WorldWideScience

Sample records for space communications theory

  1. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  2. Communication theory

    DEFF Research Database (Denmark)

    Stein, Irene F.; Stelter, Reinhard

    2011-01-01

    Communication theory covers a wide variety of theories related to the communication process (Littlejohn, 1999). Communication is not simply an exchange of information, in which we have a sender and a receiver. This very technical concept of communication is clearly outdated; a human being...... is not a data processing device. In this chapter, communication is understood as a process of shared meaning-making (Bruner, 1990). Human beings interpret their environment, other people, and themselves on the basis of their dynamic interaction with the surrounding world. Meaning is essential because people...... ascribe specific meanings to their experiences, their actions in life or work, and their interactions. Meaning is reshaped, adapted, and transformed in every communication encounter. Furthermore, meaning is cocreated in dialogues or in communities of practice, such as in teams at a workplace or in school...

  3. A Future of Communication Theory: Systems Theory.

    Science.gov (United States)

    Lindsey, Georg N.

    Concepts of general systems theory, cybernetics and the like may provide the methodology for communication theory to move from a level of technology to a level of pure science. It was the purpose of this paper to (1) demonstrate the necessity of applying systems theory to the construction of communication theory, (2) review relevant systems…

  4. Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication

    Science.gov (United States)

    Heldman, Christopher

    2017-01-01

    Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.

  5. Climate change communication: what can we learn from communication theory?

    DEFF Research Database (Denmark)

    Ballantyne, Anne Gammelgaard

    2016-01-01

    the field of communication theory are highlighted and discussed in the context of communicating climate change. Rooted in the interaction paradigm, the article proposes a meta‐theoretical framework that conceptualizes communication as a constitutive process of producing and reproducing shared meanings...... as a theoretical construct. In some instances, communication theory appears reduced to an ‘ad hoc’ toolbox, from which theories are randomly picked to provide studies with a fitting framework. Inspired by the paradigm shift from transmission to interaction within communication theory, potential lessons from...

  6. Karl Marx & Communication @ 200: Towards a Marxian Theory of Communication

    Directory of Open Access Journals (Sweden)

    Christian Fuchs

    2018-05-01

    Full Text Available This contribution takes Marx’s bicentenary as occasion for reflecting on foundations of a Marxian theory of communication. It aims to show that Marx provides a consistent account as foundation for a critical, dialectical theory of communication. The article first discusses the relationship of communication and materialism in order to ground a communicative materialism that avoids the dualist assumption that communication is a superstructure erected on a material base. Second, the paper provides an overview of how Marx’s approach helps us to understand the role of the means of communication and communicative labour in capitalism. Third, it conceives of ideology as a form of fetishised communication and fetishism as ideological communication. Given that communicative capitalism is a significant dimension of contemporary society, it is about time to develop a Marxian theory of communication.

  7. Communicating through Probabilities: Does Quantum Theory Optimize the Transfer of Information?

    Directory of Open Access Journals (Sweden)

    William K. Wootters

    2013-08-01

    Full Text Available A quantum measurement can be regarded as a communication channel, in which the parameters of the state are expressed only in the probabilities of the outcomes of the measurement. We begin this paper by considering, in a non-quantum-mechanical setting, the problem of communicating through probabilities. For example, a sender, Alice, wants to convey to a receiver, Bob, the value of a continuous variable, θ, but her only means of conveying this value is by sending Bob a coin in which the value of θ is encoded in the probability of heads. We ask what the optimal encoding is when Bob will be allowed to flip the coin only a finite number of times. As the number of tosses goes to infinity, we find that the optimal encoding is the same as what nature would do if we lived in a world governed by real-vector-space quantum theory. We then ask whether the problem might be modified, so that the optimal communication strategy would be consistent with standard, complex-vector-space quantum theory.

  8. Diversity in Mass Communication Theory Courses.

    Science.gov (United States)

    Lasorsa, Dominic L.

    2002-01-01

    Shows how prominent mass communication theories can be employed to further knowledge of diversity-related issues. Provides examples of how diversity-related issues can be addressed in mass communication theory courses. Concludes that, by definition, mass communication must take into account diversity. (PM)

  9. Contemporary Advertising and Mass Communications Theories

    Directory of Open Access Journals (Sweden)

    Diogo Rógora Kawano

    2008-08-01

    Full Text Available From readings of classic works on communications theories, presented in Wolf (2005 and Mattelart and Mattelart (2000, in this work are presented the main theoretical reflections on communications theories that have contributed for the understanding of the processes in advertising and propaganda, in order to observe the most used theoretical lines in the area, as well as to point out other theories and less worked hypotheses in the studies of communication.

  10. Overlapping and permeability: Research on the pattern hierarchy of communication space and design strategy based on environmental behavior

    Science.gov (United States)

    Leilei, Sun; Liang, Zhang; Bing, Chen; Hong, Xi

    2017-11-01

    This thesis is to analyze the basic pattern hierarchy of communication space by using the theory of environmental psychology and behavior combined with relevant principles in architecture, to evaluate the design and improvement of communication space in specific meaning, and to bring new observation ideas and innovation in design methods to the system of space, environment and behavior.

  11. Toward a Unified Communication Theory.

    Science.gov (United States)

    McMillan, Saundra

    After discussing the nature of theory itself, the author explains her concept of the Unified Communication Theory, which rests on the assumption that there exists in all living structures a potential communication factor which is delimited by species and ontogeny. An organism develops "symbol fixation" at the level where its perceptual abilities…

  12. A communication-theory based view on telemedical communication.

    Science.gov (United States)

    Schall, Thomas; Roeckelein, Wolfgang; Mohr, Markus; Kampshoff, Joerg; Lange, Tim; Nerlich, Michael

    2003-01-01

    Communication theory based analysis sheds new light on the use of health telematics. This analysis of structures in electronic medical communication shows communicative structures with special features. Current and evolving telemedical applications are analyzed. The methodology of communicational theory (focusing on linguistic pragmatics) is used to compare it with its conventional counterpart. The semiotic model, the roles of partners, the respective message and their relation are discussed. Channels, sender, addressee, and other structural roles are analyzed for different types of electronic medical communication. The communicative processes are shown as mutual, rational action towards a common goal. The types of communication/texts are analyzed in general. Furthermore the basic communicative structures of medical education via internet are presented with their special features. The analysis shows that electronic medical communication has special features compared to everyday communication: A third participant role often is involved: the patient. Messages often are addressed to an unspecified partner or to an unspecified partner within a group. Addressing in this case is (at least partially) role-based. Communication and message often directly (rather than indirectly) influence actions of the participants. Communication often is heavily regulated including legal implications like liability, and more. The conclusion from the analysis is that the development of telemedical applications so far did not sufficiently take communicative structures into consideration. Based on these results recommendations for future developments of telemedical applications/services are given.

  13. NASA's current activities in free space optical communications

    Science.gov (United States)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  14. The Forgotten Marxist Theory of Communication & Society

    Directory of Open Access Journals (Sweden)

    Horst Holzer

    2017-07-01

    Horst Holzer (1935-2000 was a German sociologist and communication theorist. He contributed to the formation and development of the critique of the political economy of media and communication in the German-speaking world. Holzer used Marxist theory for the analysis of the relationship between capitalism and communication. Given his pioneering intellectual role in the development of the critique of the political economy of communication in the German-speaking world, it is not an understatement to say that Horst Holzer is Germany’s Dallas Smythe. Holzer lived and worked in Munich and published twenty German books. The focus of Holzer’s writings was in general on communication theory, the sociology of communication, as well as on capitalism and communication. In particular, his books were about the ideology and political economy of magazines, newspapers, radio and television; public sphere theory, sociological theories, children and television, and surveillance.

  15. Distributed communication: Implications of cultural-historical activity theory (CHAT) for communication disorders.

    Science.gov (United States)

    Hengst, Julie A

    2015-01-01

    This article proposes distributed communication as a promising theoretical framework for building supportive environments for child language development. Distributed communication is grounded in an emerging intersection of cultural-historical activity theory (CHAT) and theories of communicative practices that argue for integrating accounts of language, cognition and culture. The article first defines and illustrates through selected research articles, three key principles of distributed communication: (a) language and all communicative resources are inextricably embedded in activity; (b) successful communication depends on common ground built up through short- and long-term histories of participation in activities; and (c) language cannot act alone, but is always orchestrated with other communicative resources. It then illustrates how these principles are fully integrated in everyday interactions by drawing from my research on Cindy Magic, a verbal make-believe game played by a father and his two daughters. Overall, the research presented here points to the remarkably complex communicative environments and sophisticated forms of distributed communication children routinely engage in as they interact with peer and adult communication partners in everyday settings. The article concludes by considering implications of these theories for, and examples of, distributed communication relevant to clinical intervention. Readers will learn about (1) distributed communication as a conceptual tool grounded in an emerging intersection of cultural-historical activity theory and theories of communicative practices and (2) how to apply distributed communication to the study of child language development and to interventions for children with communication disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Communication Theory.

    Science.gov (United States)

    Penland, Patrick R.

    Three papers are presented which delineate the foundation of theory and principles which underlie the research and instructional approach to communications at the Graduate School of Library and Information Science, University of Pittsburgh. Cybernetic principles provide the integration, and validation is based in part on a situation-producing…

  17. Space industrialization - Education. [via communication satellites

    Science.gov (United States)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  18. A practitioner's guide to interpersonal communication theory: an overview and exploration of selected theories.

    Science.gov (United States)

    Bylund, Carma L; Peterson, Emily B; Cameron, Kenzie A

    2012-06-01

    To provide a brief overview of selected interpersonal theories and models, and to present examples of their use in healthcare communication research. Nine interpersonal communication theories and their application to healthcare communication are discussed. As healthcare communication interactions often occur at an interpersonal level, familiarity with theories of interpersonal communication may reinforce existing best practices and lead to the development of novel communication approaches with patients. This article serves as an introductory primer to theories of interpersonal communication that have been or could be applied to healthcare communication research. Understanding key constructs and general formulations of these theories may provide practitioners with additional theoretical frameworks to use when interacting with patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Religion and Communication Spaces. A Semio-pragmatic Approach

    Directory of Open Access Journals (Sweden)

    Roger Odin

    2015-11-01

    Full Text Available Following the reflection initiated in his book The Spaces of Communication, Roger Odin suggests a new distinction between physical communication spaces and mental communication spaces (spaces that we have inside us. The suggestion is exemplified by three film analyses dedicated to the relationships between religion and communication.

  20. Theory and experiments in model-based space system anomaly management

    Science.gov (United States)

    Kitts, Christopher Adam

    This research program consists of an experimental study of model-based reasoning methods for detecting, diagnosing and resolving anomalies that occur when operating a comprehensive space system. Using a first principles approach, several extensions were made to the existing field of model-based fault detection and diagnosis in order to develop a general theory of model-based anomaly management. Based on this theory, a suite of algorithms were developed and computationally implemented in order to detect, diagnose and identify resolutions for anomalous conditions occurring within an engineering system. The theory and software suite were experimentally verified and validated in the context of a simple but comprehensive, student-developed, end-to-end space system, which was developed specifically to support such demonstrations. This space system consisted of the Sapphire microsatellite which was launched in 2001, several geographically distributed and Internet-enabled communication ground stations, and a centralized mission control complex located in the Space Technology Center in the NASA Ames Research Park. Results of both ground-based and on-board experiments demonstrate the speed, accuracy, and value of the algorithms compared to human operators, and they highlight future improvements required to mature this technology.

  1. Transition From NASA Space Communication Systems to Commerical Communication Products

    Science.gov (United States)

    Ghazvinian, Farzad; Lindsey, William C.

    1994-01-01

    Transitioning from twenty-five years of space communication system architecting, engineering and development to creating and marketing of commercial communication system hardware and software products is no simple task for small, high-tech system engineering companies whose major source of revenue has been the U.S. Government. Yet, many small businesses are faced with this onerous and perplexing task. The purpose of this talk/paper is to present one small business (LinCom) approach to taking advantage of the systems engineering expertise and knowledge captured in physical neural networks and simulation software by supporting numerous National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) projects, e.g., Space Shuttle, TDRSS, Space Station, DCSC, Milstar, etc. The innovative ingredients needed for a systems house to transition to a wireless communication system products house that supports personal communication services and networks (PCS and PCN) development in a global economy will be discussed. Efficient methods for using past government sponsored space system research and development to transition to VLSI communication chip set products will be presented along with notions of how synergy between government and industry can be maintained to benefit both parties.

  2. Optical space communication: An overview

    International Nuclear Information System (INIS)

    Jain, V.K.

    1994-01-01

    In this paper, importance of the optical space communication has been highlighted. Its merits and demerits over the conventional microwave system has been presented. In contrast to coherent systems, use of an optical preamplifier in direct detection system has been emphasized. Status of some of the ongoing/future space communication projects has been given. (author). 9 refs, 5 figs

  3. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  4. The Nonlinear Field Space Theory

    International Nuclear Information System (INIS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-01-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  5. A practitioner’s guide to interpersonal communication theory: An overview and exploration of selected theories

    Science.gov (United States)

    Bylund, Carma L.; Peterson, Emily B.; Cameron, Kenzie A.

    2011-01-01

    Objective To provide a brief overview of selected interpersonal theories and models, and to present examples of their use in healthcare communication research. Results Nine interpersonal communication theories and their application to healthcare communication are discussed. Conclusion As healthcare communication interactions often occur at an interpersonal level, familiarity with theories of interpersonal communication may reinforce existing best practices and lead to the development of novel communication approaches with patients. Practice Implications This article serves as an introductory primer to theories of interpersonal communication that have been or could be applied to healthcare communication research. Understanding key constructs and general formulations of these theories may provide practitioners with additional theoretical frameworks to use when interacting with patients. PMID:22112396

  6. Social theories for strategic communication

    NARCIS (Netherlands)

    Ihlen, Ø.; Verhoeven, P.; Holtzhausen, D.; Zerfass, A.

    2015-01-01

    Social theory provides strategic communication with a basic understanding of the societal role of the practice, and its ethical and political consequences. This chapter draws out some key conclusions based on a wide reading of social theory approaches. First of all, building on social theory means

  7. The human communication space towards I-centric communications

    CERN Document Server

    Arbanowski, S; Steglich, S; Popescu-Zeletin, R

    2001-01-01

    A variety of concepts for service integration and corresponding systems have been developed. On one hand, they aim for the interworking and integration of classical telecommunications and data communications services. On the other, they are focusing on universal service access from a variety of end-user systems. Many of the technical problems, resulting from service integration and service personalisation, have been solved. However, all these systems are driven by the concept of providing several technologies to users by keeping the peculiarity of each service. Looking at human communication behaviour and communication space, it is obvious that human beings interact habitually in a set of contexts with their environment. The individual information preferences and needs, persons to interact with, and the set of devices controlled by each individual define their personal communication space. Following this view, a new approach is to build communication systems not on the basis of specific technologies, but on t...

  8. A primer on Hilbert space theory linear spaces, topological spaces, metric spaces, normed spaces, and topological groups

    CERN Document Server

    Alabiso, Carlo

    2015-01-01

    This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...

  9. Communication spaces.

    Science.gov (United States)

    Coiera, Enrico

    2014-01-01

    Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, 'programming through annotation'. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment.

  10. Silicon Photonics for Space Communications

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is aimed to address level two "Optical Communication and Navigation" needs within the "5.0 Communications, Navigation, and Orbital Debris Tracking and...

  11. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  12. Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non Kolmogorov strong turbulence

    International Nuclear Information System (INIS)

    Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun

    2011-01-01

    In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.

  13. Communicative versus strategic rationality: Habermas theory of communicative action and the social brain.

    Science.gov (United States)

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael; Denke, Claudia

    2013-01-01

    In the philosophical theory of communicative action, rationality refers to interpersonal communication rather than to a knowing subject. Thus, a social view of rationality is suggested. The theory differentiates between two kinds of rationality, the emancipative communicative and the strategic or instrumental reasoning. Using experimental designs in an fMRI setting, recent studies explored similar questions of reasoning in the social world and linked them with a neural network including prefrontal and parietal brain regions. Here, we employed an fMRI approach to highlight brain areas associated with strategic and communicative reasoning according to the theory of communicative action. Participants were asked to assess different social scenarios with respect to communicative or strategic rationality. We found a network of brain areas including temporal pole, precuneus, and STS more activated when participants performed communicative reasoning compared with strategic thinking and a control condition. These brain regions have been previously linked to moral sensitivity. In contrast, strategic rationality compared with communicative reasoning and control was associated with less activation in areas known to be related to moral sensitivity, emotional processing, and language control. The results suggest that strategic reasoning is associated with reduced social and emotional cognitions and may use different language related networks. Thus, the results demonstrate experimental support for the assumptions of the theory of communicative action.

  14. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  15. What Communication Theories Can Teach the Designer of Computer-Based Training.

    Science.gov (United States)

    Larsen, Ronald E.

    1985-01-01

    Reviews characteristics of computer-based training (CBT) that make application of communication theories appropriate and presents principles from communication theory (e.g., general systems theory, symbolic interactionism, rule theories, and interpersonal communication theories) to illustrate how CBT developers can profitably apply them to…

  16. Fixed point theory in metric type spaces

    CERN Document Server

    Agarwal, Ravi P; O’Regan, Donal; Roldán-López-de-Hierro, Antonio Francisco

    2015-01-01

    Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise natur...

  17. PUTTING COMMUNICATION FRONT AND CENTER IN INSTITUTIONAL THEORY AND ANALYSIS

    NARCIS (Netherlands)

    Cornelissen, J.P.; Durand, R.; Fiss, P.C.; Lammers, J.C.; Vaara, E.

    2015-01-01

    We conceptualize the roots of cognitive, linguistic, and communicative theories of institutions and outline the promise and potential of a stronger communication focus for institutional theory. In particular, we outline a theoretical approach that puts communication at the heart of theories of

  18. Practical impact of group communication theory

    OpenAIRE

    Schiper, A.

    2003-01-01

    Practical impact of group communication theory Andre Schiper Group communication is an important topic in fault-tolerant distributed applications. The paper summarizes the main contributions of practical importance that contributed to our current understanding of group communication. These contributions are classified into ''abstractions'' and ''specifications'', ''paradigms'', ''system models'', ''algorithms'', and ''theoretical results''. Some open issues are discussed at the end of the ...

  19. Topological Rankings in Communication Networks

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard; Træholt, Chresten

    2015-01-01

    In the theory of communication the central problem is to study how agents exchange information. This problem may be studied using the theory of connected spaces in topology, since a communication network can be modelled as a topological space such that agents can communicate if and only...... if they belong to the same path connected component of that space. In order to study combinatorial properties of such a communication network, notions from algebraic topology are applied. This makes it possible to determine the shape of a network by concrete invariants, e.g. the number of connected components...

  20. Noncommutative induced gauge theories on Moyal spaces

    International Nuclear Information System (INIS)

    Wallet, J-C

    2008-01-01

    Noncommutative field theories on Moyal spaces can be conveniently handled within a framework of noncommutative geometry. Several renormalisable matter field theories that are now identified are briefly reviewed. The construction of renormalisable gauge theories on these noncommutative Moyal spaces, which remains so far a challenging problem, is then closely examined. The computation in 4-D of the one-loop effective gauge theory generated from the integration over a scalar field appearing in a renormalisable theory minimally coupled to an external gauge potential is presented. The gauge invariant effective action is found to involve, beyond the expected noncommutative version of the pure Yang-Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic term, which for the noncommutative ψ 4 -theory on Moyal space ensures renormalisability. A class of possible candidates for renormalisable gauge theory actions defined on Moyal space is presented and discussed

  1. Systems Theory and Communication. Annotated Bibliography.

    Science.gov (United States)

    Covington, William G., Jr.

    This annotated bibliography presents annotations of 31 books and journal articles dealing with systems theory and its relation to organizational communication, marketing, information theory, and cybernetics. Materials were published between 1963 and 1992 and are listed alphabetically by author. (RS)

  2. Beaconless Pointing for Deep-Space Optical Communication

    Science.gov (United States)

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  3. Quantum communication, reference frames, and gauge theory

    International Nuclear Information System (INIS)

    Enk, S. J. van

    2006-01-01

    We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model

  4. Non-Gaussian Statistical Communication Theory

    CERN Document Server

    Middleton, David

    2012-01-01

    The book is based on the observation that communication is the central operation of discovery in all the sciences. In its "active mode" we use it to "interrogate" the physical world, sending appropriate "signals" and receiving nature's "reply". In the "passive mode" we receive nature's signals directly. Since we never know a prioriwhat particular return signal will be forthcoming, we must necessarily adopt a probabilistic model of communication. This has developed over the approximately seventy years since it's beginning, into a Statistical Communication Theory (or SCT). Here it is the set or

  5. Communication theory

    CERN Document Server

    Goldie, Charles M

    1991-01-01

    This book is an introduction, for mathematics students, to the theories of information and codes. They are usually treated separately but, as both address the problem of communication through noisy channels (albeit from different directions), the authors have been able to exploit the connection to give a reasonably self-contained treatment, relating the probabilistic and algebraic viewpoints. The style is discursive and, as befits the subject, plenty of examples and exercises are provided. Some examples and exercises are provided. Some examples of computer codes are given to provide concrete illustrations of abstract ideas.

  6. Communicating space weather to policymakers and the wider public

    Science.gov (United States)

    Ferreira, Bárbara

    2014-05-01

    As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.

  7. Space weather effects on communications

    Science.gov (United States)

    Lanzerotti, Louis J.

    In the 150 years since the advent of the first electrical communication system - the electrical telegraph - the diversity of communications technologies that are embedded within space-affected environments have vastly increased. The increasing sophistication of these communications technologies, and how their installation and operations may relate to the environments in which they are embedded, requires ever more sophisticated understanding of natural physical phenomena. At the same time, the business environment for most present-day communications technologies that are affected by space phenomena is very dynamic. The commercial and national security deployment and use of these technologies do not wait for optimum knowledge of possible environmental effects to be acquired before new technological embodiments are created, implemented, and marketed. Indeed, those companies that might foolishly seek perfectionist understanding of natural effects can be left behind by the marketplace. A well-considered balance is needed between seeking ever deeper understanding of physical phenomena and implementing `engineering' solutions to current crises. The research community must try to understand, and operate in, this dynamic environment.

  8. 47 CFR 25.273 - Duties regarding space communications transmissions.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Duties regarding space communications transmissions. 25.273 Section 25.273 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.273 Duties regarding space...

  9. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients

    Science.gov (United States)

    Shiozaki, Toru; Győrffy, Werner; Celani, Paolo; Werner, Hans-Joachim

    2011-08-01

    The extended multireference quasi-degenerate perturbation theory, proposed by Granovsky [J. Chem. Phys. 134, 214113 (2011)], is combined with internally contracted multi-state complete active space second-order perturbation theory (XMS-CASPT2). The first-order wavefunction is expanded in terms of the union of internally contracted basis functions generated from all the reference functions, which guarantees invariance of the theory with respect to unitary rotations of the reference functions. The method yields improved potentials in the vicinity of avoided crossings and conical intersections. The theory for computing nuclear energy gradients for MS-CASPT2 and XMS-CASPT2 is also presented and the first implementation of these gradient methods is reported. A number of illustrative applications of the new methods are presented.

  10. Free-space communication with over 100 spatial modes

    CSIR Research Space (South Africa)

    Rosales-Guzmán, C

    2016-10-01

    Full Text Available Congress 2016: Advanced Solid State Lasers (ASSL); Applications of Lasers for Sensing and Free Space Communications (LS&C), 30 October - 3 November 2016, Boston, Massachusetts, United States Free-space communication with over 100 spatial modes...

  11. Quantum relativity theory and quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1984-01-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)

  12. Topics in Banach space theory

    CERN Document Server

    Albiac, Fernando

    2016-01-01

    This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous f...

  13. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    Wendland, K.

    2000-08-01

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  14. Research on Retro-reflecting Modulation in Space Optical Communication System

    Science.gov (United States)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  15. Communications among elements of a space construction ensemble

    Science.gov (United States)

    Davis, Randal L.; Grasso, Christopher A.

    1989-01-01

    Space construction projects will require careful coordination between managers, designers, manufacturers, operators, astronauts, and robots with large volumes of information of varying resolution, timeliness, and accuracy flowing between the distributed participants over computer communications networks. Within the CSC Operations Branch, we are researching the requirements and options for such communications. Based on our work to date, we feel that communications standards being developed by the International Standards Organization, the CCITT, and other groups can be applied to space construction. We are currently studying in depth how such standards can be used to communicate with robots and automated construction equipment used in a space project. Specifically, we are looking at how the Manufacturing Automation Protocol (MAP) and the Manufacturing Message Specification (MMS), which tie together computers and machines in automated factories, might be applied to space construction projects. Together with our CSC industrial partner Computer Technology Associates, we are developing a MAP/MMS companion standard for space construction and we will produce software to allow the MAP/MMS protocol to be used in our CSC operations testbed.

  16. Quantum theory in complex Hilbert space

    International Nuclear Information System (INIS)

    Sharma, C.S.

    1988-01-01

    The theory of complexification of a real Hilbert space as developed by the author is scrutinized with the aim of explaining why quantum theory should be done in a complex Hilbert space in preference to real Hilbert space. It is suggested that, in order to describe periodic motions in stationary states of a quantum system, the mathematical object modelling a state of a system should have enough points in it to be able to describe explicit time dependence of a periodic motion without affecting the probability distributions of observables. Heuristic evidence for such an assumption comes from Dirac's theory of interaction between radiation and matter. If the assumption is adopted as a requirement on the mathematical model for a quantum system, then a real Hilbert space is ruled out in favour of a complex Hilbert space for a possible model for such a system

  17. Hiding in plain sight: communication theory in implementation science.

    Science.gov (United States)

    Manojlovich, Milisa; Squires, Janet E; Davies, Barbara; Graham, Ian D

    2015-04-23

    Poor communication among healthcare professionals is a pressing problem, contributing to widespread barriers to patient safety. The word "communication" means to share or make common. In the literature, two communication paradigms dominate: (1) communication as a transactional process responsible for information exchange, and (2) communication as a transformational process responsible for causing change. Implementation science has focused on information exchange attributes while largely ignoring transformational attributes of communication. In this paper, we debate the merits of encompassing both paradigms. We conducted a two-staged literature review searching for the concept of communication in implementation science to understand how communication is conceptualized. Twenty-seven theories, models, or frameworks were identified; only Rogers' Diffusion of Innovations theory provides a definition of communication and includes both communication paradigms. Most models (notable exceptions include Diffusion of Innovations, The Ottawa Model of Research Use, and Normalization Process Theory) describe communication as a transactional process. But thinking of communication solely as information transfer or exchange misrepresents reality. We recommend that implementation science theories (1) propose and test the concept of shared understanding when describing communication, (2) acknowledge that communication is multi-layered, identify at least a few layers, and posit how identified layers might affect the development of shared understanding, (3) acknowledge that communication occurs in a social context, providing a frame of reference for both individuals and groups, (4) acknowledge the unpredictability of communication (and healthcare processes in general), and (5) engage with and draw on work done by communication theorists. Implementation science literature has conceptualized communication as a transactional process (when communication has been mentioned at all), thereby

  18. Challenges of Integrating NASA's Space Communications Networks

    Science.gov (United States)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  19. Challenges of Integrating NASAs Space Communication Networks

    Science.gov (United States)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  20. Linear spaces: history and theory

    OpenAIRE

    Albrecht Beutelspracher

    1990-01-01

    Linear spaces belong to the most fundamental geometric and combinatorial structures. In this paper I would like to give an onerview about the theory of embedding finite linear spaces in finite projective planes.

  1. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    Science.gov (United States)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  2. Downlink Fiber Laser Transmitter for Deep Space Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Space Communications and Navigation (SCaN) roadmap, calls for an integrated network approach to communication and navigation needs for robotic and human space...

  3. The theory of space, time and gravitation

    CERN Document Server

    Fock, V

    2015-01-01

    The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two iner

  4. Phase-space quantization of field theory

    International Nuclear Information System (INIS)

    Curtright, T.; Zachos, C.

    1999-01-01

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999

  5. User Needs and Advances in Space Wireless Sensing and Communications

    Science.gov (United States)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions

  6. Applying Distributed Learning Theory in Online Business Communication Courses.

    Science.gov (United States)

    Walker, Kristin

    2003-01-01

    Focuses on the critical use of technology in online formats that entail relatively new teaching media. Argues that distributed learning theory is valuable for teachers of online business communication courses for several reasons. Discusses the application of distributed learning theory to the teaching of business communication online. (SG)

  7. Geometry of Theory Space and RG Flows

    Science.gov (United States)

    Kar, Sayan

    The space of couplings of a given theory is the arena of interest in this article. Equipped with a metric ansatz akin to the Fisher information matrix in the space of parameters in statistics (similar metrics in physics are the Zamolodchikov metric or the O'Connor-Stephens metric) we investigate the geometry of theory space through a study of specific examples. We then look into renormalisation group flows in theory space and make an attempt to characterise such flows via its isotropic expansion, rotation and shear. Consequences arising from the evolution equation for the isotropic expansion are discussed. We conclude by pointing out generalisations and pose some open questions.

  8. The museum foyer as a transformative space of communication

    DEFF Research Database (Denmark)

    Laursen, Ditte; Kristiansen, Erik; Drotner, Kirsten

    2016-01-01

    has four transformative functions, and we ask the following question: How do people entering the museum practise these transformative functions so as to become visitors – and become non-visitors again on leaving? Answers are provided through an empirical analysis of the foyer as a transformative...... communicative space. Based on qualitative studies of four divergent Danish museums and a science centre, we demonstrate that the foyer’s communicative space supports transformative functions consisting of multiple phases before and after the visit itself, namely arrival–orientation–service–preparation (before......This article explores how we may study physical museum foyers as multilayered spaces of communication. Based on a critical examination of ways in which the museum foyer is conceptualised in the research literature, we define the foyer as a transformative space of communication for visitors which...

  9. Pure Relationality as a Sociological Theory of Communication

    Directory of Open Access Journals (Sweden)

    Sam Whimster

    2018-01-01

    Full Text Available In order to explain the success of populist politicians use of social media, we need to subtract the social from relationality and separate social relationships from network theory applications. A pure theory of relationality is suggested by Werner Heisenberg’s breakthrough in quantum mechanics. It is argued that sociology, to its detriment, has failed to incorporate a theory of communication, one adequate to the explosion of social media and the recent rise of populist politics, here instanced by Donald Trump. Realizing the underlying importance of communication technology in all social relationships, and treating these two aspects in a complementary fashion, is the purpose of this essay in sociological theory.

  10. The space-time model according to dimensional continuous space-time theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2014-01-01

    This article results from the Dimensional Continuous Space-Time Theory for which the introductory theoretician was presented in [1]. A theoretical model of the Continuous Space-Time is presented. The wave equation of time into absolutely stationary empty space referential will be described in detail. The complex time, that is the time fixed on the infinite phase time speed referential, is deduced from the New View of Relativity Theory that is being submitted simultaneously with this article in this congress. Finally considering the inseparable Space-Time is presented the duality equation wave-particle.

  11. Introducing the Dimensional Continuous Space-Time Theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2013-01-01

    This article is an introduction to a new theory. The name of the theory is justified by the dimensional description of the continuous space-time of the matter, energy and empty space, that gathers all the real things that exists in the universe. The theory presents itself as the consolidation of the classical, quantum and relativity theories. A basic equation that describes the formation of the Universe, relating time, space, matter, energy and movement, is deduced. The four fundamentals physics constants, light speed in empty space, gravitational constant, Boltzmann's constant and Planck's constant and also the fundamentals particles mass, the electrical charges, the energies, the empty space and time are also obtained from this basic equation. This theory provides a new vision of the Big-Bang and how the galaxies, stars, black holes and planets were formed. Based on it, is possible to have a perfect comprehension of the duality between wave-particle, which is an intrinsic characteristic of the matter and energy. It will be possible to comprehend the formation of orbitals and get the equationing of atomics orbits. It presents a singular comprehension of the mass relativity, length and time. It is demonstrated that the continuous space-time is tridimensional, inelastic and temporally instantaneous, eliminating the possibility of spatial fold, slot space, worm hole, time travels and parallel universes. It is shown that many concepts, like dark matter and strong forces, that hypothetically keep the cohesion of the atomics nucleons, are without sense.

  12. A Listener's Perspective: Using Communication Theory and Practice to Reframe Persuasion in the Communication Classroom

    Science.gov (United States)

    Toon, Kellie L.; Wright, Courtney N.

    2013-01-01

    Social influence is presented throughout the communication curriculum, from the introductory public speaking course to upper-level courses devoted to communication theory and advanced study of persuasion. Within the progression of these courses, there is often a shift in emphasis from practice to theory. For example, the public speaking course is…

  13. Information theory and rate distortion theory for communications and compression

    CERN Document Server

    Gibson, Jerry

    2013-01-01

    This book is very specifically targeted to problems in communications and compression by providing the fundamental principles and results in information theory and rate distortion theory for these applications and presenting methods that have proved and will prove useful in analyzing and designing real systems. The chapters contain treatments of entropy, mutual information, lossless source coding, channel capacity, and rate distortion theory; however, it is the selection, ordering, and presentation of the topics within these broad categories that is unique to this concise book. While the cover

  14. Free-space communication based on quantum cascade laser

    International Nuclear Information System (INIS)

    Liu Chuanwei; Zhai Shenqiang; Zhang Jinchuan; Zhou Yuhong; Jia Zhiwei; Liu Fengqi; Wang Zhanguo

    2015-01-01

    A free-space communication based on a mid-infrared quantum cascade laser (QCL) is presented. A room-temperature continuous-wave distributed-feedback (DFB) QCL combined with a mid-infrared detector comprise the basic unit of the communication system. Sinusoidal signals at a highest frequency of 40 MHz and modulated video signals with a carrier frequency of 30 MHz were successfully transmitted with this experimental setup. Our research has provided a proof-of-concept demonstration of space optical communication application with QCL. The highest operation frequency of our setup was determined by the circuit-limited modulation bandwidth. A high performance communication system can be obtained with improved modulation circuit system. (paper)

  15. The topology of moduli space and quantum field theory

    International Nuclear Information System (INIS)

    Montano, D.; Sonnenschein, J.

