WorldWideScience

Sample records for space avionics architecture

  1. Avionics Architecture for Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Avionics Architectures for Exploration (AAE) project is to develop a reference architecture that is based on standards and that can be scaled and...

  2. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous, avionic and robotic systems are used in a variety of applications including launch vehicles, robotic precursor platforms, etc. Most avionic innovations...

  3. Advanced Avionics and Processor Systems for a Flexible Space Exploration Architecture

    Science.gov (United States)

    Keys, Andrew S.; Adams, James H.; Smith, Leigh M.; Johnson, Michael A.; Cressler, John D.

    2010-01-01

    The Advanced Avionics and Processor Systems (AAPS) project, formerly known as the Radiation Hardened Electronics for Space Environments (RHESE) project, endeavors to develop advanced avionic and processor technologies anticipated to be used by NASA s currently evolving space exploration architectures. The AAPS project is a part of the Exploration Technology Development Program, which funds an entire suite of technologies that are aimed at enabling NASA s ability to explore beyond low earth orbit. NASA s Marshall Space Flight Center (MSFC) manages the AAPS project. AAPS uses a broad-scoped approach to developing avionic and processor systems. Investment areas include advanced electronic designs and technologies capable of providing environmental hardness, reconfigurable computing techniques, software tools for radiation effects assessment, and radiation environment modeling tools. Near-term emphasis within the multiple AAPS tasks focuses on developing prototype components using semiconductor processes and materials (such as Silicon-Germanium (SiGe)) to enhance a device s tolerance to radiation events and low temperature environments. As the SiGe technology will culminate in a delivered prototype this fiscal year, the project emphasis shifts its focus to developing low-power, high efficiency total processor hardening techniques. In addition to processor development, the project endeavors to demonstrate techniques applicable to reconfigurable computing and partially reconfigurable Field Programmable Gate Arrays (FPGAs). This capability enables avionic architectures the ability to develop FPGA-based, radiation tolerant processor boards that can serve in multiple physical locations throughout the spacecraft and perform multiple functions during the course of the mission. The individual tasks that comprise AAPS are diverse, yet united in the common endeavor to develop electronics capable of operating within the harsh environment of space. Specifically, the AAPS tasks for

  4. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Substantial progress has been made by NASA in integrating flight avionics and ISHM with well-defined caution and warning system, however, the scope of ACAW alerting...

  5. Avionics System Architecture for the NASA Orion Vehicle

    Science.gov (United States)

    Baggerman, Clint; McCabe, Mary; Verma, Dinesh

    2009-01-01

    It has been 30 years since the National Aeronautics and Space Administration (NASA) last developed a crewed spacecraft capable of launch, on-orbit operations, and landing. During that time, aerospace avionics technologies have greatly advanced in capability, and these technologies have enabled integrated avionics architectures for aerospace applications. The inception of NASA s Orion Crew Exploration Vehicle (CEV) spacecraft offers the opportunity to leverage the latest integrated avionics technologies into crewed space vehicle architecture. The outstanding question is to what extent to implement these advances in avionics while still meeting the unique crewed spaceflight requirements for safety, reliability and maintainability. Historically, aircraft and spacecraft have very similar avionics requirements. Both aircraft and spacecraft must have high reliability. They also must have as much computing power as possible and provide low latency between user control and effecter response while minimizing weight, volume, and power. However, there are several key differences between aircraft and spacecraft avionics. Typically, the overall spacecraft operational time is much shorter than aircraft operation time, but the typical mission time (and hence, the time between preventive maintenance) is longer for a spacecraft than an aircraft. Also, the radiation environment is typically more severe for spacecraft than aircraft. A "loss of mission" scenario (i.e. - the mission is not a success, but there are no casualties) arguably has a greater impact on a multi-million dollar spaceflight mission than a typical commercial flight. Such differences need to be weighted when determining if an aircraft-like integrated modular avionics (IMA) system is suitable for a crewed spacecraft. This paper will explore the preliminary design process of the Orion vehicle avionics system by first identifying the Orion driving requirements and the difference between Orion requirements and those of

  6. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    Science.gov (United States)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  7. Power, Avionics and Software Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  8. Towards a distributed information architecture for avionics data

    Science.gov (United States)

    Mattmann, Chris; Freeborn, Dana; Crichton, Dan

    2003-01-01

    Avionics data at the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL consists of distributed, unmanaged, and heterogeneous information that is hard for flight system design engineers to find and use on new NASA/JPL missions. The development of a systematic approach for capturing, accessing and sharing avionics data critical to the support of NASA/JPL missions and projects is required. We propose a general information architecture for managing the existing distributed avionics data sources and a method for querying and retrieving avionics data using the Object Oriented Data Technology (OODT) framework. OODT uses XML messaging infrastructure that profiles data products and their locations using the ISO-11179 data model for describing data products. Queries against a common data dictionary (which implements the ISO model) are translated to domain dependent source data models, and distributed data products are returned asynchronously through the OODT middleware. Further work will include the ability to 'plug and play' new manufacturer data sources, which are distributed at avionics component manufacturer locations throughout the United States.

  9. Validating Avionics Conceptual Architectures with Executable Specifications

    Directory of Open Access Journals (Sweden)

    Nils Fischer

    2012-08-01

    Full Text Available Current avionics systems specifications, developed after conceptual design, have a high degree of uncertainty. Since specifications are not sufficiently validated in the early development process and no executable specification exists at aircraft level, system designers cannot evaluate the impact of their design decisions at aircraft or aircraft application level. At the end of the development process of complex systems, e. g. aircraft, an average of about 65 per cent of all specifications have to be changed because they are incorrect, incomplete or too vaguely described. In this paper, a model-based design methodology together with a virtual test environment is described that makes complex high level system specifications executable and testable during the very early levels of system design. An aircraft communication system and its system context is developed to demonstrate the proposed early validation methodology. Executable specifications for early conceptual system architectures enable system designers to couple functions, architecture elements, resources and performance parameters, often called non-functional parameters. An integrated executable specification at Early Conceptual Architecture Level is developed and used to determine the impact of different system architecture decisions on system behavior and overall performance.

  10. New Technologies for Space Avionics, 1993

    Science.gov (United States)

    Aibel, David W.; Harris, David R.; Bartlett, Dave; Black, Steve; Campagna, Dave; Fernald, Nancy; Garbos, Ray

    1993-01-01

    The report reviews a 1993 effort that investigated issues associated with the development of requirements, with the practice of concurrent engineering and with rapid prototyping, in the development of a next-generation Reaction Jet Drive Controller. This report details lessons learned, the current status of the prototype, and suggestions for future work. The report concludes with a discussion of the vision of future avionics architectures based on the principles associated with open architectures and integrated vehicle health management.

  11. Avionics and Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Avionics and Software (A&S) project is to develop a reference avionics and software architecture that is based on standards and that can be...

  12. Synchronous Modeling of Modular Avionics Architectures using the SIGNAL Language

    OpenAIRE

    Gamatié , Abdoulaye; Gautier , Thierry

    2002-01-01

    This document presents a study on the modeling of architecture components for avionics applications. We consider the avionics standard ARINC 653 specifications as basis, as well as the synchronous language SIGNAL to describe the modeling. A library of APEX object models (partition, process, communication and synchronization services, etc.) has been implemented. This should allow to describe distributed real-time applications using POLYCHRONY, so as to access formal tools and techniques for ar...

  13. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    Science.gov (United States)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  14. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    Science.gov (United States)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  15. IXV avionics architecture: Design, qualification and mission results

    Science.gov (United States)

    Succa, Massimo; Boscolo, Ilario; Drocco, Alessandro; Malucchi, Giovanni; Dussy, Stephane

    2016-07-01

    The paper details the IXV avionics presenting the architecture and the constituting subsystems and equipment. It focuses on the novelties introduced, such as the Ethernet-based protocol for the experiment data acquisition system, and on the synergy with Ariane 5 and Vega equipment, pursued in order to comply with the design-to-cost requirement for the avionics system development. Emphasis is given to the adopted model philosophy in relation to OTS/COTS items heritage and identified activities necessary to extend the qualification level to be compliant with the IXV environment. Associated lessons learned are identified. Then, the paper provides the first results and interpretation from the flight recorders telemetry, covering the behavior of the Data Handling System, the quality of telemetry recording and real-time/delayed transmission, the performance of the batteries and the Power Protection and Distribution Unit, the ground segment coverage during visibility windows and the performance of the GNC sensors (IMU and GPS) and actuators. Finally, some preliminary tracks of the IXV follow on are given, introducing the objectives of the Innovative Space Vehicle and the necessary improvements to be developed in the frame of PRIDE.

  16. The MGS Avionics System Architecture: Exploring the Limits of Inheritance

    Science.gov (United States)

    Bunker, R.

    1994-01-01

    Mars Global Surveyor (MGS) avionics system architecture comprises much of the electronics on board the spacecraft: electrical power, attitude and articulation control, command and data handling, telecommunications, and flight software. Schedule and cost constraints dictated a mix of new and inherited designs, especially hardware upgrades based on findings of the Mars Observer failure review boards.

