WorldWideScience

Sample records for space charge field

  1. Discrete space charge affected field emission: Flat and hemisphere emitters

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil [Code 6854, Naval Research Laboratory, Washington, DC 20375 (United States); Shiffler, Donald A.; Tang, Wilkin [Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States); Rittersdorf, Ian M. [Code 6770, Naval Research Laboratory, Washington, DC 20375 (United States); Lebowitz, Joel L. [Department of Mathematics and Department of Physics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States); Harris, John R. [U.S. Navy Reserve, New Orleans, Louisiana 70143 (United States); Lau, Y. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petillo, John J. [Leidos, Billerica, Massachusetts 01821 (United States); Luginsland, John W. [Physics and Electronics Directorate, AFOSR, Arlington, Virginia 22203 (United States)

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  2. Numerical investigation of space charge electric field for a sheet ...

    Indian Academy of Sciences (India)

    One of the problems in scaling high power vacuum and plasma microwave sources to higher frequencies is the need to transport beams with higher space charge density, since the radio frequency circuit transverse dimensions tend to decrease with wavelength. The use of sheet electron beams can alleviate this difficulty ...

  3. An Improved Treatment of AC Space Charge Fields in Large Signal Simulation Codes

    National Research Council Canada - National Science Library

    Dialetis, D; Chernin, D; Antonsen, Jr., T. M; Levush, B

    2006-01-01

    An accurate representation of the AC space charge electric field is required in order to be able to predict the performance of linear beam tubes, including TWT's and klystrons, using a steady state...

  4. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  5. Internal electric fields of electrolytic solutions induced by space-charge polarization

    Science.gov (United States)

    Sawada, Atsushi

    2006-10-01

    The dielectric dispersion of electrolytic solutions prepared using chlorobenzene as a solvent and tetrabutylammonium tetraphenylborate as a solute is analyzed in terms of space-charge polarization in order to derive the ionic constants, and the Stokes radius obtained is discussed in comparison with the values that have been measured by conductometry. A homogeneous internal electric field is assumed for simplicity in the analysis of the space-charge polarization. The justification of the approximation by the homogeneous field is discussed from two points of view: one is the accuracy of the Stokes radius value observed and the other is the effect of bound charges on electrodes in which they level the highly inhomogeneous field, which has been believed in the past. In order to investigate the actual electric field, numerical calculations based on the Poisson equation are carried out by considering the influence of the bound charges. The variation of the number of bound charges with time is clarified by determining the relaxation function of the dielectric constant attributed to the space-charge polarization. Finally, a technique based on a two-field approximation, where homogeneous and hyperbolic fields are independently applied in relevant frequency ranges, is introduced to analyze the space-charge polarization of the electrolytic solutions, and further improvement of the accuracy in the determination of the Stokes radius is achieved.

  6. Relations between focusing power of space-charge lenses and external electromagnetic fields

    International Nuclear Information System (INIS)

    Yu Qingchang; Qiu Hong; Huang Jiachang

    1991-01-01

    Under different external electromagnetic fields, the electron densities of the electron cloud in a self-sustaning spece-charge lens are measured with the radio-frequency method and the energy distributions of the ions produced in ionization are measured with the stopping field method. From them the relations between the focusing power of space-charge lenses and the external electromagnetic fields are determined. The available region of the Lebedev-Morozov formula is discussed

  7. Phase space properties of charged fields in theories of local observables

    International Nuclear Information System (INIS)

    Buchholz, D.; D'Antoni, C.

    1994-10-01

    Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)

  8. Study of electric field distorted by space charges under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  9. Modal description of longitudinal space-charge fields in pulse-driven free-electron devices

    Directory of Open Access Journals (Sweden)

    Yu. Lurie

    2010-05-01

    Full Text Available In pulsed-beam free-electron devices, longitudinal space-charge fields result in collective effects leading to an expansion of short electron bunches along their trajectory. This effect restricts an application of intense ultrashort electron pulses in free-electron radiation sources. A careful theoretical treatment is required in order to achieve an accurate description of the self-fields and the resulted electron beam dynamics. In this paper, longitudinal space-charge fields are considered in the framework of a three-dimensional, space-frequency approach. The model is based on the expansion of the total electromagnetic field (including self-fields in terms of transverse eigenmodes of the (cold cavity, in which the field is excited and propagates. The electromagnetic field, originally obtained in the model as a solution of the wave equation, is shown to satisfy also Gauss’s law. We applied the theory to derive an analytical expression for the longitudinal electric field of a pointlike charge, moving along a waveguide at a constant velocity. This enables consideration and study of the role played by different terms of the resulted expressions, such as components arising from forward and backward waves, propagating waves, and under cutoff frequencies, and so on. Possible simplifications in evaluation of longitudinal space-charge fields are discussed.

  10. The effects of electromagnetic space-charge fields in RF photocathode guns

    International Nuclear Information System (INIS)

    Park, C.S.; Hess, M.

    2010-01-01

    In high-brightness rf photocathode guns, the effects of space-charge are important for electron bunches with high bunch charge. In an effort to accurately simulate the effects of these space-charge fields without the presence of numerical grid dispersion, a Green's function based code called IRPSS (Indiana Rf Photocathode Source Simulator) was developed. In this paper, we show the results of numerical simulations of the Argonne Wakefield Accelerator photocathode gun using IRPSS, and compare them with the results of an electrostatic Green's function version of IRPSS.

  11. Light-induced space-charge fields for the structuration of dielectric materials

    International Nuclear Information System (INIS)

    Eggert, H.A.

    2006-11-01

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  12. Space-Charge Effect

    International Nuclear Information System (INIS)

    Chauvin, N

    2013-01-01

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented. (author)

  13. Space-Charge Effect

    CERN Document Server

    Chauvin, N.

    2013-12-16

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  14. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  15. Space charge and wake field analysis for a high brightness electron source

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    We present a brief overview of the formalism used, and some simulation results for transverse and longitudinal motion of a bunch of particles moving through a cavity (e.g., the Brookhaven National Laboratory high brightness photocathode gun), including effects of the accelerating field, space charge forces (e.g., arising from the interaction of the cavity surface and the self field of the bunch). 3 refs., 12 figs

  16. Water Tree Influence on Space Charge Distribution and on the Residual Electric Field in Polyethylene Insulation

    Directory of Open Access Journals (Sweden)

    Cristina Stancu

    2009-10-01

    Full Text Available A computation method of the electricfield and ionic space charge density in planeinsulations with water trees (using a ComsolMultiphysics software and the thermal step currents(Im(t measured with Thermal Step Method ispresented. A parabolic spatial variation of volumecharge density, an exponential spatial variation ofthe electric permittivity ε and a linear dependency ofε and the temperature coefficient of permittivity αεwith the average water concentration in trees, areconsidered. For a water tree with a known length,different values of charge density are consideredand the electric field and the thermal step currentsIc(t are calculated. The currents Ic(t and Im(t arecompared and the volume of charge density andelectric field for which Ic(t is identical with Im(t arekept.

  17. Modelling of electric tree progression due to space charge modified fields

    International Nuclear Information System (INIS)

    Seralathan, K E; Mahajan, A; Gupta, Nandini

    2008-01-01

    Tree initiation and growth require localized field enhancement that results in material erosion and formation of tree channels. Tree progression is linked to partial discharges within the tree tubules, characterized by recurrent periods of activity followed by quiescent states. Charge builds up across the non-conducting tree channels during the inactive regime, and discharge follows. In this work, the role of the space charge modified field during the non-discharging regime in deciding the site of subsequent discharges and thereby shaping tree structures is studied. A simple stochastic model was developed, in order to understand the respective effects of charges trapped on the walls of tree tubules, at channel tips, or in the volume of the dielectric. While some charge distributions are seen to arrest tree growth, others encourage axial growth towards the other electrode, and some aid in producing bushy trees clustered around the needle tip. The effect of carbon deposition within tree channels, making them effectively conducting, was also investigated. The insights gained from the simulations were successfully used to explain tree growth in the laboratory under high- and low-field conditions

  18. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    International Nuclear Information System (INIS)

    Yoon, Sangcheol; Hwang, Inchan; Park, Byoungchoo

    2015-01-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole–Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers. (paper)

  19. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  20. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 701124 (China); Huang, Zhongliang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  1. Numerical computation of space-charge fields of electron bunches in a beam pipe of elliptical shape

    International Nuclear Information System (INIS)

    Markovik, A.

    2005-01-01

    This work deals in particularly with 3D numerical simulations of space-charge fields from electron bunches in a beam pipe with elliptical cross-section. To obtain the space-charge fields it is necessary to calculate the Poisson equation with given boundary condition and space charge distribution. The discretization of the Poisson equation by the method of finite differences on a Cartesian grid, as well as setting up the coefficient matrix A for the elliptical domain are explained in the section 2. In the section 3 the properties of the coefficient matrix and possible numerical algorithms suitable for solving non-symmetrical linear systems of equations are introduced. In the following section 4, the applied solver algorithms are investigated by numerical tests with right hand side function for which the analytical solution is known. (orig.)

  2. Numerical computation of space-charge fields of electron bunches in a beam pipe of elliptical shape

    Energy Technology Data Exchange (ETDEWEB)

    Markovik, A.

    2005-09-28

    This work deals in particularly with 3D numerical simulations of space-charge fields from electron bunches in a beam pipe with elliptical cross-section. To obtain the space-charge fields it is necessary to calculate the Poisson equation with given boundary condition and space charge distribution. The discretization of the Poisson equation by the method of finite differences on a Cartesian grid, as well as setting up the coefficient matrix A for the elliptical domain are explained in the section 2. In the section 3 the properties of the coefficient matrix and possible numerical algorithms suitable for solving non-symmetrical linear systems of equations are introduced. In the following section 4, the applied solver algorithms are investigated by numerical tests with right hand side function for which the analytical solution is known. (orig.)

  3. Light-induced space-charge fields for the structuration of dielectric materials; Lichtinduzierte Raumladungsfelder zur Strukturierung dielektrischer Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, H A

    2006-11-15

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  4. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  5. Significance of Space Charge and the Earth Magnetic Field on the Dispersive Characteristics of a Low Energy Electron Beam

    CERN Document Server

    Kishek, Rami A; Bernal, Santiago; Godlove, Terry; Haber, Irving; Quinn, Bryan; Reiser, Martin; Tobin, C; Walter, Mark

    2005-01-01

    The combination of energy spread and space charge provides a rich domain for interesting beam dynamics that are currently not well understood. The University of Maryland Electron Ring (UMER) [1] is a small scaled ring designed to probe the little-known regions of higher beam intensities using low-energy electrons. As such, design, commissioning and operation of UMER present many challenges, some quite novel. For example the UMER beam energy of 10 keV makes the beam very sensitive to the Earth magnetic field, which we can fortunately use to assist in bending the beam. This paper presents a systematic simulation study of the interaction of space charge and energy spread, with and without the earth magnetic field.

  6. Electric field and space-charge distribution in SI GaAs: effect of high-energy proton irradiation

    CERN Document Server

    Castaldini, A; Polenta, L; Canali, C; Nava, F

    1999-01-01

    The effect of irradiation on semi-insulating gallium arsenide Schottky diodes has been investigated by means of surface potential measurements and spectroscopic techniques. Before and after irradiation the electric field exhibits a Mott barrier-like distribution, and the box-shaped space charge modifies its distribution with irradiation. The increase in density or the generation of some traps changes the compensation ratio producing a deeper active region and a more homogeneous distribution of the electric field. The latter phenomenon is also observed by EBIC images of edge-mounted diodes.

  7. Transverse Space-Charge Field-Induced Plasma Dynamics for Ultraintense Electron-Beam Characterization

    Directory of Open Access Journals (Sweden)

    R. Tarkeshian

    2018-05-01

    Full Text Available Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today’s free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.

  8. Space charge effects of CSR

    International Nuclear Information System (INIS)

    Liu Yong; Xia Jiawen; Xu Xiangyang; Lu Xiaowen; Wu Junli

    2000-01-01

    Cooler Storage Ring (CSR), and upgrading program planned at the Heavy Ion Research Facility in Lanzhou (HIRFL), will supply beams with higher quality and intensity. Space charge effects should be considered due to this magnitude of intensity in CSR. The concept and some phenomena of space charge effects are discussed. Space charge intensity limit and space charge tune shift of normal CSR operation are given. It is of significance for the construction and operation of the future facility

  9. Beam emittance and the effects of the rf, space charge and wake fields: Application to the ATF photoelectron beam

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    Laser driven photoelectron guns are of interest for use in new methods of accelerations, future development of Linear Colliders and new experiments such as Free Electron laser (IFEL). Such guns are potential source of low emittance-high current and short bunch length electron beams, where the emitted electrons are accelerated quickly to a relativistic energy by a strong rf, electric field in the cavity. We present a brief overview of the beam dynamic studies, e.g. emittance for the Brookhaven National Laboratory (BNL) ATF high brightness photocathode radio frequency gun (now in operation), and show the effects of the rf, Space Charge, and Wake fields on the photoelectrons. 4 refs., 7 figs

  10. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    Science.gov (United States)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  11. Theoretical study of ion bunching for pellet fusion in self-consistent time dependent space charge fields

    International Nuclear Information System (INIS)

    Lu, P.C.

    1977-01-01

    The use of intense ion beams as a heating source for the fusion reaction in pellets of D-T appears to have several potential advantages over the use of electron beams. If ion bunching can be accomplished, then existing technology can be used to achieve the required power, energy and time scales for pellet fusion. A scheme to be considered is that of a pre-formed nonuniform plasma adjacent to a partially transparent anode through which a space charge limited electron beam is injected from the terminals of a convergent spherical geometry with a finite (or zero) rise-time. At the instant of beam injection, the virtual cathode is formed. Due to the space charge fields set up by the beam, the plasma ions are accelerated towards the region beyond the virtual cathode. A self-consistent transient analysis of the interactions between the electron beam and the background plasma is performed. The numerical calculations show that by specifying the target plasma for perfect bunching the ions can be made to bunch nearly perfectly. Also, by considering the depletion of initial plasma and accounting for the fact that the virtual anode-virtual cathode gap region is moving opposite to the direction of the ions, one can considerably enhance the instantaneous power delivered to the target over that which is injected at the terminals of the device, even with a finite rise-time on the current pulse

  12. Motion of a particle in a radial space-charge field and in an axial magnetic field; Le mouvement d'une particule dans un champ de charge d'espace radial et un champ magnetique axial

    Energy Technology Data Exchange (ETDEWEB)

    Canobbio, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Services de Physique Appliquee, Service d' Ionique Generale, Section d' Etudes des Interactions Ondes Plasmas; Finzi, U [Institut de Physique Theorique de Milan (Italy)

    1966-07-01

    The motion of a charged particle in an axial uniform steady magnetic field, under the action of a radial space charge is calculated. A cylindrical symmetric charge distribution similar to the one which is observed in HF plasma accelerators is assumed. The particle motion is discussed with the method of effective potentials. A radial acceleration of ions is shown to be possible if the space charge density is sufficiently high. The displacement of the turning points of the trajectories due to the electrostatic field is calculated in the low plasma density approximation. Finally a HF circularly polarized electric field is introduced, the shift in cyclotron resonance is calculated and a low frequency resonance is found to be possible. (authors) [French] On etudie le mouvement d'une particule dans un champ magnetique axial uniforme et constant en presence d'un champ de charge d'espace radial. On considere une distribution de charge a symetrie cylindrique, semblable a celle qu'on observe dans les accelerateurs de plasma a H.F. On se sert des potentiels effectifs pour discuter les caracteristiques du mouvement. Une acceleration radiale des ions est possible lorsque la densite de charge est assez elevee. On calcule aussi les deplacements des points de rebroussement des trajectoires produits par un champ electrostatique faible. On introduit enfin un champ electrique HF polarise circulairement et on calcule le deplacement de la resonance de cyclotron du au champ de charge d'espace. En meme temps on voit apparaitre dans l'energie cinetique de la particule une resonance a basse frequence. (auteurs)

  13. Booted domain wall and charged Kaigorodov space

    International Nuclear Information System (INIS)

    Cai Ronggen

    2003-01-01

    The Kaigorodov space is a homogeneous Einstein space and it describes a pp-wave propagating in anti-de Sitter space. It is conjectured in the literature that M-theory or string theory on the Kaigorodov space times a compact manifold is dual to a conformal field theory in an infinitely-boosted frame with constant momentum density. In this Letter we present a charged generalization of the Kaigorodov space by boosting a non-extremal charged domain wall to the ultrarelativity limit where the boost velocity approaches the speed of light. The finite boost of the domain wall solution gives the charged generalization of the Carter-Novotny-Horsky metric. We study the thermodynamics associated with the charged Carter-Novotny-Horsky space and discuss its relation to that of the static black domain walls and its implications in the domain wall/QFT (quantum field theory) correspondence

  14. Intrinsic space charge resonances and the space charge limit

    International Nuclear Information System (INIS)

    Parzen, G.

    1990-01-01

    A study has been done of the dependence of the space charge limit on the choice of ν-values using a simulation program. This study finds a strong dependence of the space charge limit on the location of the ν-values relative to the intrinsic space charge resonances, which are driven by the space charge forces due to the beam itself. Four accelerators were studied. For some of these accelerators the study suggest that the space charge limit can be increased by about a factor of 2 proper choice of the ν-values. The lower order 1/2 and 1/4 intrinsic resonances appear to be the important resonances. There is some evidence for effects due to the 1/6 and 1/8 intrinsic resonances, particularly for larger synchrotrons. 5 figs

  15. Direct convertor based upon space charge effects

    International Nuclear Information System (INIS)

    Gitomer, S.J.

    1977-01-01

    A device capable of converting directly the kinetic energy of charged particles into electrical energy is considered. The device differs from earlier ones (such as Post's periodic focus electrostatic direct convertor) in that it makes use of the space charge repulsion in a high density charged particle beam. The beam is directed into a monotonic decelerating electrostatic field of a several-stage planar-finned structure. The collector fins coincide with vacuum equipotential surfaces. Space charge blowup of the beam directs particles onto various collector fins. The energy efficiency of a 4-stage device has been determined using a numberical simulation approach. We find that efficiencies approaching 75 percent are possible. An approximate scaling law is derived for the space charge based direct converter and a comparison is made to the periodic focus direct convertor. We find the space charge based direct convertor to be superior to a number of ways

  16. Space charge distributions in glass fibre/epoxy resin composites under dc 10 kV mm-1 electric field

    International Nuclear Information System (INIS)

    Tanaka, Hidesato; Ohki, Yoshimichi; Fukunaga, Kaori; Maeno, Takashi; Okamoto, Kenji

    2007-01-01

    In this paper, the authors discuss one- and three-dimensional space charge distributions in glass fibre/epoxy resin composites. By the conventional pulsed electroacoustic (PEA) method, only a one-dimensional distribution of the average charge over a whole area parallel to the two electrodes can be observed. Therefore, the authors have developed a new PEA system capable of measuring a three-dimensional space charge distribution. Using this system, they measured the charge distribution in glass fibre/epoxy resin composites made of lattice-woven glass fibre and epoxy resin. It has become clear that spatial variation in signal intensity observed depends on the internal structure of the composite. There appear repetitious positions where a high charge density is observed on the same lateral cross section along the vertical direction in the composite. Such positions are consistent with the intersections of the glass fibres. Accumulation of mobile charge carriers or appearance of polarization charge due to mismatch of the ratio of the conductivity and permittivity between the glass fibre and the epoxy resin is thought to be responsible for the PEA signals

  17. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    International Nuclear Information System (INIS)

    Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-01-01

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions

  18. Space charge effect in an accelerated beam

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2008-01-01

    Full Text Available It is usually assumed that the space charge effects in relativistic beams scale with the energy of the beam as γ^{-2}, where γ is the relativistic factor. We show that for a beam accelerated in the longitudinal direction there is an additional space charge effect in free space that scales as E/γ, where E is the accelerating field. This field has the same origin as the “electromagnetic mass of the electron” discussed in textbooks on electrodynamics. It keeps the balance between the kinetic energy of the beam and the energy of the electromagnetic field of the beam. We then consider the effect of this field on a beam generated in an rf gun and calculate the energy spread produced by this field in the beam.

  19. Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate.

    Science.gov (United States)

    Liu, Gui-Geng; Wang, Ke; Lee, Yun-Han; Wang, Dan; Li, Ping-Ping; Gou, Fangwang; Li, Yongnan; Tu, Chenghou; Wu, Shin-Tson; Wang, Hui-Tian

    2018-02-15

    Vortex vector optical fields (VVOFs) refer to a kind of vector optical field with an azimuth-variant polarization and a helical phase, simultaneously. Such a VVOF is defined by the topological index of the polarization singularity and the topological charge of the phase vortex. We present a simple method to measure the topological charge and index of VVOFs by using a space-variant half-wave plate (SV-HWP). The geometric phase grating of the SV-HWP diffracts a VVOF into ±1 orders with orthogonally left- and right-handed circular polarizations. By inserting a polarizer behind the SV-HWP, the two circular polarization states project into the linear polarization and then interfere with each other to form the interference pattern, which enables the direct measurement of the topological charge and index of VVOFs.

  20. Charged particles in external electromagnetic fields

    International Nuclear Information System (INIS)

    Giovannini, N.P.D.

    1976-01-01

    The present study contains a general theoretical group analysis of the problem of a charged massive particle moving in an (arbitrary) classical external electromagnetic field. This analysis is essentially based on the space-time symmetry properties of e.m. fields and e.m. field equations, as well as the fact that the considered equations of motion depend on the field via a potential

  1. Fast Poisson Solvers for Self-Consistent Beam-Beam and Space-Charge Field Computation in Multiparticle Tracking Simulations

    CERN Document Server

    Florio, Adrien; Pieloni, Tatiana; CERN. Geneva. ATS Department

    2015-01-01

    We present two different approaches to solve the 2-dimensional electrostatic problem with open boundary conditions to be used in fast tracking codes for beam-beam and space charge simulations in high energy accelerators. We compare a fast multipoles method with a hybrid Poisson solver based on the fast Fourier transform and finite differences in polar coordinates. We show that the latter outperforms the first in terms of execution time and precision, allowing for a reduction of the noise in the tracking simulation. Furthermore the new algorithm is shown to scale linearly on parallel architectures with shared memory. We conclude by effectively replacing the HFMM by the new Poisson solver in the COMBI code.

  2. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  3. Space charge in nanostructure resonances

    Science.gov (United States)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  4. Space charge effects: tune shifts and resonances

    International Nuclear Information System (INIS)

    Weng, W.T.

    1986-08-01

    The effects of space charge and beam-beam interactions on single particle motion in the transverse degree of freedom are considered. The space charge force and the resulting incoherent tune shift are described, and examples are given from the AGS and CERN's PSB. Equations of motion are given for resonances in the presence of the space charge force, and particle behavior is examined under resonance and space charge conditions. Resonance phase space structure is described with and without space charge. Uniform and bunched beams are compared. Beam-beam forces and resonances and beam-beam detuning are described. 18 refs., 15 figs

  5. Space charge models and PATH

    International Nuclear Information System (INIS)

    Wald, H.B.

    1990-01-01

    The 'PATH' codes are used to design magnetic optics subsystems for neutral particle beam systems. They include a 2-1/2D and three 3-D space charge models, two of which have recently been added. This paper describes the 3-D models and reports on preliminary benchmark studies in which these models are checked for stability as the cloud size is varied and for consistency with each other. Differences between the models are investigated and the computer time requirements for running these models are established

  6. Internal Electric Field In The Space Charge Layer Of A Solar Cell Based On Silicon In The Presence Of Excitons

    Directory of Open Access Journals (Sweden)

    Modou Faye

    2015-08-01

    Full Text Available Abstract The author faced with the impossibility of assessing the relative importance of the different contributions of physical quantities appearing in the equations of transport he appealed to the dimensional analysis. Thus by grouping the physical parameters the dependent and independent variables it generates dimensionless numbers. The latter having a physical significance make it possible to characterize the various contributions. To solve the dimensionless equations obtained strongly coupled reduced scale the author opts for a numerical method. The spatial discretization variable pitch and tight at the interfaces of different zones of the field because of the strong gradients in these regions is adopted. The equations are then integrated in the numerical domain using the finite volume method and the coefficients are approached by the schema of the power Patankar law. The resulting system of algebraic equations is solved by the method of double course combined with an iterative relaxation line by line type Gauss-Seidel. Furthermore with a volumetric coefficient of coupling which depends on the dissociation of the excitons and the average temperature field the author has studied the influence of some physical parameters on the total density of photocurrent such that the heating factor the conversion velocity and the volume coupling coefficient of charge carriers.

  7. Longitudinal Phase Space Tomography with Space Charge

    CERN Document Server

    Hancock, S; Lindroos, M

    2000-01-01

    Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of...

  8. Dynamic space charge behaviour in polymeric DC cables

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Holbøll, Joachim; Henriksen, Mogens

    2002-01-01

    The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict...... the formation and transport of space charges in a polymeric dielectric. The model incorporates the processes of field assisted electron-hole pair generation from impurity atoms, trapping and charge injection at the electrodes. Its aim has been to study the field- and temperature dependent dynamic behaviour...

  9. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  10. The Nonlinear Field Space Theory

    International Nuclear Information System (INIS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-01-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  11. Chaotic behaviour induced by space charge

    International Nuclear Information System (INIS)

    Lagniel, J.M.

    1994-01-01

    In numerous non-linear dynamical systems studied in various disciplines (fluid dynamics, celestial mechanisms, chemistry, biology, economy, ecology...), chaotic motions are generated by the dynamics itself whereas no random force is present. This phenomenon, already studied in the particle accelerator field to understand the beam-beam effect, is also observed in numerical experiments on space-charge dominated beams. Stochasticity threshold and halo formation are discussed for a continuous focusing channel (1D beam) and for a FODO channel (2D beam) with the possibility to take into account the defocusing effects of RF gaps localized between the quadrupoles. (authors). 7 refs., 4 figs

  12. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  13. Alternating phase focussing including space charge

    International Nuclear Information System (INIS)

    Cheng, W.H.; Gluckstern, R.L.

    1992-01-01

    Longitudinal stability can be obtained in a non-relativistic drift tube accelerator by traversing each gap as the rf accelerating field rises. However, the rising accelerating field leads to a transverse defocusing force which is usually overcome by magnetic focussing inside the drift tubes. The radio frequency quadrupole is one way of providing simultaneous longitudinal and transverse focusing without the use of magnets. One can also avoid the use of magnets by traversing alternate gaps between drift tubes as the field is rising and falling, thus providing an alternation of focussing and defocusing forces in both the longitudinal and transverse directions. The stable longitudinal phase space area is quite small, but recent efforts suggest that alternating phase focussing (APF) may permit low velocity acceleration of currents in the 100-300 ma range. This paper presents a study of the parameter space and a test of crude analytic predictions by adapting the code PARMILA, which includes space charge, to APF. 6 refs., 3 figs

  14. Conductivity and Space Charges in PE with Additives

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, J.

    2003-01-01

    temperatures. Space charge formation under an applied electrical field of 20 kV/mm was investigated by means of the pulse-electro-acoustic method (PEA) at room temperature. The results were compared to space charge formation and conductivity in common LDPE. The measurements showed considerable differences...... between materials and only minor influence of crosslinking process and the addition of antioxidant with respect to the electrical properties of the material. Possible correlations between conductivity and space charge formation are discussed in the paper. The relevance of the findings for application...

  15. Study of space--charge effect by computer

    International Nuclear Information System (INIS)

    Sasaki, T.

    1982-01-01

    The space--charge effect in high density electron beams (beam current approx.2 μA) focused by a uniform magnetic field is studied computationally. On an approximation of averaged space-- charge force, a theory of trajectory displacements of beam electrons is developed. The theory shows that the effect of the averaged space--charge force appears as a focal length stretch. The theory is confirmed not only qualitatively but also quantitatively by simulations. Empirical formulas for the trajectory displacement and the energy spread are presented. A comparison between the empirical formulas and some theoretical formulas is made, leading to a severe criticism on the theories of energy spreads

  16. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  17. Longitudinal Space Charge in the SPS

    CERN Document Server

    Lasheen, Alexandre

    2016-01-01

    Longitudinal instabilities due to the SPS beam coupling impedance are a major issue for future projects and it is essential to have an accurate SPS impedance model to study them. The longitudinal space charge effect can be modelled by a pure reactive impedance and should also be included in simulations as it may have an impact at low energy. In this Note, the effect of the longitudinal space charge in the SPS is evaluated by taking into account the variation of the transverse beam size and vacuum chamber geometry along the ring. Scaling laws are used to investigate what are the most important parameters for the evaluation of the longitudinal space charge impedance.

  18. Study of static properties of magnetron-type space charges

    International Nuclear Information System (INIS)

    Delcroix, Jean-Loup

    1953-01-01

    This research thesis reports an in-depth analysis of physical properties of static regimes to address the issue of space charges. This theoretical study of the Hull magnetron is followed by the description of experiments on the Hull magnetron which highlight transitions between the different regimes. Then, another theoretical approach aims at generalising the magnetron theory, based on other types of magnetron theory (general equations of magnetron-type space charges, inverted Hull magnetron theory, circular field magnetron theory)

  19. In-situ potential mapping of space charge layer in GaN nanowires under electrical field by off-axis electron holography

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-04-01

    Full Text Available In situ potential mapping of space charge (SC layer in a single GaN nanowire (NW contacted to the Au metal electrode has been conducted using off-axis electron holography in order to study the space distribution of SC layer under electric biases. Based on the phase image reconstructed from the complex hologram the electrostatic potential at the SC layer was clearly revealed; the SC width was estimated to be about 76 nm under zero bias condition. In order to study dynamic interrelation between the SC layer and bias conditions, the variation of the electrostatic potential due to change of the SC widths respond to the different bias conditions have also been examined. The measured SC layers are found to vary between 68 nm and 91 nm, which correspond to the saturated SC layers at the GaN-Au contact under the forward and reverse bias conditions, respectively. By plotting the square widths of the SC layer against the applied voltages, donor density of GaN NWs was derived to be about 4.3*106 cm−3. Our experiments demonstrate that in-situ electron holography under electric field can be a useful method to investigate SC layers and donor density in single NW and other heterostructures.

  20. Self-excitation of space charge waves

    DEFF Research Database (Denmark)

    Lyuksyutov, Sergei; Buchhave, Preben; Vasnetsov, Mikhail

    1997-01-01

    We report a direct observation of space charge waves in photorefractive crystals with point group 23 (sillenites) based on their penetration into an area with uniform light illumination. It is shown experimentally that the quality factor of the waves increases substantially with respect to what c...... current theory predicts [B. Sturman el al., Appl. Phys. A 55, 235 (1992)]. This results in the appearance of strong spontaneous beams caused by space charge wave self-excitation....

  1. Three-dimensional space-charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1980-09-01

    A method is presented for calculating space-charge forces on individual particles in a particle tracing simulation code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface. When the boundary condition is defined by an impressed radio-frequency field, the external electric fields as well as the space-charge fields are determined. A least squares fitting procedure is used to calculate the coefficients of expansion functions, which need not be orthogonal nor individually satisfy the boundary condition

  2. Gravitational field of charged gyratons

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Valeri P [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, T6G 2J1 (Canada); Zelnikov, Andrei [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, T6G 2J1 (Canada); Lebedev Physics Institute, Leninsky prospect 53, 119 991, Moscow (Russian Federation)

    2006-03-21

    We study relativistic gyratons which carry an electric charge. The Einstein-Maxwell equations in arbitrary dimensions are solved exactly in the case of a charged gyraton propagating in an asymptotically flat metric.

  3. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  4. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2010-04-01

    In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 10 14 cm -2 and 4 x 10 15 cm -2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10 14 cm -2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τ eff . Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τ eff (E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  5. Stability of anisotropic beams with space charge

    International Nuclear Information System (INIS)

    Hofmann, I.

    1997-07-01

    We calculate coherent frequencies and stability properties of anisotropic or ''non-equipartitioned'' beams with different focusing constants and emittances in the two transverse directions. Based on the self-consistent Vlasov-Poisson equations the dispersion relations of transverse multipole oscillations with quadrupolar, sextupolar and octupolar symmetry are solved numerically. The eigenfrequencies give the coherent space charge tune shift for linear or nonlinear resonances in circular accelerators. We find that for sufficiently large energy anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. The properties of these anisotropy instabilities are used to show that ''non-equipartitioned'' beams can be tolerated in high-current linear accelerators. It is only in beams with strongly space-charge-depressed betatron tunes where harmful instabilities leading to emittance exchange should be expected. (orig.)

  6. Space-charge calculations in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.

  7. Quantum theory of space charge limited current in solids

    Energy Technology Data Exchange (ETDEWEB)

    González, Gabriel, E-mail: gabriel.gonzalez@uaslp.mx [Cátedras Conacyt, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico and Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000 (Mexico)

    2015-02-28

    We present a quantum model of space charge limited current transport inside trap-free solids with planar geometry in the mean field approximation. We use a simple transformation which allows us to find the exact analytical solution for the steady state current case. We use our approach to find a Mott-Gurney like behavior and the mobility for single charge carriers in the quantum regime in solids.

  8. Space charge effects in proton linear accelerators

    International Nuclear Information System (INIS)

    Prome, Michel

    1971-01-01

    Space charge difficulties are relatively well known because of the inconveniences they cause, but the physical mechanisms by which they operate are obscure; an attempt was made to explain some of these mechanisms. The method chosen involves a numerical simulation of the beam; computer programs describing beam dynamics with space charge are presented; they are used to check results obtained elsewhere. A series of experiments was performed demonstrating that coupling phenomena produce an equalization of r. m. s. velocities in the 3 directions; new quantity (sort of hyper-emittance) is introduced: its growth between the input and output of a given linac is proportional to the beam intensity. (author) [fr

  9. Resonance behavior in the presence of space charge

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    An analysis is presented of the resonance behavior of particle beams in the presence of space charge fields. Since self-consistent requirements are ignored, the results describe onset or early behavior. It is shown that in a beam of uniform current resonances excited by magnetic field errors are stabilized by the detuning effect of the self-field space charge force. This situation is changed when a radiofrequency accelerating field is applied. As beam bunching results after rf turn-on, the space charge force becomes modulated along the bunches, vanishing at the ends. At these regions of small or vanishing space charge, stabilization from non-linear detuning tends to disappear, thus leaving particles susceptible to resonance blow-up. This picture of the effect of beam bunching can be studied by considering the phase space structure for particles at different positions along the bunches. A somewhat unusual conclusion is made on the use of this analysis to model beam capture in a synchrotron at low energy

  10. Modeling space charge in beams for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.

    1995-01-01

    A new analytic model is presented which accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson's equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models

  11. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Multimedia

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  12. Charge conjugation and internal space time symmetries

    International Nuclear Information System (INIS)

    Pavsic, M.; Recami, E.