    1989-01-01

    We show how an SO(2,1) gauge theory with a fermionic symmetry may be used to describe the topology of the moduli space of curves. The observables of the theory correspond to the generators of the cohomology of moduli space. This is an extension of the topological quantum field theory introduced by Witten to investigate the cohomology of Yang-Mills instanton moduli space. We explore the basic structure of topological quantum field theories, examine a toy U(1) model, and then realize a full theory of moduli space topology. We also discuss why a pure gravity theory, as attempted in previous work, could not succeed. (orig.)

  16. CULTURAL GLOBALISATION AND CHALLENGES TO TRADITIONAL COMMUNICATION THEORIES

    Directory of Open Access Journals (Sweden)

    Lauren Movius

    2010-01-01

    Full Text Available This article reviews existing traditional media theories, and analyses the challenges that the current developments of globalisation present to them. The article provides a short history of the concept of globalisation, and reviews the primary theoretical approaches to globalisation that are critical to communication scholars. The article also examines how globalisation challenges the ways in which media and communication have traditionally been theorised. Specifically, the cultural imperialism theory is discussed, as well as the main challenges to the theory. Audience reception studies, which focus on how audiences negotiate meaning differently in specific cultural contexts, are highlighted as the key critique of cultural imperialism

  17. Physician communication in the operating room: expanding application of face-negotiation theory to the health communication context.

    Science.gov (United States)

    Kirschbaum, Kristin

    2012-01-01

    Communication variables that are associated with face-negotiation theory were examined in a sample of operating-room physicians. A survey was administered to anesthesiologists and surgeons at a teaching hospital in the southwestern United States to measure three variables commonly associated with face-negotiation theory: conflict-management style, face concern, and self-construal. The survey instrument that was administered to physicians includes items that measured these three variables in previous face-negotiation research with slight modification of item wording for relevance in the medical setting. The physician data were analyzed using confirmatory factor analysis, Pearson's correlations, and t-tests. Results of this initial investigation showed that variables associated with face-negotiation theory were evident in the sample physician population. In addition, the correlations were similar among variables in the medical sample as those found in previous face-negotiation research. Finally, t-tests suggest variance between anesthesiologists and surgeons on specific communication variables. These findings suggest three implications that warrant further investigation with expanded sample size: (1) An intercultural communication theory and instrument can be utilized for health communication research; (2) as applied in a medical context, face-negotiation theory can be expanded beyond traditional intercultural communication boundaries; and (3) theoretically based communication structures applied in a medical context could help explain physician miscommunication in the operating room to assist future design of communication training programs for operating-room physicians.

  18. Spin Gauge Theory of Gravity in Clifford Space

    International Nuclear Information System (INIS)

    Pavsic, Matej

    2006-01-01

    A theory in which 16-dimensional curved Clifford space (C-space) provides a realization of Kaluza-Klein theory is investigated. No extra dimensions of spacetime are needed: 'extra dimensions' are in C-space. We explore the spin gauge theory in C-space and show that the generalized spin connection contains the usual 4-dimensional gravity and Yang-Mills fields of the U(1) x SU(2) x SU(3) gauge group. The representation space for the latter group is provided by 16-component generalized spinors composed of four usual 4-component spinors, defined geometrically as the members of four independent minimal left ideals of Clifford algebra

  19. The new Big Bang Theory according to dimensional continuous space-time theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2014-01-01

    This New View of the Big Bang Theory results from the Dimensional Continuous Space-Time Theory, for which the introduction was presented in [1]. This theory is based on the concept that the primitive Universe before the Big Bang was constituted only from elementary cells of potential energy disposed side by side. In the primitive Universe there were no particles, charges, movement and the Universe temperature was absolute zero Kelvin. The time was always present, even in the primitive Universe, time is the integral part of the empty space, it is the dynamic energy of space and it is responsible for the movement of matter and energy inside the Universe. The empty space is totally stationary; the primitive Universe was infinite and totally occupied by elementary cells of potential energy. In its event, the Big Bang started a production of matter, charges, energy liberation, dynamic movement, temperature increase and the conformation of galaxies respecting a specific formation law. This article presents the theoretical formation of the Galaxies starting from a basic equation of the Dimensional Continuous Space-time Theory.

  20. The New Big Bang Theory according to Dimensional Continuous Space-Time Theory

    Science.gov (United States)

    Martini, Luiz Cesar

    2014-04-01

    This New View of the Big Bang Theory results from the Dimensional Continuous Space-Time Theory, for which the introduction was presented in [1]. This theory is based on the concept that the primitive Universe before the Big Bang was constituted only from elementary cells of potential energy disposed side by side. In the primitive Universe there were no particles, charges, movement and the Universe temperature was absolute zero Kelvin. The time was always present, even in the primitive Universe, time is the integral part of the empty space, it is the dynamic energy of space and it is responsible for the movement of matter and energy inside the Universe. The empty space is totally stationary; the primitive Universe was infinite and totally occupied by elementary cells of potential energy. In its event, the Big Bang started a production of matter, charges, energy liberation, dynamic movement, temperature increase and the conformation of galaxies respecting a specific formation law. This article presents the theoretical formation of the Galaxies starting from a basic equation of the Dimensional Continuous Space-time Theory.

  1. Recasting Communication Theory and Research: A Cybernetic Approach.

    Science.gov (United States)

    Hill, Gary A.

    The author's main concern is to provide a research format which will supply a unitary conception of communication. The wide range of complex topics and variety of concepts embraced by communication theory and the rather disparate set of phenomena encompassed by communication research create this need for a unitary study approach capable of linking…

  2. Software Defined Radio Architecture Contributions to Next Generation Space Communications

    Science.gov (United States)

    Kacpura, Thomas J.; Eddy, Wesley M.; Smith, Carl R.; Liebetreu, John

    2015-01-01

    Space communications architecture concepts, comprising the elements of the system, the interactions among them, and the principles that govern their development, are essential factors in developing National Aeronautics and Space Administration (NASA) future exploration and science missions. Accordingly, vital architectural attributes encompass flexibility, the extensibility to insert future capabilities, and to enable evolution to provide interoperability with other current and future systems. Space communications architectures and technologies for this century must satisfy a growing set of requirements, including those for Earth sensing, collaborative observation missions, robotic scientific missions, human missions for exploration of the Moon and Mars where surface activities require supporting communications, and in-space observatories for observing the earth, as well as other star systems and the universe. An advanced, integrated, communications infrastructure will enable the reliable, multipoint, high-data-rate capabilities needed on demand to provide continuous, maximum coverage for areas of concentrated activity. Importantly, the cost/value proposition of the future architecture must be an integral part of its design; an affordable and sustainable architecture is indispensable within anticipated future budget environments. Effective architecture design informs decision makers with insight into the capabilities needed to efficiently satisfy the demanding space-communication requirements of future missions and formulate appropriate requirements. A driving requirement for the architecture is the extensibility to address new requirements and provide low-cost on-ramps for new capabilities insertion, ensuring graceful growth as new functionality and new technologies are infused into the network infrastructure. In addition to extensibility, another key architectural attribute of the space communication equipment's interoperability with other NASA communications

  3. Why practitioners do (not) apply crisis communication theory in practice

    OpenAIRE

    Claeys, An-Sofie; Opgenhaffen, Michaël

    2016-01-01

    Twenty-five in-depth interviews with Belgian crisis communication practitioners were conducted to examine the gap between theory and practice. Crisis communication has become an important research area within public relations. Several studies have resulted in theories and guidelines regarding the effective use of communication during organizational crises. Unfortunately, these findings are not always put into practice. This study examines to what extent public relations practitioners apply th...

  4. Introduction to operator space theory

    CERN Document Server

    Pisier, Gilles

    2003-01-01

    An introduction to the theory of operator spaces, emphasising examples that illustrate the theory and applications to C*-algebras, and applications to non self-adjoint operator algebras, and similarity problems. Postgraduate and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find the book has much to offer.

  5. FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION

    International Nuclear Information System (INIS)

    SZALEWSKI, B.

    2005-01-01

    The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering

  6. Game theory in communication networks cooperative resolution of interactive networking scenarios

    CERN Document Server

    Antoniou, Josephina

    2012-01-01

    A mathematical tool for scientists and researchers who work with computer and communication networks, Game Theory in Communication Networks: Cooperative Resolution of Interactive Networking Scenarios addresses the question of how to promote cooperative behavior in interactive situations between heterogeneous entities in communication networking scenarios. It explores network design and management from a theoretical perspective, using game theory and graph theory to analyze strategic situations and demonstrate profitable behaviors of the cooperative entities. The book promotes the use of Game T

  7. Structure-Interaction Theory: Conceptual, Contextual and Strategic Influences on Human Communication

    Directory of Open Access Journals (Sweden)

    Стивен А Биби

    2015-12-01

    Full Text Available This paper addresses Structure-Interaction Theory (SIT, a theoretical framework that both describes communication messages as well as assists in making predictions about how human communication can be improved based on listener preferences for message structure or interaction. Communication messages may be characterized as existing on a continuum of structure-interaction. Communication structure is the inherent way information in a message is organized. A highly structured message is one in which the message is strategically organized using a planned arrangement of symbols to create meaning. Communication interaction is a way of viewing a message with give-and-take, less sustained “notes,” more change in note sequence and briefer notes. SIT seeks to provide a framework to assist communicators in appropriately adapting a message for maximum effectiveness. Although Structure-Interaction Theory newly articulated here, it is anchored in both classic ways of describing communication, such as rhetoric and dialectic (Aristotle, 1959, as well as more contemporary communication theories (Salem, 2012; Littlejohn & Foss, 2008. Specifically, the paper provides an overview of the theory and its conceptual assumptions, identifies how the theory can help explain and predict communication in several communication contexts (interpersonal, group, public communication, and suggests how SIT may help identify strategies to enhance human development. Structure-Interaction Theory is based on an assumption that a human communication message which is understood, achieves the intended effect of the communicator, and is ethical, requires an appropriate balance of two things: structure and interaction. Communication structure is the inherent way a message is constructed to provide a sustained direction to present information to another person. In linking structure and interaction to Aristotle’s description of messages, rhetoric is a more structured, sustained speech

  8. Digital communication constraints in prior space missions

    Science.gov (United States)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  9. Learning Theory Bases of Communicative Methodology and the Notional/Functional Syllabus

    OpenAIRE

    Jacqueline D., Beebe

    1992-01-01

    This paper examines the learning theories that underlie the philosophy and practices known as communicative language teaching methodology. These theories are identified first as a reaction against the behavioristic learning theory of audiolingualism. Approaches to syllabus design based on both the "weak" version of communicative language teaching-learning to use the second language-and the "strong" version-using the second language to learn it-are examined. The application of cognitive theory...

  10. General Systems Theory: Application To The Design Of Speech Communication Courses

    Science.gov (United States)

    Tucker, Raymond K.

    1971-01-01

    General systems theory can be applied to problems in the teaching of speech communication courses. The author describes general systems theory as it is applied to the designing, conducting and evaluation of speech communication courses. (Author/MS)

  11. Communication Theory and the Consumer Movement-

    Science.gov (United States)

    Newsom, Doug

    1977-01-01

    Defines and traces the origins of the consumer movement and uses communication theories to explain the effects of the movement. Available from: Public Relations Review, Ray Hiebert, Dean, College of Journalism, University of Maryland, College Park, MD 20742. (MH)

  12. SPACE COMMUNICATION AND THE MASS MEDIA. A UNESCO REPORT ON THE OCCASION OF THE 1963 SPACE COMMUNICATIONS CONFERENCE. REPORTS AND PAPERS ON MASS COMMUNICATION.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    THIS REPORT DEFINES AND ANALYZES POTENTIAL ASPECTS OF WORLDWIDE COMMUNICATION BY SATELLITE, LISTS TECHNICAL PROBLEMS, AND SUGGESTS USES OF SPACE COMMUNICATION TO PROMOTE EDUCATION, CULTURAL EXCHANGE, AND INFORMATION FLOW. IT IS AVAILABLE FOR $0.50 FROM NATIONAL DISTRIBUTORS OF UNESCO PUBLICATIONS, OR FROM UNESCO, PLACE DE FONTENDOY, PARIS-7E,…

  13. Research in space commercialization, technology transfer and communications, vol. 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  14. A Cp-theory problem book compactness in function spaces

    CERN Document Server

    Tkachuk, Vladimir V

    2015-01-01

    This third volume in Vladimir Tkachuk's series on Cp-theory problems applies all modern methods of Cp-theory to study compactness-like properties in function spaces and introduces the reader to the theory of compact spaces widely used in Functional Analysis. The text is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research covering a wide variety of topics in Cp-theory and general topology at the professional level.  The first volume, Topological and Function Spaces © 2011, provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. The second volume, Special Features of Function Spaces © 2014, continued from the first, giving reasonably complete coverage of Cp-theory, systematically introducing each of the major topics and providing 500 carefully selected problems and exercises with complete solutions. This third volume is self-contained...

  15. Parables and paradigms: an introduction to using communication theories in outdoor recreation research

    Science.gov (United States)

    James Absher

    1998-01-01

    Studies that employ communication theories are rare in recreation resource management. One reason may be unfamiliarity with communication theories and their potential to provide useful results. A two-dimensional metatheoretical plane is proposed, selected recreation and communication theories are located in it, and functional comparisons are made among eight disparate...

  16. Space-Time Diffeomorphisms in Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    L. Román Juarez

    2008-07-01

    Full Text Available In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007, 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985, 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987, 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.

  17. Exotic Optical Beam Classes for Free-Space Communication

    Science.gov (United States)

    2016-03-24

    wandering of an optical vortex is one of the significant problems with the application of vortex beams to FSO applications. From a geometrical optics ...AFRL-AFOSR-VA-TR-2016-0131 Exotic optical beam classes for free-space communication Greg Gbur UNIVERSITY OF NOTH CAROLINA AT CHARLOTTE Final Report...12-2015 4. TITLE AND SUBTITLE Exotic optical beam classes for free-space communication 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0009 5c

  18. Ramsey theory for product spaces

    CERN Document Server

    Dodos, Pandelis

    2016-01-01

    Ramsey theory is a dynamic area of combinatorics that has various applications in analysis, ergodic theory, logic, number theory, probability theory, theoretical computer science, and topological dynamics. This book is devoted to one of the most important areas of Ramsey theory-the Ramsey theory of product spaces. It is a culmination of a series of recent breakthroughs by the two authors and their students who were able to lift this theory to the infinite-dimensional case. The book presents many major results and methods in the area, such as Szemerédi's regularity method, the hypergraph removal lemma, and the density Hales-Jewett theorem. This book addresses researchers in combinatorics but also working mathematicians and advanced graduate students who are interested in Ramsey theory. The prerequisites for reading this book are rather minimal: it only requires familiarity, at the graduate level, with probability theory and real analysis. Some familiarity with the basics of Ramsey theory would be beneficial, ...

  19. Spectral Theory of Operators on Hilbert Spaces

    CERN Document Server

    Kubrusly, Carlos S

    2012-01-01

    This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Space is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathemat

  20. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  1. Coset space dimensional reduction of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (Physik Dept., Technische Univ. Muenchen, Garching (Germany)); Zoupanos, G. (CERN, Geneva (Switzerland))

    1992-10-01

    We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.).

  2. Coset space dimensional reduction of gauge theories

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1992-01-01

    We review the attempts to construct unified theories defined in higher dimensions which are dimensionally reduced over coset spaces. We employ the coset space dimensional reduction scheme, which permits the detailed study of the resulting four-dimensional gauge theories. In the context of this scheme we present the difficulties and the suggested ways out in the attempts to describe the observed interactions in a realistic way. (orig.)

  3. Quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK)

    1976-09-30

    It is stated that recent theoretical developments indicate that the presence of gravity (curved space-time) can give rise to important new quantum effects, such as cosmological particle production and black-hole evaporation. These processes suggest intriguing new relations between quantum theory, thermodynamics and space-time structure and encourage the hope that a better understanding of a full quantum theory of gravity may emerge from this approach.

  4. Fractal Point Process and Queueing Theory and Application to Communication Networks

    National Research Council Canada - National Science Library

    Wornel, Gregory

    1999-01-01

    .... A unifying theme in the approaches to these problems has been an integration of interrelated perspectives from communication theory, information theory, signal processing theory, and control theory...

  5. Grassmann phase space theory for fermions

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, Bryan J. [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria, 3122 (Australia); Jeffers, John [Department of Physics, University of Strathclyde, Glasgow, G4 ONG (United Kingdom); Barnett, Stephen M. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2017-06-15

    A phase space theory for fermions has been developed using Grassmann phase space variables which can be used in numerical calculations for cold Fermi gases and for large fermion numbers. Numerical calculations are feasible because Grassmann stochastic variables at later times are related linearly to such variables at earlier times via c-number stochastic quantities. A Grassmann field version has been developed making large fermion number applications possible. Applications are shown for few mode and field theory cases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Diamond Electron-Spin Clocks For Space Navigation and Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision clocks are needed in a broad range of applications, including satellite communication, high-bandwidth wireless communication, computing systems, and...

  7. Classical field theory in the space of reference frames. [Space-time manifold, action principle

    Energy Technology Data Exchange (ETDEWEB)

    Toller, M [Dipartimento di Matematica e Fisica, Libera Universita, Trento (Italy)

    1978-03-11

    The formalism of classical field theory is generalized by replacing the space-time manifold M by the ten-dimensional manifold S of all the local reference frames. The geometry of the manifold S is determined by ten vector fields corresponding to ten operationally defined infinitesimal transformations of the reference frames. The action principle is written in terms of a differential 4-form in the space S (the Lagrangian form). Densities and currents are represented by differential 3-forms in S. The field equations and the connection between symmetries and conservation laws (Noether's theorem) are derived from the action principle. Einstein's theory of gravitation and Maxwell's theory of electromagnetism are reformulated in this language. The general formalism can also be used to formulate theories in which charge, energy and momentum cannot be localized in space-time and even theories in which a space-time manifold cannot be defined exactly in any useful way.

  8. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  9. Research progress of free space coherent optical communication

    Science.gov (United States)

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  10. From the Weyl theory to a theory of locally anisotropic space-time

    International Nuclear Information System (INIS)

    Bogoslovsky, G.Yu.

    1991-01-01

    It is shown that Weyl ideas, pertaining to local conformal invariance, find natural embodiment within the framework of a relativistic theory based on a viable Finslerian model of space-time. This is associated with the peculiar property of the conformal invariant Finslerian metric which describes a locally anisotropic space of events. The local conformal transformations of the Riemannian metric tensor leave invariant rest masses as well as all observables and thus appear as local gauge transformations. The corresponding Finslerian theory of gravitation turns out, as a result, to be an Abelian gauge theory. It satisfies the principle of correspondence with Einstein theory and predicts a number of nontrivial physical effects accessible for experimental test under laboratory conditions. 13 refs

  11. Price competition, level-k theory and communication

    DEFF Research Database (Denmark)

    Wengström, Erik Roland

    2008-01-01

    This paper analyzes communication in a price competition game using the level-$k$ theory of bounded rationality. The level-k analysis predicts prices to be higher with communication than without. Our experimental evidence lends support to the view that communication affects subjects in a way...... that is compatible with the level-k model, indicating that people lie in order to fool other players that they believe do less thinking. Moreover, the results indicate that the predictive power of the level-k model does crucially depend on the possibility for high level players to form homogenous beliefs about...

  12. Facility for the evaluation of space communications and related systems

    Science.gov (United States)

    Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.

    1995-01-01

    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.

  13. Laser guide stars for optical free-space communications

    Science.gov (United States)

    Mata-Calvo, Ramon; Bonaccini Calia, Domenico; Barrios, Ricardo; Centrone, Mauro; Giggenbach, Dirk; Lombardi, Gianluca; Becker, Peter; Zayer, Igor

    2017-02-01

    The German Aerospace Center (DLR) and the European Southern Observatory (ESO) performed a measurement campaign together in April and July 2016 at Teide-Observatory (Tenerife), with the support of the European Space Agency (ESA), to investigate the use of laser guide stars (LGS) in ground to space optical communications. Atmospheric turbulence causes strong signal fluctuations in the uplink, due to scintillation and beam wander. In space communications, the use of the downlink channel as reference for pointing and for pre-distortion adaptive optics is limited by the size of the isokinetic and isoplanatic angle in relation to the required point-ahead angle. Pointing and phase errors due to the decorrelation between downward and upward beam due to the point-ahead angle may have a severe impact on the required transmit power and the stability of the communications link. LGSs provide a self-tailored reference to any optical ground-to-space link, independently of turbulence conditions and required point-ahead angle. In photon-starved links, typically in deep-space scenarios, LGSs allow dedicating all downlink received signal to communications purposes, increasing the available link margin. The scope of the joint DLR-ESO measurement campaign was, first, to measure the absolute value of the beam wander (uplink-tilt) using a LGS, taking a natural star as a reference, and, second, to characterize the decrease of correlation between uplink-tilt and downlink-tilt with respect to the angular separation between both sources. This paper describes the experiments performed during the measurement campaigns, providing an overview of the measured data and the first outcomes of the data post-processing.

  14. Looking at the ICF and human communication through the lens of classification theory.

    Science.gov (United States)

    Walsh, Regina

    2011-08-01

    This paper explores the insights that classification theory can provide about the application of the International Classification of Functioning, Disability and Health (ICF) to communication. It first considers the relationship between conceptual models and classification systems, highlighting that classification systems in speech-language pathology (SLP) have not historically been based on conceptual models of human communication. It then overviews the key concepts and criteria of classification theory. Applying classification theory to the ICF and communication raises a number of issues, some previously highlighted through clinical application. Six focus questions from classification theory are used to explore these issues, and to propose the creation of an ICF-related conceptual model of communicating for the field of communication disability, which would address some of the issues raised. Developing a conceptual model of communication for SLP purposes closely articulated with the ICF would foster productive intra-professional discourse, while at the same time allow the profession to continue to use the ICF for purposes in inter-disciplinary discourse. The paper concludes by suggesting the insights of classification theory can assist professionals to apply the ICF to communication with the necessary rigour, and to work further in developing a conceptual model of human communication.

  15. Using the Outdoor Scavenger Hunt to Teach Theories of Organizational Communication

    Science.gov (United States)

    Tipton, Whitney L.; Kupritz, Virginia W.

    2017-01-01

    Courses: Communication Theory, Organizational Communication, Strategic Communication. Objectives: Students will identify and categorize organizational discourses on their campuses; students will become aware of the ethical considerations of communication; students will recognize the different perceptions of organizational culture on campus.

  16. Unitarity in three-dimensional flat space higher spin theories

    International Nuclear Information System (INIS)

    Grumiller, D.; Riegler, M.; Rosseel, J.

    2014-01-01

    We investigate generic flat-space higher spin theories in three dimensions and find a no-go result, given certain assumptions that we spell out. Namely, it is only possible to have at most two out of the following three properties: unitarity, flat space, non-trivial higher spin states. Interestingly, unitarity provides an (algebra-dependent) upper bound on the central charge, like c=42 for the Galilean W_4"("2"−"1"−"1") algebra. We extend this no-go result to rule out unitary “multi-graviton” theories in flat space. We also provide an example circumventing the no-go result: Vasiliev-type flat space higher spin theory based on hs(1) can be unitary and simultaneously allow for non-trivial higher-spin states in the dual field theory.

  17. The master space of N = 1 gauge theories

    International Nuclear Information System (INIS)

    Forcella, Davide; Hanany, Amihay; He Yanghui; Zaffaroni, Alberto

    2008-01-01

    The full moduli space M of a class of N = 1 supersymmetric gauge theories is studied. For gauge theories living on a stack of D3-branes at Calabi-Yau singularities X, M is a combination of the mesonic and baryonic branches. In consonance with the mathematical literature, the single brane moduli space is called the master space F b . Illustrating with a host of explicit examples, we exhibit many algebro-geometric properties of the master space such as when F b is toric Calabi-Yau, behaviour of its Hilbert series, its irreducible components and its symmetries. In conjunction with the plethystic programme, we investigate the counting of BPS gauge invariants, baryonic and mesonic, using the geometry of F b and show how its refined Hilbert series not only engenders the generating functions for the counting but also beautifully encode 'hidden' global symmetries of the gauge theory which manifest themselves as symmetries of the complete moduli space M for N number of branes.

  18. String Theory on AdS Spaces

    NARCIS (Netherlands)

    de Boer, J.

    2000-01-01

    In these notes we discuss various aspects of string theory in AdS spaces. We briefly review the formulation in terms of Green-Schwarz, NSR, and Berkovits variables, as well as the construction of exact conformal field theories with AdS backgrounds. Based on lectures given at the Kyoto YITP Workshop

  19. Radio-wave propagation for space communications systems

    Science.gov (United States)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  20. Internal space decimation for lattice gauge theories

    International Nuclear Information System (INIS)

    Flyvbjerg, H.

    1984-01-01

    By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)

  1. Tensor algebra over Hilbert space: Field theory in classical phase space

    International Nuclear Information System (INIS)

    Matos Neto, A.; Vianna, J.D.M.

    1984-01-01

    It is shown using tensor algebras, namely Symmetric and Grassmann algebras over Hilbert Space that it is possible to introduce field operators, associated to the Liouville equation of classical statistical mechanics, which are characterized by commutation (for Symmetric) and anticommutation (for Grassmann) rules. The procedure here presented shows by construction that many-particle classical systems admit an algebraic structure similar to that of quantum field theory. It is considered explicitly the case of n-particle systems interacting with an external potential. A new derivation of Schoenberg's result about the equivalence between his field theory in classical phase space and the usual classical statistical mechanics is obtained as a consequence of the algebraic structure of the theory as introduced by our method. (Author) [pt

  2. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    Science.gov (United States)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  3. Development of the Free-space Optical Communications Analysis Software (FOCAS)

    Science.gov (United States)

    Jeganathan, M.; Mecherle, G.; Lesh, J.

    1998-01-01

    The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.

  4. Elements of Hilbert spaces and operator theory

    CERN Document Server

    Vasudeva, Harkrishan Lal

    2017-01-01

    The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compressio...

  5. Universal moduli space and string theory

    International Nuclear Information System (INIS)

    Schwarz, A.S.

    1989-09-01

    The construction of the universal supermoduli space is given. The super-Mumford form (the holomorphic square root from the string measure) is extended to the universal supermoduli space and expressed through the superanalog of Sato's τ-function. The hidden N=2 superconformal symmetry in the string theory is considered. (author). 13 refs

  6. Research into command, control, and communications in space construction

    Science.gov (United States)

    Davis, Randal

    1990-01-01

    Coordinating and controlling large numbers of autonomous or semi-autonomous robot elements in a space construction activity will present problems that are very different from most command and control problems encountered in the space business. As part of our research into the feasibility of robot constructors in space, the CSC Operations Group is examining a variety of command, control, and communications (C3) issues. Two major questions being asked are: can we apply C3 techniques and technologies already developed for use in space; and are there suitable terrestrial solutions for extraterrestrial C3 problems? An overview of the control architectures, command strategies, and communications technologies that we are examining is provided and plans for simulations and demonstrations of our concepts are described.

  7. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  8. Two theorems on flat space-time gravitational theories

    International Nuclear Information System (INIS)

    Castagnino, M.; Chimento, L.

    1980-01-01

    The first theorem states that all flat space-time gravitational theories must have a Lagrangian with a first term that is an homogeneous (degree-1) function of the 4-velocity usup(i), plus a functional of nsub(ij)usup(i)usup(j). The second theorem states that all gravitational theories that satisfy the strong equivalence principle have a Lagrangian with a first term gsub(ij)(x)usup(i)usup(j) plus an irrelevant term. In both cases the theories must issue from a unique variational principle. Therefore, under this condition it is impossible to find a flat space-time theory that satisfies the strong equivalence principle. (author)

  9. Real-variable theory of Musielak-Orlicz Hardy spaces

    CERN Document Server

    Yang, Dachun; Ky, Luong Dang

    2017-01-01

    The main purpose of this book is to give a detailed and complete survey of recent progress related to the real-variable theory of Musielak–Orlicz Hardy-type function spaces, and to lay the foundations for further applications. The real-variable theory of function spaces has always been at the core of harmonic analysis. Recently, motivated by certain questions in analysis, some more general Musielak–Orlicz Hardy-type function spaces were introduced. These spaces are defined via growth functions which may vary in both the spatial variable and the growth variable. By selecting special growth functions, the resulting spaces may have subtler and finer structures, which are necessary in order to solve various endpoint or sharp problems. This book is written for graduate students and researchers interested in function spaces and, in particular, Hardy-type spaces.

  10. Quantum field theory with a momentum space of constant curvature (perturbation theory)

    International Nuclear Information System (INIS)

    Mir-Kasimov, R.M.

    1978-01-01

    In the framework of the field-theoretical approach in which the off-the-mass shell extension proceeds in the p-space of constant curvature, the perburbation theory is developed. The configurational representation of the de Sitter space is introduced with the help of the Fourier transformation of the group of motions. On the basis of a natural generalization of the Bogolyubov causality condition to the case of the new configurational representation a perturbation theory is constructed with the local in xi space Lagrangian density fucntion. The obtained S matrix obeys the reguirement of translation invariance. The S matrix elements are given by convergent expressions

  11. Abelian gauge theories on homogeneous spaces

    International Nuclear Information System (INIS)

    Vassilevich, D.V.

    1992-07-01

    An algebraic technique of separation of gauge modes in Abelian gauge theories on homogeneous spaces is proposed. An effective potential for the Maxwell-Chern-Simons theory on S 3 is calculated. A generalization of the Chern-Simons action is suggested and analysed with the example of SU(3)/U(1) x U(1). (author). 11 refs

  12. Theory and design methods of special space orbits

    CERN Document Server

    Zhang, Yasheng; Zhou, Haijun

    2017-01-01

    This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.

  13. Making sense of social media communications with chaos theory

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia; Larson, Mia

    , offering a few conceptual papers which adopt complexity theories to describe destination development patterns (Russel & Faulkner, 2000, 2004; Zahra & Ryan 2007). The purpose of this paper is to discuss the validity of chaos theory in the context of strategic communications, where new (social) media has...... changed the marketing landscape beyond recognition. The exponential growth of social media platforms has led to weakened marketer control (and greater consumer sovereignty) over information about organisations and their products. In this new communications paradigm (Muniz & Schau 2007), information...... media channels. Social media users serve as gatekeepers, opting for which fluctuations to pay attention to, which to ignore. The challenge is then to establish a framework of unfolding communication patterns on social media which can eventually explain the collective behaviour of bloggers, twitters...

  14. Security Policy for a Generic Space Exploration Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  15. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    Science.gov (United States)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  16. Nursing communication in nursing care to mastectomized women: a grounded theory study.

    Science.gov (United States)

    de Almeida Araújo, Iliana Maria; da Silva, Raimunda Magalhães; Bonfim, Isabela Melo; Fernandes, Ana Fátima Carvalho

    2010-01-01

    The goal was to understand the nurse/patient communication process, emphasizing nursing care to mastectomized women. Symbolic Interactionism and Grounded Theory were used to interview eight nurses from a referral institution in cancer treatment, using the guiding question: how do nurses perceive their communication process with mastectomized women? Data analysis allowed for the creation of a central theory: the meaning of communication in nursing care to women, constituted by three distinct but inter-related phenomena: perceiving communication, the relationship nurse/mastectomized woman and rethinking the communication nurse/mastectomized woman. With a view to satisfactory communication, professionals need to get involved and believe that their presence is as important as the performance of technical procedures that relieve situations of stress.

  17. Free Space Optical Communication for Tactical Operations

    Science.gov (United States)

    2016-09-01

    higher energy level to a lower energy level. The photons are focused to optical lenses before transmission into the air medium. The primary purpose...Security of a free space optical transmission . (n.d.). SONA Optical Wireless , [Online]. Available: http://htcbn.com/HTC_Profile_CD/fSONA/APPNOTE...almost always require on-the-move wireless communications. Radio frequency (RF) communication is used to fill the gap, but RF systems are hard pressed to

  18. Taking the Politics Out of Satellite and Space-Based Communications Protocols

    Science.gov (United States)

    Ivancic, William D.

    2006-01-01

    After many years of studies, experimentation, and deployment, large amounts of misinformation and misconceptions remain regarding applicability of various communications protocols for use in satellite and space-based networks. This paper attempts to remove much of the politics, misconceptions, and misinformation that have plagued spacebased communications protocol development and deployment. This paper provides a common vocabulary for communications; a general discussion of the requirements for various communication environments; an evaluation of tradeoffs between circuit and packet-switching technologies, and the pros and cons of various link, network, transport, application, and security protocols. Included is the applicability of protocol enhancing proxies to NASA, Department of Defense (DOD), and commercial space communication systems.

  19. The space-time operator product expansion in string theory duals of field theories

    International Nuclear Information System (INIS)

    Aharony, Ofer; Komargodski, Zohar

    2008-01-01

    We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories

  20. Open superstring field theory on the restricted Hilbert space

    International Nuclear Information System (INIS)

    Konopka, Sebastian; Sachs, Ivo

    2016-01-01

    It appears that the formulation of an action for the Ramond sector of open superstring field theory requires to either restrict the Hilbert space for the Ramond sector or to introduce auxiliary fields with picture −3/2. The purpose of this note is to clarify the relation of the restricted Hilbert space with other approaches and to formulate open superstring field theory entirely in the small Hilbert space.

  1. Information theory and its application to optical communication

    NARCIS (Netherlands)

    Willems, F.M.J.

    2017-01-01

    The lecture focusses on the foundations of communication which were developed within the field of information theory. Enumerative shaping techniques and the so-called squareroot transform will be discussed in detail.

