a more comprehensive representation of the state’s probability density function. Additionally, the number of objects in space is growing disproportionally to the number of sensors used to track them. Maintaining precise positions for all objects places large loads on sensors, limiting the time available to search for new objects or track high priority objects. Rather than precisely track all objects our system manages the uncertainty in orbital state for each object independently. The uncertainty is allowed to grow and sensor data is only requested when the uncertainty must be reduced. For example when object uncertainties overlap leading to data association issues or if the uncertainty grows to beyond a field of view. These control laws are formulated into a cost function, which is optimised in real time to task sensors. By controlling an optical telescope the system has been able to construct and maintain a catalogue

  15. Construction of harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces

    International Nuclear Information System (INIS)

    Konderak, J.

    1988-09-01

    Defined here is an orthogonal multiplication for vector spaces with indefinite nondegenerate scalar product. This is then used, via the Hopf construction, to obtain harmonic maps between pseudo-Riemannian spheres and hyperbolic spaces. Examples of harmonic maps are constructed using Clifford algebras. (author). 6 refs

  16. Critical Technologies for the Development of Future Space Elevator Systems

    Science.gov (United States)

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  17. Plasma focus system: Design, construction and experiments

    International Nuclear Information System (INIS)

    Alacakir, A.; Akguen, Y.; Boeluekdemir, A. S.

    2007-01-01

    The aim of this work is to construct a compact experimental system for fusion research. The design, construction and experiments of the 3 kJ Mather type plasma focus machine is described. This machine is established for neutron yield and fast neutron radiography by D-D reaction which is given by D + D→ 3 He (0.82 MeV) + n (2.45 MeV) . Investigation of the geometry of plasma focus machine in the presence of high voltage drive and vacuum system setup is shown. 108 neutron per pulse and 200 kA peak current is obtained for many shots. Scintillator screen for fast neutron imaging, sensitive to 2.45 MeV neutrons, is also manufactured in our labs. Structural neutron shielding computations for safety is also completed

  18. Construction QA/QC systems: comparative analysis

    International Nuclear Information System (INIS)

    Willenbrock, J.H.; Shepard, S.

    1980-01-01

    An analysis which compares the quality assurance/quality control (QA/QC) systems adopted in the highway, nuclear power plant, and U.S. Navy construction areas with the traditional quality control approach used in building construction is presented. Full participation and support by the owner as well as the contractor and AE firm are required if a QA/QC system is to succeed. Process quality control, acceptance testing and quality assurance responsibilities must be clearly defined in the contract documents. The owner must audit these responsibilities. A contractor quality control plan, indicating the tasks which will be performed and the fact that QA/QC personnel are independent of project time/cost pressures should be submitted for approval. The architect must develop realistic specifications which consider the natural variability of material. Acceptance criteria based on the random sampling technique should be used. 27 refs

  19. "Third Spaces" Are Interesting Places: Applying "Third Space Theory" to Nursery-Aged Children's Constructions of Themselves as Readers

    Science.gov (United States)

    Levy, Rachael

    2008-01-01

    Based on Moje et al.'s (2004) conceptions of "third space theory", this article describes how five nursery-aged children created a "third space" between home and school, in order to find continuity between home and school constructions of reading. This article describes how the children used various aspects of their home…

  20. ITER Construction--Plant System Integration

    International Nuclear Information System (INIS)

    Tada, E.; Matsuda, S.

    2009-01-01

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  1. Construction of ion beam pulse radiolysis system

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, Norihisa; Katsumura, Yosuke; Domae, Masafumi; Ishigure, Kenkichi; Murakami, Takeshi [Tokyo Univ. (Japan)

    1996-10-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24 MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3} and KSCN, were irradiated and the absorption signals were observed. (author)

  2. Space Radiation Intelligence System (SPRINTS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Federal Systems proposes an innovative SPace Radiation INTelligence System (SPRINTS) which provides an interactive and web-delivered capability that...

  3. Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  4. System survivability in nuclear and space environments

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1987-01-01

    Space systems must operate in the hostile natural environment of space. In the event of a war, these systems may also be exposed to the radiation environments created by the explosions of nuclear warheads. The effects of these environments on a space system and hardening techniques are discussed in the paper

  5. Advanced Space Surface Systems Operations

    Science.gov (United States)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  6. New Generation Power System for Space Applications

    Science.gov (United States)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  7. Understanding Complex Construction Systems Through Modularity

    DEFF Research Database (Denmark)

    Jensen, Tor Clarke; Bekdik, Baris; Thuesen, Christian

    2014-01-01

    This paper develops a framework for understanding complexity in construction projects by combining theories of complexity management and modularization. The framework incorporates three dimensions of product, process, and organizational modularity with the case of gypsum wall elements. The analysis...... system, rather than a modular, although the industry forces modular organizational structures. This creates a high complexity degree caused by the non-alignment of building parts and organizations and the frequent swapping of modules....... finds that the main driver of complexity is the fragmentation of the design and production, which causes the production modules to construct and install new product types and variants for each project as the designers are swapped for every project. The many interfaces are characteristics of an integral...

  8. Construction and testing of a space ready rectenna

    Science.gov (United States)

    Brown, Alan M.

    1993-01-01

    In Feb. 1993, the Solar Power Satellite (SPS) Working Group from ISAS, Japan will launch a sounding rocket into low earth orbit to perform two activities: collect scientific information on the high power microwave-ionosphere interaction, and demonstrate microwave power transmission in space at 2.45 GHz. The SPS Working Group announced an open invitation to international agencies willing to collaborate with the Microwave Energy Transmission in Space (METS) experiment in a number of categories. Under the sponsorship of the NASA's Lewis Research Center, the Center for Space Power located at Texas A&M University joined the experiment by producing a microwave rectifying receiving antenna (rectenna). The rectenna is a special type of receiving antenna with unique properties and characteristics. The rectenna's main purpose is to efficiently convert microwave power into DC power. The rectenna is an advanced component in microwave power beaming technology developed for 2.45 GHz. The state-of-the-art rectenna for this frequency consists of dipole antennas, filter circuits, and transmission lines etched on a thin layer of Kapton film. The format of the thin film rectenna is ideally suited for space applications. Thin film rectennas have a low specific mass of approximately 1 kg/kW. The main component of the rectenna is the rectifying diode. High conversion efficiencies (90 percent) in microwave to DC power are capable with special Schottky barrier diodes correctly located in the rectenna circuitry. The theory of operation of the 2.45 GHz rectenna is explained. Experimental test results on the METS rectenna are presented. The packaging of the rectenna is also discussed to meet space qualifications.

  9. Construction of a large laser fusion system

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1977-01-01

    Construction of a large laser fusion machine is nearing completion at the Lawrence Livermore Laboratory (LLL). Shiva, a 20-terawatt neodymium doped glass system, will be complete in early 1978. This system will have the high power needed to demonstrate significant thermonuclear burn. Shiva will irradiate a microscopic D-T pellet with 20 separate laser beams arriving simultaneously at the target. This requires precise alignment, and stability to maintain alignment. Hardware for the 20 laser chains is composed of 140 amplifiers, 100 spatial filters, 80 isolation stages, 40 large turning mirrors, and a front-end splitter system of over 100 parts. These are mounted on a high stability, three dimensional spaceframe which serves as an optical bench. The mechanical design effort, spanning approximately 3 years, followed a classic engineering evolution. The conceptual design phase led directly to system optimization through cost and technical tradeoffs. Additional manpower was then required for detailed design and specification of hardware and fabrication. Design of long-lead items was started early in order to initiate fabrication and assembly while the rest of the design was completed. All components were ready for assembly and construction as fiscal priorities and schedules permitted

  10. Constructing a systems psychodynamic wellness model

    Directory of Open Access Journals (Sweden)

    Sanchen Henning

    2012-03-01

    Research purpose: The purpose of the research was to construct and refine the SPWM in order to understand psychological wellness at the individual, group and organisational levels. Motivation for the study: There is no psychological wellness model that integrates the principles of systems psychodynamics and positive psychology. Systems psychodynamics traditionally focuses on so-called negative behaviour whilst positive psychology tends to idealise positive behaviour. This research tried to merge these views in order to apply them to individual, group and organisational behaviour. Research design, approach and method: The researchers used qualitative, descriptive and conceptual research. They conducted an in-depth literature study to construct the model. They then refined it using the LP. Main findings: The researchers identified 39 themes. They categorised them into three different levels. Three first-level themes emerged as the highest level of integration: identity, hope and love. The nine second-level themes each consisted of three more themes. They were less complex and abstract than the first-level themes. The least complex 27 third-level themes followed. Practical/managerial implications: One can apply the SPWM as a qualitative diagnostic tool for understanding individual, group and organisational wellness and for consulting on systemic wellness. Contribution/value-add: The SPWM offers a model for understanding individual, group and organisational wellness and for consulting on systemic wellness.

  11. Space remote sensing systems an introduction

    CERN Document Server

    Chen, H S

    1985-01-01

    Space Remote Sensing Systems: An Introduction discusses the space remote sensing system, which is a modern high-technology field developed from earth sciences, engineering, and space systems technology for environmental protection, resource monitoring, climate prediction, weather forecasting, ocean measurement, and many other applications. This book consists of 10 chapters. Chapter 1 describes the science of the atmosphere and the earth's surface. Chapter 2 discusses spaceborne radiation collector systems, while Chapter 3 focuses on space detector and CCD systems. The passive space optical rad

  12. State of the art on construction automation and robotic system in domestic and foreign construction industry

    International Nuclear Information System (INIS)

    Lee, Sung Uk; Seo, Yong Chil; Jung, Seung Ho; Cho, Jai Wan; Choi, Young Soo

    2007-08-01

    In this report, we review the existing concept of construction automation and also survey the state of the art on construction automation and robotic system in domestic and foreign construction industry. On the basis of the result of review and survey, we want to suggest an applicable robotic technology to construction industry and points to be duly considered for activating construction automation. We investigate the state of the art on construction automation and robotic system in domestic and foreign construction industry and also applicable area and direction of domestic construction automation and robotic system. We hope that construction automation and robotic technology, which are improved rapidly nowadays, can contribute to the growth of construction industry

  13. Construction of a remote radiotherapy planning system

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro; Nemoto, Kenji; Takahashi, Chiaki; Takai, Yoshihiro; Yamada, Shogo; Seiji, Hiromasa; Sasaki, Kazuya

    2005-01-01

    We constructed a remote radiotherapy planning system, and we examined the usefulness of and faults in our system in this study. Two identical radiotherapy planning systems, one installed at our institution and the other installed at an affiliated hospital, were used for radiotherapy planning. The two systems were connected by a wide area network (WAN), using a leased line. Beam data for the linear accelerator at the affiliated hospital were installed in the two systems. During the period from December 2001 to December 2002, 43 remote radiotherapy plans were made using this system. Data were transmitted using a file transfer protocol (FTP) software program. The 43 radiotherapy plans examined in this study consisted of 13 ordinary radiotherapy plans, 28 radiotherapy plans sent to provide assistance for medical residents, and 2 radiotherapy plans for emergency cases. There were ten minor planning changes made in radiotherapy plans sent to provide assistance for medical residents. Our remote radiotherapy planning system based on WAN using a leased line is useful for remote radiotherapy, with advantages for both radiation oncologists and medical residents. (author)

  14. Space in Numerical and Ordinal Information: A Common Construct?

    Directory of Open Access Journals (Sweden)

    Philipp Alexander Schroeder

    2017-12-01

    Full Text Available Space is markedly involved in numerical processing, both explicitly in instrumental learning and implicitly in mental operations on numbers. Besides action decisions, action generations, and attention, the response-related effect of numerical magnitude or ordinality on space is well documented in the Spatial-Numerical Associations of Response Codes (SNARC effect. Here, right- over left-hand responses become relatively faster with increasing magnitude positions. However, SNARC-like behavioral signatures in non-numerical tasks with ordinal information were also observed and inspired new models integrating seemingly spatial effects of ordinal and numerical metrics. To examine this issue further, we report a comparison between numerical SNARC and ordinal SNARC-like effects to investigate group-level characteristics and individual-level deductions from generalized views, i.e., convergent validity. Participants solved order-relevant (before/after classification and order-irrelevant tasks (font color classification with numerical stimuli 1-5, comprising both magnitude and order information, and with weekday stimuli, comprising only ordinal information. A small correlation between magnitude- and order-related SNARCs was observed, but effects are not pronounced in order-irrelevant color judgments. On the group level, order-relevant spatial-numerical associations were best accounted for by a linear magnitude predictor, whereas the SNARC effect for weekdays was categorical. Limited by the representativeness of these tasks and analyses, results are inconsistent with a single amodal cognitive mechanism that activates space in mental processing of cardinal and ordinal information alike. A possible resolution to maintain a generalized view is proposed by discriminating different spatial activations, possibly mediated by visuospatial and verbal working memory, and by relating results to findings from embodied numerical cognition.

  15. NASA's Space Launch System Takes Shape

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  16. On construction of two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space

    International Nuclear Information System (INIS)

    Saveliev, M.V.

    1983-01-01

    In the framework of the algebraic approach a construction of exactly integrable two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space Rsub(N) of an arbitrary dimension is presented. The construction is based on a reformulation of the Gauss, Peterson-Codazzi and Ricci equations in the form of a Lax-type representation in two-dimensional space. Here the Lax pair operators take the values in algebra SO(N)

  17. Construction of the real patient simulator system.

    Science.gov (United States)

    Chan, Richard; Sun, C T

    2012-05-01

    Simulation for perfusion education has been used for at least the past 25 years. The earlier models were either electronic (computer games) or fluid dynamic models and provided invaluable adjuncts to perfusion training and education. In 2009, the *North Shore-LIJ Health System at Great Neck, New York, opened an innovative "Bioskill Center" dedicated to simulated virtual reality advanced hands-on surgical training as well as perfusion simulation. Professional cardiac surgical organizations now show great interest in using simulation for training and recertification. Simulation will continue to be the direction for future perfusion training and education. This manuscript introduces a cost-effective system developed from discarded perfusion products and it is not intended to detail the actual lengthy process of its construction.

  18. 3D Additive Construction with Regolith for Surface Systems

    Science.gov (United States)

    Mueller, Robert P.

    2014-01-01

    Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of vertical lander rocket plume impingement, to keep abrasive and harmful dust from getting lofted and for dust free operations. In addition, the same regolith stabilization process can be used for 3 Dimensional ( 3D) printing, additive construction techniques by repeating the 2D stabilization in many vertical layers. This will allow in-situ construction with regolith so that materials will not have to be transported from Earth. Recent work in the NASA Kennedy Space Center (KSC) Surface Systems Office (NE-S) Swamp Works and at the University of Southern California (USC) under two NASA Innovative Advanced Concept (NIAC) awards have shown promising results with regolith (crushed basalt rock) materials for in-situ heat shields, bricks, landing/launch pads, berms, roads, and other structures that could be fabricated using regolith that is sintered or mixed with a polymer binder. The technical goals and objectives of this project are to prove the feasibility of 3D printing additive construction using planetary regolith simulants and to show that they have structural integrity and practical applications in space exploration.

  19. Hippocampal place cells construct reward related sequences through unexplored space.

    Science.gov (United States)

    Ólafsdóttir, H Freyja; Barry, Caswell; Saleem, Aman B; Hassabis, Demis; Spiers, Hugo J

    2015-06-26

    Dominant theories of hippocampal function propose that place cell representations are formed during an animal's first encounter with a novel environment and are subsequently replayed during off-line states to support consolidation and future behaviour. Here we report that viewing the delivery of food to an unvisited portion of an environment leads to off-line pre-activation of place cells sequences corresponding to that space. Such 'preplay' was not observed for an unrewarded but otherwise similar portion of the environment. These results suggest that a hippocampal representation of a visible, yet unexplored environment can be formed if the environment is of motivational relevance to the animal. We hypothesise such goal-biased preplay may support preparation for future experiences in novel environments.

  20. Constructing Common Information Space across Distributed Emergency Medical Teams

    DEFF Research Database (Denmark)

    Zhang, Zhan; Sarcevic, Aleksandra; Bossen, Claus

    2017-01-01

    This paper examines coordination and real-time information sharing across four emergency medical teams in a high-risk and distributed setting as they provide care to critically injured patients within the first hour after injury. Through multiple field studies we explored how common understanding...... of critical patient data is established across these heterogeneous teams and what coordination mechanisms are being used to support information sharing and interpretation. To analyze the data, we drew on the concept of Common Information Spaces (CIS). Our results showed that teams faced many challenges...... in achieving efficient information sharing and coordination, including difficulties in locating and assembling team members, communicating and interpreting information from the field, and accommodating differences in team goals and information needs, all while having minimal technology support. We reflect...

  1. Constructing Public Space: Global Perspectives on Social Media and Popular Contestation

    NARCIS (Netherlands)

    Poell, T.; van Dijck, J.

    2016-01-01

    This introduction to the special section on the construction of public space in social media activism discusses (1) the types of social media practices involved in the construction of publicness during contemporary episodes of popular contention, (2) the particular political institutional contexts

  2. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    Science.gov (United States)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  3. Constructing Inequalities in Bilingual Spaces: Teaching Catalan to Female Immigrants

    Directory of Open Access Journals (Sweden)

    Tulay Caglitutuncigil Martinez

    2014-05-01

    Full Text Available Immigrants are generally expected to learn and use the legitimate language as a practical means of access to welfare services and employment. This argument creates a hypothetical connection between the established language regimes and social and economic integration. Although it is not explicitly defined, this connection implies that integration is a unilateral process that should be undertaken by the immigrant population through language acquisition. Nevertheless, language is symbolic capital that can also be used as an empowering or disempowering tool. Access to the legitimate language, distribution of linguistic capital and strategies of legitimization and de?legitimization in specific fields like adult language schooling can indicate how social inequalities and hierarchies are constructed. In this paper, I focus on Catalan language classes provided to Moroccan immigrant women in a small town north of Barcelona. Basing my analysis on a set of qualitative data collected between December 2013 and January 2014, I argue that these classes contradict public policies that promote the use of Catalan. This is because the Catalan language skills that are supposedly taught are, in fact, under-distributed, with the female new speakers mostly legitimized as Spanish rather than Catalan speakers.

  4. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  5. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  6. New heavy-lift system under construction

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Heavy-lift availability is at a premium, and the market is eager for alternatives to meet the demand. An alternative heavy-lift solution from SeaMetric - which has two multi-purpose heavy-lift vessels under construction in China - will be available in the first quarter of 2011. The TML system is based on buoyancy and ballast tanks, with four lifting arms mounted on two identical vessels, each vessel measuring 140 x 40 x 10.75 metres. To perform a lift, one TML with lifting arms is positioned on each side of the object. Using seawater pumps, lift force is created by de ballasting the buoyancy tanks and at the same time ballasting the ballast tanks. (AG). tab., ills

  7. A prototype construction of bearing heater system

    International Nuclear Information System (INIS)

    Firman Silitonga

    2007-01-01

    A bearing heater system has been successfully constructed using transformer-like method of 1000 VA power, 220 V primary voltage, and 50 Hz electrical frequency. The bearing heater consists of primary coil 230 turns, U type and bar-type iron core with 36 cm 2 , 9 cm 2 ,and 3 cm 2 cross-section, and electrical isolation. The bearing heater is used to enlarge the diameter of the bearing so that it can be easily fixed on an electric motor shaft during replacement because the heating is conducted by treated the bearing as a secondary coil of a transformer. This bearing heater can be used for bearing with 3 and 6 cm of inner diameter and 12 cm of maximum outside diameter. (author)

  8. Resliced image space construction for coronary artery collagen fibers.

    Science.gov (United States)

    Luo, Tong; Chen, Huan; Kassab, Ghassan S

    2017-01-01

    Collagen fibers play an important role in the biomechanics of the blood vessel wall. The objective of this study was to determine the 3D microstructure of collagen fibers in the media and adventitia of coronary arteries. We present a novel optimal angle consistence algorithm to reform image slices in the visualization and analysis of 3D collagen images. 3D geometry was reconstructed from resliced image space where the 3D skeleton was extracted as the primary feature for accurate reconstruction of geometrical parameters. Collagen fibers (range 80-200) were reconstructed from the porcine coronary artery wall for the measurement of various morphological parameters. Collagen waviness and diameters were 1.37 ± 0.19 and 2.61 ± 0.89 μm, respectively. The biaxial distributions of orientation had two different peaks at 110.7 ± 25.2° and 18.4 ± 19.3°. Results for width, waviness, and orientation were found to be in good agreement with manual measurements. In addition to accurately measuring 2D features more efficiently than the manual approach, the present method produced 3D features that could not be measured in the 2D manual approach. These additional parameters included the tilt angle (5.10 ± 2.95°) and cross-sectional area (CSA; 5.98 ± 3.79 μm2) of collagen fibers. These 3D collagen reconstructions provide accurate and reliable microstructure for biomechanical modeling of vessel wall mechanics.

  9. Construction in space - Toward a fresh definition of the man/machine relation

    Science.gov (United States)

    Watters, H. H.; Stokes, J. W.

    1979-01-01

    The EVA (extravehicular activity) project forming part of the space construction process is reviewed. The manual EVA constuction, demonstrated by the crew of Skylab 3 by assembling a modest space structure in the form of the twin-pole sunshade, is considered, indicating that the experiment dispelled many doubts about man's ability to execute routine and contingency EVA operations. Tests demonstrating the feasibility of remote teleoperator rendezvous, station keeping, and docking operations, using hand controllers for direct input and television for feedback, are noted. Future plans for designing space construction machines are mentioned.

  10. Real space renormalization tecniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1984-01-01

    Real space renormalization techniques are applied to study different disordered systems, with an emphasis on the understanding of the electronic properties of amorphous matter, mainly semiconductors. (Authors) [pt

  11. Intelligent tutoring systems for space applications

    Science.gov (United States)

    Luckhardt-Redfield, Carol A.

    1990-01-01

    Artificial Intelligence has been used in many space applications. Intelligent tutoring systems (ITSs) have only recently been developed for assisting training of space operations and skills. An ITS at Southwest Research Institute is described as an example of an ITS application for space operations, specifically, training console operations at mission control. A distinction is made between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed and future training requirements and potential ITS solutions are described.

  12. [Social participation in mental health: space of construction of citizenship, policy formulation and decision making].

    Science.gov (United States)

    Guimarães, José Maria Ximenes; Jorge, Maria Salete Bessa; Maia, Regina Claudia Furtado; de Oliveira, Lucia Conde; Morais, Ana Patrícia Pereira; Lima, Marcos Paulo de Oliveira; Assis, Marluce Maria Araújo; dos Santos, Adriano Maia

    2010-07-01

    The article approaches the comprehension of professionals that act in the mental health area about the movement of construction of social participation in the health system of Fortaleza, Ceará State. The methodology adopted is based upon qualitative approach. The study was developed with semi-structured interviews with 17 mental health professionals of the city above mentioned. The empirical data was analyzed through the technique of thematic content analysis, where it was identified three cores of analysis: social participation as space of citizenship and policy formulation; oriented to attention of collective needs; and decision taking. The study reveals that social participation represents a possibility of amplifying X the relations between the Civil Society and the State, which makes possible the social intervention in proposals of the health policies. It is highlighted the right to health linked to the consolidation of democracy in the attention to the needs and collective edification.

  13. Research on the selection of innovation compound using Possibility Construction Space Theory and fuzzy pattern recognition

    Science.gov (United States)

    Xie, Songhua; Li, Dehua; Nie, Hui

    2009-10-01

    There are a large number of fuzzy concepts and fuzzy phenomena in traditional Chinese medicine, which have led to great difficulties for study of traditional Chinese medicine. In this paper, the mathematical methods are used to quantify fuzzy concepts of drugs and prescription. We put forward the process of innovation formulations and selection method in Chinese medicine based on the Possibility Construction Space Theory (PCST) and fuzzy pattern recognition. Experimental results show that the method of selecting medicines from a number of characteristics of traditional Chinese medicine is consistent with the basic theory of traditional Chinese medicine. The results also reflect the integrated effects of the innovation compound. Through the use of the innovation formulations system, we expect to provide software tools for developing new traditional Chinese medicine and to inspire traditional Chinese medicine researchers to develop novel drugs.

  14. Update of KSC activities for the space transportation system

    Science.gov (United States)

    Gray, R. H.

    1979-01-01

    The paper is a status report on the facilities and planned operations at the Kennedy Space Center (KSC) that will support Space Shuttle launches. The conversion of KSC facilities to support efficient and economical checkout and launch operations in the era of the Space Shuttle is nearing completion. The driving force behind the KSC effort has been the necessity of providing adequate and indispensable facilities and support systems at minimum cost. This required the optimum utilization of existing buildings, equipment and systems, both at KSC and at Air Force property on Cape Canaveral, as well as the construction of two major new facilities and several minor ones. The entirely new structures discussed are the Shuttle Landing Facility and Orbiter Processing Facility. KSC stands ready to provide the rapid reliable economical landing-to-launch processing needed to ensure the success of this new space transportation system.

  15. Cultural systems for growing potatoes in space

    Science.gov (United States)

    Tibbitts, T.; Bula, R.; Corey, R.; Morrow, R.

    1988-01-01

    Higher plants are being evaluated for life support to provide needed food, oxygen and water as well as removal of carbon dioxide from the atmosphere. The successful utilization of plants in space will require the development of not only highly productive growing systems but also highly efficient bioregenerative systems. It will be necessary to recycle all inedible plant parts and all human wastes so that the entire complement of elemental compounds can be reused. Potatoes have been proposed as one of the desirable crops because they are 1) extremely productive, yielding more than 100 metric tons per hectare from field plantings, 2) the edible tubers are high in digestible starch (70%) and protein (10%) on a dry weight basis, 3) up to 80% of the total plant production is in tubers and thus edible, 4) the plants are easily propagated either from tubers or from tissue culture plantlets, 5) the tubers can be utilized with a minimum of processing, and 6) potatoes can be prepared in a variety of different forms for the human diet (Tibbitts et al., 1982). However potatoes have a growth pattern that complicates the development of growing the plants in controlled systems. Tubers are borne on underground stems that are botanically termed 'rhizomes', but in common usage termed 'stolons'. The stolons must be maintained in a dark, moist area with sufficient provision for enlargement of tubers. Stems rapidly terminate in flowers forcing extensive branching and spreading of plants so that individual plants will cover 0.2 m2 or more area. Thus the growing system must be developed to provide an area that is darkened for tuber and root growth and of sufficient size for plant spread. A system developed for growing potatoes, or any plants, in space will have certain requirements that must be met to make them a useful part of a life support system. The system must 1) be constructed of materials, and involve media, that can be reused for many successive cycles of plant growth, 2

  16. Systems Engineering Analysis for Office Space Management

    Science.gov (United States)

    2017-09-01

    ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT by James E. Abellana September 2017 Thesis Advisor: Diana Angelis Second Reader: Walter E. Owen...Master’s thesis 4. TITLE AND SUBTITLE SYSTEMS ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT 5. FUNDING NUMBERS 6. AUTHOR(S) James E. Abellana 7...of the systems engineering method, this thesis develops a multicriteria decision-making framework applicable to space allocation decisions for

  17. Lossless Coding Standards for Space Data Systems

    Science.gov (United States)

    Rice, R. F.

    1996-01-01

    The International Consultative Committee for Space Data Systems (CCSDS) is preparing to issue its first recommendation for a digital data compression standard. Because the space data systems of primary interest are employed to support scientific investigations requiring accurate representation, this initial standard will be restricted to lossless compression.

  18. Massive Modularity of Space and Surface Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will conduct a systems level investigation of a modular design and operations approach for future NASA exploration systems. Particular emphasis will be...

  19. Space solar power satellite systems with a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Kellum, M. J. (Mervyn J.); Laubscher, B. E. (Bryan E.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in mankind's access to outer space. If the SE's promise of low-cost access to space can be realized, the economics of space-based business endeavors becomes much more feasible. In this paper, we describe a Solar Power Satellite (SPS) system and estimate its costs within the context of an SE. We also offer technical as well as financial comparisons between SPS and terrestrial solar photovoltaic technologies. Even though SPS systems have been designed for over 35 years, technologies pertinent to SPS systems are continually evolving. One of the designs we present includes an evolving technology, optical rectennas. SPS systems could be a long-term energy source that is clean, technologically feasible, and virtually limitless. Moreover, electrical energy could be distributed inexpensively to remote areas where such power does not currently exist, thereby raising the quality of life of the people living in those areas. The energy 'playing field' will be leveled across the world and the resulting economic growth will improve the lot of humankind everywhere.

  20. Constructing Agent Model for Virtual Training Systems

    Science.gov (United States)

    Murakami, Yohei; Sugimoto, Yuki; Ishida, Toru

    Constructing highly realistic agents is essential if agents are to be employed in virtual training systems. In training for collaboration based on face-to-face interaction, the generation of emotional expressions is one key. In training for guidance based on one-to-many interaction such as direction giving for evacuations, emotional expressions must be supplemented by diverse agent behaviors to make the training realistic. To reproduce diverse behavior, we characterize agents by using a various combinations of operation rules instantiated by the user operating the agent. To accomplish this goal, we introduce a user modeling method based on participatory simulations. These simulations enable us to acquire information observed by each user in the simulation and the operating history. Using these data and the domain knowledge including known operation rules, we can generate an explanation for each behavior. Moreover, the application of hypothetical reasoning, which offers consistent selection of hypotheses, to the generation of explanations allows us to use otherwise incompatible operation rules as domain knowledge. In order to validate the proposed modeling method, we apply it to the acquisition of an evacuee's model in a fire-drill experiment. We successfully acquire a subject's model corresponding to the results of an interview with the subject.

