WorldWideScience

Sample records for space biology studies

  1. Improving Satellite Compatible Microdevices to Study Biology in Space

    Kalkus, Trevor; Snyder, Jessica; Paulino-Lima, Ivan; Rothschild, Lynn

    2017-01-01

    The technology for biology in space lags far behind the gold standard for biological experiments on Earth. To remedy this disparity, the Rothschild lab works on proof of concept, prototyping, and developing of new sensors and devices to further the capabilities of biology research on satellites. One such device is the PowerCell Payload System. One goal for synthetic biology in aiding space travel and colonization is to genetically engineer living cells to produce biochemicals in space. However, such farming in space presupposes bacteria retain their functionality post-launch, bombarded by radiation, and without the 1G of Earth. Our questions is, does a co-culture of cyanobacteria and protein-synthesizing bacteria produce Earth-like yields of target proteins? Is the yield sensitive to variable gravitational forces? To answer these questions, a PowerCell Payload System will spend 1 year aboard the German Aerospace Center's Euglena and Combined Regenerative Organic-food Production In Space (Eu:CROPIS) mission satellite. The PowerCell system is a pair of two 48-well microfluidic cards, each well seeded with bacteria. The system integrates fluidic, thermal, optical, electronic, and control systems to germinate bacteria spores, then measure the protein synthesized for comparison to parallel experiments conducted on the Earth. In developing the PowerCell Payload, we gained insight into the shortcomings of biology experiments on satellites. To address these issues, we have started three new prototyping projects: 1) The development of an extremely stable and radiation resistant cell-free system, allowing for the construction of proteins utilizing only cell components instead of living cells. This can be lyophilized on a substrate, like paper. (2) Using paper as a microfluidic platform that is flexible, stable, cheap, and wicking. The capillary action eliminates the need for pumps, reducing volume, mass, and potential failing points. Electrodes can be printed on the paper to

  2. Space biology research development

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  3. Biological and psychosocial effects of space travel: A case study

    Hsia, Robert Edward Tien Ming

    This dissertation interviewed a single astronaut to explore psychosocial issues relevant to long-duration space travel and how these issues relate to the astronaut's training. It examined the psychological impact of isolation, crew interaction, and the experience of microgravity with the goal of increasing understanding of how to foster crew survivability and positive small group interactions in space (Santy, 1994). It also focused on how to develop possible treatments for crews when they transition back to Earth from the extreme environment of space missions. The astronaut's responses agreed with the literature and the predictions for long-duration space missions except the participant reported no temporary or permanent cognitive or memory deficits due to microgravity exposure. The dissertation identified five frequently endorsed themes including communication, environmental stressors, personal strengths, un-researched problems, and other. The agreement found between the literature and astronaut's responses offer a strong foundation of questions and data that needs to be further studied before conducting research in space or long-duration space missions.

  4. Space Synthetic Biology (SSB)

    National Aeronautics and Space Administration — This project focused on employing advanced biological engineering and bioelectrochemical reactor systems to increase life support loop closure and in situ resource...

  5. Study on biological response to space radiation and its countermeasure

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground.

  6. Study on biological response to space radiation and its countermeasure

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu

    2011-12-01

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground

  7. Space Synthetic Biology Project

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  8. Research progress on space radiation biology

    Li Wenjian; Dang Bingrong; Wang Zhuanzi; Wei Wei; Jing Xigang; Wang Biqian; Zhang Bintuan

    2010-01-01

    Space radiation, particularly induced by the high-energy charged particles, may cause serious injury on living organisms. So it is one critical restriction factor in Manned Spaceflight. Studies have shown that the biological effects of charged particles were associated with their quality, the dose and the different biological end points. In addition, the microgravity conditions may affect the biological effects of space radiation. In this paper we give a review on the biological damage effects of space radiation and the combined biological effects of the space radiation coupled with the microgravity from the results of space flight and ground simulation experiments. (authors)

  9. Space Biology in Russia Today

    Grigoriev, Anatoly; Sychev, Vladimir; Ilyin, Eugene

    At present space biology research in Russia is making significant progress in several areas of high priority. Gravitational biology. In April-May 2013, a successful 30-day flight of the biological satellite (biosatellite) Bion-M1 was conducted, which carried rodents (mice and gerbils), geckos, fish, mollusks, crustaceans, microorganisms, insects, lower and higher plants, seeds, etc. The investigations were performed by Russian scientists as well as by researchers from NASA, CNES, DLR and South Korea. Foton-M4 carrying various biological specimens is scheduled to launch in 2014. Work has begun to develop science research programs to be implemented onboard Bion-M2 and Bion-M3 as well as on high apogee recoverable spacecraft. Study of the effects of microgravity on the growth and development of higher plants cultivated over several generations on the International Space Station (ISS) has been recently completed. Space radiobiology. Regular experiments aimed at investigating the effects of high-energy galactic cosmic rays on the animal central nervous system and behavior are being carried out using the Particle Accelerator in the town of Dubna. Biological (environmental) life support systems. In recent years, experiments have been performed on the ISS to upgrade technologies of plant cultivation in microgravity. Advanced greenhouse mockups have been built and are currentlyundergoing bioengineering tests. Technologies of waste utilization in space are being developed. Astrobiology experiments in orbital missions. In 2010, the Biorisk experiment on bacterial and fungal spores, seeds and dormant forms of organisms was completed. The payload containing the specimens was installed on the exterior wall of the ISS and was exposed to outer space for 31 months. In addition, Bion-M1 also carried seeds, bacterial spores and microbes that were exposed to outer space effects. The survival rate of bacterial spores incorporated into man-made meteorites, that were attached to the

  10. Biology relevant to space radiation

    Fry, R.J.M.

    1997-01-01

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration

  11. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  12. Biology relevant to space radiation

    Fry, R.J.M.

    1996-01-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors

  13. Cell biology experiments conducted in space

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  14. Synthetic biology assemblies for sustainable space exploration

    National Aeronautics and Space Administration — The work utilized synthetic biology to create sustainable food production processes by developing technology to efficiently convert inedible crop waste to...

  15. Fundamental plant biology enabled by the space shuttle.

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  16. Deciphering cancer heterogeneity: the biological space

    Stephanie eRoessler

    2014-04-01

    Full Text Available Most lethal solid tumors including hepatocellular carcinoma (HCC are considered incurable due to extensive heterogeneity in clinical presentation and tumor biology. Tumor heterogeneity may result from different cells of origin, patient ethnicity, etiology, underlying disease and diversity of genomic and epigenomic changes which drive tumor development. Cancer genomic heterogeneity thereby impedes treatment options and poses a significant challenge to cancer management. Studies of the HCC genome have revealed that although various genomic signatures identified in different HCC subgroups share a common prognosis, each carries unique molecular changes which are linked to different sets of cancer hallmarks whose misregulation has been proposed by Hanahan and Weinberg to be essential for tumorigenesis. We hypothesize that these specific sets of cancer hallmarks collectively occupy different tumor biological space representing the misregulation of different biological processes. In principle, a combination of different cancer hallmarks can result in new convergent molecular networks that are unique to each tumor subgroup and represent ideal druggable targets. Due to the ability of the tumor to adapt to external factors such as treatment or changes in the tumor microenvironment, the tumor biological space is elastic. Our ability to identify distinct groups of cancer patients with similar tumor biology who are most likely to respond to a specific therapy would have a significant impact on improving patient outcome. It is currently a challenge to identify a particular hallmark or a newly emerged convergent molecular network for a particular tumor. Thus, it is anticipated that the integration of multiple levels of data such as genomic mutations, somatic copy number aberration, gene expression, proteomics, and metabolomics, may help us grasp the tumor biological space occupied by each individual, leading to improved therapeutic intervention and outcome.

  17. Space Biology and Medicine. Volume I; Space and Its Exploration

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    these other objects. In Chapter 3, Marov describes the planets Mercury, Venus, Earth, and Mars, their history and origin, and their environmental conditions, and in Chapter 4 Owen provides similar information about Jupiter, Saturn, Uranus, Neptune, and Pluto, "The Outer Planets of the Solar System." Morrison provides a thorough discussion of "Asteroids, Comets, and Other Small Bodies" in Chapter 5. The understanding of these relics of the formation of the solar system may form the center of our ability to understand the origin of solar systems in general, and of the critical role that the beginning of the solar system had on the prospects for the origin of life and its continued survival and evolution in the face of their recurrent impacts on Earth. In Chapter 6, the first chapter of the third part, Rummel describes the area of "Exobiology," the study of the origin, evolution, and distribution of life in the context of the origin and evolution of the universe. The same processes that have given rise to life on Earth may have given rise to life elsewhere. In Chapter 7, the "Earth and the Biosphere," the nature and function of the Earth are discussed as a specific instance of planetary and biological evolution. The effects of biological processes on the Earth under the influence of human activities are also addressed by Moore and Bartlett in Chapter 7. The final chapter in this section concerns the prospects that life in the universe may be widespread; "SETI," the Search for Extraterrestrial Intelligence, by Billingham and Tarter, presents the arguments for conducting a search for evidence of life elsewhere in the galaxy, and describes the various methods proposed for conducting such a search. While SETI has a distinctly exploration al character, more direct means are available for exploring the solar system around us. The fourth part of the volume addresses this subject of space exploration. Considering the prospects for research on space biology and medicine, the means

  18. Space Biology in the 21st century

    Halstead, Thora W.; Krauss, Robert W.

    1990-01-01

    Space Biology is poised to make significant contributions to science in the next century. A carefully crafted, but largely ground-based, program in the United States has evolved major questions that require answers through experiments in space. Science, scientists, and the new long-term spacecrafts designed by NASA will be available for the first time to mount a serious Space Biology effort. The scientific challenge is of such importance that success will provide countless benefits to biologically dependent areas such as medicine, food, and commerce in the decades ahead. The international community is rapidly expanding its role in this field. The United States should generate the resources that will allow progress in Space Biology to match the recognized progress made in aeronautics and the other space sciences.

  19. Gravitational biology on the space station

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  20. Life sciences space biology project planning

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  1. Biological challenges of true space settlement

    Mankins, John C.; Mankins, Willa M.; Walter, Helen

    2018-05-01

    "Space Settlements" - i.e., permanent human communities beyond Earth's biosphere - have been discussed within the space advocacy community since the 1970s. Now, with the end of the International Space Station (ISS) program fast approaching (planned for 2024-2025) and the advent of low cost Earth-to-orbit (ETO) transportation in the near future, the concept is coming once more into mainstream. Considerable attention has been focused on various issues associated with the engineering and human health considerations of space settlement such as artificial gravity and radiation shielding. However, relatively little attention has been given to the biological implications of a self-sufficient space settlement. Three fundamental questions are explored in this paper: (1) what are the biological "foundations" of truly self-sufficient space settlements in the foreseeable future, (2) what is the minimum scale for such self-sustaining human settlements, and (3) what are the integrated biologically-driven system requirements for such settlements? The paper examines briefly the implications of the answers to these questions in relevant potential settings (including free space, the Moon and Mars). Finally, this paper suggests relevant directions for future research and development in order for such space settlements to become viable in the future.

  2. European activities in space radiation biology and exobiology

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  3. Investigations in space-related molecular biology. [cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens

    Fernandez-Moran, H.; Pritzker, A. N.

    1974-01-01

    Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed

  4. Aging in a Relativistic Biological Space-Time

    Davide Maestrini

    2018-05-01

    Full Text Available Here we present a theoretical and mathematical perspective on the process of aging. We extend the concepts of physical space and time to an abstract, mathematically-defined space, which we associate with a concept of “biological space-time” in which biological dynamics may be represented. We hypothesize that biological dynamics, represented as trajectories in biological space-time, may be used to model and study different rates of biological aging. As a consequence of this hypothesis, we show how dilation or contraction of time analogous to relativistic corrections of physical time resulting from accelerated or decelerated biological dynamics may be used to study precipitous or protracted aging. We show specific examples of how these principles may be used to model different rates of aging, with an emphasis on cancer in aging. We discuss how this theory may be tested or falsified, as well as novel concepts and implications of this theory that may improve our interpretation of biological aging.

  5. The order axiom and the biological space time

    Vu Huu Nhu

    2014-01-01

    This work focuses on the field of Biological Space - Time. In fact the conception of Biological Space - Time is connected with order character of sets. Because the illustration of order axioms is very important for searching order systems. In this work, the new form of order axioms has been illustrated in the form of (a,b) ≠ (b.a). It is a common form of Descartes product. Based on this we suggest the following formation of order lemma (a.b) ≠(b.a)↔ a Φ b. In this case Φ is an order relation. From the new form of order axiom, we determine the order system as follows: If S = (a,b) the set of two elements and the order axiom (a.b) ≠ (b.a) is satisfied. So that, in this case, S is called an order system. The life system are the most important order systems. We could illustrate the biological system as: S = (A, T, G, C). In this set, A, T, G, C are the elements of the genetic code and the order axiom is satisfied. As we know, for example, in genetic code: (AUG) ≠ (UGA) ≠ (UAG). The order biological system induces an order relation and it is the origin of the conception of Biological Space Time. The students of Physics and Biology could use this book as basic course for studies of Biological Space Time. (author)

  6. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long

  7. Invited Review Article: Advanced light microscopy for biological space research

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  8. Invited Review Article: Advanced light microscopy for biological space research

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy

  9. Invited Review Article: Advanced light microscopy for biological space research

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  10. NASA Space Biology Plant Research for 2010-2020

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  11. National Aeronautics and Space Administration Biological Specimen Repository

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  12. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-15

    {Omicron} KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. {Omicron} Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. {Omicron} Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation {Omicron} Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established.

  13. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-01

    Ο KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. Ο Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. Ο Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation Ο Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established

  14. Study of biological compartments

    Rocha, A.F.G. da

    1976-01-01

    The several types of biological compartments are studied such as monocompartmental system, one-compartment balanced system irreversible fluxes, two closed compartment system, three compartment systems, catenary systems and mammilary systems [pt

  15. Biological and Medical Experiments on the Space Shuttle, 1981 - 1985

    Halstead, Thora W. (Editor); Dufour, Patricia A. (Editor)

    1986-01-01

    This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds.

  16. Aquatic biology studies

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  17. Gravitational biology and space life sciences: Current status and ...

    Gravitational and space biology organizations and journals. American Institute of ... of Scientific Unions (now the International Council for. Science). COSPAR ... Greek Aerospace Medical Association & Space Research. (GASMA). Provides ...

  18. Tissue Engineering Organs for Space Biology Research

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  19. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  20. Space Biology Meets Astrobiology: Critical Synergies and Concerns

    Boston, Penelope J.; Kirven-Brooks, Melissa

    2016-01-01

    The broad fields of space biology and astrobiology share much in common in terms of science questions, approaches, and goals. However, historical circumstances and funding agency practices have frequently resulted in a wide separation between the two related areas. Is this a good thing? We believe that it is not, and that much is to be gained in each field from sharing ideas, resources, and perhaps projects between investigators traditionally working in one discipline or the other. Some of the strengths that the Space Biology community offers include sophistication and experience in flying experiments on space missions. In turn, Astrobiology has focused heavily on ground-based and field research. Challenging physical and chemical conditions experienced in space and on other planets partially overlap, and much can be gleaned from the body of work of each community along these topical lines. A combination of these areas of expertise and experience could result in major advances to all involved. When possible, avoiding having to reinvent methods or approaches already used by a sister community can result in greater efficiencies of resource use. We will discuss some case studies where we believe there are significant overlaps including adaptation to a variety of environmental stresses, extremophiles as potential flight organisms, microfluidics as applied to planetary environment simulations, and others.

  1. Space Plant Biology Research at KSC

    Romeyn, Matthew

    2016-01-01

    Long duration space exploration will require the capability for crews to grow their own food. Growing food is desirable from a mass-efficiency standpoint, as it is currently not feasible to carry enough prepackaged food on spacecraft to sustain crews for long duration missions. Nutritionally, fresh produce provides key nutrients that are not preserved well in pre-packaged meals (e.g. vitamins C and K) and those that are able to counteract detrimental effects of space flight, such as antioxidants to combat radiation exposure and lutein for decreasing macular degeneration. Additionally, there are significant psychological benefits of maintaining gardens, one being an indicator for the passage of time.

  2. US and Russian Cooperation in Space Biology and Medicine

    Sawin, C.F.; Hanson, S.I.; House, N.G.; Pestov, I.D.

    2009-01-01

    This slide presentation concerns the 5th volume of a joint publication that describes the cooperation between the United States and Russia in research into space biology and medicine. Each of the chapters is briefly summarized.

  3. Crucible: A System for Space Synthetic Biology Experiments

    National Aeronautics and Space Administration — The goal of this project is to expand the capability and methodologies in experimental extreme biology as a step towards Martian ecopoiesis. The objectives in...

  4. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  5. Biological effects of space-induced mutation on robinia pseudoacacia

    Yuan Cunquan; Li Yun; Lu Chao; Yang Min; Zhang Yuyao

    2010-01-01

    Dry seeds of Robinia pseudoacacia were carried by Shijian No.8 breeding satellite for mutagenesis and the biological effect of space-induced mutation was studied. The parameters of Robinia pseudoacacia such as plant height, stem base, branch number, knot spacing, length of thorn and chlorophyll content were analyzed, and, at the same time, the genetic diversity was tested by SSR marker. The results showed that the plant height and stem base of 2-year-old seedlings which derived from space mutagenesis were 22.0% and 24.1% lower than those of control, and 3-year-old seedlings were 13.1% and 22.4% lower than those of control, respectively. While the inhibiting effect of plant height became undermined in the following growth years. However, the inhibiting effect in stem base existed all the time,the length of thorn of branch and stem were 15.6% and 28.6% shorter than the control,respectively. Compared with the control,the variation of the length of thorn from stem was extremely significant. The variation of chlorophyll a content from space mutagenesis compared with control was not remarkable, while the total chlorophyll and chlorophyll b contents were 18.7% and 9.7% lower than those of control, respectively, and the difference between space mutagenesis and control was significant. While the chlorophyll a/b was 25.6% higher than that of control, but the difference was not significant. The coefficient of variation of the relative traits was increased by the space mutagenesis. The extensively population genome mutation after space-induction were not detected by SSR (Simple Sequence Repeats). (authors)

  6. Theories and models on the biological of cells in space

    Todd, P.; Klaus, D. M.

    1996-01-01

    A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in may cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in symposium on 'Theories and Models on the Biology of Cells in Space' are dedicated to the subject of the plausibility of cellular responses to gravity -- inertial accelerations between 0 and 9.8 m/sq s and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.

  7. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  8. Earth study from space

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  9. Advancing cell biology through proteomics in space and time (PROSPECTS)

    Lamond, A.I.; Uhlen, M.; Horning, S.

    2012-01-01

    a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU......-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16...... quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how...

  10. Modeling Dispersion of Chemical-Biological Agents in Three Dimensional Living Space

    William S. Winters

    2002-01-01

    This report documents a series of calculations designed to demonstrate Sandia's capability in modeling the dispersal of chemical and biological agents in complex three-dimensional spaces. The transport of particles representing biological agents is modeled in a single room and in several connected rooms. The influence of particle size, particle weight and injection method are studied

  11. Screens as light biological variable in microgravitational space environment.

    Schlacht, S.; Masali, M.

    Foreword The ability of the biological organisms to orient themselves and to synchronize on the variations of the solar rhythms is a fundamental aspect in the planning of the human habitat above all when habitat is confined in the Space the planetary and in satellite outer space settlements In order to simulate the experience of the astronauts in long duration missions one of the dominant characteristics of the Space confined habitats is the absence of the earthlings solar cycles references The Sun is the main references and guidelines of the biological compass and timepiece The organism functions are influenced from the variation of the light in the round of the 24 hours the human circadian rhythms In these habitats it is therefore necessary to reproduce the color and intensity of the solar light variations along the arc of the day according to defined scientific programs assuring a better performance of the human organism subsubsection Multilayer Foldable Screens as biological environmental variable In the project Multilayer Foldable Screens are the monitors posed in the ceiling of an Outer Space habitat and are made of liquid crystals and covered with Kevlar they stand for a modulate and flexible structure for different arrangements and different visions Screens work sout s on all the solar light frequencies and display the images that the subject needs They are characterized from the emission of an environmental light that restores the earthly solar cycle for intensity and color temperature to irradiate

  12. Biological study in schizophrenia

    Kasai, Kiyoto; Yoshikawa, Akane; Natsubori, Takanobu; Koike, Shinsuke; Nagai, Tatsuya; Araki, Tsuyoshi; Nishimura, Yukika; Iwamoto, Kazuya

    2012-01-01

    Schizophrenia is associated with enormous morbidity, mortality, personal disability, and social cost. Although considerable research on schizophrenia has been performed, the etiology of this disease has not been fully elucidated. In recent years, imaging and genetic technologies have been developed dramatically. Disturbances in glutamate and gamma-aminobutyric acid (GABA)ergic neurotransmission may underlie the pathophysiology of schizophrenia. We attempted an integrative review, of studies pertaining to recent advances of schizophrenia research with a focus on neuroimaging and genetic studies. Additionally, we present the preliminary findings of the clinical research in our outpatient unit, specialized for early intervention, at the University of Tokyo Hospital. (author)

  13. Landing in the future: Biological experiments on Earth and in space orbit

    Pokrovskiy, A.

    1980-01-01

    The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.

  14. Landing in the future: Biological experiments on Earth and in space orbit

    Pokrovskiy, A.

    1980-09-01

    The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.

  15. Biological Sampling Variability Study

    Amidan, Brett G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hutchison, Janine R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-11-08

    There are many sources of variability that exist in the sample collection and analysis process. This paper addresses many, but not all, sources of variability. The main focus of this paper was to better understand and estimate variability due to differences between samplers. Variability between days was also studied, as well as random variability within each sampler. Experiments were performed using multiple surface materials (ceramic and stainless steel), multiple contaminant concentrations (10 spores and 100 spores), and with and without the presence of interfering material. All testing was done with sponge sticks using 10-inch by 10-inch coupons. Bacillus atrophaeus was used as the BA surrogate. Spores were deposited using wet deposition. Grime was coated on the coupons which were planned to include the interfering material (Section 3.3). Samples were prepared and analyzed at PNNL using CDC protocol (Section 3.4) and then cultured and counted. Five samplers were trained so that samples were taken using the same protocol. Each sampler randomly sampled eight coupons each day, four coupons with 10 spores deposited and four coupons with 100 spores deposited. Each day consisted of one material being tested. The clean samples (no interfering materials) were run first, followed by the dirty samples (coated with interfering material). There was a significant difference in recovery efficiency between the coupons with 10 spores deposited (mean of 48.9%) and those with 100 spores deposited (mean of 59.8%). There was no general significant difference between the clean and dirty (containing interfering material) coupons or between the two surface materials; however, there was a significant interaction between concentration amount and presence of interfering material. The recovery efficiency was close to the same for coupons with 10 spores deposited, but for the coupons with 100 spores deposited, the recovery efficiency for the dirty samples was significantly larger (65

  16. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  17. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth.

    Karouia, Fathi; Peyvan, Kianoosh; Pohorille, Andrew

    2017-11-15

    Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis. Published by Elsevier Inc.

  18. Biological and Physical Space Research Laboratory 2002 Science Review

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  19. The space elevator: a new tool for space studies.

    Edwards, Bradley C

    2003-06-01

    The objective has been to develop a viable scenario for the construction, deployment and operation of a space elevator using current or near future technology. This effort has been primarily a paper study with several experimental tests of specific systems. Computer simulations, engineering designs, literature studies and inclusion of existing programs have been utilized to produce a design for the first space elevator. The results from this effort illustrate a viable design using current and near-term technology for the construction of the first space elevator. The timeline for possible construction is within the coming decades and estimated costs are less than $10 B. The initial elevator would have a 5 ton/day capacity and operating costs near $100/lb for payloads going to any Earth orbit or traveling to the Moon, Mars, Venus or the asteroids. An operational space elevator would allow for larger and much longer-term biological space studies at selectable gravity levels. The high-capacity and low operational cost of this system would also allow for inexpensive searches for life throughout our solar system and the first tests of environmental engineering. This work is supported by a grant from the NASA Institute for Advanced Concepts (NIAC).

  20. Bragg Curve, Biological Bragg Curve and Biological Issues in Space Radiation Protection with Shielding

    Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.

  1. Synthetic Biology as an Enabling Technology for Space Exploration

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  2. The Value of Humans in the Biological Exploration of Space

    Cockell, C. S.

    2004-06-01

    Regardless of the discovery of life on Mars, or of "no apparent life" on Mars, the questions that follow will provide a rich future for biological exploration. Extraordinary pattern recognition skills, decadal assimilation of data and experience, and rapid sample acquisition are just three of the characteristics that make humans the best means we have to explore the biological potential of Mars and other planetary surfaces. I make the case that instead of seeing robots as in conflict, or even in support, of human exploration activity, from the point of view of scientific data gathering and analysis, we should view humans as the most powerful robots we have, thus removing the separation that dogs discussions on the exploration of space. The narrow environmental requirements of humans, although imposing constraints on the life support systems required, is more than compensated for by their capabilities in biological exploration. I support this view with an example of the "Christmas present effect," a simple demonstration of human data and pattern recognition capabilities.

  3. Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program

    Risin, Diana; Stepaniak, P. C.; Grounds, D. J.

    2011-01-01

    As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of

  4. Magnetic Nanotweezers for Interrogating Biological Processes in Space and Time.

    Kim, Ji-Wook; Jeong, Hee-Kyung; Southard, Kaden M; Jun, Young-Wook; Cheon, Jinwoo

    2018-04-17

    The ability to sense and manipulate the state of biological systems has been extensively advanced during the past decade with the help of recent developments in physical tools. Unlike standard genetic and pharmacological perturbation techniques-knockdown, overexpression, small molecule inhibition-that provide a basic on/off switching capability, these physical tools provide the capacity to control the spatial, temporal, and mechanical properties of the biological targets. Among the various physical cues, magnetism offers distinct advantages over light or electricity. Magnetic fields freely penetrate biological tissues and are already used for clinical applications. As one of the unique features, magnetic fields can be transformed into mechanical stimuli which can serve as a cue in regulating biological processes. However, their biological applications have been limited due to a lack of high-performance magnetism-to-mechanical force transducers with advanced spatiotemporal capabilities. In this Account, we present recent developments in magnetic nanotweezers (MNTs) as a useful tool for interrogating the spatiotemporal control of cells in living tissue. MNTs are composed of force-generating magnetic nanoparticles and field generators. Through proper design and the integration of individual components, MNTs deliver controlled mechanical stimulation to targeted biomolecules at any desired space and time. We first discuss about MNT configuration with different force-stimulation modes. By modulating geometry of the magnetic field generator, MNTs exert pulling, dipole-dipole attraction, and rotational forces to the target specifically and quantitatively. We discuss the key physical parameters determining force magnitude, which include magnetic field strength, magnetic field gradient, magnetic moment of the magnetic particle, as well as distance between the field generator and the particle. MNTs also can be used over a wide range of biological time scales. By simply

  5. Soil and terrestrial biology studies

    Anon.

    1976-01-01

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO 2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  6. Space Physiology Studies

    Hargens, A. R.; Ballard, R. E.; Boda, W. L.; Ertl, A. C.; Schneider, S. M.; Hutchinson, K. J.; Lee, S. M.; Murthy, G.; Putcha, L.; Watenpaugh, D. E.

    1999-01-01

    Calculations suggest that exercise in space to date has lacked sufficient loads to maintain musculoskeletal mass. Lower body negative pressure (LBNP) produces a force at the feet equal to the product of the LBNP and body cross-sectional area at the waist. Supine exercise within 50-60 mm Hg LBNP improves tolerance to LBNP and produces forces similar to those occurring during upright posture on Earth. Thus, exercise within LBNP may help prevent deconditioning of astronauts by stressing tissues of the lower body in a manner similar to gravity and also, may provide a safe and effective alternative to centrifugation in terms of cost, mass, volume, and power usage. We hypothesize that supine treadmill exercise during LBNP at one body weight (50-60 mm Hg LBNP) will provide cardiovascular and musculoskeletal loads similar to those experienced while upright in lg. Also, daily supine treadmill running in a LBNP chamber will maintain aerobic fitness, orthostatic tolerance, and musculoskeletal structure and function during bed rest (simulated microgravity).

  7. Space Biology and Medicine. Volume 4; Health, Performance, and Safety of Space Crews

    Dietlein, Lawrence F. (Editor); Pestov, Igor D. (Editor)

    2004-01-01

    Volume IV is devoted to examining the medical and associated organizational measures used to maintain the health of space crews and to support their performance before, during, and after space flight. These measures, collectively known as the medical flight support system, are important contributors to the safety and success of space flight. The contributions of space hardware and the spacecraft environment to flight safety and mission success are covered in previous volumes of the Space Biology and Medicine series. In Volume IV, we address means of improving the reliability of people who are required to function in the unfamiliar environment of space flight as well as the importance of those who support the crew. Please note that the extensive collaboration between Russian and American teams for this volume of work resulted in a timeframe of publication longer than originally anticipated. Therefore, new research or insights may have emerged since the authors composed their chapters and references. This volume includes a list of authors' names and addresses should readers seek specifics on new information. At least three groups of factors act to perturb human physiological homeostasis during space flight. All have significant influence on health, psychological, and emotional status, tolerance, and work capacity. The first and most important of these factors is weightlessness, the most specific and radical change in the ambient environment; it causes a variety of functional and structural changes in human physiology. The second group of factors precludes the constraints associated with living in the sealed, confined environment of spacecraft. Although these factors are not unique to space flight, the limitations they entail in terms of an uncomfortable environment can diminish the well-being and performance of crewmembers in space. The third group of factors includes the occupational and social factors associated with the difficult, critical nature of the

  8. Receptor studies in biological psychiatry

    Fujiwara, Yutaka

    1992-01-01

    Recent advances in the pharmacological treatment of endogenous psychosis have led to the development of biological studies in psychiatry. Studies on neurotransmitter receptors were reviewed in order to apply positron-emission tomograph (PET) for biological psychiatry. The dopamine (DA) hypothesis for schizophrenia was advanced on the basis of the observed effects of neuroleptics and methamphetamine, and DA(D 2 ) receptor supersensitivity measured by PET and receptor binding in the schizophrenic brain. The clinical potencies of neuroleptics for schizophrenia were correlated with their abilities to inhibit the D 2 receptor, and not other receptors. The σ receptor was expected to be a site of antipsychotic action. However, the potency of drugs action on it was not correlated with clinical efficacy. Haloperidol binds with high affinity to the σ receptor, which may mediate acute dystonia, an extrapyramidal side effect of neuroleptics. Behavioral and neurochemical changes induced by methamphetamine treatment were studied as an animal model of schizophrenia, and both a decrease of D 2 receptor density and an increase of DA release were detected. The monoamine hypothesis for manic-depressive psychosis was advanced on the basis of the effect of reserpine, monoamine oxidase inhibitor and antidepressants. 3 H-clonidine binding sites were increased in platelet membranes of depressive patients, 3 H-imipramine binding sites were decreased. The GABA A receptor is the target site for the action of anxiolytics and antiepileptics such as benzodiazepines and barbiturates. Recent developments in molecular biology techniques have revealed the structure of receptor proteins, which are classified into two receptor families, the G-protein coupled type (D 2 ) and the ion-channel type (GABA A ). (J.P.N.)

  9. Study of space mutation breeding in China

    Wen Xianfang; Zhang Long; Dai Weixu; Li Chunhua

    2004-01-01

    This paper described the status of space mutation breeding in China. It emphasized that since 1978 Chinese space scientists and agricultural biologists have send 50 kg seeds of more than 70 crops including cereals, cotton, oil, vegetable, fruit and pasture to the space using the facilities such as return satellite 9 times, Shenzhou aircraft twice and high balloon 4 times. New varieties of 19 with high yield, high quality and disease-resistance, have been bred though years of breeding at the earth at more than 70 Chinese research institutes in 22 provinces. The new varieties include five rice varieties, two wheat varieties, two cotton varieties, one sweat pepper, one tomato variety, one sesame variety, three water melon varieties, three lotus varieties and one ganoderma lucidum variety. In addition more than 50 new lines and many other germplasm resources have been obtained. Study on space breeding mechanism, such as biological effect of space induction, genetic variation by cell and molecular techniques and simulated study at the earth, has been conducted, and some progresses have been achieved. Many space-breeding bases have been established in some provinces. Space varieties have been extended up to 270000 hectares, and some useful scientific achievements and social economic benefit had been made. The study of Chinese space mutation breeding is going ahead in the world. The paper also introduced the contribution and results made by return satellites of the first three generation in space science. Some basic parameters involved in the study on space mutation breeding of return satellites were listed

  10. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  11. Space station propulsion requirements study

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  12. Historical parallels of biological space experiments from Soyuz, Salyut and Mir to Shenzhou flights

    Nechitailo, Galina S.; Kondyurin, Alexey

    2016-07-01

    Human exploitation of space is a great achievement of our civilization. After the first space flights a development of artificial biological environment in space systems is a second big step. First successful biological experiments on a board of space station were performed on Salyut and Mir stations in 70-90th of last century such as - first long time cultivation of plants in space (wheat, linen, lettuce, crepis); - first flowers in space (Arabidopsis); - first harvesting of seeds in space (Arabidopsis); - first harvesting of roots (radish); - first full life cycle from seeds to seeds in space (wheat), Guinness recorded; - first tissue culture experiments (Panax ginseng L, Crocus sativus L, Stevia rebaundiana B; - first tree growing in space for 2 years (Limonia acidissima), Guinness recorded. As a new wave, the modern experiments on a board of Shenzhou Chinese space ships are performed with plants and tissue culture. The space flight experiments are now focused on applications of the space biology results to Earth technologies. In particular, the tomato seeds exposed 6 years in space are used in pharmacy industry in more then 10 pharmaceutical products. Tissue culture experiments are performed on the board of Shenzhou spaceship for creation of new bioproducts including Space Panax ginseng, Space Spirulina, Space Stetatin, Space Tomato and others products with unique properties. Space investments come back.

  13. The Forgetful Professor and the Space Biology Adventure

    Massa, Gioia D.; Jones, Wanda; Munoz, Angela; Santora, Joshua

    2014-01-01

    This video was created as one of the products of the 2013 ISS Faculty Fellows Summer Program. Our High School science teacher faculty fellows developed this video as an elementary/middle school education component. The video shows a forgetful professor who is trying to remember something, and along the journey she learns more about the space station, space station related plant science, and the Kennedy Space Center. She learns about the Veggie hardware, LED lighting for plant growth, the rotating garden concept, and generally about space exploration and the space station. Lastly she learns about the space shuttle Atlantis.

  14. Center for the Utilization of Biological Engineering in Space (CUBES)

    National Aeronautics and Space Administration — As NASA shifts its focus from low-Earth orbit to deep space missions, the agency is investing in the development of technologies that will allow long-duration...

  15. Invited Review Article: Advanced light microscopy for biological space research

    De Vos, W.H.; Beghuin, D.; Schwarz, C.J.; Jones, D.B.; van Loon, J.J.W.A.; Bereiter-Hahn, J.; Stelzer, E.H.K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as

  16. Invited review article: advanced light microscopy for biological space research

    De Vos, W.H.; Beghuin, D.; Schwarz, C.J.; Jones, D.B.; van Loon, J.J.W.A.; Bereiter-Hahn, J.; Stelzer, E.H.K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as

  17. Space Station personal hygiene study

    Prejean, Stephen E.; Booher, Cletis R.

    1986-01-01

    A personal hygiene system is currently under development for Space Station application that will provide capabilities equivalent to those found on earth. This paper addresses the study approach for specifying both primary and contingency personal hygiene systems and provisions for specified growth. Topics covered are system definition and subsystem descriptions. Subsystem interfaces are explored to determine which concurrent NASA study efforts must be monitored during future design phases to stay up-to-date on critical Space Station parameters. A design concept for a three (3) compartment personal hygiene facility is included as a baseline for planned test and verification activities.

  18. Biochemical Space: A Framework for Systemic Annotation of Biological Models

    Klement, M.; Děd, T.; Šafránek, D.; Červený, Jan; Müller, Stefan; Steuer, Ralf

    2014-01-01

    Roč. 306, JUL (2014), s. 31-44 ISSN 1571-0661 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : biological models * model annotation * systems biology * cyanobacteria Subject RIV: EH - Ecology, Behaviour

  19. Compartmental study of biological systems

    Moretti, J.L.

    1975-01-01

    The compartmental analysis of biological system is dealt with on several chapters devoted successively to: terminology; a mathematical and symbolic account of a system at equilibrium; different compartment systems; analysis of the experimental results. For this it is pointed out that the application of compartmental systems to biological phenomena is not always without danger. Sometimes the compartmental system established in a reference subject fails to conform in the patient. The compartments can divide into two or join together, completely changing the aspect of the system so that parameters calculated with the old model become entirely false. The conclusion is that the setting up of a compartmental system to represent a biological phenomenon is a tricky undertaking and the results must be constantly criticized and questioned [fr

  20. Appendix U: benthic biological studies

    Hessler, R.R.

    1981-01-01

    Characterization of the biology and standing crop of the benthic organisms is divided into two major categories: (1) those organisms (sessile or with limited mobility) that live on or within the sediment (infauna); and (2) highly mobile organisms that have contact (if only occasionally) with the sediment (benthopelagic organisms). At this time our studies of benthopelagic organisms are restricted to amphipods. The amphipods trapped at MPG-I (30 to 31 0 N, 159 0 W) in 1978 have been sorted to species and compared with those trapped at Climax II (28 0 N, 155 to 156 0 W) in 1977. The species composition is the same at both stations and the numerical representation of the various species appears to be equivalent. Instar categories based on morphological and size criteria have been determined for Eurythenes gryllus. Comparison of the size range of the instar categories, morphological characters and female to male ratio show no detectable differences in E. gryllus from the two areas. Individuals of one of the smaller species of amphipods (Paralicella caperesca) were trapped at 710 m above the sediment, demonstrating that although the primary range of this species is 0-1 m off the bottom, it is capable of wide bathymetric movements. Males mature at a much smaller size (7 cm vs 11.5 cm) than females. Females appear to breed only once while males seem to be reproductively mature for several instars. After attaining maturity, male growth decreases to almost half the previous rate, and the time interval between molts appears to increase substantially. Females approximate a linear growth rate throughout their instar stages. The data are insufficient to determine if a decrease in growth rate occurs at the molt to maturity (female 14). The apparent difference in the time to maturity for males and females results in a high number of mature males present in the population to fertilize relatively few females

  1. Tritium biological effects and perspective of the biological study

    Komatsu, Kenshi

    1998-01-01

    Since tritium is an emitter of weak β-rays (5.7keV) and is able to bind to DNA, i.e., the most important genome component, the biological effects should be expected to be more profound than that of X-rays and γ-rays. When carcinogenesis, genetical effects and the detriments for fetus and embryo were used as a biological endpoint, most of tritium RBE (relative biological effectiveness) ranged from 1 to 2. The tritium risk in man could be calculated from these RBEs and γ-ray risk for human exposure, which are obtained mainly from the data on Atomic Bomb survivors. However, the exposure modality from environmental tritium should be a chronic irradiation with ultra low dose rate or a fractionated irradiation. We must estimate the tritium effect in man based on biological experiments alone, due to lack of such epidemiological data. Low dose rate experiment should be always accompanied by the statistical problem of data, since their biological effects are fairy low, and they should involve a possible repair system, such as adaptive response (or hormesis effect) and 'Kada effect' observed in bacteria. Here we discuss future works for the tritium assessment in man, such as (1) developing a high radiation sensitive assay system with rodent hybrid cells containing a single human chromosome and also (2) study on mammal DNA repair at molecular levels using a radiosensitive hereditary disease, Nijmegen Breakage Syndrome. (author)

  2. Effects of space environment on biological characteristics of melanoma B16 cells

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  3. Space weather biological and systems effects for suborbital flights

    2008-10-31

    The Aerospace Corporation was tasked to assess the impacts of space weather on both RLVs and ELVs operating at suborbital altitudes from launch sites located in the low (equatorial regions), middle, and high latitudes. The present report presents a b...

  4. Advances in space biology and medicine. Vol. 1

    Bonting, Sjoerd L. (Editor)

    1991-01-01

    Topics discussed include the effects of prolonged spaceflights on the human body; skeletal responses to spaceflight; gravity effects on reproduction, development, and aging; neurovestibular physiology in fish; and gravity perception and circumnutation in plants. Attention is also given to the development of higher plants under altered gravitational conditions; the techniques, findings, and theory concerning gravity effects on single cells; protein crystal growth in space; and facilities for animal research in space.

  5. Nuclear biological studies in France

    Coursaget, J.

    1961-01-01

    On the occasion of a colloquium on radiobiological research programmes, a number of documents dealing with French accomplishments and projects in this field were collected together. We felt that it would be useful to assemble these papers in one report; although they are brief and leave gaps to be filled in, they provide certain data, give an overall view of the situation, and can also suggest a rough plan for the general policy to adopt in the field of 'nuclear' biological research; i.e. research based on the nuclear tracer method or devoted to the action of ionising radiations. (author) [fr

  6. Origins Space Telescope: Study Plan

    Nayyeri, Hooshang; Cooray, Asantha; Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its spectrographs will enable 3D surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu. This presentation will provide a summary of the OST STDT, the OST Study Team based at NASA Goddard Space Flight Center, study partners, and the advisory panel to the study. This presentation will also summarize recent activities, including the process used to reach a decision on the mission architecture, the identification of key science drivers, and the key study milestones between 2017 and 2020.