  17. Advanced Avionics Architecture and Technology Review. Executive Summary and Volume 1, Avionics Technology. Volume 2. Avionics Systems Engineering

    Science.gov (United States)

    1993-08-06

    JIAWG core avionics are described in the section below. The JIAWO architecture standard (187-01) describes an open. system architeture which provides...0.35 microns (pRm). Present technology is in the 0.8 npm to 0.5 pm range for aggressive producers. Since the area of a die is approximately proportional ...analog (D/A) converters. The I A/D converter is a device or circuit that examines an analog voltage or current and converts it to a proportional binary

  18. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  19. Micro-Avionics Multi-Purpose Platform (MicroAMPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro-Avionics Multi-Purpose Platform (MicroAMPP) is a common avionics architecture supporting microsatellites, launch vehicles, and upper-stage carrier...

  20. Advanced Information Processing System (AIPS)-based fault tolerant avionics architecture for launch vehicles

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1990-01-01

    An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.

  1. Reliable avionics design for deep space

    Science.gov (United States)

    Johnson, Stephen B.

    The technical and organizational problems posed by the Space Exploration Initiative (SEI) are discussed, and some possible solutions are examined. It is pointed out that SEI poses a whole new set of challenging problems in the design of reliable systems. These missions and their corresponding systems are far more complex than current systems. The initiative requires a set of vehicles and systems which must have very high levels of autonomy, reliability, and operability for long periods of time. It is emphasized that to achieve these goals in the face of great complexity, new technologies and organizational techniques will be necessary. It is noted that the key to a good design is good people. Not only must good people be found, but they must be placed in positions appropriate to their skills. It is argued that the atomistic and autocratic paradigm of vertical organizations must be replaced with more team-oriented and democratic structures.

  2. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    Science.gov (United States)

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  3. Spacecraft guidance, navigation, and control requirements for an intelligent plug-n-play avionics (PAPA) architecture

    Science.gov (United States)

    Kulkarni, Nilesh; Krishnakumar, Kalmaje

    2005-01-01

    The objective of this research is to design an intelligent plug-n-play avionics system that provides a reconfigurable platform for supporting the guidance, navigation and control (GN&C) requirements for different elements of the space exploration mission. The focus of this study is to look at the specific requirements for a spacecraft that needs to go from earth to moon and back. In this regard we will identify the different GN&C problems in various phases of flight that need to be addressed for designing such a plug-n-play avionics system. The Apollo and the Space Shuttle programs provide rich literature in terms of understanding some of the general GN&C requirements for a space vehicle. The relevant literature is reviewed which helps in narrowing down the different GN&C algorithms that need to be supported along with their individual requirements.

  4. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    Science.gov (United States)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  5. Thermal Space in Architecture

    DEFF Research Database (Denmark)

    Petersen, Mads Dines

    Present research is revolving around the design process and the use of digital applications to support the design process among architects. This work is made in relation to the current discussions about sustainable architecture and the increased focus on energy consumption and the comfort in our...... and understanding of spaces in buildings can change significantly and instead of the creation of frozen geometrical spaces, thermal spaces can be created as it is suggested in meteorological architecture where functions are distributed in relation to temperature gradients. This creates an interesting contrast......-introducing an increased adaptability in the architecture can be a part of re-defining the environmental agenda and re-establish a link between the environment of the site and the environment of the architecture and through that an increased appreciation of the sensuous space here framed in discussions about thermal...

  6. Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications

    Science.gov (United States)

    Ivancic, William D.

    2007-01-01

    Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.

  7. Art and Architectural Space

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2014-01-01

    and its content. The urban and spatial question goes far beyond museums and other buildings for art: how in democratic societies should public spaces be supported by art and how can public art support ´cityness´ and meaning versus spaces of consumerism. Famous but egocentric buildings with the main......art and architectural space museums and other exhibition spaces or how artists learn to love architects Over the last two decades, innumerable new museums, art galleries and other exhibition spaces have been built and opened all over the globe. The most extreme growth happened in China, where...... historically considered even the mother of all arts) - but more relevant: what are appropriate architectural spaces for presenting, exhibiting, contemplating, reflecting, meditating, discussing, enjoying, dissenting, debating creations of art. Simplified, this is a question about the relation between package...

  8. Art and Architectural Space

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2014-01-01

    art and architectural space museums and other exhibition spaces or how artists learn to love architects Over the last two decades, innumerable new museums, art galleries and other exhibition spaces have been built and opened all over the globe. The most extreme growth happened in China, where...... purpose of ´uniqueness´ often fail to be a ´home´, a large scale ´picture frame´ or a productive space for communicating art and even do not fulfil basic technical aspects in terms of a consistent indoor climate, optimized lighting or safety. The lecture will focus on inspiring examples of spaces for art...

  9. Art and Architectural Space

    DEFF Research Database (Denmark)

    Unterrainer, Walter

    2014-01-01

    the number of museums went up from 300 by 1980 to estimated 3000 museums by 2015. In urban discourses, new museums and buildings for art have been considered as drivers for ´cultural sustainability´ of cities. The notion is diffuse and the reality is more an economic centred ´city branding´ to help...... the promotion of tourism. What surprises: in many cities, the buildings for art are better known and more published and discussed than the art they accommodate. A lot of them are considered as art objects. This raises two questions: How much is architecture itself a form of arts? (in Western architecture...... historically considered even the mother of all arts) - but more relevant: what are appropriate architectural spaces for presenting, exhibiting, contemplating, reflecting, meditating, discussing, enjoying, dissenting, debating creations of art. Simplified, this is a question about the relation between package...

  10. Conflict, Space and Architecture

    Directory of Open Access Journals (Sweden)

    Marc Schoonderbeek

    2017-02-01

    Full Text Available Footprint 19 focuses on the more recent roles of architecture in the contemporary spaces of conflict. Departing from a spatial understanding of geopolitical, climatological and economical conflicts, the various contributions highlight the large scale and phenomenal transitions in the physical world and in society by extrapolating, through examples, the abundance of relations that can be traced between conflict, territory and architecture. Conflict areas often prove to be fertile grounds for innovation and for the emergence of new spatial forms. The issue reports on the state of perpetual global unrest in architecture through a series of articles and case studies that highlight the consequences of conflicts in the places and spaces that we inhabit. In the introduction, these are discussed as an interlinked global reality rather than as isolated incidents. In doing so, the contemporary spaces of conflict are positioned in the context of emerging global trends, conditions, and discourses in the attempt to address their indicative symptoms while reflecting on their underlying causes.

  11. Space Elevators Preliminary Architectural View

    Science.gov (United States)

    Pullum, L.; Swan, P. A.

    Space Systems Architecture has been expanded into a process by the US Department of Defense for their large scale systems of systems development programs. This paper uses the steps in the process to establishes a framework for Space Elevator systems to be developed and provides a methodology to manage complexity. This new approach to developing a family of systems is based upon three architectural views: Operational View OV), Systems View (SV), and Technical Standards View (TV). The top level view of the process establishes the stages for the development of the first Space Elevator and is called Architectural View - 1, Overview and Summary. This paper will show the guidelines and steps of the process while focusing upon components of the Space Elevator Preliminary Architecture View. This Preliminary Architecture View is presented as a draft starting point for the Space Elevator Project.

  12. Space-Time and Architecture

    Science.gov (United States)

    Field, F.; Goodbun, J.; Watson, V.

    Architects have a role to play in interplanetary space that has barely yet been explored. The architectural community is largely unaware of this new territory, for which there is still no agreed method of practice. There is moreover a general confusion, in scientific and related fields, over what architects might actually do there today. Current extra-planetary designs generally fail to explore the dynamic and relational nature of space-time, and often reduce human habitation to a purely functional problem. This is compounded by a crisis over the representation (drawing) of space-time. The present work returns to first principles of architecture in order to realign them with current socio-economic and technological trends surrounding the space industry. What emerges is simultaneously the basis for an ecological space architecture, and the representational strategies necessary to draw it. We explore this approach through a work of design-based research that describes the construction of Ocean; a huge body of water formed by the collision of two asteroids at the Translunar Lagrange Point (L2), that would serve as a site for colonisation, and as a resource to fuel future missions. Ocean is an experimental model for extra-planetary space design and its representation, within the autonomous discipline of architecture.

  13. Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio Ssystem (STRS) Radio

    Science.gov (United States)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  14. Waveform Developer's Guide for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    Science.gov (United States)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  15. Performative Architecture and Urban Spaces

    DEFF Research Database (Denmark)

    Kiib, Hans

    2008-01-01

      3 Workshops one exibition   Three conceptual architectural workshops took take place in parallel from August 16th - 22nd 2008. Each workshop carried a specific methodology and the goal is to come up with conceptual proposals that could be further developed for selected sites in the city of Aalb...... This workshop focus on temporary architecture and urban catalysts. Informal spaces and the interface between the built and the void are foremost in the development of performative urban environments and cultural interaction. ......  3 Workshops one exibition   Three conceptual architectural workshops took take place in parallel from August 16th - 22nd 2008. Each workshop carried a specific methodology and the goal is to come up with conceptual proposals that could be further developed for selected sites in the city...... The workshop model includes an open workshop where a handful of international architects are invited to spend five days with local architects, engineers and scholars contributing to a work of architectural vision and quality. The workshop includes presentations and discussions and development of projects...