  1. Construction of Orthonormal Piecewise Polynomial Scaling and Wavelet Bases on Non-Equally Spaced Knots

    Directory of Open Access Journals (Sweden)

    Jean Pierre Astruc

    2007-01-01

    Full Text Available This paper investigates the mathematical framework of multiresolution analysis based on irregularly spaced knots sequence. Our presentation is based on the construction of nested nonuniform spline multiresolution spaces. From these spaces, we present the construction of orthonormal scaling and wavelet basis functions on bounded intervals. For any arbitrary degree of the spline function, we provide an explicit generalization allowing the construction of the scaling and wavelet bases on the nontraditional sequences. We show that the orthogonal decomposition is implemented using filter banks where the coefficients depend on the location of the knots on the sequence. Examples of orthonormal spline scaling and wavelet bases are provided. This approach can be used to interpolate irregularly sampled signals in an efficient way, by keeping the multiresolution approach.

  2. A philosophy for space nuclear systems safety

    International Nuclear Information System (INIS)

    Marshall, A.C.

    1992-01-01

    The unique requirements and contraints of space nuclear systems require careful consideration in the development of a safety policy. The Nuclear Safety Policy Working Group (NSPWG) for the Space Exploration Initiative has proposed a hierarchical approach with safety policy at the top of the hierarchy. This policy allows safety requirements to be tailored to specific applications while still providing reassurance to regulators and the general public that the necessary measures have been taken to assure safe application of space nuclear systems. The safety policy used by the NSPWG is recommended for all space nuclear programs and missions

  3. Construction Worker Fatigue Prediction Model Based on System Dynamic

    OpenAIRE

    Wahyu Adi Tri Joko; Ayu Ratnawinanda Lila

    2017-01-01

    Construction accident can be caused by internal and external factors such as worker fatigue and unsafe project environment. Tight schedule of construction project forcing construction worker to work overtime in long period. This situation leads to worker fatigue. This paper proposes a model to predict construction worker fatigue based on system dynamic (SD). System dynamic is used to represent correlation among internal and external factors and to simulate level of worker fatigue. To validate...

  4. Minimal surfaces in AdS space and integrable systems

    Science.gov (United States)

    Burrington, Benjamin A.; Gao, Peng

    2010-04-01

    We consider the Pohlmeyer reduction for spacelike minimal area worldsheets in AdS5. The Lax pair for the reduced theory is found, and written entirely in terms of the A3 = D3 root system, generalizing the B2 affine Toda system which appears for the AdS4 string. For the B2 affine Toda system, we show that the area of the worlsheet is obtainable from the moduli space Kähler potential of a related Hitchin system. We also explore the Saveliev-Leznov construction for solutions of the B2 affine Toda system, and recover the rotationally symmetric solution associated to Painleve transcendent.

  5. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  6. Fermion systems in discrete space-time

    International Nuclear Information System (INIS)

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  7. Fermion systems in discrete space-time

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  8. Fermion Systems in Discrete Space-Time

    OpenAIRE

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  9. Fermion systems in discrete space-time

    Science.gov (United States)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  10. Construction Worker Fatigue Prediction Model Based on System Dynamic

    Directory of Open Access Journals (Sweden)

    Wahyu Adi Tri Joko

    2017-01-01

    Full Text Available Construction accident can be caused by internal and external factors such as worker fatigue and unsafe project environment. Tight schedule of construction project forcing construction worker to work overtime in long period. This situation leads to worker fatigue. This paper proposes a model to predict construction worker fatigue based on system dynamic (SD. System dynamic is used to represent correlation among internal and external factors and to simulate level of worker fatigue. To validate the model, 93 construction workers whom worked in a high rise building construction projects, were used as case study. The result shows that excessive workload, working elevation and age, are the main factors lead to construction worker fatigue. Simulation result also shows that these factors can increase worker fatigue level to 21.2% times compared to normal condition. Beside predicting worker fatigue level this model can also be used as early warning system to prevent construction worker accident

  11. Very large virtual compound spaces: construction, storage and utility in drug discovery.

    Science.gov (United States)

    Peng, Zhengwei

    2013-09-01

    Recent activities in the construction, storage and exploration of very large virtual compound spaces are reviewed by this report. As expected, the systematic exploration of compound spaces at the highest resolution (individual atoms and bonds) is intrinsically intractable. By contrast, by staying within a finite number of reactions and a finite number of reactants or fragments, several virtual compound spaces have been constructed in a combinatorial fashion with sizes ranging from 10(11)11 to 10(20)20 compounds. Multiple search methods have been developed to perform searches (e.g. similarity, exact and substructure) into those compound spaces without the need for full enumeration. The up-front investment spent on synthetic feasibility during the construction of some of those virtual compound spaces enables a wider adoption by medicinal chemists to design and synthesize important compounds for drug discovery. Recent activities in the area of exploring virtual compound spaces via the evolutionary approach based on Genetic Algorithm also suggests a positive shift of focus from method development to workflow, integration and ease of use, all of which are required for this approach to be widely adopted by medicinal chemists.

  12. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used......Space science is subject to a constantly increasing demand for larger coherence lengths or apertures of the space observation systems, which in turn translates into a demand for increased dimensions and subsequently cost and complexity of the systems. When this increasing demand reaches...... the pratical limitations of increasing the physical dimensions of the spacecrafts, the observation platforms will have to be distributed on more spacecrafts flying in very accurate formations. Consequently, the observation platform becomes much more sensitive to disturbances from the space environment...

  13. DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    For certain applications, such as space servicing, undersea operations, and hazardous material handling tasks in nuclear reactors, the environments can be uncertain, complex, and hazardous. Lives may be in danger if humans were to work under these conditions. As a result, a man-machine system--a teleoperator system--has been developed to work in these types of environments. In a typical teleoperator system, the actual system operates at a remote site; the operator located away from this system usually receives visual information from a video image and/or graphical animation on the computer screen. Additional feedback, such as aural and force information, can significantly enhance performance of the system. Force reflection is a type of feedback in which forces experienced by the remote manipulator are fed back to the manual controller. Various control methods have been proposed for implementation on a teleoperator system. In order to examine different control schemes, a one Degree-Of-Freedom (DOF) Force-Reflecting Manual Controller (FRMC) is constructed and integrated into a PC. The system parameters are identified and constructed as a mathematical model. The Proportional-Integral-Derivative (PID) and fuzzy logic controllers are developed and tested experimentally. Numerical simulation results obtained from the mathematical model are compared with those of experimental data for both types of controllers. In addition, the concept of a telesensation system is introduced. A telesensation system is an advanced teleoperator system that attempts to provide the operator with sensory feedback. In this context, a telesensation system integrates the use of a Virtual Reality (VR) unit, FRMC, and Graphical User Interface (GUI). The VR unit is used to provide the operator with a 3-D visual effect. Various commercial VR units are reviewed and features compared for use in a telesensation system. As for the FRMC, the conceptual design of a 3-DOF FRMC is developed in an effort to

  14. DESIGN AND CONSTRUCTION OF A FORCE-REFLECTING TELEOPERATION SYSTEM

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    For certain applications, such as space servicing, undersea operations, and hazardous material handling tasks in nuclear reactors, the environments can be uncertain, complex, and hazardous. Lives may be in danger if humans were to work under these conditions. As a result, a man-machine system--a teleoperator system--has been developed to work in these types of environments. In a typical teleoperator system, the actual system operates at a remote site; the operator located away from this system usually receives visual information from a video image and/or graphical animation on the computer screen. Additional feedback, such as aural and force information, can significantly enhance performance of the system. Force reflection is a type of feedback in which forces experienced by the remote manipulator are fed back to the manual controller. Various control methods have been proposed for implementation on a teleoperator system. In order to examine different control schemes, a one Degree-Of-Freedom (DOF) Force-Reflecting Manual Controller (FRMC) is constructed and integrated into a PC. The system parameters are identified and constructed as a mathematical model. The Proportional-Integral-Derivative (PID) and fuzzy logic controllers are developed and tested experimentally. Numerical simulation results obtained from the mathematical model are compared with those of experimental data for both types of controllers. In addition, the concept of a telesensation system is introduced. A telesensation system is an advanced teleoperator system that attempts to provide the operator with sensory feedback. In this context, a telesensation system integrates the use of a Virtual Reality (VR) unit, FRMC, and Graphical User Interface (GUI). The VR unit is used to provide the operator with a 3-D visual effect. Various commercial VR units are reviewed and features compared for use in a telesensation system. As for the FRMC, the conceptual design of a 3-DOF FRMC is developed in an effort to

  15. Space and Missile Systems Center Standard: Space Flight Pressurized Systems

    Science.gov (United States)

    2015-02-28

    as an adhesive , as dictated by the application. [4.3.3.1-2] The effects of fabrication process, temperature/humidity, load spectra, and other...5.2.1-1] System connections for incompatible propellants shall be keyed, sized, or located so that it is physically impossible to interconnect them

  16. Holographic representation of space-variant systems: system theory.

    Science.gov (United States)

    Marks Ii, R J; Krile, T F

    1976-09-01

    System theory for holographic representation of linear space-variant systems is derived. The utility of the resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant system, ideal magnifier, and Fourier transformer. A method previously employed to holographically represent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.

  17. Internet-based Interactive Construction Management Learning System.

    Science.gov (United States)

    Sawhney, Anil; Mund, Andre; Koczenasz, Jeremy

    2001-01-01

    Describes a way to incorporate practical content into the construction engineering and management curricula: the Internet-based Interactive Construction Management Learning System, which uses interactive and adaptive learning environments to train students in the areas of construction methods, equipment and processes using multimedia, databases,…

  18. Identity as “knowing your place”: The narrative construction of space in a healthcare profession

    NARCIS (Netherlands)

    van Vuuren, Hubrecht A.; Westerhof, Gerben Johan

    2015-01-01

    The construction of space in which a story takes place can have important consequences for the evaluation of health interventions. In this article, we explore the ways professionals narratively position themselves in a situation, treating identity literally as “knowing one’s place.” More

  19. Community History as a Male-Constructed Space: Challenging Gendered Memories among South African Muslim Women

    Science.gov (United States)

    Daniels, Doria

    2009-01-01

    The post-Apartheid community history is a male-constructed space, narrated into present-day consciousness by male community leaders and history writers. The patriarchal worldview disparages women's contributions and activisms. This article reports on how Muslim women from a small fishing village in South Africa in the early 1900s strategized to…

  20. With Their Help: How Community Members Construct a Congruent Third Space in an Urban Kindergarten Classroom

    Science.gov (United States)

    Quigley, Cassie F.

    2013-01-01

    Through the use of narrative enquiry, this paper tells the story of how a kindergarten teacher in an all-girls' school incorporates family and community members' involvement to the construction of the congruent Third Space present in the classroom, and the ways the girls respond to this involvement, thereby providing a successful model for other…

  1. Deep Space Cryocooler System (DSCS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA missions continue to extend the horizon beyond near-Earth missions, higher performance systems must evolve to address the challenges of reduced power...

  2. Space Station data management system architecture

    Science.gov (United States)

    Mallary, William E.; Whitelaw, Virginia A.

    1987-01-01

    Within the Space Station program, the Data Management System (DMS) functions in a dual role. First, it provides the hardware resources and software services which support the data processing, data communications, and data storage functions of the onboard subsystems and payloads. Second, it functions as an integrating entity which provides a common operating environment and human-machine interface for the operation and control of the orbiting Space Station systems and payloads by both the crew and the ground operators. This paper discusses the evolution and derivation of the requirements and issues which have had significant effect on the design of the Space Station DMS, describes the DMS components and services which support system and payload operations, and presents the current architectural view of the system as it exists in October 1986; one-and-a-half years into the Space Station Phase B Definition and Preliminary Design Study.

  3. Real space renormalization techniques for disordered systems

    International Nuclear Information System (INIS)

    Anda, E.V.

    1985-01-01

    Real Space renormalization techniques are applied to study different disordered systems, with an emphasis on the under-standing of the electronic properties of amorphous matter, mainly semiconductors. (author) [pt

  4. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  5. AES, Automated Construction Cost Estimation System

    International Nuclear Information System (INIS)

    Holder, D.A.

    1995-01-01

    A - Description of program or function: AES (Automated Estimating System) enters and updates the detailed cost, schedule, contingency, and escalation information contained in a typical construction or other project cost estimates. It combines this information to calculate both un-escalated and escalated and cash flow values for the project. These costs can be reported at varying levels of detail. AES differs from previous versions in at least the following ways: The schedule is entered at the WBS-Participant, Activity level - multiple activities can be assigned to each WBS-Participant combination; the spending curve is defined at the schedule activity level and a weighing factor is defined which determines percentage of cost for the WBS-Participant applied to the schedule activity; Schedule by days instead of Fiscal Year/Quarter; Sales Tax is applied at the Line Item Level- a sales tax codes is selected to indicate Material, Large Single Item, or Professional Services; a 'data filter' has been added to allow user to define data the report is to be generated for. B - Method of solution: Average Escalation Rate: The average escalation for a Bill of is calculated in three steps. 1. A table of quarterly escalation factors is calculated based on the base fiscal year and quarter of the project entered in the estimate record and the annual escalation rates entered in the Standard Value File. 2. The percentage distribution of costs by quarter for the Bill of Material is calculated based on the schedule entered and the curve type. 3. The percent in each fiscal year and quarter in the distribution is multiplied by the escalation factor for the fiscal year and quarter. The sum of these results is the average escalation rate for that Bill of Material. Schedule by curve: The allocation of costs to specific time periods is dependent on three inputs, starting schedule date, ending schedule date, and the percentage of costs allocated to each quarter. Contingency Analysis: The

  6. Space-Time Reference Systems

    CERN Document Server

    Soffel, Michael

    2013-01-01

    The high accuracy of modern astronomical spatial-temporal reference systems has made them considerably complex. This book offers a comprehensive overview of such systems. It begins with a discussion of ‘The Problem of Time’, including recent developments in the art of clock making (e.g., optical clocks) and various time scales. The authors address  the definitions and realization of spatial coordinates by reference to remote celestial objects such as quasars. After an extensive treatment of classical equinox-based coordinates, new paradigms for setting up a celestial reference system are introduced that no longer refer to the translational and rotational motion of the Earth. The role of relativity in the definition and realization of such systems is clarified. The topics presented in this book are complemented by exercises (with solutions). The authors offer a series of files, written in Maple, a standard computer algebra system, to help readers get a feel for the various models and orders of magnitude. ...

  7. Security for safety critical space borne systems

    Science.gov (United States)

    Legrand, Sue

    1987-01-01

    The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.

  8. Reliability models for Space Station power system

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.

    1987-01-01

    This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.

  9. Alenia Spazio: Space Programs for Solar System Exploration .

    Science.gov (United States)

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  10. Education Systems as Transition Spaces

    Science.gov (United States)

    Tikkanen, Jenni; Bledowski, Piotr; Felczak, Joanna

    2015-01-01

    The changes that have occurred in the field of education over the course of the last couple of decades have been associated with increased demands that are not only placed on individuals from both within and beyond the education system, but also on the support they require to make successful educational choices. One central way this need is being…

  11. Towards Mobile Information Systems for Indoor Space

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Zhang

    2016-01-01

    Full Text Available With the rapid development of Internet of things (IOT and indoor positioning technologies such as Wi-Fi and RFID, indoor mobile information systems have become a new research hotspot. Based on the unique features of indoor space and urgent needs on indoor mobile applications, in this paper we analyze some key issues in indoor mobile information systems, including positioning technologies in indoor environments, representation models for indoor spaces, query processing techniques for indoor moving objects, and index structures for indoor mobile applications. Then, we present an indoor mobile information management system named IndoorDB. Finally, we give some future research topics about indoor mobile information systems.

  12. Large-size deployable construction heated by solar irradiation in free space

    Science.gov (United States)

    Pestrenina, Irena; Kondyurin, Alexey; Pestrenin, Valery; Kashin, Nickolay; Naymushin, Alexey

    Large-size deployable construction in free space with subsequent direct curing was invented more than fifteen years ago (Briskman et al., 1997 and Kondyurin, 1998). It caused a lot of scientific problems, one of which is a possibility to use the solar energy for initiation of the curing reaction. This paper is devoted to investigate the curing process under sun irradiation during a space flight in Earth orbits. A rotation of the construction is considered. This motion can provide an optimal temperature distribution in the construction that is required for the polymerization reaction. The cylindrical construction of 80 m length with two hemispherical ends of 10 m radius is considered. The wall of the construction of 10 mm carbon fibers/epoxy matrix composite is irradiated by heat flux from the sun and radiates heat from the external surface by the Stefan- Boltzmann law. A stage of polymerization reaction is calculated as a function of temperature/time based on the laboratory experiments with certified composite materials for space exploitation. The curing kinetics of the composite is calculated for different inclination Low Earth Orbits (300 km altitude) and Geostationary Earth Orbit (40000 km altitude). The results show that • the curing process depends strongly on the Earth orbit and the rotation of the construction; • the optimal flight orbit and rotation can be found to provide the thermal regime that is sufficient for the complete curing of the considered construction. The study is supported by RFBR grant No.12-08-00970-a. 1. Briskman V., A.Kondyurin, K.Kostarev, V.Leontyev, M.Levkovich, A.Mashinsky, G.Nechitailo, T.Yudina, Polymerization in microgravity as a new process in space technology, Paper No IAA-97-IAA.12.1.07, 48th International Astronautical Congress, October 6-10, 1997, Turin Italy. 2. Kondyurin A.V., Building the shells of large space stations by the polymerisation of epoxy composites in open space, Int. Polymer Sci. and Technol., v.25, N4

  13. Man-systems distributed system for Space Station Freedom

    Science.gov (United States)

    Lewis, J. L.

    1990-01-01

    Viewgraphs on man-systems distributed system for Space Station Freedom are presented. Topics addressed include: description of man-systems (definition, requirements, scope, subsystems, and topologies); implementation (approach, tools); man-systems interfaces (system to element and system to system); prime/supporting development relationship; selected accomplishments; and technical challenges.

  14. Ross Works on the Assembly Concept for Construction of Erectable Space Structure (ACCESS) During

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  15. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    Science.gov (United States)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  16. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  17. Computer aided fault tree construction for electrical systems

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1975-01-01

    A technique is presented for automated construction of the Boolean failure logic diagram, called the fault tree, for electrical systems. The method is a technique for synthesizing a fault tree from system-independent component characteristics. Terminology is defined and heuristic examples are given for all phases of the model. The computer constructed fault trees are in conventional format, use conventional symbols, and are deductively constructed from the main failure of interest to the individual component failures. The synthesis technique is generally applicable to automated fault tree construction for other types of systems

  18. NASA's Space Launch System: Deep-Space Delivery for Smallsats

    Science.gov (United States)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed CubeSats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the CubeSats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage

  19. Constructing decidable hybrid systems with velocity bounds

    NARCIS (Netherlands)

    Belta, C.; Habets, L.C.G.J.M.

    2004-01-01

    In this paper, the question of bi-similarity between hybrid systems and their discrete quotients is studied from a new point of view. We consider two classes of hybrid systems: piecewise affine hybrid systems on simplices and piecewise multi-affine systems on multi-dimensional rectangles. Given a

  20. Study on Evaluation Index System of Green mine construction

    Science.gov (United States)

    Li, xin; Yang, JunJie; Yan, Hongcai; Cao, Hongjun

    2017-11-01

    Green mine is a new and science comprehensive construction mode of mine, which runs the concept of green development through the whole process of mineral resources development and utilization, promotes the transformation and upgrading of mineral enterprises and achieves the healthy and sustainable development of mining industry. This paper is based on “the basic conditions of national green mine”, combined with the current situation of green mine construction, constructing green mine construction evaluation index system which is divided into five areas, including management, comprehensive utilization of mineral resources. technological innovation. ecological environment and cultural construction.

  1. Liquid Effluent Monitoring Information System (LEMIS) System Construction

    International Nuclear Information System (INIS)

    Adams, R.T.

    1994-01-01

    The liquid effluent sampling program is part of the effort to minimize adverse environmental impact during the cleanup operation at the Hanford Site. Of the 33 Phase I and Phase II liquid effluents, all streams actively discharged to the soil column will be sampled. The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Construction document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user

  2. Economic optimization in new distribution system construction

    International Nuclear Information System (INIS)

    Freese, J.

    1994-01-01

    The substantial capital investment and the long-term nature of extension projects make it necessary, in particular for local utilities, to intensively prepare their construction projects. Resulting from this context, the PC-program MAFIOSY for calculating and optimizing the economics of pipeline extension projects has been developed to facilitate the decision-making process and to ensure an optimum decision. The optimum structure of a distribution network to be designed for a new service area is defined using the four-phase method set out below: Situation Audit; Determination of Potential; Determination of Economic and Technical Parameters; Optimization. (orig.)

  3. Earth and space science information systems

    Energy Technology Data Exchange (ETDEWEB)

    Zygielbaum, A. (ed.) (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States))

    1993-01-01

    These proceedings represent papers presented at the Earth and Space Science Information Systems (ESSIS) Conference. The attendees included scientists and engineers across many disciplines. New trends in information organizations were reviewed. One hundred and twenty eight papers are included in this volume, out of these two have been abstracted for the Energy Science and Technology database. The topics covered in the papers range from Earth science and technology to astronomy and space, planetary science and education. (AIP)

  4. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  5. STIMULATION OF CONSTRUCTION OF AFFORDABLE HOUSING BY REFORMATION OF A CONSTRUCTION COMPLEX MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    BRONEVYTSKYI S. P.

    2015-10-01

    Full Text Available Purpose. Development of offers on stimulation of construction of affordable housing by reformation of a construction complex management system. Methodology. The revelation of the problems of planning of construction in large cities. The analysis of forming of structure of a build complex management in soviet times and in a transitional period. The revelation of the modern, actual, socio-economic problems of the construction activity management. Proposition on the improvement of methods of construction management in cities of Ukraine. Results. The methods of a construction complex management in countries with a market economy as for building of affordable housing are shown. Originality. In composition of a town-planning documentations, except for the norms of the common use of territories of city (density of population of micro region, the maximum parameters of a construction examining of land areas are proposed to determine: building percent and coefficient of maximum superficial area. Practical value. The principle of management and organization of construction is norms of a build use of territories for building of mass affordable housing for funds of population and investors while providing of the comfort of housing in accordance with state construction norms.

  6. A logistics model for large space power systems

    Science.gov (United States)

    Koelle, H. H.

    Space Power Systems (SPS) have to overcome two hurdles: (1) to find an attractive design, manufacturing and assembly concept and (2) to have available a space transportation system that can provide economical logistic support during the construction and operational phases. An initial system feasibility study, some five years ago, was based on a reference system that used terrestrial resources only and was based partially on electric propulsion systems. The conclusion was: it is feasible but not yet economically competitive with other options. This study is based on terrestrial and extraterrestrial resources and on chemical (LH 2/LOX) propulsion systems. These engines are available from the Space Shuttle production line and require small changes only. Other so-called advanced propulsion systems investigated did not prove economically superior if lunar LOX is available! We assume that a Shuttle derived Heavy Lift Launch Vehicle (HLLV) will become available around the turn of the century and that this will be used to establish a research base on the lunar surface. This lunar base has the potential to grow into a lunar factory producing LOX and construction materials for supporting among other projects also the construction of space power systems in geostationary orbit. A model was developed to simulate the logistics support of such an operation for a 50-year life cycle. After 50 years 111 SPS units with 5 GW each and an availability of 90% will produce 100 × 5 = 500 GW. The model comprises 60 equations and requires 29 assumptions of the parameter involved. 60-state variables calculated with the 60 equations mentioned above are given on an annual basis and as averages for the 50-year life cycle. Recycling of defective parts in geostationary orbit is one of the features of the model. The state-of-the-art with respect to SPS technology is introduced as a variable Mg mass/MW electric power delivered. If the space manufacturing facility, a maintenance and repair facility

  7. 48 CFR 915.404-4-71 - Profit and fee-system for construction and construction management contracts.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Profit and fee-system for construction and construction management contracts. 915.404-4-71 Section 915.404-4-71 Federal Acquisition... Contract Pricing 915.404-4-71 Profit and fee-system for construction and construction management contracts. ...

  8. Integrated Systems Health Management for Space Exploration

    Science.gov (United States)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  9. Construction of a femtosecond laser microsurgery system.

    Science.gov (United States)

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2010-03-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d.

  10. Conceptual Spaces of the Immune System.

    Science.gov (United States)

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.

  11. Innovation in civil construction system of nuclear power plant

    International Nuclear Information System (INIS)

    Takami, Masahiro

    1996-01-01

    Nowadays, the computer-aided production systems have been already introduced to almost all kinds of industries. The construction industry, which has been said to be conservative for the modernization of production system, now expects the CIC (Computer Integrated Construction) as the means to innovate the construction production process. Shimizu Corporation has developed the new computer-aided production system, 'SIPS: Shimizu Integrated Production System', and has used it in the actual construction projects. In the system, the computer supports every phase of construction projects like market researching, design, material purchase, construction work, and maintenance. The project of Kashiwazaki-kariwa Nuclear Power Station Unit No.7 is one of the model cases. Here we applied following three concepts, (1) the full use and integration of 3D-CAD data-base through all phases of construction, (2) the setting-up of the information network system among the site office, the head office, and the mechanical and electrical manufacturer, (3) the introduction of advanced construction technologies such as large block prefabrication method. (author)

  12. Phantom construction by the lithography process for micro-radiographic system analysis

    International Nuclear Information System (INIS)

    Rocha, Henrique de Souza; Lopes, Ricardo Tadeu; Macedo, Pedro Ivo M.T.

    2002-01-01

    In this work it was analyzed the viability of the use of a standard phantom, manufactured by the lithograph process, for obtaining the space resolution of a microradiographic system. The project predicted the construction of three types of phantoms, one for obtaining the function of modulation transfer in systems with resolutions between 10 and 60 μm and other two for the direct reading of the space resolution, in systems with resolution between 10 and 100 μm and between 100 and 400 μm. Despite of the results have been obtained from preliminary samples of the built phantoms, it was possible to find good results in relation to the space resolution. Using a reference system formed by a conventional microfocused X-rays tube with a CCD detector, was possible to match a space resolution of 15 μm in 20% of modulation in a system with a estimated resolution of 12,5 μm. (author)

  13. (j,0)circle-plus(0,j) representation space: Dirac-like construct

    International Nuclear Information System (INIS)

    Ahluwalia, D.V.; Johnson, M.B.; Goldman, T.

    1993-01-01

    This is first of the two invited lectures presented at the ''XVII International School of Theoretical Physics: Standard Model and Beyond 1993.'' The text is essentially based on a recent publication by the present authors. Here we show that the Dirac-like construct in the (j,0)circle-plus(0,j) representation space support a Bargmann-Wightman-Wigner type quantum field theory

  14. (j,0){circle_plus}(0,j) representation space: Dirac-like construct

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, D.V.; Johnson, M.B.; Goldman, T.

    1993-12-31

    This is first of the two invited lectures presented at the ``XVII International School of Theoretical Physics: Standard Model and Beyond 1993.`` The text is essentially based on a recent publication by the present authors. Here we show that the Dirac-like construct in the (j,0){circle_plus}(0,j) representation space support a Bargmann-Wightman-Wigner type quantum field theory.

  15. Nonperturbative construction of nonrenormalizable models of quantum field theory in four-dimensional space-time

    International Nuclear Information System (INIS)

    Raczka, R.

    1979-01-01

    Construction of non-cutoff Euclidean Green's functions for nonrenormalizable interactions Lsub(I)(phi)=lambda∫dσ(epsilon):expepsilonphi: in four-dimensional space-time is presented. It is shown that all axioms for the generating functional of E.G.F. are satisfied except perhaps the SO(4) invariance. It is shown that the singularities of E.G.F. for coinciding points are not worse than those of the free theory. (author)

  16. The NASA Advanced Space Power Systems Project

    Science.gov (United States)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  17.  Thermal Insulation System Made of Wood and Paper for Use in Residential Construction

    Science.gov (United States)

    Zoltán Pásztory; Tibor Horváth; Samuel V. Glass; Samuel L. Zelinka

    2015-01-01

    This article introduces an insulation system that takes advantage of the low thermal conductivity of still air and is made of wood and paper. The insulation, called the Mirrorpanel, is constructed as a panel of closely spaced layers of coated paper and held together in a frame of wood or fiberboard. Panels have been fabricated and tested at the laboratory scale, whole...

  18. Study of capability of microorganisms to develop on construction materials used in space objects

    Science.gov (United States)

    Rakova, N.; Svistunova, Y.; Novikova, N.

    One of the most topical issues nowadays in the whole set of space research is the study of microbiological risks (medical, technical, technological). Experiments held onboard MIR station and International Space Station (ISS) clearly demonstrated capacity of microorganisms to contaminate the environment, equipment and belonging of habitual compartments of space objects. In this connection microorganisms-biodestructors play an important role. In their vital functioning they are capable of causing biological damage of different polymers, biocorrosion of metals which can lead to serious difficulties in performing long-term flights, namely the planned mission to Mars. Our purpose was to study capability of growth and reproduction of microorganisms on construction materials of various chemical composition as the first stage of biodestruction process. In our research we used "flight" strains of bacteria (Bacillus subtilus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Pseudomonas pumilus etc.) recovered from the ISS environment in several missions. For control we used "earth" bacteria species with typical properties. To model the environment of the ISS we took construction materials which are widely used in the interior and equipment of the ISS. The results we've obtained show that some microorganisms are capable of living and reproducing themselves on construction materials and their capability is more pronounced than that of the "earth" species. The best capability for growth and reproduction was characteristic of Bacillus subtilus.

  19. General Purpose Data-Driven System Monitoring for Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern space propulsion and exploration system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using...