  7. The geometry of the Pareto front in biological phenotype space

    Sheftel, Hila; Shoval, Oren; Mayo, Avi; Alon, Uri

    2013-01-01

    When organisms perform a single task, selection leads to phenotypes that maximize performance at that task. When organisms need to perform multiple tasks, a trade-off arises because no phenotype can optimize all tasks. Recent work addressed this question, and assumed that the performance at each task decays with distance in trait space from the best phenotype at that task. Under this assumption, the best-fitness solutions (termed the Pareto front) lie on simple low-dimensional shapes in trait space: line segments, triangles and other polygons. The vertices of these polygons are specialists at a single task. Here, we generalize this finding, by considering performance functions of general form, not necessarily functions that decay monotonically with distance from their peak. We find that, except for performance functions with highly eccentric contours, simple shapes in phenotype space are still found, but with mildly curving edges instead of straight ones. In a wide range of systems, complex data on multiple quantitative traits, which might be expected to fill a high-dimensional phenotype space, is predicted instead to collapse onto low-dimensional shapes; phenotypes near the vertices of these shapes are predicted to be specialists, and can thus suggest which tasks may be at play. PMID:23789060

  8. Studying Space: Improving Space Planning with User Studies

    Pierard, Cindy; Lee, Norice

    2011-01-01

    How can libraries best assess and improve user space, even if they are not in a position to undertake new construction or a major renovation? Staff at New Mexico State University used a variety of ethnographic methods to learn how our spaces were being used as well as what our users considered to be ideal library space. Our findings helped us make…

  9. The beginning of Space Life Science in China exploration rockets for biological experiment during 1960's

    Jiang, Peidong; Zhang, Jingxue

    The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.

  10. Networks In Real Space: Characteristics and Analysis for Biology and Mechanics

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.

  11. Space station operating system study

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  12. Space Biology and Aerospace Medicine, Number 5, 1977.

    1977-11-10

    unchanged level in blood of 2,3- diphosphoglyceric acid, which is of substantial importance in implementation of hemoglobin function. For the first time in...Criteria of Artificial Gravity (I. Yu. Sarkisov, A. A. Shipov).................» 18 Change in Gravitation Level as a Stress Factor (L. V. Serova...for space suits, consideration is given not only to the need to maintain microclimate and temperature parameters at the proper level , but design

  13. Mammalian synthetic biology for studying the cell.

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  14. The study of the ocean from space

    Novogrudskii, B V; Skliarov, V E; Fedorov, K N; Shifrin, K S

    1978-01-01

    The application of earth satellites and manned spacecraft to the study of the world's oceans is reviewed. Attention is given to the atmospheric transfer function in the visible, near-IR, middle-IR and microwave regions and the use of satellites in ocean data acquisition and transmission systems. The measurement of sea level and the topography of the ocean surface by means of orbital radar altimeters is discussed, together with IR and microwave measurements of ocean surface temperature and the study of surface roughness, surface evidence of internal waves, oil pollution and ice fields. Consideration is also given to the determination of ocean chlorophyll content and color distribution, coastal region characteristics, ocean salinity and other biological parameters from space.

  15. Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology.

    Davidson, George S.; Brown, William Michael

    2007-09-01

    Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes to make use of the new data.3

  16. Biospheric Life Support - integrating biological regeneration into protection of humans in space.

    Rocha, Mauricio; Iha, Koshun

    2016-07-01

    A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned

  17. "Lomonosov" Satellite—Space Observatory to Study Extreme Phenomena in Space

    Sadovnichii, V. A.; Panasyuk, M. I.; Amelyushkin, A. M.; Bogomolov, V. V.; Benghin, V. V.; Garipov, G. K.; Kalegaev, V. V.; Klimov, P. A.; Khrenov, B. A.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Svertilov, S. I.; Zotov, M. Y.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Lee, J.; Jeong, S.; Kim, M. B.; Jeong, H. M.; Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Runov, A.; Turner, D.; Strangeway, R. J.; Caron, R.; Biktemerova, S.; Grinyuk, A.; Lavrova, M.; Tkachev, L.; Tkachenko, A.; Martinez, O.; Salazar, H.; Ponce, E.

    2017-11-01

    The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organizations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-Zatsepin-Kuzmin (GZK) cutoff; Ultraviolet (UV) transient luminous events in the upper atmosphere; Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.

  18. GeneLab Phase 2: Integrated Search Data Federation of Space Biology Experimental Data

    Tran, P. B.; Berrios, D. C.; Gurram, M. M.; Hashim, J. C. M.; Raghunandan, S.; Lin, S. Y.; Le, T. Q.; Heher, D. M.; Thai, H. T.; Welch, J. D.; hide

    2016-01-01

    The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system

  19. Photonic engineering for biological study

    Wu, Fei

    My dissertation focuses on designing and developing prototypes of optical tools in the laboratory that can facilitate practical medical therapies. More specifically, this dissertation examines two novel biophotonic techniques: (1) a frequency multiplexed confocal microscope with the potential to provide rational therapy of congestive heart failure (CHF), and (2) the "optical comb" with the potential to improve results of retina reattachment surgery and accelerate post surgical recovery. Next, I will discuss the background, design and initial experimental results of each study individually. Part I: The Frequency Multiplexed Confocal Microscope. To overcome the limitations of existing confocal microscope technology, this dissertation proposes a non-scanning, real-time, high resolution technique (a multi-point frequency multiplexed confocal microscope) to measure 3-D intracellular calcium ion concentration in a living cardiac myocyte. This method can be also applied to measure the intracellular sodium ion concentration, or other ions in which high quantum-yield fluorescent probes are available. The novelty of the proposed research lies in the introduction of carrier frequency multiplexing techniques which can differentiate fluorescence emitted at different spatial locations in cardiac myocyte by their modulated frequency. It therefore opens the possibility to visualize the transient dynamics of intracellular dynamics at multiple locations in cells simultaneously, which will shine a new light on our understanding of CHF. The procedure for frequency multiplexing proposed is described below. Multiple incident laser beams are focused onto different locations in an isolated rat cardiac myocyte with each beam modulated at a different carrier frequency. The fluorescence emission at each location therefore bears the same modulated frequency as the stimulation laser beam. Each fluorescence signal is sent to the photo multiplier tube (PMT) after being spatially filtered by a

  20. Using novel descriptor accounting for ligand-receptor interactions to define and visually explore biologically relevant chemical space.

    Rabal, Obdulia; Oyarzabal, Julen

    2012-05-25

    The definition and pragmatic implementation of biologically relevant chemical space is critical in addressing navigation strategies in the overlapping regions where chemistry and therapeutically relevant targets reside and, therefore, also key to performing an efficient drug discovery project. Here, we describe the development and implementation of a simple and robust method for representing biologically relevant chemical space as a general reference according to current knowledge, independently of any reference space, and analyzing chemical structures accordingly. Underlying our method is the generation of a novel descriptor (LiRIf) that converts structural information into a one-dimensional string accounting for the plausible ligand-receptor interactions as well as for topological information. Capitalizing on ligand-receptor interactions as a descriptor enables the clustering, profiling, and comparison of libraries of compounds from a chemical biology and medicinal chemistry perspective. In addition, as a case study, R-groups analysis is performed to identify the most populated ligand-receptor interactions according to different target families (GPCR, kinases, etc.), as well as to evaluate the coverage of biologically relevant chemical space by structures annotated in different databases (ChEMBL, Glida, etc.).

  1. From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water

    Pickering, Karen; Adam, Niklas; White, Dawn; Ghosh, Amlan; Seidel, Chad

    2014-01-01

    Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight missions. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wells that have hydrogen sulfide odor

  2. Astrobiology Extends Biology into Deep Time and Space

    Desmarais, David

    2003-01-01

    To understand our own origins and to search for biospheres beyond Earth, we need a more robust concept of life itself. We must learn how to discriminate between attributes that are fundamental to all living systems versus those that represent principally local outcomes of long-term survival on Earth. We should identify the most basic environmental needs of life, chart the distribution of other habitable worlds, and understand the factors that created their distribution. Studies of microbial communities and the geologic record will be summarized that offer clues about the early evolution of our own biosphere as well as the signatures of life that we might find in the heavens.

  3. Developing Biological ISRU: Implications for Life Support and Space Exploration

    Brown, I. I.; Allen, C. C.; Garrison, D. H.; Sarkisova, S. A.; Galindo, C.; Mckay, David S.

    2010-01-01

    Main findings: 1) supplementing very dilute media for cultivation of CB with analogs of lunar or Martian regolith effectively supported the proliferation of CB; 2) O2 evolution by siderophilic cyanobacteria cultivated in diluted media but supplemented with iron-rich rocks was higher than O2 evolution by same strain in undiluted medium; 3) preliminary data suggest that organic acids produced by CB are involved in iron-rich mineral dissolution; 4) the CB studied can accumulate iron on and in their cells; 4) sequencing of the cyanobacterium JSC-1 genome revealed that this strain possesses molecular features which make it applicable for the cultivation in special photoreactors on Moon and Mars. Conclusion: As a result of pilot studies, we propose, to develop a concept for semi-closed integrated system that uses CB to extract useful elements to revitalize air and produce valuable biomolecules. Such a system could be the foundation of a self-sustaining extraterrestrial outpost (Hendrickx, De Wever et al., 2005; Handford, 2006). A potential advantage of a cyanobacterial photoreactor placed between LSS and ISRU loops is the possibility of supplying these systems with extracted elements and compounds from the regolith. In addition, waste regolith may be transformed into additional products such as methane, biomass, and organic and inorganic soil enrichment for the cultivation of higher plants.

  4. Applications of space-electrophoresis in medicine. [for cellular separations in molecular biology

    Bier, M.

    1976-01-01

    The nature of electrophoresis is reviewed and potential advances realizable in the field of biology and medicine from a space electrophoresis facility are examined. The ground-based applications of electrophoresis: (1) characterization of an ionized species; (2) determination of the quantitative composition of a complex mixture; and (3) isolation of the components of a mixture, separation achieved on the basis of the difference in transport rates is reviewed. The electrophoresis of living cells is considered, touching upon the following areas: the separation of T and B lymphocytes; the genetic influence on mouse lymphocyte mobilities; the abnormal production of specific and monoclonal immunoproteins; and the study of cancer. Schematic diagrams are presented of three types of electrophoresis apparatus: the column assembly for the static electrophoresis experiment on the Apollo-Soyuz mission, the continuous flow apparatus used in the same mission and a miniaturized electrophoresis apparatus.

  5. Study on Chinese space mutation breeding by integrating the earth with the space

    Wen Xianfang; Zhang Long; Dai Weixu; Li Chunhua

    2004-01-01

    This paper described the status of space mutation breeding in China. It emphasized that since 1978 Chinese Space scientists and agricultural biologists have send 50 kg seeds of more than 70 crops including cereals, cotton, oil, vegetable, fruit and pasture to the space using the facilities such as reture satellite 9 times, Shenzhou aircraft twice and high balloon 4 times, and 19 new varieties with high yield, high quality and disease-resistance, including five rice varieties, two wheat varieties, two cotton varieties, one sweat pepper, one tomato variety, one sesame variety, three water melon varieties, one lotus varieties and one ganaderma lucidum variety, have been bred though years of breeding at the Earth at more than 70 Chinese research institutes in 22 provinces. In addition more than 50 new lines and many other germ plasma resources have been obtained. Study on space breeding mechanism, such as biological effect of space induction, genetic variation by cell and molecular techniques and simulated study at the earth, has been conducted and some progresses have been achieved. Many space-breeding bases have been established in some provinces. Space varieties have been extended up to 270000 hectares, and some useful scientific achievements and social economic benefit had been made. The study of Chinese space mutation breading is going ahead in the world. The paper also introduced the contribution and results made by former three reture satellites in space science. Some basic parameters listed involved in study on space mutation breeding and the former three reture satellites. We also prospected the future of space mutation breeding. (authors)

  6. Studying cell biology in the skin.

    Morrow, Angel; Lechler, Terry

    2015-11-15

    Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. © 2015 Morrow and Lechler. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Studying the Earth from space

    ,

    1981-01-01

    Space age technology contains a key to increased knowledge about the Earth's resources; this key is remote sensing detecting the nature or condition of something without actually touching it. An early and still most useful form of remote sensing is photography which records the

  8. Spectroscopic, thermal and biological studies of coordination

    Spectroscopic, thermal and biological studies of coordination compounds of sulfasalazine drug: Mn(II), Hg(II), Cr(III), ZrO(II), VO(II) and Y(III) transition metal ... The thermal decomposition of the complexes as well as thermodynamic parameters ( *}, *, * and *) were estimated using Coats–Redfern and ...

  9. Study of biological effect of radiation

    Li Guisheng

    1992-01-01

    The some progress on the study of biological effect for protract exposure to low dose rate radiation is reported, and it is indicated that the potential risk of this exposure for the human health and the importance of the routine monitoring of radiation dose for various nuclear installations. The potential exposure to the low dose rate radiation would attract people's extra attention

  10. Space Weather Studies at Istanbul Technical University

    Kaymaz, Zerefsan

    2016-07-01

    This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.

  11. Deep space test bed for radiation studies

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan; Kuznetsov, Evgeny; Milton, Martha; Myers, Jeremy; O'Brien, Sue; Seaquist, Jim; Smith, Edward A.; Smith, Guy; Warden, Lance; Watts, John

    2007-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation, flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status

  12. A Hypothesis on Biological Protection from Space Radiation Through the Use of New Therapeutic Gases

    Schoenfeld, Michael P.; Ansari, Rafat R.; Nakao, Atsunori; Wink, David

    2011-01-01

    Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is the biological damage it induces. As damage is associated with increased oxidative stress, it is important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological signaling molecules for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson s and Alzheimer s disease, cataracts, and aging.

  13. Waste-Mixes Study for space disposal

    McCallum, R.F.; Blair, H.T.; McKee, R.W.; Silviera, D.J.; Swanson, J.L.

    1983-01-01

    The Wastes Mixes Study is a component of Cy-1981 and 1982 research activities to determine if space disposal could be a feasible complement to geologic disposal for certain high-level (HLW) and transuranic wastes (TRU). The objectives of the study are: to determine if removal of radionuclides from HLW and TRU significantly reduces the long-term radiological risks of geologic disposal; to determine if chemical partitioning of the waste for space disposal is technically feasible; to identify acceptable waste forms for space disposal; and to compare improvements in geologic disposal system performance to impacts of additional treatment, storage, and transportation necessary for space disposal. To compare radiological effects, five system alternatives are defined: Reference case - All HLW and TRU to a repository. Alternative A - Iodine to space, the balance to a repository. Alternative B - Technetium to space, the balance to a repository. Alternative C - 95% of cesium and strontium to a repository; the balance of HLW aged first, then to space; plutonium separated from TRU for recycle; the balance of the TRU to a repository. Alternative D - HLW aged first, then to space, plutonium separated from TRU for recycle; the balance of the TRU to a repository. The conclusions of this study are: the incentive for space disposal is that it offers a perception of reduced risks rather than significant reduction. Suitable waste forms for space disposal are cermet for HLW, metallic technetium, and lead iodide. Space disposal of HLW appears to offer insignificant safety enhancements when compared to geologic disposal; the disposal of iodine and technetium wastes in space does not offer risk advantages. Increases in short-term doses for the alternatives are minimal; however, incremental costs of treating, storing and transporting wastes for space disposal are substantial

  14. Library Space: Assessment and Planning through a Space Utilization Study.

    Prentice, Katherine A; Argyropoulos, Erica K

    2018-01-01

    The objective of this article is to describe the recent space and furniture utilization study conducted through direct observation at the small, academic-centered Schusterman Library. Student workers from the library's reference desk monitored two semesters of use and went on to observe a third semester after electrical power upgrades were installed. Extensive use details were collected about where library patrons sat during which parts of the day, and certain areas of the library were ultimately identified as much more active than others. Overall, the information gathered proved useful to library planning and will be valuable to future space initiatives. This article further demonstrates feasible means for any library to implement a similar study with minimal resources.

  15. Spaces of the possible: universal Darwinism and the wall between technological and biological innovation.

    Wagner, Andreas; Rosen, William

    2014-08-06

    Innovations in biological evolution and in technology have many common features. Some of them involve similar processes, such as trial and error and horizontal information transfer. Others describe analogous outcomes such as multiple independent origins of similar innovations. Yet others display similar temporal patterns such as episodic bursts of change separated by periods of stasis. We review nine such commonalities, and propose that the mathematical concept of a space of innovations, discoveries or designs can help explain them. This concept can also help demolish a persistent conceptual wall between technological and biological innovation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Spaces of the possible: universal Darwinism and the wall between technological and biological innovation

    Wagner, Andreas; Rosen, William

    2014-01-01

    Innovations in biological evolution and in technology have many common features. Some of them involve similar processes, such as trial and error and horizontal information transfer. Others describe analogous outcomes such as multiple independent origins of similar innovations. Yet others display similar temporal patterns such as episodic bursts of change separated by periods of stasis. We review nine such commonalities, and propose that the mathematical concept of a space of innovations, discoveries or designs can help explain them. This concept can also help demolish a persistent conceptual wall between technological and biological innovation. PMID:24850903

  17. Evaluating the feasibility of biological waste processing for long term space missions

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  18. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  19. Biological Studies of Posttraumatic Stress Disorder

    Pitman, Roger K.; Rasmusson, Ann M.; Koenen, Karestan C.; Shin, Lisa M.; Orr, Scott P.; Gilbertson, Mark W.; Milad, Mohammed R.; Liberzon, Israel

    2016-01-01

    Preface Posttraumatic stress disorder (PTSD) is the only major mental disorder for which a cause is considered to be known, viz., an event that involves threat to the physical integrity of oneself or others and induces a response of intense fear, helplessness, or horror. Although PTSD is still largely regarded as a psychological phenomenon, over the past three decades the growth of the biological PTSD literature has been explosive, and thousands of references now exist. Ultimately, the impact of an environmental event, such as a psychological trauma, must be understood at organic, cellular, and molecular levels. The present review attempts to present the current state of this understanding, based upon psychophysiological, structural and functional neuroimaging, endocrinological, genetic, and molecular biological studies in humans and in animal models. PMID:23047775

  20. Advancing Translational Space Research Through Biospecimen Sharing: Amplified Impact of Studies Utilizing Analogue Space Platforms

    Staten, B.; Moyer, E.; Vizir, V.; Gompf, H.; Hoban-Higgins, T.; Lewis, L.; Ronca, A.; Fuller, C. A.

    2016-01-01

    Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hindlimb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth.

  1. Assured Mission Support Space Architecture (AMSSA) study

    Hamon, Rob

    1993-01-01

    The assured mission support space architecture (AMSSA) study was conducted with the overall goal of developing a long-term requirements-driven integrated space architecture to provide responsive and sustained space support to the combatant commands. Although derivation of an architecture was the focus of the study, there are three significant products from the effort. The first is a philosophy that defines the necessary attributes for the development and operation of space systems to ensure an integrated, interoperable architecture that, by design, provides a high degree of combat utility. The second is the architecture itself; based on an interoperable system-of-systems strategy, it reflects a long-range goal for space that will evolve as user requirements adapt to a changing world environment. The third product is the framework of a process that, when fully developed, will provide essential information to key decision makers for space systems acquisition in order to achieve the AMSSA goal. It is a categorical imperative that military space planners develop space systems that will act as true force multipliers. AMSSA provides the philosophy, process, and architecture that, when integrated with the DOD requirements and acquisition procedures, can yield an assured mission support capability from space to the combatant commanders. An important feature of the AMSSA initiative is the participation by every organization that has a role or interest in space systems development and operation. With continued community involvement, the concept of the AMSSA will become a reality. In summary, AMSSA offers a better way to think about space (philosophy) that can lead to the effective utilization of limited resources (process) with an infrastructure designed to meet the future space needs (architecture) of our combat forces.

  2. Theories and models of the biology of the cell in space--an introduction

    Cogoli, A.; Cogoli-Greuter, M.

    1994-01-01

    The World Space Congress 1992 took place after two Spacelab flights with important biological payloads on board, the SLS-1 (June 1991) and IML-1 (January 1992) missions respectively. Interesting experiments were carried out in 1991 also on the Shuttle middeck and on the sounding rocket MASER 4. The highlights of the investigations on these missions together with the results of relevant ground-based research were presented at the symposium.

  3. Biological effects of space radiation on human cells. History, advances and outcomes

    Maalouf, M.; Foray, N.; Durante, M.

    2011-01-01

    Exposure to radiation is one of the main concerns for space exploration by humans. By focusing deliberately on the works performed on human cells, we endeavored to review, decade by decade, the technological developments and conceptual advances of space radiation biology. Despite considerable efforts, the cancer and the toxicity risks remain to be quantified: the nature and the frequency of secondary heavy ions need to be better characterized in order to estimate their contribution to the dose and to the final biological response; the diversity of radiation history of each astronaut and the impact of individual susceptibility make very difficult any epidemiological analysis for estimating hazards specifically due to space radiation exposure. Cytogenetic data undoubtedly revealed that space radiation exposure produce significant damage in cells. However, our knowledge of the basic mechanisms specific to low-dose, to repeated doses and to adaptive response is still poor. The application of new radiobiological techniques, like immunofluorescence, and the use of human tissue models different from blood, like skin fibroblasts, may help in clarifying all the above items. (author)

  4. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  5. Studying Planarian Regeneration Aboard the International Space Station within the Student Space Flight Experimental Program

    Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.

    2018-05-01

    The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  6. Studying Planarian Regeneration Aboard the International Space Station Within the Student Space Flight Experimental Program

    Vista SSEP Mission 11 Team

    2018-05-01

    Full Text Available The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  7. Coupled Human-Space Suit Mobility Studies

    National Aeronautics and Space Administration — Current EVA mobility studies only allow for comparisons of how the suit moves when actuated by a human and how the human moves when unsuited. There are now new...

  8. Biological Technologies for Life Beyond Low Earth Orbit (BT4LBLEO): Study Introductions and Synopsis

    Hines, John W.

    2011-01-01

    The study will address the following mission concerns: -Extended human presence in the environments of deep space as well as the Moon and Mars will require a solid biological understanding of the integrated effects of diminished gravity, enhanced radiation, and transit- and destination-specific variables from the sub-cellular to the whole organism level. -Biological and associated technologies for biological and robotic precursor missions to realize future objectives for space colonization. -Surfaces, gravity levels, radiation environments, and atmospheres of these nearest neighbors are radically different in chemical and geological make-up from those on our home planet, and all of these contributory effects must be considered.

  9. Spectroscopic study of biologically active glasses

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  10. Proteomics in studying cancer stem cell biology.

    Kranenburg, Onno; Emmink, Benjamin L; Knol, Jaco; van Houdt, Winan J; Rinkes, Inne H M Borel; Jimenez, Connie R

    2012-06-01

    Normal multipotent tissue stem cells (SCs) are the driving force behind tissue turnover and repair. The cancer stem cell theory holds that tumors also contain stem-like cells that drive tumor growth and metastasis formation. However, very little is known about the regulation of SC maintenance pathways in cancer and how these are affected by cancer-specific genetic alterations and by treatment. Proteomics is emerging as a powerful tool to identify the signaling complexes and pathways that control multi- and pluri-potency and SC differentiation. Here, the authors review the novel insights that these studies have provided and present a comprehensive strategy for the use of proteomics in studying cancer SC biology.

  11. Studies of the productive efficiency of a cylindrical salad growth facility with a light-emitting diodes lighting unit as a component of the biological life support system for space crews

    Erokhin, A. N.; Berkovich, Y. A.; Smolianina, S. O.; Krivobok, N. M.; Agureev, A. N.; Kalandarov, S. K.

    Efficiency of the green salad production under light-emitting diodes within space life support system was tested with a prototype of a 10-step cylindrical "Phytocycle-SD". The system has a plant chamber in the form of a spiral cylinder; a planting unit inside the plant chamber is built of 10 root modules which make a planting circular cylinder co-axial with and revolving relative to the leaf chamber. Twelve panels of the lighting unit on the internal surfaces of the spiral cylinder carry 438 red (660 nm) and 88 blue (470 nm) light-emitting diodes producing average PPF equal 360 mmol/(m^2\\cdots) 4 cm below the light source, and 3 panels producing PPF equal 190 mmol/(^2\\cdots) at the initial steps of the plant conveyer. The system demands 0.44 kW, the plant chamber is 0.2 m^3 large, and the total illuminated crop area is 0.8 m^2. Productive efficiency of the greenhouse was studied in a series of laboratory experiments with celery cabbage Brassica pekinensis (Lour) Rupr. grown in the conveyer with a one step period of 3 days. The crop grew in a fiber ion-exchange mineral-rich soil (FS) BIONA V-3 under the 24-hr light. Maximal productivity of the ripe (30-d old) plants reached 700 g of the fresh edible biomass from one root module; in this case, FS productivity amounted to 5.6 kg of the fresh biomass per one kg of dry FS. Biomass contents of ascorbic acid, carotinoids and cellulose gathered from one root module made up 70 mg, 13 mg and 50 g, respectively. Hence, celery cabbage crop raised in "Phytocycle-SD" can satisfy up to 8% of the daily dietary vitamin C, 24% of vitamin A and 22% of food fibers of 3 crew members. Vitamin production can be increased by planting multi-species salad crops.

  12. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  13. On Beyond Star Trek: Synthetic Biology and the Future of Space Exploration

    Rothschild, Lynn J.

    2017-01-01

    A turtle carries its own habitat. While it is reliable, it costs energy. NASA makes the same trade-off when it transports habitats and other structures needed to lunar and planetary surfaces increasing upmass, and affecting other mission goals. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because it can replicate and repair itself, and do a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing could make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. Imagine what new products can be enabled by such a technology, on earth or beyond!

  14. Structural Studies of Biological Solids Using NMR

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  15. Biological Indicators in Studies of Earthquake Precursors

    Sidorin, A. Ya.; Deshcherevskii, A. V.

    2012-04-01

    Time series of data on variations in the electric activity (EA) of four species of weakly electric fish Gnathonemus leopoldianus and moving activity (MA) of two cat-fishes Hoplosternum thoracatum and two groups of Columbian cockroaches Blaberus craniifer were analyzed. The observations were carried out in the Garm region of Tajikistan within the frameworks of the experiments aimed at searching for earthquake precursors. An automatic recording system continuously recorded EA and DA over a period of several years. Hourly means EA and MA values were processed. Approximately 100 different parameters were calculated on the basis of six initial EA and MA time series, which characterize different variations in the EA and DA structure: amplitude of the signal and fluctuations of activity, parameters of diurnal rhythms, correlated changes in the activity of various biological indicators, and others. A detailed analysis of the statistical structure of the total array of parametric time series obtained in the experiment showed that the behavior of all animals shows a strong temporal variability. All calculated parameters are unstable and subject to frequent changes. A comparison of the data obtained with seismicity allow us to make the following conclusions: (1) The structure of variations in the studied parameters is represented by flicker noise or even a more complex process with permanent changes in its characteristics. Significant statistics are required to prove the cause-and-effect relationship of the specific features of such time series with seismicity. (2) The calculation of the reconstruction statistics in the EA and MA series structure demonstrated an increase in their frequency in the last hours or a few days before the earthquake if the hypocenter distance is comparable to the source size. Sufficiently dramatic anomalies in the behavior of catfishes and cockroaches (changes in the amplitude of activity variation, distortions of diurnal rhythms, increase in the

  16. Effects of space environment on biological characters of cultured rose seedlings

    Min, L.; Huai, X.; Jinying, L.; Yi, P.; Chunhua, Z.

    Cultured rose seedlings were carried into space by SHENZHOU-4 spacecraft and then used as the experimental material to investigate effects of the space environmental conditions on morphology cytology physiology and molecular biology of the seedlings After loaded on the space flight the plant s height number of leaves and fresh weight per seedling were all increased significantly compared to the ground controls The content of chlorophyll was basically unchanged In some cells the ultrastructural changes involved twist contraction and deformation of cell wall curvature and loose arrangement of lamellae of some chloroplasts and a significant increase in number of starch grains per chloroplast In addition the number of mitochondria increased but some mitochondrial outer membrane broke and some mitochondrial cristae disappeared The activities of the defense enzymes such as superoxide dismutase peroxidase and catalyse in rose leaves increased and the content of malondialdehyde decreased In the RAPD analysis with 40 10-mer primers 36 primers generated 148 DNA bands from both of the space flight treated seedlings and the ground controls and five primers amplified polymorphic products The rate of DNA variation was 6 34

  17. Space radiation-induced bystander effect: kinetics of biologic responses, mechanisms, and significance of secondary radiations

    Gonon, Geraldine

    2011-01-01

    Widespread evidence indicates that exposure of cell cultures to a particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) 151 keV/μm), 600 MeV/u silicon ions (LET 50 keV/μm) or 290 MeV/u carbon ions (LET 13 keV/μm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u a particles (LET 109 keV/μm). Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only 1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in

  18. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph

    2017-01-01

    lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production. This work is supported by NASA.

  19. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.

  20. Fluid Studies on the International Space Station

    Motil, Brian J.

    2016-01-01

    Will discuss the recent activities on the international space station, including the adiabatic two phase flow, capillary flow and interfacial phenomena, and boiling and condensation. Will also give a historic introduction to Microgravity Studies at Glenn Research Center. Talk will be given to students and faculty at University of Louisville.

  1. Environmental Studies at the Guiana Space Centre

    Richard, Sandrine

    2013-09-01

    The Environmental Commitment of the French Space Agency at the Guiana Space Centre (CNES / CSG) specifies that the environmental protection is a major stake. Consequently, CNES participates in numerous space programs that contribute significantly to a better knowledge, management and protection of our environment at a global scale.The studies and researches that are done at CNES / CSG meet several objectives:* Assessment of safety and environmental effects and risk related to the effects overflowing due to a pollution caused by ground and flight activities* Improvement of the studies related to the knowledge of the environment (flora and fauna monitoring).* Risk assessment and management which may affect the safety of people , property, and protection of public health and environment * Verification of the compliance of the results of impact studies of launch vehicle in flight phase provided by the launch operator (Technical Regulation) with the French Safety Operational Acts.In this note, study and research programs are presented. They allow a better knowledge of the surrounding environment and of impacts caused by the industrial activities done in Guiana Space Center.

  2. Developmental biology and the study of malformations.

    Hughes, A F

    1976-05-01

    Experimental work on abnormal conditions of incubation in the chick has been undertaken to acquire a scientific approach to malformations. More precise experiments on causing abnormalities had a common origin with experimental embryology. Progress in experimental teratology during the last 50 years is reviewed in a commentary on the 4 principles formulated by Stockard in 1921. The results of cytogenetical studies in man and in other organisms have led to the tracing of some relationships between them. Present knowledge concerning malformations of the neural tube, originating either experimentally, spontaneously, or phenotypically, has been presented and the teratological implications of some recent theories on the expression of the genotype are discussed in particular reference to problems of hormones as teratogens, the implication of carbohydrate metabolism, and teratogenesis. It is speculated that teratogenesis is possibly related to cationic balance in early development and that 1 factor retarding progress in the understanding of malformations is the tendency toward the development of teratology in an adequately close relationship with other branches of cell biology.

  3. Biological Studies with Laser-Polarized ^129Xe

    Tseng, C. H.; Oteiza, E. R.; Wong, G. A.; Walsworth, R. L.; Albert, M. S.; Nascimben, L.; Peled, S.; Sakai, K.; Jolesz, F. A.

    1996-05-01

    We have studied several biological systems using laser-polarized ^129Xe. In certain tissues magnetic resonance imaging (MRI) using inhaled laser-polarized noble gases may provide images superior to those from conventional proton MRI. High resolution laser-polarized ^3He images of air spaces in the human lung were recently obtained by the Princeton/Duke group. However, ^3He is not very soluble in tissue. Therefore, we are using laser polarized ^129Xe (tissue-soluble), with the long term goal of biomedical functional imaging. We have investigated multi-echo and multi-excitation magnetic resonance detection schemes to exploit the highly non-thermal ^129Xe magnetization produced by the laser polarization technique. We have inhalated live rats with laser-polarized ^129Xe gas and measured three distinct ^129Xe tissue resonances that last 20 to 40 sec. As a demonstration, we obtained a laser polarized ^129Xe image of the human oral cavity. Currently we are measuring the polarization lifetime of ^129Xe dissolved in human blood, the biological transporting medium. These studies and other recent developments will be reported.

  4. Postgraduate studies in radiation biology in Europe

    Trott, K.R.; Lohmann, P.H.M.; Zeeland, A.A. van; Natarajan, A.T.; Schibilla, H.; Chadwick, K.; Kellerer, A.M.; Steinhaeusler, F.

    1998-01-01

    The present system of radiobiological research in universities and research centres is no longer able to train radiobiologists who have a comprehensive understanding of the entire field of radiation biology including both 'classical' and molecular radiation biology. However, such experts are needed in view of the role radiation protection plays in our societies. No single institution in Europe could now run a 1-year, full-time course which covers all aspects of the radiobiological basis of radiation protection. Therefore, a cooperative action of several universities from different EU member states has been developed and is described herein. (orig.)

  5. Study of biocompatible and biological materials

    Pecheva, Emilia

    2017-01-01

    The book gives an overview on biomineralization, biological, biocompatible and biomimetic materials. It reveals the use of biomaterials alone or in composites, how their performance can be improved by tailoring their surface properties by external factors and how standard surface modification techniques can be applied in the area of biomaterials to beneficially influence their growth on surfaces.

  6. 15N in biological nitrogen fixation studies

    Faust, H.

    1986-05-01

    A bibliography with 298 references on the use of the stable nitrogen isotope 15 N in the research on the biological fixation of dinitrogen is presented. The literature pertaining to this bibliography covers the period from 1975 to the middle of 1985. (author)

  7. A biologically inspired scale-space for illumination invariant feature detection

    Vonikakis, Vasillios; Chrysostomou, Dimitrios; Kouskouridas, Rigas; Gasteratos, Antonios

    2013-01-01

    This paper presents a new illumination invariant operator, combining the nonlinear characteristics of biological center-surround cells with the classic difference of Gaussians operator. It specifically targets the underexposed image regions, exhibiting increased sensitivity to low contrast, while not affecting performance in the correctly exposed ones. The proposed operator can be used to create a scale-space, which in turn can be a part of a SIFT-based detector module. The main advantage of this illumination invariant scale-space is that, using just one global threshold, keypoints can be detected in both dark and bright image regions. In order to evaluate the degree of illumination invariance that the proposed, as well as other, existing, operators exhibit, a new benchmark dataset is introduced. It features a greater variety of imaging conditions, compared to existing databases, containing real scenes under various degrees and combinations of uniform and non-uniform illumination. Experimental results show that the proposed detector extracts a greater number of features, with a high level of repeatability, compared to other approaches, for both uniform and non-uniform illumination. This, along with its simple implementation, renders the proposed feature detector particularly appropriate for outdoor vision systems, working in environments under uncontrolled illumination conditions. (paper)

  8. Carbon Nanomaterials in Biological Studies and Biomedicine.

    Teradal, Nagappa L; Jelinek, Raz

    2017-09-01

    The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at

  10. Study on space mutation breeding of rice

    Xu Jianlong; Lin Yizi; Xi Yongan; Jiang Xingcun; Li Jinguo

    1997-01-01

    Air-dried seeds of rice variety ZR9 were carried by high altitude balloon (HAB) and recoverable satellite (RS) for space mutation. Mutagentic effects of high altitude environment (HAE) of 30∼38 km and outer space environment (OSE) of 218∼326 km above sea level on rice plant were studied. The results indicated that the germination percentage (GP) of seeds was obviously lower than that of the controls. the mutation in plant height (PH) and growth period duration (GPD) of SP 1 carried by HAB were induced. However, the GP of seeds and characters of SP 1 carried by RS had no evident change. More stronger segregation of major characters such as PH, GPD and length of panicle, appeared in the two SP 2 generations resulting from HAB and RS. And their mutation frequency were 4.31% and 4.10% respectively. Mutation lines selected from the two mutation progenies improved significantly in PH, GPD, disease resistance and yield. Therefore, space mutation could be considered as a new breeding method

  11. Computerised modelling for developmental biology : an exploration with case studies

    Bertens, Laura M.F.

    2012-01-01

    Many studies in developmental biology rely on the construction and analysis of models. This research presents a broad view of modelling approaches for developmental biology, with a focus on computational methods. An overview of modelling techniques is given, followed by several case studies. Using

  12. Study of space reactors for exploration missions

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic, E-mail: elisa.cliquet@cnes.fr, E-mail: frederic.masson@cnes.fr [Centre National d' Etudes Spatiales (CNES), Paris (France); Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent, E-mail: jean-pierre.roux@areva.com [AREVA TA, Aix en Provence, (France); Poinot-Salanon, Christine, E-mail: christine.poinot@cea.fr [Comissariado a l' Energie Atomique et Aux Energies alternatives (CEA), Paris (France)

    2013-07-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  13. Study of space reactors for exploration missions

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic; Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent; Poinot-Salanon, Christine

    2013-01-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  14. A gravity independent biological grey water treatment system for space applications

    Nashashibi, Majda'midhat

    2002-09-01

    Biological treatment of grey water in space presents serious challenges, stemming mainly from microgravity conditions. The major concerns are phase separation and mass transfer limitations. To overcome solid-liquid phase separation, novel immobilized cell packed bed (ICPB) bioreactors have been developed to treat synthetic grey water. Packed bed bioreactors provide a unique environment for attached microbial growth resulting in high biomass concentrations, which greatly enhance process efficiency with substantial reductions in treatment time and reactor volume. To overcome the gas-liquid phase separation and mass transfer limitations, an oxygenation module equipped with tubular membranes has been developed to deliver bubble-less oxygen under pressure. The selected silicone membranes are hydrophobic, non-porous and oxygen selective. Oxygen dissolves in the walls of the membranes and then diffuses into the water without forming bubbles. Elevated pressures maintain all gaseous by-products in solution and provide high dissolved oxygen concentrations within the system. The packing media are lightweight, inexpensive polyethylene terephthalate (PET) flakes that have large specific surface area, act as a filter for solids and yield highly tortuous flow paths thereby increasing the contact time between the biomass and contaminants. Tests on both pressurized and ambient pressure ICPB bioreactors revealed organic carbon removal efficiencies over 90%. Despite the high ammonia level in the influent, nitrification occured in both the ambient pressure and pressurized nitrification bioreactors at efficiencies of 80% and 60%, respectively. Biomass yield was approximately 0.20 g volatile suspended solids per gram of grey water-COD processed in the pressurized bioreactor. The biomass yield of such novel aerobic ICPB systems is comparable to that of anaerobic processes. These efficient systems produce minimal amounts of biomass compared to other aerobic processes, making them less

  15. Three-dimensional labeling program for elucidation of the geometric properties of biological particles in three-dimensional space.

    Nomura, A; Yamazaki, Y; Tsuji, T; Kawasaki, Y; Tanaka, S

    1996-09-15

    For all biological particles such as cells or cellular organelles, there are three-dimensional coordinates representing the centroid or center of gravity. These coordinates and other numerical parameters such as volume, fluorescence intensity, surface area, and shape are referred to in this paper as geometric properties, which may provide critical information for the clarification of in situ mechanisms of molecular and cellular functions in living organisms. We have established a method for the elucidation of these properties, designated the three-dimensional labeling program (3DLP). Algorithms of 3DLP are so simple that this method can be carried out through the use of software combinations in image analysis on a personal computer. To evaluate 3DLP, it was applied to a 32-cell-stage sea urchin embryo, double stained with FITC for cellular protein of blastomeres and propidium iodide for nuclear DNA. A stack of optical serial section images was obtained by confocal laser scanning microscopy. The method was found effective for determining geometric properties and should prove applicable to the study of many different kinds of biological particles in three-dimensional space.

  16. Surviving space flight: case study on MELiSSA's CIII nitrifying compartment

    Ilgrande, Chiara; Lasseur, Christophe; Mastroleo, Felice; Paille, Christel; Leys, Natalie; Morozova, Julia; Ilyin, Vyacheslav; Clauwaert, Peter; Christiaens, Marlies E. R.; Lindeboom, Ralph E. F.; Vlaeminck, Siegfried; Prat, Delphine; Arroyo, Jose M. C.; Conincx, Ilse; Van Hoey, Olivier; Roume, Hugo; Udert, Kai; Sas, Benedikt

    2016-07-01

    Space synthetic biology offers key opportunities for long-term space missions. Planets mining, terraformation, space medicine and Life Support technologies would all benefit from an integrative biological approach. However, space is a harsh environment for life: microgravity, temperature, UV and cosmic radiation can affect the health and functionality of microorganisms and plants, possibly preventing the optimal performance of the systems. The European Space Agency's Life Support System (MELiSSA) has been developed as a model for future long term Space missions and Space habitation. MELiSSA is a 5 compartment artificial ecosystem with microorganisms and higher, that aims at completely recycling gas, liquid and solid waste. In this study, the survival and functional activity after Lower Earth Orbit conditions of microbial nitrogen conversions, relevant for MELiSSA's CIII compartment, was tested. Synthetic communities containing Nitrosomonas europeae, Nitrosomonas ureae, Nitrobacter winogradskyi, Nitrospira moscoviensis and Cupriavidus pinatubonensis were exposed to the Lower Earth Orbit conditions of the International Space Station (ISS) for 7 days. Nitrosomonas europeae, Nitrobacter winogradskyi, Cupriavidus pinatubonensis, and three mixed communities (a urine nitrification sludge, a sludge containing aerobic ammonia oxidizing bacteria and anammox bacteria (OLAND), and an aquaculture sludge containing ammonia oxidizing archaea) were exposed to Lower Earth Orbit conditions for 44 days. Survival after both space flights was demonstrated because nitritation, nitratation, denitrification and anammox activity could be restored at a rate comparable to ground storage conditions. Our results validate the potential survival feasibility and suggest future space applications for N-related microorganisms.

  17. Revisit of Machine Learning Supported Biological and Biomedical Studies.

    Yu, Xiang-Tian; Wang, Lu; Zeng, Tao

    2018-01-01

    Generally, machine learning includes many in silico methods to transform the principles underlying natural phenomenon to human understanding information, which aim to save human labor, to assist human judge, and to create human knowledge. It should have wide application potential in biological and biomedical studies, especially in the era of big biological data. To look through the application of machine learning along with biological development, this review provides wide cases to introduce the selection of machine learning methods in different practice scenarios involved in the whole biological and biomedical study cycle and further discusses the machine learning strategies for analyzing omics data in some cutting-edge biological studies. Finally, the notes on new challenges for machine learning due to small-sample high-dimension are summarized from the key points of sample unbalance, white box, and causality.