  16. Reference Specifications for SAVOIR Avionics Elements

    Science.gov (United States)

    Hult, Torbjorn; Lindskog, Martin; Roques, Remi; Planche, Luc; Brunjes, Bernhard; Dellandrea, Brice; Terraillon, Jean-Loup

    2012-08-01

    Space industry and Agencies have been recognizing already for quite some time the need to raise the level of standardisation in the spacecraft avionics systems in order to increase efficiency and reduce development cost and schedule. This also includes the aspect of increasing competition in global space business, which is a challenge that European space companies are facing at all stages of involvement in the international markets.A number of initiatives towards this vision are driven both by the industry and ESA’s R&D programmes. However, today an intensified coordination of these activities is required in order to achieve the necessary synergy and to ensure they converge towards the shared vision. It has been proposed to federate these initiatives under the common Space Avionics Open Interface Architecture (SAVOIR) initiative. Within this initiative, the approach based on reference architectures and building blocks plays a key role.Following the principles outlined above, the overall goal of the SAVOIR is to establish a streamlined onboard architecture in order to standardize the development of avionics systems for space programmes. This reflects the need to increase efficiency and cost-effectiveness in the development process as well as account the trend towards more functionality implemented by the onboard building blocks, i.e. HW and SW components, and more complexity for the overall space mission objectives.

  17. Use of Field Programmable Gate Array Technology in Future Space Avionics

    Science.gov (United States)

    Ferguson, Roscoe C.; Tate, Robert

    2005-01-01

    Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA.

  18. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    Science.gov (United States)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  19. Assured Mission Support Space Architecture (AMSSA) study

    Science.gov (United States)

    Hamon, Rob

    1993-01-01

    The assured mission support space architecture (AMSSA) study was conducted with the overall goal of developing a long-term requirements-driven integrated space architecture to provide responsive and sustained space support to the combatant commands. Although derivation of an architecture was the focus of the study, there are three significant products from the effort. The first is a philosophy that defines the necessary attributes for the development and operation of space systems to ensure an integrated, interoperable architecture that, by design, provides a high degree of combat utility. The second is the architecture itself; based on an interoperable system-of-systems strategy, it reflects a long-range goal for space that will evolve as user requirements adapt to a changing world environment. The third product is the framework of a process that, when fully developed, will provide essential information to key decision makers for space systems acquisition in order to achieve the AMSSA goal. It is a categorical imperative that military space planners develop space systems that will act as true force multipliers. AMSSA provides the philosophy, process, and architecture that, when integrated with the DOD requirements and acquisition procedures, can yield an assured mission support capability from space to the combatant commanders. An important feature of the AMSSA initiative is the participation by every organization that has a role or interest in space systems development and operation. With continued community involvement, the concept of the AMSSA will become a reality. In summary, AMSSA offers a better way to think about space (philosophy) that can lead to the effective utilization of limited resources (process) with an infrastructure designed to meet the future space needs (architecture) of our combat forces.

  20. SPACE IN JAPANESE ZEN BUDDHIST ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Antariksa Antariksa

    2001-01-01

    Full Text Available The beginning in the medieval period the ideas "emptiness" and "nothingness" in Buddhist doctrine influences over the Japanese. Space in Japanese architecture (kukan, as a empty place. This word originally stood for a "hole in the ground", and in on present meaning of a "hole in the universe", or "sky". The ancient Japanese divided space vertically into two parts, sora (sky and ame or ama (heaven. In the concept of emptiness both of this above it can be said is a part of space. This paper will tries to explain and discusses about the meaning of space in Japanese Zen Buddhist architecture.

  1. Carnegie Mellon University Space Architecture

    Science.gov (United States)

    Kennedy, Kriss J.

    2016-01-01

    A traditional architecture studio focusing on a "post-pioneering" settlement (a first step research station with an emphasis on material, resources, closed-loop systems, as well as programmatic network and spatial considerations) for the surface of Mars or for Earth-Mars transit.

  2. Space Architecture: The Role, Work and Aptitude

    Science.gov (United States)

    Griffin, Brand

    2014-01-01

    Space architecture has been an emerging discipline for at least 40 years. Has it arrived? Is space architecture a legitimate vocation or an avocation? If it leads to a job, what do employers want? In 2002, NASA Headquarters created a management position for a space architect whose job was to "lead the development of strategic architectures and identify high level requirements for systems that will accomplish the Nation's space exploration vision." This is a good job description with responsibility at the right level in NASA, but unfortunately, the office was discontinued two years later. Even though there is no accredited academic program or professional licensing for space architecture, there is a community of practitioners. They are civil servants, contractors and academicians supporting International Space Station and space exploration programs. In various ways, space architects currently contribute to human spaceflight, but there is a way for the discipline to be more effective in developing solutions to large scale complex problems. This paper organizes contributions from engineers, architects and psychologists into recommendations on the role of space architects in the organization, the process of creating and selecting options, and intrinsic personality traits including why they must have a high tolerance for ambiguity.

  3. Module Architecture for in Situ Space Laboratories

    Science.gov (United States)

    Sherwood, Brent

    2010-01-01

    The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.

  4. Non-functional Avionics Requirements

    Science.gov (United States)

    Paulitsch, Michael; Ruess, Harald; Sorea, Maria

    Embedded systems in aerospace become more and more integrated in order to reduce weight, volume/size, and power of hardware for more fuel-effi ciency. Such integration tendencies change architectural approaches of system ar chi tec tures, which subsequently change non-functional requirements for plat forms. This paper provides some insight into state-of-the-practice of non-func tional requirements for developing ultra-critical embedded systems in the aero space industry, including recent changes and trends. In particular, formal requi re ment capture and formal analysis of non-functional requirements of avionic systems - including hard-real time, fault-tolerance, reliability, and per for mance - are exemplified by means of recent developments in SAL and HiLiTE.

  5. On minimalism in architecture - space as experience

    Directory of Open Access Journals (Sweden)

    Vasilski Dragana

    2016-01-01

    Full Text Available Architecture has to be experienced to be understood. The complexity of the experience is seen through a better understanding of the relationship between objectivity (architecture and subjectivity (our life. Being physically, emotionally and psychologically aware of the space we occupy is an experience that could be described as being present, which is a sensation that is personal and difficult to explicitly describe. Research into experience through perception and emotion positions architecture within scientific fields, in particular psychological disciplines. Relying on the standpoints of Immanuel Kant, the paper considers the juxtaposition between (minimalism in architecture and philosophy on the topic of experience. Starting from the basic aspects of perception and representation of the world around us, a thesis is presented in which the notions of silence and light as experienced in minimalism (in architecture are considered as adequate counterparts to Kant’s factors of experience - the awareness of the objective order of events and the impossibility to perceive time itself. Through a case study we verify the starting hypothesis on minimalism (in architecture whereby space becomes an experience of how the world touches us.

  6. A Reference Architecture for Space Information Management

    Science.gov (United States)

    Mattmann, Chris A.; Crichton, Daniel J.; Hughes, J. Steven; Ramirez, Paul M.; Berrios, Daniel C.

    2006-01-01

    We describe a reference architecture for space information management systems that elegantly overcomes the rigid design of common information systems in many domains. The reference architecture consists of a set of flexible, reusable, independent models and software components that function in unison, but remain separately managed entities. The main guiding principle of the reference architecture is to separate the various models of information (e.g., data, metadata, etc.) from implemented system code, allowing each to evolve independently. System modularity, systems interoperability, and dynamic evolution of information system components are the primary benefits of the design of the architecture. The architecture requires the use of information models that are substantially more advanced than those used by the vast majority of information systems. These models are more expressive and can be more easily modularized, distributed and maintained than simpler models e.g., configuration files and data dictionaries. Our current work focuses on formalizing the architecture within a CCSDS Green Book and evaluating the architecture within the context of the C3I initiative.

  7. Architectural space characteristics facilitating teaching and apprenticeship

    Directory of Open Access Journals (Sweden)

    Maria do Carmo de Lima Bezerra

    2016-06-01

    Full Text Available The article discusses the relevance of the architectural space as a facilitator of teaching and learning processes. It adopts an analytical methodology based on the architecture and pedagogy literature to know the view of these areas on the subject, and identifies relevant spatial attributes to facilitate education. Research has shown that there are recurrences pointing disciplinary fields of environmental comfort, ergonomics and environmental psychology, which were the subject of this conceptual research about the positive and negative impacts on the school design facility by each attribute of these disciplines. As result, it presents a framework of attributes, characteristics and relevance to teaching and learning to be used as support to the space needs assessment, ie: during the first stage of an architectural design process.

  8. Space and Architecture's Current Line of Research? A Lunar Architecture Workshop With An Architectural Agenda.

    Science.gov (United States)

    Solomon, D.; van Dijk, A.