    1982-01-01

    The relativistic framework in which fundamental particles are regarded as extended objects is adopted. Then it is shown than the geometrical operation which reflects the internal space time particle is equivalent to the operation C which inverts the sign of all its additive charges

  13. Space charge effect in the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan

    2000-01-01

    This paper presents the analytical and numerical theory of the space charge effects in the beam in the spiral inflector. It considers a simplified model of a 'straight' cylindrical beam by using a uniform particle distribution. Numerical results represented in this paper are obtained by using a modified version of the program CASINO

  14. Space charge effects in a bending magnet system

    International Nuclear Information System (INIS)

    Lee, E.P.; Close, E.; Smith, L.

    1987-03-01

    In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented

  15. Space charge effects in a bending magnet system

    International Nuclear Information System (INIS)

    Lee, E.P.; Close, E.; Smith, L.

    1987-01-01

    In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented

  16. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave; L'effet d'un champ de charge d'espace radial sur le mouvement des particules dans un champ magnetique statique et sous l'action d'une onde polarisee circulairement

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-06-15

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [French] On etudie l'effet d'une onde polarisee circulairement sur un plasma cylindrique place dans un champ magnetique axial constant, en supposant etre en presence d'un, champ de charge d'espace radial proportionnel a r. L'etude est faite du point de vue de la particule individuelle. Le champ electrostatique deplace la frequence de resonance cyclotron et, dans le cas de forte densite, donne lieu a un mouvement radial des particules qui ne sont pas en resonance. Dans ces champs, il peut aussi se produire une resonance qu'on a appele 'de derive', entre un R.F. et la particule. Cette resonance peut se produire avec le mode siffleur et peut etre utilisee pour l'acceleration des ions. On considere ensuite les resonances parametriques, qui se manifestent lorsque le champ de charge d'espace oscille, et les limites a la theorie posees par les collisions. Une discussion quantitative des resultats fait ressortir les cas dans lesquels on peut accelerer les ions. (auteur)

  17. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.

    1976-01-01

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  18. Stochastic Coulomb interactions in space charge limited electron emission

    International Nuclear Information System (INIS)

    Nijkerk, M.D.; Kruit, P.

    2004-01-01

    Emission models that form the basis of self-consistent field computations make use of the approximation that emitted electrons form a smooth space charge jelly. In reality, electrons are discrete particles that are subject to statistical Coulomb interactions. A Monte Carlo simulation tool is used to evaluate the influence of discrete space charge effects on self-consistent calculations of cathode-ray tube optics. We find that interactions in the space charge cloud affect the electron trajectories such that the velocity distribution is Maxwellian, regardless of the current density. Interactions near the emitter effectively conserve the Maxwellian distribution. The surprising result is that the width of the distribution of transversal velocities does not change. The distribution of longitudinal velocities does broaden, as expected from existing theories

  19. Space-Charge-Limited Emission Models for Particle Simulation

    Science.gov (United States)

    Verboncoeur, J. P.; Cartwright, K. L.; Murphy, T.

    2004-11-01

    Space-charge-limited (SCL) emission of electrons from various materials is a common method of generating the high current beams required to drive high power microwave (HPM) sources. In the SCL emission process, sufficient space charge is extracted from a surface, often of complicated geometry, to drive the electric field normal to the surface close to zero. The emitted current is highly dominated by space charge effects as well as ambient fields near the surface. In this work, we consider computational models for the macroscopic SCL emission process including application of Gauss's law and the Child-Langmuir law for space-charge-limited emission. Models are described for ideal conductors, lossy conductors, and dielectrics. Also considered is the discretization of these models, and the implications for the emission physics. Previous work on primary and dual-cell emission models [Watrous et al., Phys. Plasmas 8, 289-296 (2001)] is reexamined, and aspects of the performance, including fidelity and noise properties, are improved. Models for one-dimensional diodes are considered, as well as multidimensional emitting surfaces, which include corners and transverse fields.

  20. Anisotropic inflation from charged scalar fields

    International Nuclear Information System (INIS)

    Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem

    2011-01-01

    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities

  1. Space charge limited avalanche growth in multigap resistive plate chambers

    International Nuclear Information System (INIS)

    Akindinov, A.N.; Kaidalov, A.B.; Kisselev, S.M.; Alici, A.; Basile, M.; Cifarelli, L.; Anselmo, F.; Antonioli, P.; Romeo, G. Cara; Cindolo, F.; Baek, Y.; Kim, D.H.; Cosenza, F.; Caro, A. De; Pasquale, S. De; Bartolomeo, A. Di; Girard, M. Fusco; Guida, M.; Hatzifotiadou, D.; Kim, D.W.; Laurenti, G.; Lee, K.; Lee, S.C.; Lioublev, E.; Luvisetto, M.L.; Margotti, A.; Martemiyanov, A.N.; Nania, R.; Noferini, F.; Otiougova, P.; Pierella, F.; Polozov, P.A.; Scapparone, E.; Scioli, G.; Sellitto, S.B.; Smirnitski, A.V.; Tchoumakov, M.M.; Valenti, G.; Vicinanza, D.; Voloshin, K.G.; Williams, M.C.S.; Zagreev, B.V.; Zampolli, C.; Zichichi, A.

    2004-01-01

    Abstract The ALICE TOF array will be built using the Multigap Resistive Plate Chamber(MRPC) configured as a double stack. Each stack contains 5 gas gaps with width of 250 μm. There has been an intense R and D effort to optimise this new detector to withstand the problems connected with the high level of radiation at the LHC. One clear outcome of the R and D is that the growth of the gas avalanche is strongly affected by space charge. The effect of the space charge is a decrease in the rate of change in gain with electric field; this allows more stable operation of this detector. We have measured the gain as a function of the electric field and also measured the ratio of the fast charge to the total charge produced in the gas gap. It is well established that RPCs built with 250 μm gas gap have a much superior performance than 2 mm gaps; we discuss and compare the performance of 250 μm gap MRPCs with 2 mm gap RPCs to show the importance of space-charge limitation of avalanche growth. (orig.)

  2. Three-dimensional space charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1981-01-01

    A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries

  3. Simulation of space charge effects in a synchrotron

    International Nuclear Information System (INIS)

    Machida, Shinji; Ikegami, Masanori

    1998-01-01

    We have studied space charge effects in a synchrotron with multi-particle tracking in 2-D and 3-D configuration space (4-D and 6-D phase space, respectively). First, we will describe the modelling of space charge fields in the simulation and a procedure of tracking. Several ways of presenting tracking results will be also mentioned. Secondly, it is discussed as a demonstration of the simulation study that coherent modes of a beam play a major role in beam stability and intensity limit. The incoherent tune in a resonance condition should be replaced by the coherent tune. Finally, we consider the coherent motion of a beam core as a driving force of halo formation. The mechanism is familiar in linac, and we apply it in a synchrotron

  4. Low-energy beam transport using space-charge lenses

    International Nuclear Information System (INIS)

    Meusel, O.; Bechtold, A.; Pozimski, J.; Ratzinger, U.; Schempp, A.; Klein, H.

    2005-01-01

    Space-charge lenses (SCL) of the Gabor type provide strong cylinder symmetric focusing for low-energy ion beams using a confined nonneutral plasma. They need modest magnetic and electrostatic field strength and provide a short installation length when compared to conventional LEBT-lenses like quadrupoles and magnetic solenoids. The density distribution of the enclosed space charge within the Gabor lens is given by the confinement in transverse and longitudinal directions. In the case of a positive ion beam, the space charge of the confined electron cloud may cause an overcompensation of the ion beam space-charge force and consequently focuses the beam. To investigate the capabilities of an SCL double-lens system for ion beam into an RFQ, a test injector was installed at IAP and put into operation successfully. Furthermore, to study the focusing capabilities of this lens at beam energies up to 500 keV, a high-field Gabor lens was built and installed downstream of the RFQ. Experimental results of the beam injection into the RFQ are presented as well as those of these first bunched beam-focusing tests with the 110 A keV He + beam

  5. Cancellation of the centrifugal space-charge force

    International Nuclear Information System (INIS)

    Lee, E.P.

    1990-01-01

    The transverse dynamics of high-energy electrons confined in curved geometry are examined, including the effects of space-charge-induced fields. Attention is restricted to the centrifugal-space-charge force, which is the result of noncancellation of beam-induced transverse electric and magnetic fields in the curved geometry. This force is shown to be nearly cancelled in the evaluation of the horizontal tune and chromaticity by another, often overlooked term in the equation of motion. The additional term is the consequence of oscillations of the kinetic energy, which accompany betatron oscillations in the beam-induced electric potential. In curved geometry this term is of first order in the amplitude of the radial oscillation. A highly simplified system model is employed so that physical effects appear in as clear a form as possible. We assume azimuthal and median plane symmetry, static fields, and ultrarelativistic particle velocity (1/γ 2 ->0). (author) 9 refs

  6. Nonlinear space charge effect of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao

    1992-02-01

    The nonlinear space charge effect due to the nonuniform particle density distribution in bunched beam of a linac is discussed. The formulae of nonlinear space charge effect and nonlinear focusing forces were derived for the bunched beam with Kapchinskij-Vladimirskij (K-V) distribution, waterbag (WB) distribution, parabolic (PA) distribution, and Gauss (GA) distribution in both of the space charge disk model and space charge cylinder model in the waveguide of a linac

  7. Space-charge limits in linear accelerators

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1980-12-01

    This report presents equations that allow an approximate evaluation of the limiting beam current for a large class of radio-frequency linear accelerators, which use quadrupole strong focusing. Included are the Alvarez, the Wideroe, and the radio-frequency quadrupole linacs. The limiting-current formulas are presented for both the longitudinal and the transverse degrees of freedom by assuming that the average space-charge force in the beam bunch arises from a uniformly distributed charge within an azimuthally symmetric three-dimensional ellipsoid. The Mathieu equation is obtained as an approximate, but general, form for the transverse equation of motion. The smooth-approximation method is used to obtain a solution and an expression for the transverse current limit. The form of the current-limit formulas for different linac constraints is discussed

  8. Stasis, Charging the Space of Change

    Directory of Open Access Journals (Sweden)

    Sarah Riviere

    2017-02-01

    Full Text Available This article fossicks through the fragments of historical understandings of the word stasis in ancient Greece – where stasis, in its extreme state, involved conflictual hostilities between kindred parties, often termed ‘civil war’ today. Through a series of readings of ancient Greek texts on topics ranging from pathology to literature and politics, stasis is revealed as a powerfully charged state of located dynamic exchange that operates through a precise temporal and spatial performance. This article teases out relevant aspects of the state of stasis – its high levels of spatial engagement, its inevitable resolution into energetic productivity, its precise restraint, its demand for full participation, and its role in the integration of change – all of which were acknowledged as part of the enactment and resolution of a stasis at that time. The intention of this article is to resurrect a more nuanced understanding of the state of stasis that can enrich current concepts of the dynamic in architectural and urban discourse. This understanding of stasis also poses new questions for the future design of spaces that can accommodate charged kindred engagement: lively spaces where contest becomes opportunity, and located spaces of kindred understanding that promise productive reconciliation as the common aim of all the parties involved.

  9. Dissipative charged fluid in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Navid; Davody, Ali, E-mail: davody.phy@gmail.com

    2016-05-10

    We study the collective excitations in a dissipative charged fluid at zero chemical potential when an external magnetic field is present. While in the absence of magnetic field, four collective excitations appear in the fluid, we find five hydrodynamic modes here. This implies that the magnetic field splits the degeneracy between the transverse shear modes. Using linear response theory, we then compute the retarded response functions. In particular, it turns out that the correlation between charge and the energy fluctuations will no longer vanish, even at zero chemical potential. By use of the response functions, we also derive the relevant Kubo formulas for the transport coefficients.

  10. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    Wendland, K.

    2000-08-01

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  11. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  12. Space charge sign inversion and electric field reconstruction in 24 GeV/c proton-irradiated MCZ Si p+-n(TD)-n+ detectors processed via thermal donor introduction

    International Nuclear Information System (INIS)

    Li, Z.; Verbitskaya, E.; Carini, G.; Chen, W.; Eremin, V.; Gul, R.; Haerkoenen, J.; Li, M.

    2009-01-01

    The aim of this study is the evaluation of radiation effects in detectors based on p-type magnetic czochralski (MCZ) Si that was converted to n-type by thermal donor (TD) introduction. As-processed p + -p-n + detectors were annealed at 430 deg. C resulting in p + -n(TD)-n + structures. The space charge sign and the electric field distribution E(x) in MCz Si p + -n(TD)-n + detectors irradiated by 24 GeV/c protons were analyzed using the data on the current pulse response and the Double Peak (DP) electric field distribution model for heavily irradiated detectors. The approach considers an irradiated detector as a structure with three regions in which the electric field depends on the coordinate, and the induced current pulse response arises from the drift process of free carriers in the detector with variable electric field. Reconstruction of the E(x) profile from the pulse response shapes is performed employing a new method for DP electric field reconstruction. This method includes: (a) a direct extraction of charge loss due to trapping and (b) the fitting of a simulated pulse response to the 'corrected' pulse by adjusting the electric field profiles in the three regions. Reconstruction of E(x) distribution showed that in the diodes irradiated by a proton fluence of (2-4)x10 14 p/cm 2 space charge sign inversion has occurred. This is the evidence that the influence of 24 GeV/c proton radiation on MCz Si p + -n(TD)-n + detectors is similar to that on p + -n-n + detectors based on FZ or diffusion oxygenated n-type Si.

  13. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    Science.gov (United States)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  14. Charged string solutions with dilaton and modulus fields

    CERN Document Server

    Cvetic, M

    1994-01-01

    We find charged, abelian, spherically symmetric solutions (in flat space-time) corresponding to the effective action of $D=4$ heterotic string theory with scale-dependent dilaton $\\p$ and modulus $\\vp$ fields. We take into account perturbative (genus-one), moduli-dependent `threshold' corrections to the coupling function $f(\\p,\\vp)$ in the gauge field kinetic term $f(\\p,\\vp) F^2_{\\m\

  15. Charged Hadron Properties in Background Electric Fields

    International Nuclear Information System (INIS)

    Detmold, William; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-01-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields. A staple component of any electrodynamics or quantum mechanics course is the electric polarizability. Neutral material immersed in a weak external field polarizes, internally setting up an electric dipole moment, aligned so as to minimize the energy. At the atomic level, the electron clouds are distorted creating these microscopic dipole moments. The same process occurs at the hadronic level but the polarization effects are now constrained by the strong force. Polarizabilities of these bound QCD states can be viewed as a distortion of the charged pion cloud of a given hadron. One can use lattice QCD to non-perturbatively compute the quark and gluon interactions in the presence of background electric (or magnetic) fields. For sufficiently weak background fields, the low energy properties of the hadrons can be rigorously computed using effective field theory. With this treatment, a picture of hadrons emerges from chiral dynamics: that of a hadronic core surrounded by a pseudoscalar meson cloud. As some pseudoscalar mesons are charged, polarizabilities of hadrons encode the stiffness of the charged meson cloud (as well as that of the core). The form of pseudoscalar meson polarizabilities is consequently strongly constrained by chiral dynamics. However, beyond the leading order, the results depend upon essentially unknown low-energy constants, which must currently be estimated in a model-dependent fashion. In the case of the charged pion, the experimental measurement of the polarizability has proven difficult, both in the original measurement as well as the most recent published result. Currently, there is a 2-3 sigma discrepancy between the two-loop cPT prediction and the measured charged pion polarizability. New results with higher

  16. Charge distributions in transverse coordinate space and in impact parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Sung [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)], E-mail: dshwang@slac.stanford.edu; Kim, Dong Soo [Department of Physics, Kangnung National University, Kangnung 210-702 (Korea, Republic of); Kim, Jonghyun [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)

    2008-11-27

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  17. Charge distributions in transverse coordinate space and in impact parameter space

    OpenAIRE

    Hwang, Dae Sung; Kim, Dong Soo; Kim, Jonghyun

    2008-01-01

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  18. Incorporating space charge in the transverse phase-space matching and tomography at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Kourkafas, Georgios

    2015-11-15

    The ever-expanding achievements in the field of particle accelerators push their specifications to very demanding levels. The performance of many modern applications depends on their ability to be operated with high bunch charges confined in small volumes. However, the consequence of increased intensity is strong space-charge forces, which perplex the beam manipulation and undermine the beam quality. As a result, reliable methods are needed to control and measure the accelerated particles under these extraordinary conditions. The phase space tomography is a diagnostic technique which can reveal details of the transverse beam parameters for a wide range of intensities and energies, with minimal influence from the machine instabilities, in a quasi non-destructive way. The accuracy of this method relies on the precise knowledge and control of the particle dynamics under the influence of space charge in different stages of the measurement. On the one hand, the matching of the beam to the measurement's design transverse parameters requires a procedure which efficiently compensates the effects of space charge. Depending on the structure of the magnetic lattice, different aspects of these effects prevail, therefore different strategies have to be developed. On the other hand, the impact of the space-charge forces on the phase-space transformations during the data acquisition has to be included in the model which is used for the tomographic reconstruction. The aim of this thesis is to provide and test time-efficient solutions for the incorporation of space charge in the transverse beam matching and phase space tomography.

  19. Incorporating space charge in the transverse phase-space matching and tomography at PITZ

    International Nuclear Information System (INIS)

    Kourkafas, Georgios

    2015-11-01

    The ever-expanding achievements in the field of particle accelerators push their specifications to very demanding levels. The performance of many modern applications depends on their ability to be operated with high bunch charges confined in small volumes. However, the consequence of increased intensity is strong space-charge forces, which perplex the beam manipulation and undermine the beam quality. As a result, reliable methods are needed to control and measure the accelerated particles under these extraordinary conditions. The phase space tomography is a diagnostic technique which can reveal details of the transverse beam parameters for a wide range of intensities and energies, with minimal influence from the machine instabilities, in a quasi non-destructive way. The accuracy of this method relies on the precise knowledge and control of the particle dynamics under the influence of space charge in different stages of the measurement. On the one hand, the matching of the beam to the measurement's design transverse parameters requires a procedure which efficiently compensates the effects of space charge. Depending on the structure of the magnetic lattice, different aspects of these effects prevail, therefore different strategies have to be developed. On the other hand, the impact of the space-charge forces on the phase-space transformations during the data acquisition has to be included in the model which is used for the tomographic reconstruction. The aim of this thesis is to provide and test time-efficient solutions for the incorporation of space charge in the transverse beam matching and phase space tomography.

  20. Space charge effect in SQS transition in a gas counter

    International Nuclear Information System (INIS)

    Ohgaki, Hideaki; Kametani, Hitoshi; Fujita, Yasuyuki; Uozumi, Yuusuke; Ijiri, Hidenobu; Matoba, Masaru; Sakae, Takeji; Koori, Norihiko

    1990-01-01

    Systematic investigation of the gas multiplication characteristics in the transition region from proportional to SQS mode in a cylindrical proportional counter has been performed. The property of saturation of the gas multiplication factor can be reproduced using the effective electric field which is corrected for the space charge related to the positive ion density in the avalanche. Photon-mediated gas multiplication can explain the large jump phenomenon of the SQS transition. It is shown that the effective electric field in the avalanche becomes almost zero near the anode surface (Meek's streamer condition) at the 50% transition voltage and the region of its maximum moves slightly away from the anode surface. (orig.)

  1. Macroscopic sizes of field of superrelativistic charges

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    Based on the equation of Lienard-Wiechert equipotentials, it is shown that the field of superrelativistic charges reaches macroscopic sizes (e.g., R || = 2 m at E e = 50 GeV). This phenomenon serves an initial cause of the known considerable growth of formation length at high energies. 3 refs., 1 tab

  2. Space charge emission in cylindrical diode

    International Nuclear Information System (INIS)

    Torres-Córdoba, Rafael; Martínez-García, Edgar

    2014-01-01

    In this paper, a mathematical model to describe cylindrical electron current emissions through a physics approximation method is presented. The proposed mathematical approximation consists of analyzing and solving the nonlinear Poisson's equation, with some determined mathematical restrictions. Our findings tackle the problem when charge-space creates potential barrier that disable the steady-state of the beam propagation. In this problem, the potential barrier effects of electron's speed with zero velocity emitted through the virtual cathode happens. The interaction between particles and the virtual cathode have been to find the inter-atomic potentials as boundary conditions from a quantum mechanics perspective. Furthermore, a non-stationary spatial solution of the electrical potential between anode and cathode is presented. The proposed solution is a 2D differential equation that was linearized from the generalized Poisson equation. A single condition was used solely, throughout the radial boundary conditions of the current density formation

  3. Space Charge Modules for PyHEADTAIL

    CERN Multimedia

    Oeftiger, Adrian

    2016-01-01

    PyHEADTAIL is a 6D tracking tool developed at CERN to simulate collective effects. We present recent developments of the direct space charge (SC) suite, which is available for both the CPU and GPU. A new 3D particle-in-cell solver with open boundary conditions has been implemented. For the transverse plane, there is a semi-analytical Bassetti-Erskine model as well as 2D self-consistent particle-in-cell solvers with both open and closed boundary conditions. For the longitudinal plane, PyHEADTAIL offers line density derivative models. Simulations with these models are benchmarked with experiments at the injection plateau of CERN’s SPS.

  4. Space charge effects and electronic bistability

    International Nuclear Information System (INIS)

    Ruffini, A.; Strumia, F.; Tommasi, O.

    1996-01-01

    The excitation of metastable states in an atomic beam apparatus by means of electron collision is a widespread technique. The authors have observed a large bistable behaviour in apparatus designed to provide an intense and collimated beam of metastable helium by excitation with orthogonally impinging electrons. This bistable behaviour largely affects the efficiency of the apparatus and is therefore worth of being carefully investigated. The apparatus has an electrode configuration equivalent to that of a tetrode valve with large intergrid distances. The bistability consists in a hysteresis cycle in the curve of the anode current vs. grid voltage. Experimental measurements, supported by a simple theoretical model and by numerical simulation, stress out the crucial role played by space charge effects for the onset of bistability. A comparison with previous observations of this phenomenon is given. Spontaneous current oscillations with various shapes have been recorded in one of the two curves of the hysteresis cycle

  5. Quantum fields in curved space

    International Nuclear Information System (INIS)

    Birrell, N.D.; Davies, P.C.W.

    1982-01-01

    The book presents a comprehensive review of the subject of gravitational effects in quantum field theory. Quantum field theory in Minkowski space, quantum field theory in curved spacetime, flat spacetime examples, curved spacetime examples, stress-tensor renormalization, applications of renormalization techniques, quantum black holes and interacting fields are all discussed in detail. (U.K.)

  6. Dielectric sample with two-layer charge distribution for space charge calibration purposes

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.

    2002-01-01

    In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...

  7. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    Parzen, G.

    1976-01-01

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  8. Semi-classical derivation of charge-quantization through charge-field self-interaction

    International Nuclear Information System (INIS)

    Kosok, M.; Madhyastha, V.L.

    1990-01-01

    A semi-classical synthesis of classical mechanics, wave mechanics, and special relativity yields a unique nonlinear energy-wave structure of relations (velocity triad uv = c 2 ) fundamental to modern physics. Through the above vehicle, using Maxwell's equations, charge quantization and the fine structure constant are derived. It is shown that the numerical value of the nonlinear charge-field self-interaction range for the electron is of the order of 10 -13 m, which is greater than the classical electron radius but less than the Compton wavelength of the electron. Finally, it is suggested that the structure of the electron-in-space is expressed by a self-extending nonlinear ''fractal geometry'' based on derived numerical values obtained from our model, thus opening this presentation of charge-field structure to experimental testing for possible verification

  9. Space charge tracking code for a synchrotron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, M.B.; Tajima, T. [Univ. of Texas, Austin, TX (United States); Hiramoto, K. [Hitachi Ltd., Hitachi, Ibaraki (Japan). Hitachi Research Lab.

    1997-06-01

    An algorithm has been developed to compute particle tracking, including self-consistent space charge effects for synchrotron accelerators. In low-energy synchrotrons space charge plays a central role in enhancing emittance of the beam. The space charge effects are modeled by mutually interacting (through the Coulombic force) N cylindrical particles (2-{1/2}-dimensional dynamics) whose axis is in the direction of the equilibrium particle flow. On the other hand, their interaction with synchrotron lattice magnets is treated with the thin-lens approximation and in a fully 3-dimensional way. Since the existing method to treat space charge fully self-consistently involved 3-D space charge effect computation, the present method allows far more realistic physical parameters and runs in far shorter time (about 1/20). Some examples on space charge induced instabilities are presented.

  10. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    International Nuclear Information System (INIS)

    Paret, Stefan

    2010-01-01

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  11. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Stefan

    2010-02-22

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  12. Controlling Charged Particles with Inhomogeneous Electrostatic Fields

    Science.gov (United States)

    Herrero, Federico A. (Inventor)

    2016-01-01

    An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.

  13. Ion trajectories calculation in a three dimensional beam subjected to a space charge

    International Nuclear Information System (INIS)

    Tauth, T.

    1978-04-01

    Physical and geometrical conditions allowing a first approximation of necessary sizes to numerical integration of the ions movement equations subjected to electrical and magnetic crossed fields and space charge action are investigated here. To take into consideration the effect of the last one, two artifices are put forward: replacing charged particles by equivalent particles in calculating the coulomb force, electrical field calculation produced in different points situated on the beam envelope by the uniform charges distribution [fr

  14. Magnetic charge in an octonionic field theory

    International Nuclear Information System (INIS)

    Lassig, C.C.; Jashi, G.C.

    1996-01-01

    The violation of the Jacobi identity by the presence of magnetic charge is accommodated by using an explicitly nonassociative theory of octonionic fields. Lagrangian and Hamiltonian formalisms are constructed, and issues of the quantisation discussed. Finally an extension of these concepts to string theory is contemplated. The two main problems that seems to arise in this octonionic field theory are the difficulty of constructing an appropriate action to suit the desired equations of motion, and the failure to complete a Hamiltonian formalism and hence quantize the theory. 8 refs

  15. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, Michael F.; Bruhwiler, David L.

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach

  16. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, M.F.; Bruhwiler, D.L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996)

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. copyright 1997 American Institute of Physics

  17. Manipulating colloids with charges and electric fields

    Science.gov (United States)

    Leunissen, M. E.

    2007-02-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various

  18. Effect of the space charge layer on pre-transition corrosion rate of Zr alloys

    International Nuclear Information System (INIS)

    Nanikawa, S.; Etoh, Y.

    1998-01-01

    The pre- and post-transition oxide films formed in steam at 673 K were investigated by an AC impedance method. The results showed that the space charge layer was present in the pre-transition oxide film and it was absent in the post-transition oxide film. The oxidation kinetics was simulated by oxygen diffusion in the space charge layer. Cubic or one-fourth power law was explained by the effect of the space charge layer. Supposing that the space charge layer formed the potential difference through the oxide film by 0.7 V, calculated oxidation kinetics agreed with the experimental one before transition. This potential difference corresponded to the measured value by AC impedance method within the experimental error. Shadow effect could be explained by this simulation supposing the disappearance of the space charge layer due to the formation of a negative electric field by β-rays. (author)

  19. Stochastic Coulomb interactions in space charge limited electron emission

    NARCIS (Netherlands)

    Nijkerk, M.D.; Kruit, P.

    2004-01-01

    A Monte Carlo simulation tool, which was used to evaluate the influence of discrete space charge effects on self-consistent calculations of cathode-ray tube optics, was discussed. It was found that interactions in the space charge cloud affect the electron trajectories such that the velocity

  20. Quadrupole transport experiment with space charge dominated cesium ion beam

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel

  1. Klystron - Space-charge limited flow, guns, Perveance

    International Nuclear Information System (INIS)

    Isagawa, S.

    1999-01-01

    This paper treats Thermionic emission, Cathode as an e - emitter, Space-charge limited effect and 3/2 power law, Perveance, Beam spread due to space charge, Pierce guns, Magnetically immersed guns, Method of gun design including simulations, and Examples, mainly treating E3786, which attendees will operate above 1 MW-CW in a practical exercise course at KEK. (author). 74 refs

  2. Implementation of Space Charge Forces in BimBim

    CERN Document Server

    Gottlob, Emmanuel; Oeftiger, Adrian

    An numerical algorithm is described for the implementation of linearised coherent space charge forces into BimBim, an eigenvalue solver for the coherent modes of oscillation of multibunch beams in the presence of beam coupling impedance, beam-beam, transverse feedback and now space charge effects. First results obtained with the model are described and compared to existing results where applicable.

  3. Space-charge dynamics of polymethylmethacrylate under electron beam irradiation

    CERN Document Server

    Gong, H; Ong, C K

    1997-01-01

    Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)

  4. Single-Bunch Stability With Direct Space Charge

    CERN Multimedia

    Oeftiger, Adrian

    2017-01-01

    Previous studies have shown the suppressing effect of direct space charge on impedance-driven head-tail instabilities. The present work investigates transverse stability for the HL-LHC scenario based on our macro-particle simulation tool PyHEADTAIL using realistic bunch distributions. The impact of selfconsistent modelling is briefly discussed for non-linear space charge forces. We study how space charge pushes the instability threshold for the transverse mode coupling instability (TMCI) occurring between mode 0 and -1. Next we consider finite chromaticity: in absence of space charge, the impedance model predicts head-tail instabilities. For a selected case below TMCI threshold at Q0 = 5, we demonstrate the stabilising effect of space charge. Finally, we compare simulation results to past LHC measurements.

  5. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  6. A multigrid based 3D space-charge routine in the tracking code GPT

    NARCIS (Netherlands)

    Pöplau, G.; Rienen, van U.; Loos, de M.J.; Geer, van der S.B.; Berz, M.; Makino, K.

    2005-01-01

    Fast calculation of3D non-linear space-charge fields is essential for the simulation ofhigh-brightness charged particle beams. We report on our development of a new 3D spacecharge routine in the General Particle Tracer (GPT) code. The model is based on a nonequidistant multigrid Poisson solver that

  7. Multigrid Algorithms for the Fast Calculation of Space-Charge Effects in Accelerator Design

    NARCIS (Netherlands)

    Pöplau, G.; Rienen, van U.; Geer, van der S.B.; Loos, de M.J.

    2004-01-01

    Numerical prediction of charged particle dynamics in accelerators is essential for the design and understanding of these machines. Methods to calculate the self-fields of the bunch, the so-called space-charge forces, become increasingly important as the demand for high-quality bunches increases. We

  8. Space-charge-limit instabilities in electron beams

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Sullivan, D.J.

    1983-01-01

    The method of characteristics and multiple-scaling perturbation techniques are used to study the space-charge instability of electron beams. It is found that the stable oscillating state (virtual cathode) created when the space-charge limit is exceeded is similar to a collisionless shock wave. The oscillatory solution originates at the bifurcation point of two unstable steady states. Complementary behavior (virtual anode) results when an ion beam exceeds its space-charge limit. The virtual cathode can also exist in the presence of a neutralizing heavy-ion background. The Pierce instability, where the electron and ion charge densities are equal, is a special case of this broader class. Estimates of the nonlinear growth rate of the instability at the space-charge limit are given

  9. Electrostatic field and charge distribution in small charged dielectric droplets

    Science.gov (United States)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  10. Electrostatic field and charge distribution in small charged dielectric droplets

    International Nuclear Information System (INIS)

    Storozhev, V.B.

    2004-01-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm

  11. Canonical-ensemble state-averaged complete active space self-consistent field (SA-CASSCF) strategy for problems with more diabatic than adiabatic states: Charge-bond resonance in monomethine cyanines

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Seth, E-mail: seth.olsen@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072 (Australia)

    2015-01-28

    This paper reviews basic results from a theory of the a priori classical probabilities (weights) in state-averaged complete active space self-consistent field (SA-CASSCF) models. It addresses how the classical probabilities limit the invariance of the self-consistency condition to transformations of the complete active space configuration interaction (CAS-CI) problem. Such transformations are of interest for choosing representations of the SA-CASSCF solution that are diabatic with respect to some interaction. I achieve the known result that a SA-CASSCF can be self-consistently transformed only within degenerate subspaces of the CAS-CI ensemble density matrix. For uniformly distributed (“microcanonical”) SA-CASSCF ensembles, self-consistency is invariant to any unitary CAS-CI transformation that acts locally on the ensemble support. Most SA-CASSCF applications in current literature are microcanonical. A problem with microcanonical SA-CASSCF models for problems with “more diabatic than adiabatic” states is described. The problem is that not all diabatic energies and couplings are self-consistently resolvable. A canonical-ensemble SA-CASSCF strategy is proposed to solve the problem. For canonical-ensemble SA-CASSCF, the equilibrated ensemble is a Boltzmann density matrix parametrized by its own CAS-CI Hamiltonian and a Lagrange multiplier acting as an inverse “temperature,” unrelated to the physical temperature. Like the convergence criterion for microcanonical-ensemble SA-CASSCF, the equilibration condition for canonical-ensemble SA-CASSCF is invariant to transformations that act locally on the ensemble CAS-CI density matrix. The advantage of a canonical-ensemble description is that more adiabatic states can be included in the support of the ensemble without running into convergence problems. The constraint on the dimensionality of the problem is relieved by the introduction of an energy constraint. The method is illustrated with a complete active space

  12. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  13. Transport and matching of low energy space charge dominated beams

    International Nuclear Information System (INIS)

    Pandit, V.S.