  18. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  19. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-04-13

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  20. Space station wardroom habitability and equipment study

    Nixon, David; Miller, Christopher; Fauquet, Regis

    1989-01-01

    Experimental designs in life-size mock-up form for the wardroom facility for the Space Station Habitability Module are explored and developed. In Phase 1, three preliminary concepts for the wardroom configuration are fabricated and evaluated. In Phase 2, the results of Phase 1 are combined with a specific range of program design requirements to provide the design criteria for the fabrication of an innovative medium-fidelity mock-up of a wardrobe configuration. The study also focuses on the design and preliminary prototyping of selected equipment items including crew exercise compartments, a meal/meeting table and a portable workstation. Design criteria and requirements are discussed and documented. Preliminary and final mock-ups and equipment prototypes are described and illustrated.

  1. A Hypothesis on Biological Protection from Space Radiation Through the Use of New Therapeutic Gases as Medical Counter Measures

    Schoenfeld, Michael P.; Ansari, Rafat R.; Nakao, Atsunori; Wink, David

    2012-01-01

    Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is the biological damage it induces. As damage is associated with increased oxidative stress, it is important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological signaling molecules for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson s and Alzheimer s disease, cataracts, and aging.

  2. A hypothesis on biological protection from space radiation through the use of new therapeutic gases as medical counter measures

    Schoenfeld Michael P

    2012-04-01

    Full Text Available Abstract Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is biological damage that is associated with increased oxidative stress. It is therefore important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as chemical radioprotectors for radical scavenging and as biological signaling molecules for management of the body's response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it can be concluded that this approach may have therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion (IR injury, acute respiratory distress syndrome, Parkinson's and Alzheimer's disease, cataracts, and aging. We envision applying these therapies through inhalation of gas mixtures or ingestion of water with dissolved gases.

  3. Biological - Elwha River Dam Removal Study

    National Oceanic and Atmospheric Administration, Department of Commerce — This study examines the ecosystem response of the Elwha River to the removal of the Elwha River dams. We will measure the following attributes of ecosystem response:...

  4. Biological Studies on a Live Volcano.

    Zipko, Stephen J.

    1992-01-01

    Describes scientific research on an Earthwatch expedition to study Arenal, one of the world's most active volcanoes, in north central Costa Rica. The purpose of the two-week project was to monitor and understand the past and ongoing development of a small, geologically young, highly active stratovolcano in a tropical, high-rainfall environment.…

  5. Deep Space Network information system architecture study

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  6. Deep Space Storm Shelter Simulation Study

    Dugan, Kathryn; Phojanamongkolkij, Nipa; Cerro, Jeffrey; Simon, Matthew

    2015-01-01

    Missions outside of Earth's magnetic field are impeded by the presence of radiation from galactic cosmic rays and solar particle events. To overcome this issue, NASA's Advanced Exploration Systems Radiation Works Storm Shelter (RadWorks) has been studying different radiation protective habitats to shield against the onset of solar particle event radiation. These habitats have the capability of protecting occupants by utilizing available materials such as food, water, brine, human waste, trash, and non-consumables to build short-term shelters. Protection comes from building a barrier with the materials that dampens the impact of the radiation on astronauts. The goal of this study is to develop a discrete event simulation, modeling a solar particle event and the building of a protective shelter. The main hallway location within a larger habitat similar to the International Space Station (ISS) is analyzed. The outputs from this model are: 1) the total area covered on the shelter by the different materials, 2) the amount of radiation the crew members receive, and 3) the amount of time for setting up the habitat during specific points in a mission given an event occurs.

  7. Without Gravity: Designing Science Equipment for the International Space Station and Beyond

    Sato, Kevin Y.

    2016-01-01

    This presentation discusses space biology research, the space flight factors needed to design hardware to conduct biological science in microgravity, and examples of NASA and commercial hardware that enable space biology study.

  8. Spring 2004 Industry Study: Space Industry

    Romano, Anthony F; Brandt, Linda S; Burns, Cynthia Q; Grubbs, Lawrence K; McGee, Anne E; Barzler, Paul M; Bennett, Kathleen R; Bryner, Drew A; Clubb, Timothy L; Flynn, John E

    2004-01-01

    .... These challenges include the complex technologies necessary to safely travel the hazardous environment and great distances of space, as well as the public will and commitment of resources required...

  9. Nuclear magnetic resonance studies of biological systems

    Antypas, W.G. Jr.

    1988-01-01

    The difference between intracellular and extracellular proton relaxation rates provides the basis for the determination of the mean hemoglobin concentration (MHC) in red blood cells. The observed water T 1 relaxation data from red blood cell samples under various conditions were fit to the complete equation for the time-dependent decay of magnetization for a two-compartment system including chemical exchange. The MHC for each sample was calculated from the hematocrit and the intracellular water fraction as determined by NMR. The binding of the phosphorylcholine (PC) analogue, 2-(trimethylphosphonio)-ethylphosphate (phosphoryl-phosphocholine, PPC) to the PC binding myeloma proteins TEPC-15, McPC 603, and MOPC 167 was studied by 31 P NMR

  10. Space Industry. Industry Study, Spring 2009

    2009-01-01

    Space Flight Center, Cocoa Beach, FL Cape Canaveral Air Force Station, Cocoa Beach, FL Naval Ordnance Test Unit, Cocoa Beach, FL 50th Space Wing... America .” In 2009, as we celebrate the 40th anniversary of the fulfillment of that vision, it is appropriate to pause and reflect on how far we...value system, providing high-value services to both government and commercial consumers. The estimate of international and U.S. government consumption

  11. Biological effects of several extreme space flight factors (acceleration, magnetically activated water) on mouse natural or modified radiosensitivity

    Datsov, E.R.

    1979-01-01

    Irradiated and Adeturon-protected mice were used to assess biological effects of several static (magnetically-activated water - MW) and dynamic (acceleration) factors of space flight. The study shows that increased gravitation, 20 G, 5 min, generated by a small radius centrifuge, increases static ability to work, while the number of peripheral blood cells decreases. Continuous exposure of mice to MW induces a decrease in dynamic ability to work, in comparison with the physiological controls, without substantial changes in other indices. Extreme factors in space flight (acceleration MW, radiation, radiation protector), alone or in combination, decrease the animal's growth rate. After administration of 200 mg/kg Adeturone, mouse dynamic ability to work increases, while its capabilities for adaptation and training are lowered, and pronounced leucocytosis is observed. MW, acceleration, or Adeturone pre-treatment of mice increases their survival and dynamic ability to work, following exposure to 600 R, when compared to irradiated animals, but decreases their capabilities for adaptation and training. Acceleration and Adeturone protect peripheral blood from radiation injury, while MW alone intensifies radiation cytopenia. Irradiation does not significantly modify the static ability to work, upon preceding exposure to MW or acceleration. In this case, Adeturone exerts protective effect. ME and Adeturone combined action results in increased survival rate and mean duration of life of irradiated animals, as compared to their single administration. Acceleration reduces MW, Adeturone and MW + Adeturone effect on survival. Peripheral blood parameters do not correlate with survival rates. Combined pre-treatment with two or three of the factors studied increases dynamic ability to work following irradiation, and in many cases the static ability as well. The combination of Adeturone and MW was the only one with negative effect on the static ability to work. (A.B.)

  12. Study of phosphors determination in biological samples

    Oliveira, Rosangela Magda de.

    1994-01-01

    In this paper, phosphors determination by neutron activation analysis in milk and bone samples was studied employing both instrumental and radiochemical separation methods. The analysis with radiochemistry separation consisted of the simultaneous irradiation of the samples and standards during 30 minutes, dissolution of the samples, hold back carrier, addition precipitation of phosphorus with ammonium phosphomolibdate (A.M.P.) and phosphorus-32 by counting by using Geiger-Mueller detector. The instrumental analysis consisted of the simultaneous irradiation of the samples and standards during 30 minutes, transfer of the samples into a counting planchet and measurement of the beta radiation emitted by phosphorus-32, after a suitable decay period. After the phosphorus analysis methods were established they were applied to both commercial milk and animal bone samples, and data obtained in the instrumental and radiochemical separation methods for each sample, were compared between themselves. In this work, it became possible to obtain analysis methods for phosphorus that can be applied independently of the sample quantity available, and the phosphorus content in the samples or interference that can be present in them. (author). 51 refs., 7 figs., 4 tabs

  13. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  14. Propagation and scattering of optical light beams in free space, in atmosphere and in biological media

    Sahin, Serkan

    With their first production implemented around 1960's, lasers have afterwards proven to be excellent light sources in building the technology. Subsequently, it has been shown that the extraordinary properties of lasers are related to their coherence properties. Recent developments in optics make it possible to synthesize partially coherent light beams from fully coherent ones. In the last several decades it was seen that using partially coherent light sources may be advantageous, in the areas such as laser surface processing, fiber and free-space optical communications, and medical diagnostics. In this thesis, I study extensively the generation, the propagation in different media, and the scattering of partially coherent light beams with respect to their spectral polarization and coherence states. For instance, I analyze the evolution of recently introduced degree of cross-polarization of light fields in free space; then develop a novel partially coherent light source which acquires and keeps a flat intensity profile around the axis at any distance in the far field; and investigate the interaction of electromagnetic random light with the human eye lens. A part of the thesis treats the effect of atmospheric turbulence on random light beams. Due to random variations in the refractive index, atmospheric turbulence modulates all physical and statistical properties of propagating beams. I have explored the possibility of employing the polarimetric domain of the beam for scintillation reduction, which positively affects the performance of free-space communication systems. I also discuss novel techniques for the sensing of rough targets in the turbulent atmosphere by polarization and coherence properties of light. The other contribution to the thesis is the investigation of light scattering from deterministic or random collections of particles, within the validity of first Born approximation. In the case of a random collection, I introduce and model the new quantity

  15. Study of university students' attitudes toward office space at universities

    S.M. Eteadifard

    2017-06-01

    Full Text Available Office space is the space where students first experience the university. In this paper, the attitude of students toward office space in the public sphere of university is discussed. This article is the result of the research conducted for the “Institute for Social and Cultural Studies” by the author. The main issues in this paper are: university students' attitudes towards quality office space at the universities and mental basis of common issues among students at the universities. Data were collected through individual and group interviews. More than eighty interviews with activists and students of University of Tehran, Shahid Beheshti University, Allameh Tabataba’i University, Sharif University of Technology and Kharazmi University were done. The main indicators of office space in this study include: students’ satisfaction of office space, students’ welfare affairs and students’ feedback about this space. Problems and obstacles relating to the office space and their solutions were also studied in this paper.

  16. Optimizing Working Space in Laparoscopy: Studies in a porcine model

    J. Vlot (John)

    2014-01-01

    markdownabstract__Abstract__ Adequate working space is essential for safe and effective laparoscopic surgery. However, the factors that determine working space have not been sufficiently studied. Working space can be very limited, especially in children. A literature review was undertaken to

  17. Space Adaptation Back Pain: A Retrospective Study

    Kerstman, Eric

    2009-01-01

    Astronaut back pain is frequently reported in the early phase of space flight as they adapt to microgravity. The epidemiology of space adaptation back pain (SABP) has not been well established. This presentation seeks to determine the exact incidence of SABP among astronauts, develop a case definition of SABP, delineate the nature and pattern of SABP, review available treatments and their effectiveness in relieving SABP; and identify any operational impact of SABP. A retrospective review of all available mission medical records of astronauts in the U.S. space program was performed. It was revealed that the incidence of SABP has been determined to be 53% among astronauts in the U.S. space program; most cases of SABP are mild, self-limited, or respond to available treatment; there are no currently accepted preventive measures for SABP; it is difficult to predict who will develop SABP; the precise mechanism and spinal structures responsible for SABP are uncertain; there was no documented evidence of direction operational mission impact related to SABP; and, that there was the potential for mission impact related to uncontrolled pain, sleep disturbance, or the adverse side effects pf anti-inflammatory medications

  18. Topics in space gerontology: Effects of altered gravity and the problem of biological age

    Economos, A. C.

    1982-01-01

    The use of altered gravity experimentation as a gerontological research tool is examined and a rationale for a systems approach to the adaptation to spaceflight is presented. The dependence of adaptation capacity on biological age is also discussed.

  19. BioSentinel: Biosensors for Deep-Space Radiation Study

    Lokugamage, Melissa P.; Santa Maria, Sergio R.; Marina, Diana B.; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission will be deployed on NASA's Exploration Mission 1 (EM-1) in 2018. We will use the budding yeast, Saccharomyces cerevisiae, as a biosensor to study the effect of deep-space radiation on living cells. The BioSentinel mission will be the first investigation of a biological response to space radiation outside Low Earth Orbit (LEO) in over 40 years. Radiation can cause damage such as double stand breaks (DSBs) on DNA. The yeast cell was chosen for this mission because it is genetically controllable, shares homology with human cells in its DNA repair pathways, and can be stored in a desiccated state for long durations. Three yeast strains will be stored dry in multiple microfluidic cards: a wild type control strain, a mutant defective strain that cannot repair DSBs, and a biosensor strain that can only grow if it gets DSB-and-repair events occurring near a specific gene. Growth and metabolic activity of each strain will be measured by a 3-color LED optical detection system. Parallel experiments will be done on the International Space Station and on Earth so that we can compare the results to that of deep space. One of our main objectives is to characterize the microfluidic card activation sequence before the mission. To increase the sensitivity of yeast cells as biosensors, desiccated yeast in each card will be resuspended in a rehydration buffer. After several weeks, the rehydration buffer will be exchanged with a growth medium in order to measure yeast growth and metabolic activity. We are currently working on a time-course experiment to better understand the effects of the rehydration buffer on the response to ionizing radiation. We will resuspend the dried yeast in our rehydration medium over a period of time; then each week, we will measure the viability and ionizing radiation sensitivity of different yeast strains taken from this rehydration buffer. The data obtained in this study will be useful in finalizing the card activation sequence for

  20. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; hide

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  1. Students’ learning activities while studying biological process diagrams

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  2. Space-Based Space Surveillance Logistics Case Study: A Qualitative Product Support Element Analysis

    2017-12-01

    REPORT TYPE AND DATES COVERED Joint applied project 4. TITLE AND SUBTITLE SPACE-BASED SPACE SURVEILLANCE LOGISTICS CASE STUDY: A QUALITATIVE ...INTENTIONALLY LEFT BLANK v ABSTRACT This research provides a qualitative analysis of the logistics impacts, effects, and sustainment challenges...provides a qualitative product support element-by-element review for both research questions. Chapters IV and V present the findings, results

  3. Genelab: Scientific Partnerships and an Open-Access Database to Maximize Usage of Omics Data from Space Biology Experiments

    Reinsch, S. S.; Galazka, J..; Berrios, D. C; Chakravarty, K.; Fogle, H.; Lai, S.; Bokyo, V.; Timucin, L. R.; Tran, P.; Skidmore, M.

    2016-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. The GeneLab Data System (GLDS) is NASA's premier open-access omics data platform for biological experiments. GLDS houses standards-compliant, high-throughput sequencing and other omics data from spaceflight-relevant experiments. The GeneLab project at NASA-Ames Research Center is developing the database, and also partnering with spaceflight projects through sharing or augmentation of experiment samples to expand omics analyses on precious spaceflight samples. The partnerships ensure that the maximum amount of data is garnered from spaceflight experiments and made publically available as rapidly as possible via the GLDS. GLDS Version 1.0, went online in April 2015. Software updates and new data releases occur at least quarterly. As of October 2016, the GLDS contains 80 datasets and has search and download capabilities. Version 2.0 is slated for release in September of 2017 and will have expanded, integrated search capabilities leveraging other public omics databases (NCBI GEO, PRIDE, MG-RAST). Future versions in this multi-phase project will provide a collaborative platform for omics data analysis. Data from experiments that explore the biological effects of the spaceflight environment on a wide variety of model organisms are housed in the GLDS including data from rodents, invertebrates, plants and microbes. Human datasets are currently limited to those with anonymized data (e.g., from cultured cell lines). GeneLab ensures prompt release and open access to high-throughput genomics, transcriptomics, proteomics, and metabolomics data from spaceflight and ground-based simulations of microgravity, radiation or other space environment factors. The data are meticulously curated to assure that accurate experimental and sample processing metadata are included with each data set. GLDS download volumes indicate strong

  4. Space environment studies for the SZ-4 spacecraft

    Ye Zonghai

    2004-01-01

    The space environment, especially the solar-terrestrial space environment, has close bearings on mankind's astronautical activities. An overview is presented of the space environment and safeguard services on the 'SZ' series of spacecraft, with special reference to the SZ-4 spacecraft. These include monitoring of the space environment on SZ-4, studies on its distribution, variation and effects on astronautical performance, as well as space environment forecasts for safe launching, normal operation and safe return of SZ-4. Current progress both in China and overseas is covered

  5. Study on Space Audit Assessment Criteria for Public Higher Education Institution in Malaysia: Space Capacity Assessment

    Wan Hamdan Wan Samsul Zamani

    2016-01-01

    Full Text Available The aim of this study is to measure the capacity rate of learning space based on the as-built drawing provided by the institutions or if the as-built drawing is missing, the researcher have to prepare measured drawing as per actual on site. The learning space Capacity Index is developed by analyzing the space design in as-built drawing or measured drawing and the list of learning spaces available at the institution. The Capacity Index is classified according to the level of Usable Floor Area (UFA and Occupancy Load (OL according to learning space design capacity. The classification of Capacity Index is demonstrated through linguistic value and the color-coded key. From the said index, the institution can easily identify whether the existing learning space is currently best used or vice versa and standard space planning compliance in Malaysia Public Higher Education Institutions. The data will assist the management to clarify whether to maximize the use of existing space or to request for new learning space.

  6. Behavioral and biological effects of autonomous versus scheduled mission management in simulated space-dwelling groups

    Roma, Peter G.; Hursh, Steven R.; Hienz, Robert D.; Emurian, Henry H.; Gasior, Eric D.; Brinson, Zabecca S.; Brady, Joseph V.

    2011-05-01

    Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3-4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.

  7. A summary of activities of the US/Soviet-Russian joint working group on space biology and medicine

    Doarn, Charles R.; Nicogossian, Arnauld E.; Grigoriev, Anatoly I.; Tverskaya, Galina; Orlov, Oleg I.; Ilyin, Eugene A.; Souza, Kenneth A.

    2010-10-01

    The very foundation of cooperation between the United States (US) and Russia (former Soviet Union) in space exploration is a direct result of the mutual desire for scientific understanding and the creation of a collaborative mechanism—the Joint Working Group (JWG) on Space Biology and Medicine. From the dawn of the space age, it has been the quest of humankind to understand its place in the universe. While nations can and do solve problems independently, it takes nations, working together, to accomplish great things. The formation of the JWG provided an opportunity for the opening of a series of productive relationships between the superpowers, the US and the Union of Soviet Socialist Republics (USSR); and served as a justification for continued relationship for medical assistance in spaceflight, and to showcase Earth benefits from space medicine research. This relationship has been played out on an international scale with the construction and operation of the International Space Station. The fundamental reason for this successful endeavor is a direct result of the spirit and perseverance of the men and women who have worked diligently side-by-side to promote science and move our understanding of space forward. This manuscript provides a historical perspective of the JWG; how it came about; its evolution; what it accomplished; and what impact it has had and continues to have in the 21st century with regard to human spaceflight and space life sciences research. It captures the spirit of this group, which has been in continuous existence for over 40 years, and provides a never before reported summary of its activities.

  8. [Application of network biology on study of traditional Chinese medicine].

    Tian, Sai-Sai; Yang, Jian; Zhao, Jing; Zhang, Wei-Dong

    2018-01-01

    With the completion of the human genome project, people have gradually recognized that the functions of the biological system are fulfilled through network-type interaction between genes, proteins and small molecules, while complex diseases are caused by the imbalance of biological processes due to a number of gene expression disorders. These have contributed to the rise of the concept of the "multi-target" drug discovery. Treatment and diagnosis of traditional Chinese medicine are based on holism and syndrome differentiation. At the molecular level, traditional Chinese medicine is characterized by multi-component and multi-target prescriptions, which is expected to provide a reference for the development of multi-target drugs. This paper reviews the application of network biology in traditional Chinese medicine in six aspects, in expectation to provide a reference to the modernized study of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  9. Comparative study of biological activity of glutathione, sodium ...

    Glutathione (GSH) and sodium tungstate (Na2WO4) are important pharmacological agents. They provide protection to cells against cytotoxic agents and thus reduce their cytotoxicity. It was of interest to study the biological activity of these two pharmacological active agents. Different strains of bacteria were used and the ...

  10. Synthesis, biological evaluation and molecular docking studies of ...

    Synthesis, biological evaluation and molecular docking studies of Mannich bases derived from 1, 3, 4-oxadiazole- 2-thiones as potential urease inhibitors. ... Mannich bases (5-17) were subjected to in silico screening as urease inhibitors, using crystal structure of urease (Protein Data Bank ID: 5FSE) as a model enzyme.

  11. Biological, Histological and Ultra-Structural Studies of Female Mullet ...

    Biological, Histological and Ultra-Structural Studies of Female Mullet, Mugil cephalus , Ovaries Collected from Different Habitats during Annual Reproductive Cycle. ... 35 and 52 cm, respectively; whereas, the total number of ripe ova in brackish water fish ranged from 0.57±0.14 to 3.81±0.59 x106 for the same length groups.

  12. Moessbauer spectroscopic studies of magnetically ordered biological materials

    Dickson, D.P.E.

    1987-01-01

    This paper discusses recent work showing the application of Moessbauer spectroscopy to the study of the properties of the magnetically ordered materials which occur in a variety of biological systems. These materials display a diversity of behaviour which provides good examples of the various possibilities which can arise with iron-containing particles of different compositions and sizes. (orig.)

  13. Epistemological Syncretism in a Biology Classroom: A Case Study

    Bennett, William D.; Park, Soonhye

    2011-01-01

    In teaching science, the beliefs of teachers may come into conflict and inhibit the implementation of reformed teaching practice. An experienced biology teacher, Mr. Hobbs, was found to have two different sets of epistemological beliefs while his classroom practice was predominantly teacher-centered. A case study was then performed in order to…

  14. Studies on bacterial flora and biological control agent of Cydia ...

    In the present study, in order to find a more effective and safe biological control agent against Cydia pomonella, we investigated the bacterial flora and tested them for insecticidal effects on this insect. According to morphological, physiological and biochemical tests, bacterial flora were identified as Proteus rettgeri (Cp1), ...

  15. Vitamin D biology and heart failure : Clinical and experimental studies

    Meems, Laura

    2015-01-01

    In the last decade, vitamin D biology has been studied more extensively than ever before.. The use of vitamin D supplements is common, and so is determination of plasma vitamin D status. Besides its role in bone homeostasis, vitamin D is thought to be an important player in the development and

  16. Researchers study decontamination of chemical, biological warfare agents

    Trulove, Susan

    2007-01-01

    The U.S. Army Research Office has awarded Virginia Tech a $680,000 grant over two years to build an instrument that can be used to study the chemistry of gases that will decompose both chemical and biological warfare agents on surfaces.

  17. Ground Robotic Hand Applications for the Space Program study (GRASP)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  18. Metabolism in time and space – exploring the frontier of developmental biology

    Krejčí, Alena; Tennessen, J. M.

    2017-01-01

    Roč. 144, č. 18 (2017), s. 3193-3198 ISSN 0950-1991 Institutional support: RVO:60077344 Keywords : metabolism * mitochondria * aerobic glycolysis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 5.843, year: 2016 http://dev.biologists.org/content/144/18/3193

  19. Biological effects of space flight on SP{sub 1} traits of fenugreek

    Rong, Xu; Jing, Yu; Jiang, Xu; Feng, Zhou; Jun, Chen [The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Beijing Union Medical College, Beijing (China); Yougang, Liu [Tianjin Univ. of Traditional Chinese Medicine, Tianjin (China); Suqin, Sun [Department of Chemistry, Tsinghua Univ., Beijing (China)

    2009-04-15

    Fenugreek (Trigonella Foenum-graecum L.) seeds introduced from United Arab Emirates (UAE) were carried to the space by the recoverable satellite 'Shi Jian 8'. After space loading, the seeds were planted to be observed and investigated compared to the control group. The results showed that the germination rate declined after space loading compared to the control group. SP{sub 1} plants grew inhibited first, and then vigorously later at the seedling stage. The branch number, pods and plant weight of SP{sub 1} plants' increased. More important, single pod was changed to dual pod. At the same time, the Fourier transform infrared spectroscopy (FT-IR) was used to analyze and appraise the fenugreek SP{sub 1} seeds. The results indicated that the major components and the structures remained intact, in another word, space mutation had no obvious effect on the quality of SP{sub 1} seeds. Based on the results, some variations mutated by space flight could appear at the present generation. These variations were important to gain high yield. (authors)

  20. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures

    Gentile, Francesco

    2016-01-12

    PEDOT:PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PEDOT:PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices.

  1. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures

    Gentile, Francesco; Ferrara, Lorenzo; Villani, Marco; Bettelli, Manuele; Iannotta, Salvatore; Zappettini, Andrea; Cesarelli, Mario; Di Fabrizio, Enzo M.; Coppedè , Nicola

    2016-01-01

    PEDOT:PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PEDOT:PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices.

  2. Analysis of space systems study for the space disposal of nuclear waste study report. Volume 2: Technical report

    1981-01-01

    Reasonable space systems concepts were systematically identified and defined and a total system was evaluated for the space disposal of nuclear wastes. Areas studied include space destinations, space transportation options, launch site options payload protection approaches, and payload rescue techniques. Systems level cost and performance trades defined four alternative space systems which deliver payloads to the selected 0.85 AU heliocentric orbit destination at least as economically as the reference system without requiring removal of the protective radiation shield container. No concepts significantly less costly than the reference concept were identified.

  3. A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

    Choi, Eun-Jung; Cho, Sungki; Lee, Deok-Jin; Kim, Siwoo; Jo, Jung Hyun

    2017-12-01

    The key risk analysis technologies for the re-entry of space objects into Earth’s atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on re- entry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d’Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth’s atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

  4. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  5. Study of the effects of radon in three biological systems

    Tavera, L.; Balcazar, M.; Lopez, A.; Brena, M.; Rosa, M.E. De la; Villalobos P, R.

    2002-01-01

    The radon and its decay products are responsible of the 3/4 parts of the exposure of the persons to the environmental radiation. The discovery at the end of XIX Century of the illnesses, mainly of cancer, which appeared in the presence of radon, lead to an accelerated growing of the radon studies: monitoring, dosimetry, effects on the persons, etc. Several epidemiological studies of radon in miners and population in general have been realized; advancing in the knowledge about the concentration-lung cancer risk relationship, but with discrepancies in the results depending on the concentration levels. Therefor, studies which consuming time, efforts and money go on doing. The research of the radon effects in biological systems different to human, allows to realize studies in less time, in controlled conditions and generally at lower cost, generating information about the alpha radiation effects in the cellular field. Therefor it was decided to study the response of three biological systems exposed to radon: an unicellular bacteria Escherichia Coli which was exposed directly to alpha particles from an electrodeposited source for determining the sensitivity limit of the chose technique. A plant, Tradescantia, for studying the cytogenetic effect of the system exposed to controlled concentrations of radon. An insect, Drosophila Melanogaster, for studying the genetic effects and the accumulated effects in several generations exposed to radon. In this work the experimental settlements are presented for the expositions of the systems and the biological results commenting the importance of these. (Author)

  6. Studies on digoxin derivatives in different biological media by radioimmunoassay

    Barmasch, Martha; Perez, L.N.; Altschuler, Noe.

    1978-05-01

    The fundamental aim of this study was to develop a methodology to be applied to pharmacological studies, directed to demonstrate the passage of digitalic compounds through the blood-brain barrier. This study was a comparative one between β methyl digoxin (βMD) and digitoxin (Dt). A methodology of radioimmunoassay was developed for different biological media: serum (S), plasma (P) and cerebro spinal fluid (CSF). In addition, the immunochemical behaviour (affinity, displacement, etc.) of βMD was studied when reacted with digoxin (D) and digoxin-antisera, supplied by the commercial kits utilized in these studies. (author) [es

  7. Quantum mechanical simulation methods for studying biological systems

    Bicout, D.; Field, M.

    1996-01-01

    Most known biological mechanisms can be explained using fundamental laws of physics and chemistry and a full understanding of biological processes requires a multidisciplinary approach in which all the tools of biology, chemistry and physics are employed. An area of research becoming increasingly important is the theoretical study of biological macromolecules where numerical experimentation plays a double role of establishing a link between theoretical models and predictions and allowing a quantitative comparison between experiments and models. This workshop brought researchers working on different aspects of the development and application of quantum mechanical simulation together, assessed the state-of-the-art in the field and highlighted directions for future research. Fourteen lectures (theoretical courses and specialized seminars) deal with following themes: 1) quantum mechanical calculations of large systems, 2) ab initio molecular dynamics where the calculation of the wavefunction and hence the energy and forces on the atoms for a system at a single nuclear configuration are combined with classical molecular dynamics algorithms in order to perform simulations which use a quantum mechanical potential energy surface, 3) quantum dynamical simulations, electron and proton transfer processes in proteins and in solutions and finally, 4) free seminars that helped to enlarge the scope of the workshop. (N.T.)

  8. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  9. Weaving Together Space Biology and the Human Research Program: Selecting Crops and Manipulating Plant Physiology to Produce High Quality Food for ISS Astronauts

    Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond

    2015-01-01

    Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.

  10. Use of animal models for space flight physiology studies, with special focus on the immune system

    Sonnenfeld, Gerald

    2005-01-01

    Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.

  11. Radiolabelled substrates for studying biological effects of trace contaminants

    1975-01-01

    A programme of coordinated isotopic tracer-aided investigations of the biological side-effects of foreign chemical residues in food and agriculture, initiated in 1973, was reviewed. The current status of representative investigations from the point of view of techniques and priorities was assessed. Such investigations involved radioactive substrates for studying DNA injury and its repair; 14 C-labelled acetylcholine as substrate for measuring enzyme inhibition due to the presence of, or exposure to, anticholinesteratic contaminants; radioactive substrates as indication of side-effects in non-target organisms and of their comparative susceptibilities; radioactive substrates as indicators of persistence or biodegradability of trace contaminants of soil or water; and labelled pools for studying the biological side-effects of trace contaminants. Priorities were identified

  12. Students' Experience of University Space: An Exploratory Study

    Cox, Andrew M.

    2011-01-01

    The last decade has seen a wave of new building across British universities, so that it would appear that despite the virtualization discourses around higher education, space still matters in learning. Yet studies of student experience of the physical space of the university are rather lacking. This paper explores the response of one group of…

  13. A Synthetic Biology Architecture to Detoxify and Enrich Mars Soil for Agriculture

    National Aeronautics and Space Administration — Although the theoretical case for space biological engineering is convincing, since recent studies on the use of biology in space showed substantial payload...

  14. Space station accommodations for lunar base elements: A study

    Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.

    1987-01-01

    The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.

  15. Reproduction in the space environment: Part I. Animal reproductive studies

    Santy, P. A.; Jennings, R. T.; Craigie, D.

    1990-01-01

    Mankind's exploration and colonization of the frontier of space will ultimately depend on men's and women's ability to live, work, and reproduce in the space environment. This paper reviews animal studies, from microorganisms to mammals, done in space or under space-simulated conditions, which identify some of the key areas which might interfere with human reproductive physiology and/or embryonic development. Those space environmental factors which impacted almost all species included: microgravity, artificial gravity, radiation, and closed life support systems. These factors may act independently and in combination to produce their effects. To date, there have been no studies which have looked at the entire process of reproduction in any animal species. This type of investigation will be critical in understanding and preventing the problems which will affect human reproduction. Part II will discuss these problems directly as they relate to human physiology.

  16. Space engineering modeling and optimization with case studies

    Pintér, János

    2016-01-01

    This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering< •Regression-Based Sensitivity Analysis and Robust Design ...

  17. Study of β-NMR for Liquid Biological Samples

    Beattie, Caitlin

    2017-01-01

    β-NMR is an exotic form of NMR spectroscopy that allows for the characterization of matter based on the anisotropic β-decay of radioactive probe nuclei. This has been shown to be an effective spectroscopic technique for many different compounds, but its use for liquid biological samples is relatively unexplored. The work at the VITO line of ISOLDE seeks to employ this technique to study such samples. Currently, preparations are being made for an experiment to characterize DNA G-quadruplexes and their interactions with stabilizing cations. More specifically, the work in which I engaged as a summer student focused on the experiment’s liquid handling system and the stability of the relevant biological samples under vacuum.

  18. Biological dosimetry of X-rays by micronuclei study

    Gomez, E.; Silva, A.; Navlet, J.

    1991-01-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in hematological, biochemical an cytogenetics data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable, in this case, the study of micronuclei in peripheral blood lymphocytes cytokinetic blocked can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using micronuclei assay for X-rays at 250 kVp, 43,79 rads/min and temperature 37 degree celsius has been produced. Experimental data is fitted to model Y=c+ α D+β D 2 where. Y is the number micronuclei per cell and D the dose. the curve is compared with those produced elsewhere

  19. Biological Dosimetry of X-rays by micronuclei study

    Gomez, E.; Silva, A.; Navlet, J.

    1991-01-01

    Biological dosimetry consists of estimating absorbed doses for people exposed to radiation by mean biological methods. Several indicators used are based in haematological, biochemical an cytogenetics data, although nowadays without doubt, the cytogenetic method is considered to be the most reliable, in this case, the study of micronuclei in peripheral blood lymphocytes citokinetics blocked can be related to absorbed dose through an experimental calibration curve. An experimental dose-response curve, using micronuclei assay for X-rays at 250 kVp, 43,79 rads/min and temperature 37 degree centigree has been produced. Experimental data is fitted to model Y=C+ αD+BD''2 where Y is the number of micronuclei per cell and D the dose. The curve is compared with those produced elsewhere. (Author) 24 refs

  20. Study of nanoscale structural biology using advanced particle beam microscopy

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  1. Dynamic cell culture system: a new cell cultivation instrument for biological experiments in space

    Gmunder, F. K.; Nordau, C. G.; Tschopp, A.; Huber, B.; Cogoli, A.

    1988-01-01

    The prototype of a miniaturized cell cultivation instrument for animal cell culture experiments aboard Spacelab is presented (Dynamic cell culture system: DCCS). The cell chamber is completely filled and has a working volume of 200 microliters. Medium exchange is achieved with a self-powered osmotic pump (flowrate 1 microliter h-1). The reservoir volume of culture medium is 230 microliters. The system is neither mechanically stirred nor equipped with sensors. Hamster kidney (Hak) cells growing on Cytodex 3 microcarriers were used to test the biological performance of the DCCS. Growth characteristics in the DCCS, as judged by maximal cell density, glucose consumption, lactic acid secretion and pH, were similar to those in cell culture tubes.

  2. An overview of surface radiance and biology studies in FIFE

    Blad, B. L.; Schimel, D. S.

    1992-01-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurements of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and photosynthetically active radiation relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  3. Biological effective dose studies in carcinoma of uterine cervix

    Yadav, Poonam; Ramasubramanian, V.

    2008-01-01

    Cancer of cervix is the second most common cancer worldwide among women. Several treatments related protocols of radiotherapy have been followed over few decades in its treatment for evaluating the response. These physical doses varying on the basics of fractionation size, dose rate and total dose needed to be indicated as biological effective dose (BED) to rationalize these treatments. The curative potential of radiation therapy in the management of carcinoma of the cervix is greatly enhanced by the use of intracavitary brachytherapy. Successful brachytherapy requires the high radiation dose to be delivered to the tumor where as minimum radiation dose reach to surrounding normal tissue. Present study is aimed to evaluate biologically effective dose in patients receiving high dose-rate brachytherapy plus external beam radiotherapy based on tumor cell proliferation values in cancer of the cervix patients. The study includes 30 patients' data as a retrospective analysis. In addition determine extent of a dose-response relationship existing between the biological effective dose at Point A and the bladder and rectum and the clinical outcomes

  4. An overview of surface radiance and biology studies in FIFE

    Blad, B. L.; Schimel, D. S.

    1992-11-01

    The use of satellite data to study and to understand energy and mass exchanges between the land surface and the atmosphere requires information about various biological processes and how various reflected or emitted spectral radiances are influenced by or manifested in these processes. To obtain such information, studies were conducted by the First ISLSCP Field Experiment (FIFE) surface radiances and biology (SRB) group using surface, near-surface, helicopter, and aircraft measurements. The two primary objectives of this group were to relate radiative fluxes to biophysical parameters and physiological processes and to assess how various management treatments affect important biological processes. This overview paper summarizes the results obtained by various SRB teams working in nine different areas: (1) measurement of bidirectional reflectance and estimation of hemispherical albedo; (2) evaluation of spatial and seasonal variability of spectral reflectance and vegetation indices; (3) determination of surface and radiational factors and their effects on vegetation indices and PAR relationships; (4) use of surface temperatures to estimate sensible heat flux; (5) controls over photosynthesis and respiration at small scales; (6) soil surface CO2 fluxes and grassland carbon budget; (7) landscape variations in controls over gas exchange and energy partitioning; (8) radiometric response of prairie to management and topography; and (9) determination of nitrogen gas exchanges in a tallgrass prairie.

  5. Space charge studies in the PS

    Asvesta, F; Damerau, H; Huschauer, A; Papaphilippou, Y; Serluca, M; Sterbini, G; Zisopoulos, P

    2017-01-01

    In this paper the results of Machine Development (MD)studies conducted at the CERN Proton Sychrotron (PS) arepresented. The main focus was the investigation of newworking points in an effort to characterize and potentiallyimprove the brightness for LHC-type beams in view of theLHC Injectors Upgrade (LIU). Various working points werecompared in terms of losses and emittance evolution. Sincespace charge and the resonances it excites are the main causefor emittance blow-up and losses, tunes close to excitedresonances were carefully studied. Mitigation techniques,such as bunch flattening using a double harmonic RF system,were also tested.

  6. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space

    Kan Li

    2018-04-01

    Full Text Available This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM speech processing as well as neuromorphic implementations based on spiking neural network (SNN, yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR regime.

  7. Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space.

    Li, Kan; Príncipe, José C

    2018-01-01

    This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.

  8. Biological studies of the U.S. subseabed disposal program

    Gomez, L.S.; Marietta, M.G.; Hessler, R.R.; Smith, K.L. Jr.; Talbert, D.M.; Yayanos, A.A.; Jackson, D.W.

    1980-01-01

    The Subseabed Disposal Program (SDP) of the U.S. is assessing the feasibility of emplacing high level radioactive wastes (HLW) within deep-sea sediments and is developing the means for assessing the feasibility of the disposal practices of other nations. This paper discusses the role and status of biological research in the SDP. Studies of the disposal methods and of the conceived barriers (canister, waste form and sediment) suggest that biological knowledge will be principally needed to address the impact of accidental releases of radionuclides. Current experimental work is focusing on the deep-sea ecosystem to determine: (1) the structure of benthic communities, including their microbial component; (2) the faunal composition of deep midwater nekton; (3) the biology of deep-sea amphipods; (4) benthic community metabolism; (5) the rates of bacterial processes; (6) the metabolism of deep-sea animals, and (7) the radiation sensitivity of deep-sea organisms. A multi-compartment model is being developed to assess quantitatively, the impact (on the environment and on man) of releases of radionuclides into the sea

  9. Study of urban space / urban life in the suburb

    Melgaard, Bente

    This abstract outlines a section of the methods, which I use in my PhD study, to investigate urban space and urban life in suburban areas in Denmark. I will touch upon the overall methodological considerations in the project, and then go deeper into a specific section: the architectural analysis...... of a public suburban space. I use anthropological fieldwork to explore the space and place of everyday suburban life in a Danish suburb. I combine two disciplines – architecture and anthropology, to find layers that have commonality, and in this abstract, I focus on the projects architectural analysis......, in form of a pilot case study. The pilot case study involves to elements, an architectural analysis and an urban life registration of a suburban urban space in ‘Søndermarken’ in Vejle. The object is to study the physical frames and look at how these frames shape the use and patterns of movement...

  10. Study on a phase space representation of quantum theory

    Ranaivoson, R.T.R; Raoelina Andriambololona; Hanitriarivo, R.; Raboanary, R.

    2013-01-01

    A study on a method for the establishment of a phase space representation of quantum theory is presented. The approach utilizes the properties of Gaussian distribution, the properties of Hermite polynomials, Fourier analysis and the current formulation of quantum mechanics which is based on the use of Hilbert space and linear operators theory. Phase space representation of quantum states and wave functions in phase space are introduced using properties of a set of functions called harmonic Gaussian functions. Then, new operators called dispersion operators are defined and identified as the operators which admit as eigenstates the basis states of the phase space representation. Generalization of the approach for multidimensional cases is shown. Examples of applications are given.

  11. Spaces for Citizen Involvement in Healthcare: An Ethnographic Study.

    Renedo, Alicia; Marston, Cicely

    2015-06-01

    This ethnographic study examines how participatory spaces and citizenship are co-constituted in participatory healthcare improvement efforts. We propose a theoretical framework for participatory citizenship in which acts of citizenship in healthcare are understood in terms of the spaces they are in. Participatory spaces consist of material, temporal and social dimensions that constrain citizens' actions. Participants draw on external resources to try to make participatory spaces more productive and collaborative, to connect and expand them. We identify three classes of tactics they use to do this: 'plotting', 'transient combination' and 'interconnecting'. All tactics help participants assemble to a greater or lesser extent a less fragmented participatory landscape with more potential for positive impact on healthcare. Participants' acts of citizenship both shape and are shaped by participatory spaces. To understand participatory citizenship, we should take spatiality into account, and track the ongoing spatial negotiations and productions through which people can improve healthcare.