    The "2002 ESA Lunar Architecture Workshop" (June 3-16) ESTEC, Noordwijk, NL and V2_Lab, Rotterdam, NL) is the first-of-its-kind workshop for exploring the design of extra-terrestrial (infra) structures for human exploration of the Moon and Earth-like planets introducing 'architecture's current line of research', and adopting an architec- tural criteria. The workshop intends to inspire, engage and challenge 30-40 European masters students from the fields of aerospace engineering, civil engineering, archi- tecture, and art to design, validate and build models of (infra) structures for Lunar exploration. The workshop also aims to open up new physical and conceptual terrain for an architectural agenda within the field of space exploration. A sound introduc- tion to the issues, conditions, resources, technologies, and architectural strategies will initiate the workshop participants into the context of lunar architecture scenarios. In my paper and presentation about the development of the ideology behind this work- shop, I will comment on the following questions: * Can the contemporary architectural agenda offer solutions that affect the scope of space exploration? It certainly has had an impression on urbanization and colonization of previously sparsely populated parts of Earth. * Does the current line of research in architecture offer any useful strategies for com- bining scientific interests, commercial opportunity, and public space? What can be learned from 'state of the art' architecture that blends commercial and public pro- grammes within one location? * Should commercial 'colonisation' projects in space be required to provide public space in a location where all humans present are likely to be there in a commercial context? Is the wave in Koolhaas' new Prada flagship store just a gesture to public space, or does this new concept in architecture and shopping evolve the public space? * What can we learn about designing (infra-) structures on the Moon or any other

  9. Intelligent, reusable software for plug and play space avionics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build upon our existing space processing and hardening technologies and products e.g (Proton 200K), to research and develop reusable software...

  10. Millimeterwave Space Power Grid architecture development 2012

    Science.gov (United States)

    Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan

    This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t

  11. Navigation Architecture for a Space Mobile Network

    Science.gov (United States)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  12. Space Station data management system architecture

    Science.gov (United States)

    Mallary, William E.; Whitelaw, Virginia A.

    1987-01-01

    Within the Space Station program, the Data Management System (DMS) functions in a dual role. First, it provides the hardware resources and software services which support the data processing, data communications, and data storage functions of the onboard subsystems and payloads. Second, it functions as an integrating entity which provides a common operating environment and human-machine interface for the operation and control of the orbiting Space Station systems and payloads by both the crew and the ground operators. This paper discusses the evolution and derivation of the requirements and issues which have had significant effect on the design of the Space Station DMS, describes the DMS components and services which support system and payload operations, and presents the current architectural view of the system as it exists in October 1986; one-and-a-half years into the Space Station Phase B Definition and Preliminary Design Study.

  13. Parametric Architecture in the Urban Space

    Science.gov (United States)

    Januszkiewicz, Krystyna; Kowalski, Karol G.

    2017-10-01

    The paper deals with the parametric architecture which is trying to introduce a new spatial language in the context for urban tissue that correspond to the artistic consciousness and the attitude of information and digital technologies era. The first part of the paper defines the main features of parametric architecture (such as: folding, continuity and curvilinearity) which are are characteristic of the new style of named the “parametricism”. This architecture is a strong emphasis on geometry, materiality, feasibility and sustainability, what emerges is an explicit agenda promoting material ornamentation, spatial spectacle and formal theatricality. The second part presents result of case study, especially parametric public use buildings, within the tissue of city. The analyzed objects are: The Sage Gateshead (1998-2004) in Gateshead, Kunsthaus in Graz (2000-2003), the Weltstadthaus (2003-2005) in Cologne, The Golden Terraces in Warsaw (2000-2007), the Metropol Parasol in Seville (2005-2011) the King Cross Station (2005-2012) in London, the headquarters of the Pathé Foundation (2006-2014) in Paris. Each of the enumerated examples shows a diverse approach to designing in the urban space, which reflect the age of digital technologies and the information society. In conclusion emphasizes, that new concept of the spatialization of architecture is the equivalent of the democratization of the political system, the liberalization of the economy, among other examples.

  14. E VA Space Suit Power, Avionics, and Software Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is interested in a reliable, robust, and low Size Weight and Power (SWAP) input device that will allow for EVA astronauts to navigate display menu systems. The...

  15. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  16. New architectures for space power systems

    International Nuclear Information System (INIS)

    Ehsani, M.; Patton, A.D.; Biglic, O.

    1992-01-01

    Electric power generation and conditioning have experienced revolutionary development over the past two decades. Furthermore, new materials such as high energy magnets and high temperature superconductors are either available or on the horizon. The authors' work is based on the promise that new technologies are an important driver of new power system concepts and architectures. This observation is born out by the historical evolution of power systems both in terrestrial and aerospace applications. This paper will introduce new approaches to designing space power systems by using several new technologies

  17. Deep Space Network information system architecture study

    Science.gov (United States)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  18. Thermal Control Subsystem Design for the Avionics of a Space Station Payload

    Science.gov (United States)

    Moran, Matthew E.

    1996-01-01

    A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.

  19. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Science.gov (United States)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  20. Understanding the Lunar System Architecture Design Space

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  1. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  2. Database architectures for Space Telescope Science Institute

    Science.gov (United States)

    Lubow, Stephen

    1993-08-01

    At STScI nearly all large applications require database support. A general purpose architecture has been developed and is in use that relies upon an extended client-server paradigm. Processing is in general distributed across three processes, each of which generally resides on its own processor. Database queries are evaluated on one such process, called the DBMS server. The DBMS server software is provided by a database vendor. The application issues database queries and is called the application client. This client uses a set of generic DBMS application programming calls through our STDB/NET programming interface. Intermediate between the application client and the DBMS server is the STDB/NET server. This server accepts generic query requests from the application and converts them into the specific requirements of the DBMS server. In addition, it accepts query results from the DBMS server and passes them back to the application. Typically the STDB/NET server is local to the DBMS server, while the application client may be remote. The STDB/NET server provides additional capabilities such as database deadlock restart and performance monitoring. This architecture is currently in use for some major STScI applications, including the ground support system. We are currently investigating means of providing ad hoc query support to users through the above architecture. Such support is critical for providing flexible user interface capabilities. The Universal Relation advocated by Ullman, Kernighan, and others appears to be promising. In this approach, the user sees the entire database as a single table, thereby freeing the user from needing to understand the detailed schema. A software layer provides the translation between the user and detailed schema views of the database. However, many subtle issues arise in making this transformation. We are currently exploring this scheme for use in the Hubble Space Telescope user interface to the data archive system (DADS).

  3. Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Material

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle

  4. Spacecraft Architecture in long Duration Space Travels

    Science.gov (United States)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  5. Space Internet Architectures and Technologies for NASA Enterprises

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  6. Space architecture for MoonVillage

    Science.gov (United States)

    Sherwood, Brent

    2017-10-01

    The concept of a multinational MoonVillage, as proposed by Jan Wörner of ESA, is analyzed with respect to diverse factors affecting its implementation feasibility: potential activities and scale as a function of location, technology, and purpose; potential participants and their roles; business models for growth and sustainability as compared to the ISS; and implications for the field of space architecture. Environmental and operations constraints that govern all types of MoonVillage are detailed. Findings include: 1) while technically feasible, a MoonVillage would be more distributed and complex a project than the ISS; 2) significant and distinctive opportunities exist for willing participants, at all evolutionary scales and degrees of commercialization; 3) the mixed-use space business park model is essential for growth and permanence; 4) growth depends on exporting lunar material products, and the rate and extent of growth depends on export customers including terrestrial industries; 5) industrial-scale operations are a precondition for lunar urbanism, which goal in turn dramatically drives technology requirements; but 6) industrial viability cannot be discerned until significant in situ operations occur; and therefore 7) government investment in lunar surface operations is a strictly enabling step. Because of the resources it could apply, the U.S. government holds the greatest leverage on growth, no matter who founds a MoonVillage. The interplanetary business to be built may because for engagement.

  7. Modular Architecture for the Deep Space Habitat Instrumentation System

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is focused on developing a continually evolving modular backbone architecture for the Deep Space Habitat (DSH) instrumentation system by integrating new...

  8. Deep Space Navigation and Timing Architecture and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will develop a deep space navigation and timing architecture and associated simulation, incorporating state-of-the art radiometric, x-ray pulsar, and laser...

  9. Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator

    Science.gov (United States)

    Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe

    2013-08-01

    Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653

  10. Flight Avionics Hardware Roadmap

    Science.gov (United States)

    Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt; hide

    2013-01-01

    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.

  11. Discussion about photodiode architectures for space applications

    Science.gov (United States)

    Gravrand, O.; Destefanis, G.; Cervera, C.; Zanatta, J.-P.; Baier, N.; Ferron, A.; Boulade, O.