  20. On Kubo-Martin-Schwinger states of classical dynamical systems with the infinite-dimensional phase space

    International Nuclear Information System (INIS)

    Arsen'ev, A.A.

    1979-01-01

    Example of a classical dynamical system with the infinite-dimensional phase space, satisfying the analogue of the Kubo-Martin-Schwinger conditions for classical dynamics, is constructed explicitly. Connection between the system constructed and the Fock space dynamics is pointed out

  1. Information systems for material flow management in construction processes

    Science.gov (United States)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  2. Electronic construction collaboration system : phase III.

    Science.gov (United States)

    2011-12-01

    This phase of the electronic collaboration project involved two major efforts: 1) implementation of AEC Sync (formerly known as Attolist), a web-based project management system (WPMS), on the Broadway Viaduct Bridge Project and the Iowa Falls Arch Br...

  3. Electronic construction collaboration system -- phase II.

    Science.gov (United States)

    2010-06-01

    During the first year of research, work was completed to identify Iowa DOT needs for web-based project management system (WPMS) : and evaluate how commercially available solutions could meet these needs. Researchers also worked to pilot test custom d...

  4. Robotic influence in the conceptual design of mechanical systems in space and vice versa - A survey

    Science.gov (United States)

    Sanger, George F.

    1988-01-01

    A survey of methods using robotic devices to construct structural elements in space is presented. Two approaches to robotic construction are considered: one in which the structural elements are designed using conventional aerospace techniques which tend to constrain the function aspects of robotics and one in which the structural elements are designed from the conceptual stage with built-in robotic features. Examples are presented of structural building concepts using robotics, including the construction of the SP-100 nuclear reactor power system, a multimirror large aperture IR space telescope concept, retrieval and repair in space, and the Flight Telerobotic Servicer.

  5. A solution to the L space problem and related ZFC constructions

    CERN Document Server

    Moore, J T

    2005-01-01

    In this paper I will construct a non-separable hereditarily Lindelof space (L space) without any additional axiomatic assumptions. I will also show that there is a function f from [omega_1]^2 to omega_1 such that if A,B, subsets of omega_1, are uncountable and x omega_1, then there are a < b in A and B respectively with f(a,b) = x. Previously it was unknown whether such a function existed even if omega_1 was replaced by 2. Finally, I will prove that there is no basis for the uncountable regular Hausdorff spaces of cardinality aleph_1. Each of these results gives a strong refutation of a well known and longstanding conjecture. The results all stem from the analysis of oscillations of coherent sequences {e_i : i < omega_1} of finite-to-one functions. I expect that the methods presented will have other applications as well.

  6. Identity as "knowing your place": the narrative construction of space in a healthcare profession.

    Science.gov (United States)

    van Vuuren, Mark; Westerhof, Gerben J

    2015-03-01

    The construction of space in which a story takes place can have important consequences for the evaluation of health interventions. In this article, we explore the ways professionals narratively position themselves in a situation, treating identity literally as "knowing one's place." More specifically, we explore the spatial language health professionals use to describe their work. Using descriptions of professionals in a drug habilitation organization, we illustrate how they use route (i.e., an active tour through the space), survey (i.e., a stationary viewpoint from above), and gaze perspectives (i.e. a stable viewpoint onto a place) to explain the work situations they encounter. Each of these perspectives facilitates a different mode of evaluation in terms of distance, emotion, and identity. We propose opportunities for research and implications of the ways in which spaces and spatial perspectives set the scene in the narratives of healthcare professionals. © The Author(s) 2015.

  7. Thinking and questioning the social construction of space: balances and challenges

    Directory of Open Access Journals (Sweden)

    Nubia Moreno Lache

    2013-12-01

    Full Text Available DOI: http://dx.doi.org/10.17227/01234870.38folios141.156 This paper offers an overview and reflections of the research done within the emphasis on “Social Construction of Space”, of the master’s program in Social Sciences at the National Pedagogical University in Bogota, Colombia. The goal is to examine two issues: the relationships that community establishes with the biophysical and social environment and also the cultural, economical and political impact on geographic places, such as the street, neighborhood, town, city, region and even the country. Main categories such as urban identity, public space, environmental cognition of urban milieu, responsible urban and environmental behaviors and space/subject relationships have been worked out. Finally, some studies have focused on the adoption and meaning of public spaces, territorialities and territories, as a result of human interactions.

  8. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Titran, R.H.; Grobstein, T.L.

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  9. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  10. Construction Example for Algebra System Using Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    FangAn Deng

    2015-01-01

    Full Text Available The construction example of algebra system is to verify the existence of a complex algebra system, and it is a NP-hard problem. In this paper, to solve this kind of problems, firstly, a mathematical optimization model for construction example of algebra system is established. Secondly, an improved harmony search algorithm based on NGHS algorithm (INGHS is proposed to find as more solutions as possible for the optimization model; in the proposed INGHS algorithm, to achieve the balance between exploration power and exploitation power in the search process, a global best strategy and parameters dynamic adjustment method are present. Finally, nine construction examples of algebra system are used to evaluate the optimization model and performance of INGHS. The experimental results show that the proposed algorithm has strong performance for solving complex construction example problems of algebra system.

  11. Constructing the Value of Information Systems Research

    DEFF Research Database (Denmark)

    Avital, Michel

    2014-01-01

    Building on a social constructivist approach, this commentary examines the value of Information Systems (IS) research and its bearing on the future of the discipline in three steps as follows. First, it is argued that the product of IS scholars can serve as a proxy for IS research and that the su......Building on a social constructivist approach, this commentary examines the value of Information Systems (IS) research and its bearing on the future of the discipline in three steps as follows. First, it is argued that the product of IS scholars can serve as a proxy for IS research...

  12. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  13. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  14. Towards an authoring system for item construction

    NARCIS (Netherlands)

    Rikers, Jos H.A.N.

    1988-01-01

    The process of writing test items is analyzed, and a blueprint is presented for an authoring system for test item writing to reduce invalidity and to structure the process of item writing. The developmental methodology is introduced, and the first steps in the process are reported. A historical

  15. Space Telescope Pointing Control System software

    Science.gov (United States)

    Dougherty, H.; Rodoni, C.; Rossini, R.; Tompetrini, K.; Nakashima, A.; Bradley, A.

    1982-01-01

    The Space Telescope Pointing Control System software is in the advanced development stage, having been tested on both the airbearing and the static simulator. The overall structure of the software is discussed, along with timing and sizing evaluations. The interaction between the controls analysts and software designer is described.

  16. Axiomatic Design of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.

  17. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  18. Site characterization for hybrid system construction

    Energy Technology Data Exchange (ETDEWEB)

    Saldana, R.; Miranda, U.; Medrano, M. C. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The basic reason to use alternative systems for electricity generation, in most cases, is the lack of electricity services, such as isolated rural communities which are located far away from the electric distribution line, and the cost of its extension is too expensive, while decentralized power systems can be an economic and appropriate solution to providing these services. Up to now there are several technological options for rural electrification using PV modules, wind plants, water-power plants, anaerobic digesters, or a combination of some of them, according to the availability of energetic resources. The applications include centralized or decentralized systems, autonomous or hybrid systems, isolated or interconnected to the electric line, etc. A particular hybrid system design can be done considering two general aspects, first it is necessary to know the electric consumption that will be supplied, taking into account present and future necessities and how local energetic resources are present in a selected site. Finally, also it is necessary to carry out an economic analysis to determine the cost of kilowatt-hour generated using local energetic resources and compare it with the cost of electricity produced by conventional power systems. [Espanol] La razon principal para el uso de sistemas alternativos de generacion de electricidad, en la mayoria de los casos, es la falta de servicios de electricidad, tal como en las comunidades rurales aisladas localizadas lejos de linea de distribucion electrica, donde el costo de su extension es demasiado caro, mientras que los sistemas descentralizados de energia pueden ser una solucion economica y adecuada para proporcionar estos servicios. Hasta ahora existen varias opciones tecnologicas para la electrificacion rural usando modulos fotovoltaicos, aerogeneradores, plantas hidroelectricas, digestores anaerobicos o una combinacion de algunos de ellos, de acuerdo con la disponibilidad de los recursos energeticos. Las

  19. Site characterization for hybrid system construction

    Energy Technology Data Exchange (ETDEWEB)

    Saldana, R; Miranda, U; Medrano, M C [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    The basic reason to use alternative systems for electricity generation, in most cases, is the lack of electricity services, such as isolated rural communities which are located far away from the electric distribution line, and the cost of its extension is too expensive, while decentralized power systems can be an economic and appropriate solution to providing these services. Up to now there are several technological options for rural electrification using PV modules, wind plants, water-power plants, anaerobic digesters, or a combination of some of them, according to the availability of energetic resources. The applications include centralized or decentralized systems, autonomous or hybrid systems, isolated or interconnected to the electric line, etc. A particular hybrid system design can be done considering two general aspects, first it is necessary to know the electric consumption that will be supplied, taking into account present and future necessities and how local energetic resources are present in a selected site. Finally, also it is necessary to carry out an economic analysis to determine the cost of kilowatt-hour generated using local energetic resources and compare it with the cost of electricity produced by conventional power systems. [Espanol] La razon principal para el uso de sistemas alternativos de generacion de electricidad, en la mayoria de los casos, es la falta de servicios de electricidad, tal como en las comunidades rurales aisladas localizadas lejos de linea de distribucion electrica, donde el costo de su extension es demasiado caro, mientras que los sistemas descentralizados de energia pueden ser una solucion economica y adecuada para proporcionar estos servicios. Hasta ahora existen varias opciones tecnologicas para la electrificacion rural usando modulos fotovoltaicos, aerogeneradores, plantas hidroelectricas, digestores anaerobicos o una combinacion de algunos de ellos, de acuerdo con la disponibilidad de los recursos energeticos. Las

  20. Carbon footprint of construction using industrialised building system

    Science.gov (United States)

    Lim, P. Y.; Yahya, K.; Aminudin, E.; Zakaria, R.; Haron, Z.; Mohamad Zin, R.; Redzuan, A. A. H.

    2017-11-01

    Industrialised Building System (IBS) is more sustainable to the environment as compared to the conventional construction methods. However, the construction industry in Malaysia has low acceptance towards IBS due to the resistance to change and also lack of awareness towards sustainability development. Therefore, it is important to study the amount carbon footprint produced by IBS during its manufacturing and construction stage, and also the amount of carbon footprint produced by one meter square of gross floor area of IBS construction using Life Cycle Assessment (LCA) to ease future research through the comparison of the carbon footprint of IBS with the conventional building system. As a result, a case study on a residential type of construction in the vicinity of Johor Bahru, Malaysia was carried out to obtain the necessary data and result. From the data analysis, the amount of greenhouse gases (GHG) for a residential type IBS construction based on the raw materials and resources involved to manufacture and construct IBS components is 0.127 tonnes fossil CO2Eq per meter square. Raw material that contributed to the most amount of carbon footprint is Ordinary Portland Cement (OPC), followed by steel bars, autoclaved aerated blocks and diesel. The LCA data acquired will be very useful in implementing IBS in the residential type construction. As a result, the awareness towards sustainable construction using IBS can be improved.

  1. Production Cells in Construction: Considering Time, Space and Information Linkages to Seek Broader Implementations

    Directory of Open Access Journals (Sweden)

    Renato Nunes Mariz

    2013-01-01

    Full Text Available The use of production cells in manufacturing has achieved many benefits, motivating researchers to apply them in the construction environment. The aim of this research is to identify time, space, and information linkages in construction’s production cells applications, seeking opportunities for broader implementations. We adopted a literature review approach focusing on cases in the Brazilian construction sector that addressed cell applications. Subsequently, comparative tables of these publications were prepared, analyzing the consideration of time, space, and information linkages, as well as identified results. The article pointed out that there is a gap in publications that address the application of a production cell in almost all construction flows, except the job site flow, reflecting the tendency of most companies of applying lean concepts firstly in physical flows. By analyzing these aspects (group of features that enhance the use of the cell, it was found that “material flow and pull systems” and “operators interaction” were the aspects most often considered, but mostly partially. Few cases reported the use of “flexibility” and “equipment maintenance”. No case reported comprehensive considerations of the three important linkages of time, space, and information. Space was the linkage better considered compared to time and information linkages. Lead time reduction, cost savings and increased productivity were among the greatest benefits reported from the applications of production cells. There is also a positive correlation between the linkages coverage and the number of benefits obtained. Further research is suggested in order to investigate the results of a more comprehensive application considering all linkages.

  2. Launch Processing System. [for Space Shuttle

    Science.gov (United States)

    Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.

    1976-01-01

    This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.

  3. Quality management for space systems in ISRO

    Science.gov (United States)

    Satish, S.; Selva Raju, S.; Nanjunda Swamy, T. S.; Kulkarni, P. L.

    2009-11-01

    In a little over four decades, the Indian Space Program has carved a niche for itself with the unique application driven program oriented towards National development. The end-to-end capability approach of the space projects in the country call for innovative practices and procedures in assuring the quality and reliability of space systems. The System Reliability (SR) efforts initiated at the start of the projects continue during the entire life cycle of the project encompassing design, development, realisation, assembly, testing and integration and during launch. Even after the launch, SR groups participate in the on-orbit evaluation of transponders in communication satellites and camera systems in remote sensing satellites. SR groups play a major role in identification, evaluation and inculcating quality practices in work centres involved in the fabrication of mechanical, electronics and propulsion systems required for Indian Space Research Organization's (ISRO's) launch vehicle and spacecraft projects. Also the reliability analysis activities like prediction, assessment and demonstration as well as de-rating analysis, Failure Mode Effects and Criticality Analysis (FMECA) and worst-case analysis are carried out by SR groups during various stages of project realisation. These activities provide the basis for project management to take appropriate techno-managerial decisions to ensure that the required reliability goals are met. Extensive test facilities catering to the needs of the space program has been set up. A system for consolidating the experience and expertise gained for issue of standards called product assurance specifications to be used in all ISRO centres has also been established.

  4. Computer aided construction engineering system for nuclear power plants

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Nakajima, Akira; Miyahara, Ryohei; Miura, Jun

    1990-01-01

    The construction CAE system for nuclear power plants is the tool for the construction work simulator (procedure, processes and management simulation) connected to 3D-CAD (three-dimensional plant layout planning CAD). The data used for construction work simulation are registered in the data base as the installation smallest unit data from the 3D-CAD. This construction work simulator comprises the automatic installation procedure decision system, with which a construction planner decides installation procedure by using a high performance graphic work station, and based on a 3D-CAD model, utilizing empirical procedure logic, the dialogue system for making the installation procedure more optimal by utilizing effectively the graphic function, the evaluation system for synthetically evaluating workability, personnel plan and so on by adding the simulation of human behavior based on these procedures, the schedule system which carries out work process simulation based on the above, the data base system for letting to do these plans effectively and the project management system. By means of these, the plant construction of high quality is expected. (K.I.)

  5. Space Launch System Accelerated Booster Development Cycle

    Science.gov (United States)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  6. Cloud model construct for transaction-based cooperative systems ...

    African Journals Online (AJOL)

    Cloud model construct for transaction-based cooperative systems. ... procure cutting edge Information Technology infrastructure are some of the problems faced ... Results also reveal that credit cooperatives will benefit from the model by taking ...

  7. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  8. A new TLD system for space research

    International Nuclear Information System (INIS)

    Feher, I.; Deme, S.; Szabo, B.; Vagvoelgyi, J.; Szabo, P.P.; Csoeke, A.; Ranky, M.; Akatov, Yu.A.

    1980-06-01

    A small, portable, vibration and shock resistant thermoluminescent dosemeter (TLD) system was developed to measure the cosmic radiation dose on board of a spacecraft. The TLD system consists of a special bulb dosemeter and a TLD reader. The measuring dose range of the TLD system is from 10 μGy up to 100 mGy. The TLD reader can operate on a battery; its electrical power consumption is about 5 W, its volume is about 1 dm 3 and its mass is about 1 kg. Details are given of the construction and technical parameters of the dosemeter and reader. (author)

  9. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  10. Construction and characterization of curcumin nanoparticles system

    Science.gov (United States)

    Sun, Weitong; Zou, Yu; Guo, Yaping; Wang, Lu; Xiao, Xue; Sun, Rui; Zhao, Kun

    2014-03-01

    This study was aimed at developing a nanoparticles system for curcumin, a widely used traditional Chinese medicine, but with the disadvantage of poor aqueous solubility. The objective was intended to improve in vitro release characteristics, enhance blood and gastrointestinal stability, increase bioavailability and pharmacological activities. Curcumin nanoparticles system (Cur-NS) was prepared by ionotropic gelation technique. Cur-NS was characterized by particle size, zeta potential, drug entrapment efficiency, drug loading, and physical stability, respectively. Cur-NS presented controlled release properties, and the release properties of Cur from NS were fit non-Fickian mechanism, controlled by the expected diffusional release and the erosion or solubilization from the crosslink layer of polymer carrier. In addition, the pharmacokinetic study in rats revealed a notable improved oral bioavailability of Cur, and the anti-tumor activity in vivo of Cur-NS on tumor growth was investigated. Cur-NS significantly inhibited tumor effect compared with non-vehicle group, thus making it a potential candidate for cancer therapy.

  11. Gap-minimal systems of notations and the constructible hierarchy

    Science.gov (United States)

    Lucian, M. L.

    1972-01-01

    If a constructibly countable ordinal alpha is a gap ordinal, then the order type of the set of index ordinals smaller than alpha is exactly alpha. The gap ordinals are the only points of discontinuity of a certain ordinal-valued function. The notion of gap minimality for well ordered systems of notations is defined, and the existence of gap-minimal systems of notations of arbitrarily large constructibly countable length is established.

  12. Efficient Geo-Computational Algorithms for Constructing Space-Time Prisms in Road Networks

    Directory of Open Access Journals (Sweden)

    Hui-Ping Chen

    2016-11-01

    Full Text Available The Space-time prism (STP is a key concept in time geography for analyzing human activity-travel behavior under various Space-time constraints. Most existing time-geographic studies use a straightforward algorithm to construct STPs in road networks by using two one-to-all shortest path searches. However, this straightforward algorithm can introduce considerable computational overhead, given the fact that accessible links in a STP are generally a small portion of the whole network. To address this issue, an efficient geo-computational algorithm, called NTP-A*, is proposed. The proposed NTP-A* algorithm employs the A* and branch-and-bound techniques to discard inaccessible links during two shortest path searches, and thereby improves the STP construction performance. Comprehensive computational experiments are carried out to demonstrate the computational advantage of the proposed algorithm. Several implementation techniques, including the label-correcting technique and the hybrid link-node labeling technique, are discussed and analyzed. Experimental results show that the proposed NTP-A* algorithm can significantly improve STP construction performance in large-scale road networks by a factor of 100, compared with existing algorithms.

  13. SP-100 space reactor power system readiness

    International Nuclear Information System (INIS)

    Josloff, A.T.; Matteo, D.N.; Bailey, H.S.

    1992-01-01

    This paper discusses the SP-100 Space Reactor Power System which is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety performance, reliability and life requirements. The system is scalable and flexible and can be configured to provide 10's to 100's of kWe without repeating development work and can meet DoD goals for an early, low-power demonstration flight in the 1996-1997 time frame

  14. Development of Earned Value Management System in PP Construction Project

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hyun; Moon, Byeong-Suk [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    The NPP construction project has been determined in the form of a rather lump-sum contract with little details in resource requirements and estimations. Therefore, Earned Value Management System (EVMS) needs to be applied to the NPP projects in order to incorporate scope, schedule and cost targeting efficient and to control effective resource. The NPP projects in Korea have not applied EVMS. EVMS has phased in NPP construction project by Korea Hydro and Nuclear Power Co., Ltd (KHNP), playing the role of project master manager in NPP construction in Korea. This study presented the EVMS unlike other system. Accordingly, EVMS is expected to reduce risks and increase efficiency in the NPP project. The NPP construction project is a technology ntensive multi-construction project that should be based on economics and stability and that takes over ten years to complete, requiring investment of billions of dollars, a great number of persons concerned, and a vast store of human and material resources. KHNP is phasing EVMS in NPP construction project for overseas contracts and the efficient management, the paper presented the pilot EVMS in KHNP. It expected to control and identify of NPP construction projects by using EVMS as a computerized management tool which is quantitative and objective management criteria. It is necessary to improve of the contract system related EVM for enterprise system, and the effort will be required, such as on-site support and training so that this can be done in collaboration with the relevant stakeholders.

  15. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  16. Configurable Web Warehouses construction through BPM Systems

    Directory of Open Access Journals (Sweden)

    Andrea Delgado

    2016-08-01

    Full Text Available The process of building Data Warehouses (DW is well known with well defined stages but at the same time, mostly carried out manually by IT people in conjunction with business people. Web Warehouses (WW are DW whose data sources are taken from the web. We define a flexible WW, which can be configured accordingly to different domains, through the selection of the web sources and the definition of data processing characteristics. A Business Process Management (BPM System allows modeling and executing Business Processes (BPs providing support for the automation of processes. To support the process of building flexible WW we propose a two BPs level: a configuration process to support the selection of web sources and the definition of schemas and mappings, and a feeding process which takes the defined configuration and loads the data into the WW. In this paper we present a proof of concept of both processes, with focus on the configuration process and the defined data.

  17. Space nuclear power systems, Part 2

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hoover, M.D.

    1992-01-01

    This volume, number two of three, contains the reviewed and edited papers were being presented at the Ninth Symposium in Albuquerque, New Mexico, 12--16 January 1992. The objective of the symposium, and hence these volumes, is to summarize the state of knowledge in the area of space nuclear power and propulsion and to provide a forum at which the most recent findings and important new developments can be presented and discussed. Topics included is this volume are: reactor and power systems control; thermionic energy conversion; space missions and power needs; key issues in nuclear and propulsion; nuclear thermal propulsion; manufacturing and processing; thermal management; space nuclear safety; and nuclear testing and production facilities

  18. New advanced TLD system for space dosimetry

    International Nuclear Information System (INIS)

    Feher, I.; Szabo, B.; Vagvoelgyi, J.; Deme, S.; Szabo, P.P.; Csoeke, A.

    1983-10-01

    A new version of the TLD reader type PILLE has been developed for space applications. The earlier compact and portable device could also be used for measurements during space flights but its range was limited. A new bulb detector with easier handling has also been developed with an upper limit of linear dose response of 10 Gy. The range of this new and more versatile reader, NA206S, (1μGy-10 Gy) is 3 orders of magnitude higher than that of the earlier system; it also has increased sensitivity and decreased mass. It can be used not only in space applications but also for environmental monitoring or even in accident dosimetry. The measured dose value is displayed on a four-digit display with automatic range switch. Another new version, the NA206E, has been developed for environmental dosimetry; it can be operated from a battery or from the mains. (author)

  19. Next Generation Space Surveillance System-of-Systems

    Science.gov (United States)

    McShane, B.

    2014-09-01

    International economic and military dependence on space assets is pervasive and ever-growing in an environment that is now congested, contested, and competitive. There are a number of natural and man-made risks that need to be monitored and characterized to protect and preserve the space environment and the assets within it. Unfortunately, today's space surveillance network (SSN) has gaps in coverage, is not resilient, and has a growing number of objects that get lost. Risks can be efficiently and effectively mitigated, gaps closed, resiliency improved, and performance increased within a next generation space surveillance network implemented as a system-of-systems with modern information architectures and analytic techniques. This also includes consideration for the newest SSN sensors (e.g. Space Fence) which are born Net-Centric out-of-the-box and able to seamlessly interface with the JSpOC Mission System, global information grid, and future unanticipated users. Significant opportunity exists to integrate legacy, traditional, and non-traditional sensors into a larger space system-of-systems (including command and control centers) for multiple clients through low cost sustainment, modification, and modernization efforts. Clients include operations centers (e.g. JSpOC, USSTRATCOM, CANSPOC), Intelligence centers (e.g. NASIC), space surveillance sensor sites (e.g. AMOS, GEODSS), international governments (e.g. Germany, UK), space agencies (e.g. NASA), and academic institutions. Each has differing priorities, networks, data needs, timeliness, security, accuracy requirements and formats. Enabling processes and technologies include: Standardized and type accredited methods for secure connections to multiple networks, machine-to-machine interfaces for near real-time data sharing and tip-and-queue activities, common data models for analytical processing across multiple radar and optical sensor types, an efficient way to automatically translate between differing client and

  20. The development of public and private construction procurement systems in the Malaysian construction industry

    Directory of Open Access Journals (Sweden)

    Mastura Jaafar

    2012-12-01

    Full Text Available As demand on building construction projects rises, various procurement methods have been adapted to suit with unique project requirements. However, poor industry performance and rapid developments within it indicate the need for a research on the procurement systems in the industry. In order to explore the development of procurement systems in Malaysia, a discussion on different economic phases which influence the routes of procurement systems and its evolution in Malaysia's construction industry is initiated. Subsequently, based on a questionnaire survey collected from 73 public and 68 private parties, the significant and dominant role of traditional procurement system used by both the public and private sectors in Malaysia can be confirmed. Further, compared to the public sector, the private sector is observed to be more aggressive in adapting alternative systems such as design and build (D&B and Turnkey. Further elaboration on the research findings is covered in the discussion section.

  1. Towards automated construction of dependable software/hardware systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakhnis, A.; Yakhnis, V. [Pioneer Technologies & Rockwell Science Center, Albuquerque, NM (United States)

    1997-11-01

    This report contains viewgraphs on the automated construction of dependable computer architecture systems. The outline of this report is: examples of software/hardware systems; dependable systems; partial delivery of dependability; proposed approach; removing obstacles; advantages of the approach; criteria for success; current progress of the approach; and references.

  2. Human System Risk Management for Space Flight

    Science.gov (United States)

    Davis, Jeffrey

    2015-01-01

    This brief abstract reviews the development of the current day approach to human system risk management for space flight and the development of the critical components of this process over the past few years. The human system risk management process now provides a comprehensive assessment of each human system risk by design reference mission (DRM) and is evaluated not only for mission success but also for long-term health impacts for the astronauts. The discipline of bioastronautics is the study of the biological and medical effects of space flight on humans. In 1997, the Space Life Sciences Directorate (SLSD) initiated the Bioastronautics Roadmap (Roadmap) as the "Critical Path Roadmap", and in 1998 participation in the roadmap was expanded to include the National Space Biomedical Research Institute (NSBRI) and the external community. A total of 55 risks and 250 questions were identified and prioritized and in 2000, the Roadmap was base-lined and put under configuration control. The Roadmap took into account several major advisory committee reviews including the Institute of Medicine (IOM) "Safe Passage: Astronaut care for Exploration Missions", 2001. Subsequently, three collaborating organizations at NASA HQ (Chief Health and Medical Officer, Office of Space Flight and Office of Biological & Physical Research), published the Bioastronautics Strategy in 2003, that identified the human as a "critical subsystem of space flight" and noted that "tolerance limits and safe operating bands must be established" to enable human space flight. These offices also requested a review by the IOM of the Roadmap and that review was published in October 2005 as "A Risk Reduction Strategy for Human Exploration of Space: A Review of NASA's Bioastronautics Roadmap", that noted several strengths and weaknesses of the Roadmap and made several recommendations. In parallel with the development of the Roadmap, the Office of the Chief Health and Medical Officer (OCHMO) began a process in

  3. Managing Space System Faults: Coalescing NASA's Views

    Science.gov (United States)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  4. SP-100 space nuclear power system

    International Nuclear Information System (INIS)

    Given, R.W.; Morgan, R.E.; Chi, J.W.H.; Westinghouse Electric Corp., Madison, PA)

    1984-01-01

    A baseline design concept for a 100 kWe nuclear reactor space power system is described. The concept was developed under contract from JPL as part of a joint program of the DOE, DOD, and NASA. The major technical and safety constraints influencing the selection of reactor operating parameters are discussed. A lithium-cooled compact fast reactor was selected as the best candidate system. The material selected for the thermoelectric conversion system was silicon germanium (SiGe) with gallium phosphide doping. Attention is given to the improved safety of the seven in-core control rod configuration

  5. New architectures for space power systems

    International Nuclear Information System (INIS)

    Ehsani, M.; Patton, A.D.; Biglic, O.

    1992-01-01

    Electric power generation and conditioning have experienced revolutionary development over the past two decades. Furthermore, new materials such as high energy magnets and high temperature superconductors are either available or on the horizon. The authors' work is based on the promise that new technologies are an important driver of new power system concepts and architectures. This observation is born out by the historical evolution of power systems both in terrestrial and aerospace applications. This paper will introduce new approaches to designing space power systems by using several new technologies

  6. Construction of test-bed system of voltage management system to ...

    African Journals Online (AJOL)

    Construction of test-bed system of voltage management system to apply physical power system. ... Journal of Fundamental and Applied Sciences ... system of voltage management system (VMS) in order to apply physical power system.

  7. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  8. Fermi states of Bose systems in three space dimensions

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1985-01-01

    Recently an exact spectral solution was constructed by Sudarshan and Tata for the (NTHETA) Fermi version of the Lee model. We demonstrate that it provides a partial solution for the related pure Bose spectral problems. Moreover, the (NTHETA) Bose (Bolsterli--Nelson) version of the Lee model is shown to possess Fermi partners, both exhibiting the partial solubility interplay: finding solutions in the Fermi case would presumably be easier than in the original Bose model. Fermi states of the underlying Bose systems in three space dimensions are explicitly identified

  9. Constructing the autobiographical self, collective identity and spiritual spaces in South African queer autobiography

    Directory of Open Access Journals (Sweden)

    Barrington M. Marais

    2014-07-01

    Full Text Available This article examines four recent collections of South African queer autobiographies. These are: Hijab: Unveiling queer Muslim lives, Yes I am! Writing by South African gay men,Reclaiming the L-word: Sappho’s daughters out in Africa and Trans: Transgender life stories from South Africa. Selected narratives from each collection have been analysed in order to exhibit the relational nature of autobiographical self-construction through an exploration of how it is specifically constructed in spiritual or religious spaces. The ubuntu theology of Archbishop Emeritus Desmond Tutu is analysed as it intersects with representations of spirituality and religion in the texts. This article seeks to highlight the socio-political value of the texts and their functioning as important tools in the struggle for equality in which the queer minority currently find themselves.