  12. Spaces for Citizen Involvement in Healthcare: An Ethnographic Study

    Marston, Cicely

    2015-01-01

    This ethnographic study examines how participatory spaces and citizenship are co-constituted in participatory healthcare improvement efforts. We propose a theoretical framework for participatory citizenship in which acts of citizenship in healthcare are understood in terms of the spaces they are in. Participatory spaces consist of material, temporal and social dimensions that constrain citizens’ actions. Participants draw on external resources to try to make participatory spaces more productive and collaborative, to connect and expand them. We identify three classes of tactics they use to do this: ‘plotting’, ‘transient combination’ and ‘interconnecting’. All tactics help participants assemble to a greater or lesser extent a less fragmented participatory landscape with more potential for positive impact on healthcare. Participants’ acts of citizenship both shape and are shaped by participatory spaces. To understand participatory citizenship, we should take spatiality into account, and track the ongoing spatial negotiations and productions through which people can improve healthcare. PMID:26038612

  13. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently

    Currin, Andrew; Swainston, Neil; Day, Philip J.

    2015-01-01

    The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the ‘search space’ of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (K d) and catalytic (k cat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving k cat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the ‘best’ amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole

  14. Novel nuclear magnetic resonance techniques for studying biological molecules

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  15. A Study about Youth and Uses of Public Spaces

    Fardin Alikhah

    2016-04-01

    Full Text Available There has been a huge concern about the manner of confrontations of different social groups with urban public spaces within urban scholars. Among these social groups, young people have been particularly important. Because they have a tangible presence in the city's public spaces and social life of the city are affected by their presence. This paper examines the uses of public spaces by young people and will pay special attention to the role of social control on use of public spaces. Paper focuses on the study of young people who attend in public places with their friends from opposite sex. We have inspired by theories of urban public spaces such as Oldenburg's third place as well as comprehensive research of Rob White on crime, policing and urban public spaces in Australia in this paper. The main question of the paper is that this particular group of young people choose which public spaces and why? In a qualitative approach, two techniques of observation and in - depth interviews have been chosen for collecting data. Original data collected in interviews with 20 girls and boys who attend in public places with their friends from opposite sex. Results show that parks and coffee shops are preferred urban public places of youth. Formal control would push these youth to out of the way and cozy public spaces.

  16. Research study on antiskid braking systems for the space shuttle

    Auselmi, J. A.; Weinberg, L. W.; Yurczyk, R. F.; Nelson, W. G.

    1973-01-01

    A research project to investigate antiskid braking systems for the space shuttle vehicle was conducted. System from the Concorde, Boeing 747, Boeing 737, and Lockheed L-1011 were investigated. The characteristics of the Boeing 737 system which caused it to be selected are described. Other subjects which were investigated are: (1) trade studies of brake control concepts, (2) redundancy requirements trade study, (3) laboratory evaluation of antiskid systems, and (4) space shuttle hardware criteria.

  17. OUTDOOR SPACE QUALITY: CASE STUDY OF A UNIVERSITY CAMPUS PLAZA

    Dicle Aydin

    2008-11-01

    Full Text Available This article studied the concept of campus plaza, i.e. the outdoor space of the Selcuk University located in Konya, Turkey. The objective of the study in which the survey, observation and photographic methods were used, was to examine the plaza as an outdoor space providing individual and social benefits to campus people and to determine the principles regarding the establishment of this space. Two hundred forty-three students participating in the survey were asked about the outdoor spaces they use in the campus area, the qualities of the plaza, their purposes and the frequency of plaza use, and a descriptive analysis was performed to determine the plaza’s quality. Additionally, a correlation analysis was carried out to evaluate the relationship between the landscape accessory and the manner in which the users’ senses were affected by the experienced space (profiles of the space. At the end of this study, two main components determining the campus plaza’s quality were found: (i qualities of the physical environment (climatic features, location of plaza, its relation with the surrounding structuring, pedestrian / vehicle relation in terms of accessibility, fixed elements / equipment in the area, quality of open space area, quality of landscape accessory and area’s being in good repair (ii user characteristics. User characteristics also comprised two quality criteria: (i the behavioural and functional quality, (ii the visual quality.

  18. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces.

    Xia, Zheng; Wu, Ling-Yun; Zhou, Xiaobo; Wong, Stephen T C

    2010-09-13

    Predicting drug-protein interactions from heterogeneous biological data sources is a key step for in silico drug discovery. The difficulty of this prediction task lies in the rarity of known drug-protein interactions and myriad unknown interactions to be predicted. To meet this challenge, a manifold regularization semi-supervised learning method is presented to tackle this issue by using labeled and unlabeled information which often generates better results than using the labeled data alone. Furthermore, our semi-supervised learning method integrates known drug-protein interaction network information as well as chemical structure and genomic sequence data. Using the proposed method, we predicted certain drug-protein interactions on the enzyme, ion channel, GPCRs, and nuclear receptor data sets. Some of them are confirmed by the latest publicly available drug targets databases such as KEGG. We report encouraging results of using our method for drug-protein interaction network reconstruction which may shed light on the molecular interaction inference and new uses of marketed drugs.

  19. Space shuttle aps propellant thermal conditioner study

    Fulton, D. L.

    1973-01-01

    An analytical and experimental effort was completed to evaluate a baffle type thermal conditioner for superheating O2 and H2 at supercritical pressures. The thermal conditioner consisted of a heat exchanger and an integral reactor (gas generator) operating on O2/H2 propellants. Primary emphasis was placed on the hydrogen conditioner with some effort on the oxygen conditioner and a study completed of alternate concepts for use in conditioning oxygen. A hydrogen conditioner was hot fire tested under a range of conditions to establish ignition, heat exchange and response parameters. A parallel technology task was completed to further evaluate the integral reactor and heat exchanger with the side mounted electrical spark igniter.

  20. ET versus Alien : Popular Attitudes to bringing back Biological Material from Space

    Evans, D.

    The general public tend to react to radical scientific innovation in extreme ways, seeing them alternatively as a passport to utopia or a ticket to hell. The possible discovery of alien life forms has generated both types of reaction, as a brief survey of Hollywood movies shows. In this fanciful world, alens are either the friendly beings of ET and Close Encounters, who show us a way to improve ourselves, or the frightening monsters of Alien and Independence Day, who are bent on our destruction. Yet most astrobiologists would agree that both types of scenario are extremely unlikely. If we do encounter other life forms, the scientific consensus is that such life is vastly more likely to be microbial than to be an advanced, intelligent multicellular species. The public focus on the improbable stories of Hollywood means that they are little prepared to engage in sensible dialogue about plans for sample return missions from Mars and other planets. Unless scientific organisations take steps to encourage a more realistic understanding of the kinds of life we are most likely to encounter in space, we risk seeing public debate on these matters degenerate into the same hysteria and idiocy as that which has surrounded the use of GM foods and stem cell research.

  1. Publicly Available Geosynchronous (GEO) Space Object Catalog for Future Space Situational Awareness (SSA) Studies

    Koblick, D. C.; Shankar, P.; Xu, S.

    Previously, there have been many commercial proposals and extensive academic studies regarding ground and space based sensors to assist a space surveillance network in obtaining metric observations of satellites and debris near Geosynchronous Earth Orbit (GEO). Most use physics based models for geometric constraints, lighting, and tasker/scheduler operations of sensor architectures. Under similar physics modeling assumptions, the space object catalog is often different due to proprietary standards and datasets. Lack of catalog commonality between studies creates barriers and difficulty comparing performance benefits of sensor trades. To solve this problem, we have constructed a future GEO space catalog from publicly available datasets and literature. The annual number of new payloads and rocket bodies is drawn from a Poisson distribution while the growth of the current GEO catalog is bootstrapped from the historical payload, upper stage, and debris data. We adopt a spherically symmetric explosion model and couple it with the NASA standard breakup model to simulate explosions of payloads and rocket bodies as they are the primary drivers of the debris population growth. The cumulative number of fragments follow a power-law distribution. Result from 1,000 random catalog growth simulations indicates that the GEO space object population in the year 2050 will include over 3,600 objects, nearly half of which are debris greater than 10 cm spherical diameter. The number of rocket bodies and dead payloads is projected to nearly double over the next 33 years. For comparison, the current Air Force Space Command catalog snapshot contains fewer than 50 pieces of debris and coarse Radar Cross Section (RCS) estimates which include: small, medium, and large. The current catalog may be sufficient for conjunction studies, but not for analyzing future sensor system performance. The 2050 GEO projected catalog will be available online for commercial/academic research and development.

  2. Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.

    Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir

    2016-01-01

    A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Studies of the reproductive biology of deep-sea megabenthos

    Tyler, P.A.

    1987-07-01

    The final report describes the general biology and ecology of the 15 holothurians, 3 asteroids, 2 zoanthids and 1 crustacea species studied in Reports I-XIII, the sampling methods used and the station data. A summary of the histological, histochemical and biochemical results for the species examined is given. The data suggest that the reproductive processes in the deep-sea species examined are highly unlikely to be part of a pathway for the transfer of radionuclides from the deep-sea back to man. (author)

  4. Study of space--charge effect by computer

    Sasaki, T.

    1982-01-01

    The space--charge effect in high density electron beams (beam current approx.2 μA) focused by a uniform magnetic field is studied computationally. On an approximation of averaged space-- charge force, a theory of trajectory displacements of beam electrons is developed. The theory shows that the effect of the averaged space--charge force appears as a focal length stretch. The theory is confirmed not only qualitatively but also quantitatively by simulations. Empirical formulas for the trajectory displacement and the energy spread are presented. A comparison between the empirical formulas and some theoretical formulas is made, leading to a severe criticism on the theories of energy spreads

  5. Biological Detection System Technologies Technology and Industrial Base Study. A Primer on Biological Detection Technologies

    2001-01-01

    .... and Canadian military personnel. In light of these concerns both defense departments have increased efforts to develop and field biological agent detection systems to help protect their military forces and fixed assets...

  6. Study of static properties of magnetron-type space charges

    Delcroix, Jean-Loup

    1953-01-01

    This research thesis reports an in-depth analysis of physical properties of static regimes to address the issue of space charges. This theoretical study of the Hull magnetron is followed by the description of experiments on the Hull magnetron which highlight transitions between the different regimes. Then, another theoretical approach aims at generalising the magnetron theory, based on other types of magnetron theory (general equations of magnetron-type space charges, inverted Hull magnetron theory, circular field magnetron theory)

  7. Trajectory data analyses for pedestrian space-time activity study.

    Qi, Feng; Du, Fei

    2013-02-25

    It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an

  8. Molecular biology in studies of oceanic primary production

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  9. Metabolism of labeled parathyroid hormone. V. Collected biological studies

    Neuman, W F; Neuman, M W; Lane, K; Miller, L; Sammon, P J

    1975-01-01

    Biologically active /sup 125/I-labeled parathyroid hormone (/sup 125/I-PTH) was used in a series of studies in dogs and chickens designed to confirm and augment earlier studies in rats. As in rats, a three exponential equation was required to describe disappearance of /sup 125/I-PTH from the blood in the dog. The first two ''half-lives'' (1.8 and 7 min) accounted for the bulk of the dose. Also as in rats, deposition of apparently intact hormone took place rapidly in kidney, liver and bone in both the dog and the chicken. Degradation occurred very rapidly in all three target organs. Three labeled hormones of different biological activities were compared in the rat. Inactive, oxidized hormone was rejected by the liver but showed markedly increased deposition in kidney and the higher the purity of the hormone the higher was its uptake by liver. Exploration of a wide range of dosages revealed few effects on distribution (smaller depositon in liver and kidney at highest dosages, 65 ..mu..g/rat). Fresh sera did not degrade hormone rapidly or extensively. There was no deposition of hormone in intestinal mucosa, marrow, and red cells. Nephrectomy increased deposition in liver and bone. Finally, the perfused liver was capable of extensive degradation of the hormone.

  10. Space station automation and robotics study. Operator-systems interface

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  11. Novel nuclear magnetic resonance techniques for studying biological molecules

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  12. The emerging molecular biology toolbox for the study of long noncoding RNA biology.

    Fok, Ezio T; Scholefield, Janine; Fanucchi, Stephanie; Mhlanga, Musa M

    2017-10-01

    Long noncoding RNAs (lncRNAs) have been implicated in many biological processes. However, due to the unique nature of lncRNAs and the consequential difficulties associated with their characterization, there is a growing disparity between the rate at which lncRNAs are being discovered and the assignment of biological function to these transcripts. Here we present a molecular biology toolbox equipped to help dissect aspects of lncRNA biology and reveal functionality. We outline an approach that begins with a broad survey of genome-wide, high-throughput datasets to identify potential lncRNA candidates and then narrow the focus on specific methods that are well suited to interrogate the transcripts of interest more closely. This involves the use of imaging-based strategies to validate these candidates and observe the behaviors of these transcripts at single molecule resolution in individual cells. We also describe the use of gene editing tools and interactome capture techniques to interrogate functionality and infer mechanism, respectively. With the emergence of lncRNAs as important molecules in healthy and diseased cellular function, it remains crucial to deepen our understanding of their biology.

  13. Behavior and reproduction of invertebrate animals during and after a long-term microgravity: space experiments using an Autonomous Biological System (ABS).

    Ijiri, K; Mizuno, R; Narita, T; Ohmura, T; Ishikawa, Y; Yamashita, M; Anderson, G; Poynter, J; MacCallum, T

    1998-12-01

    Aquatic invertebrate animals such as Amphipods, Gastropods (pond snails), Ostracods and Daphnia (water flea) were placed in water-filled cylindrical vessels together with water plant (hornwort). The vessels were sealed completely and illuminated with a fluorescent lamp to activate the photosynthesis of the plant for providing oxygen within the vessels. Such ecosystem vessels, specially termed as Autonomous Biological System or ABS units, were exposed to microgravity conditions, and the behavior of the animals and their reproduction capacity were studied. Three space experiments were carried out. The first experiment used a Space shuttle only and it was a 10-day flight. The other two space experiments were carried out in the Space station Mir (Shuttle/Mir mission), and the flight units had been kept in microgravity for 4 months. Daphnia produced their offspring during a 10-day Shuttle flight. In the first Mir experiment, no Daphnia were detected when recovered to the ground. However, they were alive in the second Mir experiment. Daphnia were the most fragile species among the invertebrate animals employed in the present experiments. All the animals, i.e., Amphipods, pond snails, Ostracods and Daphnia had survived for 4 months in space, i.e., they had produced their offspring or repeated their life-cycles under microgravity. For the two Mir experiments, in both the flight and ground control ecosystem units, an inverse relationship was noted between the number of Amphipods and pond snails in each unit. Amphipods at 10 hours after the recovery to the ground frequently exhibited a movement of dropping straight-downward to the bottom of the units. Several Amphipods had their legs bent abnormally, which probably resulted from some physiological alterations during their embryonic development under microgravity. From the analysis of the video tape recorded in space, for Ostracods and Daphnia, a half of their population were looping under microgravity. Such looping animals

  14. Phytochemicals and biological studies of plants from the genus Balanophora

    Wang Xiaohong

    2012-08-01

    Full Text Available Abstract This review focus on the phytochemical progress and biological studies of plants from the genus Balanophora (Balanophoraceae over the past few decades, in which most plants growth in tropical and subtropical regions of Asia and Oceania, and nearly 20 species ranged in southwest China. These dioeciously parasitic plants are normally growing on the roots of the evergreen broadleaf trees, especially in the family of Leguminosae, Ericaceae, Urticaceae, and Fagaceae. The plants are mainly used for clearing away heat and toxic, neutralizing the effect of alcoholic drinks, and as a tonic for the treatment of hemorrhoids, stomachache and hemoptysis. And it has been used widely throughtout local area by Chinese people. Cinnamic acid derivative tannins, possessing a phenylacrylic acid derivative (e. g. caffeoyl, coumaroyl, feruloyl or cinnamoyl, which connected to the C(1 position of a glucosyl unit by O-glycosidic bond, are the characteristic components in genus Balanophora. In addition, several galloyl, caffeoyl and hexahydroxydiphenoyl esters of dihydrochalcone glucosides are found in B. tobiracola, B. harlandii, and B. papuana. Other compounds like phenylpropanoids, flavonoids, terpenoids and sterols are also existed. And their biological activities, such as radical scavenging activities, HIV inhibiting effects, and hypoglycemic effects are highlighted in the review.

  15. In vitro and in vivo approaches to study osteocyte biology.

    Kalajzic, Ivo; Matthews, Brya G; Torreggiani, Elena; Harris, Marie A; Divieti Pajevic, Paola; Harris, Stephen E

    2013-06-01

    Osteocytes, the most abundant cell population of the bone lineage, have been a major focus in the bone research field in recent years. This population of cells that resides within mineralized matrix is now thought to be the mechanosensory cell in bone and plays major roles in the regulation of bone formation and resorption. Studies of osteocytes had been impaired by their location, resulting in numerous attempts to isolate primary osteocytes and to generate cell lines representative of the osteocytic phenotype. Progress has been achieved in recent years by utilizing in vivo genetic technology and generation of osteocyte directed transgenic and gene deficiency mouse models. We will provide an overview of the current in vitro and in vivo models utilized to study osteocyte biology. We discuss generation of osteocyte-like cell lines and isolation of primary osteocytes and summarize studies that have utilized these cellular models to understand the functional role of osteocytes. Approaches that attempt to selectively identify and isolate osteocytes using fluorescent protein reporters driven by regulatory elements of genes that are highly expressed in osteocytes will be discussed. In addition, recent in vivo studies utilizing overexpression or conditional deletion of various genes using dentin matrix protein (Dmp1) directed Cre recombinase are outlined. In conclusion, evaluation of the benefits and deficiencies of currently used cell lines/genetic models in understanding osteocyte biology underlines the current progress in this field. The future efforts will be directed towards developing novel in vitro and in vivo models that would additionally facilitate in understanding the multiple roles of osteocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Space headache on Earth: head-down-tilted bed rest studies simulating outer-space microgravity.

    van Oosterhout, W P J; Terwindt, G M; Vein, A A; Ferrari, M D

    2015-04-01

    Headache is a common symptom during space travel, both isolated and as part of space motion syndrome. Head-down-tilted bed rest (HDTBR) studies are used to simulate outer space microgravity on Earth, and allow countermeasure interventions such as artificial gravity and training protocols, aimed at restoring microgravity-induced physiological changes. The objectives of this article are to assess headache incidence and characteristics during HDTBR, and to evaluate the effects of countermeasures. In a randomized cross-over design by the European Space Agency (ESA), 22 healthy male subjects, without primary headache history, underwent three periods of -6-degree HDTBR. In two of these episodes countermeasure protocols were added, with either centrifugation or aerobic exercise training protocols. Headache occurrence and characteristics were daily assessed using a specially designed questionnaire. In total 14/22 (63.6%) subjects reported a headache during ≥1 of the three HDTBR periods, in 12/14 (85.7%) non-specific, and two of 14 (14.4%) migraine. The occurrence of headache did not differ between HDTBR with and without countermeasures: 12/22 (54.5%) subjects vs. eight of 22 (36.4%) subjects; p = 0.20; 13/109 (11.9%) headache days vs. 36/213 (16.9%) headache days; p = 0.24). During countermeasures headaches were, however, more often mild (p = 0.03) and had fewer associated symptoms (p = 0.008). Simulated microgravity during HDTBR induces headache episodes, mostly on the first day. Countermeasures are useful in reducing headache severity and associated symptoms. Reversible, microgravity-induced cephalic fluid shift may cause headache, also on Earth. HDTBR can be used to study space headache on Earth. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. An observational study of defensible space in the neighbourhood park

    Marzukhi, M. A.; Afiq, M. A.; Zaki, S. Ahmad; Ling, O. H. L.

    2018-02-01

    The planning of neighborhood park is important to provide space for interaction, leisure, and recreation among residents in any neighbourhood area. However, on an almost daily basis, newspapers report inappropriate incidents such as snatch theft, robbery and street attack that occurred in the neighborhood park. These cases reflect the significance of physical planning and design of neighborhood park that directly affect the safety and comfort of the users. Thus, this study attempts to engage with the defensible space concept in ensuring the security elements be applied in the planning of the recreational area. This study adopts a qualitative method form of research that is retrofitted to an observational study. The observational study is significant for revealing the condition of a neighbourhood park in the ‘real-world,’ in which direct observation is conducted on Taman Tasik Puchong Perdana. The observer focused on four elements or variables of defensible space concept including the provision of facilities in the neighborhood park, territoriality, surveillance, image and milieu. The findings revealed that the planning of Taman Tasik Puchong Perdana does not deliberate the defensible space elements, which may contribute to the crime activities in the park. In these circumstances, the planning of neighbourhood park needs to include proposals for the implementation of defensible space in response to the challenges underpinned by crime problems. Besides, the awareness among the residents needs to be emphasized with the support from local authorities and other organizations to manage and sustain the safety environment in the neighborhood park.

  18. Recent Pharmacology Studies on the International Space Station

    Wotring, Virginia

    2014-01-01

    The environment on the International Space Station (ISS) includes a variety of potential stressors including the absence of Earth's gravity, elevated exposure to radiation, confined living and working quarters, a heavy workload, and high public visibility. The effects of this extreme environment on pharmacokinetics, pharmacodynamics, and even on stored medication doses, are not yet understood. Dr. Wotring will discuss recent analyses of medication doses that experienced long duration storage on the ISS and a recent retrospective examination of medication use during long-duration spaceflights. She will also describe new pharmacology experiments that are scheduled for upcoming ISS missions. Dr. Virginia E. Wotring is a Senior Scientist in the Division of Space Life Sciences in the Universities Space Research Association, and Pharmacology Discipline Lead at NASA's Johnson Space Center, Human Heath and Countermeasures Division. She received her doctorate in Pharmacological and Physiological Science from Saint Louis University after earning a B.S. in Chemistry at Florida State University. She has published multiple studies on ligand gated ion channels in the brain and spinal cord. Her research experience includes drug mechanisms of action, drug receptor structure/function relationships and gene & protein expression. She joined USRA (and spaceflight research) in 2009. In 2012, her book reviewing pharmacology in spaceflight was published by Springer: Space Pharmacology, Space Development Series.

  19. USSR Report, Space Biology and Aerospace Medicine, Vol. 18, No. 3, May-June 1984

    1984-07-03

    pressor effect in 72% after stimulation of mechanoreceptors and chemoreceptors of internal organs, skin and muscles. There is distinct demonstration...0.2 m£; I 10 ug/£; F 0.8 mg/Jl; Na+ 10 mg/jl; K+ 4 mg/£; transparency 30 cm; taste 0-1 score, odor 0 score. The final stage of our study was a test...glacier melt. The treated water had no extraneous odor or aftertaste. The mountain climbers recommended broader use of salt tablets to improve the taste

  20. Studies on biological macromolecules by neutron inelastic scattering

    Fujiwara, Satoru; Nakagawa, Hiroshi

    2013-01-01

    Neutron inelastic scattering techniques, including quasielastic and elastic incoherent neutron scattering, provide unique tools to directly measure the protein dynamics at a picosecond time scale. Since the protein dynamics at this time scale is indispensable to the protein functions, elucidation of the protein dynamics is indispensable for ultimate understanding of the protein functions. There are two complementary directions of the protein dynamics studies: one is to explore the physical basis of the protein dynamics using 'model' proteins, and the other is more biology-oriented. Examples of the studies on the protein dynamics with neutron inelastic scattering are described. The examples of the studies in the former direction include the studies on the dynamical transitions of the proteins, the relationship between the protein dynamics and the hydration water dynamics, and combined analysis of the protein dynamics with molecular dynamics simulation. The examples of the studies in the latter direction include the elastic incoherent and quasielastic neutrons scattering studies of actin. Future prospects of the studies on the protein dynamics with neutron scattering are briefly described. (author)

  1. Foresight Model of Turkey's Defense Industries' Space Studies until 2040

    Yuksel, Nurdan; Cifci, Hasan; Cakir, Serhat

    2016-07-01

    Being advanced in science and technology is inevitable reality in order to be able to have a voice in the globalized world. Therefore, for the countries, making policies in consistent with their societies' intellectual, economic and political infrastructure and attributing them to the vision having been embraced by all parties of the society is quite crucial for the success. The generated policies are supposed to ensure the usage of countries' resources in the most effective and fastest way, determine the priorities and needs of society and set their goals and related roadmaps. In this sense, technology foresight studies based on justified forecasting in science and technology have critical roles in the process of developing policies. In this article, Foresight Model of Turkey's Defense Industries' Space Studies, which is turned out to be the important part of community life and fundamental background of most technologies, up to 2040 is presented. Turkey got late in space technology studies. Hence, for being fast and efficient to use its national resources in a cost effective way and within national and international collaboration, it should be directed to its pre-set goals. By taking all these factors into consideration, the technology foresight model of Turkey's Defense Industry's Space Studies was presented in the study. In the model, the present condition of space studies in the World and Turkey was analyzed; literature survey and PEST analysis were made. PEST analysis will be the inputs of SWOT analysis and Delphi questionnaire will be used in the study. A two-round Delphi survey will be applied to the participants from universities, public and private organizations operating in space studies at Defense Industry. Critical space technologies will be distinguished according to critical technology measures determined by expert survey; space technology fields and goals will be established according to their importance and feasibility indexes. Finally, for the

  2. Study Finds Association between Biological Marker and Susceptibility to the Common Cold

    ... W X Y Z Study Finds Association Between Biological Marker and Susceptibility to the Common Cold Share: © ... a cold caused by a particular rhinovirus. The biological marker identified in the study was the length ...

  3. Systems biology studies of Aspergilli - from sequence to science

    Andersen, Mikael Rørdam

    2008-01-01

    sequenced Aspergilli are a known human pathogen (Aspergillus fumigatus), a model organism for cellular mechanisms (Aspergillus nidulans) and two industrial workhorses (Aspergillus niger and Aspergillus oryzae). In the presented work, new analytical and computational tools have been designed and a systems......-evolved and not as a haphazardly compiled list of parts. This has been made possible by the socalled genomic revolution — the sequencing of the genomic DNA of a rapidly increasing number of organisms — and the “omic” tecniques following in the wake of the genome projects: metabolomic, proteomic, and transcriptomic to mention...... a few. The recent publication of the genome sequences of several filamentous fungi of the Aspergillus species (Aspergilli), has, along with the accumulation of years of reductionist studies, been a catalyst for the application of systems biology to this interesting group of fungi. Among the genome...

  4. Visual Literacy in Preservice Teachers: a Case Study in Biology

    Ruiz-Gallardo, José Reyes; García Fernández, Beatriz; Mateos Jiménez, Antonio

    2017-07-01

    In this study, we explore the competence of preservice teachers (n = 161) in labelling and creating new cross-sectional human diagrams, based on anatomy knowledge depicted in longitudinal sections. Using educational standards to assess visual literacy and ad hoc open questions, results indicate limited skills for both tasks. However, their competence is particularly poor creating diagrams, where shortcomings were observed not only in visual literacy but in content knowledge. We discuss the misconceptions detected during these assessments. Visual literacy training should be strengthened for these students, as it is a skill that is especially important for future teachers to use in learning, assessing, and reflecting on content in science education. This is particularly important in preservice teachers since they should be fluent in the use of visual teaching tools in teaching anatomy and other content in the biology curriculum.

  5. Biochemical studies on certain biologically active nitrogenous compounds

    Abdel kader, S.M.; El Sayed, M.M.; El Malt, E.A.; Shaker, E.S.; Abdel Aziz, H.G.

    2010-01-01

    Certain biologically active nitrogenous compounds such as alkaloids are widely distributed in many wild and medicinal plants such as peganum harmala L. (Phycophyllaceae). However, less literature cited on the natural compounds was extracted from the aerial parts of this plant; therefore this study was conducted on harmal leaves using several solvents. Data indicated that methanol extract was the inhibitoriest effect against some pathogenic bacteria, particularly Streptococcus pyogenus. Chromatographic separation illustrated that presence of four compounds; the most active one was the third compound (3). Elementary analysis (C, H, N) revealed that the primary chemical structure of the active antibacterial compound (C3) was: C17 H21 N3 O7 S with molecular weight 411. Spectroscopic analysis proved that coninical structure was = 1- thioformyl, 8?- D glucoperanoside- Bis- 2, 3 dihydroisopyridino pyrrol. This new compound is represented as a noval ?- carboline alkaloid compound

  6. Study of biological fluids by nuclear magnetic resonance spectroscopy

    Kriat, M.; Vion-Dury, J.; Confort-Gouny, S.; Sciaky, M.; Cozzone, P.J.

    1991-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy in the study of biofluids is rapidly developing and might soon constitute a new major medical application of this technique which benefits from technological and methodological progress such as higher magnetic fields, new probe design, solvent suppression sequences and advanced data processing routines. In this overview, the clinical and pharmacological impact of this new approach is examined, with emphasis on the NMR spectroscopy of plasma, cerebrospinal fluid and urine. Applications to pharmacokinetics and toxicology are illustrated. Interestingly, a number of biochemical components of fluids which are not usually assayed by conventional biochemical methods are readily detected by NMR spectroscopy which is clearly a new competitive entrant among the techniques used in clinical biology. Its ease-of-use, cost effectiveness and high informational content might turn it into a major diagnostic tool in the years to come [fr

  7. Studies on influence of biological factors on concentration of radionuclides

    Anon.

    1974-01-01

    Biological factors influencing the concentration of radionuclides were studied from the points of uptake through digestive tract, food as pathways, and metabolic activities. The uptake of radionuclides by marine fishes through digestive tract was determined by whole body counter. 137 Cs, 65 Zn, 131 I, 54 Mn, 60 Co, 85 Sr, and 144 Ce were used as tracers and was given with solid feed. The feed given was excreated 24 to 48 hours later in small of middle sized fishes, and 20 to 48 hours later in large sized fishes. The uptake rate of 137 Cs and 65 Zn was high absorption of 20 to 80 per cent, that of 131 I, 60 Co and 54 Mn was not remarkable, and that of 85 Sr and 144 Ce was low absorption. The biological concentration of 137 Cs through pathways of food. In fishes taking up radionuclides through contaminated food, concentration factor increased in accordance with contamination level. In addition, radionuclides with small uptake but delayed excretion and those with high concentration rate could be the factors to decide the concentration factors of marine organisms. In order to study the relationship between metabolic activities and concentration, the uptake of one-year old fishes and adult fishes, and fishes fed and those non-fed were compared. One-year fishes took up large amount of 85 Sr during short period, however, concentration by metabolism in adult fishes was slow. Comparing feeding group and non-feeding group, the former showed 85 Sr concentration factor of 1.5 to 2 times that of the later, and the later showed 137 Cs concentration factor of 2 to 4 times that of the former. However, both uptake and excretion were rapid suggesting that taking food activated the metabolism of substances. (Kanao, N.)

  8. SYSTEMATIC ANALYSIS OF PERSPECTIVE TRENDS IN ECOLOGICAL AND BIOLOGICAL STUDIES OF THE CASPIAN SEA

    G. M. Abdurakhmanov

    2016-01-01

    Full Text Available RETRACTED ARTICLEAim. The main purpose of the ecological and biological research (EBR of the Caspian Sea is the information and technical support of decision-making to ensure the environmental management in the region taking into account the increase of anthropogenic impact and change in climatic conditions.Methods. As a basis, we have adopted the method of theoretical and mathematical generalization of a number of scientific papers and systematic analysis of the proposed solutions.Results. Analysis and mathematical processing of published literature sources has convincingly demonstrated the need for international cooperation to optimize the ecological and biological research. It has also confirmed the usefulness of the ecological and biological studies of the Caspian Sea in different directions, and the distribution of effort (cost between them requires coordinated management.Conclusion. It is shown that the data obtained by EBI have both rapid and long-term value. In the future, it is rational to develop suitable approaches to unified structuring of the EBR data, including their spatial and timing. An important task is to create a single interstate information space on the results of EBR using information and communication technologies.

  9. Three-dimensional studies on resorption spaces and developing osteons.

    Tappen, N C

    1977-07-01

    Resorption spaces and their continuations as developing osteons were traced in serial cross sections from decalcified long bones of dogs, baboons and a man, and from a human rib. Processes of formation of osteons and transverse (Volkmann's) canals can be inferred from three-dimensional studies. Deposits of new osseous tissue begin to line the walls of the spaces soon after termination of resorption. The first deposits are osteoid, usually stained very darkly by the silver nitrate procedure utilized, but a lighter osteoid zone adjacent to the canals occurs frequently. Osteoid linings continue to be produced as lamellar bone forms around them; the large canals of immature osteons usually narrow very gradually. Frequently they terminate both proximally and distally as resorption spaces, indicating that osteons often advance in opposite directions as they develop. Osteoclasts of resorption spaces tunnel preferentially into highly mineralized bone, and usually do not use previously existing canals as templates for their advance. Osteons evidently originate by localized resorption of one side of the wall of an existing vascular channel in bone, with subsequent orientation of the resorption front along the axis of the shaft. Advancing resorption spaces also apparently stimulate the formation of numerous additional transverse canal connections to neighboring longitudinal canals. Serial tracing and silver nitrate differential staining combine to reveal many of the processes of bone remodeling at work, and facilitate quantitative treatment of the data. Further uses in studies of bone tissue and associated cells are recommended.

  10. Biological Activity and Phytochemical Study of Scutellaria platystegia.

    Madani Mousavi, Seyedeh Neda; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh

    2015-01-01

    This study aimed to determine biological activity and phytochemical study of Scutellaria platystegia (family Labiatae). Methanolic (MeOH) extract of aerial parts of S. platystegia and SPE fractions of methanolic extract (specially 20% and 40% methanolic fractions), growing in East-Azarbaijan province of Iran were found to have radical scavenging activity by DPPH (2, 2-diphenyl -1- pycryl hydrazyl) assay. Dichloromethane (DCM) extract of this plant exhibited animalarial activity by cell free method providing IC50 at 1.1876 mg/mL. Crude extracts did not exhibit any toxicity assessed by brine shrimp lethality assay. Phytochemical study of methanolic extract by using reverse phase HPLC method and NMR instrument for isolation and identification of pure compounds respectively, yielded 2-(4- hydroxy phenyl) ethyl-O-β-D- glucopyranoside from 10% and apigenin 7-O-glucoside, verbascoside and martynoside from 40% SPE fraction. Occurance of verbascoside and martynoside as biochemical markers appeared to be widespread in this genus. Antioxidant and antimalarial activity of MeOH and DCM extracts, respectively, as well as no general toxicity of them could provide a basis for further in-vitro and in-vivo studies and clinical trials to develop new therapeutical alternatives.

  11. Summary of diamino pyrazoles derived and study their biological activities

    Hagui, Marwa

    2016-01-01

    The work involves the synthesis of new heterocyclic structures diamino pyrazoles derivatives that are present in many natural products and products of pharmacological and therapeutic interests and study their biological activities. In order to develop a radiotracer interest and use in diagnostic nuclear medicine, we are interested to synthesis a pyrazole derivative with the precursor [Re(CO)5Br] and studying the antibacterial and antifungal activity of 3.5-diamino pyrazole and even thioamide complex rhenium. The objectives of our workout: 1/ Synthesis of molecules 3,5-diamino pyrazole and thioamide. 2/ Synthesis of 3,5-diamino pyrazole-rhenium complex. 3/ The in vitro study: Bacteriological Tests (Study of antibacterial and antifungal activity of 3,5-diamino pyrazole and thioamide). The first part of this work concerns the chemical synthesis of molecules such as: thioamide, Amp z1 Ampz2 and then we had synthesized the complex 3,5-diamino pyrazole-rhenium. Similarly we determined the physicochemical characteristics of the compounds synthesized by CLHP, CCM and RMN ( 1 H, 13 C). The second part is devoted to the study in vitro of biological activities of the synthesized molecules and complex 3,5 diaminopyrazole-rhenium with concentration 1 mg/mL and 2 mg/mL. The results allow us to say that the thioamide and Ampz2 have antibacterial activity against S. enterica and Ampz2 has low activity against S. aureus and P. aeruginossa. Other pyrazole derivatives have no significant antibacterial and antifungal activity. The results also show that the synthesized compounds of concentration 2 mg/mL in relation to the inhibition zones of amoxicillin and DMSO: 1/ Escherichia coli, there is antibacterial activity for thioamide, and the Amp z1-Re Ampz2 compound. 2/ Staphylococcus aureus, the complex Ampz 1-Re and the thioamide have significant antibacterial activity. 3/ Salmonella, we observe that the thioamide molecules, Ampz2 and Amp z1-Re have significant antibacterial activity

  12. Microbiome studies in the biological control of plant pathogens

    Biological control of plant pathogens, although it has been a successful alternative that has allowed to select microorganisms for the generation of bioproducts and to understand multiple biological mechanisms, cannot be considered as a strategy defined only from the selection of a range of cultiva...

  13. Studying of ion implantation effect on the biology in China

    Yu Zengliang

    1993-04-01

    Since low energy ion effect on the biology was observed, the ion implantation as a new mutagenic source has been widely used in improving crops and modifying microbes in China. The basic phenomenon of ion implantation effect on the biology and analytical results are reported, and the examples of its application and its further development are shown

  14. Studies on the biological oxidation - The oxidation of ascorbic acid (vitamin C) in biological fluids

    Guzmán Barrón, E. S.; Guzmán Barrón, Alberto; Klemperer, Friedrich

    2014-01-01

    Biological fluids can be divided according to their behavior toward ascorbic acid into two groups: those having an inhibitory mechanism that protects the ascorbic acid oxidation, and those lacking this mechanism. Animal fluids and some of vegetable origin (those containing dosables amounts of ascorbic acid) corresponding to the first group. Ascorbic acid is protected from oxidation in the fluids by the action of copper catalyst. Fluids from plants (those that contain very little ascorbic acid...

  15. A study of dynamical behavior of space environment

    Wu, S. T.

    1974-01-01

    Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.

  16. Study of localized photon source in space of measures

    Lisi, M.

    2010-01-01

    In this paper we study a three-dimensional photon transport problem in an interstellar cloud, with a localized photon source inside. The problem is solved indirectly, by defining the adjoint of an operator acting on an appropriate space of continuous functions. By means of sun-adjoint semi groups theory of operators in a Banach space of regular Borel measures, we prove existence and uniqueness of the solution of the problem. A possible approach to identify the localization of the photon source is finally proposed.

  17. Space station contamination control study: Internal combustion, phase 1

    Ruggeri, Robert T.

    1987-01-01

    Contamination inside Space Station modules was studied to determine the best methods of controlling contamination. The work was conducted in five tasks that identified existing contamination control requirements, analyzed contamination levels, developed outgassing specification for materials, wrote a contamination control plan, and evaluated current materials of offgassing tests used by NASA. It is concluded that current contamination control methods can be made to function on the Space Station for up to 1000 days, but that current methods are deficient for periods longer than about 1000 days.

  18. Semantic e-Science in Space Physics - A Case Study

    Narock, T.; Yoon, V.; Merka, J.; Szabo, A.

    2009-05-01

    Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.

  19. Conscientization and Third Space: A Case Study of Tunisian Activism

    Boumlik, Habiba; Schwartz, Joni

    2016-01-01

    This case study examines, "Al Bawsala," a nongovernmental organization and a female cyber social activist, Amira Yahyaoui, in the aftermath of Tunisia's Jasmine Revolution through the lens of adult education. The theoretical frameworks of conscientization and third space are employed to describe Yahyaoui's development of the watchdog…

  20. Recommendations for designing and conducting veterinary clinical pathology biologic variation studies

    Freeman, Kathleen P; Baral, Randolph M; Dhand, Navneet K

    2017-01-01

    The recent creation of a veterinary clinical pathology biologic variation website has highlighted the need to provide recommendations for future studies of biologic variation in animals in order to help standardize and improve the quality of published information and to facilitate review......). These recommendations provide a valuable resource for clinicians, laboratorians, and researchers interested in conducting studies of biologic variation and in determining the quality of studies of biologic variation in veterinary laboratory testing....

  1. The study of a space configuration using space syntax analysis Case study: an elderly housing

    Mariana, Yosica; Triwardhani, Arindra J.; Isnaeni Djimantoro, Michael

    2017-12-01

    The improvement in various aspect leads to prolong the life span of human life, which increasing the number of elderly in the urban areas in return. But the increasing population is not supported by the provision of adequate housing facilities for them. Most of the elderly house in Jakarta, is designed just like for common people without relizing thatthey had physical and mentally degradation following the age. Therefore, the elderly house need to design with special attention to their daily activity mobility which applied in effective room configuration. The connectivity between the activities is most important element to order the room configuration. This research conduct to search the room configuration in elderly house which can improve their productivity and live quality by using the space syntax theory. The research methods by using the syntactic plug-in in Grasshooper software and analyse the integration, choice, control value and entrophy in the activity configuration. The result show that the effective and efficient for elderly house is cluster centralized pattern. The lobby and reception take the important role as the integration aspect and the spatial awareness according to elderly activity.

  2. Systems Biology Approach and Mathematical Modeling for Analyzing Phase-Space Switch During Epithelial-Mesenchymal Transition.

    Simeoni, Chiara; Dinicola, Simona; Cucina, Alessandra; Mascia, Corrado; Bizzarri, Mariano

    2018-01-01

    In this report, we aim at presenting a viable strategy for the study of Epithelial-Mesenchymal Transition (EMT) and its opposite Mesenchymal-Epithelial Transition (MET) by means of a Systems Biology approach combined with a suitable Mathematical Modeling analysis. Precisely, it is shown how the presence of a metastable state, that is identified at a mesoscopic level of description, is crucial for making possible the appearance of a phase transition mechanism in the framework of fast-slow dynamics for Ordinary Differential Equations (ODEs).

  3. Biological and Docking Studies of Sulfonamide Derivatives of 4-Aminophenazone

    Akhtar, M.S.; Ismail, A.; Murtaza, S.; Shamim, S.; Tahir, M.N.; Usman Ali Rana, U.A.