    2017-11-01

    Detection for space application is very demanding on the IR detector: all wavelengths, from visible-NIR (2- 3um cutoff) to LWIR (10-12.5um cutoff), even sometimes VLWIR (15um cutoff) may be of interest. Moreover, various scenarii are usually considered. Some are imaging applications where the focal plane array (FPA) is used as an optical element to sense an image. However, the FPA may also be used in spectrometric applications where light is triggered on the different pixels depending on its wavelength. In some cases, star pointing is another use of FPAs where the retina is used to sense the position of the satellite. In all those configurations, we might distinguish several categories of applications: • low flux applications where the FPA is staring at space and the detection occurs with only a few number of photons. • high flux applications where the FPA is usually staring at the earth. In this case, the black body emission of the earth and its atmosphere ensures usually a large number of photons to perform the detection. Those two different categories are highly dimensioning for the detector as it usually determines the level of dark current and quantum efficiency (QE) requirements. Indeed, high detection performance usually requires a large number of integrated photons such that high QE is needed for low flux applications, in order to limit the integration time as much as possible. Moreover, dark current requirement is also directly linked to the expected incoming flux, in order to limit as much as possible the SNR degradation due to dark charges vs photocharges. Note that in most cases, this dark current is highly depending on operating temperature which dominates detector consumption. A classical way to mitigate dark current is to cool down the detector to very low temperatures. This paper won't discuss the need for wavefront sensing where the number of detected photons is low because of a very narrow integration window. Rigorously, this kind of

  12. Security Policy for a Generic Space Exploration Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  13. Communication-Oriented Design Space Exploration for Reconfigurable Architectures

    Directory of Open Access Journals (Sweden)

    Gogniat Guy

    2007-01-01

    Full Text Available Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architectures, field programmable gate arrays (FPGAs, are the most well-known structures of reconfigurable hardware. Dedicated tools (generic or specific allow for the exploration of their design space to choose the best architecture characteristics and/or to explore the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack, in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communication hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

  14. Avionics systems integration technology

    Science.gov (United States)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  15. 10 Management Controller for Time and Space Partitioning Architectures

    Science.gov (United States)

    Lachaize, Jerome; Deredempt, Marie-Helene; Galizzi, Julien

    2015-09-01

    The Integrated Modular Avionics (IMA) has been industrialized in aeronautical domain to enable the independent qualification of different application softwares from different suppliers on the same generic computer, this latter computer being a single terminal in a deterministic network. This concept allowed to distribute efficiently and transparently the different applications across the network, sizing accurately the HW equipments to embed on the aircraft, through the configuration of the virtual computers and the virtual network. , This concept has been studied for space domain and requirements issued [D04],[D05]. Experiments in the space domain have been done, for the computer level, through ESA and CNES initiatives [D02] [D03]. One possible IMA implementation may use Time and Space Partitioning (TSP) technology. Studies on Time and Space Partitioning [D02] for controlling resources access such as CPU and memories and studies on hardware/software interface standardization [D01] showed that for space domain technologies where I/O components (or IP) do not cover advanced features such as buffering, descriptors or virtualization, CPU overhead in terms of performances is mainly due to shared interface management in the execution platform, and to the high frequency of I/O accesses, these latter leading to an important number of context switches. This paper will present a solution to reduce this execution overhead with an open, modular and configurable controller.

  16. Space Telecommunications Radio System (STRS) Architecture. Part 1; Tutorial - Overview

    Science.gov (United States)

    Handler, Louis M.; Briones, Janette C.; Mortensen, Dale J.; Reinhart, Richard C.

    2012-01-01

    Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA s future telecommunications technologies. The presentation will provide a basic understanding of STRS.

  17. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    Science.gov (United States)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  18. Architecture of (impossibilities: Robert Smithson's expositive spaces

    Directory of Open Access Journals (Sweden)

    Bráulio Romeiro

    2012-06-01

    Full Text Available This work investigates the North American artist Robert Smithson’s considerations on traditional expositive spaces: the museum and art gallery, as well as unusual and unexplored spaces by art up to that time. Looking through his texts we notice some enhanced perspectives and reset others, increasing limitation set on White Cube’s abstract and neutral quality and the substantiation on ideologies behind of these spaces manifestation.

  19. Space for Hygiene in Housing Architecture

    DEFF Research Database (Denmark)

    Bech-Danielsen, Claus

    2014-01-01

    In this paper, the author focuses on spaces used for personal hygiene—the bathroom. The paper begins with a description of the hygienic movement in the late 19th century. At that time, urinating took place in semi-public spaces outside the dwelling. Today, the WC has moved well into the dwelling,...... by analyzing the spatial organization of dwellings....

  20. Architecture

    OpenAIRE

    Clear, Nic

    2014-01-01

    When discussing science fiction’s relationship with architecture, the usual practice is to look at the architecture “in” science fiction—in particular, the architecture in SF films (see Kuhn 75-143) since the spaces of literary SF present obvious difficulties as they have to be imagined. In this essay, that relationship will be reversed: I will instead discuss science fiction “in” architecture, mapping out a number of architectural movements and projects that can be viewed explicitly as scien...

  1. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  2. Software Defined Radio Architecture Contributions to Next Generation Space Communications

    Science.gov (United States)

    Kacpura, Thomas J.; Eddy, Wesley M.; Smith, Carl R.; Liebetreu, John

    2015-01-01

    Space communications architecture concepts, comprising the elements of the system, the interactions among them, and the principles that govern their development, are essential factors in developing National Aeronautics and Space Administration (NASA) future exploration and science missions. Accordingly, vital architectural attributes encompass flexibility, the extensibility to insert future capabilities, and to enable evolution to provide interoperability with other current and future systems. Space communications architectures and technologies for this century must satisfy a growing set of requirements, including those for Earth sensing, collaborative observation missions, robotic scientific missions, human missions for exploration of the Moon and Mars where surface activities require supporting communications, and in-space observatories for observing the earth, as well as other star systems and the universe. An advanced, integrated, communications infrastructure will enable the reliable, multipoint, high-data-rate capabilities needed on demand to provide continuous, maximum coverage for areas of concentrated activity. Importantly, the cost/value proposition of the future architecture must be an integral part of its design; an affordable and sustainable architecture is indispensable within anticipated future budget environments. Effective architecture design informs decision makers with insight into the capabilities needed to efficiently satisfy the demanding space-communication requirements of future missions and formulate appropriate requirements. A driving requirement for the architecture is the extensibility to address new requirements and provide low-cost on-ramps for new capabilities insertion, ensuring graceful growth as new functionality and new technologies are infused into the network infrastructure. In addition to extensibility, another key architectural attribute of the space communication equipment's interoperability with other NASA communications

  3. Information Architecture the Design of Digital Information Spaces

    CERN Document Server

    Ding, Wei

    2009-01-01

    Information Architecture is about organizing and simplifying information, designing and integrating information spaces/systems, and creating ways for people to find and interact with information content. Its goal is to help people understand and manage information and make right decisions accordingly. In the ever-changing social, organizational and technological contexts, Information Architects not only design individual information spaces (e.g., individual websites, software applications, and mobile devices), but also tackle strategic aggregation and integration of multiple information spaces

  4. Understanding Media Architecture (Better): One Space, Three Cases

    DEFF Research Database (Denmark)

    Brynskov, Martin; Dalsgaard, Peter; Halskov, Kim

    2013-01-01

    Our group has worked within the field of interactive urban lighting design and media architecture since 2007. In this position paper we outline a presentation where we compare three installations that were created in the period 2008 to 2012 in the same central, public space in a city. By comparin...... and contrasting these three cases in the same space, we get a multi-faceted view on that particular context for media architecture. But we also get the opportunity to reflect on some more general concepts regarding the use of interactive urban lighting design.......Our group has worked within the field of interactive urban lighting design and media architecture since 2007. In this position paper we outline a presentation where we compare three installations that were created in the period 2008 to 2012 in the same central, public space in a city. By comparing...

  5. Enabling Rapid Naval Architecture Design Space Exploration

    Science.gov (United States)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  6. Daylighting, Space, and Architecture: A Literature Review

    Directory of Open Access Journals (Sweden)

    Dalia Hafiz

    2015-12-01

    Full Text Available Daylighting dynamism and constant change can characterize buildings and spaces with a living quality that cannot be achieved with any other design element. However, daylighting can create unwanted lighting conditions in the visual field causing discomfort and glare. This may affect the performance of building occupants such as workers or students. Consequently, designing for daylighting needs a good understanding of daylighting. Designers can rely on information from simulation software to re-imagine the space, especially to examine possible unexpected visual discomfort conditions.This paper aims to represent different visual comfort evaluation methods that can help decision-makers make better informed decisions. Different definitions and structures associated with daylight and glare are examined. It also presents a review of the literature of previous research conducted on daylighting, visual comfort analysis and glare studies.

  7. A Monstrous Alliance: Open Architecture and Common Space

    Directory of Open Access Journals (Sweden)

    Gökhan Kodalak

    2015-06-01

    Full Text Available The contemporary built environment is absorbed by a dualist spatial organisation model divided between public and private space. Within this restrictive grammar, public space, despite its democratic promise, is heavily indoctrinated and anesthetised under the hegemony of regulatory apparatuses and control mechanisms, whereas private space has catalysed, if not directly engendered, prevalent spatial problems, such as ever-increasing slums, discriminatory gentrification and ecological catastrophes, despite its self-approving assurance. Underneath this dysfunctional couple lies common space, a third category that constitutes the shared spatial commonwealth of our entire natural and cultural milieu.The multitude, as an emerging body of self-organising political and spatial actors, has already started to unearth the potential of common space, actualising emergent and interactive spatial configurations all around the world. In this new, self-organisational model, architects do not become obsolete; rather, they leave behind their conventional roles as submissive experts and cosmetic speculators. By becoming anomalous architects, they affirm and augment the opening of spatial and architectural milieus to a myriad of new possibilities.This article theorises the possibility of a monstrous alliance between anomalous architects and the multitude, between open architectures and common space. Two specific case studies accompany these theoretical frameworks: the Gezi Event (Istanbul, 2013 demonstrates the actual emancipation of common space through the self-organising activity of the multitude, while Open-Cube (Antalya, 2013 attests to an early open architecture experiment based on the potentiating activity of the anomalous architect. 