  10. Construction of rigged Hilbert spaces to describe resonances and virtual states

    International Nuclear Information System (INIS)

    Gadella, M.

    1983-01-01

    In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t > 0 and the other for t < 0, hence showing the irreversibility of the decaying process

  11. Construction of rigged Hilbert spaces to describe resonances and virtual states

    International Nuclear Information System (INIS)

    Gadella, M.

    1984-01-01

    In the present communication we present a mathematical formalism for the description of resonances and virtual states. We start by constructing rigged Hilbert spaces of Hardy class functions restricted to the positive half of the real line. Then resonances and virtual states can be written as generalized eigenvectors of the total Hamiltonian. We also define time evolution on functionals. We see that the time evolution group U(t) splits into two semigroups, one for t>0 and the other for t<0, hence showing the irreversibility of the decaying process. (orig.)

  12. Internet Memes as a Field of Discursive Construction of Identity and Space of Resistance

    Directory of Open Access Journals (Sweden)

    Lidija Marinkov Pavlović

    2016-10-01

    Full Text Available This paper deals with Internet memes as a form of viral content that spreads via the network varying a basic concept while constructing and deconstructing different identities. If memes are understood as a discursive field in the completely new world of social media, in which different groups, their attitudes, ideologies and interests are represented more clearly and more directly than ever before through the appropriation of popular contents and images, then this form of viral content can be also viewed as a space of resistance and criticism in which identities are decentralized and ready for change.

  13. Participation spaces for the construction of collective memory in the Spanish digital press

    Directory of Open Access Journals (Sweden)

    Pedro MOLINA RODRÍGUEZ-NAVAS

    2014-10-01

    Full Text Available The Spanish press has published digital spaces dedicated to the recovery of democratic historical memory or personal memory citizenship in general. To do has requested the participation of users. Mostly, the contributions have included personal photographic materials with or without descriptive accounts but in other cases the forms of intervention have been different.In this paper we analyze the main areas of this type that have been published in recent years. We study your objectives and forms of participation required and the final documents. The analysis results allow us to see what formulas have been successful and what elements are involved to get it.Finally, the conclusions we make a series of recommendations regarding the patterns of participation and the construction of spaces that truly allow us to relate personal stories with the general history, thus making contributions to the collective memory from new knowledge paradigms chords with the network society and social diversity.

  14. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  15. Reliability Growth in Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.

  16. Power conditioning for space nuclear reactor systems

    Science.gov (United States)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  17. Cermet fuels for space power systems

    International Nuclear Information System (INIS)

    Barner, J.O.; Coomes, E.P.; Williford, R.E.; Neimark, L.A.

    1986-01-01

    A refractory-metal matrix, UN-fueled cermet is a very promising fuel candidate for a wide range of multi-megawatt space reactor systems, e.g., steady-state, flexible duty-cycle, or bimodal, single- or two-phase liquid-metal cooled reactors, or thermionic reactors. Cermet fuel is especially promising for reactor designs that require operational strategies which incorporate rapid power changes because of its anticipated capability to withstand thermal shock

  18. Dynamic thermal performance of alveolar brick construction system

    International Nuclear Information System (INIS)

    Gracia, A. de; Castell, A.; Medrano, M.; Cabeza, L.F.

    2011-01-01

    Highlights: → Even though U-value does not measure thermal inertia, it is the commonly used parameter. → The thermal performance analysis of buildings must include the evaluation of transient parameters. → Transient parameters of alveolar brick constructive system show good agreement with its low energy consumption. -- Abstract: Alveolar bricks are being introduced in building sector due to the simplicity of their construction system and to the elimination of the insulation material. Nevertheless, it is not clear if this new system is energetically efficient and which is its thermal behaviour. This paper presents an experimental and theoretical study to evaluate the thermal behaviour of the alveolar brick construction system, compared with a traditional Mediterranean brick system with insulation. The experimental study consists of measuring the thermal performance of four real house-like cubicles. The thermal transmittance in steady-state, also known as U-value, is calculated theoretically and experimentally for each cubicle, presenting the insulated cubicles as the best construction system, with differences around 45% in comparison to the alveolar one. On the other hand, experimental results show significantly smaller differences on the energy consumption between the alveolar and insulated construction systems during summer period (around 13% higher for the alveolar cubicle). These values demonstrate the high thermal efficiency of the alveolar system. In addition, the lack of agreement between the measured energy consumption and the calculated U-values, guides the authors to analyze the thermal inertia of the different building components. Therefore, several transient parameters, extracted from the heat transfer matrix and from experimental data, are also evaluated. It can be concluded that the alveolar brick construction system presents higher thermal inertia than the insulated one, justifying the low measured energy consumption.

  19. Space station communications and tracking equipment management/control system

    Science.gov (United States)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  20. Microwave transmission system for space power

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R M [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-09-01

    A small total system model and a large subsystem element similar to those that could be eventually used for wireless power transmission experiments in space have been successfully demonstrated by NASA. The short range, relatively low-power laboratory system achieved a dc-to-dc transmission efficiency of 54%. A separate high-power-level receiving subsystem, tested over a 1.54-km range at Goldstone, California, has achieved the transportation of over 30 kW of dc output power. Both tests used 12-cm wave-length microwaves.

  1. Space Based Infrared System High (SBIRS High)

    Science.gov (United States)

    2015-12-01

    elements (five SMGTs) for the S2E2 Mobile Ground System. ​ SBIRS Block Buy (GEO 5-6) The GEO 5-6 Tech Refresh (TR) Engineering Change Proposal was...Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-210 Space Based Infrared System High ( SBIRS High) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 23, 2016 11:24:26 UNCLASSIFIED SBIRS High December 2015 SAR March 23, 2016 11:24:26

  2. An Adaptive Regulator for Space Teleoperation System in Task Space

    Directory of Open Access Journals (Sweden)

    Chao Ge

    2014-01-01

    Full Text Available The problem of the gravity information which can not be obtained in advance for bilateral teleoperation is studied. In outer space exploration, the gravity term changes with the position changing of the slave manipulator. So it is necessary to design an adaptive regulator controller to compensate for the unknown gravity signal. Moreover, to get a more accurate position tracking performance, the controller is designed in the task space instead of the joint space. Additionally, the time delay considered in this paper is not only time varying but also unsymmetrical. Finally, simulations are presented to show the effectiveness of the proposed approach.

  3. Effectiveness of Quality Management System (QMS) on Construction Projects

    OpenAIRE

    Behnam Neyestani

    2016-01-01

    Quality management system (QMS) provides generic guidance and requirements for establishing an appropriate quality management procedure, in order to lower cost, increase productivity, customer's satisfaction, and market share in the organizations since the last two-decade. In construction industry, it can assist the companies to achieve successfully their objectives, and ensure that all phases of construction project consistently meet client's requirements (need). The main aim of this article...

  4. Constructing quantum games from a system of Bell's inequalities

    International Nuclear Information System (INIS)

    Iqbal, Azhar; Abbott, Derek

    2010-01-01

    We report constructing quantum games directly from a system of Bell's inequalities using Arthur Fine's analysis published in early 1980s. This analysis showed that such a system of inequalities forms a set of both necessary and sufficient conditions required to find a joint distribution function compatible with a given set of joint probabilities, in terms of which the system of Bell's inequalities is usually expressed. Using the setting of a quantum correlation experiment for playing a quantum game, and considering the examples of Prisoners' Dilemma and Matching Pennies, we argue that this approach towards constructing quantum games addresses some of their well-known criticisms.

  5. Constructing counterproductive behavior for supporting evironmental management system research

    Science.gov (United States)

    Tiarapuspa; Indyastuti, D. L.; Sari, W. R.

    2018-01-01

    This study aims to explore the definition of counterproductive behavior based on supervisors’ and sub ordinaries’ perceptions. Recently, environmental management system is a strategic tool to gain a competitive advantage. Human resource is the vital factor for successful environmental management system. Counterproductive behavior will destroy environmental management system. Unfortunately, the construct of counterproductive behavior is still debatable. Different culture show different dimensions and indicators of counterproductive behavior. The unclear construct results ambiguous empirical evidence. This study results that many items are included of counterproductive behavior, such as come late, impolite communication, playing gadget in working time, and the other negative behaviors.

  6. University of Hawaii Lure Observatory. [lunar laser ranging system construction

    Science.gov (United States)

    Carter, W. E.; Williams, J. D.

    1973-01-01

    The University of Hawaii's Institute for Astronomy is currently constructing a lunar laser ranging observatory at the 3050-meter summit of Mt. Haleakala, Hawaii. The Nd YAG laser system to be employed provides three pulses per second, each pulse being approximately 200 picoseconds in duration. The energy contained in one pulse at 5320 A lies in the range from 250 to 350 millijoules. Details of observatory construction are provided together with transmitter design data and information concerning the lunastat, the feed telescope, the relative pointing system, the receiver, and the event timer system.

  7. A Cost Effective System Design Approach for Critical Space Systems

    Science.gov (United States)

    Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai

    2000-01-01

    NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically

  8. Solar dynamic power systems for space station

    Science.gov (United States)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  9. Construction and operation of a solar lighting system | Asuquo ...

    African Journals Online (AJOL)

    A solar lighting system which can make a 3w lamp glow continuously for about one hour if the battery is fully charged has been constructed. The device can be used for small-scale lighting applications in remote areas that are far away from the power grid. The system has a panel to collect the sun's energy, a battery to store ...

  10. Space Shuttle Main Propulsion System Anomaly Detection: A Case Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The space shuttle main engine (SSME) is part of the Main Propnlsion System (MPS) which is an extremely complex system containing several sub-systems and components,...

  11. National Space Transportation System (NSTS) technology needs

    Science.gov (United States)

    Winterhalter, David L.; Ulrich, Kimberly K.

    1990-01-01

    The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).

  12. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  13. Use of formwork systems in high-rise construction

    Science.gov (United States)

    Kurakova, Oksana

    2018-03-01

    Erection of high quality buildings and structures within a reasonable time frame is the crucial factor for the competitiveness of any construction organization. The main material used in high-rise construction is insitu reinforced concrete. The technology of its use is directly related to the use of formwork systems. Formwork systems and formwork technologies basically determine the speed of construction and labor intensity of concreting operations. Therefore, it is also possible to achieve the goal of reducing the construction time and labor intensity of works performed by improving the technology of formwork systems use. Currently there are unresolved issues in the area of implementation of monolithic technology projects, and problems related to the selection of a formwork technology, high labor intensity of works, poor quality of materials and structures, etc. are the main ones. The article presents organizational and technological measures, by means of which introduction it is possible to shorten the duration of construction. A comparison of operations performed during formwork installation according to the conventional technology and taking into account the implemented organizational and technological measures is presented. The results of a comparative analysis of economic efficiency assessments are also presented on the example of a specific construction project before and after the implementation of the above mentioned measures. The study showed that introduction of the proposed organizational and technological model taking into account optimization of reinforcing and concreting works significantly improves the efficiency of a high-rise construction project. And further improvement of technologies for the use of insitu reinforced concrete is a promising direction in the construction of high-rise buildings.

  14. Use of formwork systems in high-rise construction

    Directory of Open Access Journals (Sweden)

    Kurakova Oksana

    2018-01-01

    Full Text Available Erection of high quality buildings and structures within a reasonable time frame is the crucial factor for the competitiveness of any construction organization. The main material used in high-rise construction is insitu reinforced concrete. The technology of its use is directly related to the use of formwork systems. Formwork systems and formwork technologies basically determine the speed of construction and labor intensity of concreting operations. Therefore, it is also possible to achieve the goal of reducing the construction time and labor intensity of works performed by improving the technology of formwork systems use. Currently there are unresolved issues in the area of implementation of monolithic technology projects, and problems related to the selection of a formwork technology, high labor intensity of works, poor quality of materials and structures, etc. are the main ones. The article presents organizational and technological measures, by means of which introduction it is possible to shorten the duration of construction. A comparison of operations performed during formwork installation according to the conventional technology and taking into account the implemented organizational and technological measures is presented. The results of a comparative analysis of economic efficiency assessments are also presented on the example of a specific construction project before and after the implementation of the above mentioned measures. The study showed that introduction of the proposed organizational and technological model taking into account optimization of reinforcing and concreting works significantly improves the efficiency of a high-rise construction project. And further improvement of technologies for the use of insitu reinforced concrete is a promising direction in the construction of high-rise buildings.

  15. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  16. Hubble Space Telescope electrical power system

    Science.gov (United States)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  17. Construction and uniqueness of the C*-Weyl algebra over a general pre-symplectic space

    International Nuclear Information System (INIS)

    Binz, Ernst; Honegger, Reinhard; Rieckers, Alfred

    2004-01-01

    A systematic approach to the C*-Weyl algebra W(E,σ) over a possibly degenerate pre-symplectic form σ on a real vector space E of possibly infinite dimension is elaborated in an almost self-contained manner. The construction is based on the theory of Kolmogorov decompositions for σ-positive-definite functions on involutive semigroups and their associated projective unitary group representations. The σ-positive-definite functions provide also the C*-norm of W(E,σ), the latter being shown to be *-isomorphic to the twisted group C*-algebra of the discrete vector group E. The connections to related constructions are indicated. The treatment of the fundamental symmetries is outlined for arbitrary pre-symplectic σ. The construction method is especially applied to the trivial symplectic form σ=0, leading to the commutative Weyl algebra over E, which is shown to be isomorphic to the C*-algebra of the almost periodic continuous function on the topological dual E τ ' of E with respect to an arbitrary locally convex Hausdorff topology τ on E. It is demonstrated that the almost periodic compactification aE τ ' of E τ ' is independent of the chosen locally convex τ on E, and that aE τ ' is continuously group isomorphic to the character group E of E. Applications of the results to the procedures of strict and continuous deformation quantizations are mentioned in the outlook

  18. NASA's Space Launch System: Affordability for Sustainability

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  19. Nuclear space power systems for orbit raising and maneuvering

    International Nuclear Information System (INIS)

    Buden, D.; Sullivan, J.A.

    1984-01-01

    Reference is made to recent studies which have shown that direct thrust nuclear rockets for routine orbit raising and near-earth space tug missions are probably not cost-effective. The need for additional trade-off studies and comparisons of direct-thrust nuclear systems with chemical systems to clarify the role of nuclear rockets in missions requiring rapid orbit maneuvering is stressed. Attention is confined here to nuclear electric propulsion considerations. Low-mass nuclear power plants are constructed to optimize nuclear electric propulsion systems. Electric power levels from 100 kilowatts to as much as several megawatts are desirable. The goals for the power plant specific mass are 20-30 kg/kW at the lower powers to 2-4 kg/kW at the higher powers

  20. Space nuclear power systems for extraterrestrial basing

    International Nuclear Information System (INIS)

    Lance, J.R.; Chi, J.W.H.

    1989-01-01

    Previous studies of nuclear and non-nuclear power systems for lunar bases are compared with recent studies by others. Power levels from tens of kW e for early base operation up to 2000 kW e for a self-sustaining base with a Closed Environment Life Support System (CELSS) are considered. Permanent lunar or Martian bases will require the use of multiple nuclear units connected to loads with a power transmission and distribution system analogous to earth-based electric utility systems. A methodology used for such systems is applied to the lunar base system to examine the effects of adding 100 kW e SP-100 class and/or larger nuclear units when a reliability criterion is imposed. The results show that resource and logistic burdens can be reduced by using 1000 kW e units early in the base growth scenario without compromising system reliability. Therefore, both technologies being developed in two current programs (SP-100 and NERVA Derivative Reactor (NDR) technology for space power) can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are also described. (author)

  1. Plant Engineering and Construction System with Knowledge Management: A Case Study in NPP Construction in Hitachi-GE NE

    International Nuclear Information System (INIS)

    Mochida, T.; Hamamoto, M.; Nakamitsu, N.

    2016-01-01

    Full text: Hitachi-GE Nuclear Energy, Ltd. (HGNE) has more than 40 years BWR plants construction experience. The company continues to develop plant engineering system and plant construction systems based on the experience and the lessons learned. Currently, these systems are integrated in a variety of knowledge bases using the latest information technology (IT). Their performance is continuously validated in the recent NPP constructions. Typical examples are shown as case studies for knowledge management. These plant engineering and construction management systems are essential to achieve the on-time and on-budget-goals in NPP construction projects. (author

  2. The space-age solar system

    International Nuclear Information System (INIS)

    Baugher, J.F.

    1988-01-01

    This book is a description of the sun, planets, moons, asteroids, and comets in the solar system. Discussion is based heavily on results obtained from recent space probes to Mercury, Venus, Mars Jupiter, Saturn, and Uranus. Offers detailed descriptions of the moons of Jupiter and Saturn, and the results of the recent probes of Halley's comet. A discussion of meteorites leads to a description of the current models of the solar system. Introductory chapters present theories of the solar system from the ancient Greeks to the present day. Other topics covered include the sun, its structure, and how it generates energy; the surfaces, internal structures, and histories of the planets, from innermost Mercury to farthest Pluto, and their moons

  3. Space, Scale and Languages: Identity Construction of Cross-Boundary Students in a Multilingual University in Hong Kong

    Science.gov (United States)

    Gu, Mingyue Michelle; Tong, Ho Kin

    2012-01-01

    Drawing on the notions of scale and space, this paper investigates identity construction among a group of mainland Chinese cross-boundary students by analysing their language choices and linguistic practices in a multilingual university in Hong Kong. The research illustrates how movement across spaces by these students produces varying index…

  4. Under construction; the politics of urban space and housing during the decolonization of Indonesia, 1930-1960

    NARCIS (Netherlands)

    Colombijn, F.

    2010-01-01

    In Under construction the social changes in Indonesian cities during the process of decolonization are examined. These social changes are studied from the angle of urban space and the provision of housing. This focus on the everyday worries of space and housing, in combination with a local level of

  5. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  6. Systems aspects of a space nuclear reactor power system

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  7. Space Launch System (SLS) Mission Planner's Guide

    Science.gov (United States)

    Smith, David Alan

    2017-01-01

    The purpose of this Space Launch System (SLS) Mission Planner's Guide (MPG) is to provide future payload developers/users with sufficient insight to support preliminary SLS mission planning. Consequently, this SLS MPG is not intended to be a payload requirements document; rather, it organizes and details SLS interfaces/accommodations in a manner similar to that of current Expendable Launch Vehicle (ELV) user guides to support early feasibility assessment. Like ELV Programs, once approved to fly on SLS, specific payload requirements will be defined in unique documentation.

  8. Identifying behaviour patterns of construction safety using system archetypes.

    Science.gov (United States)

    Guo, Brian H W; Yiu, Tak Wing; González, Vicente A

    2015-07-01

    Construction safety management involves complex issues (e.g., different trades, multi-organizational project structure, constantly changing work environment, and transient workforce). Systems thinking is widely considered as an effective approach to understanding and managing the complexity. This paper aims to better understand dynamic complexity of construction safety management by exploring archetypes of construction safety. To achieve this, this paper adopted the ground theory method (GTM) and 22 interviews were conducted with participants in various positions (government safety inspector, client, health and safety manager, safety consultant, safety auditor, and safety researcher). Eight archetypes were emerged from the collected data: (1) safety regulations, (2) incentive programs, (3) procurement and safety, (4) safety management in small businesses (5) production and safety, (6) workers' conflicting goals, (7) blame on workers, and (8) reactive and proactive learning. These archetypes capture the interactions between a wide range of factors within various hierarchical levels and subsystems. As a free-standing tool, they advance the understanding of dynamic complexity of construction safety management and provide systemic insights into dealing with the complexity. They also can facilitate system dynamics modelling of construction safety process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A Fall Protection System for High-Rise Construction

    Directory of Open Access Journals (Sweden)

    Haluk Çeçen

    2013-01-01

    Full Text Available In construction industry, the number of fatal and nonfatal occupational injuries is higher than other industries. Among causes of these accidents, “falls” play a key role. This situation reveals the importance for carrying out research in fall protection systems. In this paper, a practical, economical, and functional fall protection system is introduced. Following determination and evaluation of existing solutions, weekly brainstorming meetings were held among the responsible project staff (general coordinator, project coordinator, project manager, site manager, and health and safety manager. As a result of these meetings, design criteria were developed. Based on these criteria, the fall protection system for high-rise construction (FPSFHC was developed which satisfied all the specified design criteria. Required materials were procured from local dealers. In this paper, criteria used in design and details of the final design are presented. Field performance of the system is evaluated, and recommendations for further development and standardization of the system are added.

  10. The space station tethered elevator system

    Science.gov (United States)

    Anderson, Loren A.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The elevator is an unmanned mobile structure which operates on a ten kilometer tether spanning the distance between the Space Station and a tethered platform. Elevator capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The potential uses, parameters, and evolution of the spacecraft design are discussed. Engineering development of the tethered elevator is the result of work conducted in the following areas: structural configurations; robotics, drive mechanisms; and power generation and transmission systems. The structural configuration of the elevator is presented. The structure supports, houses, and protects all systems on board the elevator. The implementation of robotics on board the elevator is discussed. Elevator robotics allow for the deployment, retrieval, and manipulation of tethered objects. Robotic manipulators also aid in hooking the elevator on a tether. Critical to the operation of the tethered elevator is the design of its drive mechanisms, which are discussed. Two drivers, located internal to the elevator, propel the vehicle along a tether. These modular components consist of endless toothed belts, shunt-wound motors, regenerative power braking, and computer controlled linear actuators. The designs of self-sufficient power generation and transmission systems are reviewed. Thorough research indicates all components of the elevator will operate under power provided by fuel cells. The fuel cell systems will power the vehicle at seven kilowatts continuously and twelve kilowatts maximally. A set of secondary fuel cells provides redundancy in the unlikely event of a primary system failure. Power storage exists in the form of Nickel-Hydrogen batteries capable of powering the elevator under maximum loads.

  11. Environmental management systems - before, during and after construction

    International Nuclear Information System (INIS)

    Braun, T.L.

    1997-01-01

    The purpose of this paper is to describe an operational environmental managment system (EMS) as developed by TransCanada PipeLines, including an example of the application and concomitant benefits. The focus will be on the planning, construction, inspection and post-construction monitoring programs, covering approximately 3,190 kilometers of large diameter pipeline constructed between 1990 and 1996, across a wide range of Canadian land-uses and ecosystems. With the implementation of such systems, governments have recognized that corporate responsibility and self-management on environmental matters can result in effective, environmentally sound programs that minimize impacts and allow for a more cost-effective and streamlined regulatory approach. (au)

  12. Maui Space Surveillance System Satellite Categorization Laboratory

    Science.gov (United States)

    Deiotte, R.; Guyote, M.; Kelecy, T.; Hall, D.; Africano, J.; Kervin, P.

    The MSSS satellite categorization laboratory is a fusion of robotics and digital imaging processes that aims to decompose satellite photometric characteristics and behavior in a controlled setting. By combining a robot, light source and camera to acquire non-resolved images of a model satellite, detailed photometric analyses can be performed to extract relevant information about shape features, elemental makeup, and ultimately attitude and function. Using the laboratory setting a detailed analysis can be done on any type of material or design and the results cataloged in a database that will facilitate object identification by "curve-fitting" individual elements in the basis set to observational data that might otherwise be unidentifiable. Currently the laboratory has created, an ST-Robotics five degree of freedom robotic arm, collimated light source and non-focused Apogee camera have all been integrated into a MATLAB based software package that facilitates automatic data acquisition and analysis. Efforts to date have been aimed at construction of the lab as well as validation and verification of simple geometric objects. Simple tests on spheres, cubes and simple satellites show promising results that could lead to a much better understanding of non-resolvable space object characteristics. This paper presents a description of the laboratory configuration and validation test results with emphasis on the non-resolved photometric characteristics for a variety of object shapes, spin dynamics and orientations. The future vision, utility and benefits of the laboratory to the SSA community as a whole are also discussed.

  13. Intelligent computational systems for space applications

    Science.gov (United States)

    Lum, Henry; Lau, Sonie

    Intelligent computational systems can be described as an adaptive computational system integrating both traditional computational approaches and artificial intelligence (AI) methodologies to meet the science and engineering data processing requirements imposed by specific mission objectives. These systems will be capable of integrating, interpreting, and understanding sensor input information; correlating that information to the "world model" stored within its data base and understanding the differences, if any; defining, verifying, and validating a command sequence to merge the "external world" with the "internal world model"; and, controlling the vehicle and/or platform to meet the scientific and engineering mission objectives. Performance and simulation data obtained to date indicate that the current flight processors baselined for many missions such as Space Station Freedom do not have the computational power to meet the challenges of advanced automation and robotics systems envisioned for the year 2000 era. Research issues which must be addressed to achieve greater than giga-flop performance for on-board intelligent computational systems have been identified, and a technology development program has been initiated to achieve the desired long-term system performance objectives.

  14. Deep Space Network information system architecture study

    Science.gov (United States)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  15. Constructing quantum fields in a Fock space using a new picture of quantum mechanics

    International Nuclear Information System (INIS)

    Farrukh, M.O.

    1977-11-01

    For any conventional non-relativistic quantum theory of a finite number of degrees of freedom a picture is constructed called '' the scattering picture'', combining the ''nice'' properties of both the interaction and the Heisenberg pictures, and show that in the absence of bound states, the theory could be formulated in terms of a free Hamiltonian and an effective potential. The equations thus derived are generalized to the relativistic case and show that, given a Poincare invariant self-adjoint operator D densely defined on a Fock space, there exists an interacting field which is asymptotically free and has as the scattering matrix the non-trivial operator S=esup(iD), provided that D annihilates the vacuum and the one-particle states. Crossing relations could easily be imposed on D, but apart from a few comments, the problem of analyticity of S is left open

  16. Understanding the Lunar System Architecture Design Space

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  17. Multimegawatt disk generator system for space applications

    International Nuclear Information System (INIS)

    Solbes, A.; Iwata, H.

    1988-01-01

    The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output

  18. Possible applications of alkali-activated systems in construction

    OpenAIRE

    Boháčová, J.; Staněk, S.; Vavro, M. (Martin)

    2013-01-01

    This paper deals with the possibilities of using alkali-activated systems in construction. This article summarizes the advantages and disadvantages of geopolymer in comparison to Portland cement, summarizes research and practical applications of alkali-activated materials in our country and abroad, and provides an overview of directions where these alternative inorganic binders can be in the future very well applied.

  19. Tools and Algorithms for the Construction and Analysis of Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 10th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2004, held in Barcelona, Spain in March/April 2004. The 37 revised full papers and 6 revised tool demonstration papers presented were car...

  20. 78 FR 69286 - Electric System Construction Policies and Procedures

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Rural Utilities Service 7 CFR Part 1726 Electric System Construction Policies and Procedures CFR Correction In Title 7 of the Code of Federal Regulations, Parts 1600 to 1759, revised as of January 1, 2013, on page 246, in Sec. 1726.14, the second definition of Minor modification...

  1. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE ITER

    Science.gov (United States)

    In Fall 1994, anaerobic compost wetlands in both upflow and downflow configurations were constructed adjacent to and received drainage from the Burleigh Tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The e...

  2. ANAEROBIC COMPOST CONSTRUCTED WETLANDS SYSTEM TECHNOLOGY - SITE TECHNOLOGY CAPSULE

    Science.gov (United States)

    In fall 1994, anaerobic compost wetlands in both upflow and down flow configurations were constructed adjacent to and received drainage from the Burleigh tunnel, which forms part of the Clear Creek/Central City Superfund site. The systems were operated over a 3 year period. The ...

  3. The construction of knowledge service system in professional libraries

    International Nuclear Information System (INIS)

    Zhang Xue

    2014-01-01

    In this paper, the challenges for the professional libraries under the new situation are pointed out. Combined with characteristics of knowledge service, its hierarchical structure is proposed and elaborated. It also describes the practices and outcomes obtained from the construction of knowledge service system of nuclear science and technology library. Recommendations for its future work are also presented. (author)

  4. Development as an effective management system construction and investment projects

    Directory of Open Access Journals (Sweden)

    Beloborodov Roman S.

    2011-02-01

    Full Text Available The article presents the material of the application of the conception «Development» as the effective methodology of the investment-construction project management within the framework the systems approach. Theoretical principles of the application of this conception are generalized and systematized based on the example of the creation of the low habitable complex.

  5. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  6. Construction of a patient observation system using KINECTTM

    International Nuclear Information System (INIS)

    Miyaura, Kazunori; Kumazaki, Yu; Kato, Shingo; Fukushima, Chika; Saitoh, Hidetoshi

    2014-01-01

    Improvement in the positional accuracy of irradiation is expected by capturing patient motion (intra-fractional error) during irradiation. The present study reports the construction of a patient observation system using Microsoft® KINECT TM . By tracking movement, we made it possible to add a depth component to the acquired position coordinates and to display three-axis (X, Y, and Z) movement. Moreover, the developed system can be displayed in a graph which is constructed from the coordinate position at each time interval. Using the developed system, an observer can easily visualize patient movement. When the body phantom was moved a known distance in the X, Y, and Z directions, good coincidence was shown with each axis. We built a patient observation system which captures a patient's motion using KINECT TM .