  2. Vessel noise cuts down communication space for vocalizing fish and marine mammals.

    Science.gov (United States)

    Putland, Rosalyn L; Merchant, Nathan D; Farcas, Adrian; Radford, Craig A

    2018-04-01

    Anthropogenic noise across the world's oceans threatens the ability of vocalizing marine species to communicate. Some species vocalize at key life stages or whilst foraging, and disruption to the acoustic habitat at these times could lead to adverse consequences at the population level. To investigate the risk of these impacts, we investigated the effect of vessel noise on the communication space of the Bryde's whale Balaenoptera edeni, an endangered species which vocalizes at low frequencies, and bigeye Pempheris adspersa, a nocturnal fish species which uses contact calls to maintain group cohesion while foraging. By combining long-term acoustic monitoring data with AIS vessel-tracking data and acoustic propagation modelling, the impact of vessel noise on their communication space was determined. Routine vessel passages cut down communication space by up to 61.5% for bigeyes and 87.4% for Bryde's whales. This influence of vessel noise on communication space exceeded natural variability for between 3.9 and 18.9% of the monitoring period. Additionally, during the closest point of approach of a large commercial vessel, communication space of both species was reduced by a maximum of 99% compared to the ambient soundscape. These results suggest that vessel noise reduces communication space beyond the evolutionary context of these species and may have chronic effects on these populations. To combat this risk, we propose the application or extension of ship speed restrictions in ecologically significant areas, since our results indicate a reduction in sound source levels for vessels transiting at lower speeds. © 2017 John Wiley & Sons Ltd.

  3. Critical reflections on the theory versus practice debate in communication for development

    Directory of Open Access Journals (Sweden)

    Linje Manyozo

    2016-12-01

    Full Text Available Even though the cliché ‘theory is practice’ registers in most communication for development debates, available evidence seems to suggest there is a growing chasm between the theory and practice of communication for development. This discussion argues that, with the increasing demand by governments and organisations for communication for development specialists, universities and training providers should rethink their graduate curricula. As course content, teaching methodologies and theoretical paradigms are revisited, trainers need to grill students on how the contestation of power is central to the application of communication in development. This paper advances two arguments. The first is that communication for development training has to begin listening to the innovative thinking that is shaping practice on the ground if the curriculum is to stay relevant. The second is that such programmes have forge strong linkages with development studies departments to ensure that students are well-grounded in development theory and practice.

  4. Application of spinal code for performance improvement in free-space optical communications

    Science.gov (United States)

    Saiki, Naoya; Okamoto, Eiji; Takenaka, Hideki; Toyoshima, Morio

    2017-09-01

    In recent years, the demand for high-capacity communication has grown, and fiber-optic transmission is being used in wired communications to meet this demand. Similarly, free-space optics (FSO), which is an optical wireless communication technology that uses laser light, has attracted much attention and has been considered as a suitable alternative to satisfy this demand in wireless communications. Free-space optical communication uses a hundred THz frequency band and allows for high-speed and radio-regulation free transmission, which may provide a solution for the current shortage of radio frequency bands.

  5. Rube Goldberg Salad System: Teaching Systems Theory in Communication

    Science.gov (United States)

    Linabary, Jasmine R.; Long, Ziyu; Mouton, Ashton; Rao, Ranjani L.; Buzzanell, Patrice M.

    2016-01-01

    Systems theory has been a staple in organizational communication textbooks since the field's inception (Miller, 2015; Poole, 2014). Nevertheless, the authors' classroom experiences have revealed that systems theory may not seem applicable to students due to its complicated nature. While examples and cases can help students make sense of the…

  6. Sex Differences in Technical Communication: A Perspective from Social Role Theory

    Science.gov (United States)

    Thompson, Isabelle

    2004-01-01

    This article interprets technical communication research about sex differences according to social role theory, which argues that sex differences are enculturated through experiences associated with social positions in the family and the workplace. It reevaluates technical communication research about sex differences in communicative and…

  7. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  8. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  9. Toward a Theory of Strategic Communication: A Relationship Management Approach

    Science.gov (United States)

    2012-03-22

    Washington, DC: U.S. Department of Defense, Aug. 15, 2009), 5. 31 Ibid. 32 Ibid., 6. 33 Ibid. 34 Severin Peters, Strategic Communication for Crisis ...Relations, ed. Robert L. Heath (Thousand Oaks, CA: Sage Publications, 2001), 128. 76 W. Timothy Coombs , “Interpersonal Communication and Public Relations...Toward a Theory of Strategic Communication : A Relationship Management Approach by Lieutenant Colonel Cheryl D. Phillips

  10. High-capacity Free-space Optical Communications with Orbital Angular Momentum

    Data.gov (United States)

    National Aeronautics and Space Administration — As the demand for high data returns from space science missions continues, significant improvements over the current radiofrequency (RF) communications architectures...

  11. Information theory, animal communication, and the search for extraterrestrial intelligence

    Science.gov (United States)

    Doyle, Laurance R.; McCowan, Brenda; Johnston, Simon; Hanser, Sean F.

    2011-02-01

    We present ongoing research in the application of information theory to animal communication systems with the goal of developing additional detectors and estimators for possible extraterrestrial intelligent signals. Regardless of the species, for intelligence (i.e., complex knowledge) to be transmitted certain rules of information theory must still be obeyed. We demonstrate some preliminary results of applying information theory to socially complex marine mammal species (bottlenose dolphins and humpback whales) as well as arboreal squirrel monkeys, because they almost exclusively rely on vocal signals for their communications, producing signals which can be readily characterized by signal analysis. Metrics such as Zipf's Law and higher-order information-entropic structure are emerging as indicators of the communicative complexity characteristic of an "intelligent message" content within these animals' signals, perhaps not surprising given these species' social complexity. In addition to human languages, for comparison we also apply these metrics to pulsar signals—perhaps (arguably) the most "organized" of stellar systems—as an example of astrophysical systems that would have to be distinguished from an extraterrestrial intelligence message by such information theoretic filters. We also look at a message transmitted from Earth (Arecibo Observatory) that contains a lot of meaning but little information in the mathematical sense we define it here. We conclude that the study of non-human communication systems on our own planet can make a valuable contribution to the detection of extraterrestrial intelligence by providing quantitative general measures of communicative complexity. Studying the complex communication systems of other intelligent species on our own planet may also be one of the best ways to deprovincialize our thinking about extraterrestrial communication systems in general.

  12. Information Theoretic Characterization of Physical Theories with Projective State Space

    Science.gov (United States)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  13. Communicative competencies and the structuration of expectations: the creative tension between Habermas’ critical theory and Luhmann’s social systems theory

    NARCIS (Netherlands)

    Leydesdorff, L.

    2010-01-01

    I elaborate on the tension between Luhmann’s social systems theory and Habermas’ theory of communicative action, and argue that this tension can be resolved by focusing on language as the interhuman medium of the communication which enables us to develop symbolically generalized media of

  14. Conformal field theory in conformal space

    International Nuclear Information System (INIS)

    Preitschopf, C.R.; Vasiliev, M.A.

    1999-01-01

    We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems

  15. Radioanatomy of the retroperitoneal space.

    Science.gov (United States)

    Coffin, A; Boulay-Coletta, I; Sebbag-Sfez, D; Zins, M

    2015-02-01

    The retroperitoneum is a space situated behind the parietal peritoneum and in front of the transversalis fascia. It contains further spaces that are separated by the fasciae, between which communication is possible with both the peritoneal cavity and the pelvis, according to the theory of interfascial spread. The perirenal space has the shape of an inverted cone and contains the kidneys, adrenal glands, and related vasculature. It is delineated by the anterior and posterior renal fasciae, which surround the ureter and allow communication towards the pelvis. At the upper right pole, the perirenal space connects to the retrohepatic space at the bare area of the liver. There is communication between these two spaces through the Kneeland channel. The anterior pararenal space contains the duodenum, pancreas, and the ascending and descending colon. There is free communication within this space, and towards the mesenteries along the vessels. The posterior pararenal space, which contains fat, communicates with the preperitoneal space at the anterior surface of the abdomen between the peritoneum and the transversalis fascia, and allows communication with the contralateral posterior pararenal space. This space follows the length of the ureter to the pelvis, which explains the communication between these areas and the length of the pelvic fasciae. Copyright © 2014 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  16. Theories of informetrics and scholarly communication

    CERN Document Server

    2016-01-01

    Scientometrics have become an essential element in the practice and evaluation of science and research, including both the evaluation of individuals and national assessment exercises. This book brings together the theories that guide informetrics and scholarly communication research. It is a timely and much needed compilation by leading scholars in the field, and covers all aspects that guide our understanding of authorship, citing, and impact.

  17. Quantum group gauge theory on quantum spaces

    International Nuclear Information System (INIS)

    Brzezinski, T.; Majid, S.

    1993-01-01

    We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)

  18. An Exploration of School Communication Approaches for Newly Arrived EAL Students: Applying Three Dimensions of Organisational Communication Theory

    Science.gov (United States)

    Schneider, Claudia; Arnot, Madeleine

    2018-01-01

    This article explores the modes of school communication associated with language and cultural diversity, demonstrating how organisational communication theory can be applied to the analysis of schools' communication responses to the presence of pupils who have English as an additional language (EAL). The article highlights three analytical…

  19. Study on a phase space representation of quantum theory

    International Nuclear Information System (INIS)

    Ranaivoson, R.T.R; Raoelina Andriambololona; Hanitriarivo, R.; Raboanary, R.

    2013-01-01

    A study on a method for the establishment of a phase space representation of quantum theory is presented. The approach utilizes the properties of Gaussian distribution, the properties of Hermite polynomials, Fourier analysis and the current formulation of quantum mechanics which is based on the use of Hilbert space and linear operators theory. Phase space representation of quantum states and wave functions in phase space are introduced using properties of a set of functions called harmonic Gaussian functions. Then, new operators called dispersion operators are defined and identified as the operators which admit as eigenstates the basis states of the phase space representation. Generalization of the approach for multidimensional cases is shown. Examples of applications are given.

  20. Constructivist Learning Theory and Climate Science Communication

    Science.gov (United States)

    Somerville, R. C.

    2012-12-01

    Communicating climate science is a form of education. A scientist giving a television interview or testifying before Congress is engaged in an educational activity, though one not identical to teaching graduate students. Knowledge, including knowledge about climate science, should never be communicated as a mere catalogue of facts. Science is a process, a way of regarding the natural world, and a fascinating human activity. A great deal is already known about how to do a better job of science communication, but implementing change is not easy. I am confident that improving climate science communication will involve the paradigm of constructivist learning theory, which traces its roots to the 20th-century Swiss epistemologist Jean Piaget, among others. This theory emphasizes the role of the teacher as supportive facilitator rather than didactic lecturer, "a guide on the side, not a sage on the stage." It also stresses the importance of the teacher making a serious effort to understand and appreciate the prior knowledge and viewpoint of the student, recognizing that students' minds are not empty vessels to be filled or blank slates to be written on. Instead, students come to class with a background of life experiences and a body of existing knowledge, of varying degrees of correctness or accuracy, about almost any topic. Effective communication is also usually a conversation rather than a monologue. We know too that for many audiences, the most trusted messengers are those who share the worldview and cultural values of those with whom they are communicating. Constructivist teaching methods stress making use of the parallels between learning and scientific research, such as the analogies between assessing prior knowledge of the audience and surveying scientific literature for a research project. Meanwhile, a well-funded and effective professional disinformation campaign has been successful in sowing confusion, and as a result, many people mistakenly think climate

  1. A critical assessment of theories/models used in health communication for HIV/AIDS.

    Science.gov (United States)

    Airhihenbuwa, C O; Obregon, R

    2000-01-01

    Most theories and models used to develop human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) communication are based on social psychology that emphasizes individualism. Researchers including communication and health scholars are now questioning the presumed global relevance of these models and thus the need to develop innovative theories and models that take into account regional contexts. In this paper, we discuss the commonly used theories and models in HIV/AIDS communication. Furthermore, we argue that the flaws in the application of the commonly used "classical" models in health communication are because of contextual differences in locations where these models are applied. That is to say that these theories and models are being applied in contexts for which they were not designed. For example, the differences in health behaviors are often the function of culture. Therefore, culture should be viewed for its strength and not always as a barrier. The metaphorical coupling of "culture" and "barrier" needs to be exposed, deconstructed, and reconstructed so that new, positive, cultural linkages can be forged. The HIV/AIDS pandemic has served as a flashpoint to either highlight the importance or deny the relevance of theories and models while at the same time addressing the importance of culture in the development and implementation of communication programs.

  2. Robust free-space optical communication for indoor information environment

    Science.gov (United States)

    Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki

    2003-10-01

    The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.

  3. An Introduction to Free-space Optical Communications

    Directory of Open Access Journals (Sweden)

    H. Henniger

    2010-06-01

    Full Text Available Over the last two decades free-space optical communication (FSO has become more and more interesting as an adjunct or alternative to radio frequency communication. This article gives an overview of the challenges a system designer has to consider while implementing an FSO system. Typical gains and losses along the path from the transmitter through the medium to the receiver are introduced in this article. Detailed discussions of these topics can be found in this special issue of the Radioengineering Journal.

  4. High Power Uplink Amplifier for Deep Space Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  5. High Power Uplink Amplifier for Deep Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  6. Principles of digital and analog communications

    CERN Document Server

    Gibson, Jerry D

    1993-01-01

    This textbook for the first course in communications covers analog and digital systems and emphasizes digital communications. It covers data transmission, signal space, optimal receivers, and pulse code modulation, and includes readable treatments of coded modulation and continuous phase modulation. Advanced mathematics is kept to a minimum-Fourier series, Fourier transforms, linear systems, random variables, and stochastic process are described thoroughly. It includes data compression of speech and images and a full chapter coverage of information theory, rate distortion theory and coded modulation. It relates digital communications theory to current practice and covers digital communications over band-width constrained channels, including pulse shaping and equilization. -- Dieser Text bezieht sich auf eine vergriffene oder nicht verfügbare Ausgabe dieses Titels.

  7. Quantum holonomy theory and Hilbert space representations

    Energy Technology Data Exchange (ETDEWEB)

    Aastrup, Johannes [Mathematisches Institut, Universitaet Hannover (Germany); Moeller Grimstrup, Jesper [QHT Gruppen, Copenhagen Area (Denmark)

    2016-11-15

    We present a new formulation of quantum holonomy theory, which is a candidate for a non-perturbative and background independent theory of quantum gravity coupled to matter and gauge degrees of freedom. The new formulation is based on a Hilbert space representation of the QHD(M) algebra, which is generated by holonomy-diffeomorphisms on a 3-dimensional manifold and by canonical translation operators on the underlying configuration space over which the holonomy-diffeomorphisms form a non-commutative C*-algebra. A proof that the state that generates the representation exist is left for later publications. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Quantum field theory on discrete space-time. II

    International Nuclear Information System (INIS)

    Yamamoto, H.

    1985-01-01

    A quantum field theory of bosons and fermions is formulated on discrete Lorentz space-time of four dimensions. The minimum intervals of space and time are assumed to have different values in this paper. As a result the difficulties encountered in the previous paper (complex energy, incompleteness of solutions, and inequivalence between phase representation and momentum representation) are removed. The problem in formulating a field theory of fermions is solved by introducing a new operator and considering a theorem of translation invariance. Any matrix element given by a Feynman diagram is calculated in this theory to give a finite value regardless of the kinds of particles concerned (massive and/or massless bosons and/or fermions)

  9. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  10. Research on optic antenna of space laser communication networking

    Science.gov (United States)

    Meng, Li-Xin; Li, Long; Zhang, Li-zhong; Zhao, Shan-shan; Jiang, Hui-lin

    2013-08-01

    With the highlights of the high transmission rate, large capacity, strong anti-interference and anti-capture ability, good security and small light, space laser communication becomes an important hotspot. At present, the focus of research of the laser communication system is point to point communication structure. However, from the application point of view, both the realization of space laser communication among multiple points and the establishment of the information transmission network can really have the practical value. Aiming at the problem of space laser communication network, this article puts forward the general idea about optical antenna to achieve multiple tracking goals at the same time. Through the analysis of the optical antenna, and the comparing of the current commonly used mirror driving mechanism, a new mirror driving mechanism is designed. The azimuth motion, containing circular grating feedback, is driven by torque motor,voice coil motor of fan produces pitch motion that has fan-shaped grating feedback, so that compression of the structure size to improve the efficiency of the reflector assembly. Through the establishment of the driving mechanism and the kinematic model of 3D entity, the relationship between the single drive azimuth and pitch angle following the angle of incident light is explained. The biggest ideal view area affecting the optical antenna is obtained by the simulation analysis of the kinematics model using MATLAB. The several factors of field overlap area and blind area offers a theoretical basis for structure optimization and control system for the subsequent optical antenna design.

  11. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Baeten, J.C.M.; Bergstra, J.A.

    1991-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  12. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1992-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  13. Quantization of Space-like States in Lorentz-Violating Theories

    Science.gov (United States)

    Colladay, Don

    2018-01-01

    Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.

  14. Architecture and communication

    Directory of Open Access Journals (Sweden)

    Špela Hudnik

    2003-01-01

    Full Text Available The article presents effects of technology, science and capital strategies on changes in traditional forms and definitions of space, architecture and bodies. It confronts us with new processes of thinking and living that are constantly being transformed into new dynamic time and spatial contexts. Space is becoming the information filter, communication network. A cross-section of three landscapes: landscape of megastructures, nomadic landscapes and psychedelic landscapes, theory contributes to understanding of media and space-age technology, information technology and electronical language. It offers designs of various megastructures, media surfaces and envelopes of contemporary information society: the anthropological module, hyper- and infra-bodies, bio-electronical bodies and population genetics bodies. It presents the architecture of communication.

  15. Storytelling/narrative theory to address health communication with minority populations.

    Science.gov (United States)

    Lee, Haeok; Fawcett, Jacqueline; DeMarco, Rosanna

    2016-05-01

    To explain the development and application of storytelling/narrative theory in health disparities intervention research as a way to promote health communication and behavior change among racial, ethnic, and minority populations. The proposed storytelling theory helps explain that storytelling affects changes in attitude and health behavior of the viewer through realism, identification, and transportation. The proposed storytelling/narrative theory can be a guide to develop culturally grounded narrative interventions that have the ability to connect with hard-to-reach populations. Narrative communication is context-dependent because it derives meaning from the surrounding situation and provides situation-based stories that are a pathway to processing story content. Although storytelling is grounded in nursing practice and education, it is underutilized in nursing interventional research. Future efforts are needed to extend theory-based narrative intervention studies designed to change attitude and behaviors that will reduce health disparities among minorities. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Intersection spaces, spatial homology truncation, and string theory

    CERN Document Server

    Banagl, Markus

    2010-01-01

    Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest to homotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.

  17. Relevance Theory as model for analysing visual and multimodal communication

    NARCIS (Netherlands)

    Forceville, C.; Machin, D.

    2014-01-01

    Elaborating on my earlier work (Forceville 1996: chapter 5, 2005, 2009; see also Yus 2008), I will here sketch how discussions of visual and multimodal discourse can be embedded in a more general theory of communication and cognition: Sperber and Wilson’s Relevance Theory/RT (Sperber and Wilson

  18. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  19. Learning Theories Applied to the Teaching of Business Communication.

    Science.gov (United States)

    Hart, Maxine Barton

    1980-01-01

    Reviews major learning theories that can be followed by business communication instructors, including those by David Ausubel, Albert Bandura, Kurt Lewin, Edward Thorndike, B.F. Skinner, and Robert Gagne. (LRA)

  20. Some aspects of quantum field theory in non-Minkowskian space-times

    International Nuclear Information System (INIS)

    Toms, D.J.

    1980-01-01

    Several aspects of quantum field theory in space-times which are different from Minkowski space-time, either because of the presence of a non-zero curvature or as a consequence of the topology of the manifold, are discussed. The Casimir effect is a quantum field theory in a space-time which has a different topology. A short review of some of its popular derivations is presented with comments. Renormalization of interacting scalar field theories in a flat space-time with a non-Minkowskian topology is considered. The presence of a non-trivial topology can lead to additional non-local divergent terms in the Schwinger-Dyson equations for a general scalar field theory; however, the theory may be renormalized with the same choice of counterterms as in Minkowski space-time. Propagators can develop poles corresponding to the generation of a topological mass. Zeta-function regularization is shown to fit naturally into the functional approach to the effective potential. This formalism is used to calculate the effective potential for some scalar field theories in non-Minkowskian space-times. Topological mass generation is discussed, and it is shown how radiative corrections can lead to spontaneous symmetry breaking. One- and two-loop contributions to the vacuum energy density are obtained for both massless and massive fields. In the massive case the role of renormalization in removing non-local divergences is discussed

  1. Free space optical communication

    CERN Document Server

    Kaushal, Hemani; Kar, Subrat

    2017-01-01

    This book provides an in-depth understanding of free space optical (FSO) communication with a particular emphasis on optical beam propagation through atmospheric turbulence. The book is structured in such a way that it provides a basic framework for the beginners and also gives a concise description from a designer’s perspective. The book provides an exposure to FSO technology, fundamental limitations, design methodologies, system trade-offs, acquisition, tracking and pointing (ATP) techniques and link-feasibility analysis. The contents of this book will be of interest to professionals and researchers alike. The book may also be used as a textbook for engineering coursework and professional training.

  2. Diaspora: Multilingual and Intercultural Communication across Time and Space

    Science.gov (United States)

    Wei, Li; Hua, Zhu

    2013-01-01

    The nature of diaspora is changing in the 21st century. Yet many of the communication issues remain the same. At the heart of it is multilingual and intercultural communication across time and space. There is much that applied linguists can contribute to the understanding of diaspora in the era of globalization. This article discusses some of the…

  3. Near Earth Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    In the near future the National Aeronautics and Space Administration anticipates a significant increase in demand for long-haul communications services from deep space to Earth. Distances will range from 0.1 to 40 AU, with data rate requirements in the 1's to 1000's of Mbits/second. The near term demand is driven by NASA's Space Science Enterprise which wishes to deploy more capable instruments onboard spacecraft and increase the number of deep space missions. The long term demand is driven by missions with extreme communications challenges such as very high data rates from the outer planets, supporting sub-surface exploration, or supporting NASA's Human Exploration and Development of Space Enterprise beyond Earth orbit. Laser communications is a revolutionary communications technology that will dramatically increase NASA's ability to transmit information across the solar system. Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas. This paper provides an overview of different network options at Earth to meet NASA's deep space lasercom requirements. It is based mainly on work done for the Mars Laser Communications Demonstration Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done for the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telesat Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  4. Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  5. Designing a curriculum for communication skills training from a theory and evidence-based perspective.

    Science.gov (United States)

    Street, Richard L; De Haes, Hanneke C J M

    2013-10-01

    Because quality health care delivery requires effective clinician-patient communication, successful training of health professionals requires communication skill curricula of the highest quality. Two approaches for developing medical communication curricula are a consensus approach and a theory driven approach. We propose a theory-driven, communication function framework for identifying important communication skills, one that is focused on the key goals and outcomes that need to be accomplished in clinical encounters. We discuss 7 communication functions important to medical encounters and the types of skills needed to accomplish each. The functional approach has important pedagogical implications including the importance of distinguishing the performance of a behavior (capacity) from the outcome of that behavior in context (effectiveness) and the recognition that what counts as effective communication depends on perspective (e.g., observer, patient). Consensus and theory-driven approaches to medical communication curricula are not necessarily contradictory and can be integrated to further enhance ongoing development and improvements in medical communication education. A functional approach should resonate with practicing clinicians and continuing education initiatives in that it is embraces the notion that competent communication is situation-specific as clinicians creatively use communicative skills to accomplish the key goals of the encounter. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Limit Formulae and Jump Relations of Potential Theory in Sobolev Spaces

    OpenAIRE

    Raskop, Thomas; Grothaus, Martin

    2009-01-01

    In this article we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. Also other authors proved the convergence in Lebesgue spaces for integrable functions. The achievement of this paper is the L2 convergence for the weak derivatives of higher orders. Also the layer functions F are elements of Sobolev spaces and a two dimensional suitable smooth submanifold in R3, called regular Cm-surface. We are considering the pot...

  7. Communication and Symbolic Capitalism. Rethinking Marxist Communication Theory in the Light of the Information Society

    Directory of Open Access Journals (Sweden)

    George Pleios

    2012-05-01

    Full Text Available Communication is examined in the realm of Marxist theory not as an autonomous social field, but as a component in the total social structure. It is argued that there was a shift from the initial Marxist idea of forms of communication as relations of production to communication as part of the superstructure, and that this view has prevailed in Marxist theory for a long period of time. In the work of later Marxists, we can spot a re-connection of communication with the capitalist mode of production, but not with the process of structuration and changing of relations of  production. In my view, first we must connect these modifications in Marxist theory with the changes in the capitalist mode of production itself and secondly we must seek the role of communication primarily in the production process.  We stress that at the end of the 19th century there was a shift from extensive to intensive forms of surplus value which was tightly interconnected with the mass (enlarged consumption of symbolic commodities and commodities – symbols as stimulus for the intensive production. In this way capitalism was transformed to symbolic capitalism. In the ‘60s, the symbolic logic of enlarged consumption led to the need for diverse and flexible production and therefore to the deep information – symbolic changes in technology and social organization of the labour. Thus the logic of consumption became logic of production. This made possible on one hand the shrinkage of the enlarged consumption and on the other the high productivity of the economic systems. This was the rise of a new, deep symbolic capitalism, which made possible the social change without seizing the power. Therefore, the recent developments in the capitalist mode of production takes us back to the primary Marxist notion of communication forms as relations of production and make possible to change the laters by changing the first.

  8. Orbifold compactification and solutions of M-theory from Milne spaces

    International Nuclear Information System (INIS)

    Bytsenko, A.A.; Guimaraes, M.E.X.; Kerner, R.

    2005-01-01

    In this paper, we consider solutions and spectral functions of M-theory from Milne spaces with extra free dimensions. Conformal deformations to the metric associated with real hyperbolic space forms are derived. For the three-dimensional case, the orbifold identifications SL(2,Z+iZ)/{±Id}, where Id is the identity matrix, is analyzed in detail. The spectrum of an eleven-dimensional field theory can be obtained with the help of the theory of harmonic functions in the fundamental domain of this group and it is associated with the cusp forms and the Eisenstein series. The supersymmetry surviving for supergravity solutions involving real hyperbolic space factors is briefly discussed. (orig.)

  9. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  10. Preface to the special issue on ;Optical Communications Exploiting the Space Domain;

    Science.gov (United States)

    Wang, Jian; Yu, Siyuan; Li, Guifang

    2018-02-01

    The demand for high capacity optical communications will continue to be driven by the exponential growth of global internet traffic. Optical communications are about the exploitation of different physical dimensions of light waves, including complex amplitude, frequency (or wavelength), time, polarization, etc. Conventional techniques such as wavelength-division multiplexing (WDM), time-division multiplexing (TDM) and polarization-division multiplexing (PDM) have almost reached their scalability limits. Space domain is the only known physical dimension left and space-division multiplexing (SDM) seems the only option to further scale the transmission capacity and spectral efficiency of optical communications. In recent years, few-mode fiber (FMF), multi-mode fiber (MMF), multi-core fiber (MCF) and few-mode multi-core fiber (FM-MCF) have been widely explored as promising candidates for fiber-based SDM. The challenges for SDM include efficient (de)multiplexer, amplifiers, and multiple-input multiple-output (MIMO) digital signal processing (DSP) techniques. Photonic integration will also be a key technology to SDM. Meanwhile, free-space and underwater optical communications have also exploited the space domain to increase the transmission capacity and spectral efficiency. The challenges include long-distance transmission limited by propagation loss, divergence, scattering and turbulence. Very recently, helically phased light beams carrying orbital angular momentum (OAM) have also seen potential applications both in free-space, underwater and fiber-based optical communications. Actually, different mode bases such as linearly polarized (LP) modes and OAM modes can be employed for SDM. Additionally, SDM could be used in chip-scale photonic interconnects and data center optical interconnects. Quantum processing exploiting the space domain is of great interest. The information capacity limit and physical layer security in SDM optical communications systems are important

  11. Generally covariant theories: the Noether obstruction for realizing certain space-time diffeomorphisms in phase space

    International Nuclear Information System (INIS)

    Pons, Josep M

    2003-01-01

    Relying on known results of the Noether theory of symmetries extended to constrained systems, it is shown that there exists an obstruction that prevents certain tangent-space diffeomorphisms being projectable to phase space, for generally covariant theories. This main result throws new light on the old fact that the algebra of gauge generators in the phase space of general relativity, or other generally covariant theories, only closes as a soft algebra and not as a Lie algebra. The deep relationship between these two issues is clarified. In particular, we see that the second one may be understood as a side effect of the procedure to solve the first. It is explicitly shown how the adoption of specific metric-dependent diffeomorphisms, as a way to achieve projectability, causes the algebra of gauge generators (constraints) in phase space not to be a Lie algebra -with structure constants - but a soft algebra - with structure functions

  12. Quantum Field Theory with a Minimal Length Induced from Noncommutative Space

    International Nuclear Information System (INIS)

    Lin Bing-Sheng; Chen Wei; Heng Tai-Hua

    2014-01-01

    From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space. Based on this relation, we derive the modified Klein—Gordon equation and Dirac equation. We investigate the scalar field and ϕ 4 model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space. (physics of elementary particles and fields)

  13. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    Science.gov (United States)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  14. Configuration spaces geometry, topology and representation theory

    CERN Document Server

    Cohen, Frederick; Concini, Corrado; Feichtner, Eva; Gaiffi, Giovanni; Salvetti, Mario

    2016-01-01

    This book collects the scientific contributions of a group of leading experts who took part in the INdAM Meeting held in Cortona in September 2014. With combinatorial techniques as the central theme, it focuses on recent developments in configuration spaces from various perspectives. It also discusses their applications in areas ranging from representation theory, toric geometry and geometric group theory to applied algebraic topology.

  15. Haag-Ruelle scattering theory as a scattering theory in different spaces of states

    International Nuclear Information System (INIS)

    Koshmanenko, V.D.

    1979-01-01

    The aim of the paper is the extraction of the abstract content from the Haag-Ruelle theory, i.e. to find out the total mathematical scheme of the theory without the account of physical axiomatics. It is shown that the Haag-Ruelle scattering theory may be naturally included into the scheme of the abstract theory of scattering with the pair of spaces, the wave operators being determined by the method of bilinear functionals. A number of trivial features of the scattering operator is found in the abstract theory. The concrete prospects of the application of the data obtained are outlined in the problem of the scattering of the field quantum theory

  16. Relativistic and nonrelativistic classical field theory on fivedimensional space-time

    International Nuclear Information System (INIS)

    Kunzle, H.P.; Duval, C.

    1985-07-01

    This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form

  17. Space Link Extension (SLE) Emulation for High-Throughput Network Communication

    Science.gov (United States)

    Murawski, Robert W.; Tchorowski, Nicole; Golden, Bert

    2014-01-01

    As the data rate requirements for space communications increases, significant stress is placed not only on the wireless satellite communication links, but also on the ground networks which forward data from end-users to remote ground stations. These wide area network (WAN) connections add delay and jitter to the end-to-end satellite communication link, effects which can have significant impacts on the wireless communication link. It is imperative that any ground communication protocol can react to these effects such that the ground network does not become a bottleneck in the communication path to the satellite. In this paper, we present our SCENIC Emulation Lab testbed which was developed to test the CCSDS SLE protocol implementations proposed for use on future NASA communication networks. Our results show that in the presence of realistic levels of network delay, high-throughput SLE communication links can experience significant data rate throttling. Based on our observations, we present some insight into why this data throttling happens, and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented as well to the SLE implementation developers which, based on our reports, developed a new release for SLE which we show fixes the SLE blocking issue and greatly improves the protocol throughput. In this paper, we also discuss future developments for our end-to-end emulation lab and how these improvements can be used to develop and test future space communication technologies.

  18. Conformal higher spin theory and twistor space actions

    Science.gov (United States)

    Hähnel, Philipp; McLoughlin, Tristan

    2017-12-01

    We consider the twistor description of conformal higher spin theories and give twistor space actions for the self-dual sector of theories with spin greater than two that produce the correct flat space-time spectrum. We identify a ghost-free subsector, analogous to the embedding of Einstein gravity with cosmological constant in Weyl gravity, which generates the unique spin-s three-point anti-MHV amplitude consistent with Poincaré invariance and helicity constraints. By including interactions between the infinite tower of higher-spin fields we give a geometric interpretation to the twistor equations of motion as the integrability condition for a holomorphic structure on an infinite jet bundle. Finally, we conjecture anti-self-dual interaction terms which give an implicit definition of a twistor action for the full conformal higher spin theory.

  19. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  20. Programmable High-Rate Multi-Mission Receiver for Space Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current and upcoming NASA space links require both highly reliable low-rate communications links supporting critical TT&C, ranging and voice services and highly...

  1. Programmable High-Rate Multi-Mission Receiver for Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current and upcoming NASA space links require both highly reliable low-rate communications links supporting critical TT&C, ranging and voice services and highly...

  2. A convergence theory for probabilistic metric spaces | Jäger ...

    African Journals Online (AJOL)

    We develop a theory of probabilistic convergence spaces based on Tardiff's neighbourhood systems for probabilistic metric spaces. We show that the resulting category is a topological universe and we characterize a subcategory that is isomorphic to the category of probabilistic metric spaces. Keywords: Probabilistic metric ...

  3. Construction of spaces of kinematic quantum states for field theories via projective techniques

    International Nuclear Information System (INIS)

    Okołów, Andrzej

    2013-01-01

    We present a method of constructing a space of quantum states for a field theory: given phase space of a theory, we define a family of physical systems each possessing a finite number of degrees of freedom, next we define a space of quantum states for each finite system, finally using projective techniques we organize all these spaces into a space of quantum states which corresponds to the original phase space. This construction is kinematic in this sense that it bases merely on the structure of the phase space of a theory and does not take into account possible constraints on the space. The construction is a generalization of a construction by Kijowski—the latter one is limited to theories of linear phase spaces, while the former one is free of this limitation. The method presented in this paper enables to construct a space of quantum states for the teleparallel equivalent of general relativity. (paper)

  4. A review on channel models in free space optical communication systems

    Science.gov (United States)

    Anbarasi, K.; Hemanth, C.; Sangeetha, R. G.