  8. Identification of Architectural Functions in A Four-Dimensional Space

    Directory of Open Access Journals (Sweden)

    Firza Utama

    2012-06-01

    Full Text Available This research has explored the possibilities and concept of architectural space in a virtual environment. The virtual environment exists as a different concept, and challenges the constraints of the physical world. One of the possibilities in a virtual environment is that it is able to extend the spatial dimension higher than the physical three-dimension. To take the advantage of this possibility, this research has applied some geometrical four-dimensional (4D methods to define virtual architectural space. The spatial characteristics of 4D space is established by analyzing the four-dimensional structure that can be comprehended by human participant for its spatial quality, and by developing a system to control the fourth axis of movement. Multiple three-dimensional spaces that fluidly change their volume have been defined as one of the possibilities of virtual architecturalspace concept in order to enrich our understanding of virtual spatial experience.

  9. SETH: A Hierarchical, Agent-based Architecture for Smart Spaces

    OpenAIRE

    Marsá Maestre, Iván

    2008-01-01

    The ultimate goal of any smart environment is to release users from the tasks they usually perform to achieve comfort, efficiency, and service personalization. To achieve this goal, we propose to use multiagent systems. In this report we describe the SETH architectur: a hierarchical, agent-based solution intended to be applicable to different smart space scenarios, ranging from small environments, like smart homes or smart offices, to large smart spaces like cities.

  10. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  11. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  12. Transformation of artistic ideas of visual art into architectural space

    Directory of Open Access Journals (Sweden)

    Enyutina Ekaterina Dmitrievna

    2014-04-01

    Full Text Available Transformation of a two-dimensional composition into a volumetric and spatial solution is based on the abstract art painting. Theoretical part of the style of the twenties laid the basic groundwork for this solution. The group "Unovis" under the supervision of Malevich aimed to create the "Suprematic Utilitarian World": the development of a new architecture, a new ornament and new forms of furniture, as well as a new type of a modern book. The theory of P. Mondrian and the group "Style" had a tremendous effect on the architecture of the twentieth century, and first of all due to the “Bauhaus” school of design, that clearly represented the rationalistic principles of architecture. Originated in art a new understanding of the material world was reflected in architecture in the most striking and decisive manner. It can be illustrated by the example of modern prominent architects who also use the methods created by artists of the early twentieth century. For example, a designer and architect Zaha Hadid uses this method in many of her projects. When modeling her future projects she designs a volumetric and spatial conceptual model - composition of desired architectural space, using suprematic composition as a basis. Modeling method makes it possible to solve a range of problems competently and methodically interesting. Their solution is necessary for the architectural practice, conceptual design and training. Among the tasks lying "on the surface" of architectural creativity we can emphasize the following: 1. Abstracting. The aim is to design a volumetric and spatial conceptual model - a composition of desired architectural space, which will reflect reality from a new angle. 2. Conceptualization allows to reveal the main idea, the basic concept, the design principle in artistic activity, to investigate the conditions of functioning and aesthetic perception of architectural work in general. 3. Defining the structure and variability in the modular

  13. Investigation of an advanced fault tolerant integrated avionics system

    Science.gov (United States)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  14. TCP-Call Admission Control Interaction in Multiplatform Space Architectures

    Directory of Open Access Journals (Sweden)

    Georgios Theodoridis

    2007-06-01

    Full Text Available The implementation of efficient call admission control (CAC algorithms is useful to prevent congestion and guarantee target quality of service (QoS. When TCP protocol is adopted, some inefficiencies can arise due to the peculiar evolution of the congestion window. The development of cross-layer techniques can greatly help to improve efficiency and flexibility for wireless networks. In this frame, the present paper addresses the introduction of TCP feedback into the CAC procedures in different nonterrestrial wireless architectures. CAC performance improvement is shown for different space-based architectures, including both satellites and high altitude platform (HAP systems.

  15. TCP-Call Admission Control Interaction in Multiplatform Space Architectures

    Directory of Open Access Journals (Sweden)

    Roseti Cesare

    2007-01-01

    Full Text Available The implementation of efficient call admission control (CAC algorithms is useful to prevent congestion and guarantee target quality of service (QoS. When TCP protocol is adopted, some inefficiencies can arise due to the peculiar evolution of the congestion window. The development of cross-layer techniques can greatly help to improve efficiency and flexibility for wireless networks. In this frame, the present paper addresses the introduction of TCP feedback into the CAC procedures in different nonterrestrial wireless architectures. CAC performance improvement is shown for different space-based architectures, including both satellites and high altitude platform (HAP systems.

  16. Vibrant architecture material realm as a codesigner of living spaces

    CERN Document Server

    Armstrong, Rachel

    2015-01-01

    This book sets out the conditions in which the need for a new approach to the production of architecture in the twenty-first century is established, where our homes and cities are facing increasing pressures from environmental challenges that are compromising our well being and our lives. Vibrant architecture embodies a new kind of architectural design practice that explores how lively materials, or ‘vibrant matter’ may be incorporated into our buildings to confer on them some of the properties of living things such as, movement, growth, sensitivity and self-repair. My research examines the theoretical and practical implications of how this may occur through the application of a new group of materials in the production of our living spaces, collectively referred to as ‘vibrant matter’.

  17. A Model-based Avionic Prognostic Reasoner (MAPR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Model-based Avionic Prognostic Reasoner (MAPR) presented in this paper is an innovative solution for non-intrusively monitoring the state of health (SoH) and...

  18. Avionics for Hibernation and Recovery on Planetary Surfaces

    Data.gov (United States)

    National Aeronautics and Space Administration — Landers and rovers endure on the Martian equator but experience avionics failures in the cryogenic temperatures of lunar nights and Martian winters. The greatest...

  19. Integrated Power, Avionics, and Software (IPAS) Flexible Systems Integration

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Power, Avionics, and Software (IPAS) facility is a flexible, multi-mission hardware and software design environment. This project will develop a...

  20. Contagious architecture: computation, aesthetics, and space (technologies of lived abstraction)

    CERN Document Server

    Parisi, Luciana

    2013-01-01

    In Contagious Architecture, Luciana Parisi offers a philosophical inquiry into the status of the algorithm in architectural and interaction design. Her thesis is that algorithmic computation is not simply an abstract mathematical tool but constitutes a mode of thought in its own right, in that its operation extends into forms of abstraction that lie beyond direct human cognition and control. These include modes of infinity, contingency, and indeterminacy, as well as incomputable quantities underlying the iterative process of algorithmic processing. The main philosophical source for the project is Alfred North Whitehead, whose process philosophy is specifically designed to provide a vocabulary for "modes of thought" exhibiting various degrees of autonomy from human agency even as they are mobilized by it. Because algorithmic processing lies at the heart of the design practices now reshaping our world -- from the physical spaces of our built environment to the networked spaces of digital culture -- the nature o...

  1. SpaceWire model development technology for satellite architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  2. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  3. Space-Based Information Infrastructure Architecture for Broadband Services

    Science.gov (United States)

    Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.

    1996-01-01

    This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.

  4. Demonstration Advanced Avionics System (DAAS) function description

    Science.gov (United States)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1982-01-01

    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft.

  5. Future space. A new blueprint for business architecture.

    Science.gov (United States)

    Huang, J

    2001-04-01

    Although the Internet is an essential conduit for many business activities, it isn't rendering the physical world any less important, as the failures of many Web merchants demonstrate. People need social and sensual contact. The companies that succeed will be those best able to integrate the physical and the virtual. But that requires a new kind of business architecture--a new approach to designing stores, offices, factories, and other spaces where business is conducted. The author, a faculty member at Harvard Graduate School of Design, provides practical guidelines to help managers and entrepreneurs think creatively about the structures in which their businesses operate. He outlines four challenges facing designers of such "convergent" structures, so-called because they function in both physical and virtual space: matching form to function, allowing visitors to visualize the presence of others, personalizing spaces, and choreographing connectivity. Using numerous examples, from a fashion retailer that wants to sell in stores as well as through a Web site to a radically new kind of consulate, the author shows how businesses can meet each challenge. For instance, allowing customers to visualize the presence of others means that visitors to a Web site should be given a sense of other site visitors. Personalizing physical and virtual spaces involves using databases to enable those spaces to adapt quickly to user preferences. The success of companies attempting to merge on-line and traditional operations will depend on many factors. But without a well-designed convergent architecture, no company will fully reap the synergies of physical space and Internet technology.