  7. NASA's Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  8. Research, Development and Application of High Performance Earthquake Resistant Precast System as Green Construction in Indonesia

    OpenAIRE

    Nurjaman Hari; Hariandja Binsar; Suprapto Gambiro; Faizal Lutfi; Sitepu Haerul

    2017-01-01

    Sustainable construction is a topic that emerges in the world construction as a response to climate change issue. Building construction stage is a stage in sustainable development. Construction concept that confirm to the concept is referred to as green construction. Precast concrete construction is a construction system that meets green construction criteria, because applies the usage of material and construction method that optimize energy consumption and minimize environment impact during ...

  9. Construction and implementation of a liquid scintillation TDCR system

    International Nuclear Information System (INIS)

    Wu Yongle; Liang Juncheng; Liu Jiacheng; Yang Yuandi; Yuan Daqing

    2012-01-01

    The triple-to-double coincidence ratio (TDCR) method is an absolute measurement method of radioactivity, and is a popular technique for the standardization of pure beta radionuclides. A triple-to-double coincidence ratio (TDCR) liquid scintillation counting system has been constructed in China. A description of the system and measured activities for sources such as 3 H and 99 Te are presented. (authors)

  10. Design and construction of OGL-1 Specimen Transfer System

    International Nuclear Information System (INIS)

    Nakamura, Kunio; Saruta, Tohru; Nabeya, Hideaki; Nakagaki, Shogo; Nishizaki, Tadashi.

    1977-11-01

    OGL-1 is the first high temperature gas in-pile loop in Japan, which is installed in JMTR of Oarai Research Establishment, JAERI. As the JMTR is the PWR type, specimens must be set in the loop with a remote control system ''OGL-1 Specimen Transfer System'' because of the needs for moisture prevention and radiation shielding. Described in this report are design philosophy, loop development, problems in construction, inspection and operation. (auth.)

  11. Construction of a 13 kG magnetic coil system

    International Nuclear Information System (INIS)

    Rossi, J.O.; Aso, Y.; Castro, P.J.; Barroso, J.J.; Ludwig, G.O.; Montes, A.; Nono, M.C.A.; Correa, R.A.

    1991-08-01

    The construction of magnetic coil system for a 35 GHz gyrotron is reported in great detail. This system is designed to generate a magnetic induction of 13,2 kG over an extension of 13 cm. By using an operating current of about 100 A, it was verified that both the axial magnetic field profile and the spatial non-uniformity are in close agreement with those theoretically predicted. (author)

  12. (De)constructing literacy: Education inequalities and the production of space in San Diego, California

    Science.gov (United States)

    Tangeman, Andrew Gerrit

    Since its inception, the No Child Left Behind Act of 2001 (NCLB) and recent additions to the U.S. Elementary and Secondary Education Act (ESEA) have elicited a broad swath of responses from the educational community. These responses include critical discussions of how standardized testing requirements proliferate a "teach for the test" mentality that transforms how reading, writing, and mathematics are taught in public schools. This thesis focused specifically on "literacy" in relation to the policies that challenge its status as a subjective form of communication, knowledge sharing, and story-telling. Embedded within the term "literacy" are sets of socially-constructed dualisms such as "good school" vs. "bad school," "literate" vs. "illiterate," and "reader" vs. "test-taker" that are propagated under education reform. Investigating these dualisms involved a mixed methods approach, which included the use of critical theory, geovisualization, and geographic analysis. The resulting data allows for a comprehensive look into the economic, political, social, and cultural forces involved in the production of literate space(s) in San Diego, California.

  13. System dynamic modeling on construction waste management in Shenzhen, China.

    Science.gov (United States)

    Tam, Vivian W Y; Li, Jingru; Cai, Hong

    2014-05-01

    This article examines the complexity of construction waste management in Shenzhen, Mainland China. In-depth analysis of waste generation, transportation, recycling, landfill and illegal dumping of various inherent management phases is explored. A system dynamics modeling using Stella model is developed. Effects of landfill charges and also penalties from illegal dumping are also simulated. The results show that the implementation of comprehensive policy on both landfill charges and illegal dumping can effectively control the illegal dumping behavior, and achieve comprehensive construction waste minimization. This article provides important recommendations for effective policy implementation and explores new perspectives for Shenzhen policy makers.

  14. Construction of a scanning system at SAGA-HIMAT

    International Nuclear Information System (INIS)

    Kanazawa, Mitsutaka; Endo, Masahiro; Mizota, Manabu

    2016-01-01

    In SAGA-HIMAT, 620 cancer treatments were done by use of two irradiation rooms in 2015 financial year. To increase treatment capacity of our facility, we have started the construction of the third treatment room C with a scanning irradiation system at the beginning of 2014. This construction was required to do without interruption on the treatment in room A and room B. With this requirement, installations of the beam line and irradiation devices were carried out in the night time and weak end, and beam tests were also. Though there are many things to improve, test irradiation is becoming possible. In this talk, we will present our development status. (author)

  15. Space Debris Alert System for Aviation

    Science.gov (United States)

    Sgobba, Tommaso

    2013-09-01

    Despite increasing efforts to accurately predict space debris re-entry, the exact time and location of re-entry is still very uncertain. Partially, this is due to a skipping effect uncontrolled spacecraft may experience as they enter the atmosphere at a shallow angle. Such effect difficult to model depends on atmospheric variations of density. When the bouncing off ends and atmospheric re-entry starts, the trajectory and the overall location of surviving fragments can be precisely predicted but the time to impact with ground, or to reach the airspace, becomes very short.Different is the case of a functional space system performing controlled re-entry. Suitable forecasts methods are available to clear air and maritime traffic from hazard areas (so-called traffic segregation).In US, following the Space Shuttle Columbia accident in 2003, a re-entry hazard areas location forecast system was putted in place for the specific case of major malfunction of a Reusable Launch Vehicles (RLV) at re-entry. The Shuttle Hazard Area to Aircraft Calculator (SHAAC) is a system based on ground equipment and software analyses and prediction tools, which require trained personnel and close coordination between the organization responsible for RLV operation (NASA for Shuttle) and the Federal Aviation Administration. The system very much relies on the operator's capability to determine that a major malfunction has occurred.This paper presents a US pending patent by the European Space Agency, which consists of a "smart fragment" using a GPS localizer together with pre- computed debris footprint area and direct broadcasting of such hazard areas.The risk for aviation from falling debris is very remote but catastrophic. Suspending flight over vast swath of airspace for every re-entering spacecraft or rocket upper stage, which is a weekly occurrence, would be extremely costly and disruptive.The Re-entry Direct Broadcasting Alert System (R- DBAS) is an original merging and evolution of the Re

  16. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  17. Systems integration processes for space nuclear electric propulsion systems

    International Nuclear Information System (INIS)

    Olsen, C.S.; Rice, J.W.; Stanley, M.L.

    1991-01-01

    The various components and subsystems that comprise a nuclear electric propulsion system should be developed and integrated so that each functions ideally and so that each is properly integrated with the other components and subsystems in the optimum way. This paper discusses how processes similar to those used in the development and intergration of the subsystems that comprise the Multimegawatt Space Nuclear Power System concepts can be and are being efficiently and effectively utilized for these purposes. The processes discussed include the development of functional and operational requirements at the system and subsystem level; the assessment of individual nuclear power supply and thruster concepts and their associated technologies; the conduct of systems integration efforts including the evaluation of the mission benefits for each system; the identification and resolution of concepts development, technology development, and systems integration feasibility issues; subsystem, system, and technology development and integration; and ground and flight subsystem and integrated system testing

  18. PECULIARITIES OF CONSTRUCTION PROFILES OF SECURITY SYSTEMS OF INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Olga V. Lukinova

    2015-01-01

    Full Text Available Examines the specific issues of building functional and technological profiles of the security systems to ensure the safety of information systems in the paradigm of functional standardization; shows a view of the system of protection based on the model of OSE/RM; studied the composition and structure of the concept of "defense mechanism" for the purpose of profiling third instalment correction representation of the system of protection.

  19. Construction program for a large superconducting MHD magnet system at the coal-fired flow facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Genens, L.; Gonczy, J.; Ludwig, H.; Lieberg, M.; Kraft, E.; Gacek, D.; Huang, Y.C.; Chen, C.J.

    1980-01-01

    The Argonne National Laboratory has designed and is constructing a 6 T large aperture superconducting MHD magnet for use in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee. The magnet system consists of the superconducting magnet, a magnet power supply, an integrated instrumentation for operation, control and protection, and a complete cryogenic facility including a CTI Model 2800 helium refrigerator/liquefier with two compressors, helium gas handling system and a 7500 liter liquid helium dewar. The complete system will be tested at Argonne, IL in 1981. The magnet design is reviewed, and the coil fabrication programs are described in detail

  20. The Construction of Islamic Social-Cultural Space in a Mixed Community of Hui and Han---the Case of Nagu,Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    Xue Ximing; Yang Xihao; Ma Chuang

    2015-01-01

    The cultural space of multi ethnic residential regions is always diverse and complicat-ed,and the conflicts and integration of multi cul-tures is the main driving force in the process of constructing cultural space. The structure of this kind of culture space is not always stable or un-changeable. On one hand,the nature of cultural space is that it will exhibit new changes following with a deepening of the degree of integration among various cultures,which in turn might play an ac-tive role on the self-renewal of the cultural space. On the other hand,the dramatic cultural conflict produced from cultural misunderstandings might split the former cultural space,especially if some of the ethnic religions or belief systems are misun-derstood. In this case,ethnic or religious conflicts will be unavoidable—and,this will further influ-ence the social stability of a multi-ethnic country or region. Hence,the research on the form and the mechanism for constructing the cultural space of a multi-ethnic residential community becomes very important.

  1. Constructing Secure Mobile Agent Systems Using the Agent Operating System

    NARCIS (Netherlands)

    van t Noordende, G.J.; Overeinder, B.J.; Timmer, R.J.; Brazier, F.M.; Tanenbaum, A.S.

    2009-01-01

    Designing a secure and reliable mobile agent system is a difficult task. The agent operating system (AOS) is a building block that simplifies this task. AOS provides common primitives required by most mobile agent middleware systems, such as primitives for secure communication, secure and

  2. Multimegawatt disk generator system for space applications

    International Nuclear Information System (INIS)

    Solbes, H.; Iwata, H.

    1988-01-01

    The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output. Critical development issues relevant to the development of such power systems are identified and discussed. A R and D plan aimed at establishing the technical feasibility of the proposed system is also presented

  3. Liquid Chromatography Applied to Space System

    Science.gov (United States)

    Poinot, Pauline; Chazalnoel, Pascale; Geffroy, Claude; Sternberg, Robert; Carbonnier, Benjamin

    Searching for signs of past or present life in our Solar System is a real challenge that stirs up the curiosity of scientists. Until now, in situ instrumentation was designed to detect and determine concentrations of a wide number of organic biomarkers. The relevant method which was and still is employed in missions dedicated to the quest of life (from Viking to ExoMars) corresponds to the pyrolysis-GC-MS. Along the missions, this approach has been significantly improved in terms of extraction efficiency and detection with the use of chemical derivative agents (e.g. MTBSTFA, DMF-DMA, TMAH…), and in terms of analysis sensitivity and resolution with the development of in situ high-resolution mass spectrometer (e.g. TOF-MS). Thanks to such an approach, organic compounds such as amino acids, sugars, tholins or polycyclic aromatic hydrocarbons (PAHs) were expected to be found. However, while there’s a consensus that the GC-MS of Viking, Huygens, MSL and MOMA space missions worked the way they had been designed to, pyrolysis is much more in debate (Glavin et al. 2001; Navarro-González et al. 2006). Indeed, (1) it is thought to remove low levels of organics, (2) water and CO2 could interfere with the detection of likely organic pyrolysis products, and (3) only low to mid-molecular weight organic molecules can be detected by this technique. As a result, researchers are now focusing on other in situ techniques which are no longer based on the volatility of the organic matter, but on the liquid phase extraction and analysis. In this line, micro-fluidic systems involving sandwich and/or competitive immunoassays (e.g. LMC, SOLID; Parro et al. 2005; Sims et al. 2012), micro-chip capillary electrophoreses (e.g. MOA; Bada et al. 2008), or nanopore-based analysis (e.g. BOLD; Schulze-Makuch et al. 2012) have been conceived for in situ analysis. Thanks to such approaches, molecular biological polymers (polysaccharides, polypeptides, polynucleotides, phospholipids, glycolipids

  4. Data Model Management for Space Information Systems

    Science.gov (United States)

    Hughes, J. Steven; Crichton, Daniel J.; Ramirez, Paul; Mattmann, chris

    2006-01-01

    The Reference Architecture for Space Information Management (RASIM) suggests the separation of the data model from software components to promote the development of flexible information management systems. RASIM allows the data model to evolve independently from the software components and results in a robust implementation that remains viable as the domain changes. However, the development and management of data models within RASIM are difficult and time consuming tasks involving the choice of a notation, the capture of the model, its validation for consistency, and the export of the model for implementation. Current limitations to this approach include the lack of ability to capture comprehensive domain knowledge, the loss of significant modeling information during implementation, the lack of model visualization and documentation capabilities, and exports being limited to one or two schema types. The advent of the Semantic Web and its demand for sophisticated data models has addressed this situation by providing a new level of data model management in the form of ontology tools. In this paper we describe the use of a representative ontology tool to capture and manage a data model for a space information system. The resulting ontology is implementation independent. Novel on-line visualization and documentation capabilities are available automatically, and the ability to export to various schemas can be added through tool plug-ins. In addition, the ingestion of data instances into the ontology allows validation of the ontology and results in a domain knowledge base. Semantic browsers are easily configured for the knowledge base. For example the export of the knowledge base to RDF/XML and RDFS/XML and the use of open source metadata browsers provide ready-made user interfaces that support both text- and facet-based search. This paper will present the Planetary Data System (PDS) data model as a use case and describe the import of the data model into an ontology tool

  5. A System Theoretical Inspired Approach to Knowledge Construction

    DEFF Research Database (Denmark)

    Mathiasen, Helle

    2008-01-01

    student's knowledge construction, in the light of operative constructivism, inspired by the German sociologist N. Luhmann's system theoretical approach to epistemology. Taking observations as operations based on distinction and indication (selection) contingency becomes a fundamental condition in learning......  Abstract The aim of this paper is to discuss the relation between teaching and learning. The point of departure is that teaching environments (communication forums) is a potential facilitator for learning processes and knowledge construction. The paper present a theoretical frame work, to discuss...... processes, and a condition which teaching must address as far as teaching strives to stimulate non-random learning outcomes. Thus learning outcomes understood as the individual learner's knowledge construction cannot be directly predicted from events and characteristics in the environment. This has...

  6. Space Launch System Ascent Flight Control Design

    Science.gov (United States)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  7. Modeling system for the rapid construction in Syria

    Directory of Open Access Journals (Sweden)

    Ahmed, Sonia

    2016-06-01

    Full Text Available Prefabrication is a manufacturing process conducted at a specialized facility, in which various materials are joined to form a component part of the final installation. Prefabrication techniques have been progressively adopted in the construction industry in various countries. The demand was at its peak in the early 1970s in Eastern and Western Europe for the construction of new towns. Worldwide, the highest precast levels in 1996 were located in Denmark (43%, the Netherlands (40%, Sweden and Germany (31%. In Asia, the precast levels in Japan and Singapore were about 15% and 8%, respectively, recently, the use of prefabrication is further encouraged to increase productivity and build ability. In Syria too, the first residential project in Damascus: the establishment of 2400 housing units in the year (77-80. Except that the rate of construction pre-cast in Syria is still not exceed 2% of Building of reinforced concrete. In order to participate in the reconstruction of Syria, after the destruction and devastation caused by the war over four years, this search evaluates successful international experiences in rapid construction technique, and modeled system that could serve the current Syrian reality. Introduction of this technology as a new method in the world of construction in Syria requires a good base, relying on the availability of the necessary raw materials and nearness of work site, as well as the need to replace old technology into modern technology, and analyzing the economic, social, environmental criteria, to make the decision about the best solution. Cost and time will form the most important indicators that will be analyzed and calculated, before the final model mode, in order to be able to use this system later in Syrian construction companies.

  8. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  9. JPL Space Telecommunications Radio System Operating Environment

    Science.gov (United States)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  10. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd

    2006-01-01

    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  11. Chaos of discrete dynamical systems in complete metric spaces

    International Nuclear Information System (INIS)

    Shi Yuming; Chen Guanrong

    2004-01-01

    This paper is concerned with chaos of discrete dynamical systems in complete metric spaces. Discrete dynamical systems governed by continuous maps in general complete metric spaces are first discussed, and two criteria of chaos are then established. As a special case, two corresponding criteria of chaos for discrete dynamical systems in compact subsets of metric spaces are obtained. These results have extended and improved the existing relevant results of chaos in finite-dimensional Euclidean spaces

  12. Design and construction of vacuum control system on EAST

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, Y.; Hu, Q.S.; Wang, X.M.; Zhang, X.D.; Hu, J.S.; Yang, Y.; Gu, X.M.

    2008-01-01

    The construction of experimental advanced superconducting tokamak (EAST) was finished at the end of 2006 in Hefei, China. Its vacuum system, an important subsystem, has been commissioned in February 2006. The design and construction of this vacuum control system are described in this paper. The requirements for remote automation, distributed control and centralized management, high reliability and expansibility have been taken into account in the design. There are three levels of control in vacuum control system. The bottom level control is performed on the local instruments manually; the medium level control is based on Siemens S7-400 PLC; the top level control is conducted on IPCs with communication through profi b us network. In addition remote handling and centralized monitoring could be realized by a remote control server. The control system could achieve pumping and fueling of the whole vacuum system. Besides that, it also includes the data acquisition of the pressure and temperature. The details are discussed on the monitoring of vacuum system states including cooling water, power and compressed air, etc., safeguards of plasma chamber and cryostat chamber and vacuum equipments, choosing of control modes corresponding to the plasma discharge and wall conditioning. At the end, the parts of EAST device protection system related to vacuum and gas injection system will also be introduced

  13. Intelligent Materials Tracking System for Construction Projects Management

    Directory of Open Access Journals (Sweden)

    Narimah Kasim

    2015-05-01

    Full Text Available An essential factor adversely affecting the performance of construction projects is the improper handling of materials during site activities. In addition, paper-based reports are mostly used to record and exchange information related to the material components within the supply chain, which is problematic and inefficient. Generally, technologies (such as wireless systems and RFID are not being adequately used to overcome human errors and are not well integrated with project management systems to make tracking and management of materials easier and faster. Findings from a literature review and surveys showed that there is a lack of positive examples of such tools having been used effectively. Therefore, this research focused on the development of a materials tracking system that integrates RFID-based materials management with resources modelling to improve on-site materials tracking. Rapid prototyping was used to develop the system and testing of the system was carried out to examine the functionality and working appropriately. The proposed system is intended to promote the employment of RFID for automatic materials tracking with integration of resource modelling (Microsoft (R Office Project in the project management system in order to establish which of the tagged components are required resources for certain project tasks. In conclusion, the system provides an automatic and easy tracking method for managing materials during materials delivery and inventory management processes in construction projects.

  14. A Contemporary Analysis of the O'Neill-Glaser Model for Space-Based Solar Power and Habitat Construction

    Science.gov (United States)

    Curreri, Peter A.; Detweiler, Michael K.

    2011-01-01

    In 1975 Gerard O Neill published in the journal Science a model for the construction of solar power satellites. He found that the solar power satellites suggested by Peter Glaser would be too massive to launch economically from Earth, but could be financially viable if the workforce was permanently located in free space habitats and if lunar and asteroid materials were used for construction. All new worldwide electrical generating capacity could be then achieved by solar power satellites. The project would financially break even in about 20 years after which it would generate substantial income selling power below fossil fuel prices. Two NASA / Stanford University led studies at Ames Research center during the summers of 1974 and 1976 found the concept technically sound and developed a detailed financial parametric model. Although the project was not undertaken when suggested in the 1970s, several contemporary issues make pursuing the O Neill -- Glaser concept more compelling today. First, our analysis suggests that if in the first ten years of construction that small habitats (compared to the large vista habitats envisioned by O Neill) supporting approximately 300 people were utilized, development costs of the program and the time for financial break even could be substantially improved. Second, the contemporary consensus is developing that carbon free energy is required to mitigate global climate change. It is estimated that 300 GW of new carbon free energy would be necessary per year to stabilize global atmospheric carbon. This is about 4 times greater energy demand than was considered by the O Neill Glaser model. Our analysis suggests that after the initial investments in lunar mining and space manufacturing and transportation, that the profit margin for producing space solar power is very high (even when selling power below fossil fuel prices). We have investigated the financial scaling of ground launched versus space derived space solar power satellites. We

  15. Algorithmic fault tree construction by component-based system modeling

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2008-01-01

    Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)

  16. Tools and Algorithms for Construction and Analysis of Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 6th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2000, held as part of ETAPS 2000 in Berlin, Germany, in March/April 2000. The 33 revised full papers presented together with one invited...... paper and two short tool descriptions were carefully reviewed and selected from a total of 107 submissions. The papers are organized in topical sections on software and formal methods, formal methods, timed and hybrid systems, infinite and parameterized systems, diagnostic and test generation, efficient...

  17. Concept for an International Standard related to Space Weather Effects on Space Systems

    Science.gov (United States)

    Tobiska, W. Kent; Tomky, Alyssa

    There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances

  18. Space rescue system definition (system performance analysis and trades)

    Science.gov (United States)

    Housten, Sam; Elsner, Tim; Redler, Ken; Svendsen, Hal; Wenzel, Sheri

    This paper addresses key technical issues involved in the system definition of the Assured Crew Return Vehicle (ACRV). The perspective on these issues is that of a prospective ACRV contractor, performing system analysis and trade studies. The objective of these analyses and trade studies is to develop the recovery vehicle system concept and top level requirements. The starting point for this work is the definition of the set of design missions for the ACRV. This set of missions encompasses three classes of contingency/emergency (crew illness/injury, space station catastrophe/failure, transportation element catastrophe/failure). The need is to provide a system to return Space Station crew to Earth quickly (less than 24 hours) in response to randomly occurring contingency events over an extended period of time (30 years of planned Space Station life). The main topics addressed and characterized in this paper include the following: Key Recovery (Rescue) Site Access Considerations; Rescue Site Locations and Distribution; Vehicle Cross Range vs Site Access; On-orbit Loiter Capability and Vehicle Design; and Water vs. Land Recovery.

  19. Space Systems Technology Conference, San Diego, CA, June 9-12, 1986, Technical Papers

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Papers are presented on liquid droplet radiator thermal characteristics, battery designs, mobile satellite communications, space-based air traffic surveillance, the Italsat regenerative downlink performance, nondisruptive group delay and amplitude measurement, the Polar Platform of the Space Shuttle, EVA tasks and services, fault diagnosis, and an autonomous power system test bed. Topics discussed include space debris and manned space operations, data transport and command management services for the Space Station, a thermodynamic approach to data processor analysis, anomaly detection and resolution system, the Telemetry, Timing, Command, and Control system, the Space Construction Shuttle Flight experiment, and structural analysis of the Space Shuttle propulsion components. Consideration is given to electrostatic charging and arc discharges on satellite dielectrics, the attitude control system of the IUE, orbital acceleration, spaceborne distributed aperture/coherent array processing, the propulsion module for the Columbus Space Platform, the next-generation STS, trajectory performance evaluation, the Hubble Space Telescope, a linear quadratic tracker for control moment gyro based attitude control of the Space Station, and existing satellite systems and networks

  20. Mathematical Methods of System Analysis in Construction Materials

    Science.gov (United States)

    Garkina, Irina; Danilov, Alexander

    2017-10-01

    System attributes of construction materials are defined: complexity of an object, integrity of set of elements, existence of essential, stable relations between elements defining integrative properties of system, existence of structure, etc. On the basis of cognitive modelling (intensive and extensive properties; the operating parameters) materials (as difficult systems) and creation of the cognitive map the hierarchical modular structure of criteria of quality is under construction. It actually is a basis for preparation of the specification on development of material (the required organization and properties). Proceeding from a modern paradigm (model of statement of problems and their decisions) of development of materials, levels and modules are specified in structure of material. It when using the principles of the system analysis allows to considered technological process as the difficult system consisting of elements of the distinguished specification level: from atomic before separate process. Each element of system depending on an effective objective is considered as separate system with more detailed levels of decomposition. Among them, semantic and qualitative analyses of an object (are considered a research objective, decomposition levels, separate elements and communications between them come to light). Further formalization of the available knowledge in the form of mathematical models (structural identification) is carried out; communications between input and output parameters (parametrical identification) are defined. Hierarchical structures of criteria of quality are under construction for each allocated level. On her the relevant hierarchical structures of system (material) are under construction. Regularities of structurization and formation of properties, generally are considered at the levels from micro to a macrostructure. The mathematical model of material is represented as set of the models corresponding to private criteria by which separate

  1. CO2 DIAL system: construction, measurements, and future development

    Science.gov (United States)

    Vicenik, Jiri

    1999-07-01

    A miniature CO2 DIAL system has been constructed. Dimension of the system are 500 X 450 X 240 mm, its mass is only 28 kg. The system consists of two tunable TEA CO2 lasers, receiving optics, IR detector, signal processing electronics and single chip microcomputer with display. The lasers are tuned manually by means of micrometric screw and are capable to generate pulses on more than 50 CO2 laser lines. The output energy is 50 mJ. The system was tested using various toxic gases and simulants, mostly at range 300 m, most of the measurements were done using pyrodetector in the receiver. The system shows good sensitivity, but it exhibits substantial instability of zero concentration. In the next stage the work will be concentrated on use of high-sensitivity MCT detector in the receiver and implementation of automatic tuning of lasers to the system.

  2. Performance Criteria of Nuclear Space Propulsion Systems

    Science.gov (United States)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  3. Variable-length code construction for incoherent optical CDMA systems

    Science.gov (United States)

    Lin, Jen-Yung; Jhou, Jhih-Syue; Wen, Jyh-Horng

    2007-04-01

    The purpose of this study is to investigate the multirate transmission in fiber-optic code-division multiple-access (CDMA) networks. In this article, we propose a variable-length code construction for any existing optical orthogonal code to implement a multirate optical CDMA system (called as the multirate code system). For comparison, a multirate system where the lower-rate user sends each symbol twice is implemented and is called as the repeat code system. The repetition as an error-detection code in an ARQ scheme in the repeat code system is also investigated. Moreover, a parallel approach for the optical CDMA systems, which is proposed by Marić et al., is also compared with other systems proposed in this study. Theoretical analysis shows that the bit error probability of the proposed multirate code system is smaller than other systems, especially when the number of lower-rate users is large. Moreover, if there is at least one lower-rate user in the system, the multirate code system accommodates more users than other systems when the error probability of system is set below 10 -9.

  4. Nuclear reactor internals construction and failed fuel rod detection system

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A system is provided for determining during operation of a nuclear reactor having fluid pressure operated control rod mechanisms the exact location of a fuel assembly with a defective fuel rod. The construction of the reactor internals is simplified in a manner to facilitate the testing for defective fuel rods and the reduce the cost of producing the upper internals of the reactor. 13 claims, 10 drawing figures

  5. Dynamic Programming Approach for Construction of Association Rule Systems

    KAUST Repository

    Alsolami, Fawaz

    2016-11-18

    In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.

  6. Dynamic Programming Approach for Construction of Association Rule Systems

    KAUST Repository

    Alsolami, Fawaz; Amin, Talha M.; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2016-01-01

    In the paper, an application of dynamic programming approach for optimization of association rules from the point of view of knowledge representation is considered. The association rule set is optimized in two stages, first for minimum cardinality and then for minimum length of rules. Experimental results present cardinality of the set of association rules constructed for information system and lower bound on minimum possible cardinality of rule set based on the information obtained during algorithm work as well as obtained results for length.

  7. The ESA Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Heynderickx, D.; Quaghebeur, B.; Evans, H. D. R.

    2002-01-01

    The ESA SPace ENVironment Information System (SPENVIS) provides standardized access to models of the hazardous space environment through a user-friendly WWW interface. The interface includes parameter input with extensive defaulting, definition of user environments, streamlined production of results (both in graphical and textual form), background information, and on-line help. It is available on-line at http://www.spenvis.oma.be/spenvis/. SPENVIS Is designed to help spacecraft engineers perform rapid analyses of environmental problems and, with extensive documentation and tutorial information, allows engineers with relatively little familiarity with the models to produce reliable results. It has been developed in response to the increasing pressure for rapid-response tools for system engineering, especially in low-cost commercial and educational programmes. It is very useful in conjunction with radiation effects and electrostatic charging testing in the context of hardness assurance. SPENVIS is based on internationally recognized standard models and methods in many domains. It uses an ESA-developed orbit generator to produce orbital point files necessary for many different types of problem. It has various reporting and graphical utilities, and extensive help facilities. The SPENVIS radiation module features models of the proton and electron radiation belts, as well as solar energetic particle and cosmic ray models. The particle spectra serve as input to models of ionising dose (SHIELDOSE), Non-Ionising Energy Loss (NIEL), and Single Event Upsets (CREME). Material shielding is taken into account for all these models, either as a set of user-defined shielding thicknesses, or in combination with a sectoring analysis that produces a shielding distribution from a geometric description of the satellite system. A sequence of models, from orbit generator to folding dose curves with a shielding distribution, can be run as one process, which minimizes user interaction and

  8. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  9. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  10. Enabling the Use of Space Fission Propulsion Systems

    International Nuclear Information System (INIS)

    Mike Houts; Melissa Van Dyke; Tom Godfroy; James Martin; Kevin Pedersen; Ricky Dickens; Ivana Hrbud; Leo Bitteker; Bruce Patton; Suman Chakrabarti; Joe Bonometti

    2000-01-01

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center

  11. Status of NASA's Space Launch System

    Science.gov (United States)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing

  12. Space Telecommunications Radio System (STRS) Compliance Testing

    Science.gov (United States)

    Handler, Louis M.