    2013-01-01

    The transport and matching of low energy high intensity beams from the ion source to the subsequent accelerating structure are of considerable interest in recent years for variety of applications such as Accelerator driven system (ADSS), transmutation of nuclear waste, spallation neutron sources etc. It is essential to perform detailed simulations with experimentation to predict the beam evolution in the presence of nonlinear self as well as external fields before the design of the next accelerating structure is finalized. In order to study and settle various physics and technical issues related with transport of space charge dominated beams we have developed a 2.45 GHz microwave ion source at VECC which is now delivering more than 10 mA proton beam current at 80 keV. We have successfully transported well collimated 8 mA proton beam through the solenoid based 3 meter long transport line and studied various beam properties. We have also studied the transport of beam through spiral inflector at low beam current ∼ 1mA. In this article we will discuss the beam transport issues and describe a technique for simulation of beam envelopes in presence of linear space charge effects. We use canonical description of the motion of a single particle and then obtain first order differential equations for evolution of the moments of beam ensemble by assuming uniform distribution of the beam. We will also discuss the methodology used in the simulations to understand the observed beam behaviour during transport. (author)

  14. An FPGA computing demo core for space charge simulation

    International Nuclear Information System (INIS)

    Wu, Jinyuan; Huang, Yifei

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computed using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.

  15. An FPGA computing demo core for space charge simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan; Huang, Yifei; /Fermilab

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computed using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.

  16. One-carrier free space charge motion under applied voltage

    Energy Technology Data Exchange (ETDEWEB)

    de ALMEIDA, L E.C.; FERREIRA, G F.L. [SAO PAULO UNIV., SAO CARLOS (BRAZIL). INSTITUTO DE FISICA E QUIMICA

    1975-12-01

    It is shown how to transform the system of partial differential equations, describing the free one-carrier space charge motion in solid dielectrics under a given applied voltage and while the charge distribution touches only one of the electrodes, into a first order ordinary differential equation from whose solution all the interesting quantities may be easily derived. It was found that some charge distributions can display current reversal.

  17. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  18. Space Charge Effect in the Sheet and Solid Electron Beam

    Science.gov (United States)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  19. Nonlinear periodic space-charge waves in plasma

    International Nuclear Information System (INIS)

    Kovalev, V. A.

    2009-01-01

    A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as ∝ s -1/3 . Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.

  20. Space-Charge Effects in a Gas Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D.D.

    2010-12-03

    Discussion of space-charge effects in a photoluminescence cell that will be used as a nondisruptive total energy monitor at the LCLS facility is presented. Regimes where primary photoelectrons will be confined within the X-ray beam aperture are identified. Effects of the space-charge on the further evolution of the electron and ion populations are discussed. Parameters of the afterglow plasma are evaluated. Conditions under which the detector output will be proportional to the pulse energy are defined.

  1. Discrete symmetries for spinor field in de Sitter space

    International Nuclear Information System (INIS)

    Moradi, S.; Rouhani, S.; Takook, M.V.

    2005-01-01

    Discrete symmetries, parity, time reversal, antipodal, and charge conjugation transformations for spinor field in de Sitter space, are presented in the ambient space notation, i.e., in a coordinate independent way. The PT and PCT transformations are also discussed in this notation. The five-current density is studied and their transformation under the discrete symmetries is discussed

  2. Supergravity and field space democracy

    International Nuclear Information System (INIS)

    Gayduk, A.V.; Romanov, V.N.; Schwarz, A.S.

    1980-01-01

    Supergravity is presented in which field and space variables are on an equal footing. The action functional of supergravity is characterized as the functional, defined on the space of (4,4)-dimensional submanifolds of complex (4,2)-dimensional superspace, which is invariant with respect to supervolume preserving analytic transformations. It is shown how the Lagrangian of the supergravity in the Ogievetsky-Sokatchev form can be obtained by means of this characterization and describe natural multi-dimensional generalizations of this Lagrangian. These generalizations are based on the notion of perfect action functional

  3. Mass Charge Interactions for Visualizing the Quantum Field

    Science.gov (United States)

    Baer, Wolfgang

    Our goal is to integrate the objective and subjective aspects of our personal experience into a single complete theory of reality. To further this endeavor we replace elementary particles with elementary events as the building blocks of an event oriented description of that reality. The simplest event in such a conception is an adaptation of A. Wheeler's primitive explanatory--measurement cycle between internal observations experienced by an observer and their assumed physical causes. We will show how internal forces between charge and mass are required to complete the cyclic sequence of activity. This new formulation of internal material is easier to visualize and map to cognitive experiences than current formulations of sub-atomic physics. In our formulation, called Cognitive Action Theory, such internal forces balance the external forces of gravity-inertia and electricity-magnetism. They thereby accommodate outside influences by adjusting the internal structure of material from which all things are composed. Such accommodation is interpreted as the physical implementation of a model of the external physical world in the brain of a cognitive being or alternatively the response mechanism to external influences in the material of inanimate objects. We adopt the deBroglie-Bohm causal interpretation of QT to show that the nature of space in our model is mathematically equivalent to a field of clocks. Within this field small oscillations form deBroglie waves. This interpretation allows us to visualize the underlying structure of empty space with a charge-mass separation field in equilibrium, and objects appearing in space with quantum wave disturbances to that equilibrium occurring inside material. Space is thereby associated with the internal structure of material and quantum mechanics is shown to be, paraphrasing Heisenberg, the physics of the material that knows the world.

  4. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    Mang, M.

    1993-01-01

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z 4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  5. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  6. Space charge studies in the PS

    CERN Document Server

    Asvesta, F; Damerau, H; Huschauer, A; Papaphilippou, Y; Serluca, M; Sterbini, G; Zisopoulos, P

    2017-01-01

    In this paper the results of Machine Development (MD)studies conducted at the CERN Proton Sychrotron (PS) arepresented. The main focus was the investigation of newworking points in an effort to characterize and potentiallyimprove the brightness for LHC-type beams in view of theLHC Injectors Upgrade (LIU). Various working points werecompared in terms of losses and emittance evolution. Sincespace charge and the resonances it excites are the main causefor emittance blow-up and losses, tunes close to excitedresonances were carefully studied. Mitigation techniques,such as bunch flattening using a double harmonic RF system,were also tested.

  7. Marginally bound resonances of charged massive scalar fields in the background of a charged reflecting shell

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.com [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)

    2017-05-10

    We study analytically the characteristic resonance spectrum of charged massive scalar fields linearly coupled to a spherically symmetric charged reflecting shell. In particular, we use analytical techniques in order to solve the Klein–Gordon wave equation for the composed charged-shell–charged-massive-scalar-field system. Interestingly, it is proved that the resonant oscillation frequencies of this composed physical system are determined by the characteristic zeroes of the confluent hypergeometric function. Following this observation, we derive a remarkably compact analytical formula for the resonant oscillation frequencies which characterize the marginally-bound charged massive scalar field configurations. The analytically derived resonance spectrum is confirmed by numerical computations.

  8. The Influence of Pre-Conditioning on Space Charge Formation in LDPE

    DEFF Research Database (Denmark)

    Fleming, Robert J.; Henriksen, Mogens; Holbøll, Joachim T.

    1996-01-01

    In this paper we present space charge accumulation data for planar low density polyethylene samples subjected to 20 kV/mm dc fields at room temperature. The data were obtained using the laser-induced-pressure-pulse (LIPP) technique. Some of the samples were conditioned by holding them at 40oC in ......C in short-circuit at rotary pump pressure for 48 hr prior to measurement. Such conditioning had no consistent effect on the space charge. The extent of charge injection/extraction at the semicon electrodes appeared to vary considerably between samples....

  9. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn [Department of Astronomy/Steward Observatory, The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Lew, Ben W. P., E-mail: yzhou@as.arizona.edu [Department of Planetary Science/Lunar and Planetary Laboratory, The University of Arizona, 1640 E. University Boulevard, Tucson, AZ 85718 (United States)

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.

  10. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2009-11-01

    Full Text Available Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel—both in terms of low-order rms (envelope properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including the following: the Kapchinskij-Vladimirskij (KV equilibrium, continuous-focusing equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of standard accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulations that more precisely probe intrinsic stability properties and machine performance.

  11. Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures

    Science.gov (United States)

    Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng

    2018-03-01

    Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.

  12. Space charge-limited emission studies using Coulomb's Law

    OpenAIRE

    Carr, Christopher G.

    2004-01-01

    Approved for Public Release; Distribution is Unlimited Child and Langmuir introduced a solution to space charge limited emission in an infinite area planar diode. The solution follows from starting with Poisson's equation, and requires solving a non-linear differential equation. This approach can also be applied to cylindrical and spherical geometries, but only for one-dimensional cases. By approaching the problem from Coulomb's law and applying the effect of an assumed charge distribution...

  13. Space-Charge Experiments at the CERN Proton Synchrotron

    CERN Document Server

    Franchetti, Giuliano; Hofmann, I; Martini, M; Métral, E; Qiang, J; Ryne, D; Steerenberg, R; CFA Beam Dynamics Workshop “High Intensity and Brightness Hadron Beams”

    2005-01-01

    Benchmarking of the simulation codes used for the design of the next generation of high beam power accelerators is of paramount importance due to the very demanding requirements on the level of beam losses. This is usually accomplished by comparing simulation results against available theories, and more importantly, against experimental observations. To this aim, a number of well-defined test cases, obtained by accurate measurements made in existing machines, are of great interest. Such measurements have been made in the CERN Proton Synchrotron to probe three space-charge effects: (i) transverse emittance blow-up due to space-charge induced crossing of the integer or half-integer stop-band, (ii) space-charge and octupole driven resonance trapping, and (iii) intensity-dependent emittance transfer between the two transverse planes. The last mechanism is discussed in detail in this paper and compared to simulation predictions.

  14. Space-charge effects in Penning ion traps

    Science.gov (United States)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  15. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Lombardi, A.M.; Tanke, E.; Valero, S.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    A new routine and a computer code (DYNAC) for the calculation of space charge densities in a new generation of linear accelerators for various industrial applications is presented. The new beam dynamics method used in this code, employs a set of quasi-Liouvillian equations, allowing beam dynamics computations in long and complex structures for electrons, as well as protons and ions. With this new beam dynamics method, the coordinates of particles are known at any position in the accelerating elements, allowing multistep space charge calculations. (K.A.)

  16. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  17. CERN Linac4. The space charge challenge

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Lutz Matthias

    2013-08-06

    In the first phase of the upgrade program of the CERN accelerator complex the proton injector Linac2 will be replaced by a new, normal-conducting H-ion Linac, Linac4, allowing a significant increase of the proton flux intensity along the downstream accelerator complex. In the design of Linac4 three beam transport sections are implemented to match the beam between the different accelerator elements and to model the longitudinal pulse structure. These three beam transport sections, which are the most critical locations in terms of beam quality preservation, are in the focus of this thesis. During the work of this thesis the Low Energy Beam Transport (LEBT), which is required to match the source beam to the radiofrequency quadrupole (RFQ), has been commissioned and its beam dynamics re-constructed. The measurement campaign used to reconstruct the LEBT beam dynamics was performed with the aim to prepare the RFQ commissioning and to maximise the LEBT performance. Downstream of the Linac4 accelerator the beam is transported along a 180 m long transfer line to the Proton Synchrotron Booster (PS-Booster). The transfer line optics was studied, optimised and sections were completely re-designed. The new transfer line optics is characterised by an improved preservation of the beam emittance, higher stability of the optical solution with respect to alignment errors and field jitters of the transfer line magnets and it is matched to each of the PS-Booster injection schemes. In a concluding ''Start-To-End'' simulation based on the measured beam characteristics at the LEBT exit the beam dynamics of the downstream Linac, including the transfer line, was calculated. To minimise particle losses within acceptable emittance preservation the beam optics of the Medium Energy Beam Transport (MEBT) was adapted to the measured beam parameters. This ''Start-To-End'' simulation was performed to identify critical sections of the Linac4 beam dynamics and

  18. Study of static properties of magnetron-type space charges; Etude des proprietes statiques des charges d'espace du type magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Delcroix, Jean-Loup

    1953-05-30

    This research thesis reports an in-depth analysis of physical properties of static regimes to address the issue of space charges. This theoretical study of the Hull magnetron is followed by the description of experiments on the Hull magnetron which highlight transitions between the different regimes. Then, another theoretical approach aims at generalising the magnetron theory, based on other types of magnetron theory (general equations of magnetron-type space charges, inverted Hull magnetron theory, circular field magnetron theory)

  19. Greybody factors of massive charged fermionic fields in a charged two-dimensional dilatonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-02-01

    We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)

  20. Current distribution in triodes neglecting space charge and initial velocities

    NARCIS (Netherlands)

    Hamaker, H.C.

    1950-01-01

    A theory of the current distribution in triodes with positive grid is developed on the assumption that space charge and the initial velocities of both primary and secondary electrons may be neglected. This theory, which is originally due to De Lussanct de la Sablonière, has been put in a more lucid

  1. Space charge limited conduction in CdSe thin films

    Indian Academy of Sciences (India)

    Unknown

    of trap limited space charge limited conduction (SCLC) at higher voltage. The transition voltage (Vt ) from ohmic to SCLC is found to be quite independent of ambient temperature as well as intensity of illumination. SCLC is explained on the basis of the exponential trap distribution in CdSe films. Trap depths estimated from.

  2. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  3. One-carrier free space charge motion under applied voltage

    International Nuclear Information System (INIS)

    Camargo, P.C.; Ferreira, G.F.L.

    1976-01-01

    The system of partial differential equations describing the one-carrier free space-charge motion under a given applied voltage is transformed into a system of two ordinary differential equations. The method is applied to find the external current injection [pt

  4. Quantum electrodynamics with arbitrary charge on a noncommutative space

    International Nuclear Information System (INIS)

    Zhou Wanping; Long Zhengwen; Cai Shaohong

    2009-01-01

    Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space, which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics. (authors)

  5. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  6. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    .5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...

  7. The Influence of Pre-conditioning on the Space Charge Formation in LDPE and XLPE

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Holbøll, Joachim T.; Fleming, R.J.

    1996-01-01

    Planar LDPE and XLPE samples were conditioned by holding in short circuit for 48 hrs. at 40oC under rotary pump pressure, and space charge accumulation in these samples under DC fields of 20 kV/mm was then compared with the corresponding accumulation in unconditioned samples.The test results were...

  8. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, 110 8th street, Troy, New York 12180 (United States)

    2016-08-07

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  9. Finite field-energy of a point charge in QED

    International Nuclear Information System (INIS)

    Costa, Caio V; Gitman, Dmitry M; Shabad, Anatoly E

    2015-01-01

    We consider a simple nonlinear (quartic in the fields) gauge-invariant modification of classical electrodynamics, to show that it possesses a regularizing ability sufficient to make the field energy of a point charge finite. The model is exactly solved in the class of static central-symmetric electric fields. Collation with quantum electrodynamics (QED) results in the total field energy of a point elementary charge about twice the electron mass. The proof of the finiteness of the field energy is extended to include any polynomial selfinteraction, thereby the one that stems from the truncated expansion of the Euler–Heisenberg local Lagrangian in QED in powers of the field strength. (paper)

  10. Transverse modes of a bunched beam with space charge dominated impedance

    Directory of Open Access Journals (Sweden)

    V. Balbekov

    2009-12-01

    Full Text Available Transverse coherent oscillations of a bunched beam in a ring accelerator are considered with space charge dominated impedance, taking into account linear synchrotron oscillations. A general equation of the bunch eigenmodes is derived, its exact analytical solution is presented for boxcar bunch, and numerical solutions are found for several realistic models. Both low and high synchrotron frequency approximations are considered and compared, fields of their applicability are determined, and some estimations are developed in the intermediate region. It is shown that most of the bunch eigenmodes are stabilized by Landau damping due to the space charge produced tune spread.

  11. EBQ code: Transport of space-charge beams in axially symmetric devices

    Science.gov (United States)

    Paul, A. C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  12. EBQ code: transport of space-charge beams in axially symmetric devices

    International Nuclear Information System (INIS)

    Paul, A.C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present

  13. Determination of charged particle beam parameters with taking into account of space charge

    International Nuclear Information System (INIS)

    Ishkhanov, B.S.; Poseryaev, A.V.; Shvedunov, V.I.

    2005-01-01

    One describes a procedure to determine the basic parameters of a paraxial axially-symmetric beam of charged particles taking account of space charge contribution. The described procedure is based on application of the general equation for beam envelope. Paper presents data on its convergence and resistance to measurement errors. The position determination error of crossover (stretching) and radius of beam in crossover is maximum 15% , while the emittance determination error depends on emittance and space charge correlation. The introduced procedure was used to determine parameters of the available electron gun 20 keV energy beam with 0.64 A current. The derived results turned to agree closely with the design parameters [ru

  14. Reduction of space charge breakdown in e-beam irradiated nano/polymethyl methacrylate composites

    International Nuclear Information System (INIS)

    Zheng Feihu; Zhang Yewen; An Zhenlian; Dong Jianxing; Lei Qingquan

    2013-01-01

    Fast discharge of numerous space charges in dielectric materials can cause space charge breakdown. This letter reports the role of nanoparticles in affecting space charge breakdown of nano/polymethyl methacrylate composites. Space charge distributions in the composites, implanted by electron beam irradiation, were measured by pressure wave propagation method. The results show that the nanoparticles have significant effects on the isothermal charge decay and space charge breakdown in the nanocomposites. The resistance to space charge breakdown in the nanocomposites is attributed to the combined action of the introduction of deep trapping states and the scattering effect by the added nanoparticles.

  15. Dynamics of space and polarization charges of ferroelectric thin films measured by atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Lee, J.H.; Jo, W.

    2006-01-01

    Retention behavior and local hysteresis characteristics in Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films on Pt electrodes have been investigated by electrostatic force microscopy (EFM). A sol-gel method is used to synthesize PZT thin films and drying conditions are carefully explored over a wide range of temperature. Decay and retention mechanisms of single-poled and reverse-poled regions of the ferroelectric thin films are explained by space charge redistribution. Trapping behavior of space charges is dependent on the nature of interface between ferroelectric thin films and bottom electrodes. Local measurement of polarization-electric field curves by EFM shows inhomogeneous space charge entrapment

  16. Search for space charge effects in the ICARUS T600 LAr-TPC

    Science.gov (United States)

    Torti, Marta

    2016-11-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown.

  17. Search for space charge effects in the ICARUS T600 LAr-TPC

    International Nuclear Information System (INIS)

    Torti, Marta

    2016-01-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown

  18. Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

    CERN Document Server

    AUTHOR|(CDS)2088716; Rumolo, Giovanni

    The strong space charge regime of future operation of CERN’s circular particle accelerators is investigated and mitigation strategies are developed in the framework of the present thesis. The intensity upgrade of the injector chain of Large Hadron Collider (LHC) prepares the particle accelerators to meet the requirements of the High-Luminosity LHC project. Producing the specified characteristics of the future LHC beams imperatively relies on injecting brighter bunches into the Proton Synchrotron Booster (PSB), the downstream Proton Synchrotron (PS) and eventually the Super Proton Synchrotron (SPS). The increased brightness, i.e. bunch intensity per transverse emittance, entails stronger beam self-fields which can lead to harmful interaction with betatron resonances. Possible beam emittance growth and losses as a consequence thereof threaten to degrade the beam brightness. These space charge effects are partly mitigated by the upgrade of the PSB and PS injection energies. Nevertheless, the space charge tune ...

  19. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient...... in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...... with vacuum-evaporated aluminium electrodes. Temperature differences up to 27°C were maintained across the samples, which were subjected to DC fields up to 20 kV/mm. Current density was measured as a function of temperature and field. Negligible thermally generated space charge was observed. The charge...

  20. Negative space charge effects in photon-enhanced thermionic emission solar converters

    International Nuclear Information System (INIS)

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-01-01

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163

  1. Jumbo Space Environment Simulation and Spacecraft Charging Chamber Characterization

    Science.gov (United States)

    2015-04-09

    probes for Jumbo. Both probes are produced by Trek Inc. Trek probe model 370 is capable of -3 to 3kV and has an extremely fast, 50µs/kV response to...changing surface potentials. Trek probe 341B is capable of -20 to 20kV with a 200 µs/kV response time. During our charging experiments the probe sits...unlimited. 12 REFERENCES [1] R. D. Leach and M. B. Alexander, "Failures and anomalies attributed to spacecraft charging," NASA RP-1375, Marshall Space

  2. Motions in the relativistic fields of a charged dust

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da.

    1980-04-01

    The general relativistic motion of arbitrarily charged test particles is investigated, in the spherically symmetric fields of a charged, static, incoherent matter with T 0 0 = const. The condition for existence of stable circular orbits is established, inside and outside the diffused source. The null geodesics are also investigated, as a limiting case. (Author) [pt

  3. Field collapse due to band-tail charge in amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States); Schiff, E.A. [Syracuse Univ., NY (United States)

    1996-05-01

    It is common for the fill factor to decrease with increasing illumination intensity in hydrogenated amorphous silicon solar cells. This is especially critical for thicker solar cells, because the decrease is more severe than in thinner cells. Usually, the fill factor under uniformly absorbed red light changes much more than under strongly absorbed blue light. The cause of this is usually assumed to arise from space charge trapped in deep defect states. The authors model this behavior of solar cells using the Analysis of Microelectronic and Photonic Structures (AMPS) simulation program. The simulation shows that the decrease in fill factor is caused by photogenerated space charge trapped in the band-tail states rather than in defects. This charge screens the applied field, reducing the internal field. Owing to its lower drift mobility, the space charge due to holes exceeds that due to electrons and is the main cause of the field screening. The space charge in midgap states is small compared with that in the tails and can be ignored under normal solar-cell operating conditions. Experimentally, the authors measured the photocapacitance as a means to probe the collapsed field. They also explored the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.

  4. A feasibility study of space-charge neutralized ion induction linacs: Final report

    International Nuclear Information System (INIS)

    Slutz, S.A.; Primm, P.; Renk, T.; Johnson, D.J.

    1997-03-01

    Applications for high current (> 1 kA) ion beams are increasing. They include hardening of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly driving fusion reactions to create energy. The space-charge of ions limits the current that can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the accelerating electric field must be kept low enough to avoid the generation and acceleration of counter-streaming electrons. These limitations have resulted in ion accelerator designs that employ long beam lines and would be expensive to build. Space-charge neutralization and magnetic insulation of the acceleration gaps could substantially reduce these two limitations, but at the expense of increasing the complexity of the beam physics. We present theory and experiments to determine the degree of charge-neutralization that can be achieved in various environments found in ion accelerators. Our results suggest that, for high current applications, space-charge neutralization could be used to improve on the conventional ion accelerator technology. There are two basic magnetic field geometries that can be used to insulate the accelerating gaps, a radial field or a cusp field. We will present studies related to both of these geometries. We shall also present numerical simulations of open-quotes multicuspclose quotes accelerator that would deliver potassium ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator could be used to drive fusion

  5. Gravitational collapse in higher-dimensional charged-Vaidya space ...

    Indian Academy of Sciences (India)

    time. We show that singularities arising in a charged null fluid in higher dimension are always naked violating ... of matter is one of the most active field of research in the contemporary general relativity. ... The main open issue ..... [3] A Papapetrou, in A random walk in relativity and cosmology edited by N Dadhich, J K Rao,.

  6. Dynamics of Charged Particles and their Radiation Field

    International Nuclear Information System (INIS)

    Poisson, E

    2006-01-01

    an electron for very long times. Without radiation reaction, the motion of an electron in the trap is an epicycle that consists of a rapid (and small) cyclotron orbit superposed onto a slow (and large) magnetron orbit. Spohn shows that according to the Landau-Lifshitz equations, the radiation reaction produces a damping of the cyclotron motion. For reasonable laboratory situations this damping occurs over a time scale of the order of 0.1 second. This experiment might well be within technological reach. The presentation of the quantum theory is based on the nonrelativistic Abraham model, which upon quantization leads to the well-known Pauli-Fierz Hamiltonian of nonrelativistic quantum electrodynamics. This theory, an approximation to the fully relativistic version of QED, has a wide domain of validity that includes many aspects of quantum optics and laser-matter interactions. I first admit that I found Spohn's presentation to be tough going. Unlike the pair of delightful books by Cohen-Tannoudji, Dupont-Roc, and Grynberg, this is not a gentle introduction to the quantum theory of a charged particle coupled to its own electromagnetic field. Instead, Spohn proceeds rather quickly through the formulation of the theory (defining the Hamiltonian and the Hilbert space) and then presents some applications (for example, he constructs the ground states of the theory, he examines radiation processes, and he explores finite-temperature aspects). There is a lot of material in the eight chapters devoted to the quantum theory, but my insufficient preparation and the advanced nature of Spohn's presentation were significant obstacles. One of the most useful resources in Spohn's book are the historical notes and literature reviews that are inserted at the end of each chapter. I discovered a wealth of interesting articles by reading these, and I am grateful that the author made the effort to collect this information for the benefit of his readers. (book review)

  7. The motion of a charged black hole in an electromagnetic field

    International Nuclear Information System (INIS)

    Bicak, J.; Cambridge Univ.

    1980-01-01

    The motion of a charged black hole in a weak, asymptotically uniform electric field is analysed by using the Hamiltonian formalism for coupled electromagnetic and gravitational perturbations of the Reissner-Nordstrom space-time. The hole is shown to accelerate with respect to a distant inertial observer according to Newton's law. The relation of the approximate solution obtained to the exact solution of Ernst, representing the charged C-metric without nodal singularity, is then clarified. (author)

  8. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Treado, Colleen J.; /Massachusetts U., Amherst

    2012-09-07

    The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

  9. Space charge effects and coherent stability limits in barrier buckets

    Directory of Open Access Journals (Sweden)

    Oliver Boine-Frankenheim

    2003-03-01

    Full Text Available A large-scale Vlasov simulation study of the microwave instability below transition energy in a beam confined between two barrier pulses is performed. Starting from a matched distribution function for the confined ion beam including the space charge impedance the stability threshold in the longitudinal impedance plane is obtained. A simple stability criterium is found to be in good agreement with the simulation results.

  10. Influence of space charge during the injection in Saturne II

    International Nuclear Information System (INIS)

    Lemaire, J.L.

    Calculations were made in which a fixed acceptance window, established since the beginning of the injection, was considered, and a filling pattern that was a linear function of time was supposed. Evidently, these conditions are no longer met if the space charge modifies the wave number of the beam and, consequently, the filling rate changes with time. The importance of these conditions upon injection for the theoretical operation point zone 3 is reported

  11. Halo and space charge issues in the SNS Ring

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-01-01

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring

  12. Space-charge effects in vacuum-deposited polyimide layer

    Czech Academy of Sciences Publication Activity Database

    Zhivkov, I.; Strijkova, V.; Spassova, E.; Danev, G.; Nešpůrek, Stanislav; Iwamoto, M.

    2005-01-01

    Roč. 7, č. 1 (2005), s. 245-248 ISSN 1454-4164 R&D Projects: GA MŠk ME 558 Grant - others:Ministry of Education and Science(BG) X-1322 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyimide * electrical conductivity * space-charge spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.138, year: 2005

  13. Space-charge effects in Penning ion traps

    Czech Academy of Sciences Publication Activity Database

    Porobic, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Flechard, X.; Lienard, E.; Ban, G.; Zákoucký, Dalibor; Soti, G.; Van Gorp, S.; Weinheimer, C.; Wursten, E.; Severijns, N.

    2015-01-01

    Roč. 785, JUN (2015), s. 153-162 ISSN 0168-9002 R&D Projects: GA MŠk LA08015; GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Penning trap * space-charge * magnetron motion * ion trapping * buffer gas cooling * ion cyclotron resonance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.200, year: 2015

  14. Halo and space charge issues in the SNS Ring

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-06-30

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring.

  15. The space charge effects on the slow extraction process

    International Nuclear Information System (INIS)

    Ohmori, Chihiro.

    1992-06-01

    The calculation of the slow extraction which includes the space charge effects has been performed for the Compressor/Stretcher Ring (CSR) of the proposed Japanese Hadron Project. We have investigated the slow extraction of 1 GeV proton beam with an average current of 100μA. Calculation shows not only the emittance growth of the extracted beam but also decrease of the extraction efficiency and discontinuity of beam spill. (author)

  16. Analysis of beam envelope by transverse space charge effect

    International Nuclear Information System (INIS)

    Toyama, Shin'ichi

    1997-09-01

    It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up. The application of an envelope equation is examined in previous report in which the beam is just coasting beam (non accelerating). The analysis of space charge effect is necessary for the comparison in coming accelerator test in PNC. In order to evaluate the beam behavior in high current, the beam dynamics and beam parameters which are input to the equation for the evaluation are developed and make it ready to estimate the beam transverse dynamics by the space charge. The estimate needs to have enough accuracy for advanced code calculation. After the preparation of the analytic expression of transverse motion, the non-linear differential equation of beam dynamics is solved by a numerical method on a personal computer. The beam envelope from the equation is estimated by means of the beam emittance, current and energy. The result from the analysis shows that the transverse beam broadening is scarecely small around the beam current value of PNC design. The contribution to the beam broadening of PNC linac comes from its beam emittance. The beam broadening in 100 MeV case is almost negligible in the view of transverse space charge effect. Therefore, the electron beam is stable up to 10 A order in PNC linac design. Of course, the problem for RF supply is out of consideration here. It is important to estimate other longitudinal effect such as beam bunch effect which is lasting unevaluated. (author)

  17. The magnetic field generated by a rotating charged polygon

    International Nuclear Information System (INIS)

    Wan, Songlin; Chen, Xiangyu; Teng, Baohua; Fu, Hao; Li, Yefeng; Wu, Minghe; Wu, Shaoyi; Balfour, E A

    2014-01-01

    The magnetic field along the symmetry axis of a regular polygon carrying a uniform electric charge on its edges is calculated systematically when the polygon is rotated about this axis of symmetry. A group of circular current-carrying coils arranged concentrically about the axis of the polygon has been designed to simulate the magnetic field characteristics of the rotating charged polygon. The magnetic field of the simulated coils is measured using the PASCO magnetic field sensor. The results show that the theoretical calculation agrees well with the experimental results. (paper)

  18. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    Science.gov (United States)

    Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni

    2004-01-01

    The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.

  19. The effect of a direct current field on the microparticle charge in the plasma afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Wörner, L. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Groupe de Recherches sur l' Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Ivlev, A. V.; Huber, P.; Hagl, T.; Thomas, H. M.; Morfill, G. E. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Couëdel, L. [Centre National de la Recherche Scientifique, Aix-Marseille-Université, Laboiratoire de Physique des Intéractions Ioniques et Moléculaires, UMR 7345, 13397 Marseille cedex 20 (France); Schwabe, M. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 (United States); Mikikian, M.; Boufendi, L. [Groupe de Recherches sur l' Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Skvortsov, A. [Yuri Gagarin Cosmonauts Training Center, RU-141160 Star City (Russian Federation); Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E. [Joint Institute for High Temperatures, RU-125412 Moscow (Russian Federation)

    2013-12-15

    Residual charges of individual microparticles forming dense clouds were measured in a RF discharge afterglow. Experiments were performed under microgravity conditions on board the International Space Station, which ensured particle levitation inside the gas volume after the plasma switch-off. The distribution of residual charges as well as the spatial distribution of charged particles across the cloud were analyzed by applying a low-frequency voltage to the electrodes and measuring amplitudes of the resulting particle oscillations. Upon “free decharging” conditions, the charge distribution had a sharp peak at zero and was rather symmetric (with charges concentrated between −10e and +10e), yet positively and negatively charged particles were homogeneously distributed over the cloud. However, when decharging evolved in the presence of an external DC field (applied shortly before the plasma switch-off) practically all residual charges were positive. In this case, the overall charge distribution had a sharp peak at about +15e and was highly asymmetric, while the spatial distribution exhibited a significant charge gradient along the direction of the applied DC field.

  20. A Method to Overcome Space Charge at Injection

    International Nuclear Information System (INIS)

    Ya. Derbenev

    2005-01-01

    The transverse space charge forces in a high current, low energy beam can be reduced by mean of a large increase of the beam's transverse sizes while maintaining the beam area in the 4D phase space. This can be achieved by transforming the beam area in phase space of each of two normal 2D transverse (either plane or circular) modes from a spot shape into a narrow ring of a large amplitude, but homogeneous in phase. Such a transformation results from the beam evolution in the island of a dipole resonance when the amplitude width of the island shrinks adiabatically. After stacking (by using stripping foils or cooling) the beam in such a state and accelerating to energies sufficiently high that the space charge becomes insignificant, the beam then can be returned back to a normal spot shape by applying the reverse transformation. An arrangement that can provide such beam gymnastics along a transport line after a linac and before a booster and/or in a ring with circulating beam will be described and numerical estimates will be presented. Other potential applications of the method will be briefly discussed

  1. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    International Nuclear Information System (INIS)

    Teyssedre, G.; Laurent, C.; Vu, T. T. N.

    2015-01-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10 −14 –10 −13  m 2  V −1  s −1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets

  2. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Science.gov (United States)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  3. Theory of space-charge polarization for determining ionic constants of electrolytic solutions

    Science.gov (United States)

    Sawada, Atsushi

    2007-06-01

    A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA +(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.

  4. Trajectory of Charged Particle in Combined Electric and Magnetic Fields Using Interactive Spreadsheets

    Science.gov (United States)

    Tambade, Popat S.

    2011-01-01

    The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…

  5. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  6. Multipole interactions of charged particles with the electromagnetic field

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    The full multipole expansion for the lagrangian and hamiltonian of a system of point charges interacting with the electromagnetic field is studied in detail. Both classical and quantum theory are described for external and dynamical fields separately. One improvement with respect to the known Fiutak's paper is made. (author)

  7. Motion of Charged Particles near Magnetic Field Discontinuities

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2000-01-01

    The motion of charged particles in slowly changing magnetic fields exhibits adiabatic invariance even in the presence of abrupt magnetic discontinuities. Particles near discontinuities in magnetic fields, what we call ''boundary particles'', are constrained to remain near an arbitrarily fractured boundary even as the particle drifts along the discontinuity. A new adiabatic invariant applies to the motion of these particles

  8. On the Field of a Stationary Charged Spherical Source

    Directory of Open Access Journals (Sweden)

    Stavroulakis N.

    2009-04-01

    Full Text Available The equations of gravitation related to the field of a spherical charged source imply the existence of an interdependence between gravitation and electricity [5]. The present paper deals with the joint action of gravitation and electricity in the case of a stationary charged spherical source. Let m and " be respectively the mass and the charge of the source, and let k be the gravitational constant. Then the equations of gravitation need specific discussion according as j " j m p k (source strongly charged. In any case the curvature radius of the sphere bounding the matter possesses a strictly positive greatest lower hound, so that the source is necessarily an extended object. Pointwise sources do not exist. In particular, charged black holes do not exist.