    2016-01-01

    Sulfonamide derivatives of 4-aminophenazone (4APZ) were synthesized and accordingly characterized by spectroscopic techniques. These newly synthesized compounds were examined for their biological activities such as enzyme inhibition, analgesic, antibacterial, antioxidant and DNA interaction. A direct correlation between enzyme inhibition activity and concentration of the compounds was observed both by experimental and molecular docking studies. Analgesic activity of the compounds was investigated by formalin-induced paw licking (FIPL), acetic acid-induced writhing (AIW) and heat conduction methods in mice. Membrane stabilization effect was determined by hypotonicity-induced hemolysis. Bacterial strains, S. aureus, S. epidermidis, B. subtilis, E. coli, P. aeruginosa, S. mutans and A. odontolyticus were used for investigating the antibacterial potential of the compounds. Antioxidant potential was investigated by Ferric Reducing Antioxidant Power assay (FRAP) and DPPH free radical scavenging method. DNA interaction studies of the synthesized compounds showed weak interaction. Hyperchromic effect was observed along the series and large positive K values were obtained for most of the compounds. (author)

  4. Synthesis of potentially bioactive compounds and tools for biological studies

    Cappa, F.

    2014-01-01

    NMR spectroscopy is one of the most versatile tools for studying structural parameters of organic and bioorganic compounds. It became a highly suitable method to achieve spectra simplification of macromolecules in combination with isotope labeling techniques. This technique is used to study protein structures, folding properties and mechanisms of chemical and biochemical reactions. Proteins typically feature a high molecular mass showing a high number of spin systems, being responsible for increasingly difficult to interpret NMR spectra, which is why it is essential to introduce 13 C- and 15 N- isotopes to obtain reasonable signal intensities. The development of a new synthetic route towards 13 C-isotope labeled Phenylalanine or precursors thereof, starting from inexpensive and easily accessible labeled starting materials, is the main purpose of this work. Label sources such as [ 13 C]-acetic acid, [ 13 C]-formaldehyde, [ 13 C]-allyl alcohol and [ 13 C]-glycine will be used. The synthetic pathway will be carried out in a way where the position-selective incorporation of labeled isotopes can be performed. This important feature of the synthesis may open access towards newly designed NMR-experiments. Key steps for the tested route are ring closing metatheses as well as indium mediated reactions. The second part of this work focuses on the field of sugar chemistry, in particular on the family of deoxy sugars, components of many natural products, found in different plants, fungi and bacteria. Deoxy sugars also participate in a wide range of biological processes. Special focus is given to 3-deoxy sugars and the research of a versatile and flexible synthetic route for their preparation starting from the easily accessible D-glyceraldehyde. These sugars are found on Gram-negative bacteria where they are a key component of the lipopolysaccharides, or where they can take place in the biosynthesis of aromatic amino acids in bacteria and plants. Being able to perform this

  5. The emerging molecular biology toolbox for the study of long noncoding RNA biology

    Fok, Ezio T

    2017-10-01

    Full Text Available cellular function, it remains crucial to deepen our understanding of their biology. First draft submitted: 4 May 2017; Accepted for publication: 4 July 2017; Published online: 6 September 2017 Keywords: CRISPR/Cas9 • epigenetic regulation • functional... efficient in the nucleus and preferably effective at the site of transcription. The use of targeted nucleases such as CRISPR/Cas9 for such purposes is possible, however, their application has to be carefully considered. Mutations to the sequence are usually...

  6. The Implementation of Research-based Learning on Biology Seminar Course in Biology Education Study Program of FKIP UMRAH

    Amelia, T.

    2018-04-01

    Biology Seminar is a course in Biology Education Study Program of Faculty of Teacher Training and Education University of Maritim Raja Ali Haji (FKIP UMRAH) that requires students to have the ability to apply scientific attitudes, perform scientific writing and undertake scientific publications on a small scale. One of the learning strategies that can drive the achievement of learning outcomes in this course is Research-Based Learning. Research-Based Learning principles are considered in accordance with learning outcomes in Biology Seminar courses and generally in accordance with the purpose of higher education. On this basis, this article which is derived from a qualitative research aims at describing Research-based Learning on Biology Seminar course. Based on a case study research, it was known that Research-Based Learning on Biology Seminar courses is applied through: designing learning activities around contemporary research issues; teaching research methods, techniques and skills explicitly within program; drawing on personal research in designing and teaching courses; building small-scale research activities into undergraduate assignment; and infusing teaching with the values of researchers.

  7. Study of the space environmental effects on spacecraft engineering materials

    Obrien, Susan K.; Workman, Gary L.; Smith, Guy A.

    1995-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the current estimates of the integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/sq cm/day. and the proton integral fluence is above 1 x 109 protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are worth performing in order to simulate at some level the effect of the environment. For example the effect of protons and electrons impacting structural materials are easily simulated through experiments using the Van de Graff and Pelletron accelerators currently housed in the Environmental Effects Facility at MSFC. Proton fluxes with energies of 700 Kev-2.5 Mev can be generated and used to impinge on sample targets to determine the effects of the particles. Also the Environmental Effects Facility has the capability to generate electron beams with energies from 700 Kev to 2.5 Mev. These facilities will be used in this research to simulate space environmental effects from energetic particles. Ultraviolet radiation, particularly in the ultraviolet (less than 400 nm wavelength) is less well characterized at this time. The Environmental Effects Facility has a vacuum system dedicated to studying the effects of ultraviolet radiation on specific surface materials. This particular system was assembled in a previous study (NAS8-38609) in order to

  8. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  9. Pilot study on orthodontic space closure after guided bone regeneration.

    Reichert, Christoph; Wenghöfer, Matthias; Götz, Werner; Jäger, Andreas

    2011-03-01

    In the present study, the benefit of moving teeth into extraction sockets preserved by a bone substitute was evaluated. This was performed to determine whether this was advantageous for orthodontic space closure. Socket preservation employing the bony alveolus in patients presenting the orthodontic indication for premolar extraction therapy was performed. Analogue premolars were extracted in a split-mouth design. One extraction alveolus was filled with a silica matrix-embedded, nanocrystalline hydroxyapatite bone substitute, with the other acting as a control. The orthodontic space was then closed using NiTi closed coil springs (200 g). Photographs and X-rays were acquired for documentation. Space closure succeeded without complications, e.g., root resorptions or inflammations. Gingival invaginations occurred in two of the control sites. A difference in the velocity of extraction space closure in one patient was also observed. Orthodontic tooth movement using this bone replacement material is possible according to these study results. This technique, thus, warrants further investigation in future clinical trials focusing on preventive means to reduce the development of gingival invaginations.

  10. Study of the biology of Trichogramma chilonis Ishii (Hymenoptera ...

    user1

    oviposit in eggs of Plutella xylostella L. In the no-choice test, parasitism in eggs of H. ... KEYWORDS: Trichogramma chilonis, Maruca vitrata, biology, Plutella xylostella ..... synthetic sex pheromone of P. xylostella (Reddy et al., 2002), it did not.

  11. Biology as a Study of Man and Society

    Hurd, Paul DeHart

    1971-01-01

    Biology ought to be taught within the context of human culture; "man" can be the "type animal." Consideration should be given to questions of race, population, food resources, environmental quality, intelligence, genetic engineering, and organ transplants. (AL)

  12. Systems biology approaches to the study of cardiovascular drugs

    Nikolsky, Y.; Kleemann, R.

    2010-01-01

    Atherogenic lipids and chronic inflammation drive the development of cardiovascular disorders such as atherosclerosis. Many cardiovascular drugs target the liver which is involved in the formation of lipid and inflammatory risk factors. With robust systems biology tools and comprehensive

  13. A descriptive study of biological and psychosocial factors associated ...

    2017-08-31

    Aug 31, 2017 ... Obesity has long been a major health concern among adults, but its increasing prevalence rates ... The association between the BMIs of the biological parents and their ... with different kinds of food, consumption of fatty foods.

  14. Experimental study of the biological properties of 188Re-Hepama-1 biologic superparamagnetic nanoparticles

    Feng Yanlin; Tan Jiaju; Sun Jing; Wen Guanghua; Wu Xiaolian; Liang Sheng; Xia Jiaoyun

    2007-01-01

    Objective: To investigate a new biologic-superparamagnetic nanoparticles's characteristics of immunological activity, biological distributing in vivo, targeting and inhibiting tumor effect. Methods: The experimental group 188 Re-Hepama-l-superparamagnetic nanoparticles, and control groups, including 188 ReO 4 - , 188 Re-Hepama-1, and 188 Re-superparamagnetic nanoparticles, were set up. The distributions were measured after injection 4 h and 24 h by caudal vein of Kuming mice. The magnetic targeting experiments in vivo were clone with and without magnetic field in liver after injection in New Zealand rabbit. The inhibiting tumor effect on hepatic cancer cell lines SMMC-7721 of the above four 188 Re labeled products were measured by mono nuclear cell direct cytotoxicity assay method. Results: After injection 4 h and 24 h by vein, the liver taking was highest in group 188 Re-Hepama-l-superparamagnetic nanoparticles. The radiative activity in liver in magnetism zoo was higher than in non magnetism zoo in 188 Re- Hepama-1-superparamagnetic nanoparticles after applying magnetic field in left lobe of liver, and the ratio of in magnetism zoo to non magnetism zoo was 1.87. And the half effective inhibition radioactive concentrations (IC 50 ) in 188 Re-Hepama-l-superparamagnetic nanoparticles was one forth of 188 ReO 4 - . Conclusion: 188 Re- Hepama-l-superparamagnetic nanoparticles showed its fine stability in intro, good immunological activity and significant liver target. (authors)

  15. Biological studies on Brazilian plants used in wound healing.

    Schmidt, C; Fronza, M; Goettert, M; Geller, F; Luik, S; Flores, E M M; Bittencourt, C F; Zanetti, G D; Heinzmann, B M; Laufer, S; Merfort, I

    2009-04-21

    n-Hexanic and ethanolic extracts from twelve plants (Brugmansia suaveolens Brecht. et Presl., Eupatorium laevigatum Lam., Galinsoga parviflora Cav., Iresine herbstii Hook., Kalanchöe tubiflora Hamet-Ahti, Petiveria alliacea L., Pluchea sagittalis (Lam.) Cabrera, Piper regnellii DC., Schinus molle L., Sedum dendroideum Moç et Sessé ex DC., Waltheria douradinha St. Hill., Xanthium cavanillesii Schouw.) used in traditional South Brazilian medicine as wound healing agents were investigated in various biological assays, targeting different aspects in this complex process. The extracts were investigated on NF-kappaB DNA binding, p38alpha MAPK, TNF-alpha release, direct elastase inhibition and its release as well as on caspase-3. Fibroblasts migration to and proliferation into the wounded monolayers were evaluated in the scratch assay, the agar diffusion test for antibacterial and the MTT assay for cytotoxic effects. The hydrophilic extracts from Galinsoga parviflora, Petiveria alliacea, Schinus molle, Waltheria douradinha and Xanthium cavanillesii as well as the lipophilic extract of Waltheria douradinha turned out to be the most active ones. These results increase our knowledge on the wound healing effects of the investigated medicinal plants. Further studies are necessary to find out the effective secondary metabolites responsible for the observed effects.

  16. Imaging Primary Lung Cancers in Mice to Study Radiation Biology

    Kirsch, David G.; Grimm, Jan; Guimaraes, Alexander R.; Wojtkiewicz, Gregory R.; Perez, Bradford A.; Santiago, Philip M.; Anthony, Nikolas K.; Forbes, Thomas; Doppke, Karen

    2010-01-01

    Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.

  17. Studies on the reproductive biology of downy brome (Bromus tectorum)

    Richardson, J.M.

    1986-01-01

    The ability of downy brome to successfully infest crop lands is partially due to its prolific nature. To better understand its reproductive biology, studies investigating (1) effects of temperature and photoperiod on flowering, (2) prevention of downy brome seed information with herbicides, and (3) effects of drought on reproduction, were conducted. Seedling vernalization was more effective than seed vernalization in promoting downy brome flowering. Vernalizing imbibed downy brome caryopses at 3 C for 0 to 30 days did not induce rapid flowering. Downy brome seedlings were exposed to six photoperiod/temperature treatments. After transfer to long days, plants from the short da/3 C treatment flowered within 30 days. DPX-Y6202 and fluazifop-butyl were tested for their ability to prevent seed formation in downy brome. Fluazifop-butyl prevented seed formation over a wider range of application rates and growth stages than did DPX-Y6202. Seed production was prevented most readily by herbicide applications made early in the reproductive cycle. Translocation of radiolabel was greater with 14 C-fluazifop-butyl than with 14 C-DPX-Y6202, particularly into developing spikelets. Microautoradiographic techniques were used to identify mechanisms involved in the prevention of downy brome seed formation by these herbicides. Tissue localization of both herbicides was similar. The highest concentration of radiolabel was found in developing pollen grains, suggesting that the herbicides prevented seed formation by interrupting pollen development or function. Water stress reduced apparent photosynthesis and increased diffusive resistance of flag leaves

  18. A systems biology approach to study systemic inflammation.

    Chen, Bor-Sen; Wu, Chia-Chou

    2014-01-01

    Systemic inflammation needs a precise control on the sequence and magnitude of occurring events. The high throughput data on the host-pathogen interactions gives us an opportunity to have a glimpse on the systemic inflammation. In this article, a dynamic Candida albicans-zebrafish interactive infectious network is built as an example to demonstrate how systems biology approach can be used to study systematic inflammation. In particular, based on microarray data of C. albicans and zebrafish during infection, the hyphal growth, zebrafish, and host-pathogen intercellular PPI networks were combined to form an integrated infectious PPI network that helps us understand the systematic mechanisms underlying the pathogenicity of C. albicans and the immune response of the host. The signaling pathways for morphogenesis and hyphal growth of C. albicans were 2 significant interactions found in the intercellular PPI network. Two cellular networks were also developed corresponding to the different infection stages (adhesion and invasion), and then compared with each other to identify proteins to gain more insight into the pathogenic role of hyphal development in the C. albicans infection process. Important defense-related proteins in zebrafish were predicted using the same approach. This integrated network consisting of intercellular invasion and cellular defense processes during infection can improve medical therapies and facilitate development of new antifungal drugs.

  19. Open-Source RTOS Space Qualification: An RTEMS Case Study

    Zemerick, Scott

    2017-01-01

    NASA space-qualification of reusable off-the-shelf real-time operating systems (RTOSs) remains elusive due to several factors notably (1) The diverse nature of RTOSs utilized across NASA, (2) No single NASA space-qualification criteria, lack of verification and validation (V&V) analysis, or test beds, and (3) different RTOS heritages, specifically open-source RTOSs and closed vendor-provided RTOSs. As a leader in simulation test beds, the NASA IV&V Program is poised to help jump-start and lead the space-qualification effort of the open source Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS. RTEMS, as a case-study, can be utilized as an example of how to qualify all RTOSs, particularly the reusable non-commercial (open-source) ones that are gaining usage and popularity across NASA. Qualification will improve the overall safety and mission assurance of RTOSs for NASA-agency wide usage. NASA's involvement in space-qualification of an open-source RTOS such as RTEMS will drive the RTOS industry toward a more qualified and mature open-source RTOS product.

  20. Neurovestibular and sensorimotor studies in space and Earth benefits.

    Clément, Gilles; Reschke, Millard; Wood, Scott

    2005-08-01

    This review summarizes what has been learned from studies of human neurovestibular system in weightless conditions, including balance and locomotion, gaze control, vestibular-autonomic function and spatial orientation, and gives some examples of the potential Earth benefits of this research. Results show that when astronauts and cosmonauts return from space flight both the peripheral and central neural processes are physiologically and functionally altered. There are clear distinctions between the virtually immediate adaptive compensations to weightlessness and those that require longer periods of time to adapt. However, little is known to date about the adaptation of sensory-motor functions to long-duration space missions in weightlessness and to the transitions between various reduced gravitational levels, such as on the Moon and Mars. Results from neurovestibular research in space have substantially enhanced our understanding of the mechanisms and characteristics of postural, gaze, and spatial orientation deficits, analogous to clinical cases of labyrinthine-defective function. Also, space neurosciences research has participated in the development and application of significant new technologies, such as video recording and processing of three-dimensional eye movements and posture, hardware for the unencumbered measurement of head and body movement, and procedures for investigating otolith function on Earth. In particular, devices such as centrifugation or off-vertical axis rotation could enhance clinical neurological testing because it provides linear acceleration which specifically stimulates the otolith organs in a frequency range close to natural head and body movement.

  1. Space observations for global and regional studies of the biosphere

    Cihlar, J.; Li, Z.; Chen, J.; Sellers, P.; Hall, F.

    1994-01-01

    The capability to make space-based measurements of Earth at high spatial and temporal resolutions, which would not otherwise be economically or practically feasible, became available just in time to contribute to scientific understanding of the interactive processes governing the total Earth system. Such understanding has now become essential in order to take practical steps which would counteract or mitigate the pervasive impact of the growing human population on the future habitability of the Earth. The paper reviews the rationale for using space observations for studies of climate and terrestrial ecosystems at global and regional scales, as well as the requirements for such observations for studies of climate and ecosystem dynamics. The present status of these developments is reported along with initiatives under way to advance the use of satellite observations for Earth system studies. The most important contribution of space observations is the provision of physical or biophysical parameters for models representing various components of the Earth system. Examples of such parameters are given for climatic and ecosystem studies.

  2. NMR spectroscopic studies of membrane-bound biological systems

    Hohlweg, W.

    2013-01-01

    In the course of this thesis, biological NMR spectroscopy was employed in studying membrane-bound peptides and proteins, for which structural information is still comparatively hard to obtain. Initial work focused on various model peptides bound to membrane-mimicking micelles, studying the protonation state of arginine in a membrane environment. Strong evidence for a cation-π complex was found in TM7, a peptide which forms the seventh transmembrane helix of subunit a of the vacuolar-type H+-ATPase (V-ATPase). V-ATPase is a physiologically highly relevant proton pump, which is present in intracellular membranes of all eukaryotic organisms, as well as the plasma membrane of several specialized cells. Loss of functional V-ATPase is associated with human diseases such as osteopetrosis, distal renal tubular acidosis or the spreading of cancer. V-ATPase is considered a potential drug target in the treatment of osteoporosis and cancer, or in the development of novel contraceptives. Results from NMR solution structure determination, NMR titration experiments, paramagnetic relaxation enhancement experiments and tryptophan fluorescence spectroscopy confirm the existence of a buried cation-? complex formed between arginine residue R735, which is essential for proton transport, and neighbouring tryptophan and tyrosine residues. In vivo experiments in the yeast Saccharomyces cerevisiae using selective growth tests and fluorescence microscopy showed that formation of the cation-π complex is essential for V-ATPase function. Deletion of both aromatic residues, as well as only the one tryptophan residue leads to growth defects and inability to maintain vacuolar pH homeostasis. These findings shine new light on the still elusive mechanism of proton transport in V-ATPase, and show that arginine R735 may be directly involved in proton transfer across the membrane. (author) [de

  3. Synthetic Biology for Recycling Human Waste into Nutraceuticals, and Materials: Closing the Loop for Long-Term Space Travel

    National Aeronautics and Space Administration — It is impractical for astronauts to travel with all necessary supplies in future long-term space exploration missions. Therefore, it is imperative that technologies...

  4. Comparative study of standard space and real space analysis of quantitative MR brain data.

    Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M

    2011-06-01

    To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.

  5. International biological engagement programs facilitate Newcastle disease epidemiological studies

    Patti J. Miller

    2015-10-01

    Full Text Available Infections of poultry species with virulent strains of Newcastle disease virus (NDV cause Newcastle disease (ND, one of the most economically significant and devastating diseases for poultry producers worldwide. Biological engagement programs (BEP between the Southeast Poultry Research Laboratory (SEPRL of the United States Department of Agriculture and laboratories from Russia, Pakistan, Ukraine, Kazakhstan and Indonesia collectively have produced a better understanding of the genetic diversity and evolution of the viruses responsible for ND, which is crucial for the control of the disease. The data from Kazakhstan, Russia and Ukraine identified possible migratory routes for birds that may carry both virulent NDV (vNDV and NDV of low virulence into Europe. In addition, related NDV strains were isolated from wild birds in Ukraine and Nigeria, and from birds in continental USA, Alaska, Russia, and Japan, identifying wild birds as a possible mechanism of intercontinental spread of NDV of low virulence. More recently, the detection of new sub-genotypes of vNDV suggests that a new, fifth, panzootic of ND has already originated in Southeast Asia, extended to the Middle East, and is now entering into Eastern Europe. Despite expected challenges when multiple independent laboratories interact, many scientists from the collaborating countries have successfully been trained by SEPRL on molecular diagnostics, best laboratory practices, and critical biosecurity protocols, providing our partners the capacity to further train other employees and to identify locally the viruses that cause this OIE listed disease. These and other collaborations with partners in Mexico, Bulgaria, Israel, and Tanzania have allowed SEPRL scientists to engage in field studies, to elucidate more aspects of ND epidemiology in endemic countries, and to understand the challenges that the scientists and field veterinarians in these countries face on a daily basis. Finally, new viral

  6. International Biological Engagement Programs Facilitate Newcastle Disease Epidemiological Studies

    Miller, Patti J.; Dimitrov, Kiril M.; Williams-Coplin, Dawn; Peterson, Melanie P.; Pantin-Jackwood, Mary J.; Swayne, David E.; Suarez, David L.; Afonso, Claudio L.

    2015-01-01

    Infections of poultry species with virulent strains of Newcastle disease virus (NDV) cause Newcastle disease (ND), one of the most economically significant and devastating diseases for poultry producers worldwide. Biological engagement programs between the Southeast Poultry Research Laboratory (SEPRL) of the United States Department of Agriculture and laboratories from Russia, Pakistan, Ukraine, Kazakhstan, and Indonesia collectively have produced a better understanding of the genetic diversity and evolution of the viruses responsible for ND, which is crucial for the control of the disease. The data from Kazakhstan, Russia, and Ukraine identified possible migratory routes for birds that may carry both virulent NDV (vNDV) and NDV of low virulence into Europe. In addition, related NDV strains were isolated from wild birds in Ukraine and Nigeria, and from birds in continental USA, Alaska, Russia, and Japan, identifying wild birds as a possible mechanism of intercontinental spread of NDV of low virulence. More recently, the detection of new sub-genotypes of vNDV suggests that a new, fifth, panzootic of ND has already originated in Southeast Asia, extended to the Middle East, and is now entering into Eastern Europe. Despite expected challenges when multiple independent laboratories interact, many scientists from the collaborating countries have successfully been trained by SEPRL on molecular diagnostics, best laboratory practices, and critical biosecurity protocols, providing our partners the capacity to further train other employes and to identify locally the viruses that cause this OIE listed disease. These and other collaborations with partners in Mexico, Bulgaria, Israel, and Tanzania have allowed SEPRL scientists to engage in field studies, to elucidate more aspects of ND epidemiology in endemic countries, and to understand the challenges that the scientists and field veterinarians in these countries face on a daily basis. Finally, new viral characterization tools

  7. Studies on floral biology of passion fruit (passiflora spp.)

    Kishore, K.; Pathak, K.A.; Shukla, R.; Bharali, R.

    2010-01-01

    Floral biology of purple, yellow, giant and Passiflora foetida was studied at the ICAR Research Complex, Mizoram Centre, Kolasib, Mizoram, India during 2005-07. Purple, giant and P. foetida had major bloom during March-April, July-August and September-October. While major bloom in yellow was mainly during May-June and September-October. Purple, giant and P. foetida had the maximum duration of bloom of 42.4, 22.5 and 32.6 days, respectively during March-April with the maximum duration of effective bloom of 12.5 8.6 and 10.4 days in purple, giant and P. foetida, respectively. Yellow had the maximum duration of bloom for 28.4 days and effective bloom of 10.5 days during May-June. Most of the flowers of purple (54.5%) and giant (58.5%) opened between 6-7 hrs, while the maximum per cent of anthesis in yellow (70%) took place between 12-13 hrs. Pollen dehiscence and pollination in purple and giant mainly occurred between 7-8 hrs, while 13-14 hrs was the major period of pollen dehiscence and pollination in yellow. The earliest anthesis (5-6 hrs), anther dehiscence (6-7 hrs) and pollination (6-7 hrs) were recorded in P. foetida. The maximum stigma receptivity was recorded on the day of anthesis in all the passion fruits. Completely curved style was more common in all passion fruits that gave the maximum fruit set. The maximum number of bees observed between 7-8 hrs in purple and giant and between 13-14 hrs in yellow. The most common pollinating bee in purple, giant and yellow was Apis mellifera, while A. cerena was in P. foetida. (author)

  8. International Biological Engagement Programs Facilitate Newcastle Disease Epidemiological Studies.

    Miller, Patti J; Dimitrov, Kiril M; Williams-Coplin, Dawn; Peterson, Melanie P; Pantin-Jackwood, Mary J; Swayne, David E; Suarez, David L; Afonso, Claudio L

    2015-01-01

    Infections of poultry species with virulent strains of Newcastle disease virus (NDV) cause Newcastle disease (ND), one of the most economically significant and devastating diseases for poultry producers worldwide. Biological engagement programs between the Southeast Poultry Research Laboratory (SEPRL) of the United States Department of Agriculture and laboratories from Russia, Pakistan, Ukraine, Kazakhstan, and Indonesia collectively have produced a better understanding of the genetic diversity and evolution of the viruses responsible for ND, which is crucial for the control of the disease. The data from Kazakhstan, Russia, and Ukraine identified possible migratory routes for birds that may carry both virulent NDV (vNDV) and NDV of low virulence into Europe. In addition, related NDV strains were isolated from wild birds in Ukraine and Nigeria, and from birds in continental USA, Alaska, Russia, and Japan, identifying wild birds as a possible mechanism of intercontinental spread of NDV of low virulence. More recently, the detection of new sub-genotypes of vNDV suggests that a new, fifth, panzootic of ND has already originated in Southeast Asia, extended to the Middle East, and is now entering into Eastern Europe. Despite expected challenges when multiple independent laboratories interact, many scientists from the collaborating countries have successfully been trained by SEPRL on molecular diagnostics, best laboratory practices, and critical biosecurity protocols, providing our partners the capacity to further train other employes and to identify locally the viruses that cause this OIE listed disease. These and other collaborations with partners in Mexico, Bulgaria, Israel, and Tanzania have allowed SEPRL scientists to engage in field studies, to elucidate more aspects of ND epidemiology in endemic countries, and to understand the challenges that the scientists and field veterinarians in these countries face on a daily basis. Finally, new viral characterization tools

  9. Yeast as a Model System to Study Tau Biology

    Ann De Vos

    2011-01-01

    Full Text Available Hyperphosphorylated and aggregated human protein tau constitutes a hallmark of a multitude of neurodegenerative diseases called tauopathies, exemplified by Alzheimer's disease. In spite of an enormous amount of research performed on tau biology, several crucial questions concerning the mechanisms of tau toxicity remain unanswered. In this paper we will highlight some of the processes involved in tau biology and pathology, focusing on tau phosphorylation and the interplay with oxidative stress. In addition, we will introduce the development of a human tau-expressing yeast model, and discuss some crucial results obtained in this model, highlighting its potential in the elucidation of cellular processes leading to tau toxicity.

  10. Preliminary study of environmental parameters associated with the feasibility of a polygeneration plant at Kennedy Space Center

    Barnes, G.D.

    1982-01-01

    The feasibility of a polygeneration plant at Kennedy Space Center was studied. Liquid hydrogen and gaseous nitrogen are the two principal products in consideration. Environmental parameters (air quality, water quality, biological diversity and hazardous waste disposal) necessary for the feasibility study were investigated. A National Environmental Policy Act (NEPA) project flow sheet was to be formulated for the environmental impact statement. Water quality criteria for Florida waters were to be established

  11. The influence of anxiety and personality factors on comfort and reachability space a correlational study

    Iachini, Tina; Ruggiero, Gennaro; Ruotolo, Francesco; Schiano di Cola, Armando; Senese, Vincenzo Paolo

    Although the effects of several personality factors on interpersonal space (i.e. social space within personal comfort area) are well documented, it is not clear whether they also extend to peripersonal space (i.e. reaching space). Indeed, no study has directly compared these spaces in relation to

  12. Studies on the fisheries and biology of Oreochromis urolepsis ...

    The fisheries and some aspects of the biology of Oreochromis urolepsis of the Mtera Reservoir (Tanzania) were examined in August 2002. It was observed that there was no proper management of the reservoir\\'s fisheries. Beach seine fishing dominated the fishery. Nearly all the O. urolepsis caught by this type of gear were ...

  13. Deep learning: Using machine learning to study biological vision

    Majaj, Najib; Pelli, Denis

    2017-01-01

    Today most vision-science presentations mention machine learning. Many neuroscientists use machine learning to decode neural responses. Many perception scientists try to understand recognition by living organisms. To them, machine learning offers a reference of attainable performance based on learned stimuli. This brief overview of the use of machine learning in biological vision touches on its strengths, weaknesses, milestones, controversies, and current directions.

  14. Mössbauer study of some biological iron complexes

    Abstract. Some biological complexes containing iron are investigated experimentally at room temperature using the Mössbauer resonance. The complexes show quadrupole doublet and Kramer's degeneracy is found to exist. The electric field gradient, difference in s-electron densities and quadrupole coupling constant ...

  15. Space station automation study: Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    1984-01-01

    The electroepitaxial process and the Very Large Scale Integration (VLSI) circuits (chips) facilities were chosen because each requires a very high degree of automation, and therefore involved extensive use of teleoperators, robotics, process mechanization, and artificial intelligence. Both cover a raw materials process and a sophisticated multi-step process and are therfore highly representative of the kinds of difficult operation, maintenance, and repair challenges which can be expected for any type of space manufacturing facility. Generic areas were identified which will require significant further study. The initial design will be based on terrestrial state-of-the-art hard automation. One hundred candidate missions were evaluated on the basis of automation portential and availability of meaning ful knowldege. The design requirements and unconstrained design concepts developed for the two missions are presented.

  16. Ethnographic Observational Study of the Biologic Initiation Conversation Between Rheumatologists and Biologic-Naive Rheumatoid Arthritis Patients.

    Kottak, Nicholas; Tesser, John; Leibowitz, Evan; Rosenberg, Melissa; Parenti, Dennis; DeHoratius, Raphael

    2018-01-30

    This ethnographic market research study investigated the biologic initiation conversation between rheumatologists and biologic-naive patients with rheumatoid arthritis to assess how therapy options, particularly mode of administration, were discussed. Consenting rheumatologists (n = 16) and patients (n = 48) were videotaped during medical visits and interviewed by a trained ethnographer. The content, structure, and timing of conversations regarding biologic initiation were analyzed. The mean duration of physician-patient visits was approximately 15 minutes; biologic therapies were discussed for a mean of 5.6 minutes. Subcutaneous (SC) and intravenous (IV) therapy options were mentioned in 45 and 35 visits, respectively, out of a total of 48 visits. All patients had some familiarity with SC administration, but nearly half of patients (22 of 48) were unfamiliar with IV therapy going into the visit. IV administration was not defined or described by rheumatologists in 77% of visits (27 of 35) mentioning IV therapy. Thus, 19 of 22 patients who were initially unfamiliar with IV therapy remained unfamiliar after the visit. Disparities in physician-patient perceptions were revealed, as all rheumatologists (16 of 16) believed IV therapy would be less convenient than SC therapy for patients, while 46% of patients (22 of 48) felt this way. In post-visit interviews, some patients seemed confused and overwhelmed, particularly when presented with many treatment choices in a visit. Some patients stated they would benefit from visual aids or summary sheets of key points. This study revealed significant educational opportunities to improve the biologic initiation conversation and indicated a disparity between patients' and rheumatologists' perception of IV therapy. © 2018 The Authors. Arthritis Care & Research published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.

  17. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 2: Technical report

    1982-01-01

    The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.

  18. Case Study of Using High Performance Commercial Processors in Space

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project (1999 2004) was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the re-evaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s were radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but had some ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  19. A Study on Evaluation for Street Space using AHP Method

    小塚, みすず; 許, 彦; 川本, 義海; 本多, 義明

    2004-01-01

    Street space is an important public area which forms the framework of city space. In addition, from the view of the traffic functions, street space also plays a role to support people's activities performed in city. This paper examines the evaluations of street space among the cities of Fukui (Japan), Toyota (Japan) and Suzhou (China). Therefore, a questionnaire has been carried out and actual conditions of street space are grasped. In addition street functions were evaluated with the AHP met...

  20. Biological control and invading freshwater snails. A case study.

    Pointier, J P; Augustin, D

    1999-12-01

    Introductions of four species of freshwater snails occurred between 1972 and 1996 onto Guadeloupe Island. Two of them, Melanoides tuberculata and Marisa cornuarietis, were subsequently used as biological control agents against Biomphalaria glabrata, the snail intermediate host of intestinal schistosomiasis. In 1996, a general survey was carried out in 134 sites which had already been investigated in 1972. The total number of mollusc species had increased from 19 to 21. Site numbers housing B. glabrata and two other species had strongly declined. This decline may be mainly attributed to a competitive displacement by M. tuberculata and M. cornuarietis as illustrated by several biological control programmes. There were no changes in the remainder of the malacological fauna.

  1. Long-term integrated radiophysical studies of the ionosphere, near space, and the propagation of radio waves from space objects

    Misyura, V. A.

    1974-01-01

    The radiophysical studies reported consist of direct measurements of certain effects induced in the propagation of radio waves from space objects. From measured effects and from data on the motion and position of space objects, physical parameters of the medium and bodies are determined.

  2. Study on biological dosimetry of premature chromosome condensation technique

    Jiang Bo

    2005-01-01

    The premature chromosome condensation technique has been applied for biological dosimetry purpose. Premature chromo-some condensation was induced by incubating unstimulated human peripheral blood lymphocytes in the presence of okadaic acid or calyculin A (a phosphatase inhibitor) which eliminated the need for fusion with mitotic cells. It is now possible to examine the early damage induced by radiation. It is simple, exact when it combines with fluorecence in situ hybridization. (authors)

  3. Studies on marine toxins: chemical and biological aspects

    Stonik, Valentin A; Stonik, Inna V

    2010-01-01

    The structures and mechanisms of biological action of the best known representatives of the main groups of marine toxins are presented. It is shown that many compounds have complex chemical structures and possess extremely high toxicities. Characteristic features of isolation, structure determination and syntheses of these compounds using the achievement of modern organic chemistry are discussed. The methods of identification and quantitative analysis of marine toxins are briefly reviewed.

  4. Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts

    1982-01-01

    Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.

  5. Study of capability of microorganisms to develop on construction materials used in space objects

    Rakova, N.; Svistunova, Y.; Novikova, N.

    One of the most topical issues nowadays in the whole set of space research is the study of microbiological risks (medical, technical, technological). Experiments held onboard MIR station and International Space Station (ISS) clearly demonstrated capacity of microorganisms to contaminate the environment, equipment and belonging of habitual compartments of space objects. In this connection microorganisms-biodestructors play an important role. In their vital functioning they are capable of causing biological damage of different polymers, biocorrosion of metals which can lead to serious difficulties in performing long-term flights, namely the planned mission to Mars. Our purpose was to study capability of growth and reproduction of microorganisms on construction materials of various chemical composition as the first stage of biodestruction process. In our research we used "flight" strains of bacteria (Bacillus subtilus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Pseudomonas pumilus etc.) recovered from the ISS environment in several missions. For control we used "earth" bacteria species with typical properties. To model the environment of the ISS we took construction materials which are widely used in the interior and equipment of the ISS. The results we've obtained show that some microorganisms are capable of living and reproducing themselves on construction materials and their capability is more pronounced than that of the "earth" species. The best capability for growth and reproduction was characteristic of Bacillus subtilus.

  6. Biological and analytical studies of peritoneal dialysis solutions

    N. Hudz

    2018-04-01

    Full Text Available The purpose of our work was to conduct biological and analytical studies of the peritoneal dialysis (PD solutions containing glucose and sodium lactate and establish correlations between cell viability of the Vero cell line and values of analytical indexes of the tested solutions. The results of this study confirm the cytotoxicity of the PD solutions even compared with the isotonic solution of sodium chloride, which may be due to the low pH of the solutions, presence of glucose degradation products (GDPs and high osmolarity of the solutions, and unphysiological concentrations of glucose and sodium lactate. However, it is not yet known what factors or their combination and to what extent cause the cytotoxicity of PD solutions. In the neutral red (NR test the weak, almost middle (r = -0.496 and 0.498, respectively and unexpected correlations were found between reduced viability of monkey kidney cells and increased pH of the PD solutions and between increased cell viability and increased absorbance at 228 nm of the tested PD solutions. These two correlations can be explained by a strong correlation (r = -0.948 between a decrease in pH and an increase in the solution absorbance at 228 nm. The opposite effect was observed in the MTT test. The weak, but expected correlations (r = 0.32 and -0.202, respectively were found between increased cell viability and increased pH in the PD solutions and between decreased cell viability and increased absorbance at 228 nm of the tested PD solutions. The middle and weak correlations (r = 0.56 and 0.29, respectively were detected between increased cell viability and increased lactate concentration in the NR test and MTT test. The data of these correlations can be partially explained by the fact that a correlation with a coefficient r = -0.34 was found between decreased pH in the solutions and increased lactate concentration. The very weak correlations (0.138 and 0.196, respectively were found between increased cell

  7. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  8. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.

    Bittig, Arne T; Uhrmacher, Adelinde M

    2017-01-01

    Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.

  9. Ecological Literacy, Urban Green Space, and Mobile Technology: Exploring the Impacts of an Arboretum Curriculum Designed for Undergraduate Biology Courses

    Phoebus, Patrick E.

    Increasing individual ecological literacy levels may help citizens make informed choices about the environmental challenges facing society. The purpose of this study was to explore the impacts of an arboretum curriculum incorporating mobile technology and an urban greenspace on the ecological knowledge, environmental attitudes and beliefs, and environmental behaviors of undergraduate biology students and pre-service K-8 teachers during a summer course. Using a convergent parallel mixed-methods design, both quantitative and qualitative data were collected, analyzed, and later merged to create an enhanced understanding of the impact of the curriculum on the environmental attitudes and beliefs of the participants. Quantitative results revealed a significant difference between pre- and post-survey scores for ecological knowledge, with no significant differences between pre- and post-scores for the other variables measured. However, no significant difference in scores was found between experimental and comparison groups for any of the three variables. When the two data sets were compared, results from the quantitative and qualitative components were found to converge and diverge. Quantitative data indicated the environmental attitudes and beliefs of participants were unaffected by the arboretum curriculum. Similarly, qualitative data indicated participants' perceived environmental attitudes and beliefs about the importance of nature remained unchanged throughout the course of the study. However, qualitative data supporting the theme connecting with the curriculum suggested experiences with the arboretum curriculum helped participants develop an appreciation for trees and nature and led them to believe they increased their knowledge about trees.

  10. Exploring Pedagogical Content Knowledge of Biology Graduate Teaching Assistants through Their Participation in Lesson Study

    Lampley, Sandra A.; Gardner, Grant E.; Barlow, Angela T.

    2018-01-01

    Graduate teaching assistants (GTAs) are responsible for teaching the majority of biology undergraduate laboratory sections, although many feel underprepared to do so. This study explored the impact of biology GTA participation in a professional development model known as lesson study. Using a case study methodology with multiple qualitative data…

  11. Sensitivity studies for a space-based methane lidar mission

    C. Kiemle

    2011-10-01

    Full Text Available Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN on a small satellite in polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1% over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol

  12. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    Parrot, I.M.; Urban, V.; Gardner, K.H.; Forsyth, V.T.

    2005-01-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar[reg] or Twaron[reg

  13. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers.

    Parrot, I. M. [Institut Laue-Langevin (ILL); Urban, Volker S [ORNL; Gardner, K. H. [DuPont Experimental Station; Forsyth, V. T. [Institut Laue Langevin and Keele University

    2005-04-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar{reg_sign} or Twaron{reg_sign}.

  14. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.

    2005-08-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.

  15. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    Parrot, I.M. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Institute of Science and Technology in Medicine, Keele University Medical School, Staffordshire ST4 7QB (United Kingdom); Urban, V. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6100 (United States); Gardner, K.H. [Department of Materials Science and Engineering University of Delaware, Newark, DE 19719 (United States); Forsyth, V.T. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France) and Institute of Science and Technology in Medicine, Keele University Medical School, Staffordshire ST4 7QB (United Kingdom)]. E-mail: tforsyth@ill.fr

    2005-08-15

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar[reg] or Twaron[reg].

  16. In Vitro Studies on Space Radiation-Induced Delayed Genetic Responses: Shielding Effects

    Kadhim, Munira A.; Green, Lora M.; Gridley, Daila S.; Murray, Deborah K.; Tran, Da Thao; Andres, Melba; Pocock, Debbie; Macdonald, Denise; Goodhead, Dudley T.; Moyers, Michael F.

    2003-01-01

    Understanding the radiation risks involved in spaceflight is of considerable importance, especially with the long-term occupation of ISS and the planned crewed exploration missions. Several independent causes may contribute to the overall risk to astronauts exposed to the complex space environment, such as exposure to GCR as well as SPES. Protons and high-Z energetic particles comprise the GCR spectrum and may exert considerable biological effects even at low fluence. There are also considerable uncertainties associated with secondary particle effects (e.g. HZE fragments, neutrons etc.). The interaction of protons and high-LET particles with biological materials at all levels of biological organization needs to be investigated fully in order to establish a scientific basis for risk assessment. The results of these types of investigation will foster the development of appropriately directed countermeasures. In this study, we compared the biological responses to proton irradiation presented to the target cells as a monoenergetic beam of particles of complex composition delivered to cells outside or inside a tissue phantom head placed in the United States EVA space suit helmet. Measurements of chromosome aberrations, apoptosis, and the induction of key proteins were made in bone marrow from CBA/CaJ and C57BL/6 mice at early and late times post exposure to radiation at 0, 0.5, 1 and 2 Gy while inside or outside of the helmet. The data showed that proton irradiation induced transmissible chromosomal/genomic instability in haematopoietic stem cells in both strains of mice under both irradiation conditions and especially at low doses. Although differences were noted between the mouse strains in the degree and kinetics of transforming growth factor-beta 1 and tumor necrosis factor-alpha secretion, there were no significant differences observed in the level of the induced instability under either radiation condition, or for both strains of mice. Consequently, when

  17. Countermeasure for Managing Interpersonal Conflicts in Space: A Continuation Study

    National Aeronautics and Space Administration — At this point, we have accomplished the aim of developing an interactive media program to assist long-duration space crews to manage specific, ongoing conflicts that...