    2011-01-01

    The Space Telecommunications Radio System (STRS) defines an open architecture for software defined radios. This document describes the testing methodology to aid in determining the degree of compliance to the STRS architecture. Non-compliances are reported to the software and hardware developers as well as the NASA project manager so that any non-compliances may be fixed or waivers issued. Since the software developers may be divided into those that provide the operating environment including the operating system and STRS infrastructure (OE) and those that supply the waveform applications, the tests are divided accordingly. The static tests are also divided by the availability of an automated tool that determines whether the source code and configuration files contain the appropriate items. Thus, there are six separate step-by-step test procedures described as well as the corresponding requirements that they test. The six types of STRS compliance tests are: STRS application automated testing, STRS infrastructure automated testing, STRS infrastructure testing by compiling WFCCN with the infrastructure, STRS configuration file testing, STRS application manual code testing, and STRS infrastructure manual code testing. Examples of the input and output of the scripts are shown in the appendices as well as more specific information about what to configure and test in WFCCN for non-compliance. In addition, each STRS requirement is listed and the type of testing briefly described. Attached is also a set of guidelines on what to look for in addition to the requirements to aid in the document review process.

  13. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  14. Thermal-vacuum facility with in-situ mechanical loading. [for testing space construction materials

    Science.gov (United States)

    Tennyson, R. C.; Hansen, J. S.; Holzer, R. P.; Uffen, B.; Mabson, G.

    1978-01-01

    The paper describes a thermal-vacuum space simulator used to assess property changes of fiber-reinforced polymer composite systems. The facility can achieve a vacuum of approximately .0000001 torr with temperatures ranging from -200 to +300 F. Some preliminary experimental results are presented for materials subjected to thermal loading up to 200 F. The tests conducted include the evaluation of matrix modulus and strength, coefficients of thermal expansion, and fracture toughness. Though the experimental program is at an early stage, the data appear to indicate that these parameters are influenced by hard vacuum.

  15. Neurobiomimetic constructs for intelligent unmanned systems and robotics

    Science.gov (United States)

    Braun, Jerome J.; Shah, Danelle C.; DeAngelus, Marianne A.

    2014-06-01

    This paper discusses a paradigm we refer to as neurobiomimetic, which involves emulations of brain neuroanatomy and neurobiology aspects and processes. Neurobiomimetic constructs include rudimentary and down-scaled computational representations of brain regions, sub-regions, and synaptic connectivity. Many different instances of neurobiomimetic constructs are possible, depending on various aspects such as the initial conditions of synaptic connectivity, number of neuron elements in regions, connectivity specifics, and more, and we refer to these instances as `animats'. While downscaled for computational feasibility, the animats are very large constructs; the animats implemented in this work contain over 47,000 neuron elements and over 720,000 synaptic connections. The paper outlines aspects of the animats implemented, spatial memory and learning cognitive task, the virtual-reality environment constructed to study the animat performing that task, and discussion of results. In a broad sense, we argue that the neurobiomimetic paradigm pursued in this work constitutes a particularly promising path to artificial cognition and intelligent unmanned systems. Biological brains readily cope with challenges of real-life tasks that consistently prove beyond even the most sophisticated algorithmic approaches known. At the cross-over point of neuroscience, cognitive science and computer science, paradigms such as the one pursued in this work aim to mimic the mechanisms of biological brains and as such, we argue, may lead to machines with abilities closer to those of biological species.

  16. Supporting Space Systems Design via Systems Dependency Analysis Methodology

    Science.gov (United States)

    Guariniello, Cesare

    The increasing size and complexity of space systems and space missions pose severe challenges to space systems engineers. When complex systems and Systems-of-Systems are involved, the behavior of the whole entity is not only due to that of the individual systems involved but also to the interactions and dependencies between the systems. Dependencies can be varied and complex, and designers usually do not perform analysis of the impact of dependencies at the level of complex systems, or this analysis involves excessive computational cost, or occurs at a later stage of the design process, after designers have already set detailed requirements, following a bottom-up approach. While classical systems engineering attempts to integrate the perspectives involved across the variety of engineering disciplines and the objectives of multiple stakeholders, there is still a need for more effective tools and methods capable to identify, analyze and quantify properties of the complex system as a whole and to model explicitly the effect of some of the features that characterize complex systems. This research describes the development and usage of Systems Operational Dependency Analysis and Systems Developmental Dependency Analysis, two methods based on parametric models of the behavior of complex systems, one in the operational domain and one in the developmental domain. The parameters of the developed models have intuitive meaning, are usable with subjective and quantitative data alike, and give direct insight into the causes of observed, and possibly emergent, behavior. The approach proposed in this dissertation combines models of one-to-one dependencies among systems and between systems and capabilities, to analyze and evaluate the impact of failures or delays on the outcome of the whole complex system. The analysis accounts for cascading effects, partial operational failures, multiple failures or delays, and partial developmental dependencies. The user of these methods can

  17. Systems aspects of a space nuclear reactor power system

    International Nuclear Information System (INIS)

    Jaffe, L.; Fujita, T.; Beatty, R.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: Power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, attitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly

  18. Novel Composite Membrane for Space Life Supporting System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  19. Modular Architecture for the Deep Space Habitat Instrumentation System

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is focused on developing a continually evolving modular backbone architecture for the Deep Space Habitat (DSH) instrumentation system by integrating new...

  20. Thermophotovoltaic Energy Conversion in Space Nuclear Reactor Power Systems

    National Research Council Canada - National Science Library

    Presby, Andrew L

    2004-01-01

    .... This has potential benefits for space nuclear reactor power systems currently in development. The primary obstacle to space operation of thermophotovoltaic devices appears to be the low heat rejection temperatures which necessitate large radiator areas...

  1. CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.

    Science.gov (United States)

    Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj

    2018-01-01

    Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.

  2. Tools and Algorithms for the Construction and Analysis of Systems

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 10th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2004, held in Barcelona, Spain in March/April 2004. The 37 revised full papers and 6 revised tool demonstration papers presented were...... carefully reviewed and selected from a total of 162 submissions. The papers are organized in topical sections on theorem proving, probabilistic model checking, testing, tools, explicit state and Petri nets, scheduling, constraint solving, timed systems, case studies, software, temporal logic, abstraction...

  3. Construction of Lyapunov Function for Dissipative Gyroscopic System

    International Nuclear Information System (INIS)

    Xu Wei; Ao Ping; Yuan Bo

    2011-01-01

    We introduce a force decomposition to construct a potential function in deterministic dynamics described by ordinary differential equations in the context of dissipative gyroscopic systems. Such a potential function serves as the corresponding Lyapunov function for the dynamics, hence it gives both quantitative and qualitative descriptions for stability of motion. As an example we apply our force decomposition to a four-dimensional dissipative gyroscopic system. We explicitly obtain the potential function for all parameter regimes in the linear limit, including those regimes where the Lyapunov function was previously believed not to exist. (general)

  4. Dynamic cost control information system for nuclear power plant construction

    International Nuclear Information System (INIS)

    Wang Yongqing; Liu Wei

    1998-01-01

    The authors first introduce the cost control functions of some overseas popular project management software at present and the specific ways of cost control of nuclear power plant construction in China. Then the authors stress the necessity of cost and schedule control integration and present the concept of dynamic cost control, the design scheme of dynamic cost control information system and the data structure modeling. Based on the above, the authors can develop the system which has the functions of dynamic estimate, cash flow management and cost optimization for nuclear engineering

  5. An expert systems application to space base data processing

    Science.gov (United States)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  6. Challenges for future space power systems

    International Nuclear Information System (INIS)

    Brandhorst, H.W. Jr.

    1989-01-01

    Forecasts of space power needs are presented. The needs fall into three broad categories: survival, self-sufficiency, and industrialization. The cost of delivering payloads to orbital locations and from Low Earth Orbit (LEO) to Mars are determined. Future launch cost reductions are predicted. From these projections the performances necessary for future solar and nuclear space power options are identified. The availability of plentiful cost effective electric power and of low cost access to space are identified as crucial factors in the future extension of human presence in space

  7. Construction within cooling system of a sodium cooler reactor

    International Nuclear Information System (INIS)

    1977-01-01

    A procedure is described for the manufacture and the construction of a bundle of a large number of pipes, at least near their outer ends lying practically evenly spaced which pipes lie with one of their outermost ends in a pipe plate and with their other outer ends in a second pipe plate, where the procedure involves placing at or near the derived place a means for holding the bundle of pipes, as well as eventually holding a pipe plate with stub pipes near the outer ends of the bundle of pipes, the successive attachment by means of welding of the pipes in the plate of the above mentioned assembly with the stub pipes, characterized in that to each of the pipes in the bundle is welded to an outer end directly a corresponding short pipe which is also welded to a pipe end of a stub pipe, so that a connection is made by the short pipe which lies between the outer end of the pipe in the bundle and the stub pipe. Such a construction is used in the heat exchanger of sodium cooled reactors. (G.C.)

  8. Non-retinotopic feature processing in the absence of retinotopic spatial layout and the construction of perceptual space from motion.

    Science.gov (United States)

    Ağaoğlu, Mehmet N; Herzog, Michael H; Oğmen, Haluk

    2012-10-15

    The spatial representation of a visual scene in the early visual system is well known. The optics of the eye map the three-dimensional environment onto two-dimensional images on the retina. These retinotopic representations are preserved in the early visual system. Retinotopic representations and processing are among the most prevalent concepts in visual neuroscience. However, it has long been known that a retinotopic representation of the stimulus is neither sufficient nor necessary for perception. Saccadic Stimulus Presentation Paradigm and the Ternus-Pikler displays have been used to investigate non-retinotopic processes with and without eye movements, respectively. However, neither of these paradigms eliminates the retinotopic representation of the spatial layout of the stimulus. Here, we investigated how stimulus features are processed in the absence of a retinotopic layout and in the presence of retinotopic conflict. We used anorthoscopic viewing (slit viewing) and pitted a retinotopic feature-processing hypothesis against a non-retinotopic feature-processing hypothesis. Our results support the predictions of the non-retinotopic feature-processing hypothesis and demonstrate the ability of the visual system to operate non-retinotopically at a fine feature processing level in the absence of a retinotopic spatial layout. Our results suggest that perceptual space is actively constructed from the perceptual dimension of motion. The implications of these findings for normal ecological viewing conditions are discussed. 2012 Elsevier Ltd. All rights reserved

  9. Quantum Computing in Fock Space Systems

    Science.gov (United States)

    Berezin, Alexander A.

    1997-04-01

    Fock space system (FSS) has unfixed number (N) of particles and/or degrees of freedom. In quantum computing (QC) main requirement is sustainability of coherent Q-superpositions. This normally favoured by low noise environment. High excitation/high temperature (T) limit is hence discarded as unfeasible for QC. Conversely, if N is itself a quantized variable, the dimensionality of Hilbert basis for qubits may increase faster (say, N-exponentially) than thermal noise (likely, in powers of N and T). Hence coherency may win over T-randomization. For this type of QC speed (S) of factorization of long integers (with D digits) may increase with D (for 'ordinary' QC speed polynomially decreases with D). This (apparent) paradox rests on non-monotonic bijectivity (cf. Georg Cantor's diagonal counting of rational numbers). This brings entire aleph-null structurality ("Babylonian Library" of infinite informational content of integer field) to superposition determining state of quantum analogue of Turing machine head. Structure of integer infinititude (e.g. distribution of primes) results in direct "Platonic pressure" resembling semi-virtual Casimir efect (presure of cut-off vibrational modes). This "effect", the embodiment of Pythagorean "Number is everything", renders Godelian barrier arbitrary thin and hence FSS-based QC can in principle be unlimitedly efficient (e.g. D/S may tend to zero when D tends to infinity).

  10. Radiation durability and functional reliability of polymeric materials in space systems

    International Nuclear Information System (INIS)

    Haruvy, Y.

    1990-01-01

    Polymeric materials are preferred for the light-weight construction of space-systems. Materials in space systems are required to fulfill a complete set of specifications, at utmost reliability, throughout the whole period of service in space, while being exposed to the hazardous influence of the space environment. The major threats of the space environment in orbits at the geostationary altitude (GSO) arise from ionizing radiations, the main constituents of which are highly energetic protons (affecting mainly the surface) and fast electrons (which produce the main threat to the electronic components). The maximum dose of ionizing radiation (within the limits of uncertainty of the calculations) at the surface of a material mounted on a space system, namely the ''Skin-Dose'', is ca. 2500 Mrads/yr. Space systems such as telecommunication satellites are planned to serve for prolonged periods of 30 years and longer. The cumulative predicted dose of ionizing-radiation over such periods presents a severe threat of chemical degradation to most of the polymeric construction materials commonly utilized in space systems. The reliability of each of the polymeric materials must be evaluated in detail, considering each of the relevant typical threats, such as ionizing-radiation, UV radiation, meteoroides flux, thermal cycling and ultra-high vacuum. For each of the exposed materials, conservation of the set of functional characteristics such as mechanical integrity, electrical and thermo-optical properties, electrical conductivity, surface charging and outgassing properties, which may cause contamination of neighboring systems, is evaluated. The reliability of functioning of the materials exposed to the space environment can thus be predicted, utilizing data from the literature, experimental results reported from space flights and laboratory simulations, and by chemical similarity of untested polymers to others. (author)

  11. Rigged Hilbert spaces for chaotic dynamical systems

    International Nuclear Information System (INIS)

    Suchanecki, Z.; Antoniou, I.; Bandtlow, O.F.

    1996-01-01

    We consider the problem of rigging for the Koopman operators of the Renyi and the baker maps. We show that the rigged Hilbert space for the Renyi maps has some of the properties of a strict inductive limit and give a detailed description of the rigged Hilbert space for the baker maps. copyright 1996 American Institute of Physics

  12. Construction of pilot system for the Korea information system of occupational exposure

    International Nuclear Information System (INIS)

    Na, Seong Ho; Park, Moon Il; Im, Bok Soo; Lee, Seon Mi; Kim, Hyung Uk; Chae, Eun Yeong

    2003-01-01

    In this study, the construction of Korea Information System of Occupational Exposure (KISOE) system is designed with occupational exposure control system based on information evaluation technology and it makes the reliability of the personal exposure by use of personal dose verification. While the operation of national based radiation worker protection system, this system are settled the control system for radiation worker and ALARA. The purpose of construction and operation of pilot system of KISOE systematically is to derive the master plan of KISOE, stable development of this system, and serve the high quality radiation use internationally

  13. Construction of pilot system for the Korea information system of occupational exposure

    Energy Technology Data Exchange (ETDEWEB)

    Na, Seong Ho [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Park, Moon Il; Im, Bok Soo; Lee, Seon Mi; Kim, Hyung Uk; Chae, Eun Yeong [ADDLAB Co., Ltd., Taejon (Korea, Republic of)

    2003-01-15

    In this study, the construction of Korea Information System of Occupational Exposure (KISOE) system is designed with occupational exposure control system based on information evaluation technology and it makes the reliability of the personal exposure by use of personal dose verification. While the operation of national based radiation worker protection system, this system are settled the control system for radiation worker and ALARA. The purpose of construction and operation of pilot system of KISOE systematically is to derive the master plan of KISOE, stable development of this system, and serve the high quality radiation use internationally.

  14. Study of Strongly Coupled Systems via Probe Brane Constructions

    Science.gov (United States)

    Chang, Han-Chih

    In this thesis, we present our study towards better understanding of the strongly coupled systems with extra matter content in the fundamental representation of some prescribed global symmetry group in the quenched approximation, with the toolkit of holography via a probe brane construction. Specically, for the defect conformal systems, we unearth and quantify the phase trasition diagram, and novel supersymmetric vacua in the top-down model of the D3/D5 probe brane system. For further quantify various non-Fermi quantum liquid phases realized through the holographical probe brane construction, we then propose and verify the method to include the backreaction of entanglement entropy due to the probe branes at the leading order, which can potentially be used to detect topological phase transitions. We will recapitulate the main results of our works, in collaboration with Prof. Andreas Karch, published in the following journals: "Minimal Submanifolds asymptotic to AdS4 xS2 in AdS5xS5', JHEP, vol.1404, p.037, 2014; "The Novel Solutions of Finite-Density D3/D5 Probe Brane System and Their Implications for Stability'', JHEP, vol.1210, p.060, 2014; "Entanglement Entropy for Probe Branes'', JHEP, vol.1401, p.180, 2014.

  15. Points of Transition: Understanding the Constructed Identities of L2 Learners/Users across Time and Space

    Science.gov (United States)

    Adawu, Anthony; Martin-Beltran, Melinda

    2012-01-01

    Using sociocultural and poststructuralist theoretical lenses, this study examines the narrative construction of language-learner identity across time and space. We applied cross-narrative methodologies to analyze language-learning autobiographies and interview data from three English users who had recently transitioned to a U.S. context for…

  16. Creating Spaces for Constructing Practice and Identity: Innovations of Teachers of English Language to Young Learners in Vietnam

    Science.gov (United States)

    Nguyen, Chinh Duc

    2017-01-01

    The discourse on construction of practice and identity in language teaching has been situated in transnational contexts. However, not all teachers are provided with access to transnational spaces for professional development. Drawing on the concept of "multimembership" in "multicommunities", this study explores how Vietnamese…

  17. Construction and Evaluation of an Integrated Formal/Informal Learning Environment for Foreign Language Learning across Real and Virtual Spaces

    Science.gov (United States)

    Waragai, Ikumi; Ohta, Tatsuya; Kurabayashi, Shuichi; Kiyoki, Yasushi; Sato, Yukiko; Brückner, Stefan

    2017-01-01

    This paper presents the prototype of a foreign language learning space, based on the construction of an integrated formal/informal learning environment. Before the background of the continued innovation of information technology that places conventional learning styles and educational methods into new contexts based on new value-standards,…

  18. Planning for a space infrastructure for disposal of nuclear space power systems

    International Nuclear Information System (INIS)

    Angelo, J. Jr.; Albert, T.E.; Lee, J.

    1989-01-01

    The development of safe, reliable, and compact power systems is vital to humanity's exploration, development, and, ultimately, civilization of space. Nuclear power systems appear to present to offer the only practical option of compact high-power systems. From the very beginning of US space nuclear power activities, safety has been a paramount requirement. Assurance of nuclear safety has included prelaunch ground handling operations, launch, and space operations of nuclear power sources, and more recently serious attention has been given to postoperational disposal of spent or errant nuclear reactor systems. The purpose of this paper is to describe the progress of a project to utilize the capabilities of an evolving space infrastructure for planning for disposal of space nuclear systems. Project SIREN (Search, Intercept, Retrieve, Expulsion - Nuclear) is a project that has been initiated to consider post-operational disposal options for nuclear space power systems. The key finding of Project SIREN was that although no system currently exists to affect the disposal of a nuclear space power system, the requisite technologies for such a system either exist or are planned for part of the evolving space infrastructure

  19. Quantum physics of an elementary system in de Sitter space

    International Nuclear Information System (INIS)

    Rabeie, A.

    2012-01-01

    We present the coherent states of a scalar massive particle on 1+3-de Sitter space. These states are vectors in Hilbert space, and they are labeled by points in the associated phase space. To do this, we use the fact that the phase space of a scalar massive particle on 1+3-de Sitter space is a cotangent bundle T * (S 3 ) which is isomorphic with the complex sphere S C 3 . Then by using the heat kernel on '' S C 3 '' that was presented by Hall-Mitchell, we construct our coherent states. At the end, by these states we quantize the classical kinetic energy on de Sitter space. (orig.)

  20. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  1. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1998-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  2. Space reactor electric systems: system integration studies, Phase 1 report

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-01-01

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied

  3. Three-dimensional oscillator and Coulomb systems reduced from Kaehler spaces

    International Nuclear Information System (INIS)

    Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kaehler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kaehler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid originate. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to a monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is a non-Kaehler one. Finally, we extend these results to the family of Kaehler spaces with conic singularities

  4. Examination of the Benefits of Standardized Interfaces on Space Systems

    Science.gov (United States)

    2015-09-01

    them to enter the once impenetrable aerospace market: Elon Musk with Space Exploration Technologies (SpaceX), Richard Branson with Virgin Galactic, and...systems-engineering- guide/se-life cycle-building-blocks/concept-development/highlevel-conceptual- definition. Musk , Elon . 2009. Risky Business... Musk , 2009) Unknown effects of prolonged exposure to radiation Degraded system capability (JPL 2015) Replenishment of the system capability may

  5. The Hadamard construction of Green's functions on a curved space-time: physics and explicit rigorous results

    International Nuclear Information System (INIS)

    John, R.W.

    1987-01-01

    First, in connection with their construction due to Hadamard, the mathematical and physical meaning of covariant Green's functions in relativistic gravitational fields - according to Einstein: on curved space-time - is discussed. Then, in the case of a general static spherically symmetric space-time the construction equations for a scalar Green's function are cast into symmetry-adapted form providing a convenient starting point for an explicit calculation of the Hadamard building elements. In applying the obtained basic scheme to a special one-parameter family of model metrics one succeeds in advancing to the explicit exact calculation of tail-term coefficients of a massless Green's function which are simultaneously coefficients in the Schwinger-De Witt expansion of the Feynman propagator for the corresponding massive Klein-Gordon equation on curved space-time. (author)

  6. [Construction of biopharmaceutics classification system of Chinese materia medica].

    Science.gov (United States)

    Liu, Yang; Wei, Li; Dong, Ling; Zhu, Mei-Ling; Tang, Ming-Min; Zhang, Lei

    2014-12-01

    Based on the characteristics of multicomponent of traditional Chinese medicine and drawing lessons from the concepts, methods and techniques of biopharmaceutics classification system (BCS) in chemical field, this study comes up with the science framework of biopharmaceutics classification system of Chinese materia medica (CMMBCS). Using the different comparison method of multicomponent level and the CMMBCS method of overall traditional Chinese medicine, the study constructs the method process while setting forth academic thoughts and analyzing theory. The basic role of this system is clear to reveal the interaction and the related absorption mechanism of multicomponent in traditional Chinese medicine. It also provides new ideas and methods for improving the quality of Chinese materia medica and the development of new drug research.

  7. Space Launch System Vibration Analysis Support

    Science.gov (United States)

    Johnson, Katie

    2016-01-01

    The ultimate goal for my efforts during this internship was to help prepare for the Space Launch System (SLS) integrated modal test (IMT) with Rodney Rocha. In 2018, the Structural Engineering Loads and Dynamics Team will have 10 days to perform the IMT on the SLS Integrated Launch Vehicle. After that 10 day period, we will have about two months to analyze the test data and determine whether the integrated vehicle modes/frequencies are adequate for launching the vehicle. Because of the time constraints, NASA must have newly developed post-test analysis methods proven well and with technical confidence before testing. NASA civil servants along with help from rotational interns are working with novel techniques developed and applied external to Johnson Space Center (JSC) to uncover issues in applying this technique to much larger scales than ever before. We intend to use modal decoupling methods to separate the entangled vibrations coming from the SLS and its support structure during the IMT. This new approach is still under development. The primary goal of my internship was to learn the basics of structural dynamics and physical vibrations. I was able to accomplish this by working on two experimental test set ups, the Simple Beam and TAURUS-T, and by doing some light analytical and post-processing work. Within the Simple Beam project, my role involves changing the data acquisition system, reconfiguration of the test set up, transducer calibration, data collection, data file recovery, and post-processing analysis. Within the TAURUS-T project, my duties included cataloging and removing the 30+ triaxial accelerometers, coordinating the removal of the structure from the current rolling cart to a sturdy billet for further testing, preparing the accelerometers for remounting, accurately calibrating, mounting, and mapping of all accelerometer channels, and some testing. Hammer and shaker tests will be performed to easily visualize mode shapes at low frequencies. Short

  8. EVALUATION OF WOOD PERFORMANCE IN BUILDING CONSTRUCTION THROUGH SYSTEM APPROACH

    Directory of Open Access Journals (Sweden)

    Ricardo Pedreschi

    2005-09-01

    Full Text Available Building construction is considered to be the leading market for the wood industry, in developed and developingcountries. The greatest amount of wood produced in Brazil is consumed as firewood and energy, followed by production of celluloseand third as machined wood. The use of wood from planted forests can be increased. This would lead to a better use of naturalresources, and consequently to an increased sustainability of forest activity in many regions of the country. The performance of woodcan be observed from many different insights: symbolic performance, technical performance and economical performance, conductedby the method of systems approach to architecture. Usages of wood related to the performances of the material, with the redefinitionof parameters of use, elaborating a new culture linked to new technologies were outlined. This work diagnosed the usage of wood inbuilding construction based in system analysis. Through an opinion research related to the acceptation of the use of wood we observethe possibilities of utilization according to physical and mechanical proprieties, aesthetics and appearance performance and postoccupation.According to the results obtained related to the culture and knowledge about the use of wood from planted forest, it canconclude that there is not enough knowledge in this area, and it is, therefore, necessary to create an information system forprofessionals and for people in general.

  9. Information System Specific in Achievement of Construction Projects

    Directory of Open Access Journals (Sweden)

    Cătălin Onuţu

    2005-01-01

    Full Text Available Because of the economic changes from our country and also of the rapid adjusting necessity to the requirement of a market economy, it is observed a huge request for information, and especially techniques, tools, methodologies that would facilitate the managerial activity in any field. In the construction field the problem is even more serious because of specific aspects and of the traditional information system that is very stiff. Formal and bureaucratic, and this makes the adjusting process of specialist to the economic realities to be more difficult.

  10. Channel systems and lobe construction in the Mississippi Fan

    Science.gov (United States)

    Garrison, L. E.; Kenyon, Neil H.; Bouma, A.H.

    1982-01-01

    Morphological features on the Mississippi Fan in the eastern Gulf of Mexico were mapped using GLORIA II, a long-range side-scan sonar system. Prominent is a sinuous channel flanked by well-developed levees and occasional crevasse splays. The channel follows the axis and thickest part of the youngest fan lobe; seismic-reflection profiles offer evidence that its course has remained essentially constant throughout lobe development. Local modification and possible erosion of levees by currents indicates a present state of inactivity. Superficial sliding has affected part of the fan lobe, but does not appear to have been a factor in lobe construction. ?? 1982 A. M. Dowden, Inc.

  11. Construction of VLCC marine oil storage cost index system

    Science.gov (United States)

    Li, Yuan; Li, Yule; Lu, Jinshu; Wu, Wenfeng; Zhu, Faxin; Chen, Tian; Qin, Beichen

    2018-04-01

    VLCC as the research object, the basic knowledge of VLCC is summarized. According to the phenomenon that VLCC is applied to offshore oil storage gradually, this paper applies the theoretical analysis method to analyze the excess capacity from VLCC, the drop of oil price, the aging VLCC is more suitable for offshore storage The paper analyzes the reason of VLCC offshore oil storage from three aspects, analyzes the cost of VLCC offshore storage from the aspects of manpower cost and shipping cost, and constructs the cost index system of VLCC offshore oil storage.

  12. Space Launch Systems Block 1B Preliminary Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean

    2018-01-01

    NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.

  13. Occupational health management system: A study of expatriate construction professionals.

    Science.gov (United States)

    Chan, I Y S; Leung, M Y; Liu, A M M

    2016-08-01

    Due to its direct impact on the safety and function of organizations, occupational health has been a concern of the construction industry for many years. The inherent complexity of occupational health management presents challenges that make a systems approach essential. From a systems perspective, health is conceptualized as an emergent property of a system in which processes operating at the individual and organizational level are inextricably connected. Based on the fundamental behavior-to-performance-to-outcome (B-P-O) theory of industrial/organizational psychology, this study presents the development of an I-CB-HP-O (Input-Coping Behaviors-Health Performance-Outcomes) health management systems model spanning individual and organizational boundaries. The model is based on a survey of Hong Kong expatriate construction professionals working in Mainland China. Such professionals tend to be under considerable stress due not only to an adverse work environment with dynamic tasks, but also the need to confront the cross-cultural issues arising from expatriation. A questionnaire was designed based on 6 focus groups involving 44 participants, and followed by a pilot study. Of the 500 questionnaires distributed in the main study, 137 valid returns were received, giving a response rate of 27.4%. The data were analyzed using statistical techniques such as factor analysis, reliability testing, Pearson correlation analysis, multiple regression modeling, and structural equation modeling. Theories of coping behaviors and health performance tend to focus on the isolated causal effects of single factors and/or posits the model at single, individual level; while industrial practices on health management tend to focus on organizational policy and training. By developing the I-CB-HP-O health management system, incorporating individual, interpersonal, and organizational perspectives, this study bridges the gap between theory and practice while providing empirical support for a

  14. Challenges for future space power systems

    International Nuclear Information System (INIS)

    Brandhorst, H.W. Jr.

    1989-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. The key to success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience was made. These needs fall into three broad categories-survival, self sufficiency and industrialization. The cost of delivering payloads to orbital locations from low earth orbit (LEO) to Mars was determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options were made. These goals are largely dependent upon orbital location and energy storage needs

  15. Model of the Russian Federation Construction Innovation System: An Integrated Participatory Systems Approach

    OpenAIRE

    Emiliya Suprun; Oz Sahin; Rodney A. Stewart; Kriengsak Panuwatwanich

    2016-01-01

    This research integrates systemic and participatory techniques to model the Russian Federation construction innovation system. Understanding this complex construction innovation system and determining the best levers for enhancing it require the dynamic modelling of a number of factors, such as flows of resources and activities, policies, uncertainty and time. To build the foundations for such a dynamic model, the employed study method utilised an integrated stakeholder-based participatory ap...