  9. Yang-Mills fields due to an infinite charge cylinder

    International Nuclear Information System (INIS)

    Campbell, W.B.; Joseph, D.W.; Morgan, T.A.; Nebraska Univ., Lincoln

    1981-01-01

    The problem of determining time-independent solutions of the classical Yang-Mills equations for infinitely long charge cylinders is studied. A useful expression for the total energy in the field in terms of just the sources is derived. Numerical solutions have been found in the special cases of a small charge cylinder with a magnetic field B that either lies along the axis of symmetry or encircles the axis. It is as if these two solutions were due to currents encircling the axis or parallelling it, respectively. The condition that the solutions behave well at infinity implies an exponential fall off for the fields in the azimuthal B field case and a fall off more rapid than 1/R in the axial B field case, so that in both cases the existence of a B field requires the charge on the axis to be shieled. Consequently, these solutions do not behave at infinity at all like the Maxwell solution for a charge cylinder, and they have a lower energy per unit length. They show that in Yang-Mills theories the source does not determine a unique field. A classical interpretation of this is that the field remembers how the charges were transported during the construction of the cylinder. It also suggests that a quantum mechanical version of this problem would exhibit a spontaneous symmetry breaking to a less symmetric, lower energy vacuum. These solutions exhibit a twofold degeneracy, as the magnetic field may be either left- or right-handed in the azimuthal B field case, or point along the +z or -z axis in the axial B field case. (orig.)

  10. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films

    KAUST Repository

    Hu, Weijin; Wang, Zhihong; Du, Yuanmin; Zhang, Xixiang; Wu, Tao

    2014-01-01

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current

  11. Non-local charges in local quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Lopuszanski, J.T.; Rabsztyn, S.

    1985-05-01

    Non-local charges are studied in the general setting of local quantum field theory. It is shown, that these charges can be represented as polynomials in the incoming respectively outgoing fields with coefficients (kernels) which are subject to specific constraints. For the restricted class of models of a scalar, massive, self interacting particle in four dimensions, a more detailed analysis shows that all non-local charges of the generic type (genus 2) are products of generators of the Poincare group. This analysis, which is based on the macroscopic causality properties of the S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two dimensions. (orig.)

  12. Charged anisotropic star on paraboloidal space-time

    Indian Academy of Sciences (India)

    dr2 − r2 ( dθ2 + sin2 θdφ2). ,. (1) with the energy–momentum tensor for anisotropic charged fluid,. Tij = diag. ( ρ + E2, pr − E2, pt + E2, pt + E2). ,. (2) where ρ is the energy density, pr is the radial pressure, pt is the tangential pressure and. E is the electric field intensity. These quantities are measured relative to the comoving.

  13. Matter fields in curved space-time

    International Nuclear Information System (INIS)

    Viet, Nguyen Ai; Wali, Kameshwar C.

    2000-01-01

    We study the geometry of a two-sheeted space-time within the framework of non-commutative geometry. As a prelude to the Standard Model in curved space-time, we present a model of a left- and a right- chiral field living on the two sheeted-space time and construct the action functionals that describe their interactions

  14. A heterogeneous CPU+GPU Poisson solver for space charge calculations in beam dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dawei; Rienen, Ursula van [University of Rostock, Institute of General Electrical Engineering (Germany)

    2016-07-01

    In beam dynamics studies in accelerator physics, space charge plays a central role in the low energy regime of an accelerator. Numerical space charge calculations are required, both, in the design phase and in the operation of the machines as well. Due to its efficiency, mostly the Particle-In-Cell (PIC) method is chosen for the space charge calculation. Then, the solution of Poisson's equation for the charge distribution in the rest frame is the most prominent part within the solution process. The Poisson solver directly affects the accuracy of the self-field applied on the charged particles when the equation of motion is solved in the laboratory frame. As the Poisson solver consumes the major part of the computing time in most simulations it has to be as fast as possible since it has to be carried out once per time step. In this work, we demonstrate a novel heterogeneous CPU+GPU routine for the Poisson solver. The novel solver also benefits from our new research results on the utilization of a discrete cosine transform within the classical Hockney and Eastwood's convolution routine.

  15. Information Space, Information Field, Information Environment

    Directory of Open Access Journals (Sweden)

    Victor Ya. Tsvetkov

    2014-08-01

    Full Text Available The article analyzes information space, information field and information environment; shows that information space can be natural and artificial; information field is substantive and processual object and articulates the space property; information environment is concerned with some object and acts as the surrounding in relation to it and is considered with regard to it. It enables to define information environment as a subset of information space. It defines its passive description. Information environment can also be defined as a subset of information field. It corresponds to its active description.

  16. Phase-space quantization of field theory

    International Nuclear Information System (INIS)

    Curtright, T.; Zachos, C.

    1999-01-01

    In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999

  17. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Li Limin; Liu Lie; Zhang Jun; Wen Jianchun; Liu Yonggui; Wan Hong

    2009-01-01

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm -1 , the electron current density was in the range 210-280 A cm -2 , and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm -2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  18. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  19. SNS accumulator ring design and space charge considerations

    Energy Technology Data Exchange (ETDEWEB)

    Weng, W.T.

    1998-08-01

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5 {micro}s with average beam power of 1 MW. To achieve such purpose, a proton storage ring operated at 60 Hz with 1 {times} 10{sup 14} protons per pulse at 1 GeV is required. The Accumulator Ring (AR) receives 1 msec long H{sup {minus}} beam bunches of 28 mA from a 1 GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1 mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generatino and beam collimation etc. is discussed.

  20. SNS ACCUMULATOR RING DESIGN AND SPACE CHARGE CONSIDERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    WENG,W.T.

    1998-05-04

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5{micro}s with average beam power of 1MW. To achieve such purpose, a proton storage ring operated at 60Hz with 1 x 10{sup 14} protons per pulse at 1GeV is required. The Accumulator Ring (AR) receives 1msec long H{sup {minus}} beam bunches of 28mA from a 1GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generation and beam collimation etc. is discussed.

  1. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    Adelmann, A.

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 10 9 protons/cm 3 ) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  2. SNS accumulator ring design and space charge considerations

    International Nuclear Information System (INIS)

    Weng, W.T.

    1998-01-01

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5micros with average beam power of 1MW. To achieve such purpose, a proton storage ring operated at 60Hz with 1 x 10 14 protons per pulse at 1GeV is required. The Accumulator Ring (AR) receives 1msec long H - beam bunches of 28mA from a 1GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generation and beam collimation etc. is discussed

  3. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  4. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  5. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  6. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    Science.gov (United States)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  7. Chaos in Time-Dependent Space-Charge Potentials

    CERN Document Server

    Betzel, Gregory T; Sideris, Ioannis V

    2005-01-01

    We consider a spherically symmetric, homologously breathing, space-charge-dominated beam bunch in the spirit of the particle-core model. The question we ask is: How does the time dependence influence the population of chaotic orbits? The static beam has zero chaotic orbits; the equation of particle motion is integrable up to quadrature. This is generally not true once the bunch is set into oscillation. We quantify the population of chaotic orbits as a function of space charge and oscillation amplitude (mismatch). We also apply a newly developed measure of chaos, one that distinguishes between regular, sticky, and wildly chaotic orbits, to characterize the phase space in detail. We then introduce colored noise into the system and show how its presence modifies the dynamics. One finding is that, despite the presence of a sizeable population of chaotic orbits, halo formation in the homologously breathing beam is much less prevalent than in an envelope-matched counterpart wherein an internal collective mode is ex...

  8. Safety of information in electronic equipment influenced by the charged space particles

    Directory of Open Access Journals (Sweden)

    Ksenia Gennad’evna Sizova

    2016-10-01

    Full Text Available A version of the existing evaluation method of electronic equipment to the influence of charged space particles causing single event effects for the purpose of improving the accuracy of calculation in the field of information safety is suggested. On the basis of the existing and modified methods radiation tolerance of real payload spacecraft responsible for the security of transmitted information are defined. The results of comparison are introduced. Significant differences not only in quantitative but also in qualitative character of tolerance indicators are revealed. It is demonstrated that the modified method allows to take into account the functional complexity of the hardware and the application efficiency of the sophisticated single event effects protection tools. To confirm the applicability of the modified method of equipment tolerance evaluation method to the influence of charged space particles causing single event effects proposals to the procedure of ground tests of the payload and the space experiment are developed.

  9. Space-charge calculation for bunched beams with 3-D ellipsoidal symmetry

    International Nuclear Information System (INIS)

    Garnett, R.W.; Wangler, T.P.

    1991-01-01

    A method for calculating 3-D space-charge forces has been developed that is suitable for bunched beams of either ions or relativistic electrons. The method is based on the analytic relations between charge-density and electric fields for a distribution with 3-D ellipsoidal symmetry in real space. At each step we use a Fourier-series representation for the smooth particle-density function obtained from the distribution of the macroparticles being tracked through the elements of the system. The resulting smooth electric fields reduce the problem of noise from artificial collisions, associated with small numbers of interacting macroparticles. Example calculations will be shown for comparison with other methods. 4 refs., 2 figs., 1 tab

  10. Beam halo formation from space-charge dominated beams in uniform focusing channels

    International Nuclear Information System (INIS)

    O'Connell, J.S.; Wangler, T.P.; Mills, R.S.; Crandall, K.R.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which results in a 2-component beam consisting of an inner core and an outer halo. The halo is very prominent in mismatched beams, and the potential for accelerator activation is of concern for a next generation of cw, high-power proton linacs that could be applied for intense neutron generators to process nuclear materials. We present new results about beam halo and the evolution of space-charge dominated beams from multiparticle simulation of initial laminar beams in a uniform linear focusing channel, and from a model consisting of single particle interactions with a uniform-density beam core. We study the energy gain from particle interactions with the space-charge field of the core, and we identify the resonant characteristic of this interaction as the basic cause of the separation of the beam into the two components. We identify three different particle-trajectory types, and we suggest that one of these types may lead to continuous halo growth, even after the halo is removed by collimators

  11. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    International Nuclear Information System (INIS)

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun

    2013-01-01

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies

  12. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  13. Quantum computing based on space states without charge transfer

    International Nuclear Information System (INIS)

    Vyurkov, V.; Filippov, S.; Gorelik, L.

    2010-01-01

    An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during a calculation, therefore, uncontrolled entanglement between qubits due to long-range Coulomb interaction is suppressed. Encoding and processing of quantum information is merely performed on symmetric and antisymmetric states of the electron in double quantum dots. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure as well. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.

  14. Space charge effects for multipactor in coaxial lines

    Energy Technology Data Exchange (ETDEWEB)

    Sorolla, E., E-mail: eden.sorolla@xlim.fr [XLIM, UMR 7252, Université de Limoges/CNRS, 123 Av. Albert Thomas, 87060 Limoges (France); Sounas, A.; Mattes, M. [Laboratoire d' Électromagnétisme et d' Acoustique (LEMA), École Polytechnique Fédérale de Lausanne, Station 11, CH-1015 Lausanne (Switzerland)

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  15. Investigations of the Dynamics of Space Charged Dominated Beams

    International Nuclear Information System (INIS)

    York, Richard C.

    2002-01-01

    We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool

  16. Space charge effects for multipactor in coaxial lines

    International Nuclear Information System (INIS)

    Sorolla, E.; Sounas, A.; Mattes, M.

    2015-01-01

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion

  17. Program NAJOCSC and space charge effect simulation in C01

    International Nuclear Information System (INIS)

    Tang, J.Y.; Chabert, A.; Baron, E.

    1999-01-01

    During the beam tests of the THI project at GANIL, it was found it difficult to increase the beam power above 2 kW at CSS2 extraction. The space charge effect (abbreviated as S.C. effect) in cyclotrons is suspected to play some role in the phenomenon, especially the longitudinal S.C. one and also the coupling between longitudinal and radial motions. The injector cyclotron C01 is studied, and the role played by the S.C. effect in this cyclotron in the THI case is investigated by a simulation method. (K.A.)

  18. Investigations of the Dynamics of Space Charged Dominated Beams

    Energy Technology Data Exchange (ETDEWEB)

    York, Richard C.

    2002-08-01

    We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool.

  19. Simulations of space charge neutralization in a magnetized electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Gerity, James [Texas A-M; McIntyre, Peter M. [Texas A-M; Bruhwiler, David Leslie [RadiaSoft, Boulder; Hall, Christopher [RadiaSoft, Boulder; Moens, Vince Jan [Ecole Polytechnique, Lausanne; Park, Chong Shik [Fermilab; Stancari, Giulio [Fermilab

    2017-02-02

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  20. Study on discrete space charge effects in electron beams and guns

    International Nuclear Information System (INIS)

    Tang Tiantong

    1990-01-01

    The discrete space charge effects in electron beams are studied and a statistical dynamics equation of the ensemble of beam electrons is derived. An approximated analytical solution of this equation is given. This equation has been applied to beam crossover and field-emission and thermal-emission gun problems. The computer calculation results agree on the whole with those of Monte Carlo simulation and experimental data. (orig.)

  1. Large Space Structures Fielding Plan

    Science.gov (United States)

    1991-01-01

    15830 STS PAYLOARE SYSTESETY 3C (A %AA IASB STS DAYLCODSICARGO SRORM 1PVFR! PR 111L 5 SOL? CIE. JR-012 SAFETY 19LENEVIASO PLA PSOR 1, ,I -1 AR S’EATIOR...support/safety measures in space will interface. Although these features can be developed to some degree as stated objectives, many must be designed from...continuity 7. Check system for mechanical continuity 8. Verify LSS assembly continuity B. Productivity Measurements 1. Note duration of assembly activities

  2. Classical field theory in the space of reference frames. [Space-time manifold, action principle

    Energy Technology Data Exchange (ETDEWEB)

    Toller, M [Dipartimento di Matematica e Fisica, Libera Universita, Trento (Italy)

    1978-03-11

    The formalism of classical field theory is generalized by replacing the space-time manifold M by the ten-dimensional manifold S of all the local reference frames. The geometry of the manifold S is determined by ten vector fields corresponding to ten operationally defined infinitesimal transformations of the reference frames. The action principle is written in terms of a differential 4-form in the space S (the Lagrangian form). Densities and currents are represented by differential 3-forms in S. The field equations and the connection between symmetries and conservation laws (Noether's theorem) are derived from the action principle. Einstein's theory of gravitation and Maxwell's theory of electromagnetism are reformulated in this language. The general formalism can also be used to formulate theories in which charge, energy and momentum cannot be localized in space-time and even theories in which a space-time manifold cannot be defined exactly in any useful way.

  3. Camera memory study for large space telescope. [charge coupled devices

    Science.gov (United States)

    Hoffman, C. P.; Brewer, J. E.; Brager, E. A.; Farnsworth, D. L.

    1975-01-01

    Specifications were developed for a memory system to be used as the storage media for camera detectors on the large space telescope (LST) satellite. Detectors with limited internal storage time such as intensities charge coupled devices and silicon intensified targets are implied. The general characteristics are reported of different approaches to the memory system with comparisons made within the guidelines set forth for the LST application. Priority ordering of comparisons is on the basis of cost, reliability, power, and physical characteristics. Specific rationales are provided for the rejection of unsuitable memory technologies. A recommended technology was selected and used to establish specifications for a breadboard memory. Procurement scheduling is provided for delivery of system breadboards in 1976, prototypes in 1978, and space qualified units in 1980.

  4. Probing the Importance of Charge Flux in Force Field Modeling.

    Science.gov (United States)

    Sedghamiz, Elaheh; Nagy, Balazs; Jensen, Frank

    2017-08-08

    We analyze the conformational dependence of atomic charges and molecular dipole moments for a selection of ∼900 conformations of peptide models of the 20 neutral amino acids. Based on a set of reference density functional theory calculations, we partition the changes into effects due to changes in bond distances, bond angles, and torsional angles and into geometry and charge flux contributions. This allows an assessment of the limitations of fixed charge force fields and indications for how to design improved force fields. The torsional degrees of freedom are the main contribution to conformational changes of atomic charges and molecular dipole moments, but indirect effects due to change in bond distances and angles account for ∼25% of the variation. Charge flux effects dominate for changes in bond distances and are also the main component of the variation in bond angles, while they are ∼25% compared to the geometry variations for torsional degrees of freedom. The geometry and charge flux contributions to some extent produce compensating effects.

  5. Out-of-equilibrium quantum fields with conserved charge

    International Nuclear Information System (INIS)

    Bedingham, D.J.

    2004-01-01

    We study the out-of-equilibrium evolution of an O(2)-invariant scalar field in which a conserved charge is stored. We apply a loop expansion of the 2-particle irreducible effective action to 3-loop order. Equations of motion are derived which conserve both total charge and total energy yet allow for the effects of scattering whereby charge and energy can transfer between modes. Working in 1+1 dimensions we solve the equations of motion numerically for a system knocked out of equilibrium by a sudden temperature quench. We examine the initial stages of the charge and energy redistribution. This provides a basis from which we can understand the formation of Bose-Einstein condensates from first principles

  6. Geodesics of electrically and magnetically charged test particles in the Reissner-Nordstroem space-time: Analytical solutions

    International Nuclear Information System (INIS)

    Grunau, Saskia; Kagramanova, Valeria

    2011-01-01

    We present the full set of analytical solutions of the geodesic equations of charged test particles in the Reissner-Nordstroem space-time in terms of the Weierstrass weierp, σ, and ζ elliptic functions. Based on the study of the polynomials in the θ and r equations, we characterize the motion of test particles and discuss their properties. The motion of charged test particles in the Reissner-Nordstroem space-time is compared with the motion of neutral test particles in the field of a gravitomagnetic monopole. Electrically or magnetically charged particles in the Reissner-Nordstroem space-time with magnetic or electric charges, respectively, move on cones similar to neutral test particles in the Taub-NUT space-times.

  7. Injection space charge: enlargements of flux density functioning point choice

    International Nuclear Information System (INIS)

    Ropert, A.

    In Saturne, injection consists of a synchrobetatron filling of the chamber, with the goal of providing a beam with the following characteristics circulating in the machine: horizontal flux density 90 πmm mrd, vertical flux density 210 πmm mrd, dispersion in moments +- 7 x 10 -3 , and number of particles 2 x 10 12 . The determination of the principal injection parameters was made by means of GOC calculation programs. The goal of this study is to show a certain number of phenomena induced by the forces due to space charge and left suspended up to this point: variations in the intensity injectable into the machine extension of the beam occupation zone in the ν/sub x'/ ν/sub z/ diagram, and turn-turn interactions. The effects of the space charge lead to a deterioration of the injected beam for certain functioning points leading to the selection of a zone in the ν/sub x'/ ν/sub z/ diagram that is particularly suitable for beam injection

  8. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    In 1991 a space charge calculation for bunched beam with a three-dimensional ellipsoid was proposed, replacing the usual SCHEFF routines. It removes the cylindrical symmetry required in SCHEFF and avoids the point to point interaction computation, whose number of simulation points is limited. This routine has now been improved with the introduction of two or three ellipsoids giving a good representation of the complex non-symmetrical form of the bunch (unlike the 3-d ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty encountered near the centre (the axis in 2-d problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Comparisons with other space charge routines have been made, particularly with the ones applying other techniques such as SCHEFF. Introduced in the versatile beam dynamics code DYNAC, it should provide a good tool for the study of the various parameters responsible for the halo formation in high intensity linacs. (orig.)

  9. Working Group 2 summary: Space charge effects in bending systems

    International Nuclear Information System (INIS)

    Bohn, C.L.; Emma, P.J.

    2000-01-01

    At the start of the Workshop, the authors asked the Working Group 2 participants to concentrate on three basic goals: (1) survey the status of how comprehensively the physics concerning space-charge effects in bends is understood and how complete is the available ensemble of analytic and computational tools; (2) guided by data from experiments and operational experience, identify sources of, and cures for, beam degradation; and (3) review space-charge physics in rings and the limitations it introduces. As the Workshop unfolded, the third goal naturally folded into the other two goals, and these goals, they believe, were fulfilled in that the Working Group was able to compile an end product consisting of a set of recommendations for potentially fruitful future work. This summary constitutes an overview of the deliberations of the Working Group, and it is their hope that the summary clarifies the motivation for the recommended work listed at the end. The summary is organized according to the two aforementioned goals, and the prime topics of discussion appear as subsections under these goals

  10. Generation Of Unipolar Field For The Control Of Charges

    Directory of Open Access Journals (Sweden)

    Barnabas Oluwaseyi Alabi

    2017-10-01

    Full Text Available Electric charge is the property of a matter that allow for electric and magnetic forces interaction. These charges can be controlled by unipolar electromagnetic field. In this study such unipolar field that can propagate was generated. This unipolar electromagnetic field was simulated and tested for propagation. To produce a propagating unipolar magnetic field a time-varying unipolar electric current generator was considered. The model considered was simulated in the National Instruments Multisim windows application environment. The generated electric voltage waveform was viewed via the output grapher of the application. Various loads were connected to ensure consistency in the unipolar waveform for different load value on the generator. The result obtained showed that a unipolar field which could propagate can be achievable only when the signal involved was properly rectified. After rectification however the desired waveform and signal was produced. The test for propagation was done using a core of iron and a small solenoid connected to the rectified output and the field produced was magnetic this attracted a metal clip 1.0 cm away and a larger core attracted a hammer from around 10.0 cm away. The study concluded that a propagating magnetic field useful for the control of charges can be generated if the signal involved is made to be unipolar in nature.

  11. Charged Particle Diffusion in Isotropic Random Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, P.; Matthaeus, W. H.; Chuychai, P.; Parashar, T. N.; Chhiber, R. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sonsrettee, W. [Faculty of Engineering and Technology, Panyapiwat Institute of Management, Nonthaburi 11120 (Thailand); Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—I-50125 Firenze (Italy); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Montgomery, D. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Dmitruk, P. [Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, 1428 Buenos Aires (Argentina); Wan, M. [Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055 (China)

    2017-03-10

    The investigation of the diffusive transport of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider the diffusion of charged particles in fully three-dimensional isotropic turbulent magnetic fields with no mean field, which may be pertinent to many astrophysical situations. We identify different ranges of particle energy depending upon the ratio of Larmor radius to the characteristic outer length scale of turbulence. Two different theoretical models are proposed to calculate the diffusion coefficient, each applicable to a distinct range of particle energies. The theoretical results are compared to those from computer simulations, showing good agreement.

  12. Effect of surface topography and morphology on space charge packets in polyethylene

    International Nuclear Information System (INIS)

    Zhou Yuanxiang; Wang Yunshan; Sun Qinghua; Wang Ninghua

    2009-01-01

    Polyethylene (PE) is a major kind of internal insulating material. With great progresses of space charge measurement technologies in the last three decades, lots of researches are focused on space charge in PE. The heat pressing and annealing condition of polyethylene affect its morphology obviously. During the heat pressing, the surface of PE forms different surface topographies because of different substrate materials. Surface topography has great relation to the epitaxial crystallization layer and influences the space charge characteristic of PE dramatically. This paper studied the formation process of different surface topographies and their micrographic characters in low density polyethylene (LDPE). pulsed electro-acoustic (PEA) method was used to measure the space charge distribution of samples with different surface topographies and morphologies in LDPE. The effect of surface topography and morphology to space charge packet were studied. The surface topography has great influence on space charge packet polarity and morphology has influence on both movement speed rate and polarity of space charge packet.

  13. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    Science.gov (United States)

    Alton, G. D.; Bilheux, H.

    2004-05-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.

  14. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, H.

    2004-01-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j +ext , and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j +ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects

  15. A charged black hole in a uniform magnetic field

    International Nuclear Information System (INIS)

    Krori, K.D.; Chaudhury, S.; Dowerah, S.

    1983-01-01

    We present here an investigation of the event horizon of a charged black hole embedded in a uniform magnetic field studying the Gaussian curvature. It is shown that the Gauss-Bonnet theorem holds for this magnetized black hole and for a magnetized Kerr black hole

  16. Field equipotentials of a fast-moving charge in medium

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1994-01-01

    The Lienard-Wiechert field equipotentials of an uniformly moving charge in medium are presented. It is stressed that the obtained curves describe in fact the angular dependence if formation ways of the radiation. In particular, the Cherenkov radiation corresponds to the infinite formation way. 7 refs.; 1 fig. (author)

  17. Charge transport in disordered organic field-effect transistors

    NARCIS (Netherlands)

    Tanase, Cristina; Blom, Paul W.M.; Meijer, Eduard J.; Leeuw, Dago M. de; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is

  18. Ambipolar charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Smits, E.C.P.; Anthopoulos, T.D.; Setayesh, S.; Veenendaal, van E.; Coehoorn, R.; Blom, P.W.M.; Boer, de B.; Leeuw, de D.M.

    2006-01-01

    A model describing charge transport in disordered ambipolar organic field-effect transistors is presented. The basis of this model is the variable-range hopping in an exponential density of states developed for disordered unipolar organic transistors. We show that the model can be used to calculate

  19. Absorption of massive scalar field by a charged black hole

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T [Kyoto Univ. (Japan). Dept. of Physics; Sato, H [Kyoto Univ. (Japan). Research Inst. for Fundamental Physics

    1976-04-12

    Absorption and reflection of charged, massive scalar field by the Reisner-Nordstrom black hole are investigated through a numerical computation. The absorption is suppressed when (Schwarzschild radius)<(Compton wave length) and the amplification of the wave occurs when the level crossing condition is satisfied.

  20. Surface Layer Fluorination-Modulated Space Charge Behaviors in HVDC Cable Accessory

    Directory of Open Access Journals (Sweden)

    Jin Li

    2018-05-01

    Full Text Available Space charges tend to accumulate on the surface and at the interface of ethylene–propylene–diene terpolymer (EPDM, serving as high voltage direct current (HVDC cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

  1. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  2. BRICTEST: a code for charge breeding simulations in RF quadrupolar field

    International Nuclear Information System (INIS)

    Variale, V.; Claudione, M.

    2005-01-01

    In the framework of the SPES project (Study for Production of Exotic Species), funded by Istituto Nazionale Fisica Nucleare (INFN) at the Laboratori Nazionali Legnaro (LNL) (Padua) for Radioactive Ion Beam (RIB) production, an R and D experiment of a charge breeder device, called BRIC (BReeding Ion Charge), is in progress at LNL. BRIC is an Electron Beam Ion Source (EBIS) type ion charge state breeder in which a radio frequency (RF) quadrupolar field has been superimposed in the trapped ion region to introduce a selective containment with the aim of increasing the wanted ion trapping efficiency. A code that studies the motion and the ion charge state evolution in the trap region of the BRIC device has been recently developed in the Bari INFN section. That code has the aim of showing if, in the presence of an axial magnetic field and electron beam space charge force, the RF quadrupole field can still give a selective ion containment in the EBIS trap region. The code, furthermore, should allow choosing the RF quadrupole parameters to optimize the ion charge containment efficiency. In this paper the main feature of the code, named BRICTEST, and the simulation test will be presented and shortly discussed

  3. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    Science.gov (United States)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  4. KOBRA 3 - a code for the calculation of space-charge-influenced trajectories in 3-dimensions

    International Nuclear Information System (INIS)

    Spaedtke, P.; Wipf, S.

    1989-06-01

    KOBRA3 is a three-dimensional multi-purpose program, written in standard FORTRAN77. The main purpose of the program is to calculate the trajectories of charged particles through a static electro-magnetic field in three dimensions. If space charge is not negligible its influence is taken into account by an iterative process. The Laplace equation is solved for the scalar potential. During the ray tracing, in which the equations of motion for charged particles are solved, the space charge term in the Poisson equation is distributed onto the mesh. By repeating this procedure the steady-state Vlasov equation is solved: ∇ 2 φ+∫∫∫f p dxdydz = 0, where φ is the electro-static potential and f p (r vector, v vector) describes the distribution of the charged particles in space. KOBRA3 can handle finite plasma boundaries, which are found by the program automatically. Special features are included within the program to investigate the beam quality (emittance, transverse energy), and to display the geometry, the trajectories and the potential and magnetic fields graphically. The modular structure of the program enables the user to create his (her) own diagnostic programs or interfaces to the main program. This report is intended to facilitate the use of KOBRA3 by describing the theory, structure and numerical methods used. At GSI (Gesellschaft fuer Schwerionenforschung) the program runs on an IBM 3090-40E. The program has been installed on other machines e.g. CRAY XM-P, CRAY II, VAX 8600, IBM 3090-200, IBM 3033, ATARI ST, IBM-AT. (orig./HSI)

  5. A note on dust grain charging in space plasmas

    Science.gov (United States)

    Rosenberg, M.; Mendis, D. A.

    1992-01-01

    Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.

  6. Space charge in ionization detectors and the NA48 electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Palestini, S.; Barr, G.D.; Biino, C.; Calafiura, P.; Ceccucci, A.; Cerri, C.; Chollet, J.C.; Cirilli, M.; Cogan, J.; Costantini, F.; Crepe, S.; Cundy, D.; Fantechi, R.; Fayard, L.; Fischer, G.; Formica, A.; Frabetti, P.L.; Funk, W.; Gianoli, A.; Giudici, S.; Gonidec, A.; Gorini, B.; Govi, G.; Iconomidou-Fayard, L.; Kekelidze, V.; Kubischta, W.; Luitz, S.; Mannelli, I.; Martini, M.; Mikulec, I.; Norton, A.; Ocariz, J.; Schinzel, D.; Sozzi, M.; Tatishvili, G.; Tkatchev, A.; Unal, G.; Velasco, M.; Vossnack, O.; Wahl, H.

    1999-01-01

    The subject of space charge due to positive ions slowly moving in parallel plate ionization chambers is considered. A model for the degradation of the detector response is developed, with particular emphasis on electromagnetic calorimeters.The topics discussed include: (a) the stationary; (b) the time dependent cases; (c) the limit of very large space charge; (d) the electric field dependence of the electron drift velocity; (e) the effect of longitudinal development of showers; (f) the behaviour of the average reductions of response; (g) the non-uniformity of response for different positions of the shower axis inside the cell defined by the electrodes. The NA48 calorimeter is used as application and for comparison of results

  7. Strong field gravitational lensing by a charged Galileon black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2016-07-01

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.

  8. Charge-field formulation of quantum electrodynamics (QEMED)

    International Nuclear Information System (INIS)

    Leiter, D.

    1980-01-01

    By expressing classical electron theory in terms of 'charge-field' functional structures, it is shown that a finite formulation of the classical electrodynamics of point charges emerges in a simple and elegant fashion. This is used to construct a 'charge-field' quantum electrodynamic theory. It is found that interacting photon states are generated as a secondary manifestation of electron-positron quantization, and do not require the usual 'free' canonical quantization scheme. The possibility is discussed that this approach may lead to a better formulation of quantum electrodynamics in the Heisenberg picture and suggests a crucial experimental test to distinguish this new 'charge-field' quantum electrodynamics 'QEMED' from the standard QED formulation. Specifically QEMED predicts that the 'Einstein principle of separability' should be found to be valid for correlated photon polarization measurements, in which the polarizers are changed more rapidly than a characteristic photon travel time. Such an experiment (Aspect 1976) can distinguish between QEMED and QED in a complete and clear-cut fashion. (U.K.)

  9. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    Riegler, Werner

    2016-11-07

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  10. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    International Nuclear Information System (INIS)

    Riegler, W.

    2016-01-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  11. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    Science.gov (United States)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  12. Equilibrium phase-space distributions and space charge limits in linacs

    International Nuclear Information System (INIS)

    Lysenko, W.P.

    1977-10-01

    Limits on beam current and emittance in proton and heavy ion linear accelerators resulting from space charge forces are calculated. The method involves determining equilibrium distributions in phase space using a continuous focusing, no acceleration, model in two degrees of freedom using the coordinates r and z. A nonlinear Poisson equation must be solved numerically. This procedure is a matching between the longitudinal and transverse directions to minimize the effect of longitudinal-transverse coupling which is believed to be the main problem in emittance growth due to space charge in linacs. Limits on the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator performance are calculated as an example. The beam physics is described by a few space charge parameters so that accelerators with different physical parameters can be compared in a natural way. The main result of this parameter study is that the requirement of a high-intensity beam is best fulfilled with a low-frequency accelerator whereas the requirement of a high-brightness beam is best fulfilled with a high-frequency accelerator

  13. Particle trapping by nonlinear resonances and space charge

    International Nuclear Information System (INIS)

    Franchetti, G.; Hofmann, I.

    2006-01-01

    In the FAIR [C.D.R. http://www.gsi.de/GSI Future/cdr/] facility planned at GSI high space charge effects and nonlinear dynamics may play an important role for limiting nominal machine performance. The most relevant interplay of these two effects on the single particle dynamics has been proposed in terms of trapping of particles into stable islands [G. Franchetti, I. Hofmann, AIP Conf. Proc. 642 (2002) 260]. Subsequent numerical studies and dedicated experiments have followed [G. Franchetti et al., Phys. Rev. ST Accel. Beams 6 (2003) 124201; G. Franchetti et al., AIP Conf. Proc. 773 (2005) 137]. We present here the effect of the chromaticity on the mechanisms of halo formation induced by particle trapping into resonances

  14. PSR experience with beam losses, instabilities and space charge effects

    International Nuclear Information System (INIS)

    Macek, R.J.

    1998-01-01

    Average current from the PSR has been limited to ∼70 μA at 20 Hz by beam losses of 0.4 to 0.5 μA which arise from two principal causes, production of H 0 excited states and stored-beam scattering in the stripper foil. To reduce beam losses, an upgrade from the two-step H 0 injection to direct H - injection is underway and will be completed in 1998. Peak intensity from the PSR is limited by a strong instability that available evidence indicates is the two-stream e-p instability. New evidence for the e-p hypothesis is presented. At operating intensities, the incoherent space charge tune shift depresses both horizontal and vertical tunes past the integer without additional beam loss although some intensity-dependent emittance growth is observed. copyright 1998 American Institute of Physics

  15. PSR experience with beam losses, instabilities and space charge effects

    International Nuclear Information System (INIS)

    Macek, Robert J.

    1998-01-01

    Average current from the PSR has been limited to ∼70 μA at 20 Hz by beam losses of 0.4 to 0.5 μA which arise from two principal causes, production of H 0 excited states and stored-beam scattering in the stripper foil. To reduce beam losses, an upgrade from the two-step H 0 injection to direct H - injection is underway and will be completed in 1998. Peak intensity from the PSR is limited by a strong instability that available evidence indicates is the two-stream e-p instability. New evidence for the e-p hypothesis is presented. At operating intensities, the incoherent space charge tune shift depresses both horizontal and vertical tunes past the integer without additional beam loss although some intensity-dependent emittance growth is observed

  16. Space-Charge Simulation of Integrable Rapid Cycling Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery [Fermilab; Valishev, Alexander [Fermilab

    2017-05-01

    Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).