  18. Space Shuttle Main Propulsion System Anomaly Detection: A Case Study

    National Aeronautics and Space Administration — The space shuttle main engine (SSME) is part of the Main Propnlsion System (MPS) which is an extremely complex system containing several sub-systems and components,...

  19. Gamma radiation in ceramic capacitors: a study for space missions

    dos Santos Ferreira, Eduardo; Sarango Souza, Juliana

    2017-10-01

    We studied the real time effects of the gamma radiation in ceramic capacitors, in order to evaluate the effects of cosmic radiation on these devices. Space missions have electronic circuits with various types of devices, many studies have been done on semiconductor devices exposed to gamma radiation, but almost no studies for passive components, in particular ceramic capacitors. Commercially sold ceramic capacitors were exposed to gamma radiation, and the capacitance was measured before and after exposure. The results clearly show that the capacitance decreases with exposure to gamma radiation. We confirmed this observation in a real time capacitance measurement, obtained using a data logging system developed by us using the open source Arduino platform.

  20. Space physics strategy-implementation study. Volume 1: Goals, objectives, strategy. A report to the Space Physics Subcommittee of the Space Science and Applications Advisory Committee

    1991-01-01

    Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.

  1. Feasibility study of an image slicer for future space application

    Calcines, A.; Ichimoto, K.

    2014-08-01

    This communication presents the feasibility study of an image slicer for future space missions, especially for the integral field unit (IFU) of the SUVIT (Solar UV-Visible-IR telescope) spectro-polarimeter on board the Japanese-led solar space mission Solar-C as a backup option. The MuSICa (Multi-Slit Image slicer based on collimator-Camera) image slicer concept, originally developed for the European Solar Telescope, has been adapted to the SUVIT requirements. The IFU will reorganizes a 2-D field of view of 10 x 10 arcsec2 into three slits of 0.18 arcsec width by 185.12 arcsec length using flat slicer mirrors of 100 μm width. The layout of MuSICa for Solar-C is telecentric and offers an optical quality limited by diffraction. The entrance for the SUVIT spectro-polarimeter is composed by the three IFU slits and one ordinal long slit to study, using high resolution spectro-polarimetry, the solar atmosphere (Photosphere and Chromosphere) within a spectral range between 520 nm (optionally 280 nm) and 1,100 nm.

  2. Assessment of study space usage in the Kenneth Dike Library ...

    This paper explored the actual use of the physical space in Kenneth Dike Library by the students' population, the role these spaces are playing for learning and for related services in the university of Ibadan academic environment. It looked at the suitability of available spaces and suggestions for improvement. Survey ...

  3. Liturgy as space for anticipation | Cilliers | HTS Teologiese Studies ...

    This article proposes that the notion of liturgical space, understood in conjunction with the original Greek concept of space, is not only a quantitative, physical locality, but also a primary qualitative possibility for existence, a meaningful womb, a neighbourhood for imagination and a space for anticipation.

  4. Understanding of photosynthesis among students of biology and non-biology programmes of study

    Lekan, Erika

    2016-01-01

    Photosynthesis is one of the most important processes on Earth, thus knowing at least its basic principles is essential. In Slovenia, the students become acquainted with these principles in the fifth form of elementary school. Due to the complexity of the photosynthesis process, the students hold misconceptions about it since the very beginning of the learning process. Due to several factors and reasons, these misconceptions persist throughout the secondary school and university studies. ...

  5. Atomic Force Microscopy Application in Biological Research: A Review Study

    Surena Vahabi

    2013-06-01

    Full Text Available Atomic force microscopy (AFM is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  6. Models to Study NK Cell Biology and Possible Clinical Application.

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  7. Studies on the Promotion of Biological Application by Radiation

    No, Y. C.; Kuk, I. H.; Song, H. S.

    2006-03-01

    Radiation Technology (RT) has been widely used in most of all fields of industries, medical, bioresources, food and agriculture, public hygiene, and environment. Therefore, its application has been also researched in various parts. For industrialization of the developed technology, not only the application technology will be developed, but the accurate dosimetry and improvement of the services of irradiation practice should be performed as soon as possible. Evaluation of effects and reaction mechanism of biological materials by irradiation was performed in this year in the long term research planning. The researches and experiments were well performed and the good results were obtained. The results may be donated in the progress of radiation biology and the new establishment on the application of RT. Also, one of the results was the evaluation of the structural changes of biomolecules and its application in the fields of food and biotechnology industries. Advanced Radiation Technology Institute (ARTI) will be well settled down and promotion of research activity of newly established institute by the fundamental support of KAERI. And, ARTI can get the goal where the vision of the hub of RT in Asia/Pacific region by 2020

  8. Studies of relativistic effects with radioastron space mission

    Zakharov A.F.

    2007-01-01

    Full Text Available In the review we discuss possible studies of GR phenomena such as gravitational microlensing and shadow analysis with the forthcoming RadioAstron space mission. It is well-known that gravitational lensing is a powerful tool in the investigation of the distribution of matter, including that of dark matter (DM. Typical angular distances between images and typical time scales depend on the gravitational lens masses. For the microlensing, angular distances between images or typical astrometric shifts are about 10-5 – 10-6 as1. Such an angular resolution will be reached with the space-ground VLBI interferometer, Radioastron. The basic targets for microlensing searches should be bright point-like radio sources at cosmological distances. In this case, an analysis of their variability and a reliable determination of microlensing could lead to an estimation of their cosmological mass density. Moreover, one could not exclude the possibility that non-baryonic dark matter could also form microlenses if the corresponding optical depth were high enough. It is known that in gravitationally lensed systems, the probability (the optical depth to observe microlensing is relatively high; therefore, for example, such gravitationally lensed objects, like CLASS gravitational lens B1600+434, appear the most suitable to detect astrometric microlensing, since features of photometric microlensing have been detected in these objects. However, to directly resolve these images and to directly detect the apparent motion of the knots, the Radioastron sensitivity would have to be improved, since the estimated flux density is below the sensitivity threshold, alternatively, they may be observed by increasing the integration time, assuming that a radio source has a typical core - jet structure and microlensing phenomena are caused by the superluminal apparent motions of knots. In the case of a confirmation (or a disproval of claims about microlensing in grav­itational lens

  9. Thinking about Digestive System in Early Childhood: A Comparative Study about Biological Knowledge

    AHI, Berat

    2017-01-01

    The current study aims to explore how children explain the concepts of biology and how biological knowledge develops across ages by focusing on the structure and functions of the digestive system. The study was conducted with 60 children. The data were collected through the interviews conducted within a think-aloud protocol. The interview data…

  10. CiteSpace II: Idiom Studies Development Trends

    Wenyu Liu Ph.D.

    2013-06-01

    Full Text Available Idioms, frequently used in daily language, are a typical metaphorical language and may be a cue to uncover the universal language processing mechanism. For the purpose of better mastery of the trends and front of idioms studies, CiteSpace II, an application designed to detect and visualize the development process within a scientific field, is adopted for comprehensive literature review. It is found that (1 idioms studies have thrived since 1990s with American scholars contributing the most, especially those from University of California; (2 suppositions on idiom comprehension mechanism have been inspired by different scholars including Lakoff, Swinney and Gibbs; (3 the exploration of the neurological bases for idiom comprehension has become the pursuit of researchers across different domains.

  11. ECLSS Integration Analysis: Advanced ECLSS Subsystem and Instrumentation Technology Study for the Space Exploration Initiative

    1990-01-01

    In his July 1989 space policy speech, President Bush proposed a long range continuing commitment to space exploration and development. Included in his goals were the establishment of permanent lunar and Mars habitats and the development of extended duration space transportation. In both cases, a major issue is the availability of qualified sensor technologies for use in real-time monitoring and control of integrated physical/chemical/biological (p/c/b) Environmental Control and Life Support Systems (ECLSS). The purpose of this study is to determine the most promising instrumentation technologies for future ECLSS applications. The study approach is as follows: 1. Precursor ECLSS Subsystem Technology Trade Study - A database of existing and advanced Atmosphere Revitalization (AR) and Water Recovery and Management (WRM) ECLSS subsystem technologies was created. A trade study was performed to recommend AR and WRM subsystem technologies for future lunar and Mars mission scenarios. The purpose of this trade study was to begin defining future ECLSS instrumentation requirements as a precursor to determining the instrumentation technologies that will be applicable to future ECLS systems. 2. Instrumentation Survey - An instrumentation database of Chemical, Microbial, Conductivity, Humidity, Flowrate, Pressure, and Temperature sensors was created. Each page of the sensor database report contains information for one type of sensor, including a description of the operating principles, specifications, and the reference(s) from which the information was obtained. This section includes a cursory look at the history of instrumentation on U.S. spacecraft. 3. Results and Recommendations - Instrumentation technologies were recommended for further research and optimization based on a consideration of both of the above sections. A sensor or monitor technology was recommended based on its applicability to future ECLS systems, as defined by the ECLSS Trade Study (1), and on whether its

  12. A Study of Flexible Composites for Expandable Space Structures

    Scotti, Stephen J.

    2016-01-01

    Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.

  13. Neutronics Study of the KANUTER Space Propulsion Reactor

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee

    2014-01-01

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe 135 , and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity

  14. Neutronics Study of the KANUTER Space Propulsion Reactor

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe{sup 135}, and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity.

  15. Studies on penetration of antibiotic in bacterial cells in space conditions (7-IML-1)

    Tixador, R.

    1992-01-01

    The Cytos 2 experiment was performed aboard Salyut 7 in order to test the antibiotic sensitivity of bacteria cultivated in vitro in space. An increase of the Minimal Inhibitory Concentration (MIC) in the inflight cultures (i.e., an increase of the antibiotic resistance) was observed. Complementary studies of the ultrastructure showed a thickening of the cell envelope. In order to confirm the results of the Cytos 2 experiment, we performed the ANTIBIO experiment during the D1 mission to try to differentiate, by means of the 1 g centrifuge in the Biorack, between the biological effects of cosmic rays and those caused by microgravity conditions. The originality of this experiment was in the fact that it was designed to test the antibiotic sensitivity of bacteria cultivated in vitro during the orbital phase of the flight. The results show an increase in resistance to Colistin in in-flight bacteria. The MIC is practically double in the in-flight cultures. A cell count of living bacteria in the cultures containing the different Colistin concentrations showed a significant difference between the cultures developed during space flight and the ground based cultures. The comparison between the 1 g and 0 g in-flight cultures show similar behavior for the two sets. Nevertheless, a small difference between the two sets of ground based control cultures was noted. The cultures developed on the ground centrifuge (1.4 g) present a slight decrease in comparison with the cultures developed in the static rack (1 g). In order to approach the mechanisms of the increase of antibiotic resistance on bacteria cultivated in vitro in space, we have proposed the study on penetration of antibiotics in bacterial cells in space conditions. This experiment was selected for the International Microgravity Laboratory 1 (IML-1) mission.

  16. Autonomy and Fear of Synthetic Biology: How Can Patients' Autonomy Be Enhanced in the Field of Synthetic Biology? A Qualitative Study with Stable Patients.

    Rakic, Milenko; Wienand, Isabelle; Shaw, David; Nast, Rebecca; Elger, Bernice S

    2017-04-01

    We analyzed stable patients' views regarding synthetic biology in general, the medical application of synthetic biology, and their potential participation in trials of synthetic biology in particular. The aim of the study was to find out whether patients' views and preferences change after receiving more detailed information about synthetic biology and its clinical applications. The qualitative study was carried out with a purposive sample of 36 stable patients, who suffered from diabetes or gout. Interviews were transcribed verbatim, translated and fully anonymized. Thematic analysis was applied in order to examine stable patients' attitudes towards synthetic biology, its medical application, and their participation in trials. When patients were asked about synthetic biology in general, most of them were anxious that something uncontrollable could be created. After a concrete example of possible future treatment options, patients started to see synthetic biology in a more positive way. Our study constitutes an important first empirical insight into stable patients' views on synthetic biology and into the kind of fears triggered by the term "synthetic biology." Our results show that clear and concrete information can change patients' initial negative feelings towards synthetic biology. Information should thus be transmitted with great accuracy and transparency in order to reduce irrational fears of patients and to minimize the risk that researchers present facts too positively for the purposes of persuading patients to participate in clinical trials. Potential participants need to be adequately informed in order to be able to autonomously decide whether to participate in human subject research involving synthetic biology.

  17. Assessment of Protective Properties of Optimized Flagellin Derivative Against Biologically Harmful Effects of Ionizing Irradiation During Space Flight, Phase I

    National Aeronautics and Space Administration — The goal of this proposal is to explore a novel proprietary biopharmaceutical agent, named deltaFL-AA', a first in the series of innovative radioprotectors to act as...

  18. Studies of the reproductive biology of deep sea megabenthos

    Tyler, P.A.; Muirhead, A.

    1986-06-01

    Specimens of six species of aspidochirota from depths between 1245 and 2315m in the N.E. Atlantic have been examined and their reproductive biology determined. Two species Paelopatides grisea and Benthothuria funebris produce the large eggs typical of direct development. Mesothuria lactea and M. verrilli have an intermediate egg size of c. 400μm whilst Bathyplotes natans has an egg size of c. 280μm, which may be indicative of indirect development. The last species Paroriza pallens is an hermaphrodite producing an egg of c. 250μm. With the exception of Bathyplotes natans, which appears to show periodic reproduction if not seasonal, the species show no evidence of reproductive seasonality. (author)

  19. Space reactor electric systems: system integration studies, Phase 1 report

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-01-01

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied

  20. Studies on urine treatment by biological purification using Azolla and UV photocatalytic oxidation

    Liu, Xiaofeng; Chen, Min; Bian, Zuliang; Liu, Chung-Chu

    The amount of water consumed in space station operations is very large. In order to reduce the amount of water which must be resupplied from Earth, the space station needs to resolve the problems of water supply. For this reason, the recovery, regeneration and utilization of urine of astronauts are of key importance. Many investigations on this subject have been reported. Our research is based on biological absorption and, purification using UV photocatalytic oxidation techniques to achieve comprehensive treatment for urine. In the treatment apparatus we created, the urine solution is used as part of the nutrient solution for the biological components in our bioregenerative life support system. After being absorbed, the nutrients from the urine were then decomposed, metabolized and purified which creates a favorable condition for the follow-up oxidation treatment by UV photocatalytic oxidation. After these two processes, the treated urine solution reached Chinese national standards for drinking water quality (GB5749-1985).

  1. Recommendations for designing and conducting veterinary clinical pathology biologic variation studies.

    Freeman, Kathleen P; Baral, Randolph M; Dhand, Navneet K; Nielsen, Søren Saxmose; Jensen, Asger L

    2017-06-01

    The recent creation of a veterinary clinical pathology biologic variation website has highlighted the need to provide recommendations for future studies of biologic variation in animals in order to help standardize and improve the quality of published information and to facilitate review and selection of publications as standard references. The following recommendations are provided in the format and order commonly found in veterinary publications. A checklist is provided to aid in planning, implementing, and evaluating veterinary studies on biologic variation (Appendix S1). These recommendations provide a valuable resource for clinicians, laboratorians, and researchers interested in conducting studies of biologic variation and in determining the quality of studies of biologic variation in veterinary laboratory testing. © 2017 American Society for Veterinary Clinical Pathology.

  2. Laboratory Calibration Studies in Support of ORGANICS on the International Space Station: Evolution of Organic Matter in Space

    Ruiterkamp, R.; Ehrenfreund, P.; Halasinski, T.; Salama, F.; Foing, B.; Schmidt, W.

    2002-01-01

    This paper describes the scientific overview and current status of ORGANICS an exposure experiment performed on the International Space Station (ISS) to study the evolution of organic matter in space (PI: P. Ehrenfreund), with supporting laboratory experiments performed at NASA Ames. ORGANICS investigates the chemical evolution of samples submitted to long-duration exposure to space environment in near-Earth orbit. This experiment will provide information on the nature, evolution, and survival of carbon species in the interstellar medium (ISM) and in solar system targets.

  3. Exergy performance of different space heating systems: A theoretical study

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    , the effects of floor covering resistance on the whole system performance were studied using two heat sources; a natural gas fired condensing boiler and an air-source heat pump. The heating systems were also compared in terms of auxiliary exergy use for pumps and fans. The low temperature floor heating system......Three space heating systems (floor heating with different floor covering resistances, radiator heating with different working temperatures, warm-air heating with and without heat recovery) were compared using a natural gas fired condensing boiler as the heat source. For the floor heating systems...... performed better than other systems in terms of exergy demand. The use of boiler as a heat source for a low-exergy floor heating system creates a mismatch in the exergy supply and demand. Although an air-source heat pump could be a better heat source, this depends on the origin of the electricity supplied...

  4. Preliminary closed Brayton cycle study for a space reactor application

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de; Camillo, Giannino Ponchio

    2007-01-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  5. Preliminary closed Brayton cycle study for a space reactor application

    Guimaraes, Lamartine Nogueira Frutuoso; Carvalho, Ricardo Pinto de [Institute for Advanced Studies, Sao Jose dos Campos, SP (Brazil)]. E-mail: guimarae@ieav.cta.br; Camillo, Giannino Ponchio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)]. E-mail: gianninocamillo@gmail.com

    2007-07-01

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are to establish a starting concept for the CBCL components specifications, and to develop a demonstrative simulator of CBCL in nominal operation conditions. The ENU/IEAv preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. At this moment the simulator is running with Helium as the working fluid. Simplified models of heat and mass transfer are being developed to simulate thermal components. Future efforts will focus on keeping track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. (author)

  6. Origins Space Telescope Concept 2: Trades, Decisions, and Study Status

    Leisawitz, David; DiPirro, Michael; Carter, Ruth; Origins Space Telescope Decadal Mission Concept Study Team

    2018-01-01

    The Origins Space Telescope (OST) will trace the history of our cosmic origins from the time dust and heavy elements began to alter the astrophysical processes that shaped galaxies and enabled planets to form, culminating at least once in the development of a life-bearing planet. But how did the universe evolve in response to its changing ingredients, and how common are planets that support life? The OST, an advancing concept for the Far-Infrared Surveyor mission described in the NASA Astrophysics roadmap, is being designed to answer these questions. As envisaged in the Roadmap, Enduring Quests/Daring Visions, OST will offer sensitivity and spectroscopic capabilities that vastly exceed those found in any preceding far-IR observatory. The spectral range of OST was extended down to 6 microns to allow measurements of key biomarkers in transiting exoplanet spectra. Thus, OST is a mid- and far-IR mission. OST Concept 2 will inform the Science and Technology Definition Team’s understanding of the “solution space,” enabling a recommendation to the 2020 Decadal Survey which, while not fully optimized, will be scientifically compelling, executable, and intended to maximize the science return per dollar. OST Concept 1, described in a companion paper, would satisfy virtually all of the STDT’s science objectives in under 5 years. Concept 2 is intentionally less ambitious than Concept 1, but it still includes a 4 K telescope, enabling exquisitely sensitive far-IR measurements. This paper will summarize the architecture options considered for OST Concept 2 and describe the factors that led to the chosen design concept. Lessons from the Concept 1 study influenced our choices. We report progress on the Concept 2 study to date.

  7. Nuclear space power safety and facility guidelines study

    Mehlman, W.F.

    1995-01-01

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an open-quotes Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missionsclose quotes. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system

  8. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  9. Revitalizing the unused urban space, case study: Lhokseumawe, Aceh -Indonesia

    Wahid, J.; Karsono, B.; Koesmeri, D. R. A.; Indriannisa, S. E.

    2018-03-01

    The phenomenon of urban decline in the highly industrialized nation is now slowly taking place in the developing world. Deindustrialization as defined as a decline in the manufacturing sectors led to the changes in social, economic and subsequently a shift in urban activities. By taking Lhokseumawe, Aceh, Republic of Indonesia as an example, this paper attempts to uncover the possibilities and opportunities in identifying the causes and tracing back on the decline. Lhokseumawe, Aceh was a well-known industrial region outside Java Island, and it has attracted thousands of workers from northern Sumatera and the nearby regions. After the downturn of the economy and the change in activities, the city slowly showed a decline. Scholars has estimated that one in six of the cities around the world that relied on oil and gas production activities will suffer from this phenomenological impact. Lhokseumawe is a good example of an industrial plants where PT Arun LNG (private limited company) operated since 1974 grew up rapidly and nicknamed “Petrodollar City”. The trickle effect of the activities from the petrodollar business led to a few settlements popping up at the periphery as a result of urban sprawl from Lhokseumawe, however, the glory of the economic growth outlived within a short period. This was resulted from the production of PT Arun NGL which had dropped dramatically in the 2000s and suddenly closed the operation in October 2014. From these perspectives, this paper attempts to investigate the impact of deindustrialization within the urban space and activity in Lhokseumawe which have consequences to urban declining phenomena. By taking one of the revitalized urban space formerly known as Cunda Plaza (CP) as a case study area, the paper will apply synoptic method through observation, space mapping and interview techniques for gathering and examining the data. The findings indicates that Cunda Plaza is a magnet as a central hub of urban activities which can be

  10. Applied Bayesian statistical studies in biology and medicine

    D’Amore, G; Scalfari, F

    2004-01-01

    It was written on another occasion· that "It is apparent that the scientific culture, if one means production of scientific papers, is growing exponentially, and chaotically, in almost every field of investigation". The biomedical sciences sensu lato and mathematical statistics are no exceptions. One might say then, and with good reason, that another collection of bio­ statistical papers would only add to the overflow and cause even more confusion. Nevertheless, this book may be greeted with some interest if we state that most of the papers in it are the result of a collaboration between biologists and statisticians, and partly the product of the Summer School th "Statistical Inference in Human Biology" which reaches its 10 edition in 2003 (information about the School can be obtained at the Web site http://www2. stat. unibo. itleventilSito%20scuolalindex. htm). is common experience - and not only This is rather important. Indeed, it in Italy - that encounters between statisticians and researchers are spora...

  11. Preliminary Study of Greywater Treatment through Rotating Biological Contactor

    Ashfaq Ahmed Pathan

    2011-07-01

    Full Text Available The characteristics of the greywater vary from country to country and it depends upon the cultural and social behavior of the respective country. There was a considerable need to characterize and recycle the greywater. In this regard greywater was separated from the black water and analyzed for various physiochemical parameters. Among various greywater recycling treatment technologies, RBC (Rotating Biological Contactor is more effective treatment technique in reducing COD (Chemical Oxygen Demand and organic matters from the greywater. But this technology was not applied and tested in Pakistan. There was extensive need to investigate the RBC technology for greywater recycling at small scale before applying at mass scale. To treat the greywater, a single-stage RBC simulator was designed and developed at laboratory scale. An electric motor equipped with gear box to control the rotations of the disks was mounted on the tank. The simulator was run at the rate of 1.7 rpm. The disc area of the RBC was immersed about 40% in the greywater. Water samples were collected at each HRT (Hydraulic Retention Time and analyzed for the parameters such as pH, conductivity, TDS (Total Dissolved Solids, salinity, BOD5 (Biochemical Oxygen Demand, COD and suspended solids by using standard methods. The results are encouraging with percentage removal of BOD5 and COD being 53 and 60% respectively.

  12. Extraction, characterization and biological studies of phytochemicals from Mammea suriga

    Mahesha M. Poojary

    2015-06-01

    Full Text Available The present work involves extraction of phytochemicals from the root bark of a well-known Indian traditional medicinal plant, viz. Mammea suriga, with various solvents and evaluation of their in vitro antimicrobial and antioxidant activities using standard methods. The phytochemical analysis indicates the presence of some interesting secondary metabolites like flavonoids, cardiac glycosides, alkaloids, saponins and tannins in the extracts. Also, the solvent extracts displayed promising antimicrobial activity against Staphylococcus aureus, Bacillus subtilis and Cryptococcus neoformans with inhibition zone in a range of 20–33 mm. Further, results of their antioxidant screening revealed that aqueous extract (with IC50 values of 111.51±1.03 and 31.05±0.92 μg/mL in total reducing power assay and DPHH radical scavenging assay, respectively and ethanolic extract (with IC50 values of 128.00±1.01 and 33.25±0.89 μg/mL in total reducing power assay and DPHH radical scavenging assay, respectively were better antioxidants than standard ascorbic acid. Interestingly, FT-IR analysis of each extract established the presence of various biologically active functional groups in it. Keywords: Mammea suriga, Phytochemical analysis, Antimicrobial activity, Antioxidant assay, FT-IR analysis

  13. An ESR study on biological dosimeters: Human hair

    Colak, Seyda; Ozbey, Turan

    2011-01-01

    In the present work, characteristic features of the radicals found in untreated, gamma and UV-irradiated and mechanical damaged human hair samples were investigated by ESR spectroscopy. Heights of the resonance peaks measured with respect to the spectrum base line were used to monitor microwave power, dose-response, storage time and temperature dependent kinetic features of the radical species contributing to the formation of recorded experimental ESR spectra. Peak heights and g-values (2.0037-2.0052) determined from recorded spectra of hair were color dependent with ΔHpp-0.47 mT. The act of cutting hair samples gene rates sulfur centered radicals which are found in the a-keratin structure of hair. The variations of the peak heights with temperature were related with the water content found in the hair samples. In the 6-1100 Gy dose range, a linear + quadratic dose-response curve was recorded for hair and the mean radiation yield (G mean ) was calculated to be 0.4. The gamma radiation induced radicals were stable for a several hours at room temperature storage conditions. Based on these findings it was concluded that human hair samples could be used as biological/personnel dosimeters and that ESR spectroscopy could be successfully used as a potential technique for monitoring its dosimetric behaviours.

  14. Scanning Ion Conductance Microscopy for Studying Biological Samples

    Irmgard D. Dietzel

    2012-11-01

    Full Text Available Scanning ion conductance microscopy (SICM is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell.

  15. Radiochemistry - Applications in the study of radical mechanisms of biological interest

    Foos, Jacques

    1982-01-01

    In biology, oxygen reducing processes give rise to the formation of intermediate radicals. One of the major breakthroughs of radiation chemistry of aqueous solutions is the identification of these compounds. The author describes the techniques used to study the reaction of these radicals (of radiolytic origin) with biological molecules [fr

  16. Investigating Lebanese Grade Seven Biology Teachers Mathematical Knowledge and Skills: A Case Study

    Raad, Nawal Abou; Chatila, Hanadi

    2016-01-01

    This paper investigates Lebanese grade 7 biology teachers' mathematical knowledge and skills, by exploring how they explain a visual representation in an activity depending on the mathematical concept "Function". Twenty Lebanese in-service biology teachers participated in the study, and were interviewed about their explanation for the…

  17. Water Quality Monitoring: An Environmental Studies Unit for Biology 20/30. Teacher's Guide.

    Alberta Environment, Edmonton. Environmental Education Resources Branch.

    The objective of this environmental studies unit is to establish a water quality monitoring project for high school students in Alberta while simultaneously providing a unit which meets the objectives of the Biology 20 program (and which may also be used in Biology 10 and 30). Through this project, students assist in the collection,…

  18. Water Quality Monitoring: An Environmental Studies Unit for Biology 20/30. Student Manual.

    Alberta Environment, Edmonton. Environmental Education Resources Branch.

    The objective of this environmental studies unit is to establish a water quality monitoring project for high school students in Alberta while simultaneously providing a unit which meets the objectives of the Biology 20 program (and which may also be used in Biology 10 and 30). Through this project, students assist in the collection,…

  19. Study on the mapping of dark matter clustering from real space to redshift space

    Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.

  20. Study on the mapping of dark matter clustering from real space to redshift space

    Zheng, Yi; Song, Yong-Seon

    2016-01-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc -1 , considering the resolution of future experiments.

  1. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  2. Deep Neck Space Infections: A Study of 76 Cases

    Gaurav Kataria

    2015-07-01

    Full Text Available Introduction: Deep neck space infections (DNSI are serious diseases that involve several spaces in the neck. The common primary sources of DNSI are dental infections, tonsillar and salivary gland infections, malignancies, and foreign bodies. With widespread use of antibiotics, the prevalence of DNSI has been reduced. Common complications of DNSI include airway obstruction, jugular vein thrombosis, and sepsis. Treatment principally comprises airway management, antibiotic therapy, and surgical intervention. This study was conducted to investigate the age and sex distribution of patients, symptoms, presentation, sites involved, bacteriology, and management and complications of DNSI.   Materials and Methods: This retrospective study was performed from October 2010 to January 2013, and included 76 patients with DNSI. Patients of all age groups and gender were included. All parameters including age, gender, co-morbidities, presentation, site, bacteriology, complications, and required interventions were studied.   Results: In our study, the majority of patients were in the 31–50-year age group. Males accounted for 55.26% of the sample and females for 44.74%, with a male:female ratio of 1.23. Most of the patients were from a rural background. Diabetes was found as a co-morbid condition in 10.52% cases. Neck pain was the most common symptom, identified in 89.47% cases. The most common etiological factor was odontogenic infection (34.21%, followed by tonsillar and pharyngeal infection (27.63%. The most common presentation was Ludwig’s angina (28.94%, followed by peritonsillar abscess and submandibular abscess. In 50% of cases, Streptococcus and Staphylococcus were found in the culture. Surgical intervention was carried out in 89.47% cases. Emergency tracheotomy was required in 5.26% cases.   Conclusion:  DNSI can be life-threatening in diabetic patients, the immunocompromised, and elderly patients, and special attention should therefore be given

  3. Investigating shape and space in mathematics: A case study | Kotze ...

    Evidence was obtained regarding mathematics teachers' and mathematics learners' knowledge of space and shape. Problems experienced in concept formation in geometry were investigated and analysed. An account is provided of how teachers and learners responded to problems related to space and shape.

  4. A Satellite Mortality Study to Support Space Systems Lifetime Prediction

    Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory

    2013-01-01

    Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.

  5. Tomography studies of biological cells on polymer scaffolds

    Thurner, P; Mueller, B; Sennhauser, U; Hubbell, J; Mueller, R

    2004-01-01

    Advances in cell biology and tissue engineering rely heavily on performing 2D cell culture experiments. Analysis of these is conventionally done with 2D imaging techniques such as light (LM) or electron microscopy (SEM), since they are readily available. Cells, however, might act significantly differently when cultured in 2D or 3D environments. In order to analyse cells in a 3D arrangement, new imaging techniques are necessary not only in order to visualize the periphery of the cell culture in reflection mode but also to perform qualitative and quantitative investigations of the inner parts. Synchrotron radiation micro-computed tomography (SRμCT) using hard x-rays was shown to be a promising tool that can be used for 3D cell culture visualization. SRμCT allows not only visualization of cell cultures in their native 3D environment but also use of the volumetric nature of this imaging procedure to evaluate the cells quantitatively. In our approach, cells were seeded on polymer yarns, stained and measured with SRμCT in absorption and in differential absorption contrast mode. A new segmentation procedure was developed and the measured volumetric data were quantitatively assessed. Quantification parameters included total cell volume, total yarn volume, cell volume density, which is the ratio of cell to yarn volume, and the radial cell mass distribution. The applied variation of the staining parameter of gold enhancement incubation time was shown to have significant influence on the cell volume density. Differential absorption contrast mode was found to provide similar but no additional information on the investigated sample. Using novel approaches of hierarchical volumetric imaging allows closure of the gap between imaging of whole organs and single cells and might be expanded to even higher resolutions, offering investigation of the cell machinery in closer detail

  6. Synthesis, characterization and biological studies of copper oxide nanostructures

    Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad

    2018-04-01

    The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.

  7. Investigating the Effect of Biological Crusts on Some Biological Properties of Soil (Case Study: Qare Qir Rangelands of Golestan Province

    J. Kakeh

    2016-09-01

    Full Text Available Introduction: Physical and biological soil crusts are the principal types of soil crusts. Physical and biological soil crusts are distributed in arid, semi-arid and sub-humid regions which constitute over 40% of the earth terrestrial surface. Biological soil crusts (BSCs result from an intimate association between soil particles and cyanobacteria, algae, fungi, lichens and mosses in different proportions which live on the surface, or in the immediately uppermost millimeters of soil. Some of the functions that BSCs influences include: water absorption and retention, nutrient retention, Carbon and nitrogen fixation, biological activate and hydrologic Status. BSCs are important from the ecological view point and their effects on the environment, especially in rangeland, and desert ecosystems and this caused which researchers have a special attention to this component of the ecosystems more than before. Materials and Methods: This study carried out in the Qara Qir rangelands of Golestan province, northeast of Iran (37º15′ - 37º23′ N &54º33′ -54º39′ E, to investigate the effects of BSCs on some of soil biological properties. Four sites including with and without BSCs cover were selected. Soil biological properties such as microbial populations, soil respiration, microbial biomass carbon and nitrogen, as well as, other effective properties such asorganic carbon percent, total nitrogen, electrical conductivity, and available water content were measured in depths of 0-5 and 5-15 cm of soil with four replications. The gathered data were analyzed by nested plot, and the mean values were compared by Duncan test. Results and Discussion: The results showed that organic carbon and water content were higher at the surface under BSCs, followed by 5-15 cm soils under BSCs. Both soil depths of uncrusted soils showed substantially lower organic carbon and water content than the BSC-covered soils. Total nitrogen was far higher in BSC-encrusted surface

  8. Human space biology at SCK-CEN: from in vitro cell experiments to the follow-up of astronauts

    Baatout, S.

    2009-01-01

    Prolonged exposure to space radiation and extended microgravity has revealed profound physiological and clinical changes in astronauts. The health problems thought to be related to the effects of microgravity include a decrease in the heart and the respiratory rates, a loss of body weight, changes in bone calcium, a redistribution of body fluids with a greater amount in the upper body, a decrease in muscle tissue, a weakening of the veins and arteries in the legs, as well as an underproduction of red blood cells leading to anaemia. At the cellular and molecular levels, microgravity is known to induce both a loss of T-cell activation and changes in gene expression patterns, as well as a three-dimensional growth of normal cells and tumour cells, an alteration of the mitochondrial organization, a modification of the production of extracellular matrix proteins and apoptosis in some types of cells. The Earth's magnetic field protects us from harmful radiation. On Earth, we are still exposed to small amounts of radiation when we go for medical x-rays, when we travel on transcontinental flights or just from radon in the air. However, astronauts are exposed to 50 to 100 times as much radiation - and that is just in a low Earth orbit. In deep space, astronauts can be exposed to even higher doses. It is well known that large amounts of radiation can cause severe health effects by altering DNA in our cells. The health effects from space radiation are therefore a critical safety concern for long-term space travel. Possible health risks include cancer, cataracts, acute radiation sickness, hereditary effects, and damage to the central nervous system. The aims of this research are 1) to ensure the immunological monitoring of a cohort of astronauts (having spent around 6 months aboard the International Space Station ISS) and 2) to investigate the effects of an in vitro exposure of endothelial cells and other types of cells to radiation and/or microgravity conditions

  9. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  10. NASA FACILITY FOR THE STUDY OF SPACE RADIATION EFFECTS

    Johnson, David R.

    1963-04-15

    Information on the energies andd fluxes of trapped electrons and protons in space is summarized, and the Space Radiation Effects Laboratory being constructed to simulate most of the space particulate-energy spectrum is described. A 600-Mev proton synchrocyclotron of variable energy and electron accelerators of 1 to 10 Mev will be included. The accelerator characteristics and the arrangement of the experimental and support buildings, particularly the beam facilities, are discussed; and the planned activities of the laboratory are given. (D.C.W.)

  11. Blood troponin levels in acute cardiac events depends on space weather activity components (a correlative study).

    Stoupel, Eliiyahu; Radishauskas, Richardas; Bernotiene, Gailute; Tamoshiunas, Abdonas; Virvichiute, Daiva

    2018-02-05

    Many biological processes are influenced by space weather activity components such as solar activity (SA), geomagnetic activity (GMA) and cosmic ray activity (CRA). Examples are total mortality, acute myocardial infarction (AMI), stroke (cerebrovascular accident), sudden cardiac death, some congenital maladies (congenital heart disease and Down syndrome), many events in neonatology, ophtalmology, blood pressure regulation, blood coagulation, inflammation, etc. The aim of this study was to check if the level of blood troponins (Tns) - markers of myocardial damage and recognized components of modern description of AMI - is connected with the mentioned space weather parameters. Patients admitted to a 3000-bed tertiary university hospital in Kaunas, Lithuania, with suspected AMI were the object of the study. Data for the time between 2008 and 2013 - 72 consecutive months - were studied. Of the patients, 1896 (1398 male, 498 female) had elevated troponin I (Tn I) or troponin T (Tn T, sensitive Tn) levels. Normal values were 0.00-0.03 ng/mL for Tn I and 0.00-14.00 ng/mL for Tn T. Monthly means and standard deviation of Tn I and Tn T were compared with monthly markers of SA, GMA and CRA. Pearson correlation coefficients and their probabilities were established (in addition to the consecutive graphs of both comparing physical and biological data). The cosmophysical data came from space service institutions in the United States, Russia and Finland. AMI was diagnosed in 1188 patients (62.66%), and intermediate coronary syndrome in 698 patients (36.81%). There were significant links of the Tn blood levels with four SA indices and CRA (neutron activity in imp/min); there was no significant correlation with GMA indices Ap and Cp (p=0.27 and p=0.235). Tn T levels significantly correlated with the GMA indices and not with the SA and CRA levels (Ap: r=0.77, p=0.0021; Cp: r=0.729, p=0.0047). First, the monthly level of blood Tn I in ACS is significantly correlated with the indices

  12. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells.

    Bauer, Johann; Bussen, Markus; Wise, Petra; Wehland, Markus; Schneider, Sabine; Grimm, Daniela

    2016-07-01

    More than one hundred reports were published about the characterization of cells from malignant and healthy tissues, as well as of endothelial cells and stem cells exposed to microgravity conditions. We retrieved publications about microgravity related studies on each type of cells, extracted the proteins mentioned therein and analyzed them aiming to identify biological processes affected by microgravity culture conditions. The analysis revealed 66 different biological processes, 19 of them were always detected when papers about the four types of cells were analyzed. Since a response to the removal of gravity is common to the different cell types, some of the 19 biological processes could play a role in cellular adaption to microgravity. Applying computer programs, to extract and analyze proteins and genes mentioned in publications becomes essential for scientists interested to get an overview of the rapidly growing fields of gravitational biology and space medicine.

  13. Study Reveals Brain Biology behind Self-Control

    Sparks, Sarah D.

    2011-01-01

    A new neuroscience twist on a classic psychology study offers some clues to what makes one student able to buckle down for hours of homework before a test while his classmates party. The study published in the September 2011 edition of "Proceedings of the National Academy of Science," suggests environmental cues may "hijack" the brain's mechanisms…

  14. A management information system to study space diets.

    Kang, Sukwon; Both, A J

    2002-01-01

    A management information system (MIS), including a database management system (DBMS) and a decision support system (DSS), was developed to dynamically analyze the variable nutritional content of foods grown and prepared in an Advanced Life Support System (ALSS) such as required for long-duration space missions. The DBMS was designed around the known nutritional content of a list of candidate crops and their prepared foods. The DSS was designed to determine the composition of the daily crew diet based on crop and nutritional information stored in the DBMS. Each of the selected food items was assumed to be harvested from a yet-to-be designed ALSS biomass production subsystem and further prepared in accompanying food preparation subsystems. The developed DBMS allows for the analysis of the nutrient composition of a sample 20-day diet for future Advanced Life Support missions and is able to determine the required quantities of food needed to satisfy the crew's daily consumption. In addition, based on published crop growth rates, the DBMS was able to calculate the required size of the biomass production area needed to satisfy the daily food requirements for the crew. Results from this study can be used to help design future ALSS for which the integration of various subsystems (e.g., biomass production, food preparation and consumption, and waste processing) is paramount for the success of the mission.

  15. A management information system to study space diets

    Kang, Sukwon; Both, A. J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A management information system (MIS), including a database management system (DBMS) and a decision support system (DSS), was developed to dynamically analyze the variable nutritional content of foods grown and prepared in an Advanced Life Support System (ALSS) such as required for long-duration space missions. The DBMS was designed around the known nutritional content of a list of candidate crops and their prepared foods. The DSS was designed to determine the composition of the daily crew diet based on crop and nutritional information stored in the DBMS. Each of the selected food items was assumed to be harvested from a yet-to-be designed ALSS biomass production subsystem and further prepared in accompanying food preparation subsystems. The developed DBMS allows for the analysis of the nutrient composition of a sample 20-day diet for future Advanced Life Support missions and is able to determine the required quantities of food needed to satisfy the crew's daily consumption. In addition, based on published crop growth rates, the DBMS was able to calculate the required size of the biomass production area needed to satisfy the daily food requirements for the crew. Results from this study can be used to help design future ALSS for which the integration of various subsystems (e.g., biomass production, food preparation and consumption, and waste processing) is paramount for the success of the mission.

  16. Studies of extracerebral space on brain CT of infants

    Shibakiri, Ippei; Furukawa, Takashi; Fukakusa, Shunichi; Nemoto, Yutaka; Takashima, Sumio.