    2017-12-01

    Free Space Optical communication (FSO) is a wireless communication technology which uses light to transmit the data in free space. FSO has advantages like unlicensed spectrum and higher bandwidth. In this paper FSO system merits and demerits, challenges in FSO, and various channel models are discussed. To mitigate the turbulence in FSO the mitigation techniques like relaying, diversity schemes and adopting different modulation techniques used in different channels are discussed and its performance comparison is given.

  5. Human sensorimotor communication: a theory of signaling in online social interactions.

    Science.gov (United States)

    Pezzulo, Giovanni; Donnarumma, Francesco; Dindo, Haris

    2013-01-01

    Although the importance of communication is recognized in several disciplines, it is rarely studied in the context of online social interactions and joint actions. During online joint actions, language and gesture are often insufficient and humans typically use non-verbal, sensorimotor forms of communication to send coordination signals. For example, when playing volleyball, an athlete can exaggerate her movements to signal her intentions to her teammates (say, a pass to the right) or to feint an adversary. Similarly, a person who is transporting a table together with a co-actor can push the table in a certain direction to signal where and when he intends to place it. Other examples of "signaling" are over-articulating in noisy environments and over-emphasizing vowels in child-directed speech. In all these examples, humans intentionally modify their action kinematics to make their goals easier to disambiguate. At the moment no formal theory exists of these forms of sensorimotor communication and signaling. We present one such theory that describes signaling as a combination of a pragmatic and a communicative action, and explains how it simplifies coordination in online social interactions. We cast signaling within a "joint action optimization" framework in which co-actors optimize the success of their interaction and joint goals rather than only their part of the joint action. The decision of whether and how much to signal requires solving a trade-off between the costs of modifying one's behavior and the benefits in terms of interaction success. Signaling is thus an intentional strategy that supports social interactions; it acts in concert with automatic mechanisms of resonance, prediction, and imitation, especially when the context makes actions and intentions ambiguous and difficult to read. Our theory suggests that communication dynamics should be studied within theories of coordination and interaction rather than only in terms of the maximization of information

  6. Human sensorimotor communication: a theory of signaling in online social interactions.

    Directory of Open Access Journals (Sweden)

    Giovanni Pezzulo

    Full Text Available Although the importance of communication is recognized in several disciplines, it is rarely studied in the context of online social interactions and joint actions. During online joint actions, language and gesture are often insufficient and humans typically use non-verbal, sensorimotor forms of communication to send coordination signals. For example, when playing volleyball, an athlete can exaggerate her movements to signal her intentions to her teammates (say, a pass to the right or to feint an adversary. Similarly, a person who is transporting a table together with a co-actor can push the table in a certain direction to signal where and when he intends to place it. Other examples of "signaling" are over-articulating in noisy environments and over-emphasizing vowels in child-directed speech. In all these examples, humans intentionally modify their action kinematics to make their goals easier to disambiguate. At the moment no formal theory exists of these forms of sensorimotor communication and signaling. We present one such theory that describes signaling as a combination of a pragmatic and a communicative action, and explains how it simplifies coordination in online social interactions. We cast signaling within a "joint action optimization" framework in which co-actors optimize the success of their interaction and joint goals rather than only their part of the joint action. The decision of whether and how much to signal requires solving a trade-off between the costs of modifying one's behavior and the benefits in terms of interaction success. Signaling is thus an intentional strategy that supports social interactions; it acts in concert with automatic mechanisms of resonance, prediction, and imitation, especially when the context makes actions and intentions ambiguous and difficult to read. Our theory suggests that communication dynamics should be studied within theories of coordination and interaction rather than only in terms of the

  7. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  8. A general-model-space diagrammatic perturbation theory

    International Nuclear Information System (INIS)

    Hose, G.; Kaldor, U.

    1980-01-01

    A diagrammatic many-body perturbation theory applicable to arbitrary model spaces is presented. The necessity of having a complete model space (all possible occupancies of the partially-filled shells) is avoided. This requirement may be troublesome for systems with several well-spaced open shells, such as most atomic and molecular excited states, as a complete model space spans a very broad energy range and leaves out states within that range, leading to poor or no convergence of the perturbation series. The method presented here would be particularly useful for such states. The solution of a model problem (He 2 excited Σ + sub(g) states) is demonstrated. (Auth.)

  9. What have we learned from quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Fulling, S.A.

    1984-01-01

    The paper reviews the quantum field theory in curved space-time. Field quantization in gravitational backgrounds; particle creation by black holes; Hawking radiation; quantum field theory in curved space-time; covariant renormalization of the stress-energy-momentum tensor; quantum field theory and quantum gravity; are all discussed. (U.K.)

  10. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan

    2000-01-01

    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  11. Deep space optical communication via relay satellite

    Science.gov (United States)

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  12. Analyzing resilience with communicative systems theory an example from European fisheries

    DEFF Research Database (Denmark)

    Wilson, Douglas Clyde; Jacobsen, Rikke Becker

    2013-01-01

    The present paper argues that our understanding of the resilience of social-ecological systems can be improved by considering “communicative resilience” based on Communicative Systems Theory, which focuses on communicative action oriented to achieving mutual understandings. It further argues...... that it is possible to theorise and analyse resilience within complex social-ecological systems from this communicative perspective in a way that is very different from, but complementary to, agent-based approaches focussed on incentives. The paper presents data from multispecies mixed fisheries in Europe...

  13. Complex networks in the Euclidean space of communicability distances

    Science.gov (United States)

    Estrada, Ernesto

    2012-06-01

    We study the properties of complex networks embedded in a Euclidean space of communicability distances. The communicability distance between two nodes is defined as the difference between the weighted sum of walks self-returning to the nodes and the weighted sum of walks going from one node to the other. We give some indications that the communicability distance identifies the least crowded routes in networks where simultaneous submission of packages is taking place. We define an index Q based on communicability and shortest path distances, which allows reinterpreting the “small-world” phenomenon as the region of minimum Q in the Watts-Strogatz model. It also allows the classification and analysis of networks with different efficiency of spatial uses. Consequently, the communicability distance displays unique features for the analysis of complex networks in different scenarios.

  14. Space Tweetup - from a participant to a Mars Tweetup organizer and a new format of space communication

    Science.gov (United States)

    Haider, O.; Groemer, G.

    2014-01-01

    In September 2011, the European Space Agency (ESA) and the German Space Agency (DLR) organized the first European SpaceTweetup during the German Aerospace day. One of the authors was one of 60 participants at this SpaceTweetup in Cologne and experienced the concept of a Tweetup and the engagement of the participants from the inside view. Building upon this experience, the Austrian Space Forum (OeWF) organized the first Austrian MarsTweetup during the “Dachstein Mars analog simulation”. Between 27 Apr,2001 and May,2012, a five day Mars simulation was conducted by the Austrian Space Forum and international research partners at the Giant Ice caves at the Dachstein region in Austria. During this field test, the Aouda.X spacesuit simulator and selected geophysical and life-science related experiments were conducted. In this paper we outline the potential and limitations of social media and how to engage the general public to participate and communicate about space projects through their own experience. We show examples of material SpaceTweetup participants produced e.g. hundreds of tweets during the actual event, blog entries, photo galleries and how space communication can benefit from it. Our considerations on organizing a SpaceTweetup are complemented with a section on lessons learned.

  15. Phase space properties of charged fields in theories of local observables

    International Nuclear Information System (INIS)

    Buchholz, D.; D'Antoni, C.

    1994-10-01

    Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)

  16. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  17. [Habermas, Freud and rationality. Psychoanalysis as a focus of the theory of communicative interaction].

    Science.gov (United States)

    Heim, R

    1991-07-01

    In his Theory of Communicative Action (1981) Jürgen Habermas attempted to base the critique of society on a universalized pragmatics. Heim attempts to derive a new metatheory of psychoanalysis from the theory of communicative action. In doing so he concentrates on the actual models of interpretation in psychoanalysis (Lacan, Marcuse, Lorenzer).

  18. Organizational Communication Based on Organizational Justice Theory for Motivating Workers with Different Cultural Values

    OpenAIRE

    山口,生史

    2002-01-01

    This study is based on organizational justice theory. Although organizational justice theory is useful for explaining organizational behavior, it has not focused on motivation, per se. ln this study, the linkage between organizational justice and motivation is explored with the mediating effect of interpersonal communication in an organization (i.e.,organizational communication).

  19. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Science.gov (United States)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  20. LEO-to-ground optical communications using SOTA (Small Optical TrAnsponder) - Payload verification results and experiments on space quantum communications

    Science.gov (United States)

    Carrasco-Casado, Alberto; Takenaka, Hideki; Kolev, Dimitar; Munemasa, Yasushi; Kunimori, Hiroo; Suzuki, Kenji; Fuse, Tetsuharu; Kubo-Oka, Toshihiro; Akioka, Maki; Koyama, Yoshisada; Toyoshima, Morio

    2017-10-01

    Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.

  1. Quantum field theory in generalised Snyder spaces

    International Nuclear Information System (INIS)

    Meljanac, S.; Meljanac, D.; Mignemi, S.; Štrajn, R.

    2017-01-01

    We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.

  2. Quantum field theory in generalised Snyder spaces

    Energy Technology Data Exchange (ETDEWEB)

    Meljanac, S.; Meljanac, D. [Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb (Croatia); Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)

    2017-05-10

    We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.

  3. Establishing a conceptual framework for handoffs using communication theory.

    Science.gov (United States)

    Mohorek, Matthew; Webb, Travis P

    2015-01-01

    A significant consequence of the 2003 Accreditation Council for Graduate Medical Education duty hour restrictions has been the dramatic increase in patient care handoffs. Ineffective handoffs have been identified as the third most common cause of medical error. However, research into health care handoffs lacks a unifying foundational structure. We sought to identify a conceptual framework that could be used to critically analyze handoffs. A scholarly review focusing on communication theory as a possible conceptual framework for handoffs was conducted. A PubMed search of published handoff research was also performed, and the literature was analyzed and matched to the most relevant theory for health care handoff models. The Shannon-Weaver Linear Model of Communication was identified as the most appropriate conceptual framework for health care handoffs. The Linear Model describes communication as a linear process. A source encodes a message into a signal, the signal is sent through a channel, and the signal is decoded back into a message at the destination, all in the presence of internal and external noise. The Linear Model identifies 3 separate instances in handoff communication where error occurs: the transmitter (message encoding), channel, and receiver (signal decoding). The Linear Model of Communication is a suitable conceptual framework for handoff research and provides a structured approach for describing handoff variables. We propose the Linear Model should be used as a foundation for further research into interventions to improve health care handoffs. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  4. Evaluating Risk Communication After the Fukushima Disaster Based on Nudge Theory.

    Science.gov (United States)

    Murakami, Michio; Tsubokura, Masaharu

    2017-03-01

    Using nudge theory and some examples of risk communication that followed the Fukushima disaster, this article discusses the influences and justifications of risk communication, in addition to how risk communication systems are designed. To assist people in making decisions based on their own value systems, we provide three suggestions, keeping in mind that people can be influenced (ie, "nudged") depending on how risk communication takes place: (1) accumulate knowledge on the process of evaluating how the method of risk communication and a system's default design could impact people; (2) clarify the purpose and outcomes of risk communication; and (3) see what risk communication might be ethically unjustifiable. Quantitative studies on risk communication and collective narratives will provide some ideas for how to design better risk communication systems and to help people make decisions. Furthermore, we have shown examples of unjustifiable risk communication.

  5. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    Hilbert space; Koopman–von Neumann theory; classical electrodynamics. PACS No. 03.50. ... The paper is divided into four sections. Section 2 .... construction of Sudarshan is to be contrasted with that of Koopman and von Neumann. ..... ture from KvN and [16] in this formulation is to define new momentum and coordinate.

  6. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    Science.gov (United States)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  7. Local field theory on κ-Minkowski space, star products and noncommutative translations

    International Nuclear Information System (INIS)

    Kosinski, P.; Maslanka, P.; Lukierski, J.

    2000-01-01

    We consider local field theory on κ-deformed Minkowski space which is an example of solvable Lie-algebraic noncommutative structure. Using integration formula over κ-Minkowski space and κ-deformed Fourier transform, we consider for deformed local fields the reality conditions as well as deformation of action functionals in standard Minkowski space. We present explicit formulas for two equivalent star products describing CBH quantization of field theory on κ-Minkowski space. We express also via star product technique the noncommutative translations in κ-Minkowski space by commutative translations in standard Minkowski space. (author)

  8. Gauge and integrable theories in loop spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Luchini, G.

    2012-01-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  9. Space Weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Honary, Farideh

    2014-05-01

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres at all times. At high latitudes, and especially on polar routing, VHF ground infrastructure does not exist and the aircraft have to rely on HF radio for communications. HF relies on reflections from the ionosphere to achieve long distance communications. Unfortunately the high latitude ionosphere is affected by space weather events. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. This presentation describes a new research programme at the University of Lancaster in collaboration with the University of Leicester, Solar Metrics Ltd and Natural Resources Canada for the development of a nowcasting and forecasting HF communications tool designed for the particular needs of civilian airlines. This project funded by EPSRC will access a wide variety of solar and interplanetary measurements to derive a complete picture of space weather disturbances affecting radio absorption and reflection

  10. What Renaissance Literary Theory Tells us about Climate Communication

    Science.gov (United States)

    Guenther, G. J.

    2017-12-01

    Many current debates in climate communication-to convey the consensus or not to convey the consensus; to frighten people or encourage them-seem to center on the question of how to discuss climate science and its ability to predict climate impacts. By examining the Renaissance literary theory that represents poets as better teachers than philosophers and scientists, this paper argues that climate advocates should redefine climate communication to include a variety of artistic discourses that make meaning in order to inspire people into political action.

  11. Holographic representation of space-variant systems: system theory.

    Science.gov (United States)

    Marks Ii, R J; Krile, T F

    1976-09-01

    System theory for holographic representation of linear space-variant systems is derived. The utility of the resulting piecewise isoplanatic approximation (PIA) is illustrated by example application to the invariant system, ideal magnifier, and Fourier transformer. A method previously employed to holographically represent a space-variant system, the discrete approximation, is shown to be a special case of the PIA.

  12. Kinetic theory in maximal-acceleration invariant phase space

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1989-01-01

    A vanishing directional derivative of a scalar field along particle trajectories in maximal acceleration invariant phase space is identical in form to the ordinary covariant Vlasov equation in curved spacetime in the presence of both gravitational and nongravitational forces. A natural foundation is thereby provided for a covariant kinetic theory of particles in maximal-acceleration invariant phase space. (orig.)

  13. Designing a curriculum for communication skills training from a theory and evidence-based perspective

    NARCIS (Netherlands)

    Street, Richard L.; de Haes, Hanneke C. J. M.

    2013-01-01

    Because quality health care delivery requires effective clinician-patient communication, successful training of health professionals requires communication skill curricula of the highest quality. Two approaches for developing medical communication curricula are a consensus approach and a theory

  14. APPROPRIATIZING POLITENESS THEORY FOR INTERCULTURAL COMMUNICATION IN ELT

    Directory of Open Access Journals (Sweden)

    Rahmat Yusny

    2013-08-01

    Full Text Available The theory of politeness suggests strategies in social interaction by which a person can use to save the hearer’s face upon the effect of face-threatening acts or FTAs. Face threatening acts are described by Brown and Levinson as the acts that infringe the hearer’s need of maintaining his/her self-esteem and be respected. Brown and Levinson accepted that the notion of face is respected as universal norms or values subscribed to by the members of the society. In that regard, this article provides a discussion about various viewpoints on the debate of universality of politeness theory and criticisms addressed by eastern-pragmaticists that this theory should not be seen as universally applicable. Cultural differences, as suggested by non-western pragmaticists, accord what is accepted in the context of face in western culture to be not accepted in other cultures. Therefeore, although we accept that Brown & Levinson’s theory has made a significant breakthrough in elaborating politeness, appropriation of this theory should be accounted in intercultural communication instead to accept it as universal.

  15. What is the explanatory power of space syntax theory? the application of modal logics from theory of science

    OpenAIRE

    van Nes, A.

    2017-01-01

    This contribution shows various approaches from the theory of science for revealing the explanatory power of the Space Syntax. In this contribution Bhaskar's critical realistic model of science and Georg Henrik von Wright's account of explanation and understanding are used to assess the explanatory power of Space Syntax research. In essence subsequent considerations distinguishes between a theory able to offer an explanation of phenomena and a theory proposing an understanding thereof. It wil...

  16. Advanced Theory of Mind in Children Using Augmentative and Alternative Communication

    Science.gov (United States)

    Sundqvist, Anett; Ronnberg, Jerker

    2010-01-01

    This study focused on the attainment of Theory of Mind (ToM) in children (aged 6 to 13) with complex communication needs who used augmentative and alternative communication (AAC). The AAC group (n = 14) was matched to a younger group, without disabilities, vis-a-vis nonverbal mental age. A second comparison group consisting of children with mild…

  17. CHANGING PARADIGMS IN SPACE THEORIES: Recapturing 20th Century Architectural History

    Directory of Open Access Journals (Sweden)

    Gül Kaçmaz Erk

    2013-03-01

    Full Text Available The concept of space entered architectural history as late as 1893. Studies in art opened up the discussion, and it has been studied in various ways in architecture ever since. This article aims to instigate an additional reading to architectural history, one that is not supported by “isms” but based on space theories in the 20th century. Objectives of the article are to bring the concept of space and its changing paradigms to the attention of architectural researchers, to introduce a conceptual framework to classify and clarify theories of space, and to enrich the discussions on the 20th century architecture through theories that are beyond styles. The introduction of space in architecture will revolve around subject-object relationships, three-dimensionality and senses. Modern space will be discussed through concepts such as empathy, perception, abstraction, and geometry. A scientific approach will follow to study the concept of place through environment, event, behavior, and design methods. Finally, the reearch will look at contemporary approaches related to digitally  supported space via concepts like reality-virtuality, mediated experience, and relationship with machines.

  18. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  19. Superconducting Nanowire Single Photon Detectors for High-Data-Rate Deep-Space Optical Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — High data rate deep space optical communication (DSOC) links for manned and unmanned space exploration have been identified by NASA as a critical future capability,...

  20. Do We Need Separate Space Theory: The Lessons of History

    National Research Council Canada - National Science Library

    Marheine, Fred

    2001-01-01

    .... Professionals throughout the Department of Defense and other branches of the US government have long debated the need to produce separate space theory or whether a modified version of air theory...

  1. Space Communications and Data Systems Technologies for Next Generation Earth Science Measurements

    Science.gov (United States)

    Bauer, Robert A.; Reinhart, Richard C.; Hilderman, Don R.; Paulsen, Phillip E.

    2003-01-01

    The next generation of Earth observing satellites and sensor networks will face challenges in supporting robust high rate communications links from the increasingly sophisticated onboard instruments. Emerging applications will need data rates forecast to be in the 100's to 1000's of Mbps. As mission designers seek smaller spacecraft, challenges exist in reducing the size and power requirements while increasing the capacity of the spacecraft's communications technologies. To meet these challenges, this work looks at three areas of selected space communications and data services technologies, specifically in the development of reflectarray antennas, demonstration of space Internet concepts, and measurement of atmospheric propagation effects on Ka-band signal transmitted from LEO.

  2. Quantum theory of spinor field in four-dimensional Riemannian space-time

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1996-01-01

    The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs

  3. Free-Space Quantum Communication with a Portable Quantum Memory

    Science.gov (United States)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-12-01

    The realization of an elementary quantum network that is intrinsically secure and operates over long distances requires the interconnection of several quantum modules performing different tasks. In this work, we report the realization of a communication network functioning in a quantum regime, consisting of four different quantum modules: (i) a random polarization qubit generator, (ii) a free-space quantum-communication channel, (iii) an ultralow-noise portable quantum memory, and (iv) a qubit decoder, in a functional elementary quantum network possessing all capabilities needed for quantum-information distribution protocols. We create weak coherent pulses at the single-photon level encoding polarization states |H ⟩ , |V ⟩, |D ⟩, and |A ⟩ in a randomized sequence. The random qubits are sent over a free-space link and coupled into a dual-rail room-temperature quantum memory and after storage and retrieval are analyzed in a four-detector polarization analysis akin to the requirements of the BB84 protocol. We also show ultralow noise and fully portable operation, paving the way towards memory-assisted all-environment free-space quantum cryptographic networks.

  4. Theories of Matter, Space and Time, Volume 2; Quantum theories

    Science.gov (United States)

    Evans, N.; King, S. F.

    2018-06-01

    This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.

  5. A Cp-theory problem book special features of function spaces

    CERN Document Server

    Tkachuk, Vladimir V

    2014-01-01

    The books in Vladimir Tkachuk’s A Cp-Theory Problem Book series will be the ‘go to’ texts for basic reference to Cp-theory. This second volume, Special Features of Function Spaces, gives a reasonably complete coverage of Cp-theory, systematically introducing each of the major topics and providing  500 carefully selected problems and exercises with complete solutions. Bonus results and open problems are also given. The text is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research covering a wide variety of topics in Cp-theory and general topology at the professional level. The first volume, Topological and Function Spaces © 2011, provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. This second volume continues from the first, and can be used as a textbook for courses in both Cp-theory and general topology as well as a referenc...

  6. Open problems in Banach spaces and measure theory | Rodríguez ...

    African Journals Online (AJOL)

    We collect several open questions in Banach spaces, mostly related to measure theoretic aspects of the theory. The problems are divided into five categories: miscellaneous problems in Banach spaces (non-separable Lp spaces, compactness in Banach spaces, w*-null sequences in dual spaces), measurability in Banach ...

  7. High-Efficiency, High-Power Laser Transmitter for Deep-Space Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — There is demand for vastly improved deep space satellite communications links. As data rates dramatically increase due to new sensor technologies and the desire to...

  8. Aristotelian Rhetorical Theory as a Framework for Teaching Scientific and Technical Communication.

    Science.gov (United States)

    Newman, Sara

    1999-01-01

    Describes an upper level rhetorical theory course for Scientific and Technical Communication majors (developed and taught by the author) that is grounded in Aristotle's "On Rhetoric" and in his understanding that effective communication is a systematic "tekhne"/art. Describes how the course uses Aristotle's work as a…

  9. Theory of hypernumbers and extrafunctions: Functional spaces and differentiation

    Directory of Open Access Journals (Sweden)

    Mark Burgin

    2002-01-01

    Full Text Available The theory of hypernumbers and extrafunctions is a novel approach in functional analysis aimed at problems of mathematical and computational physics. The new technique allows operations with divergent integrals and series and makes it possible to distinct different kinds of convergence and divergence. Although, it resembles nonstandard analysis, there are several distinctions between these theories. For example, while nonstandard analysis changes spaces of real and complex numbers by injecting into them infinitely small numbers and other nonstandard entities, the theory of extrafunctions does not change the inner structure of spaces of real and complex numbers, but adds to them infinitely big and oscillating numbers as external objects. In this paper, we consider a simplified version of hypernumbers, but a more general version of extrafunctions and their extraderivatives in comparison with previous works.

  10. Theory of linear operators in Hilbert space

    CERN Document Server

    Akhiezer, N I

    1993-01-01

    This classic textbook by two mathematicians from the USSR's prestigious Kharkov Mathematics Institute introduces linear operators in Hilbert space, and presents in detail the geometry of Hilbert space and the spectral theory of unitary and self-adjoint operators. It is directed to students at graduate and advanced undergraduate levels, but because of the exceptional clarity of its theoretical presentation and the inclusion of results obtained by Soviet mathematicians, it should prove invaluable for every mathematician and physicist. 1961, 1963 edition.

  11. Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...

  12. Space-time uncertainty and approaches to D-brane field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    2008-01-01

    In connection with the space-time uncertainty principle which gives a simple qualitative characterization of non-local or non-commutative nature of short-distance space-time structure in string theory, the author's recent approaches toward field theories for D-branes are briefly outlined, putting emphasis on some key ideas lying in the background. The final section of the present report is devoted partially to a tribute to Yukawa on the occasion of the centennial of his birth. (author)

  13. Kaluza-Klein theories and the space-time signature

    International Nuclear Information System (INIS)

    Aref'eva, I.Y.; Volovich, I.V.

    1985-01-01

    Vacuum solutions in Kaluza-Klein theories are constructed with additional compactified time dimensions, for which the zeroth-order modes do not contain ghosts. Compact spaces of negative curvature are used

  14. TRENDS IN THE DEVELOPMENT OF MARKETING COMMUNICATIONS IN THE GLOBAL INTERACTIVE SPACE

    Directory of Open Access Journals (Sweden)

    N. Kochkina

    2014-09-01

    Full Text Available The article identifies trends in the development of marketing communications in the global interactive space by analyzing the factors of their functioning and researching motivation of viral audience. It is revealed the prevalence of interactive technologies in today's information space and the growth dynamics of interactive advertising market. It is proved that favorable conditions for marketing communications' functioning forms the basis for the development of viral advertising as an effective communication tool for untraditional impact on potential customers. The popularity of social networks as a major source of viral messages is determined. The motivation of YouTube audience, which provides a resonant video viewing and retransmission, is investigated. Gender and age differences that stipulate communication affect on consumers are identified. Cyclic social consciousness is observed that demands further research of viral audience, including constructing scenarios of viral behavior.

  15. Free Space Optics Communication for Mobile Military Platforms

    Science.gov (United States)

    2003-12-01

    Federal Communications Commission FDA Food and Drug Administration FOV Field-of-View FSO Free Space Optics FWHM Full Width at Half Maximum Gbps...Physique et de Métrologie des Oscillateurs (LPMO) du CNRS UPR3203, associé à l’Université de Franche -Comté, 15 March 2002 [Schenk 2000] H. Schenk

  16. Applying Mediationist Theory to Communication about Terrorism and War.

    Science.gov (United States)

    Coufal, Kathy L.

    2002-01-01

    This introductory article to a forum on contemporary issues discusses the importance of communication in the transmission of social values and attitudes and applies mediation theory to the role of parents and teachers in assisting children to understand the images and rhetoric they encounter. (Contains 3 references.) (Author/DB)

  17. A learning space Odyssey

    NARCIS (Netherlands)

    Beckers, Ronald

    2016-01-01

    This dissertation addresses the alignment of learning space with higher education learning and teaching. Significant changes in higher education the past decades, such as increased information and communication technology (ICT) and new learning theories have resulted in the dilemma whether higher

  18. A Study for Optimum Space-to-Ground Communication Concept for CubeSat and SmallSat Platforms

    Data.gov (United States)

    National Aeronautics and Space Administration — This study is to explore the communication architecture for future space-to-ground CubeSat/SmallSat communication, through simulations, analyses, and identifying...

  19. Asynchronous communication in real space process algebra

    OpenAIRE

    Baeten, JCM Jos; Bergstra, JA Jan

    1990-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a priority mechanism allows to express the broadcasting mechanism. As an application, a protocol is specified in which the receiver moves with respect to the sender.

  20. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  1. Characterization of the Marine Atmosphere for Free-Space Optical Communication

    National Research Council Canada - National Science Library

    Thomas, Linda M. Wasiczko; Moore, Christopher I; Burris, Harris R; Suite, Michele; Stell, Mena; Murphy, James; Gilbreath, G. C; Rabinovich, William; Scharpf, William

    2006-01-01

    The Chesapeake Bay Detachment of the Naval Research Laboratory (NRL-CBD) provides an ideal environment for characterizing the effects of the marine atmosphere on free space optical communication links...

  2. Exact Solutions of the Field Equations for Empty Space in the Nash Gravitational Theory

    Directory of Open Access Journals (Sweden)

    Matthew T. Aadne

    2017-02-01

    Full Text Available John Nash has proposed a new theory of gravity. We define a Nash-tensor equal to the curvature tensor appearing in the Nash field equations for empty space, and calculate its components for two cases: 1. A static, spherically symmetric space; and 2. The expanding, homogeneous and isotropic space of the Friedmann-Lemaitre-Robertson-Walker (FLRW universe models. We find the general, exact solution of Nash’s field equations for empty space in the static case. The line element turns out to represent the Schwarzschild-de Sitter spacetime. Also we find the simplest non-trivial solution of the field equations in the cosmological case, which gives the scale factor corresponding to the de Sitter spacetime. Hence empty space in the Nash theory corresponds to a space with Lorentz Invariant Vacuum Energy (LIVE in the Einstein theory. This suggests that dark energy may be superfluous according to the Nash theory. We also consider a radiation filled universe model in an effort to find out how energy and matter may be incorporated into the Nash theory. A tentative interpretation of the Nash theory as a unified theory of gravity and electromagnetism leads to a very simple form of the field equations in the presence of matter. It should be noted, however, that the Nash theory is still unfinished. A satisfying way of including energy momentum into the theory has yet to be found.

  3. Mass Communication: An Introduction; Theory and Practice of Mass Media in Society.

    Science.gov (United States)

    Bittner, John R.

    From the perspectives of historical, contemporary, and future interpretations of mass communication, this introduction to the theory and practice of mass media in society treats both the social context of mass communication and the hardware components that make it operable. The book discusses all mass media--newspapers, magazines, radio,…

  4. High-dimensional free-space optical communications based on orbital angular momentum coding

    Science.gov (United States)

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  5. P-adic space-time and string theory

    International Nuclear Information System (INIS)

    Volovich, I.V.

    1987-01-01

    Arguments for the possibility of a p-adic structure of space-time are advanced. The p-adic analog of the Veneziano amplitude is proposed, and this permits a start to be made on the construction of the theory of p-adic strings. The same questions are considered over Galois fields, for which the analog of the Veneziano amplitude is a Jacobi sum that can be expressed in terms of p-adic cohomologies of Fermat curves. An explicit expression for the vertex operator of the corresponding string theory is given

  6. Sustainable Innovation: Eco-development tendencies and Theory of Communicative Action Standpoint

    Directory of Open Access Journals (Sweden)

    Dany Flávio Tonelli

    2013-04-01

    Full Text Available The paper aims to show new production tendencies, trying to find out if they can be seen under a sustainable innovation perspective and if their logical action presents a connection to Habermas’ Theory of Communicative Action. Considering the current innovation theories it is worth saying that specific approaches facing environmental sustainability are not common. Based on such scope, Industrial Ecology and Integrated Production Systems are highlighted. They are in the mainstream because they try to guide themselves not just by economic concerns, but also considering the articulation demand among different subjective and objective elements. The tendencies draw proposals to policies’ transformations – regarding production methods – by placing economical, social and environmental dimensions in an inseparable way. However, even though after analyzing systems we did not identify any relation to the “Theory of Communicative Action”, the habermasian approach is recognized as useful to innovation processes once achieved by consensus and mutual understanding.

  7. Dependence and caring in clinical communication: the relevance of attachment and other theories.

    Science.gov (United States)

    Salmon, Peter; Young, Bridget

    2009-03-01

    Clinical relationships are usually asymmetric, being defined by patients' dependence and practitioners' care. Our aims are to: (i) identify literature that can contribute to theory for researching and teaching clinical communication from this perspective; (ii) highlight where theoretical development is needed; and (iii) test the utility of the emerging theory by identifying whether it leads to implications for educational practice. Selective and critical review of research concerned with dependence and caring in clinical and non-clinical relationships. Attachment theory helps to understand patients' need to seek safety in relationships with expert and authoritative practitioners but is of limited help in understanding practitioners' caring. Different theories that formulate practitioners' care as altruistic, rewarded by personal connection or as a contract indicate the potential importance of practitioners' emotions, values and sense of role in understanding their clinical communication. Extending the theoretical grounding of clinical communication can accommodate patients' dependence and practitioners' caring without return to medical paternalism. A broader theoretical base will help educators to address the inherent subjectivity of clinical relationships, and researchers to distinguish scientific questions about how patients and clinicians are from normative questions about how they should be.

  8. Dependence and caring in clinical communication: The relevance of attachment and other theories

    Science.gov (United States)

    Salmon, Peter; Young, Bridget

    2009-01-01

    Objective Clinical relationships are usually asymmetric, being defined by patients’ dependence and practitioners’ care. Our aims are to: (i) identify literature that can contribute to theory for researching and teaching clinical communication from this perspective; (ii) highlight where theoretical development is needed; and (iii) test the utility of the emerging theory by identifying whether it leads to implications for educational practice. Methods Selective and critical review of research concerned with dependence and caring in clinical and non-clinical relationships. Results Attachment theory helps to understand patients’ need to seek safety in relationships with expert and authoritative practitioners but is of limited help in understanding practitioners’ caring. Different theories that formulate practitioners’ care as altruistic, rewarded by personal connection or as a contract indicate the potential importance of practitioners’ emotions, values and sense of role in understanding their clinical communication. Conclusion Extending the theoretical grounding of clinical communication can accommodate patients’ dependence and practitioners’ caring without return to medical paternalism. Practice implications A broader theoretical base will help educators to address the inherent subjectivity of clinical relationships, and researchers to distinguish scientific questions about how patients and clinicians are from normative questions about how they should be. PMID:19157761

  9. A homology theory for smale spaces

    CERN Document Server

    Putnam, Ian F

    2014-01-01

    The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.

  10. Quantum cryptography for secure free-space communications

    International Nuclear Information System (INIS)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.; Lamoreaux, S.K.; Luther, G.G.; Morgan, G.L.; Nordholt, J.E.; Peterson, C.G.

    1999-01-01

    The secure distribution of the secret random bit sequences known as key material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg's uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). The authors have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon polarization states to generate shared key material over line-of-sight optical links. Key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. The authors have developed and tested a free-space quantum key distribution (QKD) system over an outdoor optical path of ∼1 km at Los Alamos National Laboratory under nighttime conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, they examine the feasibility of surface to satellite QKD

  11. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  12. Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement

    Science.gov (United States)

    Duarte, F. J.

    2016-12-01

    The history of the probability amplitude equation | ψ > = ( | x , y > - | y , x > ) applicable to quanta pairs, propagating in different directions with entangled polarizations, is reviewed and traced back to the 1947-1949 period. The interferometric Dirac foundations common to | ψ > = ( | x , y > - | y , x > ) and the generalized N-slit interferometric equation, for indistinguishable quanta, are also described. The results from a series of experiments on N-slit laser interferometers, with intra interferometric propagation paths up to 527 m, are reviewed. Particular attention is given to explain the generation of interferometric characters, for secure space-to-space communications, which immediately collapse on attempts of interception. The design of a low divergence N-slit laser interferometer for low Earth orbit-low Earth orbit (LEO-LEO), and LEO-geostationary Earth orbit (LEO-GEO), secure interferometric communications is described and a weight assessment is provided.