  6. Spatial Narrative and Perception of Space in Historical and Contemporary Architectural Compositions

    Directory of Open Access Journals (Sweden)

    Gytis Oržikauskas

    2013-10-01

    Full Text Available One of the most important features in historical architectural compositions is geometrical rendition of architectural space and volume. This feature was highlighted in terms of architecture of Modernism. According to the theory of modern architecture and Geschtalt Psychology, elementary geometrical forms and main spatial features were underlined and accepted as anthropomorphic principle of architecture. Even today main spatial characteristics are accepted as a key principle of architectural composition. However, architects and critics of contemporary – post-modern and deconstructive – architecture emphasize the value of architectural narrative achieved not only through perception of space, but also by its relationship to social and cultural meanings and subtext of architecture. A narrative, as architectural feature, is realized in some compositions of the deconstructivist and postmodern architecture, both worldwide and in Lithuania

  7. Experiencing the relationship between architectural space and the major space phobias

    Directory of Open Access Journals (Sweden)

    Dana Pop

    2015-12-01

    Full Text Available During the past decades there was a noticeable effervescence characterising the space-psychology related studies. These studies established a connection between the characteristics of the environment and behaviour. Thus, this paper would like to join this field of research. Consequently, the first issue raised is whether architecture is about a space in itself, or whether it is about perception, of a mental representation. A second issue is whether a space has qualities of its own, or whether its characteristics depend on the subjectivity of the perceptual process. This hypothesis generated an entire field of research, which disputes the differences between space and place. The last issue would be the role played by architecture in the context of the space-place-perception discussion. Thus, architecture finds itself in the middle of this debate, being the instrument which carves the environment we inhabit. In order to provide a practical answer to this last question, the paper bases its conclusions on the results obtained through an experiment. This experiment tested certain situations in which the natural adaptation process has been short-circuited. These are phobic reactions. Thus, the paper wishes to lay the first theoretical ‘brick’ at the foundation of an interdisciplinary research project between architecture, psychology, sociology and virtual reality.

  8. Highly Adjustable Systems: An Architecture for Future Space Observatories

    Science.gov (United States)

    Arenberg, Jonathan; Conti, Alberto; Redding, David; Lawrence, Charles R.; Hachkowski, Roman; Laskin, Robert; Steeves, John

    2017-06-01

    Mission costs for ground breaking space astronomical observatories are increasing to the point of unsustainability. We are investigating the use of adjustable or correctable systems as a means to reduce development and therefore mission costs. The poster introduces the promise and possibility of realizing a “net zero CTE” system for the general problem of observatory design and introduces the basic systems architecture we are considering. This poster concludes with an overview of our planned study and demonstrations for proving the value and worth of highly adjustable telescopes and systems ahead of the upcoming decadal survey.

  9. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  10. Publicity and identity in the public space architecture

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Carneiro da Cunha Nóbrega

    2009-12-01

    Full Text Available This article aims at showing the relationship between publicity elements, such as posters and signs, with the city architecture, so that the contribution of these elements with the identity of the urban sites, especially the historical ones, can be understood. In order to do that, a focal point is given to Rua da Palma, located in the city of Recife (Pernambuco, Brazil. For the development of this research, which was based on the present morphological analysis of the site, a survey of photographs and the use of the buildings in the street from 2006 to 2009 was carried out. Also, the existing urban legislation was analyzed. Studies undertaken by authors such as Certau (1994, Venturi (1977 and Koolhaas (2004, among others, and concepts related to retail marketing helped in the conclusion of this analysis of the urban space, which presents architecture as a publicity media, often transforming the identity of the area. A starting point is presented here for future investigation on the role of urban laws and urban control, which deal with the placement of publicity elements in the architecture of the city and contribute for the formation or the urban landscape. This landscape which is considered an integral part of a cultural identity.

  11. Cyber threat impact assessment and analysis for space vehicle architectures

    Science.gov (United States)

    McGraw, Robert M.; Fowler, Mark J.; Umphress, David; MacDonald, Richard A.

    2014-06-01

    This paper covers research into an assessment of potential impacts and techniques to detect and mitigate cyber attacks that affect the networks and control systems of space vehicles. Such systems, if subverted by malicious insiders, external hackers and/or supply chain threats, can be controlled in a manner to cause physical damage to the space platforms. Similar attacks on Earth-borne cyber physical systems include the Shamoon, Duqu, Flame and Stuxnet exploits. These have been used to bring down foreign power generation and refining systems. This paper discusses the potential impacts of similar cyber attacks on space-based platforms through the use of simulation models, including custom models developed in Python using SimPy and commercial SATCOM analysis tools, as an example STK/SOLIS. The paper discusses the architecture and fidelity of the simulation model that has been developed for performing the impact assessment. The paper walks through the application of an attack vector at the subsystem level and how it affects the control and orientation of the space vehicle. SimPy is used to model and extract raw impact data at the bus level, while STK/SOLIS is used to extract raw impact data at the subsystem level and to visually display the effect on the physical plant of the space vehicle.

  12. CubeSat Integration into the Space Situational Awareness Architecture

    Science.gov (United States)

    Morris, K.; Wolfson, M.; Brown, J.

    2013-09-01

    Lockheed Martin Space Systems Company has recently been involved in developing GEO Space Situational Awareness architectures, which allows insights into how cubesats can augment the current national systems. One hole that was identified in the current architecture is the need for timelier metric track observations to aid in the chain of custody. Obtaining observations of objects at GEO can be supported by CubeSats. These types of small satellites are increasing being built and flown by government agencies like NASA and SMDC. CubeSats are generally mass and power constrained allowing for only small payloads that cannot typically mimic traditional flight capability. CubeSats do not have a high reliability and care must be taken when choosing mission orbits to prevent creating more debris. However, due to the low costs, short development timelines, and available hardware, CubeSats can supply very valuable benefits to these complex missions, affordably. For example, utilizing CubeSats for advanced focal plane demonstrations to support technology insertion into the next generation situational awareness sensors can help to lower risks before the complex sensors are developed. CubeSats can augment the planned ground and space based assets by creating larger constellations with more access to areas of interest. To aid in maintaining custody of objects, a CubeSat constellation at 500 km above GEO would provide increased point of light tracking that can augment the ground SSA assets. Key features of the Cubesat include a small visible camera looking along the GEO belt, a small propulsion system that allows phasing between CubeSats, and an image processor to reduce the data sent to the ground. An elegant communications network will also be used to provide commands to and data from multiple CubeSats. Additional CubeSats can be deployed on GSO launches or through ride shares to GEO, replenishing or adding to the constellation with each launch. Each CubeSat would take images of

  13. New technologies for space avionics

    Science.gov (United States)

    Aibel, David W.; Dingus, Peter; Lanciault, Mark; Hurdlebrink, Debra; Gurevich, Inna; Wenglar, Lydia

    1994-01-01

    This report reviews a 1994 effort that continued 1993 investigations into issues associated with the definition of requirements, with the practice concurrent engineering and rapid prototyping in the context of the development of a prototyping of a next-generation reaction jet driver controller. This report discusses lessons learned, the testing of the current prototype, the details of the current design, and the nature and performance of a mathematical model of the life cycle of a pilot operated valve solenoid.

  14. Humanizing outer space: architecture, habitability, and behavioral health

    Science.gov (United States)

    Harrison, Albert A.

    2010-03-01

    Space architecture is the theory and practice of designing and building environments for humans in outer space. In our present century professional astronauts and cosmonauts will remain a focus for space architects, but new designs must better accommodate passengers (tourists and industrial workers) and settlers who set forth to establish off-world societies. Psychologists and architects can work together to assure good spaceflight behavioral health, defined by a lack of neuropsychiatric dysfunction, and the presence of high levels of personal adjustment, cordial interpersonal relations, and positive interactions with the physical and social environments. By designing and constructing facilities that are occupant centered and activity oriented, architects increase habitability thereby decreasing environmental challenges to behavioral health. Simulators and spaceflight-analogous environments make it possible to test design solutions prior to their deployment in space. This paper concludes with suggestions for increasing collaboration between architects and psychologists. These include increased sharing of hypotheses and data, articulating complementary research styles, and mutual advocacy for early, potent, and sustained involvement in mission planning and execution.

  15. Innovation in Deep Space Habitat Interior Design: Lessons Learned From Small Space Design in Terrestrial Architecture

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry

    2014-01-01

    Increased public awareness of carbon footprints, crowding in urban areas, and rising housing costs have spawned a 'small house movement' in the housing industry. Members of this movement desire small, yet highly functional residences which are both affordable and sensitive to consumer comfort standards. In order to create comfortable, minimum-volume interiors, recent advances have been made in furniture design and approaches to interior layout that improve both space utilization and encourage multi-functional design for small homes, apartments, naval, and recreational vehicles. Design efforts in this evolving niche of terrestrial architecture can provide useful insights leading to innovation and efficiency in the design of space habitats for future human space exploration missions. This paper highlights many of the cross-cutting architectural solutions used in small space design which are applicable to the spacecraft interior design problem. Specific solutions discussed include reconfigurable, multi-purpose spaces; collapsible or transformable furniture; multi-purpose accommodations; efficient, space saving appliances; stowable and mobile workstations; and the miniaturization of electronics and computing hardware. For each of these design features, descriptions of how they save interior volume or mitigate other small space issues such as confinement stress or crowding are discussed. Finally, recommendations are provided to provide guidance for future designs and identify potential collaborations with the small spaces design community.