    1983-01-01

    Frontal extracerebral space (ECS) is frequently noticed on brain CT of infants. Based on 70 infants whose initial CTs were available under 1 year of age and who were observed serially by brain CT, we studied the relation between degrees of ECS enlargement and mental and physical development of infants. Development was assessed by clinical observation and the mental test according to Tsumori and Inage at about 1 year of age. 1) Under 1 year of age, ECS was observed both in the normally developed infants and the infants with retarded development. At 1 year of age, CT of the former showed no or only mild widening, but most CT of the latter showed marked dilatation of ECS. 2) Serial observation of brain CT revealed that ECS of normally developed infants tended to reduce at 1 year of age, but that of infants with retarded development did not. 3) Regarding prediction of infantile development, it is important to observe presence of ECS and of the tendency to reduce on brain CT at 1 year of age. 4) Appearance of ECS of normally developed infants is considered to be a physiological phenomenon. (author)

  17. Neutron scattering and diffraction instrument for structural study on biology in Japan

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    Neutron scattering and diffraction instruments in Japan which can be used for structural studies in biology are briefly introduced. Main specifications and general layouts of the instruments are shown.

  18. Technological Development of High-Performance MALDI Mass Spectrometry Imaging for the Study of Metabolic Biology

    Feenstra, Adam D. [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    This thesis represents efforts made in technological developments for the study of metabolic biology in plants, specifically maize, using matrix-assisted laser desorption/ ionization-mass spectrometry imaging.

  19. Effects of Space Weathering on Reflectance Spectra of Ureilites: A Proof-of-Concept Study

    Goodrich, C. A.; Gillis-Davis, J.; Cloutis, E.; Applin, D.; Hibbits, C.; Klima, R.; Christoffersen, R.; Fries, M.; Decker, S.

    2017-07-01

    Space weathering and spectral studies of three ureilitic samples show that space weathering causes significant changes in UV-VIS-IR spectra and Raman spectra. Changes due to amorphization of carbon could disguise ureilitic asteroids as CC-like.

  20. Space station automation study: Automation requriements derived from space manufacturing concepts,volume 2

    1984-01-01

    Automation reuirements were developed for two manufacturing concepts: (1) Gallium Arsenide Electroepitaxial Crystal Production and Wafer Manufacturing Facility, and (2) Gallium Arsenide VLSI Microelectronics Chip Processing Facility. A functional overview of the ultimate design concept incoporating the two manufacturing facilities on the space station are provided. The concepts were selected to facilitate an in-depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, sensors, and artificial intelligence. While the cost-effectiveness of these facilities was not analyzed, both appear entirely feasible for the year 2000 timeframe.

  1. AIR MEETS SPACE: SHAPING THE FUTURE OF COMMERCIAL SPACE TRAFFIC: I. STUDY INTRODUCTION AND INITIAL RESULTS

    Tüllmann, Ralph; Arbinger, Christian; Baskcomb, Stuart; Berdermann, Jens; Fiedler, Hauke; Klock, Erich; Schildknecht, Thomas

    2016-01-01

    There are high expectations for a globally growing market of commercial space travel which is likely to turn in the next 10 to 20 years into a multi-billion Euro business. Those growth expectations are also backed up by OneWeb’s order of about 700 small satellites which are likely to be brought into LEO via air launches and by a continuously growing LEO launch rate showing an increase of about 60% in the last decade. Advances in electric propulsion and spacecraft design (CubeSats) hel...

  2. Structural Biology Fact Sheet

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  3. Biological, histological and ultra-structural studies of female mullet ...

    Aghomotsegin

    2015-07-29

    Jul 29, 2015 ... INTRODUCTION. Mugilids are widely distributed ... were fixed in 10% formal saline solution until used for histological studies. The gonadosomatic .... cephalus (October and November), in general all the ovaries of ripe marine ...

  4. Biological characteristics as a part of pollution monitoring studies

    Nair, V.R.; Govindan, K.

    Ecosystem modifications can be considered as an integral part of any pollution monitoring studies and in such cases community structure/diversity is of prime importance. Considering this advantage of aquatic life, pelagic and benthic communities...

  5. Northeast Cooperative Research Study Fleet (SF) Program Biological Sampling Data

    National Oceanic and Atmospheric Administration, Department of Commerce — Northeast Cooperative Research Study Fleet (SF) Program partners with a subset of commercial fishermen to collect high quality, high resolution, haul by haul...

  6. Neutral Evolution in a Biological Population as Diffusion in Phenotype Space: Reproduction with Local Mutation but without Selection

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2007-03-01

    The process of “evolutionary diffusion,” i.e., reproduction with local mutation but without selection in a biological population, resembles standard diffusion in many ways. However, evolutionary diffusion allows the formation of localized peaks that undergo drift, even in the infinite population limit. We relate a microscopic evolution model to a stochastic model which we solve fully. This allows us to understand the large population limit, relates evolution to diffusion, and shows that independent local mutations act as a diffusion of interacting particles taking larger steps.

  7. Small-scale laser based electron accelerators for biology and medicine: a comparative study of the biological effectiveness

    Labate, Luca; Andreassi, Maria Grazia; Baffigi, Federica; Basta, Giuseppina; Bizzarri, Ranieri; Borghini, Andrea; Candiano, Giuliana C.; Casarino, Carlo; Cresci, Monica; Di Martino, Fabio; Fulgentini, Lorenzo; Ghetti, Francesco; Gilardi, Maria Carla; Giulietti, Antonio; Köster, Petra; Lenci, Francesco; Levato, Tadzio; Oishi, Yuji; Russo, Giorgio; Sgarbossa, Antonella; Traino, Claudio; Gizzi, Leonida A.

    2013-05-01

    Laser-driven electron accelerators based on the Laser Wakefield Acceleration process has entered a mature phase to be considered as alternative devices to conventional radiofrequency linear accelerators used in medical applications. Before entering the medical practice, however, deep studies of the radiobiological effects of such short bunches as the ones produced by laser-driven accelerators have to be performed. Here we report on the setup, characterization and first test of a small-scale laser accelerator for radiobiology experiments. A brief description of the experimental setup will be given at first, followed by an overview of the electron bunch characterization, in particular in terms of dose delivered to the samples. Finally, the first results from the irradiation of biological samples will be briefly discussed.

  8. Physicochemical and biological study of a renal scintigraphy agent: the DMSA - 99mTc complex

    Laroche, Dominique

    1979-01-01

    This research thesis deals with the study of the dimercaptosuccinic acid (DMSA) marked with 99m Tc, a recently developed scintigraphy agent used for the kidney isotopic exploration. The author notably studied the relationships between the physicochemical properties of solutions of dimercaptosuccinic acid marked with 99m Tc and the biological distribution of 99m Tc in order to reach a better understanding of the biological mechanism which results in technetium fixation to the kidney

  9. A Trade Study of Two Membrane-Aerated Biological Water Processors

    Allada, Ram; Lange, Kevin; Vega. Leticia; Roberts, Michael S.; Jackson, Andrew; Anderson, Molly; Pickering, Karen

    2011-01-01

    Biologically based systems are under evaluation as primary water processors for next generation life support systems due to their low power requirements and their inherent regenerative nature. This paper will summarize the results of two recent studies involving membrane aerated biological water processors and present results of a trade study comparing the two systems with regards to waste stream composition, nutrient loading and system design. Results of optimal configurations will be presented.

  10. Nonperturbative studies of quantum field theories on noncommutative spaces

    Volkholz, J.

    2007-11-16

    This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the {lambda}{phi}{sup 4} model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized {lambda}{phi}{sup 4} model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted

  11. Nonperturbative studies of quantum field theories on noncommutative spaces

    Volkholz, J.

    2007-01-01

    This work deals with three quantum field theories on spaces with noncommuting position operators. Noncommutative models occur in the study of string theories and quantum gravity. They usually elude treatment beyond the perturbative level. Due to the technique of dimensional reduction, however, we are able to investigate these theories nonperturbatively. This entails translating the action functionals into a matrix language, which is suitable for numerical simulations. First we explore the λφ 4 model on a noncommutative plane. We investigate the continuum limit at fixed noncommutativity, which is known as the double scaling limit. Here we focus especially on the fate of the striped phase, a phase peculiar to the noncommutative version of the regularized λφ 4 model. We find no evidence for its existence in the double scaling limit. Next we examine the U(1) gauge theory on a four-dimensional spacetime, where two spatial directions are noncommutative. We examine the phase structure and find a new phase with a spontaneously broken translation symmetry. In addition we demonstrate the existence of a finite double scaling limit which confirms the renormalizability of the theory. Furthermore we investigate the dispersion relation of the photon. In the weak coupling phase our results are consistent with an infrared instability predicted by perturbation theory. If the translational symmetry is broken, however, we find a dispersion relation corresponding to a massless particle. Finally, we investigate a supersymmetric theory on the fuzzy sphere, which features scalar neutral bosons and Majorana fermions. The supersymmetry is exact in the limit of infinitely large matrices. We investigate the phase structure of the model and find three distinct phases. Summarizing, we study noncommutative field theories beyond perturbation theory. Moreover, we simulate a supersymmetric theory on the fuzzy sphere, which might provide an alternative to attempted lattice formulations. (orig.)

  12. Studying chemical reactions in biological systems with MBN Explorer

    Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.

    2016-01-01

    The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies....... The implementation of the modified force field was carried out in the popular program MBN Explorer, and, to support the development, we provide several illustrative case studies where dynamical topology is necessary. In particular, it is shown that the modified molecular mechanics force field can be applied...

  13. Biological studies on albino rats fed with Sorghum bicolor starch ...

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... ghum and millets. It consists of amylopectin, a branched- chain polymer of glucose, and amylose, a straight-chain .... diamine tetracetic acid (EDTA) tubes for hematological studies. .... cially for people with diabetes such foods are known to ... consists of oligosaccharides, vitamins, essential amino acids ...

  14. Studies on the biological effects of deuteriated organic compounds

    Dinh-Nguyen, Nguyen; Vincent, J.

    1976-01-01

    The antifungal activity of some perdeuterated fatty acids with a normal chain of 11 to 18 carbon atoms was investigated on common dermatophytes Epidermophyton floccosum, Microsporum canis, Trichophyton mentagrophytes and T. rubrum under in vitro conditions. A perdeuterated compound is one in which most of the hydrogen atoms in the molecule are replaced by deuterium. These studies were performed by the dilution technique with respiratory measurements. Perdeuteration of of some fatty acids increases their inhibitory effect on the dermatophyte growth. Perdeuterated n-hendecanoic acid proved to be the most active of the substances tested. Possible mechanisms behind the enhanced antifungal activity due to the perdeuteration of fatty acids are discussed. The present study investigates the antifungal properties of some perdeuterated fatty acids on dermatophytes in vitro

  15. Study of Biological Pigments by Single Specimen Derivative Spectrophotometry

    Goldstein, Jack M.

    1970-01-01

    The single specimen derivative (SSD) method provides an absolute absorption spectrum of a substance in the absence of a suitable reference. Both a reference and a measuring monochromatic beam pass through a single sample, and the specimen itself acts as its own reference. The two monochromatic beams maintain a fixed wavelength difference upon scanning, and the difference in absorbance of the two beams is determined. Thus, the resulting spectrum represents the first derivative of the conventional type absorption spectrum. Tissues and cell fractions have been examined at room and liquid N2 temperature and chromophoric molecules such as the mitochondrial cytochromes and blood pigments have been detectable in low concentrations. In the case of isolated cellular components, the observed effects of substrates and inhibitors confirm similar studies by conventional spectrophotometry. The extension of the SSD concept to the microscopic level has permitted the study of the tissue compartmentalization and function of cytochromes and other pigments within layered tissue. PMID:4392452

  16. Study on biologically active substances in irradiated apple juice

    Tencheva, S.

    1975-01-01

    The radiochemical changes proceeding by irradiation of foodstuffs rich in carbohydrates are studied. For the purpose pure solutions of D-glucose, D-fructose and sucrose and fresh apple juice, irradiated with 0,5 and 1,0 Mrad are investigated. Changes set in UV-spectra of the irradiated foodstuffs, the specific reaction of malonic dialdehyde formation with 2-thiobarbituric acid and the formation of carbonyl compounds reacting with 2,4-dinitro phenylhydrazine are studied. Results show that in the irradiated sample solutions of sugars and apple juice two peaks are formed. The malonic dialdehyde formation depends on the dose of irradiation applied. The newly formed carbonyl compounds both in the sample solutions and in the juice are 8 to 9 in number. (author)

  17. Synthesis labeling and biological studies of 16-131I

    Sato, M.K.

    1988-01-01

    The increasing interest in obtaining radiopharmaceuticals for metabolic imaging of heart muscle led us to prepare 16-IODINE HEXADECANOIC ACID by tosilation of the corresponding hydroxy acid, following iodination with NaI and finally, introducing radioiodine (Na 131 I) by isotopic exchange reaction. The reaction products were identified by determination of melting point, elementary and spectroscopic analysis such as infra-red absortion and magnetic nuclear resonance. The radiopharmaceutical after radiochemical and other specific control procedures for injetable such as sterility and apyrogenicity, was firstly utilized in dogs: preferencial uptake by the heart, as well as by the liver was confirmed. Then, studies in patients with or without heart diseases were performed. The biodistribution of 16- 131 I-HEXADECANOIC ACID was carried out in Wistar rats. The scintigraphic images in animals and in humans demonstrated that 16- 131 -HEXADECANOIC ACID is suitable for studying viable areas as well as energetic exchange of heart muscle. (author) [pt

  18. Biological study of a tritiated luminous paint (1962)

    Remy, J.; Meunier, J.; Aeberhardt, A.

    1962-01-01

    A powdered mixture of zinc sulphide and a tritiated polyester has been administered to rats by means of the oesophageal probe. The distribution of tritium in the organ, and its elimination, have been studied. It appears that from 75 to 80 per cent of the polyester has undergone sufficient degradation in the intestinal medium to be absorbed by the digestive mucous membrane and to be subjected to metabolic reactions. (authors) [fr

  19. Biological and Theoretical Studies of Adaptive Networks: The Conditioned Response.

    1992-06-30

    suggest experimental tests and provide direction for physiological studies. 14 SU~la TIPO ~IS- NIJUMS Of PAGIS 17. @1d-ftA ITY CLASSIPtCATICON...mancte suditioned inhibition of the rabbit’s nictitating membrane response, CI tasks require the active suppression of CRs in the Bull . Psychon. Soc., 20... Bull ., 84 (1977) encephalon and mesencephalon26. 690-711. Several lines of evidence suggest that the septal and 8 Evans,J.A.C. and Thornton, E.W

  20. In vitro biological models in order to study BNCT

    Dagrosa, Maria A.; Kreimann, Erica L.; Schwint, Amanda E.; Juvenal, Guillermo J.; Pisarev, Mario A.; Farias, Silvia S.; Garavaglia, Ricardo N.; Batistoni, Daniel A.

    1999-01-01

    Undifferentiated thyroid carcinoma (UTC) lacks an effective treatment. Boron neutron capture therapy (BNCT) is based on the selective uptake of 10 B-boronated compounds by some tumours, followed by irradiation with an appropriate neutron beam. The radioactive boron originated ( 11 B) decays releasing 7 Li, gamma rays and alpha particles, and these latter will destroy the tumour. In order to explore the possibility of applying BNCT to UTC we have studied the biodistribution of BPA. In vitro studies: the uptake of p- 10 borophenylalanine (BPA) by the UTC cell line ARO, primary cultures of normal bovine thyroid cells (BT) and human follicular adenoma (FA) thyroid was studied. No difference in BPA uptake was observed between proliferating and quiescent ARO cells. The uptake by quiescent ARO, BT and FA showed that the ARO/BT and ARO/FA ratios were 4 and 5, respectively (p< 0.001). The present experimental results open the possibility of applying BNCT for the treatment of UTC. (author)

  1. The effect of space mutation treatment on seed germinating ability and the biological characters of SP1 hot peppers

    Wang Bingliang; Zheng Jirong; Ma Jianbin; Huang Kaimei

    2004-01-01

    The seeds of four pepper cultivars were carried by Shenzhou No.4 spaceship. The seed germinating ability was changed after the space exposed, however, the changes varied with cultivars. The time from transplant to bloom of the first flower was 0.2-3.2 days earlier than that of control, and the variation among individual plant was somewhat larger than that of control. It was also found that the plant height and the number of leaves on which the first flower emerged were lower than that of control. Number of fruits was more, but the fruit length and diameter was smaller than that of control

  2. Bacteriophage-based synthetic biology for the study of infectious diseases

    Lu, Timothy K.

    2014-01-01

    Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome. PMID:24997401

  3. Biological study of some labeled C16 fatty acids

    Riche, F.; Mathieu, J.P.; Busquet, G.; Vidal, M.; Comet, M.; Pernin, C. (C.H.R.U. de Grenoble, 38 - La Tronche (France)); Godart, J.; Benabed, A. (Institut des Sciences Nucleaires, 38 - Grenoble (France)); Bardy, A. (C.E.A.-ORIS, 91 - Gif-sur-Yvette (France))

    1983-01-01

    The evolution of myocardial, blood, liver and kidney activity is studied in mice after I.V. injection of some labelled C16 fatty acids. With ..omega.. iodo fatty acids, the presence or absence of a double bond and the character Z or E have no influence on the tissue activity. The presence of a triple bond decreases the fixation, modifies the intramyocardial metabolism of the fatty acid and accelerates the rate of decrease of myocardial activity. ..omega.. bromo fatty acid have the same maximal fixation as ..omega.. iodo fatty acid but a more rapid decrease of myocardial activity. ..cap alpha.. iodo fatty acid has a very low myocardial fixation.

  4. Biological study of some labeled C16 fatty acids

    Riche, F.; Mathieu, J.P.; Busquet, G.; Vidal, M.; Comet, M.; Pernin, C.; Godart, J.; Benabed, A.; Bardy, A.

    1983-01-01

    The evolution of myocardial, blood, liver and kidney activity is studied in mice after I.V. injection of some labelled C16 fatty acids. With ω iodo fatty acids, the presence or absence of a double bond and the character Z or E have no influence on the tissue activity. The presence of a triple bond decreases the fixation, modifies the intramyocardial metabolism of the fatty acid and accelerates the rate of decrease of myocardial activity. ω bromo fatty acid have the same maximal fixation as ω iodo fatty acid but a more rapid decrease of myocardial activity. α iodo fatty acid has a very low myocardial fixation [fr

  5. James Webb Space Telescope Studies of Dark Energy

    Gardner, Jonathan P.; Stiavelli, Massimo; Mather, John C.

    2010-01-01

    The Hubble Space Telescope (HST) has contributed significantly to studies of dark energy. It was used to find the first evidence of deceleration at z=1.8 (Riess et al. 2001) through the serendipitous discovery of a type 1a supernova (SN1a) in the Hubble Deep Field. The discovery of deceleration at z greater than 1 was confirmation that the apparent acceleration at low redshift (Riess et al. 1998; Perlmutter et al. 1999) was due to dark energy rather than observational or astrophysical effects such as systematic errors, evolution in the SN1a population or intergalactic dust. The GOODS project and associated follow-up discovered 21 SN1a, expanding on this result (Riess et al. 2007). HST has also been used to constrain cosmological parameters and dark energy through weak lensing measurements in the COSMOS survey (Massey et al 2007; Schrabback et al 2009) and strong gravitational lensing with measured time delays (Suyu et al 2010). Constraints on dark energy are often parameterized as the equation of state, w = P/p. For the cosmological constant model, w = -1 at all times; other models predict a change with time, sometimes parameterized generally as w(a) or approximated as w(sub 0)+(1-a)w(sub a), where a = (1+z)(sup -1) is the scale factor of the universe relative to its current scale. Dark energy can be constrained through several measurements. Standard candles, such as SN1a, provide a direct measurement of the luminosity distance as a function of redshift, which can be converted to H(z), the change in the Hubble constant with redshift. An analysis of weak lensing in a galaxy field can be used to derive the angular-diameter distance from the weak-lensing equation and to measure the power spectrum of dark-matter halos, which constrains the growth of structure in the Universe. Baryonic acoustic oscillations (BAO), imprinted on the distribution of matter at recombination, provide a standard rod for measuring the cosmological geometry. Strong gravitational lensing of a

  6. Study on biological and environmental factors for azoospermia

    Spas Dzhoglov

    2016-09-01

    Full Text Available The absence of sperm in the seminal fluid is known as azoospermia. This medical condition is in a direct association with male's infertility. A complete medical history, physical examination, tests of selected hormones and tests for male fertility (including sperm analysis are used for the diagnosis of azoospermia. The number of 1314 men, with fertility problems, at age between 20 and 67 years, were included in this investigation. The data obtained in the study showed that azoospermia occurred in 5.25% of the group studied. The Klinefelter syndrome was cytogenetically diagnosed in 2.9% of the male individuals. There was found that 44.3% of males with azoospermia have been smokers, 7.1% of them – addicted to drugs, 17.1% have taken different medicaments, 4.35% – have had radiation therapy, 4.35% have had a diagnosis "varicocele". The volume of the ejaculate was less than 2 ml in 37.68% of the men and more than 7 ml in 2.89% of them.

  7. Preparation and biological studies of 68Ga-DOTA-alendronate

    Ashraf Fakhari

    2016-07-01

    Full Text Available Objective(s: In line with previous research on the development of conjugated bisphosphonate ligands as new bone-avid agents, in this study, DOTA conjugated alendronate (DOTA-ALN was synthesized and evaluated after labeling with gallium-68 (68Ga.Methods: DOTA-ALN was synthesized and characterized, followed by 68Ga-DOTA-ALN preparation, using DOTA-ALN and 68GaCl3 (pH: 4-5 at 92-95°C for 10 min. Stability tests, hydroxyapatite assay, partition coefficient calculation,biodistribution studies, and imaging were performed on the developed agent in normal rats.Results: The complex was prepared with high radiochemical purity (>99% as depicted by radio thin-layer chromatography; specific activity: 310-320GBq/mmol after solid phase purification and was stabilized for up to 90 min with a logP value of -2.91. Maximum ligand binding (65% was observed in the presence of 50 mg of hydroxyapatite; a major portion of the activity was excreted through the kidneys. With the exception of excretory organs, gastrointestinal tract organs, including the liver, intestine, and colon, showed significant uptake; however, the bone uptake was low (

  8. Tensile strength of biological fibrin sealants: a comparative study.

    Lacaze, Laurence; Le Dem, Nicolas; Bubenheim, Michael; Tsilividis, Basile; Mezghani, Julien; Schwartz, Lilian; Francois, Arnaud; Ertaud, Jean Yves; Bagot d'Arc, Maurice; Scotté, Michel

    2012-08-01

    Fibrin sealants are commonly used in liver surgery, although their effectiveness in routine clinical practice remains controversial. Individual sealant characteristics are based on hemostatic effects and adhesion properties that can be experimentally measured using the 'rat skin test' or the 'pig skin test'. This study used a more relevant and realistic experimental canine model to compare the differences in the adhesive properties of four fibrin sealants in hepatectomy: Tisseel/Tissucol, Tachosil, Quixil, and Beriplast. A partial hepatectomy was performed in beagle dogs under general anesthesia to obtain liver cross-sections. Fibrin sealants were allocated to dog livers using a Youden square design. The tensile strength measurement was performed using a traction system to measure the rupture stress point of a small wooden cylinder bonded to the liver cross-section. Significantly greater adhesion properties were observed with Tisseel/Tissucol compared with Quixil or Beriplast (P = 0.002 and 0.001, respectively). Similarly, Tachosil demonstrated significantly greater adhesive properties compared with Beriplast (P = 0.009) or Quixil (P = 0.014). No significant differences were observed between Tisseel/Tissucol and Tachosil or between Beriplast and Quixil. The results of this comparative study demonstrate that different fibrin sealants exhibit different adhesive properties. Tisseel/Tissucol and Tachosil provided greatest adhesion to liver cross-section in our canine model of hepatectomy. These results may enable the optimal choice of fibrin sealants for this procedure in clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The applications of microdosimetry in radiation biology study

    Kim, Eunhee

    2002-01-01

    To understand the mechanisms by which the ionizing radiation causes these damages, the spatial patterns of interaction and energy deposition by radiations should be explained in cellular level. All the descriptions of the physical process of radiation interaction and energy transfer in cellular or microscopic scale constitute the field of microdosimetry. The underlying motivations of microdosimetry study range from the efficient control of the radiation protection measures to the improvement of the diagnostic and therapeutic effectiveness in medical applications of radiation. The major quantity in the conventional radiation dosimetry or the macroscopic dosimetry is the 'absorbed dose' defined as the mean value of the possible energy depositions per unit mass of the target. With the microscopic targets such as cells and subcellular organelles, the average quantity can not represent the radiation actions on the targets any more because of the inhomogeneous and stochastic nature in radiation interaction with matter. The essence of microdosimetry is to study the fluctuation of energy deposition in a microscopic volume and its deviation from the mean value attributed to the inherent randomness of radiation interactions with matter

  10. Preparation and Biological Study of (68)Ga-DOTA-alendronate.

    Fakhari, Ashraf; Jalilian, Amir R; Johari-Daha, Fariba; Shafiee-Ardestani, Mehdi; Khalaj, Ali

    2016-01-01

    In line with previous research on the development of conjugated bisphosphonate ligands as new bone-avid agents, in this study, DOTA-conjugated alendronate (DOTA-ALN) was synthesized and evaluated after labeling with gallium-68 ((68)Ga). DOTA-ALN was synthesized and characterized, followed by (68)Ga-DOTA-ALN preparation, using DOTA-ALN and (68)GaCl3 (pH: 4-5) at 92-95° C for 10 min. Stability tests, hydroxyapatite assay, partition coefficient calculation, biodistribution studies, and imaging were performed on the developed agent in normal rats. The complex was prepared with high radiochemical purity (>99% as depicted by radio thin-layer chromatography; specific activity: 310-320 GBq/mmol) after solid phase purification and was stabilized for up to 90 min with a log P value of -2.91. Maximum ligand binding (65%) was observed in the presence of 50 mg of hydroxyapatite; a major portion of the activity was excreted through the kidneys. With the exception of excretory organs, gastrointestinal tract organs, including the liver, intestine, and colon, showed significant uptake; however, the bone uptake was low (<1%) at 30 min after the injection. The data were also confirmed by sequential imaging at 30-90 min following the intravenous injection. The high solubility and anionic properties of the complex led to major renal excretion and low hydroxyapatite uptake; therefore, the complex failed to demonstrate bone imaging behaviors.

  11. Trade study for kWe class space reactors

    Bost, Donald S.

    Recent interest by NASA and other government agencies in space reactor power systems with power levels in the 1 to 100 kWe range has prompted a review of earlier space reactor programs, as well as the ongoing SP-100 program, to identify a system that will best fulfill their needs. The candidate reactor types that were reviewed are listed. They are categorized according to the method of heat removal. The five types are: conduction cooled, heat pipe cooled, liquid metal cooled, in-core thermionic and gas cooled. The UZrH moderated reactor coupled with an organic Rankine cycle power conversion system provides an attractive system for multikilowatt, long lived missions. The reactor requires a minimum development because a similar reactor has already flown and the ORC is being developed for use in the Dynamic Isotope Power System (DIPS) and on the Space Station.

  12. Nanosatellites : A paradigm change for space weather studies.

    Barthelemy, Mathieu

    2016-04-01

    Nanosatellites are changing the paradigm of space exploration and engineering. The past 15 years have seen a growing activity in this field, with a marked acceleration in the last 3 years. Whereas the educational value of nanosatellites is well recognized, their scientific and technological use is potentially extremely rich but not fully explored. Conventional attitudes towards space engineering need to be reviewed in light of the capabilities and characteristics of these miniature devices that enable approaches and applications not possible with traditional satellite platforms. After an evaluation of the past and near future nanosatellites missions in the domain of space weather and from the example of the Zegrensat/ATISE mission, we will give some perspectives on the possibilities opened by these small satellites.

  13. Understanding the biological concept "bird": A kindergarten case study

    Buchholz, Dilek

    The purpose of this qualitative, multiple case study of 14 students in a metropolitan public school in the Deep South was to find out, during a period of three months, what these kindergarten-aged children knew about birds, whether this knowledge represented current scientific thought, if such science instruction meaningfully affected their prior knowledge, and if so, what the factors during instruction that seemed to influence their understanding of the concept of bird were. The research was conducted in three phases; preinstruction interviews, instruction, and postinstruction interviews. The theoretical framework for this research was based on the Human Constructivism theory of learning (Mintzes, Wandersee and Novak, 1997). Instructional materials consisted of carefully chosen books (both fiction and non-fiction), guest speakers, field trips, a live bird in the classroom, students' observation journals, teacher-made classification and sorting activities, and picture-based concept maps. The findings suggest that young children's knowledge of birds was limited chiefly to birds' anatomical and morphological characteristics, with repeated references being made by the children to human characteristics. There was a positive, significant difference in young children's pre- and postinstruction scientific knowledge of birds. Although performance varied from child to child after instruction, most children were able to identify some common birds by name. Just one child resisted conceptual change. Kindergarten children's basic knowledge of bird behavior was limited to flight and eating. Although the children had more conceptual knowledge at the end, understanding still appeared to be shallow. The children did develop their skill in observing markedly. It also became evident that these kindergarten children needed more (a) experience in asking questions, (b) practice in techniques of visual representation, and (c) language development in order to be able to explain what they

  14. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  15. Biological Actions of Artemisinin: Insights from Medicinal Chemistry Studies

    Jian Li

    2010-03-01

    Full Text Available Artemisinins have become essential antimalarial drugs for increasingly widespread drug-resistant malaria strains. Although tremendous efforts have been devoted to decipher how this class of molecules works, their exact antimalarial mechanism is still an enigma. Several hypotheses have been proposed to explain their actions, including alkylation of heme by carbon-centered free radicals, interference with proteins such as the sarcoplasmic/endoplasmic calcium ATPase (SERCA, as well as damaging of normal mitochondrial functions. Besides artemisinins, other endoperoxides with various backbones have also been synthesized, some of which showed comparable or even higher antimalarial effects. It is noteworthy that among these artemisinin derivatives, some enantiomers displayed similar in vitro malaria killing efficacy. In this article, the proposed mechanisms of action of artemisinins are reviewed in light of medicinal chemistry findings characterized by efficacy-structure studies, with the hope of gaining more insight into how these potent drugs work.

  16. Molecular biological study on genetic stability of the genome

    Hori, Tada-aki; Takahashi, Ei-ichi; Tsuji, Hideo; Tsuji, Satsuki

    1989-01-01

    A population cytogenetic study has been performed in 1022 healthy subjects and 547 cancer patients to determine baseline frequencies of autosomal rate fragile sites. Out of 17 rare autosomal fragile sites defined in HBM9 (1985), the following six were detected: fra(2)(q11), fra(10)(q25), fra(11)(q13), fra(11)(q23), fra(16)(q22) and fra(17)(q12). Other three new fragile sites were also detected: fra(8)(q24.1), fra(11)(q15.1) and fra(16)(p12.1). They were all distamycin A-inducible and located at the junctions of G/R-bands. The incidence of these autosomal fragile sites was 5% in both healthy subjects and cancer patients. Distamycin A-induced fragile sites may play a role in the etiology of leukemia, myeloproliferative disorders, and gynecological tumors. The present study also examined the mechanism of fragile X expression associated with fragile X syndrome in thymidine-prototrophic and auxotrophic human-mouse somatic cell hybrids. In these hybrid cells, both low and high thymidylate stresses were found to be effective in inducing fragile X expression, even in a hybrid clone that retained a fragile X chromosome as the only human chromosome. An addition of deoxycytidine completely abolished the effect of high thymidylate stress achieved by excess amounts of thymidine. It is concluded that the expression is an intrinsic property of the fragile X mutation resulting from chromosomal change in a special class of replicons with polypurine/polypyrimidine DNA sequence. (Namekawa, K)

  17. Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning

    Bereau, Tristan; DiStasio, Robert A.; Tkatchenko, Alexandre; von Lilienfeld, O. Anatole

    2018-06-01

    Classical intermolecular potentials typically require an extensive parametrization procedure for any new compound considered. To do away with prior parametrization, we propose a combination of physics-based potentials with machine learning (ML), coined IPML, which is transferable across small neutral organic and biologically relevant molecules. ML models provide on-the-fly predictions for environment-dependent local atomic properties: electrostatic multipole coefficients (significant error reduction compared to previously reported), the population and decay rate of valence atomic densities, and polarizabilities across conformations and chemical compositions of H, C, N, and O atoms. These parameters enable accurate calculations of intermolecular contributions—electrostatics, charge penetration, repulsion, induction/polarization, and many-body dispersion. Unlike other potentials, this model is transferable in its ability to handle new molecules and conformations without explicit prior parametrization: All local atomic properties are predicted from ML, leaving only eight global parameters—optimized once and for all across compounds. We validate IPML on various gas-phase dimers at and away from equilibrium separation, where we obtain mean absolute errors between 0.4 and 0.7 kcal/mol for several chemically and conformationally diverse datasets representative of non-covalent interactions in biologically relevant molecules. We further focus on hydrogen-bonded complexes—essential but challenging due to their directional nature—where datasets of DNA base pairs and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and as a first look, we consider IPML for denser systems: water clusters, supramolecular host-guest complexes, and the benzene crystal.

  18. Astronomical Observations Astronomy and the Study of Deep Space

    2010-01-01

    Our Search for knowledge about the universe has been remarkable, heartbreaking, fantastical, and inspiring, and this search is just beginning. Astronomical Observations is part of a 7 book series that takes readers through a virtual time warp of our discovery. From the nascent space programs of the 1960's to today's space tourism and the promise of distant planet colonization, readers will be transfixed. Throughout this journey of the mind, Earth-bound explorers gain keen insight into the celestial phenomena that have fascinated humans for centuries. Thrilling narratives about indefatigable sc

  19. Study on the concentrations of inorganic compounds in office spaces

    Alina DIMA

    2014-12-01

    Full Text Available Indoor environment affects equally the health, the productivity and the occupants comfort, the costs for employers, owners of the buildings and the society being significantly larger, in the case of an inadequate interior ambient. Therefore, a good indoor air, in the office spaces, leads to the improvement of the work performance and to the decreasing of the absenteeism. Moreover, the occupants of discomfortable spaces will have the tendency to react in order to reduce their own discomfort, with consequences on the energy consumption.

  20. Estimation of Skin to Subarachnoid Space Depth: An Observational Study.

    Hazarika, Rajib; Choudhury, Dipika; Nath, Sangeeta; Parua, Samit

    2016-10-01

    In a patient, the skin to Subarachnoid Space Depth (SSD) varies considerably at different levels of the spinal cord. It also varies from patient to patient at the same vertebral level as per age, sex and Body Mass Index (BMI). Estimation of the skin to SSD reduces complications related to spinal anaesthesia. To measure the skin to SSD in the Indian population and to find a formula for predicting this depth. Three hundred adult patients belonging to American Society of Anaesthesiologist class I and II, undergoing surgery using spinal anaesthesia in various surgical specialities of Gauhati Medical College were selected by systemic sampling for this prospective, observational study. Patients were divided into three groups: Group M containing male patients, Group F containing non-pregnant female patients, and Group PF containing pregnant female's patients. SSD was measured after performing lumbar puncture. The relationship between SSD and patient characteristics were studied, correlated and statistical analysis was used to find a formula for predicting the skin to SSD. Statistical analysis was done using Statistical Package for Social Sciences (SPSS 21.0, Chicago, IL, USA). One-way ANOVA with post-hoc(Bonferroni correction factor) analysis was applied to compare the three groups. Multivariate analysis was done for the covariates followed by a multivariate regression analysis to evaluate the covariates influencing SSD for each group separately. Mean SSD was 4.37±0.31cm in the overall population. SSD in adult males was 4.49±0.19cm which was significantly longer than that observed in female's 4.18±0.39cm which was comparable with SSD in parturient 4.43±0.19 cm. The formula for predicting the skin to SSD in the male population was 1.718+0.077×BMI+0.632×Height, in nonpregnant female population was 1.828+0.077×BMI+0.018×Height+0.007×Age and 0.748+0.209×BMI+4.703×Height-0.054×weight in parturient females, respectively. Skin to SSD correlated with the BMI in all

  1. Cross-cultural issues in space operations: A survey study among ground personnel of the European Space Agency

    Sandal, Gro Mjeldheim; Manzey, Dietrich

    2009-12-01

    Today's space operations involve co-working of people with different ethnical, professional and organisational backgrounds. The aim of this study was to examine the implications of cultural diversity for efficient collaboration within the European Space Agency (ESA), and between ESA employees and representatives from other agencies. ESA employees from European countries ( N=576) answered to the CULT Ground Survey. The results showed that differences in relation to leadership and decision making were the most important issues thought to interfere with efficient co-working within ESA, and between ESA employees and colleagues from other agencies. Employees who collaborated with more than three nationalities within ESA indicated most challenges in co-working due to differences in compliance, behavioural norms and competitiveness. Challenges in co-working differed between agencies, and these differences were consistent with value differences in the national populations. The results may have applied value for training of European employees working in international space program teams.

  2. Biological and biochemical studies on irradiated potato tubers

    Salem, E.A.F.M

    2008-01-01

    The present investigation aimed to study and overcome two important diseases which attacks potato plant, using some chemical and physical treatments. The first disease was pre harvest brown rot caused by ralstonia solanacearum and the second was post harvest dry rot caused by fusarium oxysporum. The results are summarized as follows: firstly brown rot : 1- Foliar treatment of salicylic acid or calcium chloride on potato plants leads to increasing in plant height and number of potato tubers, since salicylic acid give the highest value of plant height and also calcium chloride give the highest number of potato tubers. Also, this treatment leads to insignificant decreasing in number of potato tubers infected by brown rot. 2- The bacteria ralstonia solanacearum isolated from infected tubers obtained from the project of brown rot, Ministry of agriculture, Egypt, added with irrigate water to the pots this bacteria could infect healthy potato plant and the symptoms of brown rot observed on tubers also pathogenicity test was carried out using seedling of tomato cultivar Gs plants and wilting of tomato plant observed after 10-15 days from injection with R.solanacearum. 3- Concerning D 10 -value determined from the relation between dose rate of gamma ray (k-rad) and log count of bacterial number it was found that the D 10 -value for R.solanacearum was 0.25 kGy

  3. Acetyl analogs of combretastatin A-4: synthesis and biological studies.

    Babu, Balaji; Lee, Megan; Lee, Lauren; Strobel, Raymond; Brockway, Olivia; Nickols, Alexis; Sjoholm, Robert; Tzou, Samuel; Chavda, Sameer; Desta, Dereje; Fraley, Gregory; Siegfried, Adam; Pennington, William; Hartley, Rachel M; Westbrook, Cara; Mooberry, Susan L; Kiakos, Konstantinos; Hartley, John A; Lee, Moses

    2011-04-01

    The combretastatins have received significant attention because of their simple chemical structures, excellent antitumor efficacy and novel antivascular mechanisms of action. Herein, we report the synthesis of 20 novel acetyl analogs of CA-4 (1), synthesized from 3,4,5-trimethoxyphenylacetone that comprises the A ring of CA-4 with different aromatic aldehydes as the B ring. Molecular modeling studies indicate that these new compounds possess a 'twisted' conformation similar to CA-4. The new analogs effectively inhibit the growth of human and murine cancer cells. The most potent compounds 6k, 6s and 6t, have IC(50) values in the sub-μM range. Analog 6t has an IC(50) of 182 nM in MDA-MB-435 cells and has advantages over earlier analogs due to its enhanced water solubility (456 μM). This compound initiates microtubule depolymerization with an EC(50) value of 1.8 μM in A-10 cells. In a murine L1210 syngeneic tumor model 6t had antitumor activity and no apparent toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Toxin studies using an integrated biophysical and structural biology approach.

    Last, Julie A.; Schroeder, Anne E.; Slade, Andrea Lynn; Sasaki, Darryl Yoshio; Yip, Christopher M. (University of Toronto, Toronto, Ontario, Canada); Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Clostridial neurotoxins, such as botulinum and tetanus, are generally thought to invade neural cells through a process of high affinity binding mediated by gangliosides, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. This surface recognition and internalization process is still not well understood with regard to what specific membrane features the toxins target, the intermolecular interactions between bound toxins, and the molecular conformational changes that occur as a result of pH lowering. In an effort to elucidate the mechanism of tetanus toxin binding and permeation through the membrane a simple yet representative model was developed that consisted of the ganglioside G{sub tlb} incorporated in a bilayer of cholesterol and DPPC (dipalmitoylphosphatidyl choline). The bilayers were stable over time yet sensitive towards the binding and activity of whole toxin. A liposome leakage study at constant pH as well as with a pH gradient, to mimic the processes of the endosome, was used to elucidate the effect of pH on the toxin's membrane binding and permeation capability. Topographic imaging of the membrane surface, via in situ tapping mode AFM, provided nanoscale characterization of the toxin's binding location and pore formation activity.

  5. Accessibility of shared space for visually impaired persons : A comparative field study

    Havik, Else; Steyvers, Franciscus J.J.M.; Kooijman, Aart; Melis, Bart

    Shared Space is a concept that comprises the design and planning process of a public space. There are concerns about the accessibility of Shared Spaces for people who are visually impaired. In a comparative field study, the wayfinding performance of 25 visually impaired persons (VIPs) was observed

  6. Synthesis, structural, spectroscopic and biological studies of Schiff base complexes

    Diab, M. A.; El-Sonbati, A. Z.; Shoair, A. F.; Eldesoky, A. M.; El-Far, N. M.

    2017-08-01

    Schiff base ligand 4-((pyridin-2- yl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (PDMP) and its complexes were prepared and characterized on the basis of elemental analysis, IR, mass spectra and thermogravimetric analysis. All results confirm that the complexes have 1:1 (M: PMDP) stoichiometric formula [M(PMDP)Cl2H2O ] (M = Cu(II), Co(II), Ni(II) and Mn(II)), [Cd(PMDP)Cl2] and the ligand behaves as a bi/tridentate forming five-membered chelating ring towards the metal ions, bonding through azomethine nitrogen/exocyclic carbonyl oxygen, azomethine pyridine nitrogen and exocyclic carbonyl oxygen. The shift in the band positions of the groups involved in coordination has been utilized to estimate the metal-nitrogen and/or oxygen bond lengths. The complexes of Co(II), Ni(II) and Cu(II) are paramagnetic and the magnetic as well as spectral data suggest octahedral geometry, whereas the Cd(II) complex is tetrahedral. The XRD studies show that both the ligand and its metal complexes (1 and 3) show polycrystalline with crystal structure. Molecular docking was used to predict the binding between PMDP ligand and the receptors. The corrosion inhibition of mild steel in 2 M HCl solution by PDMP was explored utilizing potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and (EFM) electrochemical frequency modulation method. Potentiodynamic polarization demonstrated that PDMP compound is mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the protective ability. The percentage of inhibition efficiency was found to increase with increasing the inhibitor concentration.