  13. Theories in Developing Oral Communication for Specific Learner Group

    Science.gov (United States)

    Hadi, Marham Jupri

    2016-01-01

    The current article presents some key theories most relevant to the development of oral communication skills in an Indonesian senior high school. Critical analysis on the learners' background is employed to figure out their strengths and weaknesses. The brief overview of the learning context and learners' characteristic are used to identify which…

  14. Aspects of scintillation modelling in LEO-ground free-space optical communications

    Science.gov (United States)

    Moll, Florian

    2017-10-01

    Free-space optical communications can be used to transmit data from low Earth orbit satellites to ground with very high data rate. In the last section of the downlink, the electro-magnetic wave propagates through the turbulent atmosphere which is characterized by random index of refraction fluctuations. The propagating wave experiences phase distortions that lead to intensity scintillation in the aperture plane of the receiving telescope. For quantification, an appropriate scintillation model is needed. Approaches to analytically model the scintillation exist. Parameterization of the underlying turbulence profile (Cn2 profile) is however difficult. The Cn2 profiles are often site-specific and thus inappropriate or generic and thus too complex for a feasible deployment. An approach that directly models the scintillation effect based on measurements without claiming to be generic is therefore more feasible. Since measurements are sparse, a combination with existing theoretical framework is feasible to develop a new scintillation model that focuses on low earth orbit to ground free-space optical communications link design with direct detection. The paper addresses several questions one has to answer while analyzing the measurements data and selection of the theoretical models for the LEO downlink scenario. The first is the question of a suitable yet ease to use simple Cn2 profile. The HAP model is analyzed for its feasibility in this scenario since it includes a more realistic boundary layer profile decay than the HV model. It is found that the HAP model needs to be modified for a feasible deployment in the LEO downlink scenario for night time. The validity of the plane wave assumption in the downlink is discussed by model calculations of the scintillation index for a plane and Gaussian beam wave. Inaccuracies when using the plane earth model instead of the spherical earth model are investigated by analyzing the Rytov index. Impact of beam wander and non

  15. A theory-based curriculum design for remediation of residents' communication skills.

    Science.gov (United States)

    Leung, Fok-Han; Martin, Dawn; Batty, Helen

    2009-12-01

    Residents requiring remediation are often deficient in communication skills, namely clinical interviewing skills. Residents have to digest large amounts of knowledge, and then apply it in a clinical interview. The patient-centered approach, as demonstrated in the Calgary-Cambridge model and Martin's Map, can be difficult to teach. Before implementing a remediation curriculum, the theoretical educational underpinnings must be sound; curriculum evaluation is often expensive. Before establishing metrics for curriculum evaluation, a starting point is to perform a mental experiment to test theoretical adherence. This article describes an experiential remedial curriculum for communication skills. Educational theories of Kolb, Knowles, Bandura, and Bloom are used to design the curriculum into theory-based design components. Kolb's experiential cycle models the natural sequence of experiencing, teaching, and learning interviewing skills. A curriculum structured around this cycle has multiple intercalations with the above educational theories. The design is strengthened by appropriately timed use of education strategies such as learning contracts, taped interviews, simulations, structured reflection, and teacher role modeling. Importantly, it also models the form of the clinical interview format desired. Through understanding and application of contemporary educational theories, a program to remediate interviewing skills can increase its potential for success.

  16. Quantum moduli spaces of N=1 string theories

    International Nuclear Information System (INIS)

    Banks, T.; Dine, M.

    1996-01-01

    Generically, string models with N=1 supersymmetry are not expected to have moduli beyond perturbation theory; stringy nonperturbative effects as well as low energy field-theoretic phenomena such as gluino condensation will lift any flat directions. In this work, we describe models where some subspace of the moduli space survives nonperturbatively. Discrete R symmetries forbid any inherently stringy effects, and dynamical considerations control the field-theoretic effects. The surviving subspace is a space of high symmetry; the system is attracted to this subspace by a potential which we compute. Models of this type may be useful for considerations of duality and raise troubling cosmological questions about string theory. Our considerations also suggest a mechanism for fixing the expectation value of the dilaton. copyright 1996 The American Physical Society

  17. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  18. Scalar Dark Matter From Theory Space

    Energy Technology Data Exchange (ETDEWEB)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2003-12-26

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass {Omicron}(100 GeV), the second region has a candidate with a mass greater than {Omicron}(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible WIMP (weakly interacting massive particle).

  19. Scalar dark matter from theory space

    International Nuclear Information System (INIS)

    Birkedal-Hansen, Andreas; Wacker, Jay G.

    2004-01-01

    The scalar dark matter candidate in a prototypical theory space little Higgs model is investigated. We review all details of the model pertinent to a relic density calculation. We perform a thermal relic density calculation including couplings to the gauge and Higgs sectors of the model. We find two regions of parameter space that give acceptable dark matter abundances. The first region has a dark matter candidate with a mass O(100 GeV), the second region has a candidate with a mass greater than O(500 GeV). The dark matter candidate in either region is an admixture of an SU(2) triplet and an SU(2) singlet, thereby constituting a possible weakly interacting massive particle

  20. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  1. Grassmann phase space methods for fermions. II. Field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, B.J., E-mail: bdalton@swin.edu.au [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Jeffers, J. [Department of Physics, University of Strathclyde, Glasgow G4ONG (United Kingdom); Barnett, S.M. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-02-15

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  2. Grassmann phase space methods for fermions. II. Field theory

    International Nuclear Information System (INIS)

    Dalton, B.J.; Jeffers, J.; Barnett, S.M.

    2017-01-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  3. Theories of Matter, Space and Time; Classical theories

    Science.gov (United States)

    Evans, N.; King, S. F.

    2017-12-01

    This book and its sequel ('Theories of Matter Space and Time: Quantum Theories') are taken from third and fourth year undergraduate Physics courses at Southampton University, UK. The aim of both books is to move beyond the initial courses in classical mechanics, special relativity, electromagnetism, and quantum theory to more sophisticated views of these subjects and their interdependence. The goal is to guide undergraduates through some of the trickier areas of theoretical physics with concise analysis while revealing the key elegance of each subject. The first chapter introduces the key areas of the principle of least action, an alternative treatment of Newtownian dynamics, that provides new understanding of conservation laws. In particular, it shows how the formalism evolved from Fermat's principle of least time in optics. The second introduces special relativity leading quickly to the need and form of four-vectors. It develops four-vectors for all kinematic variables and generalize Newton's second law to the relativistic environment; then returns to the principle of least action for a free relativistic particle. The third chapter presents a review of the integral and differential forms of Maxwell's equations before massaging them to four-vector form so that the Lorentz boost properties of electric and magnetic fields are transparent. Again, it then returns to the action principle to formulate minimal substitution for an electrically charged particle.

  4. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  5. THE PUBLIC SPHERE OF POLITICS: THE ANTHROPOLOGICAL DIMENSION IN CONTEMPORARY COMMUNICATIVE THEORY

    Directory of Open Access Journals (Sweden)

    O. A. Tretyak

    2017-12-01

    Full Text Available Introduction. According to Jürgen Habermas, a contradiction between the system and the life-world signifies a need for a concept that would describe the projective space of a relaxed and undistorted human communicative activity. Communicative action as a societal basis of the public sphere links this concept to the pragmatic principles of human existence in modern society. The public sphere is important in the age of the cyber revolution and the rule of networking technologies and it gets an anthropological dimension in its definition of the modern individual. Reviewed from the view of the interdisciplinary scientific community the public sphere as a dimension of human identity that is manifested in standardized terms of communicative interactions. The paper suggests that the public sphere has lost its conflict mode in respect to power and the tech-savvy social system. Purpose. The paper aims to establish the specifics of the anthropological interpretation of the public sphere in the contemporary philosophical tradition. Methodology. General scientific and special methods of philosophical research are used for conducting this study. The author has used the descriptive method to define the subject area of the anthropic measurement of the public sphere of politics. The method of logical synthesis allows to combine the abstract and specific content of the anthropological dimension of publicity. A retrospective analysis allows to determine the temporal peculiarities of the anthropic meaning of the public sphere. The comparative method gives an opportunity to compare the empirical manifestations of social and political publicity and compare anthropological effects of the media and interpersonal communication activities of modern people. Theoretical basis and results. The article examines the anthropological content of the public sphere of politics as one of the key concepts of communicative theory paying attention to the modification of the nature

  6. The Extended Relativity Theory in Clifford Spaces

    CERN Document Server

    Castro, C

    2004-01-01

    A brief review of some of the most important features of the Extended Relativity theory in Clifford-spaces ( $C$-spaces) is presented whose " point" coordinates are noncommuting Clifford-valued quantities and which incoporate the lines, areas, volumes, .... degrees of freedom associated with the collective particle, string, membrane, ... dynamics of the $p$-loop histories (closed p-branes) living in target $D$-dimensional spacetime backgrounds. $C$-space Relativity naturally incoporates the ideas of an invariant length (Planck scale), maximal acceleration, noncommuting coordinates, supersymmetry, holography, superluminal propagation, higher derivative gravity with torsion and variable dimensions/signatures that allows to study the dynamics of all (closed ) p-branes, for all values of $ p $, in a unified footing. It resolves the ordering ambiguities in QFT and the problem of time in Cosmology. A discussion of the maximal-acceleration Relativity principle in phase-spaces follows along with the study of the inva...

  7. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    Science.gov (United States)

    1989-02-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  8. Mothers "Google It Up:" Extending Communication Channel Behavior in Diffusion of Innovations Theory.

    Science.gov (United States)

    Sundstrom, Beth

    2016-01-01

    This study employed qualitative methods, conducting 44 in-depth interviews with biological mothers of newborns to understand women's perceptions and use of new media, mass media, and interpersonal communication channels in relation to health issues. Findings contribute to theoretical and practical understandings of the role of communication channels in diffusion of innovations theory. In particular, this study provides a foundation for the use of qualitative research to advance applications of diffusion of innovations theory. Results suggest that participants resisted mass media portrayals of women's health. When faced with a health question, participants uniformly started with the Internet to "Google it up." Findings suggest new media comprise a new communication channel with new rules, serving the functions of both personal and impersonal influence. In particular, pregnancy and the postpartum period emerged as a time when campaign planners can access women in new ways online. As a result, campaign planners could benefit from introducing new ideas online and capitalizing on the strength of weak ties favored in new media. Results expand the innovativeness/needs paradox in diffusion of innovations theory by elaborating on the role of new media to reach underserved populations. These findings provide an opportunity to better understand patient information seeking through the lens of diffusion of innovations theory.

  9. Resonances, scattering theory and rigged Hilbert spaces

    International Nuclear Information System (INIS)

    Parravicini, G.; Gorini, V.; Sudarshan, E.C.G.

    1979-01-01

    The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free, in, and out eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian; the singularities of the out eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of complete sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the out eigenvectors. The free, in and out eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee-Friedrichs model. 48 references

  10. Obstacle evasion in free-space optical communications utilizing Airy beams

    Science.gov (United States)

    Zhu, Guoxuan; Wen, Yuanhui; Wu, Xiong; Chen, Yujie; Liu, Jie; Yu, Siyuan

    2018-03-01

    A high speed free-space optical communication system capable of self-bending signal transmission around line-of-sight obstacles is proposed and demonstrated. Airy beams are generated and controlled to achieve different propagating trajectories, and the signal transmission characteristics of these beams around the obstacle are investigated. Our results confirm that, by optimising their ballistic trajectories, Airy beams are able to bypass obstacles with more signal energy and thus improve the communication performance compared with normal Gaussian beams.

  11. Eigenfunction expansions and scattering theory in rigged Hilbert spaces

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cubillo, F [Dpt. de Analisis Matematico, Universidad de Valladolid. Facultad de Ciencias, 47011 Valladolid (Spain)], E-mail: fgcubill@am.uva.es

    2008-08-15

    The work reviews some mathematical aspects of spectral properties, eigenfunction expansions and scattering theory in rigged Hilbert spaces, laying emphasis on Lippmann-Schwinger equations and Schroedinger operators.

  12. Convex analysis and monotone operator theory in Hilbert spaces

    CERN Document Server

    Bauschke, Heinz H

    2017-01-01

    This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, ma...

  13. Precoded generalized space shift keying for indoor visible light communications

    KAUST Repository

    Kadampot, Ishaque Ashar; Park, Kihong; Alouini, Mohamed-Slim

    2014-01-01

    We consider a visible light communication system with 2 transmit light emitting diodes (LED) and nr receive photodiodes. An optical generalized space shift keying modulation scheme is considered for the transmission of bits where each LED can

  14. The Finite Heisenberg-Weyl Groups in Radar and Communications

    Directory of Open Access Journals (Sweden)

    Calderbank AR

    2006-01-01

    Full Text Available We investigate the theory of the finite Heisenberg-Weyl group in relation to the development of adaptive radar and to the construction of spreading sequences and error-correcting codes in communications. We contend that this group can form the basis for the representation of the radar environment in terms of operators on the space of waveforms. We also demonstrate, following recent developments in the theory of error-correcting codes, that the finite Heisenberg-Weyl groups provide a unified basis for the construction of useful waveforms/sequences for radar, communications, and the theory of error-correcting codes.

  15. State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory

    Directory of Open Access Journals (Sweden)

    Stefano Bellucci

    2014-01-01

    Full Text Available We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.

  16. Distress detection, location, and communications using advanced space technology

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  17. Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers

    Science.gov (United States)

    Shortt, Kevin

    Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.

  18. Phase space and jet definitions in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Cheung, William Man-Yin; Luke, Michael; Zuberi, Saba

    2009-01-01

    We discuss consistent power counting for integrating soft and collinear degrees of freedom over arbitrary regions of phase space in the soft-collinear effective theory, and illustrate our results at one-loop with several jet algorithms: JADE, Sterman-Weinberg and k perpendicular . Consistently applying soft-collinear effective theory power counting in phase space, along with nontrivial zero-bin subtractions, prevents double counting of final states. The resulting phase space integrals over soft and collinear regions are individually ultraviolet divergent, but the phase space ultraviolet divergences cancel in the sum. Whether the soft and collinear contributions are individually infrared safe depends on the jet definition. We show that while this is true at one-loop for JADE and Sterman-Weinberg, the k perpendicular algorithm does not factorize into individually infrared safe soft and collinear pieces in dimensional regularization. We point out that this statement depends on the ultraviolet regulator, and that in a cutoff scheme the soft functions are infrared safe.

  19. Construction of non-Abelian gauge theories on noncommutative spaces

    International Nuclear Information System (INIS)

    Jurco, B.; Schupp, P.; Moeller, L.; Wess, J.; Max-Planck-Inst. fuer Physik, Muenchen; Humboldt-Univ., Berlin; Schraml, S.; Humboldt-Univ., Berlin

    2001-01-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  20. Construction of non-Abelian gauge theories on noncommutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B.; Schupp, P. [Sektion Physik, Muenchen Univ. (Germany); Moeller, L.; Wess, J. [Sektion Physik, Muenchen Univ. (Germany); Max-Planck-Inst. fuer Physik, Muenchen (Germany); Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Schraml, S. [Sektion Physik, Muenchen Univ. (Germany)

    2001-06-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  1. Survey on nonlocal games and operator space theory

    Energy Technology Data Exchange (ETDEWEB)

    Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-15

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.

  2. Survey on nonlocal games and operator space theory

    International Nuclear Information System (INIS)

    Palazuelos, Carlos; Vidick, Thomas

    2016-01-01

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states

  3. Priming patient safety: A middle-range theory of safety goal priming via safety culture communication.

    Science.gov (United States)

    Groves, Patricia S; Bunch, Jacinda L

    2018-05-18

    The aim of this paper is discussion of a new middle-range theory of patient safety goal priming via safety culture communication. Bedside nurses are key to safe care, but there is little theory about how organizations can influence nursing behavior through safety culture to improve patient safety outcomes. We theorize patient safety goal priming via safety culture communication may support organizations in this endeavor. According to this theory, hospital safety culture communication activates a previously held patient safety goal and increases the perceived value of actions nurses can take to achieve that goal. Nurses subsequently prioritize and are motivated to perform tasks and risk assessment related to achieving patient safety. These efforts continue until nurses mitigate or ameliorate identified risks and hazards during the patient care encounter. Critically, this process requires nurses to have a previously held safety goal associated with a repertoire of appropriate actions. This theory suggests undergraduate educators should foster an outcomes focus emphasizing the connections between nursing interventions and safety outcomes, hospitals should strategically structure patient safety primes into communicative activities, and organizations should support professional development including new skills and the latest evidence supporting nursing practice for patient safety. © 2018 John Wiley & Sons Ltd.

  4. Space/time non-commutative field theories and causality

    International Nuclear Information System (INIS)

    Bozkaya, H.; Fischer, P.; Pitschmann, M.; Schweda, M.; Grosse, H.; Putz, V.; Wulkenhaar, R.

    2003-01-01

    As argued previously, amplitudes of quantum field theories on non-commutative space and time cannot be computed using naive path integral Feynman rules. One of the proposals is to use the Gell-Mann-Low formula with time-ordering applied before performing the integrations. We point out that the previously given prescription should rather be regarded as an interaction-point time-ordering. Causality is explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop self-energy for a space/time non-commutative φ 4 theory. Although in all intermediate steps only three-momenta play a role, the final result is manifestly Lorentz covariant and agrees with the naive calculation. Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole lines only. (orig.)

  5. Game Theory and Technical Communication: Interpreting the Texas Two-Step through Harsanyi Transformation

    Science.gov (United States)

    Williams, Miriam F.

    2012-01-01

    The author uses game theoretical models to identify technical communication breakdowns encountered during the notoriously confusing Texas Two-Step voting and caucusing process. Specifically, the author uses narrative theory and game theory to highlight areas where caucus participants needed instructions to better understand the rules of the game…

  6. Metaphor and the Communicative Mind

    DEFF Research Database (Denmark)

    Brandt, Line

    2014-01-01

    On the occasion of the thirtieth anniversary of the first cognitive-semantic theory of metaphor – Metaphors We Live By (1980) – this paper presents a communication-oriented perspective on the practice of metaphor analysis. Through discussion of contemporary metaphor theories, it identifies a number...... of unresolved issues. Among these are the notions of domains, mental spaces and binding, the unidirectionality hypothesis, the emergence problem, the significance of pragmatic context, and the philosophical status of representations. The theories discussed are conceptual metaphor theory, conceptual integration...... theory, the neural theory of language, the attribution model of metaphor, semiotic integration theory, and relevancetheoretic approaches to metaphor including the hybrid theory of metaphor. Comparing analyses and explanatory frameworks, the paper offers a theoretical and methodological critique...

  7. Color-Space-Based Visual-MIMO for V2X Communication.

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  8. Implementation of a Space Communications Cognitive Engine

    Science.gov (United States)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2017-01-01

    Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).

  9. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    Science.gov (United States)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  10. User manual of the CATSS system (version 1.0) communication analysis tool for space station

    Science.gov (United States)

    Tsang, C. S.; Su, Y. T.; Lindsey, W. C.

    1983-01-01

    The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.

  11. Coset space dimension reduction of gauge theories

    International Nuclear Information System (INIS)

    Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.

    1989-01-01

    A very interesting approach in the attempts to unify all the interactions is to consider that a unification takes place in higher than four dimensions. The most ambitious program based on the old Kaluza-Klein idea is not able to reproduce the low energy chiral nature of the weak interactions. A suggested way out was the introduction of Yang-Mills fields in the higher dimensional theory. From the particle physics point of view the most important question is how such a theory behaves in four dimensions and in particular in low energies. Therefore most of our efforts concern studies of the properties of an attractive scheme, the Coset-Space-Dimensional-Reduction (C.S.D.R.) scheme, which permits the study of the effective four dimensional theory coming from a gauge theory defined in higher dimensions. Here we summarize the C.S.D.R. procedure the main the rems which are obeyed and to present a realistic model which is the result of the model building efforts that take into account all the C.S.D.R. properties. (orig./HSI)

  12. Color-Space-Based Visual-MIMO for V2X Communication

    OpenAIRE

    Jai-Eun Kim; Ji-Won Kim; Youngil Park; Ki-Doo Kim

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and w...

  13. Scattering theory of space-time non-commutative abelian gauge field theory

    International Nuclear Information System (INIS)

    Rim, Chaiho; Yee, Jaehyung

    2005-01-01

    The unitary S-matrix for space-time non-commutative quantum electrodynamics is constructed using the *-time ordering which is needed in the presence of derivative interactions. Based on this S-matrix, we formulate the perturbation theory and present the Feynman rule. We then apply this perturbation analysis to the Compton scattering process to the lowest order and check the gauge invariance of the scattering amplitude at this order.

  14. Statistical separability and the impossibility of the superluminal quantum communication

    International Nuclear Information System (INIS)

    Zhang Qiren

    2004-01-01

    The authors analyse the relation and the difference between the quantum correlation of two points in space and the communication between them. The statistical separability of two points in the space is defined and proven. From this statistical separability, authors prove that the superluminal quantum communication between different points is impossible. To emphasis the compatibility between the quantum theory and the relativity, authors write the von Neumann equation of density operator evolution in the multi-time form. (author)

  15. Revised Robertson's test theory of special relativity: space-time structure and dynamics

    International Nuclear Information System (INIS)

    Vargas, J.G.; Torr, D.G.

    1986-01-01

    The experimental testing of the Lorentz transformations is based on a family of sets of coordinate transformations that do not comply in general with the principle of equivalence of the inertial frames. The Lorentz and Galilean sets of transformations are the only member sets of the family that satisfy this principle. In the neighborhood of regular points of space-time, all members in the family are assumed to comply with local homogeneity of space-time and isotropy of space in at least one free-falling elevator, to be denoted as Robertson's ab initio rest frame (H.P. Robertson, Rev. Mod. Phys. 21, 378 (1949)). Without any further assumptions, it is shown that Robertson's rest frame becomes a preferred frame for all member sets of the Robertson family except for, again, Galilean and Einstein's relativities. If one now assumes the validity of Maxwell-Lorentz electrodynamics in the preferred frame, a different electrodynamics spontaneously emerges for each set of transformations. The flat space-time of relativity retains its relevance, which permits an obvious generalization, in a Robertson context, of Dirac's theory of the electron and Einstein's gravitation. The family of theories thus obtained constitutes a covering theory of relativistic physics. A technique is developed to move back and forth between Einstein's relativity and the different members of the family of theories. It permits great simplifications in the analysis of relativistic experiments with relevant ''Robertson's subfamilies.'' It is shown how to adapt the Clifford algebra version of standard physics for use with the covering theory and, in particular, with the covering Dirac theory

  16. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  17. Introduction to coding and information theory

    CERN Document Server

    Roman, Steven

    1997-01-01

    This book is intended to introduce coding theory and information theory to undergraduate students of mathematics and computer science. It begins with a review of probablity theory as applied to finite sample spaces and a general introduction to the nature and types of codes. The two subsequent chapters discuss information theory: efficiency of codes, the entropy of information sources, and Shannon's Noiseless Coding Theorem. The remaining three chapters deal with coding theory: communication channels, decoding in the presence of errors, the general theory of linear codes, and such specific codes as Hamming codes, the simplex codes, and many others.

  18. Overview of some projects of SNPS for global space communication

    International Nuclear Information System (INIS)

    Ivanov, E.; Ghitaykin, V.; Ionkin, V.; Dubinin, A.; Pyshko, A.

    2001-01-01

    In this presentation we focused on three variants of prospective concepts of SNPS. They are intended to solve tasks of global space communication (GSC) as nearest future tasks in space. Modern concepts of the application of power technology in space believe in using an onboard source of energy for maintenance of self-transportation of the vehicle into geostationary orbit (GSO). There are three more prospective systems as follows: gas cooled nuclear reactor with hybrid thermal engine and machine power converter; nuclear reactor cooled by liquid metal and with a thermoelectric power generating system; nuclear reactor with Li cooling and a thermionic and thermoelectric power generator on board. The choice of a concept must fit strong requirements such as: space nuclear power unit is aimed to be used in a powerful mission; space power unit must be able to maintain the dual - mode regime of vehicle operation (self - transportation and long life in geosynchronous orbit [GEO]); nuclear rector of unit must be safety and it must be designed in such a way that it will ensure minimum size of the complete system; the elements of the considered technology can be used for the creation of NPPI and with other sources of heat (for example, radioisotope); the degree of technical and technological readiness of units of the thermal and power circuit of installation is estimated to be high and is defined by a number of technological developments in air, space and nuclear branches; nuclear reactor and heat transfer equipment should work in a normal mode, which can be very reliably confirmed for other high-temperature nuclear systems. Considering these concepts we practically consider one of possible strategy of developing of complex system of nuclear power engineering. It is the strategy of step-by-step development of space engineering with real application of them in commercial, scientific and other powerful missions in the nearest and deep space. As starting point of this activity is

  19. System theory on group manifolds and coset spaces.

    Science.gov (United States)

    Brockett, R. W.

    1972-01-01

    The purpose of this paper is to study questions regarding controllability, observability, and realization theory for a particular class of systems for which the state space is a differentiable manifold which is simultaneously a group or, more generally, a coset space. We show that it is possible to give rather explicit expressions for the reachable set and the set of indistinguishable states in the case of autonomous systems. We also establish a type of state space isomorphism theorem. Our objective is to reduce all questions about the system to questions about Lie algebras generated from the coefficient matrices entering in the description of the system and in that way arrive at conditions which are easily visualized and tested.

  20. Quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Najmi, A.-H.

    1982-09-01

    The problem of constructing states for quantum field theories in nonstationary background space-times is set out. A formalism in which the problem of constructing states can be attacked more easily than at present is presented. The ansatz of energy-minimization as a means of constructing states is formulated in this formalism and its general solution for the free scalar field is found. It has been known, in specific cases, that such states suffer from the problem of unitary inequivalence (the pathology). An example in Minowski space-time is presented in which global operators, such as the particle-number operator, do not exist but all physical observables, such as the renormalized energy density are finite. This model has two Fock-sectors as its space of physical states. A simple extension of this model, i.e. enlarging the Fock-space of states is found not to remedy the pathology: in a Robertson-Walker space-time the quantum field acquires an infinite amount of renormalized energy density to the future of the hypersurface on which the energy density is minimized. Finally, the solution of the ansatz of energy minimization for the free, massive Hermitian fermion field is presented. (author)

  1. Optical wireless communications: Theory and applications

    Science.gov (United States)

    Aminikashani, Mohammadreza

    This dissertation focuses on optical communications having recently attracted sig- nificant attentions as a promising complementary technique for radio frequency (RF) in both short- and long-range communications. These systems offer signifi- cant technical and operational advantages such as higher capacity, virtually unlim- ited reuse, unregulated spectrum and robustness to electromagnetic interference. Optical wireless communication (OWC) can be used both indoors and outdoors. Part of the dissertation contains novel results on terrestrial free-space optical (FSO) communications. FSO communication is a line-of sight technique that uses lasers for high rate wireless communication over distances up to several kilometers. In comparison to RF counterparts, a FSO link has a very high optical bandwidth available, allowing aggregate data rates on the order of Tera bits per second (1 Tera bits per second is 1000 Giga bites per second). However, FSO suffers limitations. The major limitation of the terrestrial FSO communication systems is the atmo- spheric turbulence, which produces fluctuations in the irradiance of the transmitted optical beam, as a result of random variations in the refractive index through the link. The existence of atmospheric-induced turbulence degrades the performance of FSO links particularly with a transmission distance longer than 1 kilometer. The identification of a tractable probability density function (pdf) to describe at- mospheric turbulence under all irradiance fluctuation regimes is crucial in order to study the reliability of a terrestrial FSO system. This dissertation addresses this daunting problem and proposes a novel statistical model that accurately de- scribes turbulence-induced fading under all irradiance conditions and unifies most of the proposed statistical models derived until now in the literature. The proposed model is important for the research community working on FSO communications because it allows them to fully capitalize

  2. Modular space station, phase B extension. Information management advanced development. Volume 2: Communications terminal breadboard

    Science.gov (United States)

    Gerber, C. R.

    1972-01-01

    The design and development of the communications terminal breadboard for the modular space station are discussed. The subjects presented are: (1) history of communications terminal breadboard, (2) requirements analysis, (3) technology goals in terminal design, and (4) communications terminal board integration tests.

  3. Nuclear Energy Gradients for Internally Contracted Complete Active Space Second-Order Perturbation Theory: Multistate Extensions.

    Science.gov (United States)

    Vlaisavljevich, Bess; Shiozaki, Toru

    2016-08-09

    We report the development of the theory and computer program for analytical nuclear energy gradients for (extended) multistate complete active space perturbation theory (CASPT2) with full internal contraction. The vertical shifts are also considered in this work. This is an extension of the fully internally contracted CASPT2 nuclear gradient program recently developed for a state-specific variant by us [MacLeod and Shiozaki, J. Chem. Phys. 2015, 142, 051103]; in this extension, the so-called λ equation is solved to account for the variation of the multistate CASPT2 energies with respect to the change in the amplitudes obtained in the preceding state-specific CASPT2 calculations, and the Z vector equations are modified accordingly. The program is parallelized using the MPI3 remote memory access protocol that allows us to perform efficient one-sided communication. The optimized geometries of the ground and excited states of a copper corrole and benzophenone are presented as numerical examples. The code is publicly available under the GNU General Public License.

  4. Open branes in space-time non-commutative little string theory

    International Nuclear Information System (INIS)

    Harmark, T.

    2001-01-01

    We conjecture the existence of two new non-gravitational six-dimensional string theories, defined as the decoupling limit of NS5-branes in the background of near-critical electrical two- and three-form RR fields. These theories are space-time non-commutative Little String Theories with open branes. The theory with (2,0) supersymmetry has an open membrane in the spectrum and reduces to OM theory at low energies. The theory with (1,1) supersymmetry has an open string in the spectrum and reduces to (5+1)-dimensional NCOS theory for weak NCOS coupling and low energies. The theories are shown to be T-dual with the open membrane being T-dual to the open string. The theories therefore provide a connection between (5+1)-dimensional NCOS theory and OM theory. We study the supergravity duals of these theories and we consider a chain of dualities that shows how the T-duality between the two theories is connected with the S-duality between (4+1)-dimensional NCOS theory and OM theory

  5. Incorporating Peplau's Theory of Interpersonal Relations to Promote Holistic Communication Between Older Adults and Nursing Students.

    Science.gov (United States)

    Deane, William H; Fain, James A

    2016-03-01

    With the increased life expectancy, older adults will interact with multiple health care providers to manage acute and chronic conditions. These interactions include nursing students who use various health care settings to meet the clinical practicum requirements of their programs. Nursing faculty are charged with facilitating students' learning throughout the program from basic human needs, to holistic communication, to advanced medical surgical concepts. Despite educating students on holistic communication, there remains a lack of a reliable framework to undertake the task of teaching holistic communication skills. Nursing students preparing to function as licensed practitioners need to develop appropriate knowledge to holistically care for older adults. The purpose of this article is to examine Hildegard Peplau's interpersonal relations theory as a framework to assist nursing students to understand holistic communication skills during their encounters with older adults. Peplau's theory provides nursing a useful set of three interlocking and oftentimes overlapping working phases for nurses' interaction with patients in the form of the nurse-patient relationship. Nursing education could adopt the three phases of Peplau's interpersonal relations theory to educate students on holistically communicating with older adults. © The Author(s) 2015.

  6. A Hub Matrix Theory and Applications to Wireless Communications

    Directory of Open Access Journals (Sweden)

    Kung HT

    2007-01-01

    Full Text Available This paper considers communications and network systems whose properties are characterized by the gaps of the leading eigenvalues of for a matrix . It is shown that a sufficient and necessary condition for a large eigen-gap is that is a "hub" matrix in the sense that it has dominant columns. Some applications of this hub theory in multiple-input and multiple-output (MIMO wireless systems are presented.

  7. Color-Space-Based Visual-MIMO for V2X Communication

    Directory of Open Access Journals (Sweden)

    Jai-Eun Kim

    2016-04-01

    Full Text Available In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol, and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  8. Chaos and Crisis: Propositions for a General Theory of Crisis Communication.

    Science.gov (United States)

    Seeger, Matthew W.

    2002-01-01

    Presents key concepts of chaos theory (CT) as a general framework for describing organizational crisis and crisis communication. Discusses principles of predictability, sensitive dependence on initial conditions, bifurcation as system breakdown, emergent self-organization, and fractals and strange attractors as principles of organization. Explores…

  9. Space-Time, Phenomenology, and the Picture Theory of Language

    Science.gov (United States)

    Grelland, Hans Herlof

    To estimate Minkowski's introduction of space-time in relativity, the case is made for the view that abstract language and mathematics carries meaning not only by its connections with observation but as pictures of facts. This view is contrasted to the more traditional intuitionism of Hume, Mach, and Husserl. Einstein's attempt at a conceptual reconstruction of space and time as well as Husserl's analysis of the loss of meaning in science through increasing abstraction is analysed. Wittgenstein's picture theory of language is used to explain how meaning is conveyed by abstract expressions, with the Minkowski space as a case.

  10. Using Information Theory to Assess the Communicative Capacity of Circulating MicroRNA

    OpenAIRE

    Finn, Nnenna A.; Searles, Charles D.

    2013-01-01

    The discovery of extracellular microRNAs (miRNAs) and their transport modalities (i.e. microparticles, exosomes, proteins and lipoproteins) has sparked theories regarding their role in intercellular communication. Here, we assessed the information transfer capacity of different miRNA transport modalities in human serum by utilizing basic principles of information theory. Zipf Statistics were calculated for each of the miRNA transport modalities identified in human serum. Our analyses revealed...

  11. Green's functions for theories with massless particles (in perturbation theory). [Growth properties, momentum space, mass renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)

    1975-01-01

    With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.

  12. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor

    Science.gov (United States)

    Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun

    2018-03-01

    Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.