  17. Motion of charged particles in a knotted electromagnetic field

    International Nuclear Information System (INIS)

    Arrayas, M; Trueba, J L

    2010-01-01

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  18. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  19. Field of a dipole in charged black-hole electrostatics

    International Nuclear Information System (INIS)

    Souza, J.A.

    1979-01-01

    By using the solution of Adler and Das for Maxwell's equations in a Reissner-Nordstroem optimally charged background metric, the field of a static electric dipole is found and then, by a duality rotation, the field of a static magnetic dipole is obtained. A generalization of the concept of electric-dipole moment is proposed for static dipoles in curved manifolds, and the behaviour of the fields both for the dipole very near and very far from the singular surface of the Reissner-Nordstroem geometry is studied. (author)

  20. Vacuum polarization and topological self-interaction of a charge in multiconic space

    International Nuclear Information System (INIS)

    Gal'tsov, D.V.; Grats, Y.V.; Lavrent'ev, A.B.

    1995-01-01

    The behavior of classical and quantized massless scalar fields in n-dimensional multiconic space-time is considered. An expression for the Euclidean Green's function is obtained using the methods of perturbation theory. It is shown that a nontrivial topology of the space distorts the electrostatic field of a pointlike charge; as a result, the self-energy of the particle assumes a nonzero value, and a force of topological self-interaction arises. Similarly, a change in the spectrum of vacuum fluctuations of a quantized scalar field leads to nonzero vacuum expectation values left-angle φ 2 right-angle vac and left-angle T μv right-angle va and gives rise to vacuum attraction between parallel cosmic strings. 28 refs

  1. Electric-field Induced Microdynamics of Charged Rods

    Directory of Open Access Journals (Sweden)

    Kyongok eKang

    2014-12-01

    Full Text Available Electric-field induced phase/state transitions are observed in AC electric fields with small amplitudes and low frequencies in suspensions of charged fibrous viruses (fd, which are model systems for highly charged rod-like colloids. Texture- and particle-dynamics in these field-induced states, and on crossing transition lines, are explored by image time-correlation and dynamic light scattering, respectively. At relatively low frequencies, starting from a system within the isotropic-nematic coexistence region, a transition from a nematic to a chiral nematic is observed, as well as a dynamical state where nematic domains melt and reform. These transitions are preliminary due to field-induced dissociation/association of condensed ions. At higher frequencies a uniform state is formed that is stabilized by hydrodynamic interactions through field-induced electro-osmotic flow where the rods align along the field direction. There is a point in the field-amplitude versus frequency plane where various transition lines meet. This point can be identified as a non-equilibrium critical point, in the sense that a length scale and a time scale diverge on approach of that point. The microscopic dynamics exhibits discontinuities on crossing transition lines that were identified independently by means of image and signal correlation spectroscopy.

  2. Methods for studying plasma charge transport across a magnetic field

    International Nuclear Information System (INIS)

    Popovich, A.S.

    1978-01-01

    A comparative analysis of experimental methods for the diffusion transfer of plasma charged particles accross the magnetic field at the study of its confinement effectiveness, instability effect is carried out. Considered are the methods based on the analysis of particle balance in the charge and possibilities of diffusion coefficient determination according to measuring parameters of density gradient and particle flow on the wall, rate of plasma decay after switching off ionization source radial profile of plasma density outside the active region of stationary charge. Much attension is payed to the research methods of diffusion transfer, connected with the study of propagation of periodic and aperiodic density perturbation in a plasma. Analysed is the Golubev and Granovsky method of diffusion waves and its different modifications, phase analysis method of ''test charges'' movement, as well as different modifications of correlation methods. Considered are physical preconditions of the latter and criticized is unilateral interpretation of correlation measurings, carried out in a number of works. The analysis of study possibilities of independent (non-ambipolar) diffusion of electrons and ions in a plasma in the magnetic field is executed

  3. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  4. Ferroelectric plasma source for heavy ion beam space charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Davidson, Ronald C.; Grisham, Larry; Grant Logan, B.; Seidl, Peter A.; Waldron, William; Yu, Simon S.

    2007-01-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to allow them to focus to a small spot size and compress their axial pulse length. The plasma source should be able to operate at low neutral pressures and without strong externally applied electric or magnetic fields. To produce 1 m-long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients are being developed. The sources utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic material, and high voltage (∼7 kV) will be applied between the drift tube and the front surface of the ceramics. A prototype ferroelectric source, 20 cm in length, has produced plasma densities of 5x10 11 cm -3 . It was integrated into the Neutralized Transport Experiment (NTX), and successfully charge neutralized the K + ion beam. A 1 m-long source comprised of five 20-cm-long sources has been tested. Simply connecting the five sources in parallel to a single pulse forming network power supply yielded non-uniform performance due to the time-dependent nature of the load that each of the five plasma sources experiences. Other circuit combinations have been considered, including powering each source by its own supply. The 1-m-long source has now been successfully characterized, producing relatively uniform plasma over the 1 m length of the source in the mid-10 10 cm -3 density range. This source will be integrated into the NDCX device for charge neutralization and beam compression experiments

  5. Theory of accelerated orbits and space charge effects in an AVF cyclotron

    International Nuclear Information System (INIS)

    Kleeven, W.J.G.M.

    1988-01-01

    In the first part of this thesis the influence of the accelerating electric field upon the motion of particles in a cyclotron is studied. A general relativistic Hamiltonian theory is derived which allows for a simultaneous study of the transverse and longitudinal motion as well as the coupling between both motions. It includes azimuthally varying magnetic fields and therefore describes phenomena which are due to the interfering influences of a given geometrical dee system with the azimuthally varying part of the magnetic field. As an example the electric gap crossing resonance is treated. The second part deals with space charge effects in a AVF cyclotron. The properties of the bunch, like the sizes, emittances and momentum spread, are represented in terms of second order moments of the phase space distribution function, and two sets of differential equations are derived which describe the time evolution of these moments under space charge conditions. The model takes into account the coupling between the longitudinal and radial motion, and the fact that the revolution frequency of the particles is independent of their energy. The analytical models developed can be applied to a given cyclotron by adopting the relevant parameters. Some calculations are presented for the small 3 MeV Iscochroneous Low Energy Cyclotron ILEC which is presently under construction at the Eindhoven University. Also some attention to the construction of this machine is given. (H.W.). 49 refs.; 37 figs

  6. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  7. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  8. Regularization of the quantum field theory of charges and monopoles

    International Nuclear Information System (INIS)

    Panagiotakopoulos, C.

    1981-09-01

    A gauge invariant regularization procedure for quantum field theories of electric and magnetic charges based on Zwanziger's local formulation is proposed. The bare regularized full Green's functions of gauge invariant operators are shown to be Lorentz invariant. This would have as a consequence the Lorentz invariance of the finite Green's functions that might result after any reasonable subtraction if such a subtraction can be found. (author)

  9. Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-01-01

    Full Text Available This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA. After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.

  10. Space charge effects and aberrations on electron pulse compression in a spherical electrostatic capacitor.

    Science.gov (United States)

    Yu, Lei; Li, Haibo; Wan, Weishi; Wei, Zheng; Grzelakowski, Krzysztof P; Tromp, Rudolf M; Tang, Wen-Xin

    2017-12-01

    The effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized. Our results suggest that α-SDA is an effective compression approach for electron pulses under the optimum conditions. It may serve as a potential key component in designing future time-resolved electron sources for electron diffraction and spectroscopy experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Self Consistent Multiprocessor Space Charge Algorithm that is Almost Embarrassingly Parallel

    International Nuclear Information System (INIS)

    Nissen, Edward; Erdelyi, B.; Manikonda, S.L.

    2012-01-01

    We present a space charge code that is self consistent, massively parallelizeable, and requires very little communication between computer nodes; making the calculation almost embarrassingly parallel. This method is implemented in the code COSY Infinity where the differential algebras used in this code are important to the algorithm's proper functioning. The method works by calculating the self consistent space charge distribution using the statistical moments of the test particles, and converting them into polynomial series coefficients. These coefficients are combined with differential algebraic integrals to form the potential, and electric fields. The result is a map which contains the effects of space charge. This method allows for massive parallelization since its statistics based solver doesn't require any binning of particles, and only requires a vector containing the partial sums of the statistical moments for the different nodes to be passed. All other calculations are done independently. The resulting maps can be used to analyze the system using normal form analysis, as well as advance particles in numbers and at speeds that were previously impossible.

  12. Discrete phase space based on finite fields

    International Nuclear Information System (INIS)

    Gibbons, Kathleen S.; Hoffman, Matthew J.; Wootters, William K.

    2004-01-01

    The original Wigner function provides a way of representing in phase space the quantum states of systems with continuous degrees of freedom. Wigner functions have also been developed for discrete quantum systems, one popular version being defined on a 2Nx2N discrete phase space for a system with N orthogonal states. Here we investigate an alternative class of discrete Wigner functions, in which the field of real numbers that labels the axes of continuous phase space is replaced by a finite field having N elements. There exists such a field if and only if N is a power of a prime; so our formulation can be applied directly only to systems for which the state-space dimension takes such a value. Though this condition may seem limiting, we note that any quantum computer based on qubits meets the condition and can thus be accommodated within our scheme. The geometry of our NxN phase space also leads naturally to a method of constructing a complete set of N+1 mutually unbiased bases for the state space

  13. A magnetic field cloak for charged particle beams

    Science.gov (United States)

    Capobianco-Hogan, K. G.; Cervantes, R.; Deshpande, A.; Feege, N.; Krahulik, T.; LaBounty, J.; Sekelsky, R.; Adhyatman, A.; Arrowsmith-Kron, G.; Coe, B.; Dehmelt, K.; Hemmick, T. K.; Jeffas, S.; LaByer, T.; Mahmud, S.; Oliveira, A.; Quadri, A.; Sharma, K.; Tishelman-Charny, A.

    2018-01-01

    Shielding charged particle beams from transverse magnetic fields is a common challenge for particle accelerators and experiments. We demonstrate that a magnetic field cloak is a viable solution. It allows for the use of dipole magnets in the forward regions of experiments at an Electron Ion Collider (EIC) and other facilities without interfering with the incoming beams. The dipoles can improve the momentum measurements of charged final state particles at angles close to the beam line and therefore increase the physics reach of these experiments. In contrast to other magnetic shielding options (such as active coils), a cloak requires no external powering. We discuss the design parameters, fabrication, and limitations of a magnetic field cloak and demonstrate that cylinders made from 45 layers of YBCO high-temperature superconductor, combined with a ferromagnetic shell made from epoxy and stainless steel powder, shield more than 99% of a transverse magnetic field of up to 0.45 T (95% shielding at 0.5 T) at liquid nitrogen temperature. The ferromagnetic shell reduces field distortions caused by the superconductor alone by 90% at 0.45 T.

  14. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France); Vu, T. T. N. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Electric Power University, 235 Hoang Quoc Viet, 10000 Hanoi (Viet Nam)

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  15. Quantum fields in curved space-times

    International Nuclear Information System (INIS)

    Ashtekar, A.; Magnon, A.

    1975-01-01

    The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)

  16. Equivalent circuit modeling of space charge dominated magnetically insulated transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Kazuki; Nakajima, Mitsuo; Horioka, Kazuhiko

    1997-12-31

    A new equivalent circuit model for space charge dominated MITLs (Magnetically Insulated Transmission Lines) was developed. MITLs under high power operation are dominated with space charge current flowing between anode and cathode. Conventional equivalent circuit model does not account for space charge effects on power flow. The model was modified to discuss the power transportation through the high power MITLs. With this model, it is possible to estimate the effects of space charge current on the power flow efficiency, without using complicated particle code simulations. (author). 3 figs., 3 refs.

  17. Three dimensional simulations of space charge dominated heavy ion beams with applications to inertial fusion energy

    International Nuclear Information System (INIS)

    Grote, D.P.

    1994-01-01

    Heavy ion fusion requires injection, transport and acceleration of high current beams. Detailed simulation of such beams requires fully self-consistent space charge fields and three dimensions. WARP3D, developed for this purpose, is a particle-in-cell plasma simulation code optimized to work within the framework of an accelerator's lattice of accelerating, focusing, and bending elements. The code has been used to study several test problems and for simulations and design of experiments. Two applications are drift compression experiments on the MBE-4 facility at LBL and design of the electrostatic quadrupole injector for the proposed ILSE facility. With aggressive drift compression on MBE-4, anomalous emittance growth was observed. Simulations carried out to examine possible causes showed that essentially all the emittance growth is result of external forces on the beam and not of internal beam space-charge fields. Dominant external forces are the dodecapole component of focusing fields, the image forces on the surrounding pipe and conductors, and the octopole fields that result from the structure of the quadrupole focusing elements. Goal of the design of the electrostatic quadrupole injector is to produce a beam of as low emittance as possible. The simulations show that the dominant effects that increase the emittance are the nonlinear octopole fields and the energy effect (fields in the axial direction that are off-axis). Injectors were designed that minimized the beam envelope in order to reduce the effect of the nonlinear fields. Alterations to the quadrupole structure that reduce the nonlinear fields further were examined. Comparisons were done with a scaled experiment resulted in very good agreement

  18. Integral transport theory for charged particles in electric and magnetic fields

    International Nuclear Information System (INIS)

    Boffi, V.C.; Molinari, V.G.

    1979-01-01

    An integral transport theory for charged particles which, in the presence of electric and magnetic fields, diffuse by collisions against the atoms (or molecules) of a host medium is proposed. The combined effects of both the external fields and the mechanisms of scattering, removal and creation in building up the distribution function of the charged particles considered are investigated. The eigenvalue problem associated with the sourceless case of the given physical situation is also commented. Applications of the theory to a purely velocity-dependent problem and to a space-dependent problem, respectively, are illustrated for the case of a separable isotropic scattering kernel of synthetic type. Calculations of the distribution function, of the total current density and of relevant electrical conductivity are then carried out for different specializations of the external fields. (author)

  19. Zero-point field in curved spaces

    International Nuclear Information System (INIS)

    Hacyan, S.; Sarmiento, A.; Cocho, G.; Soto, F.

    1985-01-01

    Boyer's conjecture that the thermal effects of acceleration are manifestations of the zero-point field is further investigated within the context of quantum field theory in curved spaces. The energy-momentum current for a spinless field is defined rigorously and used as the basis for investigating the energy density observed in a noninertial frame. The following examples are considered: (i) uniformly accelerated observers, (ii) two-dimensional Schwarzschild black holes, (iii) the Einstein universe. The energy spectra which have been previously calculated appear in the present formalism as an additional contribution to the energy of the zero-point field, but particle creation does not occur. It is suggested that the radiation produced by gravitational fields or by acceleration is a manifestation of the zero-point field and of the same nature (whether real or virtual)

  20. Space-charge effects on the propagation of hollow electron beams

    International Nuclear Information System (INIS)

    Barroso, J.J.; Stellati, C.

    1994-01-01

    The dynamics of hollow electron beams with gyro motion propagating down a cylindrical drift tube is analysed on the basis of a non-adiabatic-gun-generated laminar beam. Due to the action of beam's self-space charge field, the transverse velocity spread has an oscillatory behavior along the drift tube wherein the spatial auto modulation period shortens with increasing current. Numerical simulation results indicate that even at a 10 A beam current, the resulting transverse velocity spread is still less than the spread for a zero beam current. (author). 5 refs, 3 figs

  1. Increased-accuracy numerical modeling of electron-optical systems with space-charge

    International Nuclear Information System (INIS)

    Sveshnikov, V.

    2011-01-01

    This paper presents a method for improving the accuracy of space-charge computation for electron-optical systems. The method proposes to divide the computational region into two parts: a near-cathode region in which analytical solutions are used and a basic one in which numerical methods compute the field distribution and trace electron ray paths. A numerical method is used for calculating the potential along the interface, which involves solving a non-linear equation. Preliminary results illustrating the improvement of accuracy and the convergence of the method for a simple test example are presented.

  2. The effect of nonlinear forces on coherently oscillating space-charge-dominated beams

    International Nuclear Information System (INIS)

    Celata, C.M.

    1987-03-01

    A particle-in-cell computer simulation code has been used to study the transverse dynamics of nonrelativistic misaligned space-charge-dominated coasting beams in an alternating gradient focusing channel. In the presence of nonlinear forces due to dodecapole or octupole imperfections of the focusing fields or to image forces, the transverse rms emittance grows in a beat pattern. Analysis indicates that this emittance dilution is due to the driving of coherent modes of the beam near their resonant frequencies by the nonlinear force. The effects of the dodecapole and images forces can be made to effectively cancel for some boundary conditions, but the mechanism is not understood at this time

  3. Structure resonances due to space charge in periodic focusing channels

    Science.gov (United States)

    Li, Chao; Jameson, R. A.

    2018-02-01

    The Vlasov-Poisson model is one of the most effective methods to study the space charge dominated beam evolution self-consistently in a periodic focusing channel. Since the approach to get the solution with this model is not trivial, previous studies are limited in degenerated conditions, either in smoothed channel (constant focusing) [I. Hofmann, Phys. Rev. E 57, 4713 (1998)] or in alternating gradient focusing channel with equal initial beam emittance condition in the degrees of freedom [I. Hofmann et al., Part. Accel. 13, 145 (1983); Chao Li et al., THOBA02, IPAC2016]. To establish a basis, we intentionally limit this article to the study of the pure transverse periodic focusing lattice with arbitrary initial beam condition, and the same lattice structure in both degrees of freedom, but with possibility of different focusing strengths. This will show the extension of the existing work. The full Hamiltonian is invoked for a pure transverse focusing lattice in various initial beam conditions, revealing different mode structure and additional modes beyond those of the degenerated cases. Application of the extended method to realistic lattices (including longitudinal accelerating elements) and further details will then reveal many new insights, and will be presented in later work.

  4. Relativistic space-charge-limited current for massive Dirac fermions

    Science.gov (United States)

    Ang, Y. S.; Zubair, M.; Ang, L. K.

    2017-04-01

    A theory of relativistic space-charge-limited current (SCLC) is formulated to determine the SCLC scaling, J ∝Vα/Lβ , for a finite band-gap Dirac material of length L biased under a voltage V . In one-dimensional (1D) bulk geometry, our model allows (α ,β ) to vary from (2,3) for the nonrelativistic model in traditional solids to (3/2,2) for the ultrarelativistic model of massless Dirac fermions. For 2D thin-film geometry we obtain α =β , which varies between 2 and 3/2, respectively, at the nonrelativistic and ultrarelativistic limits. We further provide rigorous proof based on a Green's-function approach that for a uniform SCLC model described by carrier-density-dependent mobility, the scaling relations of the 1D bulk model can be directly mapped into the case of 2D thin film for any contact geometries. Our simplified approach provides a convenient tool to obtain the 2D thin-film SCLC scaling relations without the need of explicitly solving the complicated 2D problems. Finally, this work clarifies the inconsistency in using the traditional SCLC models to explain the experimental measurement of a 2D Dirac semiconductor. We conclude that the voltage scaling 3 /2 <α <2 is a distinct signature of massive Dirac fermions in a Dirac semiconductor and is in agreement with experimental SCLC measurements in MoS2.

  5. Space-charge-limited currents in electron-irradiated dielectrics

    International Nuclear Information System (INIS)

    Nunes de Oliveira, L.; Gross, B.

    1975-01-01

    This paper develops the theory of steady-state currents generated in a dielectric placed between positively or negatively biased electrodes and irradiated with a partially penetrating electron beam. The dielectric is divided into an irradiated region (IR), which extends from the electrode of incidence to the extrapolated range of the beam, and a nonirradiated region (NIR). In the IR the primary beam generates an electron-hole plasma. Its end plane acts as a virtual electrode embedded in the dielectric. Currents are space-charge limited in the NIR and Ohmic in the IR which is characterized by a uniform radiation-induced conductivity. Depending on the polarity of the electrode bias, electrons or holes are drawn from the IR into the NIR. The theory correctly predicts an apparent threshold effect for the inset of steady-state currents: the current amplitudes remain small as long as the electron range is smaller than half the sample thickness, and increase strongly only afterwards. Calculated current curves for different beam energies are in satisfactory agreement with experimental results. The role of the electron beam as a virtual electrode is discussed

  6. A modified space charge routine for LINAC beam dynamics codes

    International Nuclear Information System (INIS)

    Valero, S.; Lapostolle, P.; Lombardi, A.M.; Tanke, E.; Warner, D.

    1994-01-01

    In 1991 a space charge calculation for bunched beams with three-dimensional ellipsoidal symmetry was proposed for the PARMILA code, replacing the usual SCHEFF routines: it removes the cylindrical symmetry needed for the Fast Fourier Transform method and avoids the point to point interaction computation, where the number of simulation points is limited. This routine has now been improved with the introduction of two (or more) ellipsoids, giving a good representation of actual, pear-shaped bunches (unlike the 3-D ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty caused by statistical effects, encountered near the centre (the axis in 2-D problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Introduced in the new, versatile beam dynamics code, DYNAC, it should provide a good tool for the study of the effects of the various parameters responsible for the halo formation in high intensity linacs. (authors). 11 refs

  7. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  8. Diffusion of charged particles in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Balescu, R.; Misguich, J.H.; Nakach, R.

    1992-07-01

    The diffusive motion of charged particles in a stochastic magnetic field is investigated systematically in a model in which the statistics of both the collisions and the magnetic field are described by coloured noises characterized, respectively, by a finite correlation time and finite correlation lengths. An analytic solution is obtained for the basic nonlinear differential equation of the model..It describes asymptotically a pure diffusion process, in which the mean square displacement in the perpendicular direction, Γ(t), grows proportionally to time (after a sufficiently long time). The corresponding diffusion coefficient scales like the fourth power of the magnetic fluctuation intensity. The values obtained are in very good agreement with experimental data in reverse-field pinch experiments. The present result contradicts earlier results predicting subdiffusive behaviour: Γ(t) ∼ t 1/2 or Γ(t) ∼ t 1/4 . The relation of these results to ours is discussed in detail

  9. Electrostatic storage ring with focusing provided by the space charge of an electron plasma

    International Nuclear Information System (INIS)

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2013-01-01

    Electrostatic storage rings are used for a variety of atomic physics studies. An advantage of electrostatic storage rings is that heavy ions can be confined. An electrostatic storage ring that employs the space charge of an electron plasma for focusing is described. An additional advantage of the present concept is that slow ions, or even a stationary ion plasma, can be confined. The concept employs an artificially structured boundary, which is defined at present as one that produces a spatially periodic static field such that the spatial period and range of the field are much smaller than the dimensions of a plasma or charged-particle beam that is confined by the field. An artificially structured boundary is used to confine a non-neutral electron plasma along the storage ring. The electron plasma would be effectively unmagnetized, except near an outer boundary where the confining electromagnetic field would reside. The electron plasma produces a radially inward electric field, which focuses the ion beam. Self-consistently computed radial beam profiles are reported.

  10. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Science.gov (United States)

    Talman, Richard; Malitsky, Nikolay; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004)PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel , Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)NIMAER0168-900210.1016/S0168-9002(00)00729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]). All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance γx on beam width (as controlled by the lattice βx function) at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening , in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001), http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR). (ii) A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the 2004 FEL Conference, pp. 18

  11. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  12. Irradiation of graphene field effect transistors with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M., E-mail: marika.schleberger@uni-due.de

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm{sup 2}, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  13. Photosensitive space charge limited current in screen printed CdTe thin films

    Science.gov (United States)

    Vyas, C. U.; Pataniya, Pratik; Zankat, Chetan K.; Patel, Alkesh B.; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2018-05-01

    Group II-VI Compounds have emerged out as most suitable in the class of photo sensitive material. They represent a strong position in terms of their applications in the field of detectors as well as photo voltaic devices. Cadmium telluride is the prime member of this Group, because of high acceptance of this material as active component in opto-electronic devices. In this paper we report preparation and characterization of CdTe thin films by using a most economical screen printing technique in association with sintering at 510°C temperature. Surface morphology and smoothness are prime parameters of any deposited to be used as an active region of devices. Thus, we studied of the screen printed thin film by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM) for this purpose. However, growth processes induced intrinsic defects in fabricated films work as charge traps and affect the conduction process significantly. So the conduction mechanism of deposited CdTe thin film is studied under dark as well as illuminated conditions. It is found that the deposited films showed the space charge limited conduction (SCLC) mechanism and hence various parameters of space charge limited conduction (SCLC) of CdTe film were evaluated and discussed and the photo responsive resistance is also presented in this paper.

  14. Space charge compensation on the low energy beam transport of Linac4

    CERN Document Server

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  15. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...... in Coulomb gauge and we show that the one-body Maxwell-Schrödinger system as well as the related one-body Maxwell-Pauli system both admit travelling wave solutions....

  16. Designing localized electromagnetic fields in a source-free space

    International Nuclear Information System (INIS)

    Borzdov, George N.

    2002-01-01

    An approach to characterizing and designing localized electromagnetic fields, based on the use of differentiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel families of exact time-harmonic solutions to Maxwell's equations in the source-free space - localized fields defined by the rotation group - are obtained. The proposed approach provides a broad spectrum of tools to design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to govern the distributions of their energy densities (both size and form of localization domains), and to set the structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-dimensional and three-dimensional field gratings is treated

  17. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Kolpakov, V. A., E-mail: kolpakov683@gmail.com; Krichevskii, S. V.; Markushin, M. A. [Korolev Samara National Research University (Russian Federation)

    2017-01-15

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].

  18. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-01-01

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  19. Streaming current magnetic fields in a charged nanopore

    Science.gov (United States)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  20. Spectroscopic techniques for measuring ion diode space-charge distributions and ion source properties

    Energy Technology Data Exchange (ETDEWEB)

    Filuk, A B; Bailey, J E; Adams, R G [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    The authors are using time- and space-resolved visible spectroscopy to measure applied-B ion diode dynamics on the 20 TW Particle Beam Fusion Accelerator II. Doppler broadening of fast Li atoms, as viewed parallel to the anode, is used in a charge-exchange model to obtain the Li{sup +} ion divergence within 100 {mu}m of the anode surface. The characteristic Stark/Zeeman shifts in spectra of alkali neutrals or singly-ionized alkaline-earths are used to measure the strong electric (10{sup 9} V/m) an magnetic ({approx} 6 T) fields in the diode gap. Large Stark shifts within 0.5 mm of the anode indicate the LiF emits with a finite field threshold rather than with Child-Langmuir-type emission, and the small slope in the electric field indicates an unexpected build-up of electrons near the anode. In the diode gap, the authors aim to unfold fields to quantify the time-dependent ion and electron space-charge distributions that determine the ion beam properties. Observed electric field non-uniformities give local beam deflections that can be comparable to the total beam microdivergence. The authors are implementing active laser absorption and laser-induced fluorescence spectroscopy on low-density Na atoms injected into the diode gap prior to the power pulse. The small Doppler broadening in the Na spectra should allow simultaneous electric and magnetic field mapping with improved spatial resolution. (author). 4 figs., 13 refs.

  1. Design of achromatic bending systems in the presence of space charge

    International Nuclear Information System (INIS)

    Jason, A.J.; Svaton, E.M.; Blind, B.; Heighway, E.A.

    1987-01-01

    The usual conditions for achromaticity of a dispersive system are shown to be inadequate when space-charge effects are included. Using a matrix formulation describing linear space-charge forces, we give generalized criteria necessary for a system to be achromatic. Additionally, these conditions are necessary for conservation of transverse emittances. An example of such a system is given

  2. Design of achromatic bending systems in the presence of space charge

    International Nuclear Information System (INIS)

    Jason, A.J.; Svaton, E.M.; Blind, B.; Heighway, E.A.

    1987-01-01

    The usual conditions for achromaticity of a dispersive system are shown to be inadequate when space-charge effects are included. Using a matrix formulation describing linear space-charge forces, the authors give generalized criteria necessary for a system to be achromatic. Additionally, these conditions are necessary for conservation of transverse emittances. An example of such a system is given

  3. Field-theoretical space-uncertainty description

    International Nuclear Information System (INIS)

    Papp, E.; Micu, C.A.

    1980-01-01

    An approach has been given to define both the nonzero minimum value of the space-uncertainty evaluation and of the upper rest-mass bound of the involved particles. In this respect there are analysed the space-uncertainties wich emerge both from the regularised quantum field-theory and high-energy behaviour. In such conditions there are involved particles wich are effectively nonpoint ones. It can be then concluded that the dualism broglien between waves and nonpoint particles is actually involved, now in more general terms

  4. Charge Yield at Low Electric Fields: Considerations for Bipolar Integrated Circuits

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2013-01-01

    A significant reduction in total dose damage is observed when bipolar integrated circuits are irradiated at low temperature. This can be partially explained by the Onsager theory of recombination, which predicts a strong temperature dependence for charge yield under low-field conditions. Reduced damage occurs for biased as well as unbiased devices because the weak fringing field in thick bipolar oxides only affects charge yield near the Si/SiO2 interface, a relatively small fraction of the total oxide thickness. Lowering the temperature of bipolar ICs - either continuously, or for time periods when they are exposed to high radiation levels - provides an additional degree of freedom to improve total dose performance of bipolar circuits, particularly in space applications.

  5. Space shuttle SRM field joint: Review paper

    Directory of Open Access Journals (Sweden)

    S. Mohammad Gharouni

    2014-09-01

    Full Text Available Due to Challenger space shuttle accident in 1986, significant research has been done concerning structural behavior of field joints in solid rocket boosters (SRB. The structural deformations between the clevis inner leg and the tang (male-to-female parts of joint, the sealing of the O-ring to prevent the hot gas in joints, has been neglected causing the failure of the vehicle. Redesigning the field joint in SRB engine by accurate analysis of dynamic and thermal loads and by design of insulator and good O-ring, the leakiness of combustion hot gases was eliminated. Some parts of field joint such as capture feature (CF and its third O-ring, J-leg insulator and shim were added to redesigned field joint. Also, some adjustments in sealing system and pins were done to promote the efficiency of the field joint. Due to different experimental analysis on assembled field joints with default imperfections, redesigned joints operated well. These redesigned field joints are commonly used in aerospace and mechanical structures. This paper investigates the original and the redesigned field joints with additional explanations of different parts of the redesigned joints.

  6. Space-charge limits on the transport of ion beams in a long alternating gradient system

    International Nuclear Information System (INIS)

    Tiefenback, M.G.

    1986-11-01

    We have experimentally studied the space-charge-dominated transport of ion beams in an alternating-gradient channel, without acceleration. We parameterize the focusing strength in terms of the zero-current ''betatron'' oscillation phase advance rate, σ 0 (degrees per focusing period). We have investigated the conditions for ''stability'', defined as the constancy of the total current and phase space area of the beam during transport. We find that the beam may be transported with neither loss of current nor growth in phase area if σ 0 0 . In this regime, the space-charge repulsive force can counter 98-99% of the externally applied focusing field, and the oscillation frequency of the beam particles can be depressed by self-forces to almost a factor of 10 below the zero-current value, limited only by the optical quality of our ion source. For σ 0 > 90 0 , we find that collective interactions bound the maintainable density of the beam, and we present a simple, semi-empirical characterization for stability, within our ability to distinguish the growth rate from zero in our apparatus. Our channel comprises 87 quadrupole lenses, 5 of which are used to prepare the beam for injection into the non-azimuthally-symmetric focusing channel

  7. Conserved charges of minimal massive gravity coupled to scalar field

    Science.gov (United States)

    Setare, M. R.; Adami, H.

    2018-02-01

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected.

  8. Conserved charges of minimal massive gravity coupled to scalar field

    International Nuclear Information System (INIS)

    Setare, M.R.; Adami, H.

    2018-01-01

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected. (orig.)

  9. Conserved charges of minimal massive gravity coupled to scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R.; Adami, H. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)

    2018-02-15

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected. (orig.)

  10. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  11. Quantum field theory in generalised Snyder spaces

    International Nuclear Information System (INIS)

    Meljanac, S.; Meljanac, D.; Mignemi, S.; Štrajn, R.

    2017-01-01

    We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.

  12. Quantum field theory in generalised Snyder spaces

    Energy Technology Data Exchange (ETDEWEB)

    Meljanac, S.; Meljanac, D. [Rudjer Bošković Institute, Bijenička cesta 54, 10002 Zagreb (Croatia); Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)

    2017-05-10

    We discuss the generalisation of the Snyder model that includes all possible deformations of the Heisenberg algebra compatible with Lorentz invariance and investigate its properties. We calculate perturbatively the law of addition of momenta and the star product in the general case. We also undertake the construction of a scalar field theory on these noncommutative spaces showing that the free theory is equivalent to the commutative one, like in other models of noncommutative QFT.

  13. Conformal field theory in conformal space

    International Nuclear Information System (INIS)

    Preitschopf, C.R.; Vasiliev, M.A.

    1999-01-01

    We present a new framework for a Lagrangian description of conformal field theories in various dimensions based on a local version of d + 2-dimensional conformal space. The results include a true gauge theory of conformal gravity in d = (1, 3) and any standard matter coupled to it. An important feature is the automatic derivation of the conformal gravity constraints, which are necessary for the analysis of the matter systems

  14. The influence of the breakdown electric field in the configuration of lightning corona sheath on charge distribution in the channel

    Science.gov (United States)

    Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje

    2014-11-01

    A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the

  15. New Method for Shallow and Deep Trap Distribution Analysis in Oil Impregnated Insulation Paper Based on the Space Charge Detrapping

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2018-01-01

    Full Text Available Space charge has close relation with the trap distribution in the insulation material. The phenomenon of charges trapping and detrapping has attracted significant attention in recent years. Space charge and trap parameters are effective parameters for assessing the ageing condition of the insulation material qualitatively. In this paper, a new method for calculating trap distribution based on the double exponential fitting analysis of charge decay process and its application on characterizing the trap distribution of oil impregnated insulation paper was investigated. When compared with the common first order exponential fitting analysis method, the improved dual-level trap method could obtain the energy level range and density of both shallow traps and deep traps, simultaneously. Space charge decay process analysis of the insulation paper immersed with new oil and aged oil shows that the improved trap distribution calculation method can distinguish the physical defects and chemical defects. The trap density shows an increasing trend with the oil ageing, especially for the deep traps mainly related to chemical defects. The greater the energy could be filled by the traps, the larger amount of charges could be trapped, especially under higher electric field strength. The deep trap energy level and trap density could be used to characterize ageing. When one evaluates the ageing condition of oil-paper insulation using trap distribution parameters, the influence of oil performance should not be ignored.