  16. Construction Tele-Robotics System with AR Presentation

    International Nuclear Information System (INIS)

    Ootsubo, K; Kawamura, T; Yamada, H

    2013-01-01

    Tele-Robotics system using bilateral control is an effective tool for task in disaster scenes, and also in extreme environments. The conventional systems are equipped with a few color video cameras captures view of the task field, and their video images are sent to the operator via some network. Usually, the images are captured only from some fixed angles. So the operator cannot obtain intuitively 3D-sense of the task field. In our previous study, we proposed a construction tele-robotics system based on VR presentation. The operator intuits the geometrical states of the robot presented by CG, but the information of the surrounding environment is not included like a video image. So we thought that the task efficiency could be improved by appending the CG image to the video image. In this study, we developed a new presentation system based on augmented reality (AR). In this system, the CG image, which represents 3D geometric information for the task, is overlaid on the video image. In this study, we confirmed the effectiveness of the system experimentally. Additionally, we verified its usefulness to reduction of the communication delay associated with a tele-robotics system.

  17. The filtered venting system under construction at barseback

    International Nuclear Information System (INIS)

    Persson, A.H.

    1985-01-01

    A filter venting containment system, bearing the acronym FILTRA will be installed at the Swedish nuclear power plant Barseback. The Barseback Power Plant is owned by the Southern Sweden Power Supply (Sydkraft AB) and has two 1700-MW boiling water reactors. The reactors are of ASEA-ATOM design with pressure suppression containments (Mark IItype). The installation of the filter venting system is a condition set by the Swedish government for a continued operating license after September 1, 1986. The construction work for the FILTRA plant, the first of its kind ever planned, will be completed at the end of 1985. The FILTRA is designed so that 99.9% of the core inventory of radioactivity, excluding inert gases, is retained in the reactor containment and filter system in the event of containment venting. Another design guideline is to achieve passive functioning of the FILTRA plant during the first 24 h of an accident. The FILTRA plant is common to the two reactors on the site and consists mainly of two systems, a venting system (pressure relief system) and a filtering system. The total cost is approximately U.S. $15 million

  18. Phase-space networks of geometrically frustrated systems.

    Science.gov (United States)

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  19. Model of the Russian Federation Construction Innovation System: An Integrated Participatory Systems Approach

    Directory of Open Access Journals (Sweden)

    Emiliya Suprun

    2016-08-01

    Full Text Available This research integrates systemic and participatory techniques to model the Russian Federation construction innovation system. Understanding this complex construction innovation system and determining the best levers for enhancing it require the dynamic modelling of a number of factors, such as flows of resources and activities, policies, uncertainty and time. To build the foundations for such a dynamic model, the employed study method utilised an integrated stakeholder-based participatory approach coupled with structural analysis (MICMAC—Matrice d'Impacts Croisés Multiplication Appliquée à un Classement Cross-Impact Matrix. This method identified the key factors of the Russian Federation construction innovation system, their causal relationship (i.e., influence/dependence map and, ultimately, a causal loop diagram. The generated model reveals pathways to improving construction innovation in the Russian Federation and underpins the future development of an operationalised system dynamics model.

  20. Precipitation from Space: Advancing Earth System Science

    Science.gov (United States)

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  1. Space station common module thermal management: Design and construction of a test bed

    Science.gov (United States)

    Barile, R. G.

    1986-01-01

    In this project, a thermal test bed was designed, simulated, and planned for construction. The thermal system features interior and exterior thermal loads and interfacing with the central-radiator thermal bus. Components of the test bed include body mounted radiator loop with interface heat exchangers (600 Btu/hr); an internal loop with cabin air-conditioning and cold plates (3400 Btu/hr); interface heat exchangers to the central bus (13,000 Btu/hr); and provisions for new technology including advanced radiators, thermal storage, and refrigeration. The apparatus will be mounted in a chamber, heated with lamps, and tested in a vacuum chamber with LN2-cooled walls. Simulation of the test bed was accomplished using a DEC PRO 350 computer and the software package TK! olver. Key input variables were absorbed solar radiation and cold plate loads. The results indicate temperatures on the two loops will be nominal when the radiation and cold plate loads are in the range of 25% to 75% of peak loads. If all loads fall to zero, except the cabin air system which was fixed, the radiator fluid will drop below -100 F and may cause excessive pressure drop. If all loads reach 100%, the cabin air temperature could rise to 96 F.

  2. Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface

    International Nuclear Information System (INIS)

    Zolotarev, Vladimir A

    2009-01-01

    Functional models are constructed for commutative systems {A 1 ,A 2 } of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that ξ 1 A 1 +ξ 2 A 2 is not a dissipative operator for any ξ 1 , ξ 2 element of R). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators {A 1 ,A 2 } for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions E(p) and E-tilde(p) determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.

  3. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  4. Enhanced Geothermal Systems (EGS) well construction technology evaluation report.

    Energy Technology Data Exchange (ETDEWEB)

    Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

    2008-12-01

    Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and

  5. Numerical Construction of Viable Sets for Autonomous Conflict Control Systems

    Directory of Open Access Journals (Sweden)

    Nikolai Botkin

    2014-04-01

    Full Text Available A conflict control system with state constraints is under consideration. A method for finding viability kernels (the largest subsets of state constraints where the system can be confined is proposed. The method is related to differential games theory essentially developed by N. N. Krasovskii and A. I. Subbotin. The viability kernel is constructed as the limit of sets generated by a Pontryagin-like backward procedure. This method is implemented in the framework of a level set technique based on the computation of limiting viscosity solutions of an appropriate Hamilton–Jacobi equation. To fulfill this, the authors adapt their numerical methods formerly developed for solving time-dependent Hamilton–Jacobi equations arising from problems with state constraints. Examples of computing viability sets are given.

  6. Construction of a cardiac conduction system subject to extracellular stimulation.

    Science.gov (United States)

    Clements, Clyde; Vigmond, Edward

    2005-01-01

    Proper electrical excitation of the heart is dependent on the specialized conduction system that coordinates the electrical activity from the atria to the ventricles. This paper describes the construction of a conduction system as a branching network of Purkinje fibers on the endocardial surface. Endocardial surfaces were extracted from an FEM model of the ventricles and transformed to 2D. A Purkinje network was drawn on top and the inverse transform performed. The underlying mathematics utilized one dimensional cubic Hermite finite elements. Compared to linear elements, the cubic Hermite solution was found to have a much smaller RMS error. Furthermore, this method has the advantage of enforcing current conservation at bifurcation and unification points, and allows for discrete coupling resistances.

  7. Introduction of construction management system for preparation work of Shimane Nuclear Power Station Unit-3

    International Nuclear Information System (INIS)

    Sasaki, Yutaka; Tsumura, Isamu; Hayashi, Minoru; Nakamoto, Kenji

    2005-01-01

    The construction management system aims to have information on the construction management between the Chugoku Electric Power Co. Inc. and each contractor, and to work efficiently. The system has been operating during about half year. The system manages the manufacturing process, safety and quality. The aims, development process, characteristics, network construction of the system are reported. As outline of the construction management system, functions and construction management of each process, safety and quality and ITV camera are explained. The system will be used at construction of Shimane nuclear power station unit-3. (S.Y.)

  8. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  9. Calculation and construction of a beam-transport system for polarized electrons

    International Nuclear Information System (INIS)

    Marschke, G.

    1987-09-01

    In the framework of the ELSA-SAPHIR project a transfer channel between ELSA and the large-space detector SAPHIR was calculated and constructed. Existing optical elements were modified corresponding to their application and the missing racks constructed and ordered for fabrication. Furthermore the vacuum system was designed as the whole as well as in the single components. Starting from the architectonic conditions and the optics to be realized the coordinates of the elements were calculated as preconditions fo the geodetic measurements and calibrations. It was shown that both for a polarized and for an unpolarized electron beam an optic was realized corresponding to the requirements up to an energy of 3.5 GeV. Under the given conditions, the applied method of the rotation of the polarization vector, and the geometrical preconditions up to 3.0 GeV also an acceptable longitudinal polarization was reached. (orig./HSI) [de

  10. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  11. An optimal beam alignment method for large-scale distributed space surveillance radar system

    Science.gov (United States)

    Huang, Jian; Wang, Dongya; Xia, Shuangzhi

    2018-06-01

    Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.

  12. Thermal Inertia Performance Evaluation of Light-Weighted Construction Space Envelopes Using Phase Change Materials in Mexico City’s Climate

    Directory of Open Access Journals (Sweden)

    Adriana Lira-Oliver

    2017-10-01

    Full Text Available The present study’s main objective was to determine the applicability of organic phase change materials (PCMs in a building’s envelope construction system for the passive provision of comfortable indoor thermal conditions over one year based on thermal inertia in Mexico City. Research on PCMs relate mainly to their use in building envelope construction systems to reduce energy consumption for mechanical indoor thermal conditioning—not in passive systems. Computer simulation results of mean indoor temperature variations are presented with the objective of evaluating these construction systems’ thermal inertia properties. In the present study, dynamic thermal simulations (DTS, using EnergyPlus software, of ten 1 m3 test units with envelope construction systems combining organic PCMs of different fusion temperatures with conventional materials were performed. Based on the results, it is concluded that the implementation of organic PCMs with a fusion temperature around 25 °C in combination with aerated concrete in a space envelope results in the highest number of hours the indoor temperatures remain within the comfort range throughout a typical year, due to the decrement of indoor temperature oscillations and, to a large extent, to thermal lag.

  13. Construction site Voice Operated Information System (VOIS) test

    Science.gov (United States)

    Lawrence, Debbie J.; Hettchen, William

    1991-01-01

    The Voice Activated Information System (VAIS), developed by USACERL, allows inspectors to verbally log on-site inspection reports on a hand held tape recorder. The tape is later processed by the VAIS, which enters the information into the system's database and produces a written report. The Voice Operated Information System (VOIS), developed by USACERL and Automated Sciences Group, through a ESACERL cooperative research and development agreement (CRDA), is an improved voice recognition system based on the concepts and function of the VAIS. To determine the applicability of the VOIS to Corps of Engineers construction projects, Technology Transfer Test Bad (T3B) funds were provided to the Corps of Engineers National Security Agency (NSA) Area Office (Fort Meade) to procure and implement the VOIS, and to train personnel in its use. This report summarizes the NSA application of the VOIS to quality assurance inspection of radio frequency shielding and to progress payment logs, and concludes that the VOIS is an easily implemented system that can offer improvements when applied to repetitive inspection procedures. Use of VOIS can save time during inspection, improve documentation storage, and provide flexible retrieval of stored information.

  14. Conception of Self-Construction Production Scheduling System

    Science.gov (United States)

    Xue, Hai; Zhang, Xuerui; Shimizu, Yasuhiro; Fujimura, Shigeru

    With the high speed innovation of information technology, many production scheduling systems have been developed. However, a lot of customization according to individual production environment is required, and then a large investment for development and maintenance is indispensable. Therefore now the direction to construct scheduling systems should be changed. The final objective of this research aims at developing a system which is built by it extracting the scheduling technique automatically through the daily production scheduling work, so that an investment will be reduced. This extraction mechanism should be applied for various production processes for the interoperability. Using the master information extracted by the system, production scheduling operators can be supported to accelerate the production scheduling work easily and accurately without any restriction of scheduling operations. By installing this extraction mechanism, it is easy to introduce scheduling system without a lot of expense for customization. In this paper, at first a model for expressing a scheduling problem is proposed. Then the guideline to extract the scheduling information and use the extracted information is shown and some applied functions are also proposed based on it.

  15. Application of a constructed wetland system for polluted stream remediation

    Science.gov (United States)

    Tu, Y. T.; Chiang, P. C.; Yang, J.; Chen, S. H.; Kao, C. M.

    2014-03-01

    In 2010, the multi-function Kaoping River Rail Bridge Constructed Wetland (KRRBW) was constructed to improve the stream water quality and rehabilitate the ecosystem of the surrounding environment of Dashu Region, Kaohsiung, Taiwan. The KRRBW consists of five wetland basins with a total water surface area of 15 ha, a total hydraulic retention time (HRT) of 10.1 days at a averaged flow rate of 14 740 m3/day, and an averaged water depth of 1.1 m. The influent of KRRBW coming from the local drainage systems containing untreated domestic, agricultural, and industrial wastewaters. Based on the quarterly investigation results of water samples taken in 2011-2012, the overall removal efficiencies were 91% for biochemical oxygen demand (BOD), 75% for total nitrogen (TN), 96% for total phosphorus (TP), and 99% for total coliforms (TC). The calculated first-order decay rates for BOD, TN, TP, NH3-N, and TC ranged from 0.14 (TN) to 0.42 (TC) 1/day. This indicates that the KRRBW was able to remove organics, TC, and nutrients effectively. The high ammonia/nitrate removal efficiency indicates that nitrification and denitrification processes occurred simultaneously in the wetland system, and the detected nitrite concentration confirmed the occurrence of denitrification/nitrification. Results from sediment analyses reveal that the sediment contained high concentrations of organics (sediment oxygen demand = 1.9-5.2 g O2/m2 day), nutrients (up to 15.8 g total nitrogen/kg of sediment and 1.48 g total phosphorus/kg of sediment), and metals (up to 547 mg/kg of Zn and 97 mg/kg of Cu). Appropriate wetland management strategies need to be developed to prevent the release of contaminants into the wetland system. The wetland system caused the variations in the microbial diversities and dominant microbial bacteria. Results show the dominant nitrogen utilization bacteria including Denitratisoma oestradiolicum, Nitrosospira sp., Nitrosovibrio sp., D. oestradiolicum, Alcaligenes sp

  16. Castile-Leon, A Mooted Territory: Rhetoric of Space and Time in the Construction of Identities

    Directory of Open Access Journals (Sweden)

    Díaz Viana, Luis

    2010-06-01

    Full Text Available In constructing identities of the present, time (the past that was as well as space (the territory that should be is conjured up. Although this manner of operation is not a distinctive feature of identity construction in Spain, it is clearly a strategy employed here in earnest once the political transition to democracy was over. This strategy comprehends two different, opposite rhetoric modes regarding claims of the past: one historical, the other mythical. The first prompts the audience to become again what it once was and to recover what it at the time held. The second calls for a reencounter with that which, supposedly, always defined it as a people, even though this people never fully realized its territorial aspirations in the past or no written evidence exists that it ever held the territory that it now claims as its own. Which is the case in the “Autonomous Community of Castile-Leon”? Stereotypes about Castile (the key component in this Autonomous Community of contemporary Spain uttered by politicians, analysts and writers make reference to a mooted territory and to a people apparently heedless and ignorant of itself. The author approaches and, in a way, deconstructs these stereotypes, half of them learned, the other half popular. In addition, he attempts to expose other reasons that lie behind such seeming “lack of identity” or “of regional consciousness” that presumably plague Castilians and everything Castilian.

    En la construcción de identidades en el presente se suele traer a colación el tiempo —lo que se fue en el pasado— a la vez que se reclama un espacio —lo que se debería ser hoy en términos de territorialidad—. Sin ser ésta una característica exclusiva de las identidades que se reivindican dentro de España, parece claro que sí se trata de una estrategia empleada con particular intensidad aquí, una vez se produjo la transición política tras el franquismo. Pero, dentro de este panorama

  17. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    Science.gov (United States)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  18. Design and Construction of Wireless Control System for Drilling Machine

    Directory of Open Access Journals (Sweden)

    Nang Su Moan Hsam

    2015-06-01

    Full Text Available Abstract Drilling machine is used for boring holes in various materials and used in woodworking metalworking construction and do-it-yourself projects. When the machine operate for a long time the temperature increases and so we need to control the temperature of the machine and some lubrication system need to apply to reduce the temperature. Due to the improvement of technology the system can be controlled with wireless network. This control system use Window Communication Foundation WCF which is the latest service oriented technology to control all drilling machines in industries simultaneously. All drilling machines are start working when they received command from server. After the machine is running for a long time the temperature is gradually increased. This system used LM35 temperature sensor to measure the temperature. When the temperature is over the safely level that is programmed in host server the controller at the server will command to control the speed of motor and applying some lubrication system at the tip and edges of drill. The command from the server is received by the client and sends to PIC. In this control system PIC microcontroller is used as an interface between the client computer and the machine. The speed of motor is controlled with PWM and water pump system is used for lubrication. This control system is designed and simulated with 12V DC motor LM35 sensor LCD displayand relay which is to open the water container to spray water between drill and work piece. The host server choosing to control the drilling machine that are overheat by selecting the clients IP address that is connected with that machine.

  19. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  20. The State of Play: US Space Systems Competitiveness

    Science.gov (United States)

    Zapata, Edgar

    2017-01-01

    Collects space systems cost and related data (flight rate, payload, etc.) over time. Gathers only public data. Non-recurring and recurring. Minimal data processing. Graph, visualize, add context. Focus on US space systems competitiveness. Keep fresh update as data arises, launches occur, etc. Keep fresh focus on recent data, indicative of the future.

  1. Mechanical design of a lidar system for space applications - LITE

    Science.gov (United States)

    Crockett, Sharon K.

    1990-01-01

    The Lidar In-Space Technology Experiment (LITE) is a Shuttle experiment that will demonstrate the first use of a lidar system in space. Its design process must take into account not only the system design but also the unique design requirements for spaceborne experiment.

  2. Autonomous Control of Space Reactor Systems

    International Nuclear Information System (INIS)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-01-01

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are available to perform intelligent control functions that are necessary for both normal and abnormal operational conditions

  3. Autonomous Control of Space Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  4. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  5. Distributed Space System Technology Demonstrations with the Emerald Nanosatellite

    Science.gov (United States)

    Twiggs, Robert

    2002-01-01

    A viewgraph presentation of Distributed Space System Technologies utilizing the Emerald Nanosatellite is shown. The topics include: 1) Structure Assembly; 2) Emerald Mission; 3) Payload and Mission Operations; 4) System and Subsystem Description; and 5) Safety Integration and Testing.

  6. Design space pruning through hybrid analysis in system-level design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.; Pimentel, A.D.

    2012-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system archi- tectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size

  7. New developments at Hunveyor and Husar space probe model constructions in Hungarian Universities and Colleges: status report of 2008

    Science.gov (United States)

    Hegzi, S.; Bérczi, Sz.; Hudoba, Gy.; Magyar, I.; Lang, A.; Istenes, Z.; Weidinger, T.; Tepliczky, I.; Varga, T.; Hargitai, H.

    2008-09-01

    Introduction Hunveyor and Husar space probe models are the main school robotics program in Hungary in the last decade initiated by our Cosmic Materials Space research Group (CMSRG). As a new form of planetary science education in Hungary students build their lander and rover robots and test them on test tables, carry out simulations, and go with their instruments to field works of planetary geology analog sites. Recently 10 groups work in this program and here is a status report about the new results. Planetary robot construction and simulations steps We summarized in 10 steps the main "constructional and industrial research and technology" description of planetary material studying and collecting by space probes (landers, rovers). We focused on the activity we began and teach to carry out at those steps. (Main planets considered were the Moon and Mars): 1. Reconnaissance and survey of the surface of a planet by orbital space probes (i.e. Lunar Orbiter, MGS, MRO etc.) Our studies: photogeology, geomorphology, preparations to cartography. 2. Mapping of the surface of the selected planet with geographical and stratigraphical methods. We (CMSRG) prepared thematic maps on Moon, Mercury, Mars, Venus [1] and Atlas (3) in the series [2,3]. 3. Identification of various surface materials by albedo, spectroscopic [4], thermal IR, identification and selection of the target sites. (in terrestrial analog sites during field works) 4. Planning the space probe system lander and rover working together (MPF-Sojourner type assembly). Planning of the Hunveyor and Husar models. 5. Construction and manufacturing lander and rover units. All Hunveyor groups built their models [5]. 6. Launching and traveling the space probes to the planetary surface. (No rocket building, we simulate [6] some events during the voyage only). 7. Measuring the planetary surface environment on the surface of target planet [7]. (CMSRG) groups carry out test-table measurements [8] and simulations, and later they

  8. Space Industry Commercialization: A Systems Engineering Evaluation of Alternatives

    Science.gov (United States)

    Dinally, Jihan

    The Constellation Program cancellation reversed the government and commercial space industry's roles and relationships by dedicating the majority of the federal funding and opportunities to the commercial space industry and left the government space industry in search of an approach to collaborate with the dominant organization, the commercial space industry service providers. The space industry government agencies, Air Force Space Command (AFSPC) and National Aeronautics and Space Administration (NASA) had realized that to gain resources in the new commercially oriented economic environment, they had to work together and possess the capabilities aligned with the National Space Policy's documented goals. Multi-organizational collaboration in space industry programs is challenging, as NASA, AFSPC, and commercial providers, follow different [1] enterprise architecture guidance such as the NASA systems engineering Handbook, MIL-STD-499 and "A Guide to the systems engineering Body of Knowledge" by the International Council on systems engineering [2] [3]. A solution to streamline their enterprise architecture documentation and meet National Space Policy goals is the Multi-User Architecture Maturity Model Methodology (MAM3), which offers a tailored systems engineering technique the government agencies and private companies can implement for the program's maturity level. In order to demonstrate the MAM3, a CubeSat motivated study was conducted partnering a commercial provider with a government agency. A survey of the commercial space industry service providers' capabilities was performed to select the private companies for the study. Using the survey results, the commercial space industry service providers were ranked using the Analytic Hierarchy Process (AHP) [4]. The AHP is a structured technique for making complex decisions for representing and quantifying its weights, relating those weights to overall goals, and evaluating alternative solutions [5] - [8]. The weights

  9. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  10. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    Science.gov (United States)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  11. Research study on antiskid braking systems for the space shuttle

    Science.gov (United States)

    Auselmi, J. A.; Weinberg, L. W.; Yurczyk, R. F.; Nelson, W. G.

    1973-01-01

    A research project to investigate antiskid braking systems for the space shuttle vehicle was conducted. System from the Concorde, Boeing 747, Boeing 737, and Lockheed L-1011 were investigated. The characteristics of the Boeing 737 system which caused it to be selected are described. Other subjects which were investigated are: (1) trade studies of brake control concepts, (2) redundancy requirements trade study, (3) laboratory evaluation of antiskid systems, and (4) space shuttle hardware criteria.

  12. Electrical power systems for Space Station

    Science.gov (United States)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  13. Space transportation systems within ESA programmes: Current status and perspectives

    Science.gov (United States)

    Delahais, Maurice

    1993-03-01

    An overview of the space transportation aspects of the ESA (European Space Agency) programs as they result from history, present status, and decisions taken at the ministerial level conference in Granada, Spain is presented. The new factors taken into consideration for the long term plan proposed in Munich, Germany, the three strategic options for the reorientation of the ESA long term plan, and the essential elements of space transportation in the Granada long term plan in three areas of space activities, scientific, and commercial launches with expendable launch vehicles, manned flight and in-orbit infrastructure, and future transportation systems are outlined. The new ESA long term plan, in the field of space transportation systems, constitutes a reorientation of the initial program contemplated in previous councils at ministerial level. It aims at balancing the new economic situation with the new avenues of cooperation, and the outcome will be a new implementation of the space transportation systems policy.

  14. Automation and Robotics for Space-Based Systems, 1991

    Science.gov (United States)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  15. [Construction of a system for proper TS-1 application].

    Science.gov (United States)

    Azuma, Sayaka; Morimoto, Shigefumi; Kagawa, Kunihiko; Katada, Yoshinori; Hasegawa, Kenji; Tabuse, Katsuyoshi

    2010-03-01

    TS-1 is an oral anti-tumor drug, which contains 5-chloro-2, 4-dihydroxypyridine (CDHP), a compound mainly excreted in urine. Since the CDHP concentration is increased among patients with impaired renal function, the frequency of side effects of TS-1 increases in such patients. Therefore, we constructed a computer-aided system that enables prompt monitoring of creatinine clearance (Ccr) calculated from the serum creatinine levels of patients prescribed TS-1 at the time pharmacists prepare the medicine. With this system, we found two cases who were prescribed TS-1, despite their decreased Ccr. One was a patient whose estimated Ccr was less than 30 mL/min/m2. With such renal malfunction, pharmacokinetics of the drug was considerably changed compared with normal control, and the dosage should be reduced. The other case presented with severe jaundice and had only a mild decrease of renal function (Ccr: 50 mL/min/m2). So we measured the concentration of uracil in the urine and performed a drug lymphocyte stimulation test for further investigation of concomitant affecting factors. Our system is useful because it can show pharmacists both the dosage TS-1 patients take and their renal function at a glance in real time. This system can be adapted for every medicine which might accumulate in patients with renal dysfunction.

  16. Design And Construction Of Wireless Charging System Using Inductive Coupling

    Directory of Open Access Journals (Sweden)

    Do Lam Mung

    2015-06-01

    Full Text Available Abstract Wireless charging system described by using the method of inductive coupling. In this project oscillation circuit converts DC energy to AC energytransmitter coil to transmit magnetic field by passing frequency and then induce the receiver coil. The properties of Induction coupling are wavemagnetic field-wideband rangevery shortcm efficiencyhight and operation frequencyLF-bandseveral handred kHz.The project shows as a small charging for 5V battery of phone in this method. The system bases on coupling magnetic field then designed and constructed as two parts. There are transmitter part and receiver part. The transmitter coil transmitter part transmits coupling magnetic field to receiver coil receiver part by passing frequency at about 1.67MHz. The Amperes law Biot-Savart law and Faraday law are used to calculate the inductive coupling between the transmitter coil and the receiver coil. The calculation of this law shows how many power transfer in receiver part when how many distance between the transmitter coil and the receiver coil. The system is safe for users and neighbouring electronic devices. To get more accurate wireless charging system it needs to change the design of the following keywords.

  17. Thermoacoustic power systems for space applications

    International Nuclear Information System (INIS)

    Backhaus, S.N.; Tward, E.; Pedach, M.

    2001-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (W/kg). Thermoacoustic engines can convert high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, these engines are low mass and promise to be highly reliable. Coupling a thermoacoustic engine to a low-mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Data will be presented on the first tests of a demonstration thermoacoustic engine designed for the 100-Watt power range.

  18. Environmental effects and large space systems

    Science.gov (United States)

    Garrett, H. B.

    1981-01-01

    When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.

  19. Distributed Space Missions for Earth System Monitoring

    CERN Document Server

    2013-01-01

    A key addition to Springer's Space Technology Library series, this edited volume features the work of dozens of authors and offers a wealth of perspectives on distributed Earth observation missions. In sum, it is an eloquent synthesis of the fullest possible range of current approaches to a fast-developing field characterized by growing membership of the 'space club' to include nations formerly regarded as part of the Third World. The volume's four discrete sections focus on the topic's various aspects, including the key theoretical and technical issues arising from the division of payloads onto different satellites. The first is devoted to analyzing distributed synthetic aperture radars, with bi- and multi-static radars receiving separate treatment. This is followed by a full discussion of relative dynamics, guidance, navigation and control. Here, the separate topics of design; establishment, maintenance and control; and measurements are developed with relative trajectory as a reference point, while the dis...

  20. Electronic construction collaboration system -- final phase : [tech transfer summary].

    Science.gov (United States)

    2014-07-01

    Construction projects have been growing more complex in terms of : project team composition, design aspects, and construction processes. : To help manage the shop/working drawings and requests for information : (RFIs) for its large, complex projects,...

  1. Constructive analysis of two dimensional Fermi systems at finite temperature

    International Nuclear Information System (INIS)

    Lu, Long

    2013-01-01

    We consider a dilute Fermion system in continuum two spatial dimensions with short-range interaction. We prove nonperturbatively that at low temperature the renormalized perturbation expansion has non-zero radius of convergence. The convergence radius shrinks when the energy scale goes to the infrared cutoff. The shrinking rate of the convergence radius is established to be dependent of the sign of the coupling constant g by a detailed analysis of the so-called ladder contributions. We prove further that the self-energy of the model is uniformly of C 1 , but not C 2 in the analytic domain of the theory. The proofs are based on renormalization of the Fermi surface and multiscale analysis employing mathematical renormalization group technique. Tree expansion is introduced to reorganize perturbation expansion nicely. Finally we apply these techniques to construct a half-filled Hubbard model on honeycomb bilayer lattice with local interaction.

  2. Quality Management System at Construction Project: A Questionnaire Survey

    OpenAIRE

    P.P.Mane; J.R.Patil

    2015-01-01

    The best quality, time and cost are the important aspects of successful construction project which fulfills the main goal of construction industry. The quality management has to provide the environment within which related tools, techniques and procedures can be deployed effectively leading to operational success for a construction project. The role of quality management for a construction company is not an isolated activity, but intertwined with all the operational and managerial...

  3. Design and construction of Alborz tokamak vacuum vessel system

    International Nuclear Information System (INIS)

    Mardani, M.; Amrollahi, R.; Koohestani, S.

    2012-01-01

    Highlights: ► The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. ► As one of the key components for the device, the vacuum vessel can provide ultra-high vacuum and clean environment for the plasma operation. ► A limiter is a solid surface which defines the edge of the plasma and designed to protect the wall from the plasma, localizes the plasma–surface interaction and localizes the particle recycling. ► Structural analyses were confirmed by FEM model for dead weight, vacuum pressure and plasma disruptions loads. - Abstract: The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. At the heart of the tokamak is the vacuum vessel and limiter which collectively are referred to as the vacuum vessel system. As one of the key components for the device, the vacuum vessel can provide ultra-high vacuum and clean environment for the plasma operation. The VV systems need upper and lower vertical ports, horizontal ports and oblique ports for diagnostics, vacuum pumping, gas puffing, and maintenance accesses. A limiter is a solid surface which defines the edge of the plasma and designed to protect the wall from the plasma, localizes the plasma–surface interaction and localizes the particle recycling. Basic structure analyses were confirmed by FEM model for dead weight, vacuum pressure and plasma disruptions loads. Stresses at general part of the VV body are lower than the structure material allowable stress (117 MPa) and this analysis show that the maximum stresses occur near the gravity support, and is about 98 MPa.