  13. Integration of Parent and Nurse Perspectives of Communication to Plan Care for Technology Dependent Children: The Theory of Shared Communication.

    Science.gov (United States)

    Giambra, Barbara K; Broome, Marion E; Sabourin, Teresa; Buelow, Janice; Stiffler, Deborah

    The purpose of this qualitative research study was to expand our understanding of the process of communication between parents of hospitalized technology dependent children and their nurses originally detailed in the Theory of Shared Communication (TSC). This grounded theory study was conducted with five parents of technology dependent children hospitalized in a large Midwestern children's hospital and nine nurses who care for technology dependent children admitted to the same hospital during July and August 2013. Semi-structured interviews and journals (parents only), field notes and a demographic survey were used to collect data which was analyzed using constant comparative analysis. Parents verified the concepts of the TSC and relationships among them. Nurses' perceptions of communication with parents reflected the same parent identified and verified concepts upon which the TSC was originally grounded including respect for own and other's expertise, asking, listening, explaining, advocating, verifying understanding and negotiating roles to achieve mutual understanding of the child's plan of care. The nurses' perceptions differed stylistically but not categorically from those of the parents. The addition of the nurse's perspectives to the verified TSC expands our understanding of this process of communication. With the integration of nurse and parent perspectives, the TSC can be used to enhance communication and care for hospitalized technology dependent children and their families. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Holographic description of curved-space quantum field theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Uhlemann, Christoph Frank

    2012-12-12

    The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these

  15. Holographic description of curved-space quantum field theory and gravity

    International Nuclear Information System (INIS)

    Uhlemann, Christoph Frank

    2012-01-01

    The celebrated AdS/CFT dualities provide a window to strongly-coupled quantum field theories (QFTs), which are realized in nature at the most fundamental level on the one hand, but are hardly accessible for the standard mathematical tools on the other hand. The prototype examples of AdS/CFT relate classical supergravity theories on (d+1)-dimensional anti-de Sitter space (AdS) to strongly-coupled d-dimensional conformal field theories (CFTs). The AdS spacetimes admit a timelike conformal boundary, on which the dual CFT is defined. In that sense the AdS/CFT dualities are holographic, and this new approach has led to remarkable progress in understanding strongly-coupled QFTs defined on Minkowski space and on the Einstein cylinder. On the other hand, the study of QFT on more generic curved spacetimes is of fundamental interest and non-trivial already for free theories. Moreover, understanding the properties of gravity as a quantum theory remains among the hardest problems to solve in physics. Both of these issues can be studied holographically and we investigate here generalizations of AdS/CFT involving on the lower-dimensional side QFTs on curved backgrounds and as a further generalization gravity. In the first part we expand on the holographic description of QFT on fixed curved backgrounds, which involves gravity on an asymptotically-AdS space with that prescribed boundary structure. We discuss geometries with de Sitter and AdS as conformal boundary to holographically describe CFTs on these spacetimes. After setting up the procedure of holographic renormalization we study the reflection of CFT unitarity properties in the dual bulk description. The geometry with AdS on the boundary exhibits a number of interesting features, mainly due to the fact that the boundary itself has a boundary. We study both cases and resolve potential tensions between the unitarity properties of the bulk and boundary theories, which would be incompatible with a duality. The origin of these

  16. New Perspective on Visual Communication Design Education: An Empirical Study of Applying Narrative Theory to Graphic Design Courses

    Science.gov (United States)

    Yang, Chao-Ming; Hsu, Tzu-Fan

    2017-01-01

    Visual communication design (VCD) is a form of nonverbal communication. The application of relevant linguistic or semiotic theories to VCD education renders graphic design an innovative and scientific discipline. In this study, actual teaching activities were examined to verify the feasibility of applying narrative theory to graphic design…

  17. Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory

    Science.gov (United States)

    Riello, Aldo

    2018-01-01

    I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.

  18. Understanding Accumulation: The Relevance of Marx’s Theory of Primitive Accumulation in Media and Communication Studies

    Directory of Open Access Journals (Sweden)

    Mattias Ekman

    2012-05-01

    Full Text Available The aim of this article is to discuss and use Marx’s theory on primitive accumulation, outlined in the first volume of Capital, in relation to media and communication research. In order to develop Marx’s argument the discussion is revitalized through Harvey’s concept of accumulation by dispossession. The article focuses on two different fields within media and communication research where the concept of accumulation by dispossession is applicable. First, the role of news media content, news flows and news media systems are discussed in relation to social mobilization against capitalism, privatizations, and the financial sector. Second, Marx’s theory is used to examine how communication in Web 2.0 and the development of ICTs could advance the processes of capital accumulation by appropriating the work performed by users of Web 2.0 and by increasing the corporate surveillance of Internet users. In conclusion, by analyzing how primitive accumulation is intertwined with contemporary expanded reproduction of capital, the article shows that Marx’s theory can contribute to critical media and communication research in several ways.

  19. Coproduct and star product in field theories on Lie-algebra noncommutative space-times

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Arzano, Michele

    2002-01-01

    We propose a new approach to field theory on κ-Minkowski noncommutative space-time, a popular example of Lie-algebra space-time. Our proposal is essentially based on the introduction of a star product, a technique which is proving to be very fruitful in analogous studies of canonical noncommutative space-times, such as the ones recently found to play a role in the description of certain string-theory backgrounds. We find to be incorrect the expectation, previously reported in the literature, that the lack of symmetry of the κ-Poincare coproduct should lead to interaction vertices that are not symmetric under exchanges of the momenta of identical particles entering the relevant processes. We show that in κ-Minkowski the coproduct and the star product must indeed treat momenta in a nonsymmetric way, but the overall structure of interaction vertices is symmetric under exchange of identical particles. We also show that in κ-Minkowski field theories it is convenient to introduce the concepts of 'planar' and 'nonplanar' Feynman loop diagrams, again in close analogy with the corresponding concepts previously introduced in the study of field theories in canonical noncommutative space-times

  20. Connections on the state-space over conformal field theories

    International Nuclear Information System (INIS)

    Ranganathan, K.; Sonoda, H.; Zwiebach, B.

    1994-01-01

    Motivated by the problem of background independence of closed string field theory we study geometry on the infinite vector bundle of local fields over the space of conformal field theories (CFTs). With any connection we can associate an excluded domain D for the integral of marginal operators, and an operator one-form ω μ . The pair (D, ω μ ) determines the covariant derivative of any correlator of local fields. We obtain interesting classes of connections in which ω μ 's can be written in terms of CFT data. For these connections we compute their curvatures in terms of four-point correlators, D, and ω μ . Among these connections three are of particular interest. A flat, metric compatible connection Γ, and connections c and c with non-vanishing curvature, with the latter metric compatible. The flat connection cannot be used to do parallel transport over a finite distance. Parallel transport with either c or c, however, allows us to construct a CFT in the state-space of another CFT a finite distance away. The construction is given in the form of perturbation theory manifestly free of divergences. (orig.)

  1. Evaluation of the Communication Between Arachnoid Cysts and Neighboring Cerebrospinal Fluid Spaces by T2W 3D-SPACE With Variant Flip-Angle Technique at 3 T.

    Science.gov (United States)

    Algin, Oktay

    2018-05-21

    Phase-contrast cine magnetic resonance imaging (PC-MRI) is a widely used technique for determination of possible communication of arachnoid cysts (ACs). Three-dimensional (3D) sampling perfection with application-optimized contrasts using different flip-angle evolutions (3D-SPACE) technique is a relatively new method for 3D isotropic scanning of the entire cranium within a short time. In this research, the usage of the 3D-SPACE technique in differentiation of communicating or noncommunicating type ACs was evaluated. Thirty-five ACs in 34 patients were retrospectively examined. The 3D-SPACE, PC-MRI, and contrast material-enhanced cisternography (if present) images of the patients were analyzed. Each cyst was described according to cyst size/location, third ventricle diameter, Evans index, and presence of hydrocephalus. Communication was defined as absent (score 0), suspected (score 1), or present (score 2) on each sequence. Results of PC-MRI or cisternography (if available) examinations were used as criterion standard techniques to categorize all cysts as communicating or noncommunicating type. The results of 3D-SPACE were compared with criterion standard techniques. The comparisons between groups were performed using Mann-Whitney and Fisher exact tests. For demonstration of communication status of the cysts, criterion standard test results and 3D-SPACE findings were almost in perfect harmony (κ[95% confidence interval: 0.94]; P SPACE findings correlated with other final results at a rate of 97%. There is a positive correlation with third ventricular diameters and Evans index for all patients (r = 0.77, P SPACE technique is an easy, useful, and noninvasive alternative for the evaluation of morphology, topographical relationships, and communication status of ACs.

  2. Integrated source and channel encoded digital communication system design study. [for space shuttles

    Science.gov (United States)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  3. A new theory of space-time and gravitation

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.

    1982-01-01

    Field theory of gravitation is constructed. It uses a symmetrical second rank tensor field in pseudoeuclidean space-time for describing the gravitational field. The theory is based on the condition of the presence of conservation laws for gravitational field and matter taken together and on the geometrization principle. The field theory of gravitation has the same post-newtonian parame-- ters as the general relativity theory (GRT) which implies that both theories are indistinguishable from the viewpoint of any post- newtonian experiment. The description of the effects in strong gravitational fields as well as properties of gravitational waves in the field theory of gravitation and GRT differ significantly from each other. The distinctions between two theories include also the itational red shifti curving of light trajectories and timabsence in the field theory of gravitation of the effects of grav.. delay/ in processes of propagation of gravitational waves in external fields. These distinctions made it possible to suggest a number of experiments with gravitational waves in which the predictions of the field theory of gravitation can be compared with those of the GRT. Model of the Universe in the field theory of gravitation makes it possible to describe the cosmological red shift of the frequency. Character of the evolution in this mode is determined by the delay parameter q 0 : at q 0 0 >4-3/2xα the ''expansion'' at some moment will ''change'' to contraction'' and the Universe will return to the singular state, where α=8πepsilon 0 /3M 2 (H is the Hubble constant) [ru

  4. NOTES ON THE APPLICATION OF THE THEORY AND PRAXIS TRAINING CURRICULUM FOR COMMUNICATION AND CULTURE OF PEACE

    Directory of Open Access Journals (Sweden)

    Rocio Belandria Cerdeira

    2011-04-01

    Full Text Available The objective of this research is to present theoretical considerations on the application of the Theory and Praxis Training Curriculum for Communication and Culture of Peace. The theoretical study is descriptive and documentary. In the first stage were analyzed and discussed theoretical material related to the category of analysis. In a second stage developed a series of notes and reflective-critical comments, which point to consider hybrid forms of theories when designing curricular training in Communication and Culture of Peace. In conclusion, we feel the need to open the Multidisciplinary discussion on the subject, where the curriculum, the humanistic, existential communicational and bring new ways of learning, being, doing, living together, but above all to communicate, in order to take a step to build a communicative culture.

  5. Referential communication abilities and Theory of Mind development in preschool children.

    Science.gov (United States)

    Resches, Mariela; Pérez Pereira, Miguel

    2007-02-01

    This work aims to analyse the specific contribution of social abilities (here considered as the capacity for attributing knowledge to others) in a particular communicative context. 74 normally developing children (aged 3;4 to 5;9, M = 4.6) were given two Theory of Mind (ToM) tasks, which are considered to assess increasing complexity levels of epistemic state attribution: Attribution of knowledge-ignorance (Pillow, 1989; adapted by Welch-Ross, 1997) and Understanding of False-belief (Baron Cohen, Leslie & Frith, 1985). Subjects were paired according to their age and level of performance in ToM tasks. These dyads participated in a referential communication task specially designed for this research. The resulting communicative interchanges were analysed using a three-level category system (pragmatic functions, descriptive accuracy, and ambiguity of messages). The results showed significant differences among subjects with different levels of social comprehension regarding the type of communicative resources used by them in every category level. In particular, understanding of false belief seems to be the most powerful predictor of changes in the children's development of communicative competence.

  6. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2015-01-01

    in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing

  7. Nonrelativistic multichannel quantum scattering theory in a two Hilbert space formulation

    International Nuclear Information System (INIS)

    Chandler, C.

    1977-08-01

    A two-Hilbert-space form of an abstract scattering theory specifically applicable to multichannel quantum scattering problems is outlined. General physical foundations of the theory are reviewed. Further topics discussed include the invariance principle, asymptotic completeness of the wave operators, representations of the scattering operator in terms of transition operators and fundamental equations that these transition operators satisfy. Outstanding problems, including the difficulties of including Coulomb interactions in the theory, are pointed out. (D.P.)

  8. Quantum field theory of the universe in the Kantowski-Sachs space-time

    International Nuclear Information System (INIS)

    Shen, Y.; Tan, Z.

    1996-01-01

    In this paper, the quantum field theory of the universe in the Kantowski-Sachs space-time is studied. An analogue of proceedings in quantum field theory is applied in curved space-time to the Kantowski-Sachs space-time, obtaining the wave function of the universe satisfied the Wheeler-DeWitt equation. Regarding the wave function as a universe field in the minisuperspace, the authors can not only overcome the difficulty of the probabilistic interpretation in quantum cosmology, but also come to the conclusion that there is multiple production of universes. The average number of the produced universes from nothing is calculated. The distribution of created universe is given. It is the Planckian distribution

  9. Light-front higher-spin theories in flat space

    Science.gov (United States)

    Ponomarev, Dmitry; Skvortsov, Evgeny

    2017-03-01

    We revisit the problem of interactions of higher-spin fields in flat space. We argue that all no-go theorems can be avoided by the light-cone approach, which results in more interaction vertices as compared to the usual covariant approaches. It is stressed that there exist two-derivative gravitational couplings of higher-spin fields. We show that some reincarnation of the equivalence principle still holds for higher-spin fields—the strength of gravitational interaction does not depend on spin. Moreover, it follows from the results by Metsaev that there exists a complete chiral higher-spin theory in four dimensions. We give a simple derivation of this theory and show that the four-point scattering amplitude vanishes. Also, we reconstruct the quartic vertex of the scalar field in the unitary higher-spin theory, which turns out to be perturbatively local.

  10. Light-front higher-spin theories in flat space

    International Nuclear Information System (INIS)

    Ponomarev, Dmitry; Skvortsov, Evgeny

    2017-01-01

    We revisit the problem of interactions of higher-spin fields in flat space. We argue that all no-go theorems can be avoided by the light-cone approach, which results in more interaction vertices as compared to the usual covariant approaches. It is stressed that there exist two-derivative gravitational couplings of higher-spin fields. We show that some reincarnation of the equivalence principle still holds for higher-spin fields—the strength of gravitational interaction does not depend on spin. Moreover, it follows from the results by Metsaev that there exists a complete chiral higher-spin theory in four dimensions. We give a simple derivation of this theory and show that the four-point scattering amplitude vanishes. Also, we reconstruct the quartic vertex of the scalar field in the unitary higher-spin theory, which turns out to be perturbatively local. (paper)

  11. Grounded Blends and Mathematical Gesture Spaces: Developing Mathematical Understandings via Gestures

    Science.gov (United States)

    Yoon, Caroline; Thomas, Michael O. J.; Dreyfus, Tommy

    2011-01-01

    This paper examines how a person's gesture space can become endowed with mathematical meaning associated with mathematical spaces and how the resulting mathematical gesture space can be used to communicate and interpret mathematical features of gestures. We use the theory of grounded blends to analyse a case study of two teachers who used gestures…

  12. Aspects of quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Fulling, S.A.

    1989-01-01

    The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the Klein 'paradox', particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalization of the stress tensor. (author)

  13. The N=4 supersymmetric E8 gauge theory and coset space dimensional reduction

    International Nuclear Information System (INIS)

    Olive, D.; West, P.

    1983-01-01

    Reasons are given to suggest that the N=4 supersymmetric E 8 gauge theory be considered as a serious candidate for a physical theory. The symmetries of this theory are broken by a scheme based on coset space dimensional reduction. The resulting theory possesses four conventional generations of low-mass fermions together with their mirror particles. (orig.)

  14. Challenges for deep space communications in the 1990s

    Science.gov (United States)

    Dumas, Larry N.; Hornstein, Robert M.

    1991-01-01

    The discussion of NASA's Deep Space Network (DSN) examines the evolving character of aerospace missions and the corresponding changes in the DSN architecture. Deep space missions are reviewed, and it is noted that the two 34-m and the 70-m antenna subnets of the DSN are heavily loaded and more use is expected. High operational workload and the challenge of network cross-support are the design drivers for a flexible DSN architecture configuration. Incorporated in the design are antenna arraying for aperture augmentation, beam-waveguide antennas for frequency agility, and connectivity with non-DSN sites for cross-support. Compatibility between spacecraft and ground-facility designs is important for establishing common international standards of communication and data-system specification.

  15. Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems

    International Nuclear Information System (INIS)

    Lévêque, Camille; Madsen, Lars Bojer

    2017-01-01

    We develop an ab initio time-dependent wavefunction based theory for the description of a many-body system of cold interacting bosons. Like the multi-configurational time-dependent Hartree method for bosons (MCTDHB), the theory is based on a configurational interaction Ansatz for the many-body wavefunction with time-dependent self-consistent-field orbitals. The theory generalizes the MCTDHB method by incorporating restrictions on the active space of the orbital excitations. The restrictions are specified based on the physical situation at hand. The equations of motion of this time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory are derived. The similarity between the formal development of the theory for bosons and fermions is discussed. The restrictions on the active space allow the theory to be evaluated under conditions where other wavefunction based methods due to exponential scaling in the numerical effort cannot, and to clearly identify the excitations that are important for an accurate description, significantly beyond the mean-field approach. For ground state calculations we find it to be important to allow a few particles to have the freedom to move in many orbitals, an insight facilitated by the flexibility of the restricted-active-space Ansatz . Moreover, we find that a high accuracy can be obtained by including only even excitations in the many-body self-consistent-field wavefunction. Time-dependent simulations of harmonically trapped bosons subject to a quenching of their noncontact interaction, show failure of the mean-field Gross-Pitaevskii approach within a fraction of a harmonic oscillation period. The TD-RASSCF theory remains accurate at much reduced computational cost compared to the MCTDHB method. Exploring the effect of changes of the restricted-active-space allows us to identify that even self-consistent-field excitations are mainly responsible for the accuracy of the method. (paper)

  16. Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality

    Science.gov (United States)

    Gisin, Nicolas

    2013-03-01

    Experimental violations of Bell inequalities using space-like separated measurements precludes the explanation of quantum correlations through causal influences propagating at subluminal speed. Yet, ``everything looks as if the two parties somehow communicate behind the scene.'' We investigate the assumption that they do so at a speed faster than light, though finite. Such an assumption doesn't respect the spirit of Einstein relativity. However, it is not crystal clear that such ``communication behind the scene'' would contradict relativity. Indeed, one could imagine that this communication remains for ever hidden to humans, i.e. that it could not be controlled by humans, only Nature exploits it to produce correlations that can't be explained by usual common causes. To define faster than light hidden communication requires a universal privileged reference frame in which this faster than light speed is defined. Again, such a universal privileged frame is not in the spirit of relativity, but it is also clearly not in contradiction: for example the reference frame in which the cosmic microwave background radiation is isotropic defines such a privileged frame. Hence, a priori, a hidden communication explanation is not more surprising than nonlocality. We prove that for any finite speed, such models predict correlations that can be exploited for faster-than-light communication. This superluminal communication doesn't require access to any hidden physical quantities, but only the manipulation of measurement devices at the level of our present-day description of quantum experiments. Consequently, all possible explanations of quantum correlations that satisfy the principle of continuity, which states that everything propagates gradually and continuously through space and time, or in other words, all combination of local common causes and direct causes that reproduce quantum correlations, lead to faster than light communication. Accordingly, either there is superluminal

  17. Anomaly matching conditions and the moduli space of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Dotti, G.; Manohar, A.V.

    1998-01-01

    The structure of the moduli space of N=1 supersymmetric gauge theories is analyzed from an algebraic geometric viewpoint. The connection between the fundamental fields of the ultraviolet theory, and the gauge-invariant composite fields of the infrared theory is explained in detail. The results are then used to prove an anomaly matching theorem. The theorem is used to study anomaly matching for supersymmetric QCD, and can explain all the known anomaly matching results for this case. (orig.)

  18. Introduction to Hilbert space and the theory of spectral multiplicity

    CERN Document Server

    Halmos, Paul R

    2017-01-01

    Concise introductory treatment consists of three chapters: The Geometry of Hilbert Space, The Algebra of Operators, and The Analysis of Spectral Measures. A background in measure theory is the sole prerequisite. 1957 edition.

  19. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  20. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    Science.gov (United States)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  1. Essential Biodiversity Variables: A framework for communication between the biodiversity community and space agencies

    Science.gov (United States)

    Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.

    2017-12-01

    The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.

  2. Architectural communication: Intra and extra activity of architecture

    Directory of Open Access Journals (Sweden)

    Stamatović-Vučković Slavica

    2013-01-01

    Full Text Available Apart from a brief overview of architectural communication viewed from the standpoint of theory of information and semiotics, this paper contains two forms of dualistically viewed architectural communication. The duality denotation/connotation (”primary” and ”secondary” architectural communication is one of semiotic postulates taken from Umberto Eco who viewed architectural communication as a semiotic phenomenon. In addition, architectural communication can be viewed as an intra and an extra activity of architecture where the overall activity of the edifice performed through its spatial manifestation may be understood as an act of communication. In that respect, the activity may be perceived as the ”behavior of architecture”, which corresponds to Lefebvre’s production of space.

  3. Aspects of quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Fulling, S.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mathematics)

    1989-01-01

    The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the Klein 'paradox', particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalization of the stress tensor. (author).

  4. Transforming communicative spaces: the rhythm of gender in meetings in rural Solomon Islands

    Directory of Open Access Journals (Sweden)

    Michelle Dyer

    2018-03-01

    Full Text Available Women's lack of participation in important decision making is noted as an obstacle to sustainable development in many parts of the world. An initial issue for gender equity in environmental decision making in many developing country contexts is not only women's inclusion but also their substantive participation in decision-making forums. In this article I examine the power structures embedded in the public communicative spaces in a village in the Western Province of Solomon Islands using empirical data in conjunction with ethnographic understanding of gendered meeting styles. The data reveal some reasons why women may be silenced as public political actors. It also raises the potential for development actors to create conceptual space for specific women's ways of meeting and validating women's meeting styles. These findings have implications for encouraging transformative communicative spaces and formats that allow transcendence of socially embedded power structures.

  5. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  6. Performance of Cat's Eye Modulating Retro-Reflectors for Free-Space Optical Communications

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Goetz, P. G; Mahon, R; Swingen, L; Murphy, J; Gilbreath, G. C; Binari, S; Waluschka, E

    2004-01-01

    Modulating retro-reflectors (MRR) couple passive optical retro-reflectors with electro-optic modulators to allow free-space optical communication with a laser and pointing/acquisition/tracking system required on only one end of the link...

  7. Picard-Fuchs equations and the moduli space of superconformal field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.; Ferrara, S.

    1991-01-01

    We derive simple techniques which allow us to relate Picard-Fuchs differential equations for the periods of holomorphic p-forms on certain complex manifolds, to their moduli space and its modular group (target space duality). For Calabi-Yau manifolds the special geometry of moduli space gives the Zamolodchikov metric and the Yukawa couplings in terms of the periods. For general N=2 superconformal theories these equations exactly determine perturbed correlation functions of the chiral rings of primary fields. (orig.)

  8. A Comparative Study in Communication Texts & Theories

    Directory of Open Access Journals (Sweden)

    Mahdi Mohsenian Rad

    2011-04-01

    Full Text Available The present article is to study the characteristics and general nature of audience and is described it as "Audience phantasm" in developing countries. It firstly notes that there will be consequences such as audience distancing themselves from local and official media if policy makers and media officials' imaginations of audiences become far from related bare facts have happened in the era of global media and the nature of audiences. Knowing and analyzing the image of audiences presented in new communication theories. Accordingly, as the abovementioned authorities’ viewpoint of audiences exposed to media messages keeps distance from the true nature of media activities, media‐message receivers and their current position in the booming market of media, as termed by Mohsenyan Rad as “Message Bazaar”, there will possibly be disastrous social, cultural, political, and even economic consequences with regard to media uses.Then the history and definitions of “audience”, "uses & gratifications theory" and the concept of "Audience Phantasm" is described. After that, based on those and the increased options as well as the right of selecting of today-audience in the situation of message bazaar, as a result the characteristics of them are explained.

  9. "Third Spaces" Are Interesting Places: Applying "Third Space Theory" to Nursery-Aged Children's Constructions of Themselves as Readers

    Science.gov (United States)

    Levy, Rachael

    2008-01-01

    Based on Moje et al.'s (2004) conceptions of "third space theory", this article describes how five nursery-aged children created a "third space" between home and school, in order to find continuity between home and school constructions of reading. This article describes how the children used various aspects of their home…

  10. Spectral space-time coding for optical communications through a multimode fiber

    NARCIS (Netherlands)

    Alonso, A.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We propose a method for coding the mode structure of a multimode optical fiber by spectral coding mixed with space-time modulation. With this system we can improve the data carrying capacity of a multimode fiber for optical communications and optical interconnects, and encode and decode the

  11. Intensity position modulation for free-space laser communication system

    Science.gov (United States)

    Jangjoo, Alireza; Faghihi, F.

    2004-12-01

    In this research a novel modulation technique for free-space laser communication system called Intensity Position Modulation (IPM) is carried out. According to TEM00 mode of a laser beam and by linear fitting on the Gaussian function as an approximation, the variation of linear part on the reverse biased pn photodiode produced alternating currents which contain the information. Here, no characteristic property of the beam as intensity or frequency is changed and only the beam position moves laterally. We demonstrated that in this method no bandwidth is required, so it is possible to reduce the background radiation noise by narrowband filtering of the carrier. The fidelity of the analog voice communication system which is made upon the IPM is satisfactory and we are able to transmit the audio signals up to 1Km.

  12. Nano-Particle Scandate Cathode for Space Communications Phase 2, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten-impregnated cathodes. Recent results have...

  13. Color-Space-Based Visual-MIMO for V2X Communication

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  14. Conformally invariant amplitudes and field theory in a space-time of constant curvature

    International Nuclear Information System (INIS)

    Drummond, I.T.

    1977-02-01

    The problem of calculating the ultra violet divergences of a field theory in a spherical space-time is reduced to analysing the pole structure of conformally invariant integrals which are analogous to amplitudes which occur in the theory of dual models. The calculations are illustrated with phi 3 -theory in six-dimensions. (author)

  15. Video semaphore decoding for free-space optical communication

    Science.gov (United States)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  16. Theory of communicative action: a basis for the development of critical thinking.

    Science.gov (United States)

    Carvalho, Diana Paula de Souza Rego Pinto; Vitor, Allyne Fortes; Cogo, Ana Luísa Petersen; Santos, Viviane Euzébia Pereira; Ferreira, Marcos Antonio

    2017-01-01

    Reflections on some assumptions of the theory of Communicative Action and the development of Critical Thinking in the context of training students in undergraduate nursing courses. The perspective is based on concepts of Jürgen Habermas, as a possibility for the development of critical thinking among the students of these courses. Communication is therefore understood as inherent in the training of nurses in a continuous, dynamic, dialogical process, with interventions that are related to the context of the students and that have meaning for them, in order to contribute to the promotion of Critical Thinking.

  17. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  18. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  19. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  20. Motor cognition-motor semantics: action perception theory of cognition and communication.

    Science.gov (United States)

    Pulvermüller, Friedemann; Moseley, Rachel L; Egorova, Natalia; Shebani, Zubaida; Boulenger, Véronique

    2014-03-01

    A new perspective on cognition views cortical cell assemblies linking together knowledge about actions and perceptions not only as the vehicles of integrated action and perception processing but, furthermore, as a brain basis for a wide range of higher cortical functions, including attention, meaning and concepts, sequences, goals and intentions, and even communicative social interaction. This article explains mechanisms relevant to mechanistic action perception theory, points to concrete neuronal circuits in brains along with artificial neuronal network simulations, and summarizes recent brain imaging and other experimental data documenting the role of action perception circuits in cognition, language and communication. © 2013 Published by Elsevier Ltd.

  1. On the performance of free-space optical communication systems with multiuser diversity

    KAUST Repository

    Yang, Liang; Gao, Xiqi; Alouini, Mohamed-Slim

    2014-01-01

    Free space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short range applications. To address this, we propose a multiuser diversity (MD

  2. Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.

    Science.gov (United States)

    Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura

    2016-07-12

    A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.

  3. Quantum scattering theory of a single-photon Fock state in three-dimensional spaces.

    Science.gov (United States)

    Liu, Jingfeng; Zhou, Ming; Yu, Zongfu

    2016-09-15

    A quantum scattering theory is developed for Fock states scattered by two-level systems in three-dimensional free space. It is built upon the one-dimensional scattering theory developed in waveguide quantum electrodynamics. The theory fully quantizes the incident light as Fock states and uses a non-perturbative method to calculate the scattering matrix.

  4. Communications Relay and Human-Assisted Sample Return from the Deep Space Gateway

    Science.gov (United States)

    Cichan, T.; Hopkins, J. B.; Bierhaus, B.; Murrow, D. W.

    2018-02-01

    The Deep Space Gateway can enable or enhance exploration of the lunar surface through two capabilities: 1. communications relay, opening up access to the lunar farside, and 2. sample return, enhancing the ability to return large sample masses.

  5. Discovery deep space optical communications (DSOC) transceiver

    Science.gov (United States)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  6. Exploring perturbative conformal field theory in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)

    2017-01-24

    We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.

  7. Regularization and renormalization of quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Bernard, C.; Duncan, A.

    1977-01-01

    It is proposed that field theories quantized in a curved space-time manifold can be conveniently regularized and renormalized with the aid of Pauli-Villars regulator fields. The method avoids the conceptual difficulties of covariant point-separation approaches, by starting always from a manifestly generally covariant action, and the technical limitations of the dimensional reqularization approach, which requires solution of the theory in arbitrary dimension in order to go beyond a weak-field expansion. An action is constructed which renormalizes the weak-field perturbation theory of a massive scalar field in two space-time dimensions--it is shown that the trace anomaly previously found in dimensional regularization and some point-separation calculations also arises in perturbation theory when the theory is Pauli-Villars regulated. One then studies a specific solvable two-dimensional model of a massive scalar field in a Robertson-Walker asymptotically flat universe. It is shown that the action previously considered leads, in this model, to a well defined finite expectation value for the stress-energy tensor. The particle production (less than 0 in/vertical bar/theta/sup mu nu/(x,t)/vertical bar/0 in greater than for t → + infinity) is computed explicitly. Finally, the validity of weak-field perturbation theory (in the appropriate range of parameters) is checked directly in the solvable model, and the trace anomaly computed in the asymptotic regions t→ +- infinity independently of any weak field approximation. The extension of the model to higher dimensions and the renormalization of interacting (scalar) field theories are briefly discussed

  8. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  9. Subjective Vertical Conflict Theory and Space Motion Sickness.

    Science.gov (United States)

    Chen, Wei; Chao, Jian-Gang; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng

    2016-02-01

    Space motion sickness (SMS) remains a troublesome problem during spaceflight. The subjective vertical (SV) conflict theory postulates that all motion sickness provoking situations are characterized by a condition in which the SV sensed from gravity and visual and idiotropic cues differs from the expected vertical. This theory has been successfully used to predict motion sickness in different vehicles on Earth. We have summarized the most outstanding and recent studies on the illusions and characteristics associated with spatial disorientation and SMS during weightlessness, such as cognitive map and mental rotation, the visual reorientation and inversion illusions, and orientation preferences between visual scenes and the internal z-axis of the body. The relationships between the SV and the incidence of and susceptibility to SMS as well as spatial disorientation were addressed. A consistent framework was presented to understand and explain SMS characteristics in more detail on the basis of the SV conflict theory, which is expected to be more advantageous in SMS prediction, prevention, and training.

  10. [Policy, management and participation in health: a reflection based on Habermas' theory of communicative action].

    Science.gov (United States)

    Müller Neto, Júlio Strubing; Artmann, Elizabeth

    2012-12-01

    The article discusses the appropriation of the theory developed by Habermas to analyze health policies and management. The fundamental concepts of the discursive theory of democracy as a deliberative policy, procedural democracy, the public sphere and civil society are analyzed. An attempt is made to demonstrate that the concepts of deliberative policies are grounded on basic theoretical categories of Habermas's conception of language, namely the theory of communicative action (TCA): lifeworld and system; communicative action and discourse; the ideal speech situation. The possibility of translating the categories presented in analytical categories, such as the experiences of social participation in deliberative forums and the results for the formulation and implementation of policies and health management is discussed. The conclusion drawn is that the theoretical categories reveal great explanatory potential and analytical categories are important provided that they are mediated and contextualized.

  11. Aspects of a representation of quantum theory in terms of classical probability theory by means of integration in Hilbert space

    International Nuclear Information System (INIS)

    Bach, A.

    1981-01-01

    A representation of quantum mechanics in terms of classical probability theory by means of integration in Hilbert space is discussed. This formal hidden-variables representation is analysed in the context of impossibility proofs concerning hidden-variables theories. The structural analogy of this formulation of quantum theory with classical statistical mechanics is used to elucidate the difference between classical mechanics and quantum mechanics. (author)

  12. Analysis of large optical ground stations for deep-space optical communications

    Science.gov (United States)

    Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.

    2017-11-01

    Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the

  13. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions.

    Science.gov (United States)

    Du, Jing; Wang, Jian

    2015-11-01

    Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(ilφ)(l=0;±1;±2;…), where φ is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light.

  14. The Bus Station Spacing Optimization Based on Game Theory

    Directory of Open Access Journals (Sweden)

    Changjiang Zheng

    2015-01-01

    Full Text Available With the development of city, the problem of traffic is becoming more and more serious. Developing public transportation has become the key to solving this problem in all countries. Based on the existing public transit network, how to improve the bus operation efficiency, and reduce the residents transit trip cost has become a simple and effective way to develop the public transportation. Bus stop spacing is an important factor affecting passengers’ travel time. How to set up bus stop spacing has become the key to reducing passengers’ travel time. According to comprehensive traffic survey, theoretical analysis, and summary of urban public transport characteristics, this paper analyzes the impact of bus stop spacing on passenger in-bus time cost and out-bus time cost and establishes in-bus time and out-bus time model. Finally, the paper gets the balance best station spacing by introducing the game theory.