  16. Conformal use of retarded Green's functions for the Maxwell field in de Sitter space

    International Nuclear Information System (INIS)

    Faci, S.; Huguet, E.; Renaud, J.

    2011-01-01

    We propose a new propagation formula for the Maxwell field in de Sitter space which exploits the conformal invariance of this field together with a conformal gauge condition. This formula allows to determine the classical electromagnetic field in the de Sitter space from given currents and initial data. It only uses the Green's function of the massless Minkowskian scalar field. This leads to drastic simplifications in practical calculations. We apply this formula to the classical problem of the two charges of opposite signs at rest at the North and South Poles of the de Sitter space.

  17. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    Barnard, J.J.; Lund, S.M.

    2008-01-01

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  18. Considerations on 'Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring'

    International Nuclear Information System (INIS)

    Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.

    2009-01-01

    In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.

  19. Effect of the space-charge force on tracking at low energy

    International Nuclear Information System (INIS)

    Furman, M.A.

    1987-01-01

    The authors present tracking results for the SSC's Low Energy Booster at injection energy, including the effect of the space-charge force. The bunches are assumed to be gaussian with elliptical cross-section. Magnet errors and sextupoles are not included, but an RF cavity is. The authors compare the phase space with and without synchrotron oscillations, with and without space-charge. The effective emittance is not significantly altered. They also present results on tune shifts with amplitude

  20. The Properties of the Space-Charge and Net Current Density in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Hatami, M. M.

    2013-01-01

    A hydrodynamic model is used to investigate the properties of positive space-charge and net current density in the sheath region of magnetized, collisional plasmas with warm positive ions. It is shown that an increase in the ion-neutral collision frequency, as well as the magnitude of the external magnetic field, leads to an increase in the net current density across the sheath region. The results also show that the accumulation of positive ions in the sheath region increases by increasing the ion-neutral collision frequency and the magnitude of the magnetic field. In addition, it is seen that an increase in the positive ion temperatures causes a decrease in the accumulation of positive ions and the net current density in the sheath region. (basic plasma phenomena)

  1. The charged component of the vacuum field as the source of electric ...

    African Journals Online (AJOL)

    The formula is derived for the electric force inside a uniformly charged spherical body, as well as for the Coulomb force between the charged bodies from the standpoint of the model of the vacuum field with charged particles. The parameters of the fluxes of charged particles are estimated, including the energy density, ...

  2. Space Charge Effects for the ERL Prototype Injector Line at Daresbury Laboratory

    CERN Document Server

    Muratori, Bruno; Owen, Hywel; de Loos, Marieke; van der Geer, Bas

    2005-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will operate at a beam energy of 35 MeV. In this paper we examine the space charge effects on the beam dynamics in the ERLP injector line. A Gaussian particle distribution is tracked with GPT (General Particle Tracer) through the injection line to the main linac to calculate the effect of 3Dspace charge in the dipoles. The nominal beam energy in the injection line is 8.3 MeV and the bunch charge 80 pC. The effects of space charge on the transverse and longitudinal emittance are studied for various electron beam parameter settings.

  3. Intrinsic Charge Transport in Organic Field-Effect Transistors

    Science.gov (United States)

    Podzorov, Vitaly

    2005-03-01

    Organic field-effect transistors (OFETs) are essential components of modern electronics. Despite the rapid progress of organic electronics, understanding of fundamental aspects of the charge transport in organic devices is still lacking. Recently, the OFETs based on highly ordered organic crystals have been fabricated with innovative techniques that preserve the high quality of single-crystal organic surfaces. This technological progress facilitated the study of transport mechanisms in organic semiconductors [1-4]. It has been demonstrated that the intrinsic polaronic transport, not dominated by disorder, with a remarkably high mobility of ``holes'' μ = 20 cm^2/Vs can be achieved in these devices at room temperature [4]. The signatures of the intrinsic polaronic transport are the anisotropy of the carrier mobility and an increase of μ with cooling. These and other aspects of the charge transport in organic single-crystal FETs will be discussed. Co-authors are Etienne Menard, University of Illinois at Urbana Champaign; Valery Kiryukhin, Rutgers University; John Rogers, University of Illinois at Urbana Champaign; Michael Gershenson, Rutgers University. [1] V. Podzorov et al., Appl. Phys. Lett. 82, 1739 (2003); ibid. 83, 3504 (2003). [2] V. C. Sundar et al., Science 303, 1644 (2004). [3] R. W. I. de Boer et al., Phys. Stat. Sol. (a) 201, 1302 (2004). [4] V. Podzorov et al., Phys. Rev. Lett. 93, 086602 (2004).

  4. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  5. On the stability conditions of flexible current conductor tightened in a magnetic field for charged particle trajectory tracing

    International Nuclear Information System (INIS)

    Kozodaev, M.S.

    1974-01-01

    Conditions of equilibrium stability in three-dimensional space for a stretched flexible current conductor, while tracing the trajectories of charged particles moving in a magnetic field, have been determined using variational principles. Formulas suitable for engineering calculations have been obtained that allow to determine the stability regions and to estimate errors in tracing due to the conductor weight and elasticity

  6. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    International Nuclear Information System (INIS)

    Nasr, Amgad

    2012-01-01

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N 2 , Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  7. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  8. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    associated 3-spaces obtained as hypersurfaces t = constant, 3-spheroids, are suit- ... pressure. Considering the Vaidya–Tikekar [12] spheroidal geometry, ... a relativistic star in hydrostatic equilibrium having the spheroidal geometry of the .... K = 1, the spheroidal 3-space degenerates into a flat 3-space and when K = 0 it.

  9. On charged particle equilibrium violation in external photon fields.

    Science.gov (United States)

    Bouchard, Hugo; Seuntjens, Jan; Palmans, Hugo

    2012-03-01

    In a recent paper by Bouchard et al. [Med. Phys. 36(10), 4654-4663 (2009)], a theoretical model of quality correction factors for idealistic so-called plan-class specific reference (PCSR) fields was proposed. The reasoning was founded on the definition of PCSR fields made earlier by Alfonso et al. [Med. Phys. 35(11), 5179-5186 (2008)], requiring the beam to achieve charged particle equilibrium (CPE), in a time-averaged sense, in the reference medium. The relation obtained by Bouchard et al. was derived using Fano's theorem (1954) which states that if CPE is established in a given medium, the dose is independent of point-to-point density variations. A potential misconception on the achievability of the condition required by Fano (1954) might be responsible for false practical conclusions, both in the definition of PCSR fields as well as the theoretical model of quality correction factor. In this paper, the practical achievability of CPE in external beams is treated in detail. The fact that this condition is not achievable in single or composite deliveries is illustrated by an intuitive method and is also formally demonstrated. Fano's theorem is not applicable in external beam radiation dosimetry without (virtually) removing attenuation effects, and therefore, the relation conditionally defined by Bouchard et al. (2009) cannot be valid in practice. A definition of PCSR fields in the recent formalism for nonstandard beams proposed by Alfonso et al. (2008) should be modified, revising the criterion of CPE condition. The authors propose reconsidering the terminology used to describe standard and nonstandard beams. The authors argue that quality correction factors of intensity modulated radiation therapy PCSR fields (i.e., k(Q(pcsr),Q) (f(pcsr),f(ref) )) could be unity under ideal conditions, but it is concluded that further investigation is necessary to confirm that hypothesis.

  10. On charged particle equilibrium violation in external photon fields

    International Nuclear Information System (INIS)

    Bouchard, Hugo; Seuntjens, Jan; Palmans, Hugo

    2012-01-01

    Purpose: In a recent paper by Bouchard et al.[Med. Phys. 36(10), 4654-4663 (2009)], a theoretical model of quality correction factors for idealistic so-called plan-class specific reference (PCSR) fields was proposed. The reasoning was founded on the definition of PCSR fields made earlier by Alfonso et al.[Med. Phys. 35(11), 5179-5186 (2008)], requiring the beam to achieve charged particle equilibrium (CPE), in a time-averaged sense, in the reference medium. The relation obtained by Bouchard et al. was derived using Fano's theorem (1954) which states that if CPE is established in a given medium, the dose is independent of point-to-point density variations. A potential misconception on the achievability of the condition required by Fano (1954) might be responsible for false practical conclusions, both in the definition of PCSR fields as well as the theoretical model of quality correction factor. Methods: In this paper, the practical achievability of CPE in external beams is treated in detail. The fact that this condition is not achievable in single or composite deliveries is illustrated by an intuitive method and is also formally demonstrated. Conclusions: Fano's theorem is not applicable in external beam radiation dosimetry without (virtually) removing attenuation effects, and therefore, the relation conditionally defined by Bouchard et al. (2009) cannot be valid in practice. A definition of PCSR fields in the recent formalism for nonstandard beams proposed by Alfonso et al. (2008) should be modified, revising the criterion of CPE condition. The authors propose reconsidering the terminology used to describe standard and nonstandard beams. The authors argue that quality correction factors of intensity modulated radiation therapy PCSR fields (i.e., k Q pcsr ,Q f pcsr ,f ref ) could be unity under ideal conditions, but it is concluded that further investigation is necessary to confirm that hypothesis.

  11. Dynamics of the relativistic acceleration of charged particles in space plasma while surfing the package electromagnetic waves

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Kuznetsov, E.A.; Mikhajlovskaya, L.A.

    2010-01-01

    Based on numerical calculations considered the relativistic acceleration of charged particles in space plasma when surfing on the spatially localized package of electromagnetic waves. The problem is reduced to the study of unsteady, nonlinear equation for the wave phase at the carrier frequency at the location of the accelerated charge, which is solved numerically. We study the temporal dynamics of the relativistic factor, the component of momentum and velocity of the particle, its trajectory is given gyro-rotation in an external magnetic field after the departure of the effective potential well. Dependence of the dynamics of a particle interacting with the wave of the sign of the velocity of the charge along the wave front. We formulate the optimal conditions of the relativistic particle acceleration wave packet, indicate the possibility of again (after a number gyro-turnover) charge trapping wave with an additional relativistic acceleration.

  12. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films

    KAUST Repository

    Hu, Weijin

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  13. On Beam Matching and the Space-Charge Effect in protoDUNE-SP

    CERN Document Server

    Mandalia, Jesal Paresh

    2017-01-01

    In this project simulations using LArSoft have been analysed in particular looking at how the space-charge effect will affect the matching of particle tracks from the beam line monitor to the TPC and the TPC's performance measuring $\\frac{dE}{dx}$ in protoDUNE-SP. The analysis here provides some preliminary calibrations for protoDUNE-SP to account for the impact the space charge effect will have. Many areas of pion cross section analysis will be affected by the space charge effect so it is vital for a calibration to be developed.

  14. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  15. Space charge and magnet error simulations for the SNS accumulator ring

    International Nuclear Information System (INIS)

    Beebe-Wang, J.; Fedotov, A.V.; Wei, J.; Machida, S.

    2000-01-01

    The effects of space charge forces and magnet errors in the beam of the Spallation Neutron Source (SNS) accumulator ring are investigated. In this paper, the focus is on the emittance growth and halo/tail formation in the beam due to space charge with and without magnet errors. The beam properties of different particle distributions resulting from various injection painting schemes are investigated. Different working points in the design of SNS accumulator ring lattice are compared. The simulations in close-to-resonance condition in the presence of space charge and magnet errors are presented. (author)

  16. Production of highly charged ions of argon by optical field ionization in a relativistic laser field

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Akahane, Yutaka; Aoyama, Makoto; Nakano, Fumihiko; Yamakawa, Koichi

    2001-01-01

    We observed the highly charged ions of argon by optical field ionization in a relativistic intensity regime. Charge states up to Ar 15+ were produced at the highest intensity of 800 nm, linearly polarized 20 fs Ti: sapphire laser pulses. The peak intensity of the pulse is determined by comparing the measured ion production curve for Ar 9+ with ADK theory. The results of these measurements of the ionization indicate that the maximum peak intensity is achieved to ∼2x10 19 W/cm 2 . (author)

  17. Calibration function for the Orbitrap FTMS accounting for the space charge effect.

    Science.gov (United States)

    Gorshkov, Mikhail V; Good, David M; Lyutvinskiy, Yaroslav; Yang, Hongqian; Zubarev, Roman A

    2010-11-01

    Ion storage in an electrostatic trap has been implemented with the introduction of the Orbitrap Fourier transform mass spectrometer (FTMS), which demonstrates performance similar to high-field ion cyclotron resonance MS. High mass spectral characteristics resulted in rapid acceptance of the Orbitrap FTMS for Life Sciences applications. The basics of Orbitrap operation are well documented; however, like in any ion trap MS technology, its performance is limited by interactions between the ion clouds. These interactions result in ion cloud couplings, systematic errors in measured masses, interference between ion clouds of different size yet with close m/z ratios, etc. In this work, we have characterized the space-charge effect on the measured frequency for the Orbitrap FTMS, looking for the possibility to achieve sub-ppm levels of mass measurement accuracy (MMA) for peptides in a wide range of total ion population. As a result of this characterization, we proposed an m/z calibration law for the Orbitrap FTMS that accounts for the total ion population present in the trap during a data acquisition event. Using this law, we were able to achieve a zero-space charge MMA limit of 80 ppb for the commercial Orbitrap FTMS system and sub-ppm level of MMA over a wide range of total ion populations with the automatic gain control values varying from 10 to 10(7). Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  18. Simulation of space-charge effects in an ungated GEM-based TPC

    Energy Technology Data Exchange (ETDEWEB)

    Böhmer, F.V., E-mail: felix.boehmer@tum.de; Ball, M.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Rauch, J.; Vandenbroucke, M.

    2013-08-11

    A fundamental limit to the application of Time Projection Chambers (TPCs) in high-rate experiments is the accumulation of slowly drifting ions in the active gas volume, which compromises the homogeneity of the drift field and hence the detector resolution. Conventionally, this problem is overcome by the use of ion-gating structures. This method, however, introduces large dead times and restricts trigger rates to a few hundred per second. The ion gate can be eliminated from the setup by the use of Gas Electron Multiplier (GEM) foils for gas amplification, which intrinsically suppress the backflow of ions. This makes the continuous operation of a TPC at high rates feasible. In this work, Monte Carlo simulations of the buildup of ion space charge in a GEM-based TPC and the correction of the resulting drift distortions are discussed, based on realistic numbers for the ion backflow in a triple-GEM amplification stack. A TPC in the future P{sup ¯}ANDA experiment at FAIR serves as an example for the experimental environment. The simulations show that space charge densities up to 65 fC cm{sup −3} are reached, leading to electron drift distortions of up to 10 mm. The application of a laser calibration system to correct these distortions is investigated. Based on full simulations of the detector physics and response, we show that it is possible to correct for the drift distortions and to maintain the good momentum resolution of the GEM-TPC.

  19. Simulation of space-charge effects in an ungated GEM-based TPC

    International Nuclear Information System (INIS)

    Böhmer, F.V.; Ball, M.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Rauch, J.; Vandenbroucke, M.

    2013-01-01

    A fundamental limit to the application of Time Projection Chambers (TPCs) in high-rate experiments is the accumulation of slowly drifting ions in the active gas volume, which compromises the homogeneity of the drift field and hence the detector resolution. Conventionally, this problem is overcome by the use of ion-gating structures. This method, however, introduces large dead times and restricts trigger rates to a few hundred per second. The ion gate can be eliminated from the setup by the use of Gas Electron Multiplier (GEM) foils for gas amplification, which intrinsically suppress the backflow of ions. This makes the continuous operation of a TPC at high rates feasible. In this work, Monte Carlo simulations of the buildup of ion space charge in a GEM-based TPC and the correction of the resulting drift distortions are discussed, based on realistic numbers for the ion backflow in a triple-GEM amplification stack. A TPC in the future P ¯ ANDA experiment at FAIR serves as an example for the experimental environment. The simulations show that space charge densities up to 65 fC cm −3 are reached, leading to electron drift distortions of up to 10 mm. The application of a laser calibration system to correct these distortions is investigated. Based on full simulations of the detector physics and response, we show that it is possible to correct for the drift distortions and to maintain the good momentum resolution of the GEM-TPC

  20. Improving the beam quality of rf guns by correction of rf and space-charge effects

    International Nuclear Information System (INIS)

    Serafini, L.

    1992-01-01

    In this paper we describe two possible strategies to attain ultra-low emittance electron beam generation by laser-driven RF guns. The first one is based on the exploitation of multi-mode resonant cavities to neutralize the emittance degradation induced by RF effects. Accelerating cigar-like (long and thin) electron bunches in multi-mode operated RF guns the space charge induced emittance is strongly decreased at the same time: high charged bunches, as typically requested by future TeV e - e + colliders, can be delivered by the gun at a quite low transverse emittance and good behaviour in the longitudinal phase space, so that they can be magnetically compressed to reach higher peak currents. The second strategy consists in using disk-like electron bunches, produced by very short laser pulses illuminating the photocathode. By means of an analytical study a new regime has been found, where the normalized transverse emittance scales like the inverse of the peak current, provided that the laser pulse intensity distribution is properly shaped in the transverse direction. Preliminary numerical simulations confirm the analytical predictions and show that the minimum emittance achievable is set up, in this new regime, by the wake-field interaction between the bunch and the cathode metallic wall

  1. PARMELA-B A new version of PARMELA with coherent synchrotron radiation effects and a finite difference space charge routine

    CERN Document Server

    Koltenbah, B E C; Greegor, R B; Dowell, D H

    2002-01-01

    Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA_B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self- fields. The self-fields are due to CSR and S...

  2. PARMELA sub B a new version of PARMELA with coherent synchrotron radiation effects and a finite difference space charge routine

    CERN Document Server

    Koltenbah, B E C; Greegor, R B; Dowell, D H

    2002-01-01

    Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA sub B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self-fields. The self-fields are due to CSR an...

  3. Electromagnetic radiation damping of charges in external gravitational fields (weak field, slow motion approximation). [Harmonic coordinates, weak field slow-motion approximation, Green function

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.

  4. Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry

    International Nuclear Information System (INIS)

    Machacek, M.E.; McCliment, E.R.

    1975-01-01

    It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components

  5. Lateral phase drift of the topological charge density in stochastic optical fields

    CSIR Research Space (South Africa)

    Roux, FS

    2012-03-01

    Full Text Available The statistical distributions of optical vortices or topological charge in stochastic optical fields can be inhomogeneous in both transverse directions. Such two-dimensional inhomogeneous vortex or topological charge distributions evolve in a...

  6. Experimental investigation of limit space charge accumulation mode operation in a semi-insulating GaAs photoconductive semiconductor switch

    International Nuclear Information System (INIS)

    Ma Xiangrong; Shi Wei; Xiang Mei

    2013-01-01

    Experiments with the limited space-charge accumulation (LSA) mode of oscillation in a large gap semi-insulating (SI) GaAs photoconductive semiconductor switch (PCSS) are discussed. It has been observed that growth and drift of a photo-activated charge domain (PACD) are quenched only when the bias voltage is more than twice the threshold voltage. The original negative resistance characteristics are directly utilized in the LSA mode; during LSA operation the spatial average of the electric field varies over a large portion of the negative differential mobility region of the velocity—electric field characteristic. The work efficiency of an SI GaAs PCSS is remarkably enhanced by electric field excursions into the positive resistance region when the total electric field is only below the threshold part of the time. The LSA mode can only operate in the certain conditions that satisfy the quenching of the accumulation layer and the smaller initial domain voltage. (semiconductor devices)

  7. Numerical design of electron guns and space charge limited transport systems

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1980-10-01

    This paper describes the capabilities and limitations of computer programs used to design electron guns and similarly space-charge limited transport systems. Examples of computer generated plots from several different types of gun problems are included

  8. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuñ a, Javier; Salleo, Alberto

    2011-01-01

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows

  9. Space charge build-up in XLPE-cable with temperature gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, Jesper

    2000-01-01

    and temperatures were applied in the 20 - 80°C range with gradients across the insulation of up to 15°C. In this paper, the observed charge phenomena in the bulk and at the interfaces are related to the external conditions, in particular to the temperature gradient. The measured space charge distributions...

  10. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    International Nuclear Information System (INIS)

    Hao Jian; Liao Ruijin; Chen, George

    2011-01-01

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10 -2 ∼10 6 Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  11. Space-charge-limited currents: An E-infinity Cantorian approach

    Czech Academy of Sciences Publication Activity Database

    Zmeškal, O.; Nešpůrek, Stanislav; Weiter, M.

    2007-01-01

    Roč. 34, č. 2 (2007), s. 143-158 ISSN 0960-0779 R&D Projects: GA MPO FT-TA/036; GA AV ČR IAA100100622 Institutional research plan: CEZ:AV0Z40500505 Keywords : space charge * fractal * charge injection Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.025, year: 2007

  12. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jian; Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, George, E-mail: jh210v@ecs.soton.ac.uk [School of Electronics and Computer Science, University of Southampton (United Kingdom)

    2011-08-12

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10{sup -2}{approx}10{sup 6}Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  13. Geometric Phase of the Gyromotion for Charged Particles in a Time-dependent Magnetic Field

    International Nuclear Information System (INIS)

    Liu, Jian; Qin, Hong

    2011-01-01

    We study the dynamics of the gyrophase of a charged particle in a magnetic field which is uniform in space but changes slowly with time. As the magnetic field evolves slowly with time, the changing of the gyrophase is composed of two parts. The rst part is the dynamical phase, which is the time integral of the instantaneous gyrofrequency. The second part, called geometric gyrophase, is more interesting, and it is an example of the geometric phase which has found many important applications in different branches of physics. If the magnetic field returns to the initial value after a loop in the parameter space, then the geometric gyrophase equals the solid angle spanned by the loop in the parameter space. This classical geometric gyrophase is compared with the geometric phase (the Berry phase) of the spin wave function of an electron placed in the same adiabatically changing magnetic field. Even though gyromotion is not the classical counterpart of the quantum spin, the similarities between the geometric phases of the two cases nevertheless reveal the similar geometric nature of the different physics laws governing these two physics phenomena.

  14. EXPLORING TRANSVERSE BEAM STABILITY IN THE SNS IN THE PRESENCE OF SPACE CHARGE.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BLASKIEWICZ,M.; WEI,J.; DANILOV,V.; HOLMES,J.; SHISHLO,A.

    2002-06-03

    The highest possible intensity in the machine is typically determined by the onset of coherent beam instabilities. Understanding the contribution of various effects to the damping and growth of such instabilities in the regime of strong space charge is thus of crucial importance. In this paper we explore transverse beam stability by numerical simulations using recently implemented models of transverse impedance and three-dimensional space charge. Results are discussed with application to the SNS accumulators.

  15. Theory and Simulation of the Physics of Space Charge Dominated Beams

    International Nuclear Information System (INIS)

    Haber, Irving

    2002-01-01

    This report describes modeling of intense electron and ion beams in the space charge dominated regime. Space charge collective modes play an important role in the transport of intense beams over long distances. These modes were first observed in particle-in-cell simulations. The work presented here is closely tied to the University of Maryland Electron Ring (UMER) experiment and has application to accelerators for heavy ion beam fusion

  16. Double unification of particles with fields and electricity with gravity in non-empty space of continuous complex energies

    Directory of Open Access Journals (Sweden)

    Bulyzhenkov Igor E.

    2016-01-01

    Full Text Available Non-empty space reading of Maxwell equations as local energy identities explains why a Coulomb field is carried rigidly by electrons in experiments. The analytical solution of the Poisson equation defines the sharp radial shape of charged elementary densities which are proportional to continuous densities of electric self-energy. Both Coulomb field and radial charge densities are free from energy divergences. Non-empty space of electrically charged mass-energy can be described by complex analytical densities resulting in real values for volume mass integrals and in imaginary values for volume charge integrals. Imaginary electric charges in the Newton gravitational law comply with real Coulomb forces. Unification of forces through complex charges rids them of radiation self-acceleration. Strong gravitational fields repeal probe bodies that might explainthe accelerated expansion of the dense Metagalaxy. Outward and inward spherical waves form the standing wave process within the radial carrier of complex energy.

  17. Kaon transverse charge density from space- and timelike data

    Science.gov (United States)

    Mecholsky, N. A.; Meija-Ott, J.; Carmignotto, M.; Horn, T.; Miller, G. A.; Pegg, I. L.

    2017-12-01

    We used the world data on the kaon form factor to extract the transverse kaon charge density using a dispersion integral of the imaginary part of the kaon form factor in the timelike region. Our analysis includes recent data from e+e- annihiliation measurements extending the kinematic reach of the data into the region of high momentum transfers conjugate to the region of short transverse distances. To calculate the transverse density we created a superset of both timelike and spacelike data and developed an empirical parameterization of the kaon form factor. The spacelike set includes two new data points we extracted from existing cross section data. We estimate the uncertainty on the resulting transverse density to be 5% at b =0.025 fm and significantly better at large distances. New kaon data planned with the 12 GeV Jefferson Lab may have a significant impact on the charge density at distances of b <0.1 fm.

  18. Dirac particles in the field of magnetic monopoles and of strong electric charges

    International Nuclear Information System (INIS)

    Schafer, A.; Muller, B.; Greiner, W.

    1985-01-01

    The field of a magnetic pointlike monopole acts in a similar way on a charged Dirac particle as the field of a very strong electric point charge. To explore this parallel it is constructed a field solution for an extended magnetic-charge distribution. In contrast to what is found for extended electric charges, the Hamiltonian remains nonself-adjoint for an extended magnetic monopole. This suggests that there exist a fundamental difference between the two cases. In particular, the appearance of undefined states for point monopoles is not a consequence of the mere strength of the magnetic-monopole charge, which has a minimum value fixed by Dirac's quantization condition

  19. Emittance growth in displaced, space-charge-dominated beams with energy spread

    International Nuclear Information System (INIS)

    Barnard, J.J.; Miller, J.; Haber, I.

    1993-01-01

    Conversion of transverse energy associated with the coherent motion of displaced beams into thermal energy, and thus emittance growth, has been predicted theoretically by a number of authors. Here, they authors show, using 2-D particle-in-cell simulations, that emittance growth is inhibited for tune depressed beams, if the energy spread of the beam is not too large. Further, using a uniform density model to calculate the space charge field of the beam, they numerically determine the criteria for emittance growth as a function of tune depression, energy spread, and beam displacement over a wide range of parameters. A theoretical interpretation of the results is presented. This study is applicable to an inertial fusion reactor driven by a heavy ion accelerator

  20. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    Energy Technology Data Exchange (ETDEWEB)

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  1. Theory of space charge limited currents in films and nanowires with dopants

    Science.gov (United States)

    Zhang, Xiaoguang; Pantelides, Sokrates

    2015-03-01

    We show that proper description of the space charge limited currents (SCLC) in a homogeneous bulk material must account fully for the effect of the dopants and the interplay between dopants and traps. The sharp rise in the current at the trap-filled-limit (TFL) is partially mitigated by the dopant energy levels and the Frenkel effect, namely the lowering of the ionization energy by the electric field, which is screened by the free carriers. In nanowires, lack of effective screening causes the trap occupation at small biases to reach a high level comparable to the TFL in bulk. This explains the high current density in SCLCs observed in nanowires. This work is supported by the LDRD program at ORNL. Portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  2. Propagation of optical vortices with fractional topological charge in free space

    Science.gov (United States)

    Ali, Tamelia; Kreminska, Liubov; Golovin, Andrii B.; Crouse, David T.

    2014-10-01

    The behavior of the optical vortices with fractional topological charges in the far-field is assessed through numerical modeling and confirmed by experimental results. The generation of fractional topological charge variations of the phase within a Gaussian beam was achieved by using a liquid crystal spatial light modulator (LCoS SLM). It is shown that a laser beam carrying an optical vortex with a fractional topological charge evolves into a beam with a topological charge of integer value, specifically an integer value closer to the fractional number in the far field. A potential application of this work is for data transmission within optical telecommunication systems.

  3. Momentum transfer theory of non-conservative charged particle transport in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Vrhovac, S.B.; Petrovic, Z.Lj.

    1995-01-01

    Momentum - transfer approximation is applied to momentum and energy balance equations describing reacting particle swarms in gases in crossed electric and magnetic fields. Transport coefficients of charged particles undergoing both inelastic and reactive, non-particle-conserving collisions with a gas of neutral molecules are calculated. Momentum - transfer theory (MTT) has been developed mainly by Robson and collaborators. It has been applied to a single reactive gas and mixtures of reactive gases in electric field only. MTT has also been applied in crossed electric and magnetic fields recently and independently of our work but the reactive collisions were not considered. Consider a swarm of electrons of charge e and mass m moving with velocity rvec v through a neutral gas under the influence of an applied electric rvec E and magnetic rvec B field. The collision processes which we shall investigate are limited to elastic, inelastic and reactive collisions of electrons with gas molecules. Here we interpret reactive collisions as collisions which produce change in number of the swarm particles. Reactive collisions involve creation (ionization by electron impact) or loss (electron attachment) of swarm particles. We consider only single ionization in approximation of the mass ratio m/m 0 0 are masses of electrons and neutral particles, respectively. We assume that the stage of evolution of the swarm is the hydrodynamic limit (HDL). In HDL, the space - time dependence of all properties is carried by the number density n of swarm particles

  4. Space-charge-limited ion flow through an ionizing neutral layer

    International Nuclear Information System (INIS)

    Duvall, R.E.; Litwin, C.; Maron, Y.

    1993-01-01

    Space-charge-limited ion flow through an ionizing layer of neutral atoms is studied. The ion flow is between two parallel conducting plates (anode and cathode) with an externally applied voltage between them. An expanding layer of neutral atoms is adjacent to the anode surface, extending a finite distance into the anode--cathode gap. All ions originate either from the anode surface or from the ionization of neutrals; electrons originate only from ionization. Electrons are strongly magnetized by an externally applied, time-independent direct current (dc) magnetic field directed across the ion flow. The ions are unmagnetized, all motion being perpendicular to the conducting plates. Two different models of the anode layer were used to analyze this problem: a multifluid steady-state model and a single fluid time-dependent model. From both models it was found that the anode surface becomes shielded after the ion flux from the ionizing layer becomes larger than the space-charge-limited flux of the reduced gap between the neutral layer and cathode. Comparison was made between the time-dependent model and results from magnetically insulated ion beam diode (MID) experiments. Using an initial areal density of neutral hydrogen and carbon equal to the final observed electron areal density, comparison was made between calculated plasma shielding times and upper bounds on the shielding time observed in experiments. It was found that a layer of neutral hydrogen must contain a minimum of 15% carbon (by number density) to explain the rapid electric field screening observed in experiments

  5. Longitudinal and transverse space charge limitations on transport of maximum power beams

    International Nuclear Information System (INIS)

    Khoe, T.K.; Martin, R.L.

    1977-01-01

    The maximum transportable beam power is a critical issue in selecting the most favorable approach to generating ignition pulses for inertial fusion with high energy accelerators. Maschke and Courant have put forward expressions for the limits on transport power for quadrupole and solenoidal channels. Included in a more general way is the self consistent effect of space charge defocusing on the power limit. The results show that no limits on transmitted power exist in principal. In general, quadrupole transport magnets appear superior to solenoids except for transport of very low energy and highly charged particles. Longitudinal space charge effects are very significant for transport of intense beams

  6. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    Energy Technology Data Exchange (ETDEWEB)

    Ligorio, G.; Nardi, M. V. [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Steyrleuthner, R.; Neher, D. [Institute of Physics and Astronomy, Universität Potsdam, Karl-Liebknecht Str. 24, 14476 Potsdam (Germany); Ihiawakrim, D. [Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg, Cedex2 (France); Crespo-Monteiro, N.; Brinkmann, M. [Institut Charles Sadron CNRS, 23 rue du Loess, 67034 Strasbourg (France); Koch, N., E-mail: norbert.koch@physik.hu-berlin.de [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Erneuerbare Energien, Albert-Einstein Str. 15, 12489 Berlin (Germany)

    2016-04-11

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10{sup 4} due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  7. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    International Nuclear Information System (INIS)

    Ligorio, G.; Nardi, M. V.; Steyrleuthner, R.; Neher, D.; Ihiawakrim, D.; Crespo-Monteiro, N.; Brinkmann, M.; Koch, N.

    2016-01-01

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10 4 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  8. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    OpenAIRE

    Ligorio, G.; Nardi, M. V.; Steyrleuthner, Robert; Ihiawakrim, D.; Crespo-Monteiro, N.; Brinkmann, M.; Neher, D.; Koch, N.

    2017-01-01

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 104 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contr...

  9. The Quantum Space Phase Transitions for Particles and Force Fields

    Directory of Open Access Journals (Sweden)

    Chung D.-Y.

    2006-07-01

    Full Text Available We introduce a phenomenological formalism in which the space structure is treated in terms of attachment space and detachment space. Attachment space attaches to an object, while detachment space detaches from the object. The combination of these spaces results in three quantum space phases: binary partition space, miscible space and binary lattice space. Binary lattice space consists of repetitive units of alternative attachment space and detachment space. In miscible space, attachment space is miscible to detachment space, and there is no separation between attachment space and detachment spaces. In binary partition space, detachment space and attachment space are in two separat continuous regions. The transition from wavefunction to the collapse of wavefuction under interference becomes the quantum space phase transition from binary lattice space to miscible space. At extremely conditions, the gauge boson force field undergoes a quantum space phase transition to a "hedge boson force field", consisting of a "vacuum" core surrounded by a hedge boson shell, like a bubble with boundary.

  10. Experiments on ion space-charge neutralization with pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [CERN LHC-Division, Geneva (Switzerland)

    1997-12-31

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes was investigated experimentally. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant and may reach a factor of 4 for highly charged ions from an Al target. (author). 7 figs., 3 -refs.