  4. Evaluating the Medical Kit System for the International Space Station(ISS) - A Paradigm Revisited

    Science.gov (United States)

    Hailey, Melinda J.; Urbina, Michelle C.; Hughlett, Jessica L.; Gilmore, Stevan; Locke, James; Reyna, Baraquiel; Smith, Gwyn E.

    2010-01-01

    Medical capabilities aboard the International Space Station (ISS) have been packaged to help astronaut crew medical officers (CMO) mitigate both urgent and non-urgent medical issues during their 6-month expeditions. Two ISS crewmembers are designated as CMOs for each 3-crewmember mission and are typically not physicians. In addition, the ISS may have communication gaps of up to 45 minutes during each orbit, necessitating medical equipment that can be reliably operated autonomously during flight. The retirement of the space shuttle combined with ten years of manned ISS expeditions led the Space Medicine Division at the NASA Johnson Space Center to reassess the current ISS Medical Kit System. This reassessment led to the system being streamlined to meet future logistical considerations with current Russian space vehicles and future NASA/commercial space vehicle systems. Methods The JSC Space Medicine Division coordinated the development of requirements, fabrication of prototypes, and conducted usability testing for the new ISS Medical Kit System in concert with implementing updated versions of the ISS Medical Check List and associated in-flight software applications. The teams constructed a medical kit system with the flexibility for use on the ISS, and resupply on the Russian Progress space vehicle and future NASA/commercial space vehicles. Results Prototype systems were developed, reviewed, and tested for implementation. Completion of Preliminary and Critical Design Reviews resulted in a streamlined ISS Medical Kit System that is being used for training by ISS crews starting with Expedition 27 (June 2011). Conclusions The team will present the process for designing, developing, , implementing, and training with this new ISS Medical Kit System.

  5. The contamination of personal space : boundary construction in a prison environment

    NARCIS (Netherlands)

    Sibley, David; van Hoven, Bettina

    In this paper, inmates in dormitories in a prison in New Mexico, USA, talk about their everyday lives. We are particularly interested in the ways in which they think about space. Their principal concern appears to be the definition of personal space in an environment where boundaries are weak. The

  6. Constructing Digital "Safe" Space: Navigating Tensions in Transnational Feminist Organizing Online

    Science.gov (United States)

    Linabary, Jasmine R.

    2017-01-01

    Despite decades of advocacy, women still struggle to gain access to public spaces, in particular to spaces of power such as formal governance and decision-making processes, economic sites, and media institutions. Globalization has enabled the emergence of transnational feminist organizing in response to these exclusions, yet scholars have largely…

  7. Cubical local partial orders on cubically subdivided spaces - existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    The geometric models of Higher Dimensional Automata and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes, such ...... that the underlying geometry of an HDA may be quite complicated....

  8. Cubical local partial orders on cubically subdivided spaces - Existence and construction

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth

    2006-01-01

    The geometric models of higher dimensional automata (HDA) and Dijkstra's PV-model are cubically subdivided topological spaces with a local partial order. If a cubicalization of a topological space is free of immersed cubic Möbius bands, then there are consistent choices of direction in all cubes...... that the underlying geometry of an HDA may be quite complicated....

  9. Effects of construction and operation of a satellite power system upon the magnetosphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Luhmann, J.G.; Schulz, M.; Cornwall, J.M.

    1979-01-01

    This is the final report of an initial assessment of magnetospheric effects of the construction and operation of a satellite power system. This assessment effort is based on application of present scientific knowledge rather than on original scientific research. As such, it appears that mass and energy injections of the system are sufficient to modify the magnetosphere substantially, to the extent of possibly requiring mitigation measures for space systems but not to the extent of causing major redirection of efforts and concepts. The scale of the SPS is so unprecedentedly large, however, that these impressions require verification (or rejection) by in-depth assessment based on scientific treatment of the principal issues. Indeed, it is perhaps appropriate to state that present ignorance far exceeds present knowledge in regard to SPS magnetospheric effects, even though we only seek to define the approximate limits of magnetospheric modifications here

  10. The effect of space radiation of the nervous system

    Science.gov (United States)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  11. Thermal insulating system particularly adapted for building construction

    International Nuclear Information System (INIS)

    Dyar, H.G.

    1985-01-01

    This disclosure relates to an insulating system which is particularly adapted for insulating the walls, floors, ceilings and like structure of buildings and includes a panel having a hollow chamber or interior under negative pressure (vacuum) and being of a variety of external peripheral sizes and shapes to fit within areas defined by wall and/or floor and/or ceiling studs, beams, or the like, a plurality of springs, chains or the like for supporting the panel in generally spaced relationship to an associated building wall, ceiling, floor or like structure, and a plurality of pin-like elements of relatively small cross-sectional configuration normally spaced from the exterior surface of the panel for contacting a limited exterior surface area of the panel only upon the springs, chains or the like becoming inoperative which would in the absence of the pin-like elements result in direct contact between the panel and the associated building wall, ceiling, floor or like structure and thus reduce the insulating efficiency thereof

  12. Constructing Scientific Explanations: a System of Analysis for Students' Explanations

    Science.gov (United States)

    de Andrade, Vanessa; Freire, Sofia; Baptista, Mónica

    2017-08-01

    This article describes a system of analysis aimed at characterizing students' scientific explanations. Science education literature and reform documents have been highlighting the importance of scientific explanations for students' conceptual understanding and for their understanding of the nature of scientific knowledge. Nevertheless, and despite general agreement regarding the potential of having students construct their own explanations, a consensual notion of scientific explanation has still not been reached. As a result, within science education literature, there are several frameworks defining scientific explanations, with different foci as well as different notions of what accounts as a good explanation. Considering this, and based on a more ample project, we developed a system of analysis to characterize students' explanations. It was conceptualized and developed based on theories and models of scientific explanations, science education literature, and from examples of students' explanations collected by an open-ended questionnaire. With this paper, it is our goal to present the system of analysis, illustrating it with specific examples of students' collected explanations. In addition, we expect to point out its adequacy and utility for analyzing and characterizing students' scientific explanations as well as for tracing their progression.

  13. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  14. Coal structure construction system with construction knowledge and partial energy evaluation; Kochiku chishiki to bubunteki energy hyoka ni yoru sekitan bunshi kozo kochiku system

    Energy Technology Data Exchange (ETDEWEB)

    Okawa, T.; Sasai, T.; Komoda, N. [Osaka University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    The computer aided coal structure construction system is proposed, and a computational construction example is presented. The coal structure construction engine of this system fabricates molecular structure by connecting fragments sequentially inputted through a user interface. The best structure candidate is determined using construction knowledge and partial energy evaluation every addition of one fragment, and this process is subsequently repeated. The structure evaluation engine analyzes the 3-D conformation candidate by molecular dynamics, and evaluates the conformation by determining the energy value of an optimum structure. As an example, this system was applied to construction of coal molecular structure based on the actual data of partial structure composed of 26 structures from 2l kinds of aromatic cluster structures, 27 bonds from 2 kinds of bridged bonds, and 16 groups from 2 kinds of terminal substitutional groups. As a result, this system could construct a superior structure according to expert knowledge from the viewpoint of energy. 6 refs., 5 figs., 2 tabs.

  15. The innovation and application of the nuclear power construction management information system MISNPC

    International Nuclear Information System (INIS)

    Wang Kaihua; Tang Zihui; Zhang Baiqi; Sun Guangwei; Zhu Guodong; Qian Fuhua

    2009-01-01

    This paper focuses on introducing the innovation achievements on the management information system of nuclear power construction (MISNPC). The innovation is achieved through summarizing the practice of nuclear power construction in China and drawing on advanced experience of international nuclear power construction. The innovation, including the management standard for nuclear power construction, the standard of construction process, the standard of nuclear-power basic codes and the standard for nuclear power construction and control, can be rapidly copied for application in various nuclear power construction projects. The application of the innovation may play an essential role in ensuring safe construction and operation of nuclear power plants in China and improving economic benefits. (authors)

  16. Constructed Wetland Treatment Systems For Water Quality Improvement

    International Nuclear Information System (INIS)

    Nelson, E.

    2010-01-01

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m 3 per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m 3 of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m 3 per day, and be able to handle 9,690 m 3 of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of

  17. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  18. Multimegawatt nuclear systems for space power

    International Nuclear Information System (INIS)

    Dearien, J.A.; Whitbeck, J.F.

    1987-01-01

    The conceptual design and performance capability requirements of multi-MW nuclear powerplants for SDI systems are considered. The candidate powerplant configurations encompass Rankine, Brayton, and thermionic cycles; these respectively provide the lightest to heaviest system masses, since reactor and shield masses represent only 10-30 percent of total closed power system weight for the Rankine and Brayton systems. Many of the gas reactor concepts entertained may be operated in dual mode, thereby furnishing both long term low power and high power for short periods. Heat rejection is identified as the most important technology, since about 50 percent of the total closed mass is constituted by the heat rejection system. 9 references

  19. Dose measurements in space by the Hungarian Pille TLD system

    International Nuclear Information System (INIS)

    Apathy, I.; Deme, S.; Feher, I.; Akatov, Y.A.; Reitz, G.; Arkhanguelski, V.V.

    2002-01-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 μGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised

  20. Thin film coatings for space electrical power system applications

    Science.gov (United States)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  1. Alert-derivative bimodal space power and propulsion systems

    International Nuclear Information System (INIS)

    Houts, M.G.; Ranken, W.A.; Buksa, J.J.

    1994-01-01

    Safe, reliable, low-mass bimodal space power and propulsion systems could have numerous civilian and military applications. This paper discusses potential bimodal systems that could be derived from the ALERT space fission power supply concept. These bimodal concepts have the potential for providing 5 to 10 kW of electrical power and a total impulse of 100 MN-s at an average specific impulse of 770 s. System mass is on the order of 1000 kg

  2. Prerouted FPGA Cores for Rapid System Construction in a Dynamic Reconfigurable System

    Directory of Open Access Journals (Sweden)

    Oliver TimothyF

    2007-01-01

    Full Text Available A method of constructing prerouted FPGA cores, which lays the foundations for a rapid system construction framework for dynamically reconfigurable computing systems, is presented. Two major challenges are considered: how to manage the wires crossing a core's borders; and how to maintain an acceptable level of flexibility for system construction with only a minimum of overhead. In order to maintain FPGA computing performance, it is crucial to thoroughly analyze the issues at the lowest level of device detail in order to ensure that computing circuit encapsulation is as efficient as possible. We present the first methodology that allows a core to scale its interface bandwidth to the maximum available in a routing channel. Cores can be constructed independently from the rest of the system using a framework that is independent of the method used to place and route primitive components within the core. We use an abstract FPGA model and CAD tools that mirror those used in industry. An academic design flow has been modified to include a wire policy and an interface constraints framework that tightly constrains the use of the wires that cross a core's boundaries. Using this tool set we investigate the effect of prerouting on overall system optimality. Abutting cores are instantly connected by colocation of interface wires. Eliminating run-time routing drastically reduces the time taken to construct a system using a set of cores.

  3. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  4. Systems Engineering for Space Exploration Medical Capabilities

    Science.gov (United States)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  5. Construction of vacuum system for Tristan accumulation ring

    International Nuclear Information System (INIS)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.; Kubo, T.; Mizuno, H.; Momose, T.; Narushima, K.; Watanabe, H.; Yamaguchi, H.

    1983-01-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole and quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described

  6. Faxing Structures to the Moon: Freeform Additive Construction System (FACS)

    Science.gov (United States)

    Howe, A. Scott; Wilcox, Brian; McQuin, Christopher; Townsend, Julie; Rieber, Richard; Barmatz, Martin; Leichty, John

    2013-01-01

    Using the highly articulated All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility system as a precision positioning tool, a variety of print head technologies can be used to 3D print large-scale in-situ structures on planetary surfaces such as the moon or Mars. In effect, in the same way CAD models can be printed in a 3D printer, large-scale structures such as walls, vaults, domes, berms, paving, trench walls, and other insitu derived elements can be FAXed to the planetary surface and built in advance of the arrival of crews, supplementing equipment and materials brought from earth. This paper discusses the ATHLETE system as a mobility / positioning platform, and presents several options for large-scale additive print head technologies, including tunable microwave "sinterator" approaches and in-situ concrete deposition. The paper also discusses potential applications, such as sintered-in-place habitat shells, radiation shielding, road paving, modular bricks, and prefabricated construction components.

  7. The unique safety challenges of space reactor systems

    International Nuclear Information System (INIS)

    Lanes, S.J.; Marshall, A.C.

    1991-01-01

    Compact reactor systems can provide high levels of power for extended periods in space environments. Their relatively low mass and their ability to operate independently of their proximity to the sun make reactor power systems high desirable for many civilian and military space missions. The US Department of Energy is developing reactor system technologies to provide electrical power for space applications. In addition, reactors are now being considered to provide thermal power to a hydrogen propellant for nuclear thermal rocketry. Space reactor safety issues differ from commercial reactor issues, in some areas, because of very different operating requirements and environments. Accidents similar to those postulated for commercial reactors must be considered for space reactors during their operational phase. Safety strategies will need to be established that account for the consequences of the loss of essential power

  8. A reference model for space data system interconnection services

    Science.gov (United States)

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  9. SP-100 nuclear space power systems with application to space commercialization

    International Nuclear Information System (INIS)

    Smith, J.M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power

  10. Approach to developing reliable space reactor power systems

    International Nuclear Information System (INIS)

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  11. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  12. Facility for the evaluation of space communications and related systems

    Science.gov (United States)

    Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.

    1995-01-01

    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.

  13. Constructed Wetlands

    Science.gov (United States)

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  14. Model space dimensionalities for multiparticle fermion systems

    International Nuclear Information System (INIS)

    Draayer, J.P.; Valdes, H.T.

    1985-01-01

    A menu driven program for determining the dimensionalities of fixed-(J) [or (J,T)] model spaces built by distributing identical fermions (electrons, neutrons, protons) or two distinguihable fermion types (neutron-proton and isospin formalisms) among any mixture of positive and negative parity spherical orbitals is presented. The algorithm, built around the elementary difference formula d(J)=d(M=J)-d(M=J+1), takes full advantage of M->-M and particle-hole symmetries. A 96 K version of the program suffices for as compilated a case as d[(+1/2, +3/2, + 5/2, + 7/2-11/2)sup(n-26)J=2 + ,T=7]=210,442,716,722 found in the 0hω valence space of 56 126 Ba 70 . The program calculates the total fixed-(Jsup(π)) or fixed-(Jsup(π),T) dimensionality of a model space generated by distributing a specified number of fermions among a set of input positive and negative parity (π) spherical (j) orbitals. The user is queried at each step to select among various options: 1. formalism - identical particle, neutron-proton, isospin; 2. orbits -bumber, +/-2*J of all orbits; 3. limits -minimum/maximum number of particles of each parity; 4. specifics - number of particles, +/-2*J (total), 2*T; 5. continue - same orbit structure, new case quit. Though designed for nuclear applications (jj-coupling), the program can be used in the atomic case (LS-coupling) so long as half integer spin values (j=l+-1/2) are input for the valnce orbitals. Mutiple occurrences of a given j value are properly taken into account. A minor extension provides labelling information for a generalized seniority classification scheme. The program logic is an adaption of methods used in statistical spectroscopy to evaluate configuration averages. Indeed, the need for fixed symmetry leve densities in spectral distribution theory motivated this work. The methods extend to other group structures where there are M-like additive quantum labels. (orig.)

  15. Acquisition/expulsion system for earth orbital propulsion system study. Volume 1: Summary report. [cryogenic storage and fuel flow regulation system for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    Design, construction, and quality control tests on a dual screen liner device for the space shuttle orbiter cryogenic fuel tank and feedliner system are summarized. The dual stainless steel mesh of the device encloses eight liquid fuel channels and provides the liquid/vapor interface stability required for low gravity orbits.

  16. Practical homeostasis lighting control system using sensor agent robots for office space

    Science.gov (United States)

    Tokiwa, Momoko; Mita, Akira

    2014-03-01

    The comfortable space can be changed by season, age, physical condition and the like. However, the current systems are not able to resolve them absolutely. This research proposes the Homeostasis lighting control system based on the mechanism of biotic homeostasis for making the algorithms of apparatus control. Homeostasis are kept by the interaction of the three systems, endocrine system, immune system, and nervous system[1]. By the gradual reaction in the endocrine system, body's protective response in the immune system, and the electrical reaction in the nerve system, we can keep the environments against variable changes. The new lighting control system utilizes this mechanism. Firstly, we focused on legibility and comfort in the office space to construct the control model learning from the endocrine and immune systems. The mechanism of the endocrine system is used for ambient lights in the space is used considering circadian rhythm for comfort. For the legibility, the immune system is used to control considering devices near the human depending on the distance between the human. Simulations and the demonstration were conducted to show the feasibility. Finally, the nerve system was intruded to enhance the system.

  17. An Operations Management System for the Space Station

    Science.gov (United States)

    Rosenthal, H. G.

    1986-09-01

    This paper presents an overview of the conceptual design of an integrated onboard Operations Management System (OMS). Both hardware and software concepts are presented and the integrated space station network is discussed. It is shown that using currently available software technology, an integrated software solution for Space Station management and control, implemented with OMS software, is feasible.

  18. Probabilistic structural analysis methods for space transportation propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.

    1991-01-01

    Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .

  19. User community development for the space transportation system/Skylab

    Science.gov (United States)

    Archer, J. L.; Beauchamp, N. A.

    1974-01-01

    The New User Function plan for identifying beneficial uses of space is described. Critical issues such as funding, manpower, and protection of user proprietary rights are discussed along with common barriers which impede the development of a user community. Studies for developing methodologies of identifying new users and uses of the space transportation system are included.

  20. The immune system in space, including Earth-based benefits of space-based research.

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-08-01

    Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.

  1. The school youth. Of the Training places to the Construction spaces senses

    Directory of Open Access Journals (Sweden)

    Jhon Fredy Vergara

    2013-02-01

    Full Text Available This text comes from an epistemological concerns and in turn guiding question on the role of the contemporary school and its importance in the development of training processes that go beyond the transmission of knowledge. The conception of the school as a meeting place where dialogue can collectively share life experiences, raises reflections on the role of individuals in the construction of knowledge and ways of life, while education takes on its own meaning and authentic to the extent that a school has to conceive that transcends institutional frameworks and regulatory regimes; it is a gamble to consider the condition of young individuals in habitats conducive intersubjective construction conversations to share life experiences and cotidianidades, turns out to be an exercise in collective construction of knowledge and affections.

  2. An Expert System Applied in Construction Water Quality Monitoring

    OpenAIRE

    Leila Ooshaksaraie; Noor E.A. Basri

    2011-01-01

    Problem statement: An untoward environmental impact of urban growth in Malaysia has been deterioration in a number of watercourses due to severe siltation and other pollutants from the construction site. Water quality monitoring is a plan for decision makers to take into account the adverse impacts of construction activities on the receiving water bodies. It is also a process for collecting the construction water quality monitoring, baseline data and standard level. Approa...

  3. Technological mediations in the city: from a notion of augmented urban space to the construction of a sense of connectedness by the collective experience

    Directory of Open Access Journals (Sweden)

    Julieta M. de V. LEITE

    2010-01-01

    Full Text Available This paper presents a contribution to the research on Information and Communication Technologies (ICT for the construction and share of urban experience. We illustrate our considerations with examples that combine dynamics of urban and virtual spaces according to a notion of augmented urban space. In this dynamics ICT function as mediators of the perception of space and social relations.

  4. Viability of a Reusable In-Space Transportation System

    Science.gov (United States)

    Jefferies, Sharon A.; McCleskey, Carey M.; Nufer, Brian M.; Lepsch, Roger A.; Merrill, Raymond G.; North, David D.; Martin, John G.; Komar, David R.

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing options for an Evolvable Mars Campaign (EMC) that expands human presence from Low Earth Orbit (LEO) into the solar system and to the surface of Mars. The Hybrid in-space transportation architecture is one option being investigated within the EMC. The architecture enables return of the entire in-space propulsion stage and habitat to cis-lunar space after a round trip to Mars. This concept of operations opens the door for a fully reusable Mars transportation system from cis-lunar space to a Mars parking orbit and back. This paper explores the reuse of in-space transportation systems, with a focus on the propulsion systems. It begins by examining why reusability should be pursued and defines reusability in space-flight context. A range of functions and enablers associated with preparing a system for reuse are identified and a vision for reusability is proposed that can be advanced and implemented as new capabilities are developed. Following this, past reusable spacecraft and servicing capabilities, as well as those currently in development are discussed. Using the Hybrid transportation architecture as an example, an assessment of the degree of reusability that can be incorporated into the architecture with current capabilities is provided and areas for development are identified that will enable greater levels of reuse in the future. Implications and implementation challenges specific to the architecture are also presented.

  5. Man--machine interface issues for space nuclear power systems

    International Nuclear Information System (INIS)

    Nelson, W.R.; Haugset, K.

    1991-01-01

    The deployment of nuclear reactors in space necessitates an entirely new set of guidelines for the design of the man--machine interface (MMI) when compared to earth-based applications such as commerical nuclear power plants. Although the design objectives of earth- and space-based nuclear power systems are the same, that is, to produce electrical power, the differences in the application environments mean that the operator's role will be significantly different for space-based systems. This paper explores the issues associated with establishing the necessary MMI guidelines for space nuclear power systems. The generic human performance requirements for space-based systems are described, and the operator roles that are utilized for the operation of current and advanced earth-based reactors are briefly summarized. The development of a prototype advanced control room, the Integrated Surveillance and Control System (ISACS) at the Organization for Economic Cooperation and Development (OECD) Halden Reactor Project is introduced. Finally, preliminary ideas for the use of the ISACS system as a test bed for establishing MMI guidelines for space nuclear systems are presented

  6. Wigner Functions for the Bateman System on Noncommutative Phase Space

    Science.gov (United States)

    Heng, Tai-Hua; Lin, Bing-Sheng; Jing, Si-Cong

    2010-09-01

    We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.

  7. Wigner Functions for the Bateman System on Noncommutative Phase Space

    International Nuclear Information System (INIS)

    Tai-Hua, Heng; Bing-Sheng, Lin; Si-Cong, Jing

    2010-01-01

    We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra

  8. Real Time Space Radiation Effects in Electronic Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The effects that solar particle events can have on operational electronic systems is a significant concern for all missions, but especially for those beyond Low...

  9. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  10. A probabilistic approach to safety/reliability of space nuclear power systems

    International Nuclear Information System (INIS)

    Medford, G.; Williams, K.; Kolaczkowski, A.

    1989-01-01

    An ongoing effort is investigating the feasibility of using probabilistic risk assessment (PRA) modeling techniques to construct a living model of a space nuclear power system. This is being done in conjunction with a traditional reliability and survivability analysis of the SP-100 space nuclear power system. The initial phase of the project consists of three major parts with the overall goal of developing a top-level system model and defining initiating events of interest for the SP-100 system. The three major tasks were performing a traditional survivability analysis, performing a simple system reliability analysis, and constructing a top-level system fault-tree model. Each of these tasks and their interim results are discussed in this paper. Initial results from the study support the conclusion that PRA modeling techniques can provide a valuable design and decision-making tool for space reactors. The ability of the model to rank and calculate relative contributions from various failure modes allows design optimization for maximum safety and reliability. Future efforts in the SP-100 program will see data development and quantification of the model to allow parametric evaluations of the SP-100 system. Current efforts have shown the need for formal data development and test programs within such a modeling framework

  11. Heat pump system with selective space cooling

    Science.gov (United States)

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  12. The endocrine system in space flight

    Science.gov (United States)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  13. Achieving the unlikely : innovating in the loosely coupled construction system

    NARCIS (Netherlands)

    Doree, Andries G.; Holmen, Elsebeth

    2004-01-01

    Previous research suggests that a characteristic of the construction industry is a lack of technological innovation. Since this is seen as a problem, much theoretical development within construction management focuses on explaining the lack of innovation. Less effort has been expended on using such

  14. Enhanced Geothermal Systems (EGS) Well Construction Technology Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Yarom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Capuano, Louis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finger, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huh, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knudsen, Steve [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chip, A.J. Mansure [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swanson, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-12-01

    This report provides an assessment of well construction technology for EGS with two primary objectives: 1. Determining the ability of existing technologies to develop EGS wells. 2. Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics.

  15. 8th symposium on space nuclear power systems

    International Nuclear Information System (INIS)

    Brandhorst, H. W.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems

  16. An economically viable space power relay system

    Science.gov (United States)

    Bekey, Ivan; Boudreault, Richard

    1999-09-01

    This paper describes and analyzes the economics of a power relay system that takes advantage of recent technological advances to implement a system that is economically viable. A series of power relay systems are described and analyzed which transport power ranging from 1,250 megawatts to 5,000 megawatts, and distribute it to receiving sites at transcontinental distances. Two classes of systems are discussed—those with a single reflector and delivering all the power to a single rectenna, and a second type which has multiple reflectors and distributes it to 10 rectenna sites, sharing power among them. It is shown that when offering electricity at prices competitive to those prevalent in developed cities in the US that a low IRR is inevitable, and economic feasibility of a business is unlikely. However, when the target market is Japan where the prevalent electricity prices are much greater, that an IRR exceeding 65% is readily attainable. This is extremely attractive to potential investors, making capitalization of a venture likely. The paper shows that the capital investment required for the system can be less than 1 per installed watt, contributing less than 0.02 /KW-hr to the cost of energy provision. Since selling prices in feasible regions range from 0.18 to over 030 $/kW-hr, these costs are but a small fraction of the operating expenses. Thus a very large IRR is possible for such a business.

  17. Heroic Reliability Improvement in Manned Space Systems

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    System reliability can be significantly improved by a strong continued effort to identify and remove all the causes of actual failures. Newly designed systems often have unexpected high failure rates which can be reduced by successive design improvements until the final operational system has an acceptable failure rate. There are many causes of failures and many ways to remove them. New systems may have poor specifications, design errors, or mistaken operations concepts. Correcting unexpected problems as they occur can produce large early gains in reliability. Improved technology in materials, components, and design approaches can increase reliability. The reliability growth is achieved by repeatedly operating the system until it fails, identifying the failure cause, and fixing the problem. The failure rate reduction that can be obtained depends on the number and the failure rates of the correctable failures. Under the strong assumption that the failure causes can be removed, the decline in overall failure rate can be predicted. If a failure occurs at the rate of lambda per unit time, the expected time before the failure occurs and can be corrected is 1/lambda, the Mean Time Before Failure (MTBF). Finding and fixing a less frequent failure with the rate of lambda/2 per unit time requires twice as long, time of 1/(2 lambda). Cutting the failure rate in half requires doubling the test and redesign time and finding and eliminating the failure causes.Reducing the failure rate significantly requires a heroic reliability improvement effort.

  18. Safety inspections in construction sites: A systems thinking perspective.

    Science.gov (United States)

    Saurin, Tarcisio Abreu

    2016-08-01

    Although safety inspections carried out by government officers are important for the prevention of accidents, there is little in-depth knowledge on their outcomes and processes leading to these. This research deals with this gap by using systems thinking (ST) as a lens for obtaining insights into safety inspections in construction sites. Thirteen case studies of sites with prohibited works were carried out, discussing how four attributes of ST were used in the inspections. The studies were undertaken over 6 years, and sources of evidence involved participant observation, direct observations, analysis of documents and interviews. Two complementary ways for obtaining insights into inspections, based on ST, were identified: (i) the design of the study itself needs to be in line with ST; and (ii) data collection and analysis should focus on the agents involved in the inspections, the interactions between agents, the constraints and opportunities faced by agents, the outcomes of interactions, and the recommendations for influencing interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Constructing optimized binary masks for reservoir computing with delay systems

    Science.gov (United States)

    Appeltant, Lennert; van der Sande, Guy; Danckaert, Jan; Fischer, Ingo

    2014-01-01

    Reservoir computing is a novel bio-inspired computing method, capable of solving complex tasks in a computationally efficient way. It has recently been successfully implemented using delayed feedback systems, allowing to reduce the hardware complexity of brain-inspired computers drastically. In this approach, the pre-processing procedure relies on the definition of a temporal mask which serves as a scaled time-mutiplexing of the input. Originally, random masks had been chosen, motivated by the random connectivity in reservoirs. This random generation can sometimes fail. Moreover, for hardware implementations random generation is not ideal due to its complexity and the requirement for trial and error. We outline a procedure to reliably construct an optimal mask pattern in terms of multipurpose performance, derived from the concept of maximum length sequences. Not only does this ensure the creation of the shortest possible mask that leads to maximum variability in the reservoir states for the given reservoir, it also allows for an interpretation of the statistical significance of the provided training samples for the task at hand.

  20. Misting-cooling systems for microclimatic control in public space

    OpenAIRE

    Nunes, Joao; Zoilo, Inaki; Jacinto, Nuno; Nunes, Ana; Torres-Campos, Tiago; Pacheco, Manuel; Fonseca, David

    2011-01-01

    Misting-cooling systems have been used in outdoor spaces mainly for aesthetic purposes, and punctual cooling achievement. However, they can be highly effective in outdoor spaces’ bioclimatic comfort, in terms of microclimatic control, as an evaporative cooling system. Recent concerns in increasing bioclimatic standards in public outdoor spaces, along with more sustainable practices, gave origin to reasoning where plastic principles are combined with the study of cooling efficacy, in order to ...