  15. Can Collaborative Consultation, Based on Communicative Theory, Promote an Inclusive School Culture?

    Science.gov (United States)

    von Ahlefeld Nisser, Désirée

    2017-01-01

    This article contributes to furthering our knowledge of how collaborative consultation, based on communicative theory, can make teachers' learning from, and with, each other an inclusive process, and thus promote an inclusive school culture. The aim is to study special education professionals' experiences of, and reflections on, leading…

  16. Misconceptions in recent papers on special relativity and absolute space theories

    Science.gov (United States)

    Torr, D. G.; Kolen, P.

    1982-01-01

    Several recent papers which purport to substantiate or negate arguments in favor of certain theories of absolute space have been based on fallacious principles. This paper discusses three related instances, indicating where misconceptions have arisen. It is established, contrary to popular belief, that the classical Lorentz ether theory accounts for all the experimental evidence which supports the special theory of relativity. It is demonstrated that the ether theory predicts the null results obtained from pulsar timing and Moessbauer experiments. It is concluded that a measurement of the one-way velocity of light has physical meaning within the context of the Lorentz theory, and it is argued that an adequately designed experiment to measure the one-way velocity of light should be attempted.

  17. University Teaching of Communication Theory in Europe and Latin America

    Directory of Open Access Journals (Sweden)

    Miguel Vicente-Mariño, Ph.D.

    2010-01-01

    Full Text Available Communication Theories are one of the main pillars of many higher education studies that, placing communication as its core topic, have raised public presence during the last two decades at universities worldwide. However, this ongoing process of consolidation inside the scholar field is not walking together with an objective analysis of the ontological and epistemological positions serving as milestones for Communication Theories’ courses. Taking an international online survey as the initial source of information, completed by professors and lectures working at different European and Latin American countries, this paper collects some useful information about the positions and the content of these courses, bringing some light in a confusing fieldwork. If the goal of a common higher education area is real, then deep comparative studies like this must be carried out. Results appeal to a clear dominance of Mass Communications as the main topic inside these courses, although there is a high level of interdisciplinary approaches. Some of the requirements established by the new European Higher Education Area are not implemented in the expected competencies for the students, although they are all present in the courses’ objectives. Professors and lecturers are conscious about the new standard set by the Bologna Process, but this consciousness has not arrived to the classrooms yet.

  18. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    Science.gov (United States)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  19. Brans-Dicke theory in general space-time with torsion

    International Nuclear Information System (INIS)

    Kim, S.

    1986-01-01

    The Brans-Dicke theory in the general space-time endowed with torsion is investigated. Since the gradient of the scalar field as well as the intrinsic spin generate the torsion field, the interaction term of the spin-scalar field appears in the wave equation. The equations of motion are satisfied with the conservation laws

  20. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    Science.gov (United States)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  1. Space station communications and tracking equipment management/control system

    Science.gov (United States)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  2. On the invariant theory of Weingarten surfaces in Euclidean space

    International Nuclear Information System (INIS)

    Ganchev, Georgi; Mihova, Vesselka

    2010-01-01

    On any Weingarten surface in Euclidean space (strongly regular or rotational), we introduce locally geometric principal parameters and prove that such a surface is determined uniquely up to a motion by a special invariant function, which satisfies a natural nonlinear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for Weingarten surfaces in Euclidean space. We apply this theory to fractional-linear Weingarten surfaces and obtain the nonlinear partial differential equations describing them.

  3. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    Science.gov (United States)

    Rash, James

    2014-01-01

    NASA's space data-communications infrastructure-the Space Network and the Ground Network-provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates several orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own servicedelivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth. Scheduling data-communications events for spacecraft that use the NASA communications infrastructure-the relay satellites and the ground stations-can be accomplished today with software having an operational heritage dating from the 1980s or earlier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technology invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very broad class of combinatorial

  4. Space-bounded communication complexity

    DEFF Research Database (Denmark)

    Brody, Joshua Eric; Chen, Shiteng; Papakonstantinou, Periklis A.

    2013-01-01

    communicate his entire input. However, what if the players are limited in their ability to recall parts of their interaction? We introduce memory models for 2-party communication complexity. Our general model is as follows: two computationally unrestricted players, Alice and Bob, each have s(n) bits of memory....... When a player receives a bit of communication, he "compresses" his state. This compression may be an arbitrary function of his current memory contents, his input, and the bit of communication just received; the only restriction is that the compression must return at most s(n) bits. We obtain memory...... controls two types of memory: (i) a large, oblivious memory, where updates are only a function of the received bit and the current memory content, and (ii) a smaller, non-oblivious/general memory, where updates can be a function of the input given to Bob. We exhibit natural protocols where this semi...

  5. Christoffel symbols and inertia in flat space-time theory. [Curvilinear coordinate systems

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-11-01

    A necessary and sufficient criterion of inertia is presented, for the flat space-time theory of general frames of reference, in terms of the vanishing of some typical components of the affine connection pertaining to curvilinear coordinate systems. The physical identification of inertial forces thus arises in the context of the special theory of relativity.

  6. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2013-01-01

    We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...

  7. Mapping Theory - a mapping of the theoretical territory related to a contemporary concept of public space

    DEFF Research Database (Denmark)

    Smith, Shelley

    2008-01-01

    This working paper maps the theoretical territory of public space - urban public space - in a contemporary urban context. By finding, selecting, registering and examining existing theoretical stand points, the paper founds a basis for the creation of theory in an architectural discourse and for t......This working paper maps the theoretical territory of public space - urban public space - in a contemporary urban context. By finding, selecting, registering and examining existing theoretical stand points, the paper founds a basis for the creation of theory in an architectural discourse...

  8. Duality and free measures in vector spaces, the spectral theory of actions of non-locally compact groups

    OpenAIRE

    Vershik, A.

    2017-01-01

    The paper presents a general duality theory for vector measure spaces taking its origin in the author's papers written in the 1960s. The main result establishes a direct correspondence between the geometry of a measure in a vector space and the properties of the space of measurable linear functionals on this space regarded as closed subspaces of an abstract space of measurable functions. An example of useful new features of this theory is the notion of a free measure and its applications.

  9. On renormalisation of lambda phi4 field theory in curved space-time

    International Nuclear Information System (INIS)

    Bunch, T.S.; Panangaden, P.

    1980-01-01

    An explicit renormalisation of all second-order physical processes occurring in lambdaphi 4 field theory in conformally flat space-time, including vacuum-to-vacuum processes, is performed. Although divergences dependent on the definition of the vacuum state appear in some Feynman diagrams, physical amplitudes obtained by summing all diagrams which contribute to a single physical process are independent of these divergences. Consequently, the theory remains renormalisable in curved space-time, at least to second order in lambda. Renormalisations of the mass m, the coupling constant lambda and the constant xi which couples the field to the Ricci scalar are required to make two- and four-particle creation amplitudes finite. (author)

  10. Aesthetic Communication

    DEFF Research Database (Denmark)

    Thyssen, Ole

    2012-01-01

    Based on Niklas Luhmann's systems theory, aesthetics is defined as a manner of reinforcing the connectivity, or Anschlusswert, of communication. Without changing the content, a message can be made more attractive, strengthening the receiver's willingness to be attentive and accepting. As communic......Based on Niklas Luhmann's systems theory, aesthetics is defined as a manner of reinforcing the connectivity, or Anschlusswert, of communication. Without changing the content, a message can be made more attractive, strengthening the receiver's willingness to be attentive and accepting....... As communication inevitably makes use of a sensuous medium, such as light or sound, all communication has an aesthetic dimension. In the 19th Century, an important distinction was made between pure and applied art, following Immanuel Kant's separation of theory of knowledge, moral theory and aesthetic theory....... Whereas pure art is produced in order to be observed, applied art has to fulfill practical purposes as well. Modern organizations, defined as systems of communication, may use art works to embellish and define themselves. But they inevitably use applied art as a practical tool in their normal...

  11. Multiple scattering theory for space filling potentials

    International Nuclear Information System (INIS)

    Butler, W.H.; Brown, R.G.; Nesbet, R.K.

    1990-01-01

    Multiple scattering theory (MST) provides an efficient technique for solving the wave equation for the special case of muffin-tin potentials. Here MST is extended to treat space filling non-muffin tin potentials and its validity, accuracy and efficiency are tested by application of the two dimensional empty lattice test. For this test it is found that the traditional formulation of MST does not coverage as the number of partial waves is increased. A simple modification of MST, however, allows this problem to be solved exactly and efficiently. 15 refs., 3 tabs

  12. What is the public's role in 'space' policymaking? Images of the public by practitioners of 'space' communication in the United Kingdom.

    Science.gov (United States)

    Entradas, Marta

    2016-07-01

    Studies on experts' understanding of the public have mainly focused on the views of scientists. We add to the literature on constructions of the public by analyzing the views of decision-makers, professional science communicators and scientists involved in 'space' communication on the public and public participation in policy. Findings show that contextual situations and roles determine the way the public is conceptualised: the public is sophisticated and knowledgeable to participate in space activities/citizen science, but in matters of policy, a gullible image of the public is brought up. Despite the democratic talk on participation, practitioners delimited public involvement in policy in some way or other to protect their own power and decision-making capabilities. This conception of the public competes with the stated aims of scientific and political institutions for public engagement and the substantive value of public participation, leaving a limited role for the public in space policymaking. © The Author(s) 2015.

  13. Super Yang-Mills theory with impurity walls and instanton moduli spaces

    Science.gov (United States)

    Cherkis, Sergey A.; O'Hara, Clare; Sämann, Christian

    2011-06-01

    We explore maximally supersymmetric Yang-Mills theory with walls of impurities respecting half of the supersymmetries. The walls carry fundamental or bifundamental matter multiplets. We employ three-dimensional N=2 superspace language to identify the Higgs branch of this theory. We find that the vacuum conditions determining the Higgs branch are exactly the bow equations yielding Yang-Mills instantons on a multi-Taub-NUT space. Under electric-magnetic duality, the super Yang-Mills theory describing the bulk is mapped to itself, while the fundamental- and bifundamental-carrying impurity walls are interchanged. We perform a one-loop computation on the Coulomb branch of the dual theory to find the asymptotic metric on the original Higgs branch.

  14. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    Science.gov (United States)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  15. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  16. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-01

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  17. Exploring Lovelock theory moduli space for Schrödinger solutions

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2016-09-01

    Full Text Available We look for Schrödinger solutions in Lovelock gravity in D>4. We span the entire parameter space and determine parametric relations under which the Schrödinger solution exists. We find that in arbitrary dimensions pure Lovelock theories have Schrödinger solutions of arbitrary radius, on a co-dimension one locus in the Lovelock parameter space. This co-dimension one locus contains the subspace over which the Lovelock gravity can be written in the Chern–Simons form. Schrödinger solutions do not exist outside this locus and on this locus they exist for arbitrary dynamical exponent z. This freedom in z is due to the degeneracy in the configuration space. We show that this degeneracy survives certain deformation away from the Lovelock moduli space.

  18. Exploring Lovelock theory moduli space for Schrödinger solutions

    Science.gov (United States)

    Jatkar, Dileep P.; Kundu, Nilay

    2016-09-01

    We look for Schrödinger solutions in Lovelock gravity in D > 4. We span the entire parameter space and determine parametric relations under which the Schrödinger solution exists. We find that in arbitrary dimensions pure Lovelock theories have Schrödinger solutions of arbitrary radius, on a co-dimension one locus in the Lovelock parameter space. This co-dimension one locus contains the subspace over which the Lovelock gravity can be written in the Chern-Simons form. Schrödinger solutions do not exist outside this locus and on this locus they exist for arbitrary dynamical exponent z. This freedom in z is due to the degeneracy in the configuration space. We show that this degeneracy survives certain deformation away from the Lovelock moduli space.

  19. Induced gravity in quantum theory in a curved space

    International Nuclear Information System (INIS)

    Etim, E.

    1983-01-01

    The reason for interest in the unorthodox view of first order (about R(x)) gravity as a matter-induced quantum effect is really to find an argument not to quantise it. According to this view quantum gravity should be constructed with an action which is, at least, quadratic in the scalar curvature R(x). Such a theory will not contain a dimensional parameter, like Newton's constant, and would probably be renormalisable. This lecture is intended to acquaint the non-expert with the phenomenon of induction of the scalar curvature term in the matter Lagrangian in a curved space in both relativistic and non-relativistic quantum theories

  20. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-04-01

    Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: G - Newton's constant, and a dimensionless constant alpha. Various experiments and astronomical observations have shown that alpha is the fine structure constant ~1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of alpha. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the "dark-matter" effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.

  1. A Third-Rank Tensor Field Based on a U(1) Gauge Theory in Loop Space

    OpenAIRE

    Shinichi, DEGUCHI; Tadahito, NAKAJIMA; Department of Physics and Atomic Energy Research Institute College of Science and Technology; Department of Physics and Atomic Energy Research Institute College of Science and Technology

    1995-01-01

    We derive the Stueckelberg formalism extended to a third-rank tensor field from a U(1) gauge theory in loop space, the space of all loops in space-time. The third-rank tensor field is regarded as a constrained U(1) gauge field on the loop space.

  2. Rules of performance in the nursing home: A grounded theory of nurse-CNA communication.

    Science.gov (United States)

    Madden, Connie; Clayton, Margaret; Canary, Heather E; Towsley, Gail; Cloyes, Kristin; Lund, Dale

    This study offers an initial theoretical understanding of nurse-CNA communication processes from the perspectives of nurses and CNAs who are providing direct care to residents in nursing homes. A grounded theory approach provided an understanding of nurse-CNA communication process within the complexities of the nursing home setting. Four themes (maintaining information flow, following procedure, fostering collegiality, and showing respect) describe the "rules of performance" that intertwine in nuanced relationships to guide nurse-CNA communication processes. Understanding how these rules of performance guide nurse-CNA communication processes, and how they are positively and negatively influenced, suggests that nurse-CNA communication during direct care of nursing home residents could be improved through policy and education that is specifically designed to be relevant and applicable to direct care providers in the nursing home environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Retail stores as brands: Performances, theatre, and space

    NARCIS (Netherlands)

    van Marrewijk, A.H.; Broos, M

    2012-01-01

    The scholars of Consumer Culture Theory studies as well as practitioners have recognised the potential power of spatial design in stores in constructing and communicating retail brands. Retail space and the aesthetic structuring of a range of expressive artefacts have become the stage on which shop

  4. ENFORMASYON ÇAĞI – ZAMAN – MEKÂN İLİŞKİSİ BAĞLAMINDA BÖLGESEL KALKINMA KURAM VE SÜREÇLERİ / REGIONAL DEVELOPMENT THEORIES AND PROCESSES IN THE CONTEXT OF INFORMATION AGE– TIME & SPACE RELATIONSHIP

    Directory of Open Access Journals (Sweden)

    Pervin ŞENOL

    2018-05-01

    Full Text Available EXTENDED SUMMARY Research Purpose: The purpose of this essay is to evaluate how the concepts of time and space have transformed in theories of economics, regional development paradigm and location theories from the 18th century to nowadays. Research Questions: From the mercantilist period to the nowadays, what kind of transformations have occurred in economic theories, development economy and regional development theories in terms of time and space conceptual aspects? How have been transformed time and space context of theories of location from von Thünen to Krugman established? How did Manuel Castells relate to time and space in the Age of Information? Literature Review: This essay data based on literature search which include books, academic journals, internet resources and Google Academic database. Key elements and keywords of this search are economic theories, regional development paradigms, time-space relations in theories, location theories, as well as Manuel Castells’s works on time and space concepts such as Information Age book. Results and Conclusions: Before Industrial Revolutioan mercantilist periods of economic system time and space had defined as a natural processes determined by nature and natural conditions. Industrial Revolution (1st, 2nd and 3rd stages, Enlightenment, rational thought together with technological innovation changed the concepts of time and space, and its organization especially in the production processes include labor force, mode of production, production relations so on. It seems that space and time concepts have been used as an abstract and ignored component of the capital accumulation process in the economic theories, regional development theories (location theories etc.. Fourth stage of Industrial Revolution has started to new era for time and space with the creative industries, internet of things and the information technology. Theoretical approaches in the world and Turkey, countries, geography (space

  5. N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant

    International Nuclear Information System (INIS)

    Blau, M.; Thompson, G.

    1991-11-01

    Gauge theory with a topological N=2 symmetry is discussed. This theory captures the de Rahm complex and Riemannian geometry of some underlying moduli space M and the partition function equals the Euler number χ (M) of M. Moduli spaces of instantons and of flat connections in 2 and 3 dimensions are explicitly dealt with. To motivate the constructions the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics are explained and a new kind of supersymmetric quantum mechanics is introduced, based on the Gauss-Codazzi equations. The gauge theory actions are interpreted from the Atiyah-Jeffrey point of view and related to super-symmetric quantum mechanics on spaces of connections. As a consequence of these considerations the Euler number χ (M) of the moduli space of flat connections as a generalization to arbitrary three-manifolds of the Casson invariant. The possibility of constructing a topological version of the Penner matrix model is also commented. (author). 63 refs

  6. Which theory of communication is “political correctness”?

    Directory of Open Access Journals (Sweden)

    Michael Nnamdi Konye

    2016-09-01

    Full Text Available The paper focuses on ‟political correctness”, which has become a late 20th century catch-phrase in Western European and North American liberal democracies but also has found currency in the political climate of the Asian and Eastern countries. A historical and multi-cultural review is intended as an introduction to a broader philosophical analysis of the Marxist backgrounds of political correctness and its neo-Marxist theoretical correctives in Jürgen Habermas’s theory of communicative action. My aim is to draw out both the educational and cultural implications of laying out the ethos of contemporary discourse on the foundations of the evolving dynamics of the rhetoric of political correctness.

  7. COTS low-cost 622-Mb/s free-space laser communications link for short-distance commercial applications

    Science.gov (United States)

    Morrison, Kenneth A.

    2000-05-01

    The results from a low cost 622 Mb/s, free-space laser communication link operating at 850 nm for short distance commercial applications is presented. The test results demonstrate the use of a free-space laser communications transceiver for building to building applications such as LAN, WAN and ATM operations, etc. This illustrates the potential for wide-use commercial computer network applications. The transceiver is constructed of commercial off-the-shelf materials for the development of a low-cost laser communications data link. The test system configuration utilizes standard Personal Computers with network cards and signal conversion cards for the copper to optical medical conversion. These tests precede the development of an increased data rate device operating at 2.5 Gb/s.

  8. The role of space communication in promoting national development with specific reference to experiments conducted in India

    Science.gov (United States)

    Chitnis, E. V.

    The paper describes the role of space communication in promoting national development with special reference to experiments conducted in India, namely SITE (1975-1976), STEP (1977-1979) and APPLE (1981 onwards). The impact of these experiments in economic, cultural and educational terms are discussed, pointing out social implications involved in using advance space communication technology for instruction and information in the areas of education, national integration and development. The paper covers special requirements which arise when a communication system covers backward and remote rural areas in a developing country. The impact on the population measured by conducting social surveys has been discussed - especially the gains of predominently illiterate new media - participants have been highlighted. Possibilities of improving skills of teachers, the quality of the primary and higher education have been covered. The preparation required both on ground as well as space to derive benefits of space technology are considered. A profile of INSAT which marks the culmination of the experimental phase and the beginning of operational domestic satellite system is sketched.

  9. Using information theory to assess the communicative capacity of circulating microRNA.

    Science.gov (United States)

    Finn, Nnenna A; Searles, Charles D

    2013-10-11

    The discovery of extracellular microRNAs (miRNAs) and their transport modalities (i.e., microparticles, exosomes, proteins and lipoproteins) has sparked theories regarding their role in intercellular communication. Here, we assessed the information transfer capacity of different miRNA transport modalities in human serum by utilizing basic principles of information theory. Zipf Statistics were calculated for each of the miRNA transport modalities identified in human serum. Our analyses revealed that miRNA-mediated information transfer is redundant, as evidenced by negative Zipf's Statistics with magnitudes greater than one. In healthy subjects, the potential communicative capacity of miRNA in complex with circulating proteins was significantly lower than that of miRNA encapsulated in circulating microparticles and exosomes. Moreover, the presence of coronary heart disease significantly lowered the communicative capacity of all circulating miRNA transport modalities. To assess the internal organization of circulating miRNA signals, Shannon's zero- and first-order entropies were calculated. Microparticles (MPs) exhibited the lowest Shannon entropic slope, indicating a relatively high capacity for information transfer. Furthermore, compared to the other miRNA transport modalities, MPs appeared to be the most efficient at transferring miRNA to cultured endothelial cells. Taken together, these findings suggest that although all transport modalities have the capacity for miRNA-based information transfer, MPs may be the simplest and most robust way to achieve miRNA-based signal transduction in sera. This study presents a novel method for analyzing the quantitative capacity of miRNA-mediated information transfer while providing insight into the communicative characteristics of distinct circulating miRNA transport modalities. Published by Elsevier Inc.

  10. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-04-01

    Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: GN — Newton’s constant, and a dimensionless constant α. Various experiments and astronomical observations have shown that α is the fine structure constant ≈ 1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of α. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the “dark-matter” effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.

  11. Differential phase-shift keying and channel equalization in free space optical communication system

    Science.gov (United States)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu

    2018-01-01

    We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.

  12. The communication of heritage: Assessment of the communicative process in museums of Asturias

    Directory of Open Access Journals (Sweden)

    Miguel Ángel SUÁREZ SUÁREZ

    2017-06-01

    Full Text Available Communicating of heritage, especially in museums, is a complex process due to certain particularities. Each museum is unique because of the diversity of objects, the discourses generated and the interactions between different audiences. It makes it difficult to build theories which help to understand and improve the communicative process with in the museum context. In this way, from prior studies and through both a direct observation and monitoring of the guided visits, this work shows the analysis of 7 museums from Asturias, focusing on the spatial distribution, the museography and the interventions of the teachers and students. The results show that museums are making an ef-fort to set up multidirectional communication models, doing a coherent design between exhibition spaces, the ob-jects’ museography and the teachers’ explanation. Nevertheless, there are some problems which impede a full con-nection between the school and the museum, which limit the effective communication of the message about herit-age.

  13. Sol Invictus - Heliophilic Elements in Early Russian Space Flight Theory

    Science.gov (United States)

    Tolkowsky, G.

    Common historiographic theory refers to the space age as an extrapolation of the Age of the Enlightenment. According to this thesis, the Copernican transformation of man's place in the universe, and the gradual divergence of science away from Judeo-Christian theology, paved the road to the application of scientific and technological methodologies to the age-old notion of space travel. As an anti-thesis to this historiographic tradition, and in particular reference to the Russian case, one can point at the influence of certain metaphysical elements alien to the Enlightenment, some of which were pagan, on the birth of the space age. At the centre of this metaphysical foundation of astronautics stands the heliophilic motif, namely - the attribution of monistic potency to the sun, and the pursuit of an anthropo-solar affinity by way of space travel.

  14. Making media work in space: an interdisciplinary perspective on media and communication requirements for current and future space communities

    Science.gov (United States)

    Babidge, S.; Cokley, J.; Gordon, F.; Louw, E.

    2005-10-01

    As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.

  15. Unification of gauge and gravity Chern-Simons theories in 3-D space-time

    Energy Technology Data Exchange (ETDEWEB)

    Saghir, Chireen A.; Shamseddine, Laurence W. [American University of Beirut, Physics Department, Beirut (Lebanon)

    2017-11-15

    Chamseddine and Mukhanov showed that gravity and gauge theories could be unified in one geometric construction provided that a metricity condition is imposed on the vielbein. In this paper we are going to show that by enlarging the gauge group we are able to unify Chern-Simons gauge theory and Chern-Simons gravity in 3-D space-time. Such a unification leads to the quantization of the coefficients for both Chern-Simons terms for compact groups but not for non-compact groups. Moreover, it leads to a topological invariant quantity of the 3-dimensional space-time manifold on which they are defined. (orig.)

  16. A multi-rate DPSK modem for free-space laser communications

    Science.gov (United States)

    Spellmeyer, N. W.; Browne, C. A.; Caplan, D. O.; Carney, J. J.; Chavez, M. L.; Fletcher, A. S.; Fitzgerald, J. J.; Kaminsky, R. D.; Lund, G.; Hamilton, S. A.; Magliocco, R. J.; Mikulina, O. V.; Murphy, R. J.; Rao, H. G.; Scheinbart, M. S.; Seaver, M. M.; Wang, J. P.

    2014-03-01

    The multi-rate DPSK format, which enables efficient free-space laser communications over a wide range of data rates, is finding applications in NASA's Laser Communications Relay Demonstration. We discuss the design and testing of an efficient and robust multi-rate DPSK modem, including aspects of the electrical, mechanical, thermal, and optical design. The modem includes an optically preamplified receiver, an 0.5-W average power transmitter, a LEON3 rad-hard microcontroller that provides the command and telemetry interface and supervisory control, and a Xilinx Virtex-5 radhard reprogrammable FPGA that both supports the high-speed data flow to and from the modem and controls the modem's analog and digital subsystems. For additional flexibility, the transmitter and receiver can be configured to support operation with multi-rate PPM waveforms.

  17. Enhancing Student Learning in Knowledge-Based Courses: Integrating Team-Based Learning in Mass Communication Theory Classes

    Science.gov (United States)

    Han, Gang; Newell, Jay

    2014-01-01

    This study explores the adoption of the team-based learning (TBL) method in knowledge-based and theory-oriented journalism and mass communication (J&MC) courses. It first reviews the origin and concept of TBL, the relevant theories, and then introduces the TBL method and implementation, including procedures and assessments, employed in an…

  18. Higgsless theory of electroweak symmetry breaking from warped space

    International Nuclear Information System (INIS)

    Nomura, Yasunori

    2003-01-01

    We study a theory of electroweak symmetry breaking without a Higgs boson, recently suggested by Csaki et al. The theory is formulated in 5D warped space with the gauge bosons and matter fields propagating in the bulk. In the 4D dual picture, the theory appears as the standard model without a Higgs field, but with an extra gauge group G which becomes strong at the TeV scale. The strong dynamics of G breaks the electroweak symmetry, giving the masses for the W and Z bosons and the quarks and leptons. We study corrections in 5D which are logarithmically enhanced by the large mass ratio between the Planck and weak scales, and show that they do not destroy the structure of the electroweak gauge sector at the leading order. We introduce a new parameter, the ratio between the two bulk gauge couplings, into the theory and find that it allows us to control the scale of new physics. We also present a potentially realistic theory accommodating quarks and leptons and discuss its implications, including the violation of universality in the W and Z boson couplings to matter and the spectrum of the Kaluza-Klein excitations of the gauge bosons. The theory reproduces many successful features of the standard model, although some cancellations may still be needed to satisfy constraints from the precision electroweak data. (author)

  19. Integrating design science theory and methods to improve the development and evaluation of health communication programs.

    Science.gov (United States)

    Neuhauser, Linda; Kreps, Gary L

    2014-12-01

    Traditional communication theory and research methods provide valuable guidance about designing and evaluating health communication programs. However, efforts to use health communication programs to educate, motivate, and support people to adopt healthy behaviors often fail to meet the desired goals. One reason for this failure is that health promotion issues are complex, changeable, and highly related to the specific needs and contexts of the intended audiences. It is a daunting challenge to effectively influence health behaviors, particularly culturally learned and reinforced behaviors concerning lifestyle factors related to diet, exercise, and substance (such as alcohol and tobacco) use. Too often, program development and evaluation are not adequately linked to provide rapid feedback to health communication program developers so that important revisions can be made to design the most relevant and personally motivating health communication programs for specific audiences. Design science theory and methods commonly used in engineering, computer science, and other fields can address such program and evaluation weaknesses. Design science researchers study human-created programs using tightly connected build-and-evaluate loops in which they use intensive participatory methods to understand problems and develop solutions concurrently and throughout the duration of the program. Such thinking and strategies are especially relevant to address complex health communication issues. In this article, the authors explore the history, scientific foundation, methods, and applications of design science and its potential to enhance health communication programs and their evaluation.

  20. Space to Space Communication Subsystem Manned Spaceflight and Its Key Technology%载人航天空空通信子系统及其关键技术

    Institute of Scientific and Technical Information of China (English)

    石云墀

    2011-01-01

    The composition of the space to space communication subsystem which would realize the transmit the data between Shenzhou spaceship and Tiangong target spacecraft and the functiofi and main performances of the space to space communicator were introduced in this paper. The DS/SS technology which could provide very good performance in anti-jamming and secret communication was applied in the space to space communication subsystem. And the key technologies of sequence synchronization and carrier synchronization in the demodulation of IF DS/SS signal which was the core in DS/SS were analyzed. Using the digital demodulation scheme would reduce the complexity of debugging and increase the reliability of the system.%介绍了实现神舟运输飞船与天宫目标飞行器间数据通信和传输的空空通信子系统的构成,以及空空通信机的功能及其主要性能指标。空空通信子系统采用抗干扰能力强、保密性优的直接序列扩频通信技术。分析了其中的核心中频解扩解调中的伪码同步和载波同步等关键技术,应用数字解调方案降低了子系统调试难度,提高了可靠性。

  1. Space-time versus world-sheet renormalization group equation in string theory

    International Nuclear Information System (INIS)

    Brustein, R.; Roland, K.

    1991-05-01

    We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)

  2. Teaching Theory X and Theory Y in Organizational Communication

    Science.gov (United States)

    Noland, Carey

    2014-01-01

    The purpose of the activity described here is to integrate McGregor's Theory X and Theory Y into a group application: design a syllabus that embodies either Theory X or Theory Y tenets. Students should be able to differentiate between Theory X and Theory Y, create a syllabus based on Theory X or Theory Y tenets, evaluate the different syllabi…

  3. Novel Photon-Counting Detectors for Free-Space Communication

    Science.gov (United States)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  4. Internet Technologies for Space-based Communications: State of the Art and Challenges

    Science.gov (United States)

    Bhasin, K.; DePaula, R.; Edwards, C.

    2000-01-01

    The Internet is rapidly changing the ways we communicate information around the globe today. The desire to provide Internet-based services to anyone, anywhere, anytime has brought satellite communications to the forefront to become an integral part of the Internet. In spite of the distances involved, satellite links are proving to be capable of providing Internet services based on Internet protocol (TCP/IP) stack. This development has led to the question particularly at NASA; can satellites and other space platforms become an Internet-node in space? This will allow the direct transfer of information directly from space to the users on Earth and even be able to control the spacecraft and its instruments. NASA even wants to extend the near earth space Internet to deep space applications where scientists and the public here on Earth may view space exploration in real time via the Internet. NASA's future solar system exploration will involve intensive in situ investigations of planets, moons, asteroids, and comets. While past missions typically involved a single fly-by or orbiting science spacecraft, future missions will begin to use fleets of small, highly intelligent robotic vehicles to carry out collaborative investigations. The resulting multi-spacecraft topologies will effectively create a wide area network spanning the solar system. However, this will require significant development in Internet technologies for space use. This paper provides the status'of the Internet for near earth applications and the potential extension of the Internet for use in deep space planetary exploration. The paper will discuss the overall challenges of implementing the space Internet and how the space Internet will integrate into the complex terrestrial systems those forms the Internet of today in a hybrid set of networks. Internet. We envision extending to the deep space environment such Internet concepts as a well-designed layered architecture. This effort will require an ability to

  5. Covert Binary Communications through the Application of Chaos Theory: Three Novel Approaches

    Directory of Open Access Journals (Sweden)

    Kyle J. Bradbury

    2008-06-01

    Full Text Available Today, most covert communications systems use a spreadspectrum approach to ensure that transmissions remain clandestine. This paper expands beyond traditional spreadspectrum schemes and into chaos theory in communications by presenting a novel design for a covert noncoherent binary communication system that uses chaotic signals. Three techniques are developed, with varying performance. Each system uses two chaotic signals with antipodal attractors as the information carriers. Although the two chaotic signals used are continuously generated from random starting values without containing repetitious patterns, the receiver requires neither those initial values nor does it require synchronization with the transmitter. The chaotic signals used are both spreadspectrum in the frequency domain and undetectable using matched-filter receivers, thereby achieving a level of covertness. The signal-to-noise ratio performance is presented through simulated receiver operating characteristic (ROC curves for a comparison to binary phase shift keying. This system provides a binary communication scheme which is not detectable by standard matched filtering techniques and has noise-like spectra, requiring a new receiver configuration and yielding security.

  6. Nonperturbative studies of quantum field theories on noncommutative spaces

    International Nuclear Information System (INIS)

    Volkholz, J.

    2007-01-01

    This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the λφ 4 model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized λφ 4 model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted lattice formulations. (orig.)

  7. Nonperturbative studies of quantum field theories on noncommutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Volkholz, J.