  11. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    Science.gov (United States)

    Gerald, II, Rex E.; Vukovic, Lela [Westchester, IL; Rathke, Jerome W [Homer Glenn, IL

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  12. Experimental Characterization of Space Charge in IZIP Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, T; /UC, Berkeley; Pyle, M.; /Stanford U.; Mirabolfathi, N.; Serfass, B.; /UC, Berkeley; Kamaev, O.; /Queen' s U., Kingston; Hertel, S.; Leman, S.W.; /MIT; Brink, P.; /SLAC; Cabrera, B.; /Stanford U.; Sadoulet, B.; /UC, Berkeley

    2012-06-12

    Interleaved ionization electrode geometries offer the possibility of efficient rejection of near-surface events. The CDMS collaboration has recently implemented this interleaved approach for the charge and phonon readout for our germanium detectors. During a recent engineering run, the detectors were found to lose ionization stability quickly. This paper summarizes studies done in order to determine the underlying cause of the instability, as well as possible running modes that maintain stability without unacceptable loss of livetime. Additionally, results are shown for the new version IZIP mask which attempts to improve the overall stability of the detectors.

  13. DC Model Cable under Polarity Inversion and Thermal Gradient: Build-Up of Design-Related Space Charge

    Directory of Open Access Journals (Sweden)

    Nugroho Adi

    2017-07-01

    Full Text Available In the field of energy transport, High-Voltage DC (HVDC technologies are booming at present due to the more flexible power converter solutions along with needs to bring electrical energy from distributed production areas to consumption sites and to strengthen large-scale energy networks. These developments go with challenges in qualifying insulating materials embedded in those systems and in the design of insulations relying on stress distribution. Our purpose in this communication is to illustrate how far the field distribution in DC insulation systems can be anticipated based on conductivity data gathered as a function of temperature and electric field. Transient currents and conductivity estimates as a function of temperature and field were recorded on miniaturized HVDC power cables with construction of 1.5 mm thick crosslinked polyethylene (XLPE insulation. Outputs of the conductivity model are compared to measured field distributions using space charge measurements techniques. It is shown that some features of the field distribution on model cables put under thermal gradient can be anticipated based on conductivity data. However, space charge build-up can induce substantial electric field strengthening when materials are not well controlled.

  14. Generation of static magnetic fields by a test charge in a plasma with anisotropic electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Yu.M.; Bychenkov, V.Yu.; Frolov, A.A. (AN SSSR, Moscow. Fizicheskij Inst.)

    Structure of electomagnetic field generated with a charge in a plasma with anisotropic electron temperature has been studied. Unlike a hydrodynamical approach to study on the magnetic field qeneration with a test charge a kinetic theory describing spatial distribution of both magnetic and electrostatic components of charge field was constructed. Such theory results permit to investigate the charge field structure both at distances larger than length of free electron path and not exceeding it. The developed theory can serve as the basis for development of new methods for anisotropic plasma diagnostics.

  15. Electric field distribution and the charge collection process in not-ideally compensated coaxial Ge(Li) detectors

    International Nuclear Information System (INIS)

    Szymczyk, W.M.; Moszynski, M.

    1978-01-01

    The not-ideally compensated space charge of donors and acceptors in lithium-drifted coaxial Ge(Li) detectors can modify the electric field distribution in the detector depleted volume, and influence in this way the charge collection process. Observations of the capacity, the time of charge collection (transit time), and the relative efficiency characteristics vs. detector bias voltage, showed that in conventional pin + coaaxial structures an undercompensation near the inner p-type core was typical. It was found that such an undercompensation had negligible consequences from the charge collection point of view. However, one case was observed where the modification near the outer electrode was present. In that case the charge pulses with remarkably increased rise-times were observed, as compared to the predictions based on the assumption of the classical, E proportional to 1/r, electric field distribution. The pulses expected from not-ideally compensated detectors were calculated using the Variable Velocity Approximation. The pulses expected from and much better agreement with the observed pulses was obtained. The calculated and observed dependencies of the charge transit times vs. reciprocal of the detector bias voltage exhibited, in the absence of the outer-electrode modification, linear parts. Measurement of their slopes permitted to find experimentally the depletion layer width provided the charge carriers mobility value was known, or vice versa. (Auth.)

  16. On the quantum field theory of charges and monopoles

    International Nuclear Information System (INIS)

    Calucci, G.; Jengo, R.; Vallon, M.T.

    1981-11-01

    A treatment of the interaction between charges and monopoles is presented, in terms of functional integration over closed paths. The Lorentz covariance is preserved in all the steps of the procedure and the symmetry between electric charges and magnetic poles in the interaction is clearly displayed. Some instances of application are discussed. (author)

  17. Discrete phase space - II: The second quantization of free relativistic wave fields

    International Nuclear Information System (INIS)

    Das, A.

    2010-01-01

    The Klein-Gordon equation, the Maxwell equation, and the Dirac equation are presented as partial difference equations in the eight-dimensional covariant discrete phase space. These equations are also furnished as difference-differential equations in the arena of discrete phase space and continuous time. The scalar field and electromagnetic fields are quantized with commutation relations. The spin-1/2 field is quantized with anti-commutation relations. Moreover, the total momentum, energy and charge of these free relativisitic quantized fields in the discrete phase space and continuous time are computed exactly. The results agree completely with those computed from the relativisitic fields defined on the space-time continuum. (author)

  18. Phase space imaging of a beam of charged particles by frictional forces

    International Nuclear Information System (INIS)

    Daniel, H.

    1977-01-01

    In the case of frictional forces, defined by always acting opposite to the particle motion, Liouville's theorem does not apply. The effect of such forces on a beam of charged particles is calculated in closed form. Emphasis is given to the phase space imaging by a moderator. Conditions for an increase in phase space density are discussed. (Auth.)

  19. Investigations of space charge effects in the cryogenic gas filled stopping cell for the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Heisse, Fabian [IKTP, TU Dresden (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Dickel, Timo; Plass, Wolfgang; Geissel, Hans; Scheidenberger, Christoph [II. Physikalisches Institut, JLU Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Reiter, Moritz Pascal; Rink, Ann-Kathrin [II. Physikalisches Institut, JLU Giessen (Germany); Zuber, Kai [IKTP, TU Dresden (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2015-07-01

    At the FRS Ion Catcher experiment precision mass measurements of short lived projectile and fission fragments are performed. Therefore highly charged ions with relativistic energies need to be thermalized to kinetic energies of several eV. This process takes place in the cryogenic gas filled stopping cell (CSC). All stopping cells suffer at large ion rates under space charge effects, which lead to decreasing efficiencies and can also influence the extraction time. Thus the understanding of space charge effects is of greatest importance to make full use of the higher yields at future rare ion beam facilities like FAIR. For this purpose simulation with the software SIMION {sup registered} concerning space charge effects were done. In this presentation the calculated transport efficiency of the CSC for different intensities, electric fields and spill structures are discussed and compared with measured results. Furthermore an outlook and first results of the simulation for the new CSC for the Low-Energy Branch at FAIR are given.

  20. Alternative model of space-charge-limited thermionic current flow through a plasma

    Science.gov (United States)

    Campanell, M. D.

    2018-04-01

    It is widely assumed that thermionic current flow through a plasma is limited by a "space-charge-limited" (SCL) cathode sheath that consumes the hot cathode's negative bias and accelerates upstream ions into the cathode. Here, we formulate a fundamentally different current-limited mode. In the "inverse" mode, the potentials of both electrodes are above the plasma potential, so that the plasma ions are confined. The bias is consumed by the anode sheath. There is no potential gradient in the neutral plasma region from resistivity or presheath. The inverse cathode sheath pulls some thermoelectrons back to the cathode, thereby limiting the circuit current. Thermoelectrons entering the zero-field plasma region that undergo collisions may also be sent back to the cathode, further attenuating the circuit current. In planar geometry, the plasma density is shown to vary linearly across the electrode gap. A continuum kinetic planar plasma diode simulation model is set up to compare the properties of current modes with classical, conventional SCL, and inverse cathode sheaths. SCL modes can exist only if charge-exchange collisions are turned off in the potential well of the virtual cathode to prevent ion trapping. With the collisions, the current-limited equilibrium must be inverse. Inverse operating modes should therefore be present or possible in many plasma devices that rely on hot cathodes. Evidence from past experiments is discussed. The inverse mode may offer opportunities to minimize sputtering and power consumption that were not previously explored due to the common assumption of SCL sheaths.

  1. Non-linear diffusion of charged particles due to stochastic electromagnetic fields

    International Nuclear Information System (INIS)

    Martins, A.M.; Balescu, R.; Mendonca, J.T.

    1989-01-01

    It is well known that the energy confinement times observed in tokamak cannot be explained by the classical or neo-classical transport theory. The alternative explanations are based on the existence of various kinds of micro-instabilities, or on the stochastic destruction of the magnetic surfaces, due to the interaction of magnetic islands of different helicities. In the absence of a well established theory of anomalous transport it is perhaps important to study in some detail the diffusion coefficient of single charged particles in the presence of electromagnetic fluctuation, because it can provide the physical grounds for more complete and self-consistent calculations. In the present work we derive a general expression for the transverse diffusion coefficient of electrons and ions in a constant magnetic field and in the presence of space and time dependent electromagnetic fluctuation. We neglect macroscopic drifts due to inhomogeneity and field curvatures, but retain finite Larmor radius effects. (author) 3 refs

  2. Space charge beam dynamics studies for a pulsed spallation source accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Lessner, E.

    1995-12-31

    Feasibility studies for 2-GeV, 1-MW and 10-GeV, 5-MW rapid cycling synchrotrons (RCS) for spallation neutron sources have been completed. Both synchrotrons operate at a repetition rate of 30 Hz, and accelerate 1.04 {times} 10{sup 14} protons per pulse. The injection energy of the 2-GeV ring is 400 MeV, and the 10-GeV RCS accepts the beam from the 2-GeV machine. Work performed to-date includes calculation of the longitudinal space charge effects in the 400-MeV beam transfer line, and of both longitudinal and transverse space charge effects during the injection, capture and acceleration processes in the two rings. Results of space charge calculations in the rings led to proper choices of the working points and of rf voltage programs that prevents beam loss. Space charge effects in the 2-GeV synchrotron, in both transverse and longitudinal phase space, have major impact on the design due to the fact that the injection energy is 400 MeV. The design achieves the required performance while alleviating harmful effects due to space charge.

  3. Electrostatic charges in v x B fields and the phenomenon of induction

    International Nuclear Information System (INIS)

    Bringuier, Eric

    2003-01-01

    The appearance of electrostatic charges in a moving conductor subjected to a static magnetic field is reviewed, and the ensuing electric field is shown to obey Faraday's law of induction. The charge density and the electric field are determined analytically in detail in the case of a circular loop rotating in a uniform magnetic field. The case of a non-conductor moving in a magnetic field is also dealt with. Non-relativistic reasoning and calculations are used throughout

  4. Electrostatic charges in v x B fields and the phenomenon of induction

    CERN Document Server

    Bringuier, E

    2003-01-01

    The appearance of electrostatic charges in a moving conductor subjected to a static magnetic field is reviewed, and the ensuing electric field is shown to obey Faraday's law of induction. The charge density and the electric field are determined analytically in detail in the case of a circular loop rotating in a uniform magnetic field. The case of a non-conductor moving in a magnetic field is also dealt with. Non-relativistic reasoning and calculations are used throughout.

  5. Simulation of space charge effects and transition crossing in the Fermilab Booster

    International Nuclear Information System (INIS)

    Lucas, P.; MacLachlan, J.

    1987-03-01

    The longitudinal phase space program ESME, modified for space charge and wall impedance effects, has been used to simulate transition crossing in the Fermilab Booster. The simulations yield results in reasonable quantitative agreement with measured parameters. They further indicate that a transition jump scheme currently under construction will significantly reduce emittance growth, while attempts to alter machine impedance are less obviously beneficial. In addition to presenting results, this paper points out a serious difficulty, related to statistical fluctuations, in the space charge calculation. False indications of emittance growth can appear if care is not taken to minimize this problem

  6. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Directory of Open Access Journals (Sweden)

    Richard Talman

    2009-01-01

    Full Text Available Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004; R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006, Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes: (i Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000NIMAER0168-900210.1016/S0168-9002(0000729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]. All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance ϵ_{x} on beam width (as controlled by the lattice β_{x} function at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening et al., in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001, http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR. (ii A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the

  7. Design of constant current charging power supply for J-TEXT ohmic field capacitor banks

    International Nuclear Information System (INIS)

    Lv Shudong; Zhang Ming; Rao Bo; Yu Kexun; Yang Cheng

    2014-01-01

    The charging characteristic of the capacitor charging power supply was analyzed with practical series resonant topology. The method that setting two current taps and regulating PWM switching frequency was putted forward with close loop controlling algorithm to charge the multi-group capacitor banks with constant current. A capacitor charging power supply with the max output current 6.5 A and the max output voltage 2000 V is designed. Experimental results show that, this power supply can charge the four capacitor banks to any four different voltages in 1 minute with charging accuracy less than 1%, and meet the requirements of J-TEXT ohmic field power system. (authors)

  8. Space-charge effects on bunching of electrons in the CEBAF injector

    International Nuclear Information System (INIS)

    Liu, H.

    1997-01-01

    The main injector for the 4 GeV CEBAF accelerator at Thomas Jefferson national accelerator facility was designed to deliver simultaneously three CW electron beams for nuclear physics research. The maximum design current for a single beam from the injector is 100 μA, or 0.2 pC per microbunch at a repetition rate of 499 MHz. It was found through computer simulation that space charge even at a subpicocoulomb level can spoil the bunching of electrons significantly, and some unexpected phenomena observed experimentally could be explained accordingly. This problem arises because of the low-momentum tilt allowed for bunching to preserve low-momentum spread. In this paper, we analyze in detail the space-charge effects on bunching of electrons with the CEBAF injector as an example. Conditions for effective matching of longitudinal phase space in the presence of space charge are discussed. (orig.)

  9. A novel technique for compensation of space charge effects in the LUPIN-II detector

    Energy Technology Data Exchange (ETDEWEB)

    Cassell, C., E-mail: cc878@uowmail.edu.au [Politecnico of Milan, Department of Energy, Via la Masa 34, 20154 Milan (Italy); University of Wollongong, Centre for Medical Physics, NSW 2522 (Australia); Ferrarini, M. [Fondazione CNAO, via Caminadella16, 20123 Milano (Italy); Rosenfeld, A. [University of Wollongong, Centre for Medical Physics, NSW 2522 (Australia); Caresana, M. [Politecnico of Milan, Department of Energy, Via la Masa 34, 20154 Milan (Italy)

    2015-12-21

    A new method for improving REM counter performance in Pulsed Neutron Fields (PNFs) has been developed. This method uses an analysis of the build-up of space charge in the counter to compensate for an underestimation of Ambient Dose Equivalent (H*(10)) in intense pulsed fields. It was applied to three sets of experimental data acquired using the LUPIN-II REM counter device, which is designed for use in PNFs. The data was acquired using the cyclotron at Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), at the HiRadMat facility at CERN and at the ‘Elettra Sincrotrone Trieste’ (ELETTRA), Italy. A comparison of the data with and without this compensation method is used to highlight its effectiveness. The LUPIN-II performance, which has already been shown to be able to cope with fields of up to hundreds of nSv/burst, is improved by at least one order of magnitude, with further potential for improvement.

  10. The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene

    CERN Document Server

    Chen, G; Xie, H K; Banford, H M; Davies, A E

    2003-01-01

    The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...

  11. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oloff, L.-P., E-mail: oloff@physik.uni-kiel.de; Hanff, K.; Stange, A.; Rohde, G.; Diekmann, F.; Bauer, M.; Rossnagel, K., E-mail: rossnagel@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel (Germany)

    2016-06-14

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet. Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.

  12. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    Energy Technology Data Exchange (ETDEWEB)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V. [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Shunailov, S. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Kolomiets, M. D. [Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); Mesyats, G. A. [P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation); Yalandin, M. I. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation)

    2016-01-14

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.

  13. The gravitational field of a charged global monopole

    Energy Technology Data Exchange (ETDEWEB)

    Min-Qiang Lu [East China Univ. of Science and Tecnology, Shangai (China). School of Fundamental Education]|[East China Inst. for Theoretical Physics, Shangai (China)

    1998-10-01

    A charged global monopole formed as a consequence of the spontaneous breakdown of a global symmetry should have a mass that grows linearly with the distance off its core where the gravitational effect of this configuration is equivalent to that of the deficit solid angle in the metric and the relatively tiny mass at the origin. In this paper it is shown that this small effective mass depends on the charge in that there exists a negative mass when the charge number Q is less than a critical value Q{sub c}r and that there appears a positive one when Q>Q{sub c}r.

  14. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  15. Role of space--time topology in quantum phenomena: Superselection of charge and emergence of nontrivial vacua

    International Nuclear Information System (INIS)

    Ashtekar, A.; Sen, A.

    1980-01-01

    Schwarzschild--Kruskal space--time admits a two-parameter family of everywhere regular, static, source-free Maxwell fields. It is shown that there exists a corresponding two-parameter family of unitarily inequivalent representations of the canonical commutation relations. Elements of the underlying Hilbert space may be interpreted as ''quantum fluctuations of the Maxwell field off nontrivial classical vacua.'' The representation corresponding to the ''trivial'' sector: i.e., the zero classical solution: is the usual Fock representation. All others are ''non-Fock.'' In particular, in all other sectors, the Maxwell field develops a nonzero vacuum expectation value. The parameters labelling the family can be interpreted as electric and magnetic charges. Therefore, unitary inequivalence naturally leads to superselection rules for these charges. These features arise in spite of the linearity of field equations only because the space--time topology is ''nontrivial.'' Also, because of linearity, an exact analysis is possible at the quantum level; recourse to perturbation theory is unnecessary

  16. Discovering Digital Signage System Opportunities as Crowd Attractor in Public Spaces: A Study in Charge Gratis Service

    Directory of Open Access Journals (Sweden)

    Ahmad Faisal Choiril Anam Fathoni

    2016-07-01

    Full Text Available Article presented a research about the "Charge Gratis" service that included digital signage, along with free charging device as the crowd attractors in the public space. The main focus of this research was about media display embedded in the uniform of a sales promotion person who displays ads from the advertiser using the qualitative method, through the interview with some expert sources many fields. Article described several possibilities that can be worked in the use of digital signage so that it can be used as a reference in maximizing digital signage in public spaces. It finds that Digital signage is not just functioned as like any other media, but also the awaken interaction and also enhance shopping experiences. The expert sources divide this media display functions into three categories, which is a media information, media entertainment, and media education. 

  17. Beam-envelope calculations of space-charge loaded beams in MeV dc ion-implantation facilities

    International Nuclear Information System (INIS)

    Urbanus, W.H.; Bannenberg, J.G.; Doorn, S.; Saris, F.W.; Koudijs, R.; Dubbelman, P.; Koelewijn, W.

    1989-01-01

    MeV dc ion accelerators are being developed that can deliver a beam current up to several hundred micro-amperes. At the low-energy part of the accelerator, the beam transport is space-charge dominated rather than emittance dominated. A system of differential equations has been derived, based on the Kapchinski-Vladimirski equations, which describe the envelope of a space-charge loaded ion beam, taking a longitudinal electrical field in an accelerating tube into account. The equations have been used to design the accelerator of a high-current 1 MV heavy-ion implantation facility. Furthermore, the design of a 2 MV accelerator is presented, which is used for analyzing techniques such as RBS and PIXE. Both facilities are based on single-ended Van de Graaff accelerators. (orig.)

  18. Applying electric field to charged and polar particles between metallic plates: extension of the Ewald method.

    Science.gov (United States)

    Takae, Kyohei; Onuki, Akira

    2013-09-28

    We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.

  19. A parallel implementation of particle tracking with space charge effects on an INTEL iPSC/860

    International Nuclear Information System (INIS)

    Chang, L.; Bourianoff, G.; Cole, B.; Machida, S.

    1993-05-01

    Particle-tracking simulation is one of the scientific applications that is well-suited to parallel computations. At the Superconducting Super Collider, it has been theoretically and empirically demonstrated that particle tracking on a designed lattice can achieve very high parallel efficiency on a MIMD Intel iPSC/860 machine. The key to such success is the realization that the particles can be tracked independently without considering their interaction. The perfectly parallel nature of particle tracking is broken if the interaction effects between particles are included. The space charge introduces an electromagnetic force that will affect the motion of tracked particles in 3-D space. For accurate modeling of the beam dynamics with space charge effects, one needs to solve three-dimensional Maxwell field equations, usually by a particle-in-cell (PIC) algorithm. This will require each particle to communicate with its neighbor grids to compute the momentum changes at each time step. It is expected that the 3-D PIC method will degrade parallel efficiency of particle-tracking implementation on any parallel computer. In this paper, we describe an efficient scheme for implementing particle tracking with space charge effects on an INTEL iPSC/860 machine. Experimental results show that a parallel efficiency of 75% can be obtained

  20. Effects of charging and electric field on graphene functionalized with titanium

    International Nuclear Information System (INIS)

    Gürel, H Hakan; Ciraci, S

    2013-01-01

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal–insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties. (paper)

  1. Space-time algebra for the generalization of gravitational field ...

    Indian Academy of Sciences (India)

    the analogy in formulation between massive gravitational theory and electromagnetism has ... as the dual mass, gravitomagnetic charge (monopole) or magnetic mass [7]. ... cation in the definitions of the GEM fields in the following manner:.

  2. Active charge, passive discharge floor space heating system

    Energy Technology Data Exchange (ETDEWEB)

    Salt, H.; Mahoney, K.J.

    1987-01-01

    This space heating system has a rockbed beneath and in contact with the floor of a dwelling, which is heated by radiation and convection from the floor. The ability of the heating system to maintain comfort conditions with no additional energy input is discussed and it is shown that the system is more suitable for use in mild climates than severe ones. Experimental work on horizontal air flow rockbeds is reported and shows that shallow beds can be designed in the same way as vertical air flow beds. The influence of natural convection on the effective thermal conductivity of the experimental rockbeds is reported.

  3. Studies on density dependence of charge separation in a direct energy converter using slanted Cusp magnetic field

    International Nuclear Information System (INIS)

    Munakata, Yoshiro; Kawaguchi, Takashi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Ichimura, Kazuya; Nakashima, Yousuke

    2012-01-01

    In an advanced fusion, fusion-produced charged particles must be separated from each other for efficient energy conversion to electricity. The CuspDEC performs this function of separation and direct energy conversion. Analysis of working characteristics of CuspDEC on plasma density is an important subject. This paper summarizes and discusses experimental and theoretical works for high density plasma by using a small scale experimental device employing a slanted cusp magnetic field. When the incident plasma is low-density, good separation of the charged particles can be accomplished and this is explained by the theory based on a single particle motion. In high density plasma, however, this theory cannot be always applied due to space charge effects. In the experiment, as gradient of the field line increases, separation capability of the charged particles becomes higher. As plasma density becomes higher, however, separation capability becomes lower. This can be qualitatively explained by using calculations of the modified Störmer potential including space charge potential. (author)

  4. One-and two-dimensional topological charge distributions in stochastic optical fields

    CSIR Research Space (South Africa)

    Roux, FS

    2011-06-01

    Full Text Available The presentation on topological charge distributions in stochastic optical fields concludes that by using a combination of speckle fields one can produce inhomogeneous vortex distributions that allow both analytical calculations and numerical...

  5. Distribution of electric field and charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Zinets, O.S.

    1995-01-01

    The distribution of electric field in silicon strip detectors is analyzed in the case of dull depletion as well as for partial depletion. Influence of inhomogeneous electric fields on the charge collection and performances of silicon strip detectors is discussed

  6. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field

    NARCIS (Netherlands)

    Katsouras, I.; Najafi, A.; Asadi, K.; Kronemeijer, A. J.; Oostra, A. J.; Koster, L. J. A.; de Leeuw, D. M.; Blom, P. W. M.

    Charge transport in poly(2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are

  7. Effect of magnetic field on charge imbalance relaxation of non-equilibrium superconductivity

    International Nuclear Information System (INIS)

    Tsuboi, Kazuki; Yagi, Ryuta

    2010-01-01

    We have studied relaxation of charge imbalance of non-equilibrium superconductivity in magnetic field. We found that excess current due to charge imbalance showed striking dependence on magnitude of magnetic field and its orientation. We discussed origin of the relaxation.

  8. Impact of interface charge on the electrostatics of field-plate assisted RESURF devices

    NARCIS (Netherlands)

    Boksteen, B.K.; Ferrara, A.; Heringa, A.; Steeneken, P.G.; Hueting, Raymond Josephus Engelbart

    2014-01-01

    A systematic study on the effects of arbitrary parasitic charge profiles, such as trapped or fixed charge, on the 2-D potential distribution in the drain extension of reverse-biased field-plate-assisted reduced surface field (RESURF) devices is presented. Using TCAD device simulations and analytical

  9. A prototype silicon detector system for space cosmic-ray charge measurement

    Science.gov (United States)

    Zhang, Fei; Fan, Rui-Rui; Peng, Wen-Xi; Dong, Yi-Fa; Gong, Ke; Liang, Xiao-Hua; Liu, Ya-Qing; Wang, Huan-Yu

    2014-06-01

    A readout electronics system used for space cosmic-ray charge measurement for multi-channel silicon detectors is introduced in this paper, including performance measurements. A 64-channel charge sensitive ASIC (VA140) from the IDEAS company is used. With its features of low power consumption, low noise, large dynamic range, and high integration, it can be used in future particle detecting experiments based on silicon detectors.

  10. Gain reduction due to space charge at high counting rates in multiwire proportional chambers

    International Nuclear Information System (INIS)

    Smith, G.C.; Mathieson, E.

    1986-10-01

    Measurements with a small MWPC of gas gain reduction, due to ion space charge at high counting rates, have been compared with theoretical predictions. The quantity ln(q/q 0 )/(q/q 0 ), where (q/q 0 ) is the relative reduced avalanche charge, has been found to be closely proportional to count rate, as predicted. The constant of proportionality is in good agreement with calculations made with a modified version of the original, simplified theory

  11. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    Science.gov (United States)

    Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.

    2017-12-01

    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we

  12. Comment on 'Relation between space charge limited current and power loss in open drift tubes' [Phys. Plasmas 13, 073101 (2006)

    International Nuclear Information System (INIS)

    Swanekamp, S. B.; Schumer, J. W.

    2007-01-01

    In Phys Plasmas 13, 073101 (2006), the drop in the space-charge-limited (SCL) current for a beam injected into a space with an open boundary is analyzed with an electromagnetic particle-in-cell code. The authors explained the power loss observed at the open boundary as the loss of electromagnetic radiation created from the deceleration of electrons in the gap, and they developed an effective voltage theory to predict the drop in the SCL current observed in the simulations. In this Comment, we show that, provided the current remains below the SCL value, the electric and magnetic fields are constant in time so that power loss from the open boundary is a dc phenomenon with no rf power leaving through the boundary. We show that the electric and magnetic fields are static in time and static fields DO NOT RADIATE. Instead, the electron beam charges the collector plate, which causes a real electrostatic electric field to develop. The electron energy loss is not due to radiation but rather to the work done by this electrostatic field on the electrons as they move across the gap. This is precisely the energy dissipated in the matched resistance across the open boundary, which is a consequence of the boundary condition. Furthermore, since a real electrostatic potential develops, the voltage drop is real and there is no need to call the voltage drop an effective voltage

  13. Stability analysis of Hasegawa space-charge waves in a plasma waveguide with collisional ion beam

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-12-01

    The dispersion relation for the Hasegawa space-charge wave propagating in a cylindrical waveguide dusty plasma containing collision-dominated ion stream is derived by using the fluid equations and the Poisson equation which lead to a Bessel equation. The solution of Bessel equation is null at the boundary and then the roots of the Bessel function would characterize the property of space-charge wave propagation. We have found that the Hasegawa space-charge wave can be excited for a large axial wave number. The growth rate of excitation increases as the order of the roots of the Bessel function increases. The growth rate decreases with an increase of the radius of cylindrical waveguide as well as with an increase of the collision frequency. We found that the disturbance of wave can be damped only for small wave numbers.

  14. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON

    International Nuclear Information System (INIS)

    BEEBE - WANG, J.; LUCCIO, A.U.; D IMPERIO, N.; MACHIDA, S.

    2002-01-01

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed

  15. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A., E-mail: aliaksei.halavanau@gmail.com [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Piot, P. [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2016-05-21

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. This “micro-bunching instabilities” is naturally broadband and could possibly support the generation of coherent radiation over a broad region of the spectrum. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we refine these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program ELEGANT. This high-fidelity model of the space charge is used to benchmark conventional LSC models. We finally employ the developed model to investigate the performance of a cascaded LSC amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.

  16. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  17. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.

    2002-06-03

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.

  18. The longitudinal space charge problem in the high current linear proton accelerators

    International Nuclear Information System (INIS)

    Lustfeld, H.

    1984-01-01

    In a linear proton accelerator peak currents of 200 mA lead to high space charge densities and the resultant space charge forces reduce the effective focussing considerably. In particular the longitudinal focussing is affected. A new concept based on linear theory is proposed that restricts the influence of the space charge forces on the longitudinal focussing by increasing a, the mean transverse bunch radius, as a proportional(βγ)sup(3/8). This concept is compared with other concepts for the Alvarez (1 MeV - 100 MeV) and for the high energy part (100 MeV - 1100 MeV) of the SNQ linear accelerator. (orig.)

  19. Adaptive matching of the iota ring linear optics for space charge compensation

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Bruhwiler, D. L. [RadiaSoft, Boulder; Cook, N. [RadiaSoft, Boulder; Hall, C. [RadiaSoft, Boulder

    2016-10-09

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a search for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters

  20. Harmonic analysis on local fields and adelic spaces. I

    International Nuclear Information System (INIS)

    Osipov, D V; Parshin, A N

    2008-01-01

    We develop harmonic analysis on the objects of a category C 2 of infinite-dimensional filtered vector spaces over a finite field. This category includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. As the main result, we construct the theory of the Fourier transform on these objects and obtain two-dimensional Poisson formulae

  1. Aspects of space charge theory applied to dielectric under electron beam irradiation

    International Nuclear Information System (INIS)

    Oliveira, L.N. de.

    1975-01-01

    Irradiation of solid dielectric with electron beams has been used as a power full tool in investigations of charge storage and transport in such materials. Some of the results that have been obtained in this area are reviewed and the formulation of a transport equation for excess charge in irradiated insulators is dicussed. This equation is subsequently applied to various experimental set-ups. It is found that space charge effects play an essential role in the establishment of stationary currents in samples subject to quasi-penetrating electron beams. Such effects may, however, be neglected for low electron ranges. Theoretical results are in good agreement with experimental findings by Spear (1955)

  2. Features of space-charge-limited emission in foil-less diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ping; Yuan, Keliang; Liu, Guozhi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Sun, Jun [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2014-12-15

    Space-charge-limited (SCL) current can always be obtained from the blade surface of annular cathodes in foil-less diodes which are widely used in O-type relativistic high power microwave generators. However, there is little theoretical analysis regarding it due to the mathematical complexity, and almost all formulas about the SCL current in foil-less diodes are based on numerical simulation results. This paper performs an initial trial in calculation of the SCL current from annular cathodes theoretically under the ultra-relativistic assumption and the condition of infinitely large guiding magnetic field. The numerical calculation based on the theoretical research is coherent with the particle-in-cell (PIC) simulation result to some extent under a diode voltage of 850 kV. Despite that the theoretical research gives a much larger current than the PIC simulation (41.3 kA for the former and 9.7 kA for the latter), which is induced by the ultra-relativistic assumption in the theoretical research, they both show the basic characteristic of emission from annular cathodes in foil-less diodes, i.e., the emission enhancement at the cathode blade edges, especially at the outer edge. This characteristic is confirmed to some extent in our experimental research of cathode plasma photographing under the same diode voltage and a guiding magnetic field of 4 T.

  3. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    Science.gov (United States)

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-12-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.

  4. Three-dimensional space charge distribution measurement in electron beam irradiated PMMA

    International Nuclear Information System (INIS)

    Imaizumi, Yoichi; Suzuki, Ken; Tanaka, Yasuhiro; Takada, Tatsuo

    1996-01-01

    The localized space charge distribution in electron beam irradiated PMMA was investigated using pulsed electroacoustic method. Using a conventional space charge measurement system, the distribution only in the depth direction (Z) can be measured assuming the charges distributed uniformly in the horizontal (X-Y) plane. However, it is difficult to measure the distribution of space charge accumulated in small area. Therefore, we have developed the new system to measure the three-dimensional space charge distribution using pulsed electroacoustic method. The system has a small electrode with a diameter of 1mm and a motor-drive X-Y stage to move the sample. Using the data measured at many points, the three-dimensional distribution were obtained. To estimate the system performance, the electron beam irradiated PMMA was used. The electron beam was irradiated from transmission electron microscope (TEM). The depth of injected electron was controlled using the various metal masks. The measurement results were compared with theoretically calculated values of electron range. (author)

  5. Simulation of the plasma meniscus with and without space charge using triode extraction system

    International Nuclear Information System (INIS)

    Rahman, M.M.Abdel; El-Khabeary, H.

    2009-01-01

    In this work, simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. The influence of acceleration voltage applied to the acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes, ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat, concave and convex ) without space charge at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. The influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been studied. (author)

  6. Charged NUT field : [Part] I. Motion of test particles and [Part] II. Cosmic censorship

    International Nuclear Information System (INIS)

    Krori, K.D.

    1981-01-01

    Some properties of the charged NUT field are studied. In the first part of the paper, some general aspects of the charged NUT field have been investigated using uncharged and charged particles. The behaviour of the particles near the singularity has also been considered. In the second part of the paper, the charged NUT sources in the context of cosmic censorship hypothesis are studied. Motion of charged particles in the equatorial plane and along the axis is considered. From this investigation the interesting result is discovered that by such a bombardment of charged test particles, the existing event horizons cannot be destroyed but, in contrast to the Reissner-Nordstrom field, naked singularities do not get enveloped by event horizons. (author)

  7. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  8. Observation of Octupole Driven Resonance Phenomena with Space Charge at the CERN Proton Synchrotron

    CERN Document Server

    Métral, E; Martini, M; Steerenberg, R; Franchetti, Giuliano; Hofmann, I

    2006-01-01

    Several benchmarking space charge experiments have been performed during the last few years in the CERN Proton Synchrotron. These controlled experiments are of paramount importance to validate the present very powerful simulation codes. The observations of the combined effect of space charge and nonlinear resonance on beam loss and emittance, using a single controllable octupole during ~ 1 s at 1.4 GeV kinetic energy, are discussed in some detail in the present paper. By lowering the working point towards the octupolar resonance, a gradual transition from a regime of loss-free core emittance blow-up to a regime of continuous loss was found.