  7. Space space space

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  8. The urban microclimate in open space. Case studies in Madrid

    Irina Tumini

    2014-04-01

    microclimate and energy efficiency have mainly concentrated on guiding the design of new constructions. However the main problems of unsustainability of existing conurbations are the result of the growth model highly speculative and responsible of resources depletion that have characterized the real estate boom of recent decades. In Spain and other European countries, become define the need to redirect the construction sector towards urban refurbishment. This alternative is a more sustainable development model and is able to provide a solution for the real estate sector. The thermal sensation affects the environment perception, so microclimate conditions can be decisive for the success or failure of urban space. For this reasons, the main objective of this work is focused on the definition of bioclimatic strategies for existing urban spaces, based on the morpho-typological components, climate and comfort requirements for citizens. As novelty element, the regeneration of neighborhoods built in middle of the twentieth century has been studied, because are the major extended in periphery of modern cities and, in many cases, they represent deprived areas. The research methodology is based on the evaluation of climatic conditions and thermal comfort of different project scenarios, applied to three case studies located in a suburban neighborhood of Madrid. The climatic parameters have been obtained by computer simulation process, based on fluid dynamics, thermodynamics and radioactive exchange in urban environment using numerical approach. The great advantage in the use of computing systems is the capacity for evaluate different project scenarios. The results in the different scenarios were compared with the comfort value obtained in the current state, using the UTCI index as indicator of thermal sensation. Finally, an abacus of the thermal comfort improvement obtained by different countermeasures has been performed. One of the major achievement of doctoral work is the demonstration

  9. Camera memory study for large space telescope. [charge coupled devices

    Hoffman, C. P.; Brewer, J. E.; Brager, E. A.; Farnsworth, D. L.

    1975-01-01

    Specifications were developed for a memory system to be used as the storage media for camera detectors on the large space telescope (LST) satellite. Detectors with limited internal storage time such as intensities charge coupled devices and silicon intensified targets are implied. The general characteristics are reported of different approaches to the memory system with comparisons made within the guidelines set forth for the LST application. Priority ordering of comparisons is on the basis of cost, reliability, power, and physical characteristics. Specific rationales are provided for the rejection of unsuitable memory technologies. A recommended technology was selected and used to establish specifications for a breadboard memory. Procurement scheduling is provided for delivery of system breadboards in 1976, prototypes in 1978, and space qualified units in 1980.

  10. Extremophiles survival to simulated space conditions: an astrobiology model study.

    Mastascusa, V; Romano, I; Di Donato, P; Poli, A; Della Corte, V; Rotundi, A; Bussoletti, E; Quarto, M; Pugliese, M; Nicolaus, B

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

  11. Space charge-limited emission studies using Coulomb's Law

    Carr, Christopher G.

    2004-01-01

    Approved for Public Release; Distribution is Unlimited Child and Langmuir introduced a solution to space charge limited emission in an infinite area planar diode. The solution follows from starting with Poisson's equation, and requires solving a non-linear differential equation. This approach can also be applied to cylindrical and spherical geometries, but only for one-dimensional cases. By approaching the problem from Coulomb's law and applying the effect of an assumed charge distribution...

  12. Air Force Space Command: A Transformation Case Study

    2006-01-01

    34 HIowevSe ir Stmbor asserts that a gradhnal, seamless shift in an organizatin s operational en- mironment does not constitnte t’rans- Jformation hnt...along the way to the ultimate requiring reasoned and focused action by the goal line play an important part in main- space community’s leadership , or...great potential but did not begin to pre- OCate a Guiding Coalition. The leadership dict the extent or manner of their employment must identif), convert

  13. Study of flywheel energy storage for space stations

    Gross, S.

    1984-01-01

    The potential of flywheel systems for space stations using the Space Operations Center (SOC) as a point of reference is discussed. Comparisons with batteries and regenerative fuel cells are made. In the flywheel energy storage concept, energy is stored in the form of rotational kinetic energy using a spinning wheel. Energy is extracted from the flywheel using an attached electrical generator; energy is provided to spin the flywheel by a motor, which operates during sunlight using solar array power. The motor and the generator may or may not be the same device. Flywheel energy storage systems have a very good potential for use in space stations. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special impotance relative to batteries, are high energy density (lighter weight), longer cycle and operating life, and high efficiency which minimizes the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the potential for very high discharge rate. Major disadvantages are noted.

  14. Spatial Analysis in Determining Physical Factors of Pedestrian Space Livability, Case Study: Pedestrian Space on Jalan Kemasan, Yogyakarta

    Fauzi, A. F.; Aditianata, A.

    2018-02-01

    The existence of street as a place to perform various human activities becomes an important issue nowadays. In the last few decades, cars and motorcycles dominate streets in various cities in the world. On the other hand, human activity on the street is the determinant of the city livability. Previous research has pointed out that if there is lots of human activity in the street, then the city will be interesting. Otherwise, if the street has no activity, then the city will be boring. Learning from that statement, now various cities in the world are developing the concept of livable streets. Livable streets shown by diversity of human activities conducted in the streets’ pedestrian space. In Yogyakarta, one of the streets shown diversity of human activities is Jalan Kemasan. This study attempts to determine the physical factors of pedestrian space affecting the livability in Jalan Kemasan Yogyakarta through spatial analysis. Spatial analysis was performed by overlay technique between liveable point (activity diversity) distribution map and variable distribution map. Those physical pedestrian space research variable included element of shading, street vendors, building setback, seat location, divider between street and pedestrian way, and mixed use building function. More diverse the activity of one variable, then those variable are more affected then others. Overlay result then strengthened by field observation to qualitatively ensure the deduction. In the end, this research will provide valuable input for street and pedestrian space planning that is comfortable for human activities.

  15. A Study Assessing the Potential of Negative Effects in Interdisciplinary Math–Biology Instruction

    Madlung, Andreas; Bremer, Martina; Himelblau, Edward; Tullis, Alexa

    2011-01-01

    There is increasing enthusiasm for teaching approaches that combine mathematics and biology. The call for integrating more quantitative work in biology education has led to new teaching tools that improve quantitative skills. Little is known, however, about whether increasing interdisciplinary work can lead to adverse effects, such as the development of broader but shallower skills or the possibility that math anxiety causes some students to disengage in the classroom, or, paradoxically, to focus so much on the mathematics that they lose sight of its application for the biological concepts in the center of the unit at hand. We have developed and assessed an integrative learning module and found disciplinary learning gains to be equally strong in first-year students who actively engaged in embedded quantitative calculations as in those students who were merely presented with quantitative data in the context of interpreting biological and biostatistical results. When presented to advanced biology students, our quantitative learning tool increased test performance significantly. We conclude from our study that the addition of mathematical calculations to the first year and advanced biology curricula did not hinder overall student learning, and may increase disciplinary learning and data interpretation skills in advanced students. PMID:21364099

  16. The role of interword spacing in reading Japanese: an eye movement study.

    Sainio, Miia; Hyönä, Jukka; Bingushi, Kazuo; Bertram, Raymond

    2007-09-01

    The present study investigated the role of interword spacing in a naturally unspaced language, Japanese. Eye movements were registered of native Japanese readers reading pure Hiragana (syllabic) and mixed Kanji-Hiragana (ideographic and syllabic) text in spaced and unspaced conditions. Interword spacing facilitated both word identification and eye guidance when reading syllabic script, but not when the script contained ideographic characters. We conclude that in reading Hiragana interword spacing serves as an effective segmentation cue. In contrast, spacing information in mixed Kanji-Hiragana text is redundant, since the visually salient Kanji characters serve as effective segmentation cues by themselves.

  17. Green Space Visits among Adolescents: Frequency and Predictors in the PIAMA Birth Cohort Study.

    Bloemsma, Lizan D; Gehring, Ulrike; Klompmaker, Jochem O; Hoek, Gerard; Janssen, Nicole A H; Smit, Henriëtte A; Vonk, Judith M; Brunekreef, Bert; Lebret, Erik; Wijga, Alet H

    2018-04-30

    Green space may influence health through several pathways, for example, increased physical activity, enhanced social cohesion, reduced stress, and improved air quality. For green space to increase physical activity and social cohesion, spending time in green spaces is likely to be important. We examined whether adolescents visit green spaces and for what purposes. Furthermore, we assessed the predictors of green space visits. In this cross-sectional study, data for 1911 participants of the Dutch PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort were analyzed. At age 17, adolescents reported how often they visited green spaces for physical activities, social activities, relaxation, and to experience nature and quietness. We assessed the predictors of green space visits altogether and for different purposes by log-binomial regression. Fifty-three percent of the adolescents visited green spaces at least once a week in summer, mostly for physical and social activities. Adolescents reporting that a green environment was (very) important to them visited green spaces most frequently {adjusted prevalence ratio (PR) [95% confidence interval (CI)] very vs. not important: 6.84 (5.10, 9.17) for physical activities and 4.76 (3.72, 6.09) for social activities}. Boys and adolescents with highly educated fathers visited green spaces more often for physical and social activities. Adolescents who own a dog visited green spaces more often to experience nature and quietness. Green space visits were not associated with the objectively measured quantity of residential green space, i.e., the average normalized difference vegetation index (NDVI) and percentages of urban, agricultural, and natural green space in circular buffers around the adolescents' homes. Subjective variables are stronger predictors of green space visits in adolescents than the objectively measured quantity of residential green space. https://doi.org/10.1289/EHP2429.

  18. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  19. A lateral cephalometric study of the size of tongue and intermaxillary space in Korean

    Lee, Sang Rae

    1977-01-01

    A study was performed to investigate the size of tongue area and intermaxillary space area, and compare the sexual differences between normal Korean children and adults by introducing planimetric and linear analysis of the lateral cephalograms. The cephalograms were composed of 41 child male aged 10.8, 40 child female aged 10.5, 38 adult male aged 21.3 , and 40 adult female aged 20.8 respectively. In order to study and measure the intermaxillary space area, the following were selected, as reference items: occlusal plane, anterior intermaxillary space height, posterior intermaxillary space height, length of intermaxillary space. Among those reference items anterior intermaxillary space height and posterior intermaxillary space height were perpendicular to the maxillary plane. An index, (Anterior intermaxillary space height + posterior intermaxillary space height )/2 Length of intermaxillary space, was introduced for the calculation of intermaxillary space area. While the tongue area was plotted by outline of tongue shadow, above a line extending from the vallecula to the most anterior point on the hyoid body, and above a line from the most anterior point of the hyoid body to the mention. The obtained results were as follows: 1. In general, the measurements of male were larger than those of female in intermaxillary space area in childhood and adulthood group. But intermaxillary space area of childhood group showed no significant sexual difference, and that of adulthood group showed significant sexual difference when evaluated statistically. 2. In both groups, the measurements of male were larger than those of female in tongue area, and there are also statistical significance of sexual differences in both age groups. 3. Considerable growth changes between the childhood and adulthood groups were revealed in intermaxillary space area an d tongue area, and the tongue had tendency to become relatively smaller when compared with the intermaxillary space in both sexes.

  20. A lateral cephalometric study of the size of tongue and intermaxillary space in Korean

    Lee, Sang Rae [Department of Dental Radiology, College of Dentistry, Kung Hee University, Seoul (Korea, Republic of)

    1977-11-15

    A study was performed to investigate the size of tongue area and intermaxillary space area, and compare the sexual differences between normal Korean children and adults by introducing planimetric and linear analysis of the lateral cephalograms. The cephalograms were composed of 41 child male aged 10.8, 40 child female aged 10.5, 38 adult male aged 21.3 , and 40 adult female aged 20.8 respectively. In order to study and measure the intermaxillary space area, the following were selected, as reference items: occlusal plane, anterior intermaxillary space height, posterior intermaxillary space height, length of intermaxillary space. Among those reference items anterior intermaxillary space height and posterior intermaxillary space height were perpendicular to the maxillary plane. An index, (Anterior intermaxillary space height + posterior intermaxillary space height)/2 Length of intermaxillary space, was introduced for the calculation of intermaxillary space area. While the tongue area was plotted by outline of tongue shadow, above a line extending from the vallecula to the most anterior point on the hyoid body, and above a line from the most anterior point of the hyoid body to the mention. The obtained results were as follows: 1. In general, the measurements of male were larger than those of female in intermaxillary space area in childhood and adulthood group. But intermaxillary space area of childhood group showed no significant sexual difference, and that of adulthood group showed significant sexual difference when evaluated statistically. 2. In both groups, the measurements of male were larger than those of female in tongue area, and there are also statistical significance of sexual differences in both age groups. 3. Considerable growth changes between the childhood and adulthood groups were revealed in intermaxillary space area an d tongue area, and the tongue had tendency to become relatively smaller when compared with the intermaxillary space in both sexes.

  1. Methods for microbiological and immunological studies of space flight crews

    Taylor, G. R. (Editor); Zaloguev, S. N. (Editor)

    1978-01-01

    Systematic laboratory procedures compiled as an outgrowth of a joint U.S./U.S.S.R. microbiological-immunological experiment performed during the Apollo-Soyuz Test Project space flight are presented. Included are mutually compatible methods for the identification of aerobic and microaerophilic bacteria, yeast and yeastlike microorganisms, and filamentous fungi; methods for the bacteriophage typing of Staphylococcus aureus; and methods for determining the sensitivity of S. aureus to antibiotics. Immunological methods using blood and immunological and biochemical methods using salivary parotid fluid are also described. Formulas for media and laboratory reagents used are listed.

  2. Review of Russian language studies on radionuclide behaviour in agricultural animals: biological half-lives

    Fesenko, S.; Isamov, N.; Barnett, C.L.; Beresford, N.A.; Howard, B.J.; Sanzharova, N.; Fesenko, E.

    2015-01-01

    Extensive studies on transfer of radionuclides to animals were carried out in the USSR from the 1950s. Few of these studies were published in the international refereed literature or taken into account in international reviews. This paper continues a series of reviews of Russian language literature on radionuclide transfer to animals, providing information on biological half-lives of radionuclides in various animal tissues. The data are compared, where possible, with those reported in other countries. The data are normally quantified using a single or double exponential accounting for different proportions of the loss. For some products, such as milk, biological half-lives tend to be rapid at 1–3 d for most radionuclides and largely described by a single exponential. However, for other animal products biological half-lives can vary widely as they are influenced by many factors such as the age and size of the animal. Experimental protocols, such as the duration of the study, radionuclide administration and/or sample collection protocol also influence the value of biological half-lives estimated. - Highlights: • The data on biological half-lives from Russian language literature were reviewed. • Radionuclides with the shortest half-lives in animals are those which accumulate in soft tissues. • Short term behaviour is affected by the form in which radionuclides are administered. • There is a tendency for more rapid radionuclide turnover in younger animals

  3. Application of Raman Microspectroscopic and Raman imaging techniques for cell biological studies

    Puppels, G.J.; Puppels, G.J.; Bakker schut, T.C.; Bakker Schut, T.C.; Sijtsema, N.M.; Grond, M.; Grond, M.; Maraboeuf, F.; de Grauw, C.J.; de Grauw, C.J.; Figdor, Carl; Greve, Jan

    1995-01-01

    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of

  4. Development and Application of Raman Microspectroscopic and Raman Imaging Techniques for Cell Biological Studies

    PUPPELS, G J; SCHUT, T C B; SIJTSEMA, N M; GROND, M; MARABOEUF, F; DEGRAUW, C G; FIGDOR, C G; GREVE, J

    1995-01-01

    Raman spectroscopy is being used to study biological molecules for some three decades now. Thanks to continuing advances in instrumentation more and more applications have become feasible in which molecules are studied in situ, and this has enabled Raman spectroscopy to enter the realms of

  5. Lattice study of the gluon propagator in momentum space

    Bernard, C. (Department of Physics, Washington University, St. Louis, Missouri 63130 (United States)); Parrinello, C. (Physics Department, New York University, 4 Washington Place, New York, New York 10003 (United States) Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)); Soni, A. (Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States))

    1994-02-01

    We consider pure glue QCD at [beta]=5.7, [beta]=6.0, and [beta]=6.3. We evaluate the gluon propagator both in time at zero three-momentum and in momentum space. From the former quantity we obtain evidence for a dynamically generated effective mass, which at [beta]=6.0 and [beta]=6.3 increases with the time separation of the sources, in agreement with earlier results. The momentum space propagator [ital G]([ital k]) provides further evidence for mass generation. In particular, at [beta]=6.0, for 300 MeV[approx lt][ital k][approx lt]1 GeV, the propagator [ital G]([ital k]) can be fit to a continuum formula proposed by Gribov and others, which contains a mass scale [ital b], presumably related to the hadronization mass scale. For higher momenta Gribov's model no longer provides a good fit, as [ital G]([ital k]) tends rather to follow an inverse power law [approx]1/[ital k][sup 2+[gamma

  6. Space solar array reliability: A study and recommendations

    Brandhorst, Henry W., Jr.; Rodiek, Julie A.

    2008-12-01

    Providing reliable power over the anticipated mission life is critical to all satellites; therefore solar arrays are one of the most vital links to satellite mission success. Furthermore, solar arrays are exposed to the harshest environment of virtually any satellite component. In the past 10 years 117 satellite solar array anomalies have been recorded with 12 resulting in total satellite failure. Through an in-depth analysis of satellite anomalies listed in the Airclaim's Ascend SpaceTrak database, it is clear that solar array reliability is a serious, industry-wide issue. Solar array reliability directly affects the cost of future satellites through increased insurance premiums and a lack of confidence by investors. Recommendations for improving reliability through careful ground testing, standardization of testing procedures such as the emerging AIAA standards, and data sharing across the industry will be discussed. The benefits of creating a certified module and array testing facility that would certify in-space reliability will also be briefly examined. Solar array reliability is an issue that must be addressed to both reduce costs and ensure continued viability of the commercial and government assets on orbit.

  7. Life Support Filtration System Trade Study for Deep Space Missions

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  8. SANS study of polymer chains in confined space

    Hasegawa, Hirokazu; Tanaka, Hideaki; Hashimoto, Takeji; Han, C.C.

    1993-01-01

    The lateral and vertical components of the radius of gyration for a single block copolymer chain in the lamellar microdomain space formed by a mixture of diblock copolymers and homopolymers were investigated by means of small-angle neutron scattering (SANS), and the microdomain structures by small-angle X-ray scattering (SAXS). We used the homopolymers whose molecular weights are much smaller than that of the corresponding chains of the block copolymers so that the homopolymers are uniformly solubilized in the corresponding microdomains. The SANS result suggests that the block copolymer chains in the microdomain space are more compressed in the direction parallel to the interface and more stretched in the direction perpendicular to the interface than the corresponding unperturbed polymer chains with the same molecular weight. With increasing the volume fraction of the homopolymers the thickness of the lamellar microdomains increases. The block copolymer chains were found to undergo an isochoric affine deformation on addition of the homopolymers or with the change of the thickness of the lamellar microdomains. (author)

  9. Hostile intent in public crowded spaces: a field study.

    Eachus, Peter; Stedmon, Alex; Baillie, Les

    2013-09-01

    Hostile reconnaissance is vital to successful terrorist activity. Individuals carrying out this activity are likely to experience raised levels of stress and this will manifest itself at biological, physiological, psychological and behavioural levels, providing an opportunity for detection. A field trial was undertaken in an ecologically valid environment measuring variables considered likely to be salient during hostile intent. The parameters examined in the field trial varied in a predictable manner and suggest that stressed individuals secrete a volatile steroid based marker that could form the basis for remote detection. Thus, overall the findings of this research provide a validated model of hostile intent that can be used by other researchers to test interventions aimed at detecting or deterring hostile intent. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Space station automation study. Automation requirements derived from space manufacturing concepts. Volume 1: Executive summary

    1984-01-01

    The two manufacturing concepts developed represent innovative, technologically advanced manufacturing schemes. The concepts were selected to facilitate an in depth analysis of manufacturing automation requirements in the form of process mechanization, teleoperation and robotics, and artificial intelligence. While the cost effectiveness of these facilities has not been analyzed as part of this study, both appear entirely feasible for the year 2000 timeframe. The growing demand for high quality gallium arsenide microelectronics may warrant the ventures.

  11. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study.

    Beheshti, Afshin; Cekanaviciute, Egle; Smith, David J; Costes, Sylvain V

    2018-03-08

    Spaceflight introduces a combination of environmental stressors, including microgravity, ionizing radiation, changes in diet and altered atmospheric gas composition. In order to understand the impact of each environmental component on astronauts it is important to investigate potential influences in isolation. Rodent spaceflight experiments involve both standard vivarium cages and animal enclosure modules (AEMs), which are cages used to house rodents in spaceflight. Ground control AEMs are engineered to match the spaceflight environment. There are limited studies examining the biological response invariably due to the configuration of AEM and vivarium housing. To investigate the innate global transcriptomic patterns of rodents housed in spaceflight-matched AEM compared to standard vivarium cages we utilized publicly available data from the NASA GeneLab repository. Using a systems biology approach, we observed that AEM housing was associated with significant transcriptomic differences, including reduced metabolism, altered immune responses, and activation of possible tumorigenic pathways. Although we did not perform any functional studies, our findings revealed a mild hypoxic phenotype in AEM, possibly due to atmospheric carbon dioxide that was increased to match conditions in spaceflight. Our investigation illustrates the process of generating new hypotheses and informing future experimental research by repurposing multiple space-flown datasets.

  12. LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces

    Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina

    2016-11-01

    The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.

  13. External irradiation facilities open for biological studies - progress in july 2005

    Gaillard-Lecanu, E.; Authier, N.; Verrey, B.; Bailly, I.; Bordy, J.M.; Coffigny, H.; Cortela, L.; Duval, D.; Leplat, J.J.; Poncy, J.L.; Testard, I.; Thuret, J.Y.

    2005-01-01

    The Life Science Division of the Atomic Energy Commission is making an inventory of the various radiation sources accessible for investigation on the biological effects of ionizing radiation. In this field, a wide range of studies is being carried out at the Life Science Division, attempting to characterize the kind of lesions with their early biological consequences (on the various cell compartments) and their late biological consequences (deterministic or stochastic effects), in relation to the radiation type and dose, especially at low doses. Several experimental models are available: plants, bacteria, eukaryotic cells from yeast up to mammalian cells and in vivo studies, mostly on rodents, in order to characterize the somatic late effects and the hereditary effects. Due to the significant cost of these facilities, also to their specific properties (nature of the radiation, dose and dose rate, possible accuracy of the irradiation at the molecular level), the closeness is no longer the only criteria for biologists to make a choice. The current evolution is to set up irradiation infrastructures combining ionizing radiation sources themselves and specific tools dedicated to biological studies: cell or molecular biology laboratories, animal facilities. The purpose, in this new frame, is to provide biologists with the most suitable facilities, and, if possible, to change these facilities according to requirements in radiobiology. In this report, the basics of interactions of ionizing radiation with biological tissues are briefly introduced, followed by a presentation of some of the facilities available for radiobiological studies especially at CEA. This panorama is not a comprehensive one, new data will be included as they advance, whether reporting existing facilities or if a new one is developed. (authors)

  14. A prospective observational study of pigmented naevi changes in psoriasis patients on biologic therapy.

    Choi, Seohee Deanne; D'Souza, Mario I; Menzies, Scott W; Weninger, Wolfgang

    2018-05-23

    Patients on biologic therapy are thought to be at increased risk of developing non-melanoma skin cancers and melanomas. It is unknown whether biologic therapy alters the natural history of melanocytic naevi. Therefore, a prospective observational study was conducted to determine whether psoriasis patients on biologic therapy develop changes in naevi. Clinical and dermoscopic assessment of all melanocytic naevi was performed in 45 psoriasis patients on biologic therapy versus a control cohort of 43 subjects, using sequential digital dermoscopic imaging and total body photography. The mean follow-up period was 1.5 years. The study and control patients had comparable age, gender, previous and family history of non-melanoma skin cancers and melanomas, as well as previous sun exposure and total number of naevi. The number of naevi with major dermoscopic changes was 3% in the study and 1.9% in the control group, with an adjusted incidence rate ratio of 1.45 (95% confidence interval 0.90-2.33; P = 0.125). The rate of minor changes was 15.9% in the study group versus 19.4% in the control (adjusted incidence rate ratio 0.77, 95% confidence interval 0.57-1.08; P = 0.14). There were six new dysplastic naevi in 4/45 biologic patients and four in 4/43 controls; however, the difference was not significant (relative risk 0.96, 95% confidence interval -0.12 to 0.12; P = 0.95). There were no melanomas in either group. Over a mean follow-up period of 1.5 years there was no evidence of significantly different changes in naevi or development of new dysplastic naevi in psoriasis patients on biologic treatment compared to controls. © 2018 The Australasian College of Dermatologists.

  15. Using Mobile Technology to Observe Student Study Behaviors and Track Library Space Usage

    Thompson, Susan

    2015-01-01

    Libraries have become increasingly interested in studying the use of spaces within their buildings. Traditional methods for tracking library building use, such as gate counts, provide little information on what patrons do once they are in the library; therefore, new methods for studying space usage are being developed. Particularly promising are…

  16. Using and Experiencing the Academic Library: A Multisite Observational Study of Space and Place

    May, Francine; Swabey, Alice

    2015-01-01

    This study examines how students are using academic library spaces and the role these spaces are playing in the campus community. Data were collected on five campuses (two community colleges, two undergraduate universities, and one technical institute) via observational seating sweeps and questionnaires. The study found remarkably similar usage…

  17. Unveiling Third Space: A Case Study of International Educators in Dubai, United Arab Emirates

    Saudelli, Mary Gene

    2012-01-01

    This article highlights one aspect of a case study of international educators at Dubai Women's College (DWC), United Arab Emirates (UAE). It examines perceptions of international educators in third space teaching female Emirati, higher-education students in the UAE. Drawing on third space theory (Bhabha, 1994), this study explored the nature of…

  18. Artificial cell mimics as simplified models for the study of cell biology.

    Salehi-Reyhani, Ali; Ces, Oscar; Elani, Yuval

    2017-07-01

    Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.

  19. Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes. [feasibility of using space shuttle

    Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.

    1974-01-01

    A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.

  20. [Clinico-biochemical aspects of human adaptation in central Antarctica as applied to the problems of space biology and medicine].

    Kurbanov, V V; Khmel'kov, V P; Krupina, T N; Kuznetscv, A G; Kuz'min, M P

    1977-01-01

    The paper presents the results of clinical, physiological and biochemical examination of 27 polar explorer--members of the 17th Soviet Antartic Expedition at the Vostok station. It gives data on the morbidity rate and describes the development of the asthenic-neurotic syndrome. On the basis of studies of catecholamines and serotonin, the role of the sympatho-adrenal system in the human adaptation to the harsh environments of the Central Antarctica has been shown.

  1. AMS Observations over Coastal California from the Biological and Oceanic Atmospheric Study (BOAS)

    Bates, K. H.; Coggon, M. M.; Hodas, N.; Negron, A.; Ortega, A. M.; Crosbie, E.; Sorooshian, A.; Nenes, A.; Flagan, R. C.; Seinfeld, J.

    2015-12-01

    In July 2015, fifteen research flights were conducted on a US Navy Twin Otter aircraft as part of the Biological and Oceanic Atmospheric Study (BOAS) campaign. The flights took place near the California coast at Monterey, to investigate the effects of sea surface temperature and algal blooms on oceanic particulate emissions, the diurnal mixing of urban pollution with other airmasses, and the impacts of biological aerosols on the California atmosphere. The aircraft's payload included an aerosol mass spectrometer (AMS), a differential mobility analyzer, a cloud condensation nuclei counter, a counterflow virtual impactor, a cloudwater collector, and two instruments designed to detect biological aerosols - a wideband integrated biological spectrometer and a SpinCon II - as well as a number of meteorology and aerosol probes, two condensation particle counters, and instruments to measure gas-phase CO, CO2, O3, and NOx. Here, we describe in depth the objectives and outcomes of BOAS and report preliminary results, primarily from the AMS. We detail the spatial characteristics and meteorological variability of speciated aerosol components over a strong and persistent bloom of Pseudo-Nitzschia, the harmful algae that cause 'red tide', and report newly identified AMS markers for biological particles. Finally, we compare these results with data collected during BOAS over urban, forested, and agricultural environments, and describe the mixing observed between oceanic and terrestrial airmasses.

  2. Radiation cytogenetic in vitro studies on human donors in the development of a suitable biological dosimeter

    Barjaktarovic, N.

    1988-02-01

    The final report is on the work carried out under the Agency research contract 3173/RB entitled ''Radiation cytogenetic in vitro studies on human donors in the development of a suitable biological dosimeter'', at the Clinical Hospital Centre ''Zvezdara'' in Belgrade, Yugoslavia. In co-operation and co-ordination dissemination with an international team of cytogeneticists under the IAEA CRP, the development of a suitable biological dosimetry system has been accomplished at the national institute to assist reliably in the absorbed radiation-dose assessment of accidentally-over-exposed personnel. The quantitative yield of asymmetrical chromosomal aberrations, such as dicentrics, rings and fragments consequent to exposure(s) to radiation overdose, help in such estimation of vital prognostic and radiation protection significance. This biological dosimeter system is particularly essential where the exposed person was not wearing any physical dosemeter during the accident. Prerequisite for implementation of an effective biological dosimetry is the availability of a reliable standard dose-response curve and an adherence to a protocol for lymphocytic chromosome analysis in first division phase of lymphocytes. The validation of the reported biological dosimeter is established through its successful analysis of a simulated over-exposure incident, with the associated error of less than 10%. Analytical cytogenetic methods for whole- and part-body acute exposures have been discussed. Part of the results have been reported in the publications under the CRP concerned

  3. Background study of absorbed dose in biological experiments at the Modane Underground Laboratory

    Lampe Nathanael

    2016-01-01

    Full Text Available Aiming to explore how biological systems respond to ultra-low background environ-ments, we report here our background studies for biological experiments in the Modane Under-ground Laboratory. We find that the minimum radioactive background for biology experiments is limited by the potassium content of the biological sample itself, coming from its nutritive me-dium, which we find in our experimental set-up to be 26 nGy hr-1. Compared to our reference radiation environment in Clermont-Ferrand, biological experiments can be conducted in the Modane laboratory with a radiation background 8.2 times lower than the reference above-ground level. As the radiation background may be further reduced by using different nutritive media, we also provide measurements of the potassium concentration by gamma spectroscopy of yeast extract (63.3±1.2 mg g-1 and tryptone (2.5±0.2 mg g-1 in order to guide media selection in future experiments.

  4. A cross-cultural comparison of biology lessons between China and Germany: a video study

    Liu, Ning; Neuhaus, Birgit Jana

    2017-08-01

    Given the globalization of science education and the different cultures between China and Germany, we tried to compare and explain the differences on teacher questions and real life instances in biology lessons between the two countries from a culture-related perspective. 22 biology teachers from China and 21 biology teachers from Germany participated in this study. Each teacher was videotaped for one lesson on the unit blood and circulatory system. Before the teaching unit, students' prior knowledge was tested with a pretest. After the teaching unit, students' content knowledge was tested with a posttest. The aim of the knowledge tests here was for the better selection of the four samples for qualitative comparison in the two countries. The quantitative analysis showed that more lower-order teacher questions and more real life instances that were introduced after learning relevant concepts were in Chinese lessons than in German lessons. There were no significant differences in the frequency of higher-order questions or real life instances that were introduced before learning concepts. Qualitative analysis showed that both German teachers guided students to analyze the reasoning process of Landsteiner experiment, but nor Chinese teachers did that. The findings reflected the subtle influence of culture on classroom teaching. Relatively, Chinese biology teachers focused more on learning content and the application of the content in real life; German biology teachers emphasized more on invoking students' reasoning and divergent thinking.

  5. Life space and mental health: a study of older community-dwelling persons in Australia.

    Byles, Julie E; Leigh, Lucy; Vo, Kha; Forder, Peta; Curryer, Cassie

    2015-01-01

    The ability of older people to mobilise within and outside their community is dependent on a number of factors. This study explored the relationship between spatial mobility and psychological health among older adults living in Australia. The survey sample consisted of 260 community-dwelling men and women aged 75-80 years, who returned a postal survey measuring spatial mobility (using the Life Space Questionnaire) and psychological health (using the SF36 Health Related Quality of Life Profile). From the Life Space Questionnaire, participants were given a life-space score and multinomial regression was used to explore the potential effect of mental health on life-space score. The study found a significant association between mental health and life space. However, gender, physical functioning, and ability to drive were most strongly associated with the extent of life space and spatial mobility. Compared to men, older women are more likely to experience less spatial mobility and restricted life space, and hence are more vulnerable to social isolation. Mental health and life space were associated for the older people in this study. These findings have important implications for health policy and highlight the need to support older persons to maintain independence and social networks, and to successfully age in place within their community. This study also highlights the utility of the Life Space Questionnaire in terms of identifying older persons at risk of poorer mental health.

  6. Biological mineralization of iron: Studies using Moesbauer spectroscopy and complementary techniques

    Webb, J.; Kim, K.S.; Tran, K.C.; Pierre, T.G.S.

    1988-01-01

    Biological deposition of solid Fe-containing phases can be studied using 57 Fe Moessbauer spectroscopy. Other techniques are needed in order to understand this complex process. These include proton-induced X-ray and γ-ray emission (PIXE/PIGME), electron microscopy, electron and X-ray diffraction, infrared spectroscopy and chemical characterization of organic components. This paper reviews and evaluates the application of these techniques to biological mineralization of Fe, particularly that occurring in the radula teeth of the marine molluscs, chitons and limpets. (orig.)

  7. Study of Lateral Misalignment Tolerance of a Symmetric Free-Space Optical Link for Intra International Space Station Communication

    Tedder, Sarah; Schoenholz, Bryan; Suddath, Shannon

    2016-01-01

    This paper describes the study of lateral misalignment tolerance of a symmetric high-rate free-space optical link (FSOL) for use between International Space Station (ISS) payload sites and the main cabin. The link will enable gigabit per second (Gbps) transmission of data, which is up to three orders of magnitude greater than the current capabilities. This application includes 10-20 meter links and requires minimum size, weight, and power (SWaP). The optical power must not present an eye hazard and must be easily integrated into the existing ISS infrastructure. On the ISS, rapid thermal changes and astronaut movement will cause flexure of the structure which will potentially misalign the free space transmit and receive optics 9 cm laterally and 0.2 degrees angularly. If this misalignment is not accounted for, a loss of the link or degradation of link performance will occur. Power measurements were collected to better understand the effect of various system design parameters on lateral misalignment. Parameters that were varied include: the type of small form pluggable (SFP) transceivers, type of fiber, and transmitted power level. A potential solution was identified that can reach the lateral misalignment tolerance (decenter span) required to create an FSOL on the ISS by using 105 m core fibers, a duplex SFP, two channels of light, and two fiber amplifiers.

  8. Comparative SPR study on the effect of nanomaterials on the biological activity of adsorbed proteins

    Mei, Q.; Chen, Y.; Hong, J.; Chen, H.; Ding, X.; Yin, Y.; Koh, K.; Lee, J.

    2012-01-01

    Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18 % and 5 %, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies. (author)

  9. Generation of structurally novel short carotenoids and study of their biological activity.

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  10. Chemical and biological studies of Lobelia flaccida (C. Presl) A.DC ...

    Chemical and biological studies of Lobelia flaccida (C. Presl) A.DC leaf: a medicinal plant used by traditional healers in Eastern Cape, South Africa. ... (85 mg/kg, intraperitoneally)-induced convulsion model in mice, normal saline and diazepam (1 mg/kg, i.p.) served as negative and positive control groups respectively.

  11. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  12. A study of ruthenium complexes of some biologically relevant a-N ...

    Home; Journals; Journal of Chemical Sciences; Volume 112; Issue 3. A study of ruthenium complexes of some biologically relevant ∙ -N-heterocyclic ... Author Affiliations. P Sengupta1 S Ghosh1. Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India ...

  13. Practical problems and their solutions in studying the biology of the ...

    Mealybugs are among the most widespread and important pests of plants in commercial glasshouses and conservatories. They are also important quarantine pests that hinder international trade of fruits, vegetables and ornamental plants. Studies on their biology are important because they attack a wide range of plants and ...

  14. Deliberation as Communication Instruction: A Study of a Climate Change Deliberation in an Introductory Biology Course

    Drury, Sara A. Mehltretter

    2015-01-01

    The author argues that deliberation is an innovative method for teaching communication skills, particularly group communication, in the undergraduate science, technology, engineering, and math (STEM) curriculum. A case study using a deliberation activity on global climate change in an introductory biology course demonstrates how deliberative…

  15. Using Photographs as Case Studies to Promote Active Learning in Biology

    Krauss, David A.; Salame, Issa I.; Goodwyn, Lauren N.

    2010-01-01

    If a picture is worth a thousand words, think about how long it takes your students to read a thousand words. Case studies are effective and stimulating ways to teach a variety of subjects, including the biological sciences. In learning the details of a particular case, students develop skills in both deductive and inductive reasoning, hypothesis…

  16. Development and applications of photosensitive device systems to studies of biological and organic materials. Progress report

    1984-01-01

    The purpose was to develop and improve appropriate experimental techniques to the point where they could be applied to specific classes of biological problems. Progress is reported in the following areas: (1) area detectors; (2) x-ray diffraction studies of membranes; (3) electron transfer in loosely coupled systems; (4) bioluminescence and fluorescence; and (5) sonoluminescence

  17. Preservice Teachers' Epistemological Beliefs in Physics, Chemistry, and Biology: A Mixed Study

    Topcu, Mustafa Sami

    2013-01-01

    The purposes of the study were to assess preservice teachers' domain-specific epistemological beliefs and to investigate whether preservice teachers distinguish disciplinary differences (physics, chemistry, and biology) in domain-specific epistemological beliefs. Mixed-method research design guided the present research. The researcher explored…

  18. A study of space shuttle plumes in the lower thermosphere

    Meier, R. R.; Stevens, Michael H.; Plane, John M. C.; Emmert, J. T.; Crowley, G.; Azeem, I.; Paxton, L. J.; Christensen, A. B.

    2011-12-01

    During the space shuttle main engine burn, some 350 t of water vapor are deposited at between 100 and 115 km. Subsequent photodissociation of water produces large plumes of atomic hydrogen that can expand rapidly and extend for thousands of kilometers. From 2002 to 2007, the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite imaged many of these hydrogen plumes at Lyman α (121.567 nm) while viewing in the nadir. The images reveal rapid plume expansion and occasional very fast transport to both north and south polar regions. Some plumes persist for up to 6 d. Near-simultaneous direct detections of water vapor were made with the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument, also on TIMED. We compare the spreading of the hydrogen plume with a two-dimensional model that includes photodissociation as well as both vertical and horizontal diffusion. Molecular diffusion appears to be sufficient to account for the horizontal expansion, although wind shears and turbulent mixing may also contribute. We compare the bulk motion of the observed plumes with wind climatologies derived from satellite observations. The plumes can move much faster than predictions of wind climatologies. But dynamical processes not contained in wind climatologies, such as the quasi-two-day wave, can account for at least some of the high speed observations. The plume phenomena raise a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to polar mesospheric cloud formation and climatology.

  19. The use of an active learning approach in a SCALE-UP learning space improves academic performance in undergraduate General Biology.

    Hacisalihoglu, Gokhan; Stephens, Desmond; Johnson, Lewis; Edington, Maurice

    2018-01-01

    Active learning is a pedagogical approach that involves students engaging in collaborative learning, which enables them to take more responsibility for their learning and improve their critical thinking skills. While prior research examined student performance at majority universities, this study focuses on specifically Historically Black Colleges and Universities (HBCUs) for the first time. Here we present work that focuses on the impact of active learning interventions at Florida A&M University, where we measured the impact of active learning strategies coupled with a SCALE-UP (Student Centered Active Learning Environment with Upside-down Pedagogies) learning environment on student success in General Biology. In biology sections where active learning techniques were employed, students watched online videos and completed specific activities before class covering information previously presented in a traditional lecture format. In-class activities were then carefully planned to reinforce critical concepts and enhance critical thinking skills through active learning techniques such as the one-minute paper, think-pair-share, and the utilization of clickers. Students in the active learning and control groups covered the same topics, took the same summative examinations and completed identical homework sets. In addition, the same instructor taught all of the sections included in this study. Testing demonstrated that these interventions increased learning gains by as much as 16%, and students reported an increase in their positive perceptions of active learning and biology. Overall, our results suggest that active learning approaches coupled with the SCALE-UP environment may provide an added opportunity for student success when compared with the standard modes of instruction in General Biology.

  20. The Impact of Conventional and Biological Disease Modifying Antirheumatic Drugs on Bone Biology. Rheumatoid Arthritis as a Case Study.

    Barreira, Sofia Carvalho; Fonseca, João Eurico

    2016-08-01

    The bone and the immune system have a very tight interaction. Systemic immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA), induce bone loss, leading to a twofold increase in osteoporosis and an increase of fragility fracture risk of 1.35-2.13 times. This review focuses on the effects of conventional and biological disease modifying antirheumatic drugs (DMARDs) on bone biology, in the context of systemic inflammation, with a focus on RA. Published evidence supports a decrease in osteoclastic activity induced by DMARDs, which leads to positive effects on bone mineral density (BMD). It is unknown if this effect could be translated into fracture risk reduction. The combination with antiosteoclastic drugs can have an additional benefit.