    2007-11-16

    This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the {lambda}{phi}{sup 4} model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized {lambda}{phi}{sup 4} model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted

  8. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    Science.gov (United States)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  9. A potential theory approach to an algorithm of conceptual space partitioning

    Directory of Open Access Journals (Sweden)

    Roman Urban

    2017-12-01

    Full Text Available A potential theory approach to an algorithm of conceptual space partitioning This paper proposes a new classification algorithm for the partitioning of a conceptual space. All the algorithms which have been used until now have mostly been based on the theory of Voronoi diagrams. This paper proposes an approach based on potential theory, with the criteria for measuring similarities between objects in the conceptual space being based on the Newtonian potential function. The notion of a fuzzy prototype, which generalizes the previous definition of a prototype, is introduced. Furthermore, the necessary conditions that a natural concept must meet are discussed. Instead of convexity, as proposed by Gärdenfors, the notion of geodesically convex sets is used. Thus, if a concept corresponds to a set which is geodesically convex, it is a natural concept. This definition applies, for example, if the conceptual space is an Euclidean space. As a by-product of the construction of the algorithm, an extension of the conceptual space to d-dimensional Riemannian manifolds is obtained.   Algorytm podziału przestrzeni konceptualnych przy użyciu teorii potencjału W niniejszej pracy zaproponowany został nowy algorytm podziału przestrzeni konceptualnej. Dotąd podział taki zazwyczaj wykorzystywał teorię diagramów Voronoi. Nasze podejście do problemu oparte jest na teorii potencjału Miara podobieństwa pomiędzy elementami przestrzeni konceptualnej bazuje na Newtonowskiej funkcji potencjału. Definiujemy pojęcie rozmytego prototypu, który uogólnia dotychczas stosowane definicje prototypu. Ponadto zajmujemy się warunkiem koniecznym, który musi spełniać naturalny koncept. Zamiast wypukłości zaproponowanej przez Gärdenforsa, rozważamy linie geodezyjne w obszarze odpowiadającym danemu konceptowi naturalnemu, otrzymując warunek mówiący, że koncept jest konceptem naturalnym, jeżeli zbiór odpowiadający temu konceptowi jest geodezyjnie wypuk

  10. The relevance of western crisis communication theories to authoritarian Chinese practices : a study on the SARS epidemic and the Wenchuan earthquake

    OpenAIRE

    Wang, Renna

    2009-01-01

    The theoretical field of crisis management has just been established and developed since 1970s and in the past three decades, most of such theories were western-oriented and US-dominated. Inspired by Huang, Lin and Su (Taiwan) and Lee (Hong Kong)‘s explorations of cultural context in crisis communication, this thesis applied crisis communication theories to governmental practices in the mainland China examining the relevancy between theory and practice in a non-western context. The thesis spe...

  11. I-centric Communications

    CERN Document Server

    Arbanowski, S; Steglich, S; Popescu-Zeletin, R

    2001-01-01

    During the last years, a variety of concepts for service integration and corresponding systems have gained momentum. On the one hand, they aim for the interworking and integration of classical telecommunications and data communications services. On the other hand, they are focusing on universal service access from a variety of end user systems. Looking at humans' communication behavior and communication space, it is obvious that human beings interact frequently in a set of contexts in their environment (communication space). Following this view, we want to build communication systems on the analysis of the individual communication spaces. The results are communication systems adapted to the specific demands of each individual. The authors introduce I-centric Communication Systems, an approach to design communication systems which adapt to the individual communication space and individual environment and situation. In this context "I" means I, or individual, "Centric" means adaptable to I requirements and a ce...

  12. Line operators in theories of class S, quantized moduli space of flat connections, and Toda field theory

    International Nuclear Information System (INIS)

    Coman, Ioana; Teschner, Joerg

    2015-05-01

    Non-perturbative aspects of N=2 supersymmetric gauge theories of class S are deeply encoded in the algebra of functions on the moduli space M flat of at SL(N)-connections on Riemann surfaces. Expectation values of Wilson and 't Hooft line operators are related to holonomies of flat connections, and expectation values of line operators in the low-energy effective theory are related to Fock-Goncharov coordinates on M flat . Via the decomposition of UV line operators into IR line operators, we determine their noncommutative algebra from the quantization of Fock-Goncharov Laurent polynomials, and find that it coincides with the skein algebra studied in the context of Chern-Simons theory. Another realization of the skein algebra is generated by Verlinde network operators in Toda field theory. Comparing the spectra of these two realizations provides non-trivial support for their equivalence. Our results can be viewed as evidence for the generalization of the AGT correspondence to higher-rank class S theories.

  13. The communication of forensic science in the criminal justice system: A review of theory and proposed directions for research.

    Science.gov (United States)

    Howes, Loene M

    2015-03-01

    Clear communication about forensic science is essential to the effectiveness and perceived trustworthiness of the criminal justice system. Communication can be seen as a meaning-making process that involves different components such as the sender of a message, the message itself, the channel in which a message is sent, and the receiver of the message. Research conducted to date on the communication between forensic scientists and non-scientists in the criminal justice system has focused on different components of the communication process as objects of study. The purpose of this paper is to bring together communication theory and past research on the communication of forensic science to contribute to a deeper understanding of it, and to provide a coherent view of it overall. The paper first outlines the broader context of communication theory and science communication as a backdrop to forensic science communication. Then it presents a conceptual framework as a way to organise past research and, using the framework, reviews recent examples of empirical research and commentary on the communication of forensic science. Finally the paper identifies aspects of the communication of forensic science that may be addressed by future research to enhance the effectiveness of communication between scientists and non-scientists in this multidisciplinary arena. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    Science.gov (United States)

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  15. Theory of function spaces

    CERN Document Server

    Triebel, Hans

    1983-01-01

    The book deals with the two scales Bsp,q and Fsp,q of spaces of distributions, where -8spaces, such as Hölder spaces, Zygmund classes, Sobolev spaces, Besov spaces, Bessel-potential spaces, Hardy spaces and spaces of BMO-type. It is the main aim of this book to give a unified treatment of the corresponding spaces on the Euclidean n-space Rn in the framework of Fourier analysis, which is based on the technique of maximal functions, Fourier multipliers and interpolation assertions. These topics are treated in Chapter 2, which is the heart

  16. Renormalization of non-abelian gauge theories in curved space-time

    International Nuclear Information System (INIS)

    Freeman, M.D.

    1984-01-01

    We use indirect, renormalization group arguments to calculate the gravitational counterterms needed to renormalize an interacting non-abelian gauge theory in curved space-time. This method makes it straightforward to calculate terms in the trace anomaly which first appear at high order in the coupling constant, some of which would need a 4-loop calculation to find directly. The role of gauge invariance in the theory is considered, and we discuss briefly the effect of using coordinate-dependent gauge-fixing terms. We conclude by suggesting possible applications of this work to models of the very early universe

  17. CONSIDERATIONS ON USING THE SITUATIONAL CRISIS COMMUNICATION THEORY IN THE CRISIS COMMUNICATION PLANNING ACTIVITIES OF ROMANIAN ARMED FORCES’ INFORMATION AND PUBLIC RELATIONS STRUCTURES

    Directory of Open Access Journals (Sweden)

    George DAVID

    2013-01-01

    Full Text Available Organizational crisis situations – quite frequently met in military establishments, as well – represent a major threat against reputation, one of the most important intangible resources that organizations own. The Situational Crisis Communication Theory (SCCT suggests focusing managerial efforts in organizations facing crisis situations on preserving reputation through the proper management of stakeholders’ perceptions. Moreover, besides the theoretical framework, SCCT offers a wide range of practical tools to be used by managers and communication experts, tools which can be exploited successfully by the military information and public relations structures, too. This paper particularly focuses on the crisis communication planning effort, reviewing the main theoretical aspects of SCCT, as well as practical solutions which can be helpful to crisis communication planners.

  18. The evolution of conceptions about space and time in literary theory

    Directory of Open Access Journals (Sweden)

    Lazić Nebojša J.

    2012-01-01

    Full Text Available This work considers the function of space and time in poetics of literary text from the antique period till the theory of deconstruction as well as from Aristotle till Jacques Derrida and Paul de Man. The science of literature did not equally treat the problem of space and the problem of time as the elements of the literary work's structure. Disbalance presents the damage of studying the space because there is a significant number of monographs about time. Since the categories of space and time are the areas of studying physical and spiritual sciences, it was necessary to pay attention to considering these questions in exact sciences such as Physics, Maths etc. Further development of the science of literature is not possible without describing the role of space and time in writing and shaping a literary text. .

  19. The Long Way of Organizational Communication in Tourism: From Theory to Practice

    Directory of Open Access Journals (Sweden)

    Cristina STATE

    2015-06-01

    Full Text Available Organizational communication has become a topic on which increasingly more specialists express their views. Very few succed, however, to move from theory to practice, so that their attempt to be beneficial to it. Moreover, as a proverb (anonymously very well reveals, "... we communicate increasingly more, but we understand increasingly less" ... In this context, based on available statistics (which surprised and confused us in equal measure I aimed to analyze the extent to which beneficiaries of tourism units’ services are satisfied with the correspondence between their offer and the reality on the ground. Methodological, I turned in a first step to crowdsourcing. This is an alternative to get, as a result of outsourcing, required services and/or ideas by seeking contributions from large groups of people and/or communities turning to online resources and not to traditional employees or suppliers. This is the context in which I launched through a website accessible to all willing to participate in our research, a questionnaire aiming to evaluate the quality of organizational communication from tourism facilities. In a second step, I proceeded to the interpretation of the received responses checking, econometrically, through analysis of variance (ANOVA, the research hypotheses. Basically, I investigated the existing biunivocal relationship between the tourism facilities and the beneficiaries of their services, in order to identify and improve some external organizational communication trends, potentially generating performance effects as a direct result of improving customer relationship management. At the end of the work I formulated two proposals designed to reveal how and in what way can be reduced the distance (still huge that separates managerial theory from the practice of customer relationship in the tourism, hospitality and leisure industry.

  20. Topological field theories and quantum mechanics on commutative space

    International Nuclear Information System (INIS)

    Lefrancois, M.

    2005-12-01

    In particle physics, the Standard Model describes the interactions between fundamental particles. However, it was not able till now to unify quantum field theory and general relativity. This thesis focuses on two different unification approaches, though they might show some compatibility: topological field theories and quantum mechanics on non-commutative space. Topological field theories have been introduced some twenty years ago and have a very strong link to mathematics: their observables are topological invariants of the manifold they are defined on. In this thesis, we first give interest to topological Yang-Mills. We develop a superspace formalism and give a systematic method for the determination of the observables. This approach allows, once projected on a particular super gauge (of Wess-Zumino type), to recover the existing results but it also gives a generalisation to the case of an unspecified super-gauge. We have then be able to show that the up-to-now known observables correspond to the most general form of the solutions. This superspace formalism can be applied to more complex models; the case of topological gravity is given here in example. Quantum mechanics on noncommutative space provides an extension of the Heisenberg algebra of ordinary quantum mechanics. What differs here is that the components of the position or momentum operators do not commute with each other anymore. This implies to introduce a fundamental length. The second part of this thesis focuses on the description of the commutation algebra. Applications are made to low-dimensional quantum systems (Landau system, harmonic oscillator...) and to supersymmetric systems. (author)

  1. Phenomenology of dark energy: exploring the space of theories with future redshift surveys

    International Nuclear Information System (INIS)

    Piazza, Federico; Steigerwald, Heinrich; Marinoni, Christian

    2014-01-01

    We use the effective field theory of dark energy to explore the space of modified gravity models which are capable of driving the present cosmic acceleration. We identify five universal functions of cosmic time that are enough to describe a wide range of theories containing a single scalar degree of freedom in addition to the metric. The first function (the effective equation of state) uniquely controls the expansion history of the universe. The remaining four functions appear in the linear cosmological perturbation equations, but only three of them regulate the growth history of large scale structures. We propose a specific parameterization of such functions in terms of characteristic coefficients that serve as coordinates in the space of modified gravity theories and can be effectively constrained by the next generation of cosmological experiments. We address in full generality the problem of the soundness of the theory against ghost-like and gradient instabilities and show how the space of non-pathological models shrinks when a more negative equation of state parameter is considered. This analysis allows us to locate a large class of stable theories that violate the null energy condition (i.e. super-acceleration models) and to recover, as particular subsets, various models considered so far. Finally, under the assumption that the true underlying cosmological model is the Λ Cold Dark Matter (ΛCDM) scenario, and relying on the figure of merit of EUCLID-like observations, we demonstrate that the theoretical requirement of stability significantly narrows the empirical likelihood, increasing the discriminatory power of data. We also find that the vast majority of these non-pathological theories generating the same expansion history as the ΛCDM model predict a different, lower, growth rate of cosmic structures

  2. Global mobile satellite communications theory for maritime, land and aeronautical applications

    CERN Document Server

    Ilčev, Stojče Dimov

    2017-01-01

    This book discusses current theory regarding global mobile satellite communications (GMSC) for maritime, land (road and rail), and aeronautical applications. It covers how these can enable connections between moving objects such as ships, road and rail vehicles and aircrafts on one hand, and on the other ground telecommunications subscribers through the medium of communications satellites, ground earth stations, Terrestrial Telecommunication Networks (TTN), Internet Service Providers (ISP) and other wireless and landline telecommunications providers. This new edition covers new developments and initiatives that have resulted in land and aeronautical applications and the introduction of new satellite constellations in non-geostationary orbits and projects of new hybrid satellite constellations. The book presents current GMSC trends, mobile system concepts and network architecture using a simple mode of style with understandable technical information, characteristics, graphics, illustrations and mathematics equ...

  3. Mapping Theory - a mapping of the theoretical territory related to a contemporary concept of public space

    DEFF Research Database (Denmark)

    Smith, Shelley

    2008-01-01

    This working paper maps the theoretical territory of public space - urban public space - in a contemporary urban context. By finding, selecting, registering and examining existing theoretical stand points, the paper founds a basis for the creation of theory in an architectural discourse and for t......This working paper maps the theoretical territory of public space - urban public space - in a contemporary urban context. By finding, selecting, registering and examining existing theoretical stand points, the paper founds a basis for the creation of theory in an architectural discourse...... and for the examination of new spatial constellations for further research in public space. In addition to this, the appendices of the working paper are a kind of database for sources and source analyses....

  4. Communication as a predictor of willingness to donate one's organs: an addition to the Theory of Reasoned Action.

    Science.gov (United States)

    Jeffres, Leo W; Carroll, Jeanine A; Rubenking, Bridget E; Amschlinger, Joe

    2008-12-01

    Fishbein and Ajzen's theory of reasoned action has been used by many researchers, particularly in regard to health communication, to predict behavioral intentions and behavior. According to that theory, one's intention is the best predictor that one will engage in a behavior, and attitudes and social norms predict behavioral intentions. Other researchers have added different variables to the postulates of attitudes and social norms that Fishbein and Ajzen maintain are the best predictors of behavioral intention. Here we draw on data from a 2006 telephone survey (N = 420) gauging the awareness of an organ donation campaign in Northeast Ohio to examine the impact of communication on people's intentions. The current study supports the hypothesis that those who communicate with others are more likely to express a greater willingness to become an organ donor, but it expands the range of communication contexts. With demographics and attitudes toward organ donation controlled for, this study shows that communication with others about organ donation increases the willingness of individuals to have favorable attitudes about being an organ donor.

  5. The Synthesis Method of Automated System of Operational Planning in Low-Space Communication System Messaging

    Directory of Open Access Journals (Sweden)

    Serhii Kovbasiuk

    2017-04-01

    Full Text Available One of the reasons for the decrease of efficiency in low-speed communication systems, satellite communication, which are based on nanoplatform is a high degree of operational planning centralisation. To overcome this problem the method which carries out the distribution of tasks of communications operational planning minimizing the exchange of information between spatially remote sites, and takes into account the computing performance of software and hardware was developed. The technique is based on the use of methods of structural and parametric synthesis, simulation and statistical analysis of the results. Its use allows to obtain the optimal structure of the automated system of operational planning in low-space communication system messaging evaluation of efficiency in terms of fixed communication of information load.

  6. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2015-01-07

    Rapid increase in the use of wireless services over the last two decades has lead the problem of the radio-frequency (RF) spectrum exhaustion. More specifically, due to this RF spectrum scarcity, additional RF bandwidth allocation, as utilized in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing interest due to their advantages including higher bandwidth and higher capacity compared to the traditional RF communication systems. This promising technology offers full-duplex Gigabit throughput in certain applications and environment while benefiting from a huge license-free spectrum, immunity to interference, and high security. These features of FSO communication systems potentially enable solving the issues that the RF communication systems face due to the expensive and scarce RF spectrum. The first part of the talk will give an overview of FSO communication systems by offering examples of advantages and application areas of this emerging technology. In the second part of talk, we will focus on some recent results and on-going research directions in the accurate characterization of the performance of FSO systems in the presence of inevitable impairments due to atmospheric turbulence and misalignment between transmitter and receiver.

  7. Acousto-optic pointing and tracking systems for free-space laser communications

    Science.gov (United States)

    Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.

    2005-08-01

    Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.

  8. Theory, Method and Games in Communication.

    Science.gov (United States)

    MacLean, Malcolm S., Jr.

    The thesis that the methods in mass communication research for collecting, analyzing and interpreting data should relate directly to the theoretical models of communication is argued in this speech. Communication models indicate that a source can usually communicate more effectively in the presence of feedback from relevant receivers on their…

  9. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  10. Stop the Evictions! The Diffusion of Networked Social Movements and the Emergence of a New Hybrid Space

    DEFF Research Database (Denmark)

    Álvarez de Andrés, Eva; Zapata, Patrik; Zapata Campos, Maria José

    the evictions and change applicable legislation. This paper uses social movement theory and the travel of ideas metaphor from organization theory to understand how the PAH movement and its practices and tactics, originally born in Barcelona in 2009, have successfully spread to over 160 cities and stopped over...... to create a hybrid space between communication networks and occupied urban space in which face-to-face assemblies and protests take place....

  11. Stop the Evictions! The Diffusion of Networked Social Movements and the Emergence of a New Hybrid Space

    DEFF Research Database (Denmark)

    Álvarez de Andrés, Eva; Zapata Campos, Maria José; Zapata, Patrik

    2015-01-01

    the evictions and change applicable legislation. This paper uses social movement theory and the travel of ideas metaphor from organization theory to understand how the PAH movement and its practices and tactics, originally born in Barcelona in 2009, have successfully spread to over 160 cities and stopped over...... to create a hybrid space between communication networks and occupied urban space in which face-to-face assemblies and protests take place....

  12. Validation of missed space-group symmetry in X-ray powder diffraction structures with dispersion-corrected density functional theory

    DEFF Research Database (Denmark)

    Hempler, Daniela; Schmidt, Martin U.; Van De Streek, Jacco

    2017-01-01

    More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic...... with missed symmetry were investigated by dispersion-corrected density functional theory. In 98.5% of the cases the correct space group is found....

  13. The kinematical Hilbert space of loop quantum gravity from BF theories

    International Nuclear Information System (INIS)

    Cianfrani, Francesco

    2011-01-01

    In this work, it is demonstrated how the kinematical Hilbert space of loop quantum gravity (LQG) can be inferred from the configuration space of BF theories via the imposition of the Hamiltonian constraints. In particular, it is outlined how the projection to the representations associated with Ashtekar-Barbero connections provides the correct procedure to implement second-class constraints and the corresponding nontrivial induced symplectic structure. Then, the reduction to SU(2) invariant intertwiners is analyzed and the properties of LQG states under Lorentz transformations are discussed.

  14. Quantum field theory in flat Robertson-Walker space-time functional Schrodinger picture

    International Nuclear Information System (INIS)

    Pi, S.Y.

    1990-01-01

    Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schrodinger picture provides a useful description. This paper discusses free and self-interacting bosonic quantum field theories: Schrodinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schrodinger picture. The technique introduced can be used to study various dynamical questions in early universe processes

  15. Quantum field theory in flat Robertson-Walker space-time functional Schroedinger picture

    International Nuclear Information System (INIS)

    Pi, S.Y.

    1989-01-01

    Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schroedinger picture provides a useful description. We discuss free and self-interacting bosonic quantum field theories: Schroedinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schroedinger picture. The techniques introduced can be used to study various dynamical questions in early universe processes. (author)

  16. Exploring the boundaries of quantum mechanics: advances in satellite quantum communications.

    Science.gov (United States)

    Agnesi, Costantino; Vedovato, Francesco; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2018-07-13

    Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  17. Classical and quantum contents of solvable game theory on Hilbert space

    International Nuclear Information System (INIS)

    Cheon, Taksu; Tsutsui, Izumi

    2006-01-01

    A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation

  18. Final-year veterinary students' perceptions of their communication competencies and a communication skills training program delivered in a primary care setting and based on Kolb's Experiential Learning Theory.

    Science.gov (United States)

    Meehan, Michael P; Menniti, Marie F

    2014-01-01

    Veterinary graduates require effective communication skills training to successfully transition from university into practice. Although the literature has supported the need for veterinary student communication skills training programs, there is minimal research using learning theory to design programs and explore students' perceptions of such programs. This study investigated veterinary students' perceptions of (1) their communication skills and (2) the usefulness of a communication skills training program designed with Kolb's Experiential Learning Theory (ELT) as a framework and implemented in a primary care setting. Twenty-nine final-year veterinary students from the Ontario Veterinary College attended a 3-week communication skills training rotation. Pre- and post-training surveys explored their communication objectives, confidence in their communication skills, and the usefulness of specific communication training strategies. The results indicated that both before and after training, students were most confident in building rapport, displaying empathy, recognizing how bonded a client is with his or her pet, and listening. They were least confident in managing clients who were angry or not happy with the charges and who monopolized the appointment. Emotionally laden topics, such as breaking bad news and managing euthanasia discussions, were also identified as challenging and in need of improvement. Interactive small-group discussions and review of video-recorded authentic client appointments were most valuable for their learning and informed students' self-awareness of their non-verbal communication. These findings support the use of Kolb's ELT as a theoretical framework and of video review and reflection to guide veterinary students' learning of communication skills in a primary care setting.

  19. A reflection of the coding of meaning in patient-physician interaction: Jürgen Habermas' theory of communication applied to sequence analysis.

    Science.gov (United States)

    Skirbekk, Helge

    2004-08-01

    This paper introduces parts of Jürgen Habermas' theory of communication in an attempt to understand how meaning is coded in patient-physician communication. By having a closer look at how patients and physicians make assertions with their utterances, light will be shed on difficult aspects of reaching understanding in the clinical encounter. Habermas' theory will be used to differentiate assertions into validity claims referring to truth, truthfulness and rightness. An analysis of hypothetical physician-replies to a patient suffering from back pains will substantiate the necessity for such a theory.

  20. Dynamic systems and inferential information processing in human communication.

    Science.gov (United States)

    Grammer, Karl; Fink, Bernhard; Renninger, LeeAnn

    2002-12-01

    Research in human communication on an ethological basis is almost obsolete. The reasons for this are manifold and lie partially in methodological problems connected to the observation and description of behavior, as well as the nature of human behavior itself. In this chapter, we present a new, non-intrusive, technical approach to the analysis of human non-verbal behavior, which could help to solve the problem of categorization that plagues the traditional approaches. We utilize evolutionary theory to propose a new theory-driven methodological approach to the 'multi-unit multi-channel modulation' problem of human nonverbal communication. Within this concept, communication is seen as context-dependent (the meaning of a signal is adapted to the situation), as a multi-channel and a multi-unit process (a string of many events interrelated in 'communicative' space and time), and as related to the function it serves. Such an approach can be utilized to successfully bridge the gap between evolutionary psychological research, which focuses on social cognition adaptations, and human ethology, which describes every day behavior in an objective, systematic way.

  1. Flesh as communication

    DEFF Research Database (Denmark)

    Heinrich, Falk

    2012-01-01

    , action. A correlative bond lies in communication theory as the operational difference between ego and alter-ego. This article investigates the non-semiotic intertwinement of ‘flesh’ in art perception and theory based on communication theory in performance art (body art). The thesis is that ‘flesh...

  2. Grassmann phase space theory and the Jaynes–Cummings model

    International Nuclear Information System (INIS)

    Dalton, B.J.; Garraway, B.M.; Jeffers, J.; Barnett, S.M.

    2013-01-01

    coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems

  3. Communication-Oriented Design Space Exploration for Reconfigurable Architectures

    Directory of Open Access Journals (Sweden)

    Gogniat Guy

    2007-01-01

    Full Text Available Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architectures, field programmable gate arrays (FPGAs, are the most well-known structures of reconfigurable hardware. Dedicated tools (generic or specific allow for the exploration of their design space to choose the best architecture characteristics and/or to explore the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack, in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communication hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

  4. The golden mean in the topology of four-manifolds, in conformal field theory, in the mathematical probability theory and in Cantorian space-time

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2006-01-01

    In the present work we show the connections between the topology of four-manifolds, conformal field theory, the mathematical probability theory and Cantorian space-time. In all these different mathematical fields, we find as the main connection the appearance of the golden mean

  5. Kinetic theory of twisted waves: Application to space plasmas having superthermal population of species

    Science.gov (United States)

    Arshad, Kashif; Poedts, Stefaan; Lazar, Marian

    2017-04-01

    ring shape morphology of a beam with orbital angular momentum (OAM) is ideal for the observation of solar corona around the sun where the intensity of the beam is minimum at the center, in solar experiments, and Earth's ionosphere. The twisted plasma modes carrying OAM are mostly studied either by the fluid theory or Maxwellian distributed Kinetic Theory. But most of the space plasmas and some laboratory plasmas have non-thermal distributions due to super-thermal population of the plasma particles. Therefore the Kinetic Theory of twisted plasma modes carrying OAM are recently studied using non-thermal (kappa) distribution of the super-thermal particles in the presence of the helical electric field and significant change in the damping rates are observed by tuning appropriate parameters.

  6. What is the explanatory power of space syntax theory? the application of modal logics from theory of science

    NARCIS (Netherlands)

    van Nes, A.

    2017-01-01

    This contribution shows various approaches from the theory of science for revealing the explanatory power of the Space Syntax. In this contribution Bhaskar's critical realistic model of science and Georg Henrik von Wright's account of explanation and understanding are used to assess the

  7. Planets as background noise sources in free space optical communications

    Science.gov (United States)

    Katz, J.

    1986-01-01

    Background noise generated by planets is the dominant noise source in most deep space direct detection optical communications systems. Earlier approximate analyses of this problem are based on simplified blackbody calculations and can yield results that may be inaccurate by up to an order of magnitude. Various other factors that need to be taken into consideration, such as the phase angle and the actual spectral dependence of the planet albedo, in order to obtain a more accurate estimate of the noise magnitude are examined.

  8. Yang-Mills theory in null path space

    International Nuclear Information System (INIS)

    Kent, S.L.

    1982-01-01

    A reformulation of classical GL(n,c) Yang-Mills theory is presented. The reformulation is in terms of a single matrix-valued function G on a six-dimensional subspace of the space of paths in Minkowski space, M. This subspace is defined as the null paths beginning at each point, (X/sup a/), of M and ending at future null infinity. A convenient parametrization of these paths is to give the Minkowski coordinates x/sup a/ of the starting point and the (complex) stereographic coordinates (xi, antixi) on S 2 which label the light cone generators of x/sup a/. A path is thus labeled by (x/sup a/,xi, antixi). The function G(x/sup a/,xi, antixi) is defined by the parallel propagation (with a given connection) of n linearly independent fiber vectors from x/sup a/ to null infinity along the (xi, antixi) generator. From knowledge of G(x/sup a/,xi, antixi) the connection one-form γ/sub a/ at the point x/sup a/ can be obtained is shown. Furthermore how the vacuum Yang-Mills equations can be imposed on the G is shown. This results in a rather complicated integro-differential equation for G which involves the characteristic initial data (essentially the radiation field) acting as the driving term. Two simple special cases are immediately obtainable; in the case of self-dual (or anti-self dual) fields the author obtains a simple derivation of the Sparling equation, namely delta G = -GA, while for Abelian (Maxwell) theories obtained the equation delta anti delta log G = -anti delta A-anti delta A, where A and its conjugate anti A are the characteristic free data given on null infinity. The latter equation is equivalent to the vacuum Maxwell equations

  9. Quantum theory of string in the four-dimensional space-time

    International Nuclear Information System (INIS)

    Pron'ko, G.P.

    1986-01-01

    The Lorentz invariant quantum theory of string is constructed in four-dimensional space-time. Unlike the traditional approach whose result was breaking of Lorentz invariance, our method is based on the usage of other variables for description of string configurations. The method of an auxiliary spectral problem for periodic potentials is the main tool in construction of these new variables

  10. The matter power spectrum in redshift space using effective field theory

    Science.gov (United States)

    Fonseca de la Bella, Lucía; Regan, Donough; Seery, David; Hotchkiss, Shaun

    2017-11-01

    The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k lesssim 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k lesssim 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the l = 0 mode up to ~ 5%, and for the l = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the l=0 mode gives a firm upper limit of k ≈ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the l=0 mode, but can induce deviations as large as 2% for the l=2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.

  11. Wigner's dynamical transition state theory in phase space : classical and quantum

    NARCIS (Netherlands)

    Waalkens, Holger; Schubert, Roman; Wiggins, Stephen

    We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs

  12. Helping Crisis Managers Protect Reputational Assets: Initial Tests of the Situational Crisis Communication Theory.

    Science.gov (United States)

    Coombs, W. Timothy; Holladay, Sherry J.

    2002-01-01

    Explains a comprehensive, prescriptive, situational approach for responding to crises and protecting organizational reputation: the situational crisis communication theory (SCCT). Notes undergraduate students read two crisis case studies from a set of 13 cases and responded to questions following the case. Validates a key assumption in SCCT and…

  13. Arms applied to the communications system at the Kourou space centre

    International Nuclear Information System (INIS)

    Gerez Martin, L.; Garcia de la Sen, R.

    1993-01-01

    The REMUS (Roseau d'Entreprise MUltiService) has been designed to cover present and future communications needs which are associated with daily operation of the Guyanese Space Centre (GSC). This communications network will facilitate data exchange, contain the data (RSD) and voice network, and paging (RRP), convoy (RCV) and telephony (RSV) systems. The main objectives of the study were: 1. To assess system availability. 2. To dimension spare parts of the renewal equipment and define the logistic delays to be observed in order to achieve an availability target of: - 99.9% for the RRP, RCV and RSV networks. - 99.9% for the RSD network. The RAMSES program developed by Empresarios Agrupados was used in these calculations, to evaluate system behaviour by means of a Monte Carlo simulation. (author)

  14. Postcultural Communication?

    DEFF Research Database (Denmark)

    Jensen, Iben

    2015-01-01

    When we as scholars use the concept of intercultural communication in its classic definition, as communication between people with different cultural backgrounds, we perpetuate the notion that national differences influence communication more than other differences; in doing so, ethnic minorities...... is presented as a postcultural prism composed by practice theory (Schatzki 1996, Reckwitz 2002, Nicolini 2012, Kemmis 2012), Intersectionality (Brah, Phoenix, Collins Rahsack) and positioning theory (Harre & Langenhove 1998)....

  15. Stochastic integration in Banach spaces theory and applications

    CERN Document Server

    Mandrekar, Vidyadhar

    2015-01-01

    Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integrati...

  16. Research on formation of microsatellite communication with genetic algorithm.

    Science.gov (United States)

    Wu, Guoqiang; Bai, Yuguang; Sun, Zhaowei

    2013-01-01

    For the formation of three microsatellites which fly in the same orbit and perform three-dimensional solid mapping for terra, this paper proposes an optimizing design method of space circular formation order based on improved generic algorithm and provides an intersatellite direct spread spectrum communication system. The calculating equation of LEO formation flying satellite intersatellite links is guided by the special requirements of formation-flying microsatellite intersatellite links, and the transmitter power is also confirmed throughout the simulation. The method of space circular formation order optimizing design based on improved generic algorithm is given, and it can keep formation order steady for a long time under various absorb impetus. The intersatellite direct spread spectrum communication system is also provided. It can be found that, when the distance is 1 km and the data rate is 1 Mbps, the input wave matches preferably with the output wave. And LDPC code can improve the communication performance. The correct capability of (512, 256) LDPC code is better than (2, 1, 7) convolution code, distinctively. The design system can satisfy the communication requirements of microsatellites. So, the presented method provides a significant theory foundation for formation-flying and intersatellite communication.

  17. An Investigation of Time-Distortion Utilizing Space-Time/Field Relationships

    CERN Document Server

    Park, T

    1990-01-01

    EPR communication and backward-in-time information communication described in nonlocal quantum mechanics theories may prove a great problem within the confines of relativity, since the theory of Relativity maintains that nothing can possibly accelerate at or beyond the speed of light constant (c). However, according to the Grangier-Rogers-Aspect EPR experimental results, the theoretical results of Garcia, Ibarguen and Plebanski, as well as the mathematically consistent nonlinear evolutionary equations of Weinberg, Polchinski, Gisin and Czachor, EPR photon-to-photon information communication or FTL information communication is theoretically possible. Therefore, the purpose of this paper is to propose that normal concepts of time and space breakdown and attain null values as the speed of light constant is matched and then surpassed where FTL by several million fold is possible due to the nullification of the effects of mass (m). For in the new physics, both the force of gravity (F = mg) and the centrifugal forc...

  18. The Association of Schools of Journalism and mass communication journalist-in-space project

    Science.gov (United States)

    1986-01-01

    During the summer of 1985, NASA asked the Association of Schools of Journalism and Mass Communication (ASJMC) to select a U. S. journalist who could ride aboard the space shuttle and report the experience to the American public. Eligibility critieria and selection procedures are discussed. The forty semifinalists are listed.

  19. The impact of emotional intelligence, self-esteem, and self-image on romantic communication over MySpace.

    Science.gov (United States)

    Dong, Qingwen; Urista, Mark A; Gundrum, Duane

    2008-10-01

    A study based on a survey of 240 individual MySpace users found that low self-esteem encourages young adults to engage in romantic communication (such as having intimate communication with the opposite sex and looking for romantic partners) while higher emotional intelligence discourages such activity. The results also suggested that those who have higher self-image, such as thinking themselves attractive and happy with their appearance, tend to engage in romantic communication. Limitations of the study and suggestion for future study are discussed.

  20. Theta-Gamma Coding Meets Communication-through-Coherence: Neuronal Oscillatory Multiplexing Theories Reconciled.

    Science.gov (United States)

    McLelland, Douglas; VanRullen, Rufin

    2016-10-01

    Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles. In short, both theories serve to segregate representations via the temporal domain, but differ on the number of objects concurrently represented. In this study, we set out to test whether each of these theories is actually physiologically plausible, by implementing them within a single model inspired by physiological data. Using a spiking network model of visual processing, we show that each of these theories is physiologically plausible and computationally useful. Both theories were implemented within a single network architecture, with two areas connected in a feedforward manner, and gamma oscillations generated by feedback inhibition within areas. Simply increasing the amplitude of global inhibition in the lower area, equivalent to an increase in the spatial scope of the gamma oscillation, yielded a switch from one mode to the other. Thus, these different processing modes may co-exist in the brain, enabling dynamic switching between exploratory and selective modes of attention.