  9. Phase modulation spectroscopy of space-charge wave resonances in Bi12SiO20

    DEFF Research Database (Denmark)

    Vasnetsov, M.; Buchhave, Preben; Lyuksyutov, S.

    1997-01-01

    A new experimental method for the study of resonance effects and space-charge wave excitation in photorefractive Bi12SiO20 crystals by using a combination of frequency detuning and phase modulation technique has been developed. The accuracy of the method allows a detection of resonance peaks...... of diffraction efficiency within 0.5 Hz. Numerical simulations of the nonlinear differential equations describing the behaviour of the space-charge waves in photorefractive crystals have been performed and found to be in a good agreement with experiment. We have measured the photocurrent through the crystal...

  10. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  11. Open superstring field theory on the restricted Hilbert space

    International Nuclear Information System (INIS)

    Konopka, Sebastian; Sachs, Ivo

    2016-01-01

    It appears that the formulation of an action for the Ramond sector of open superstring field theory requires to either restrict the Hilbert space for the Ramond sector or to introduce auxiliary fields with picture −3/2. The purpose of this note is to clarify the relation of the restricted Hilbert space with other approaches and to formulate open superstring field theory entirely in the small Hilbert space.

  12. Study by simulation the influence of temperature on the formation of space charge in the dielectric multilayer Under DC Electric stress

    Directory of Open Access Journals (Sweden)

    Y. A. Baadj

    2017-06-01

    Full Text Available Multidielectric polyethylene is a material that is generally employed as insulation for  the HVDC isolations. In this paper, the influence of temperature on space charge dynamics has been studied, low-density polyethylene (LDPE and Fluorinated Ethylene Propylene (FEP sandwiched between two electrodes were subjected to voltage application of 5kV (14.3 kV/mm for extended duration of time and the space charge measurements were taken using bipolar model is one-dimensional, taking into account trapping, detrapping and the rencommbinaison in order to determine the charge density and electric field of the sample depending on the thickness. The simulation was carried out at three different temperatures (20, 40,  and 60°C. The results of this model going to compare with experimental space charge measurements . Finally, simulation results demonstrated that the temperature has many effects on the dynamic space charge  and of influences the charge injection, charge mobility, electrical conduction, trapping and detrapping.

  13. Motion of Charged Particles in Electromagnetic Fields and Special

    Indian Academy of Sciences (India)

    charged particles as seen from different inertial frames of reference. ... is solved for various initial conditions of the values of q,. --t -+. -+ m,o, E, v and B to be .... on the choice of the particular frame of reference that is employed to describe the ...

  14. Effect of applied DC voltages and temperatures on space charge behaviour of multi-layer oil-paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chao; Liao Ruijin [The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, G [School of Electronics and Computer Science, University of Southampton (United Kingdom); Fu, M, E-mail: tangchao_1981@163.co [AVERA T and D Technology Centre, Stafford (United Kingdom)

    2009-08-01

    In this paper, space charge in a multi-layer oil-paper insulation system was investigated using the pulsed electroacoustic (PEA) technique. A series of measurements had been carried following subjection of the insulation system to different applied voltages and different temperatures. Charge behaviours in the insulation system were analyzed and the influence of temperature on charge dynamics was discussed. The test results shows that homocharge injection takes place under all the test conditions, the applied DC voltage mainly affects the amount of space charge, while the temperature has greater influence on the distribution and mobility of space charge inside oil-paper samples.

  15. Field enhanced charge carrier reconfiguration in electronic and ionic coupled dynamic polymer resistive memory

    International Nuclear Information System (INIS)

    Zhao Junhui; Thomson, Douglas J; Freund, Michael S; Pilapil, Matt; Pillai, Rajesh G; Aminur Rahman, G M

    2010-01-01

    Dynamic resistive memory devices based on a conjugated polymer composite (PPy 0 DBS - Li + (PPy: polypyrrole; DBS - : dodecylbenzenesulfonate)), with field-driven ion migration, have been demonstrated. In this work the dynamics of these systems has been investigated and it has been concluded that increasing the applied field can dramatically increase the rate at which information can be 'written' into these devices. A conductance model using space charge limited current coupled with an electric field induced ion reconfiguration has been successfully utilized to interpret the experimentally observed transient conducting behaviors. The memory devices use the rising and falling transient current states for the storage of digital states. The magnitude of these transient currents is controlled by the magnitude and width of the write/read pulse. For the 500 nm length devices used in this work an increase in 'write' potential from 2.5 to 5.5 V decreased the time required to create a transient conductance state that can be converted into the digital signal by 50 times. This work suggests that the scaling of these devices will be favorable and that 'write' times for the conjugated polymer composite memory devices will decrease rapidly as ion driving fields increase with decreasing device size.

  16. Space charge limited current conduction in Bi2Te3 thin films

    International Nuclear Information System (INIS)

    Sathyamoorthy, R.; Dheepa, J.; Velumani, S.

    2007-01-01

    Bi 2 Te 3 is known for its large thermoelectric coefficients and is widely used as a material for Peltier devices. Bi 2 Te 3 thin films with thicknesses in the range 125-300 A have been prepared by Flash Evaporation at a pressure of 10 -5 m bar on clean glass substrates at room temperature. An Al-Bi 2 Te 3 -Al sandwich structure has been used for electrical conduction properties in the temperature range 303 to 483 K. I-V characteristics showed Ohmic conduction in the low voltage region. In the higher voltage region, a Space Charge Limited Conduction (SCLC) takes place due to the presence of the trapping level. The transition voltage (V t ), between the Ohmic and the SCLC condition was proportional to the square of thickness. Further evidence for this conduction process was provided by the linear dependence of V t on t 2 and log J on log t. The hole concentration in the films were found to be n 0 = 1.65 * 10 10 m -3 . The carrier mobility increases with increasing temperature whereas the density of trapped charges decreases with increasing temperature. The barrier height decreases with an increase in temperature. The increase in the trapping concentration V t is correlated with ascending the degree of preferred orientation of the highest atomic density plane. The activation energy was estimated and the values found to decrease with increasing applied voltage. The zero field value of the activation energy is found to be 0.4 eV

  17. Effects of electric field and charge distribution on nanoelectronic processes involving conducting polymers

    International Nuclear Information System (INIS)

    Ramos, Marta M.D.; Correia, Helena M.G.

    2006-01-01

    The injection of charge carriers in conducting polymer layers gives rise to local electric fields which should have serious implications on the charge transport through the polymer layer. The charge distribution and the related electric field inside the ensemble of polymer molecules, with different molecular arrangements at nanoscale, determine whether or not intra-molecular charge transport takes place and the preferential direction for charge hopping between neighbouring molecules. Consequently, these factors play a significant role in the competition between current flow, charge trapping and recombination in polymer-based electronic devices. By suitable Monte Carlo calculations, we simulated the continuous injection of electrons and holes into polymer layers with different microstructures and followed their transport through those polymer networks. Results of these simulations provided a detailed picture of charge and electric field distribution in the polymer layer and allowed us to assess the consequences for current transport and recombination efficiency as well as the distribution of recombination events within the polymer film. In the steady state we found an accumulation of electrons and holes near the collecting electrodes giving rise to an internal electric field which is greater than the external applied field close to the electrodes and lower than the one in the central region of the polymer layer. We also found that a strong variation of electric field inside the polymer layer leads to an increase of recombination events in regions inside the polymer layer where the values of the internal electric field are lower

  18. Field space entanglement entropy, zero modes and Lifshitz models

    Science.gov (United States)

    Huffel, Helmuth; Kelnhofer, Gerald

    2017-12-01

    The field space entanglement entropy of a quantum field theory is obtained by integrating out a subset of its fields. We study an interacting quantum field theory consisting of massless scalar fields on a closed compact manifold M. To this model we associate its Lifshitz dual model. The ground states of both models are invariant under constant shifts. We interpret this invariance as gauge symmetry and subject the models to proper gauge fixing. By applying the heat kernel regularization one can show that the field space entanglement entropies of the massless scalar field model and of its Lifshitz dual are agreeing.

  19. Field space entanglement entropy, zero modes and Lifshitz models

    Directory of Open Access Journals (Sweden)

    Helmuth Huffel

    2017-12-01

    Full Text Available The field space entanglement entropy of a quantum field theory is obtained by integrating out a subset of its fields. We study an interacting quantum field theory consisting of massless scalar fields on a closed compact manifold M. To this model we associate its Lifshitz dual model. The ground states of both models are invariant under constant shifts. We interpret this invariance as gauge symmetry and subject the models to proper gauge fixing. By applying the heat kernel regularization one can show that the field space entanglement entropies of the massless scalar field model and of its Lifshitz dual are agreeing.

  20. Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy

    International Nuclear Information System (INIS)

    Chen, Qian Nataly; Li, Jiangyu; Adler, Stuart B.

    2014-01-01

    Nanocrystalline ceria exhibits a total conductivity several orders of magnitude higher than microcrystalline ceria in air at high temperature. The most widely accepted theory for this enhancement (based on fitting of conductivity data to various transport and kinetic models) is that relatively immobile positively charged defects and/or impurities accumulate at the grain boundary core, leading to a counterbalancing increase in the number of mobile electrons (small polarons) within a diffuse space charge region adjacent to each grain boundary. In an effort to validate this model, we have applied electrochemical strain microscopy to image the location and relative population of mobile electrons near grain boundaries in polycrystalline Sm-doped ceria in air at 20–200 °C. Our results show the first direct (spatially resolved) evidence that such a diffuse space charge region does exist in ceria, and is localized to both grain boundaries and the gas-exposed surface

  1. Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qian Nataly; Li, Jiangyu, E-mail: jjli@uw.edu [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Adler, Stuart B., E-mail: stuadler@uw.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-11-17

    Nanocrystalline ceria exhibits a total conductivity several orders of magnitude higher than microcrystalline ceria in air at high temperature. The most widely accepted theory for this enhancement (based on fitting of conductivity data to various transport and kinetic models) is that relatively immobile positively charged defects and/or impurities accumulate at the grain boundary core, leading to a counterbalancing increase in the number of mobile electrons (small polarons) within a diffuse space charge region adjacent to each grain boundary. In an effort to validate this model, we have applied electrochemical strain microscopy to image the location and relative population of mobile electrons near grain boundaries in polycrystalline Sm-doped ceria in air at 20–200 °C. Our results show the first direct (spatially resolved) evidence that such a diffuse space charge region does exist in ceria, and is localized to both grain boundaries and the gas-exposed surface.

  2. Novel simulation method of space charge effects in electron optical systems including emission of electrons

    Czech Academy of Sciences Publication Activity Database

    Zelinka, Jiří; Oral, Martin; Radlička, Tomáš

    2018-01-01

    Roč. 184, JAN (2018), s. 66-76 ISSN 0304-3991 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : space charge * self-consistent simulation * aberration polynomial * electron emission Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.843, year: 2016

  3. Space charge and beam stability issues of the Fermilab proton driver in Phase I

    Energy Technology Data Exchange (ETDEWEB)

    K. Y. Ng

    2001-08-24

    Issues concerning beam stability of the proposed Fermilab Proton Driver are studied in its Phase I. Although the betatron tune shifts are dominated by space charge, these shifts are less than 0.25 and will therefore not drive the symmetric and antisymmetric modes of the beam envelope into instability. The longitudinal space charge force is large and inductive inserts may be needed to compensate for the distortion of the rf potential. Although the longitudinal impedance is space charge dominated, it will not drive any microwave instability, unless the real part of the impedance coming from the inductive inserts and wall resistivity of the beam tube are large enough. The design of the beam tube is therefore very important in order to limit the flow of eddy current and keep wall resistivity low. The transverse impedance is also space charge dominated. With the Proton Driver operated at an imaginary transition gamma, however, Landau damping will never be canceled and beam stability can be maintained with negative chromaticities.

  4. Calculation and measurement of space charge in MV-size xxtruded cables systems under load conditions

    NARCIS (Netherlands)

    Morshuis, P.H.F.; Bodega, R.; Fabiani, D.; Montanari, G.C.; Dissado, L.A.; Smit, J.J.

    2007-01-01

    A load current in dc high voltage cables results in a temperature drop across the insulation and hence a radial distribution of the insulation conductivity is found. Direct consequence is an accumulation of space charge in the bulk of the nsulation, that may significantly affect its reliability.

  5. Progress in 3D Space-charge Calculations in the GPT Code

    NARCIS (Netherlands)

    Pöplau, G.; Rienen, van U.; Loos, de M.J.; Geer, van der S.B.

    2004-01-01

    The mesh-based 3D space-charge routine in the GPT (General Particle Tracer, Pulsar Physics) code scales linearly with the number of particles in terms of CPU time and allows a million particles to be tracked on a normal PC. The crucial ingredient of the routine is a non-equidistant multi-grid

  6. Radial space-charge-limited electron flow in semi-insulating GaN:Fe

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Prušáková, Lucie; Uxa, Štěpán; Paskova, T.; Evans, K.

    2011-01-01

    Roč. 110, č. 1 (2011), 013723/1-013723/6 ISSN 0021-8979 R&D Projects: GA ČR GAP204/10/0212 Institutional research plan: CEZ:AV0Z10100521 Keywords : gallium nitride * semi-insulator * space-charge-limited current Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.168, year: 2011

  7. The effect of space charge force on beams extracted from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1989-01-01

    A new 3 dimensional ray tracing code BEAM-3D, with a simple model to calculate the space charge force of multiple ion species, is under development and serves as a theoretical tool to study the ECRIS beam formation. Excellent agreement between the BEAM-3D calculations and beam profile and emittance measurements of the total extracted helium 1+ beam from the RTECR ion source was obtained when a low degree of beam neutralization was assumed in the calculations. The experimental evidence indicates that the positive space charge effects dominate the early RTECR ion source beam formation and beamline optics matching process. A review of important beam characteristics is made, including a conceptual model for the space charge beam blow up. Better beam transport through the RTECR beamline analysis magnet has resulted after an extraction geometry modification in which the space charge force was more correctly matched. This work involved the development of an online beam characteristic measuring apparatus which will also be described

  8. Simulation of the Plasma Meniscus with and without Space Charge using Triode Extraction System

    International Nuclear Information System (INIS)

    Abdel Rahman, M.M.; EI-Khabeary, H.

    2007-01-01

    In this work simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. Tbe influence of acceleration voltage applied to tbe acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat concave and convex ) without space change at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. Tbe influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V a cc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V a cc = - 2000 volt applied to the acceleration electrode of. the triode extraction system has been studied

  9. Point charge potential and weighting field of a pixel or pad in a plane condenser

    Energy Technology Data Exchange (ETDEWEB)

    Riegler, W.; Aglieri Rinella, G.

    2014-12-11

    We derive expressions for the potential of a point charge as well as the weighting potential and weighting field of a rectangular pad for a plane condenser, which are well suited for numerical evaluation. We relate the expressions to solutions employing the method of image charges, which allows discussion of convergence properties and estimation of errors, providing also an illuminating example of a problem with an infinite number of image charges.

  10. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    Science.gov (United States)

    Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2018-02-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

  11. Estimation of droplet charge forming out of an electrified ligament in the presence of a uniform electric field

    International Nuclear Information System (INIS)

    Osman, H; Castle, G S P; Adamiak, K; Fan, H T; Simmer, J

    2015-01-01

    The charge on a liquid droplet is a critical parameter that needs to be determined to accurately predict the behaviour of the droplet in many electrostatic applications, for example, electrostatic painting and ink-jet printing. The charge depends on many factors, such as the liquid conductivity, droplet and ligament radii, ligament length, droplet shape, electric field intensity, space charge, the presence of adjacent ligaments and previously formed droplets. In this paper, a 2D axisymmetric model is presented which can be used to predict the electric charge on a conductive spherical droplet ejected from a single ligament directly supplied with high voltage. It was found that the droplet charging levels for the case of isolated electrified ligaments are as much as 60 times higher than that in the case of ligaments connected to a planar high voltage electrode. It is suggested that practical atomization systems lie somewhere between these two extremes and that a better model was achieved by developing a 3D approximation of a linear array of ligaments connected to an electrode having variable width. The effect on droplet charge and its radius was estimated for several cases of different boundary conditions. (paper)

  12. Measurement of beam energy spread in a space-charge dominated electron beam

    Directory of Open Access Journals (Sweden)

    Y. Cui

    2004-07-01

    Full Text Available Characterization of beam energy spread in a space-charge dominated beam is very important to understanding the physics of intense beams. It is believed that coupling between the transverse and longitudinal directions via Coulomb collisions will cause an increase of the beam longitudinal energy spread. At the University of Maryland, experiments have been carried out to study the energy evolution in such intense beams with a high-resolution retarding field energy analyzer. The temporal beam energy profile along the beam pulse has been characterized at the distance of 25 cm from the anode of a gridded thermionic electron gun. The mean energy of the pulsed beams including the head and tail is reported here. The measured rms energy spread is in good agreement with the predictions of the intrabeam scattering theory. As an application of the beam energy measurement, the input impedance between the cathode and the grid due to beam loading can be calculated and the impedance number is found to be a constant in the operation region of the gun.

  13. Chromatic, geometric and space charge effects on laser accelerated protons focused by a solenoid

    OpenAIRE

    Al-Omari, Husam; Hofmann, Ingo; Ratzinger, Ulrich

    2011-01-01

    We stud­ied nu­mer­i­cal­ly emit­tance and trans­mis­sion ef­fects by chro­mat­ic and ge­o­met­ric aber­ra­tions, with and with­out space charge, for a pro­ton beam be­hind a solenoid in the laser pro­ton ex­per­i­ment LIGHT at GSI. The TraceWin code was em­ployed using a field map for the solenoid and an ini­tial dis­tri­bu­tion with ex­po­nen­tial en­er­gy de­pen­dence close to the ex­per­i­ment. The re­sults show a strong ef­fect of chro­mat­ic, and a rel­a­tive­ly weak one of ge­o­met­ric...

  14. Space construction engineering - A new career field

    Science.gov (United States)

    Hagler, T.

    1979-01-01

    Opportunities for engineers in the design and construction of future large space structures are outlined. Possible space structures for the 1980's include a large mirror to reflect sunlight to earth for night lighting, an antenna for a personal communications system, a deep space communications relay system and a large passive radiometer to measure soil moisture. Considerations in the design of such structures include the lack of gravity, allowing structures to be built with much less supporting weight, the cost of transportation to orbit, leading to the use of aluminum or composite materials stored on reels and attached to a beam builder, and the required surface accuracy in the presence of thermal stresses. Construction factors to consider include the use of astronauts and remote manipulators in assembly, both of which have been demonstrated to be feasible.

  15. Numerical investigation of the contraction of neutral-charged diblock copolymer brushes in electric fields

    International Nuclear Information System (INIS)

    Chen, Yuwei; Li, Haiming; Zhu, Yuejin; Tong, Chaohui

    2016-01-01

    Using self-consistent field theory (SCFT), the contraction of neutral-charged A-B diblock copolymer brushes in electric fields generated by opposite surface charges on two parallel electrodes has been numerically investigated. The diblock copolymer chains were grafted with the free end of the neutral block to one electrode and immersed in a salt-free solution sandwiched between the two electrodes. The numerical results reveal that the charged monomers, A-B joint segment and the tail exhibit bimodal distributions under external electric fields, which are absent for homopolymer polyelectrolyte brushes. The dependences of the relative populations and peak positions of the two modes on various parameters such as block ratio, grafting density, chain length and strength of the applied electric field were systematically examined and the underlining mechanisms were elucidated. It was found in this study that, if the total amount of surface charges on the grafting electrode is no more than that of the counter-ions in the system, overall charge neutrality is generally maintained inside the brushes when including the contribution of surface charges on the grafting electrode. In such a case, the counter-ions expelled from the brushes are highly enriched in the immediate vicinity of the second electrode and an approximate charge balance between these expelled counter-ions and the opposite surface charges on the second electrode is achieved. (paper)

  16. Full-field peak pressure prediction of shock waves from underwater explosion of cylindrical charges

    NARCIS (Netherlands)

    Liu, Lei; Guo, Rui; Gao, Ke; Zeng, Ming Chao

    2017-01-01

    Cylindrical charge is a main form in most application of explosives. By employing numerical calculation and an indirect mapping method, the relation between peak pressures from underwater explosion of cylindrical and spherical charges is investigated, and further a model to predict full-field peak

  17. Theory of charged vector mesons interacting with the electromagnetic field

    International Nuclear Information System (INIS)

    Lee, T.D.; Yang, C.N.

    1983-01-01

    It is shown that starting from the usual canonical formalism for the electromagnetic interaction of a charged vector meson with arbitrary magnetic moment one is led to a set of rules for Feynman diagrams, which appears to contain terms that are both infinite and noncovariant. These difficulties, however, can be circumvented by introducing a xi-limiting process which depends on a dimensionless positive parameter xi → 0. Furthermore, by using the mathematical artifice of a negative metric the theory becomes renormalizable (for xi > 0)

  18. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    Science.gov (United States)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  19. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Science.gov (United States)

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  20. The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Chang; PENG Zu-Jie; FU Yun-Chang

    2011-01-01

    @@ For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object field reconstruction involves the diffraction calculation of the optic wave passing through the optical system.We propose two methods to reconstruct the object field.The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship.The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper.The reconstruction formulae which easily use classic diffraction integral are derived.Finally, experimental verifications are also accomplished.%For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object Reid reconstruction involves the diffraction calculation of the optic wave passing through the optical system. We propose two methods to reconstruct the object field. The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship. The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper. The reconstruction formulae which easily use classic diffraction integral are derived. Finally, experimental verifications are also accomplished.

  1. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-03-31

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.

  2. New exact solution for the exterior gravitational field of a charged spinning mass

    International Nuclear Information System (INIS)

    Chamorro, A.; Manko, V.S.; Denisova, T.E.

    1991-01-01

    An exact asymptotically flat solution of the Einstein-Maxwell equations describing the exterior gravitational field of a charged rotating axisymmetric mass possessing an arbitrary set of multipole moments is presented explicitly

  3. Lateral diffusion of the topological charge density in stochastic optical fields

    CSIR Research Space (South Africa)

    Roux, FS

    2010-01-01

    Full Text Available Stochastic (i.e. random and quasi-random) optical fields may contain distributions of optical vortices that are represented by non-uniform topological charge densities. Numerical simulations are used to investigate the evolution under free...

  4. Perihelic shift of planets due to the gravitational field of the charged Sun

    International Nuclear Information System (INIS)

    Teli, M.T.; Palaskar, D.

    1984-01-01

    The perihelic shift of planets due to the charged Sun is calculated. The results when compared with experimental shifts suggest that the planets Mercury, Venus and Icarus do not possess self-electromagnetic fields

  5. Influence of initial velocity on trajectories of a charged particle in uniform crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Khotimah, Siti Nurul; Viridi, Sparisoma; Widayani

    2017-01-01

    Magnetic and electric fields can cause a charged particle to form interesting trajectories. In general, each trajectory is discussed separately in university physics textbooks for undergraduate students. In this work, a solution of a charged particle moving in a uniform electric field at right angles to a uniform magnetic field (uniform crossed electric and magnetic fields) is reported; it is limited to particle motion in a plane. Specific solutions and their trajectories are obtained only by varying the initial particle velocity. The result shows five basic trajectory patterns, i.e., straight line, sinusoid-like, cycloid, cycloid-like with oscillation, and circle-like. The region of each trajectory is also mapped in the initial velocity space of the particle. This paper is intended for undergraduate students and describes further the trajectories of a charged particle through the regions of electric and magnetic fields influenced by initial condition of the particle, where electromagnetic radiation of an accelerated particle is not considered. (paper)

  6. A Hiker's guide to K3. Aspects of N=(4,4) superconformal field theory with central charge c=6

    International Nuclear Information System (INIS)

    Nahm, W.; Wendland, K.

    2001-01-01

    We study the moduli space M of N=(4,4) superconformal field theories with central charge c=6. After a slight emendation of its global description we find the locations of various known models in the component of M associated to K3 surfaces. Among them are the Z 2 and Z 4 orbifold theories obtained from the torus component of M. Here, SO(4,4) triality is found to play a dominant role. We obtain the B-field values in direction of the exceptional divisors which arise from orbifolding. We prove T-duality for the Z 2 orbifolds and use it to derive the form of M purely within conformal field theory. For the Gepner model (2) 4 and some of its orbifolds we find the locations in M and prove isomorphisms to nonlinear σ models. In particular we prove that the Gepner model (2) 4 has a geometric interpretation with Fermat quartic target space. (orig.)

  7. Rosette of rosettes of Hilbert spaces in the indefinite metric state space of the quantized Maxwell field

    International Nuclear Information System (INIS)

    Gessner, W.; Ernst, V.

    1980-01-01

    The indefinite metric space O/sub M/ of the covariant form of the quantized Maxwell field M is analyzed in some detail. S/sub M/ contains not only the pre-Hilbert space X 0 of states of transverse photons which occurs in the Gupta--Bleuler formalism of the free M, but a whole rosette of continuously many, isomorphic, complete, pre-Hilbert spaces L/sup q/ disjunct up to the zero element o of S/sub M/. The L/sup q/ are the maximal subspaces of S/sub M/ which allow the usual statistical interpretation. Each L/sup q/ corresponds uniquely to one square integrable, spatial distribution j/sup o/(x) of the total charge Q=0. If M is in any state from L/sup q/, the bare charge j 0 (x) appears to be inseparably dressed by the quantum equivalent of its proper, classical Coulomb field E(x). The vacuum occurs only in the state space L 0 of the free Maxwell field. Each L/sup q/ contains a secondary rosette of continuously many, up to o disjunct, isomorphic Hilbert spaces H/sub g//sup q/ related to different electromagnetic gauges. The space H/sub o//sup q/, which corresponds to the Coulomb gauge within the Lorentz gauge, plays a physically distinguished role in that only it leads to the usual concept of energy. If M is in any state from H/sub g//sup q/, the bare 4-current j 0 (x), j(x), where j(x) is any square integrable, transverse current density in space, is endowed with its proper 4-potential which depends on the chosen gauge, and with its proper, gauge independent, Coulomb--Oersted field E(x), B(x). However, these fields exist only in the sense of quantum mechanical expectation values equipped with the corresponding field fluctuations. So they are basically different from classical electromagnetic fields

  8. Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes - a first-principle study

    International Nuclear Information System (INIS)

    Chen, C.-W.; Lee, M.-H.; Clark, S.J.

    2004-01-01

    The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/A. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field

  9. Hawking radiation of five-dimensional charged black holes with scalar fields

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2017-09-01

    Full Text Available We investigate the Hawking radiation cascade from the five-dimensional charged black hole with a scalar field coupled to higher-order Euler densities in a conformally invariant manner. We give the semi-analytic calculation of greybody factors for the Hawking radiation. Our analysis shows that the Hawking radiation cascade from this five-dimensional black hole is extremely sparse. The charge enhances the sparsity of the Hawking radiation, while the conformally coupled scalar field reduces this sparsity.

  10. Axial p-n junction and space charge limited current in single GaN nanowire

    Science.gov (United States)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-01

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 1017 at cm-3 assuming a donor level N d of 2-3 × 1018 at cm-3. The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  11. Axial p-n junction and space charge limited current in single GaN nanowire.

    Science.gov (United States)

    Fang, Zhihua; Donatini, Fabrice; Daudin, Bruno; Pernot, Julien

    2018-01-05

    The electrical characterizations of individual basic GaN nanostructures, such as axial nanowire (NW) p-n junctions, are becoming indispensable and crucial for the fully controlled realization of GaN NW based devices. In this study, electron beam induced current (EBIC) measurements were performed on two single axial GaN p-n junction NWs grown by plasma-assisted molecular beam epitaxy. I-V characteristics revealed that both ohmic and space charge limited current (SCLC) regimes occur in GaN p-n junction NW. Thanks to an improved contact process, both the electric field induced by the p-n junction and the SCLC in the p-part of GaN NW were disclosed and delineated by EBIC signals under different biases. Analyzing the EBIC profiles in the vicinity of the p-n junction under 0 V and reverse bias, we deduced a depletion width in the range of 116-125 nm. Following our previous work, the acceptor N a doping level was estimated to be 2-3 × 10 17 at cm -3 assuming a donor level N d of 2-3 × 10 18 at cm -3 . The hole diffusion length in n-GaN was determined to be 75 nm for NW #1 and 43 nm for NW #2, demonstrating a low surface recombination velocity at the m-plane facet of n-GaN NW. Under forward bias, EBIC imaging visualized the electric field induced by the SCLC close to p-side contact, in agreement with unusual SCLC previously reported in GaN NWs.

  12. Motion of a point charge in electromagnetic fields under consideration of radiation damping

    International Nuclear Information System (INIS)

    Stoeckel, H.

    1976-01-01

    The 'new equation' of Mo and Papas for the description of a point charge in an electromagnetic field under consideration of radiation damping, published in 1971, doesn't show the known disadvantages of the Lorentz-Dirac equation, taken as a basis up to now. Different forms of the Mo-Papas equation are derived and the resulting force- and power-balances are discussed. Exact and approximated solutions are derived for simple given fields, for instance for a homogeneous magnetic field, a homogeneous electric field and for the field of a resting point charge. The scattering angles are calculated for the scattering of a point charge by a homogeneous magnetic resp. electric field of finite extension. The results agree well with approximation formulas of other authors. (author)

  13. Longitudinal holes in debunched particle beams in storage rings, perpetuated by space-charge forces

    Directory of Open Access Journals (Sweden)

    Shane Koscielniak

    2001-04-01

    Full Text Available Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched charged-particle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently received some attention. In particular, we address the case that space charge is the dominant longitudinal impedance and the storage ring operates below transition energy so that the negative mass instability is not an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steady-state distribution, about which the expansion is made, the usual wave theory of Keil and Schnell for perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below transition if the impedance is inductive (or resistive or if the bell shape is inverted. Space charge gives a capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN Proton Synchrotron Booster that plainly show the longevity of holelike structures in coasting beams. We shall also report on computer simulations of boosterlike beams that provide compelling evidence that it is space-charge force which perpetuates the holes. We shall show that the localized solitonlike structures, i.e., holes, decouple from the steady-state distribution and that they are simple solutions of the nonlinearized time-independent Vlasov equation. We have derived conditions for stationarity of holes that satisfy the requirement of self-consistency; essentially, the relation between the momentum spread and depth of the holes is given by the Hamiltonian—with the constraint that the phase-space density be high enough to support the solitons. The stationarity conditions have scaling laws similar to the Keil-Schnell criteria except that the charge and momentum spread of the hole replaces that of the beam.

  14. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel [Plasma Physics Group, Faculty of Sciences-Physics, Theoretical Physics Laboratory, University of Bab-Ezzouar, USTHB BP 32, El Alia, Algiers 16111 (Algeria)], E-mail: mtribeche@usthb.dz

    2009-09-15

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  15. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel

    2009-01-01

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  16. Chaos in charged AdS black hole extended phase space

    Science.gov (United States)

    Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S.

    2018-06-01

    We present an analytical study of chaos in a charged black hole in the extended phase space in the context of the Poincare-Melnikov theory. Along with some background on dynamical systems, we compute the relevant Melnikov function and find its zeros. Then we analyse these zeros either to identify the temporal chaos in the spinodal region, or to observe spatial chaos in the small/large black hole equilibrium configuration. As a byproduct, we derive a constraint on the Black hole' charge required to produce chaotic behaviour. To the best of our knowledge, this is the first endeavour to understand the correlation between chaos and phase picture in black holes.

  17. Spinors in self-dual Yang-Mills fields in minkowski space

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1981-01-01

    Yang-Mills theory with infrared divergences removed by spontaneous vacuum symmetry breaking is considered. The corresponding vacuum fields are self-dual and are defined in the Minkowski space. The complete set of solutions of Dirac equations with self-dual fields, depending on certain arbitrary function, is found. Physical observables (charge, energy, spin) for the spinor fields within the self-dual vacuum are calculated and a Hermitean Hamiltonian is obtained. The physical picture corresponds to a relativistic generalization of the hadron bag model [ru

  18. Fermi field and Dirac oscillator in a Som-Raychaudhuri space-time

    Science.gov (United States)

    de Montigny, Marc; Zare, Soroush; Hassanabadi, Hassan

    2018-05-01

    We investigate the relativistic dynamics of a Dirac field in the Som-Raychaudhuri space-time, which is described by a Gödel-type metric and a stationary cylindrical symmetric solution of Einstein field equations for a charged dust distribution in rigid rotation. In order to analyze the effect of various physical parameters of this space-time, we solve the Dirac equation in the Som-Raychaudhuri space-time and obtain the energy levels and eigenfunctions of the Dirac operator by using the Nikiforov-Uvarov method. We also examine the behaviour of the Dirac oscillator in the Som-Raychaudhuri space-time, in particular, the effect of its frequency and the vorticity parameter.

  19. (Ln-bar, g)-spaces. Special tensor fields

    International Nuclear Information System (INIS)

    Manoff, S.; Dimitrov, B.

    1998-01-01

    The Kronecker tensor field, the contraction tensor field, as well as the multi-Kronecker and multi-contraction tensor fields are determined and the action of the covariant differential operator, the Lie differential operator, the curvature operator, and the deviation operator on these tensor fields is established. The commutation relations between the operators Sym and Asym and the covariant and Lie differential operators are considered acting on symmetric and antisymmetric tensor fields over (L n bar, g)-spaces

  20. Gauge-invariant charged, monopole and dyon fields in gauge theories

    International Nuclear Information System (INIS)

    Froehlich, J.; Marchetti, P.A.

    1999-01-01

    We propose explicit recipes to construct the Euclidean Green functions of gauge-invariant charged, monopole and dyon fields in four-dimensional gauge theories whose phase diagram contains phases with deconfined electric and/or magnetic charges. In theories with only either abelian electric or magnetic charges, our construction is an Euclidean version of Dirac's original proposal, the magnetic dual of his proposal, respectively. Rigorous mathematical control is achieved for a class of abelian lattice theories. In theories where electric and magnetic charges coexist, our construction of Green functions of electrically or magnetically charged fields involves taking an average over Mandelstam strings or the dual magnetic flux tubes, in accordance with Dirac's flux quantization condition. We apply our construction to 't Hooft-Polyakov monopoles and Julia-Zee dyons. Connections between our construction and the semiclassical approach are discussed