  16. 10 Steps to Building an Architecture for Space Surveillance Projects

    Science.gov (United States)

    Gyorko, E.; Barnhart, E.; Gans, H.

    Space surveillance is an increasingly complex task, requiring the coordination of a multitude of organizations and systems, while dealing with competing capabilities, proprietary processes, differing standards, and compliance issues. In order to fully understand space surveillance operations, analysts and engineers need to analyze and break down their operations and systems using what are essentially enterprise architecture processes and techniques. These techniques can be daunting to the first- time architect. This paper provides a summary of simplified steps to analyze a space surveillance system at the enterprise level in order to determine capabilities, services, and systems. These steps form the core of an initial Model-Based Architecting process. For new systems, a well defined, or well architected, space surveillance enterprise leads to an easier transition from model-based architecture to model-based design and provides a greater likelihood that requirements are fulfilled the first time. Both new and existing systems benefit from being easier to manage, and can be sustained more easily using portfolio management techniques, based around capabilities documented in the model repository. The resulting enterprise model helps an architect avoid 1) costly, faulty portfolio decisions; 2) wasteful technology refresh efforts; 3) upgrade and transition nightmares; and 4) non-compliance with DoDAF directives. The Model-Based Architecting steps are based on a process that Harris Corporation has developed from practical experience architecting space surveillance systems and ground systems. Examples are drawn from current work on documenting space situational awareness enterprises. The process is centered on DoDAF 2 and its corresponding meta-model so that terminology is standardized and communicable across any disciplines that know DoDAF architecting, including acquisition, engineering and sustainment disciplines. Each step provides a guideline for the type of data to

  17. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  18. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2017-12-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  19. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2018-06-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  20. The architecture of a video image processor for the space station

    Science.gov (United States)

    Yalamanchili, S.; Lee, D.; Fritze, K.; Carpenter, T.; Hoyme, K.; Murray, N.

    1987-01-01

    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals.

  1. Space Telecommunications Radio System (STRS) Architecture, Tutorial Part 2 - Detailed

    Science.gov (United States)

    Handler, Louis

    2014-01-01

    The STRS architecture detail presentation presents each requirement in the STRS Architecture Standard with some examples and supporting information. The purpose is to give a platform provider, application provider, or application integrator a better, more detailed understanding of the STRS Architecture Standard and its use.

  2. MF-CRA: Multi-Function Cognitive Radio Architecture for Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — EpiSys Science, Inc. and University of Arizona propose to develop, implement, and demonstrate Multi-Function Cognitive Radio Architecture (MF-CRA) for Space...

  3. Customer Avionics Interface Development and Analysis (CAIDA): Software Developer for Avionics Systems

    Science.gov (United States)

    Mitchell, Sherry L.

    2018-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objective of the semester-long internship was to support day-to-day operations of CAIDA and help prepare for verification and validation of CAIDA software.

  4. Design and Parametric Sizing of Deep Space Habitats Supporting NASA'S Human Space Flight Architecture Team

    Science.gov (United States)

    Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary

    2012-01-01

    NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.

  5. A Study on the Creation of Architectural Spaces for Children Using Rumi’s Storytelling Method

    Directory of Open Access Journals (Sweden)

    Fatemeh Moradi

    2017-06-01

    Full Text Available Public areas of behavioral science knowledge on issues related to children's environmental architecture interested in building their studies, based on the theories of learning and development of children. Children have a particular position in spaces, where grownups live, therefore the quality of spaces, proportions, architectural details, materials and so on, should act in a way that create curiosity, understanding of space and communication, selection and finally, the desire to learn and develop creativity in children. The aim of this project is to create conditions and facilities regarding growing, nurturing, creativity, promotion of knowledge and ability of children. The research methodology in this paper consists of two parts: the field and library studies. Research goals include the creation of conditions and possibilities that are the development of creativity and promotion of children's knowledge and ability. Logical and comparative reasoning method has been used for the conclusion based on case studies. Using dynamic architecture can help to develop creativity in children and the dynamics of architectural space can add deepen the joy of playing and storytelling. As a result, the research tries to link psychology and its appearance in the architectural space. The study suggest that storytelling can be facilitated through architectural space and with the help of it, we can increase the architectural designing of educational and artistic spaces.

  6. Space architecture education for engineers and architects designing and planning beyond earth

    CERN Document Server

    Häuplik-Meusburger, Sandra

    2016-01-01

    This book considers two key educational tools for future generations of professionals with a space architecture background in the 21st century: (1) introducing the discipline of space architecture into the space system engineering curricula; and (2) developing space architecture as a distinct, complete training curriculum.  Professionals educated this way will help shift focus from solely engineering-driven transportation systems and “sortie” missions towards permanent off-world human presence. The architectural training teaches young professionals to operate at all scales from the “overall picture” down to the smallest details, to provide directive intention–not just analysis–to design opportunities, to address the relationship between human behavior and the built environment, and to interact with many diverse fields and disciplines throughout the project lifecycle. This book will benefit individuals and organizations responsible for planning transportation and habitat systems in space, while a...

  7. Design studio as a life space in architectural education: privacy requirements

    OpenAIRE

    Demirbaş, Özgen Osman

    1997-01-01

    Ankara : The Department of Interior Architecture and Environmental Design and the Institute of Fine Arts of Bilkent Univ., 1997. Thesis (Master's) -- Bilkent University, 1997. Includes bibliographical refences. There is a very important relationship between the educational outcomes and the architectural design of educational facilities. The most commonly used space in an architectural education is the design studio. Therefore, it is claimed that there should be a living process in a ...

  8. The single event upset environment for avionics at high latitude

    International Nuclear Information System (INIS)

    Sims, A.J.; Dyer, C.S.; Peerless, C.L.; Farren, J.

    1994-01-01

    Modern avionic systems for civil and military applications are becoming increasingly reliant upon embedded microprocessors and associated memory devices. The phenomenon of single event upset (SEU) is well known in space systems and designers have generally been careful to use SEU tolerant devices or to implement error detection and correction (EDAC) techniques where appropriate. In the past, avionics designers have had no reason to consider SEU effects but is clear that the more prevalent use of memory devices combined with increasing levels of IC integration will make SEU mitigation an important design consideration for future avionic systems. To this end, it is necessary to work towards producing models of the avionics SEU environment which will permit system designers to choose components and EDAC techniques which are based on predictions of SEU rates correct to much better than an order of magnitude. Measurements of the high latitude SEU environment at avionics altitude have been made on board a commercial airliner. Results are compared with models of primary and secondary cosmic rays and atmospheric neutrons. Ground based SEU tests of static RAMs are used to predict rates in flight

  9. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    Science.gov (United States)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  10. CHANGING PARADIGMS IN SPACE THEORIES: Recapturing 20th Century Architectural History

    Directory of Open Access Journals (Sweden)

    Gül Kaçmaz Erk

    2013-03-01

    Full Text Available The concept of space entered architectural history as late as 1893. Studies in art opened up the discussion, and it has been studied in various ways in architecture ever since. This article aims to instigate an additional reading to architectural history, one that is not supported by “isms” but based on space theories in the 20th century. Objectives of the article are to bring the concept of space and its changing paradigms to the attention of architectural researchers, to introduce a conceptual framework to classify and clarify theories of space, and to enrich the discussions on the 20th century architecture through theories that are beyond styles. The introduction of space in architecture will revolve around subject-object relationships, three-dimensionality and senses. Modern space will be discussed through concepts such as empathy, perception, abstraction, and geometry. A scientific approach will follow to study the concept of place through environment, event, behavior, and design methods. Finally, the reearch will look at contemporary approaches related to digitally  supported space via concepts like reality-virtuality, mediated experience, and relationship with machines.

  11. VLSI Architectures for Sliding-Window-Based Space-Time Turbo Trellis Code Decoders

    Directory of Open Access Journals (Sweden)

    Georgios Passas

    2012-01-01

    Full Text Available The VLSI implementation of SISO-MAP decoders used for traditional iterative turbo coding has been investigated in the literature. In this paper, a complete architectural model of a space-time turbo code receiver that includes elementary decoders is presented. These architectures are based on newly proposed building blocks such as a recursive add-compare-select-offset (ACSO unit, A-, B-, Γ-, and LLR output calculation modules. Measurements of complexity and decoding delay of several sliding-window-technique-based MAP decoder architectures and a proposed parameter set lead to defining equations and comparison between those architectures.

  12. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  13. Rad-hard Smallsat / CubeSat Avionics Board, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — VORAGO will design a rad-hard Smallsat / CubeSat Avionics single board that has the necessary robustness needed for long duration missions in harsh mission...

  14. Space and place concepts analysis based on semiology approach in residential architecture

    Directory of Open Access Journals (Sweden)

    Mojtaba Parsaee

    2015-12-01

    Full Text Available Space and place are among the fundamental concepts in architecture about which many discussions have been held and the complexity and importance of these concepts were focused on. This research has introduced an approach to better cognition of the architectural concepts based on theory and method of semiology in linguistics. Hence, at first the research investigates the concepts of space and place and explains their characteristics in architecture. Then, it reviews the semiology theory and explores its concepts and ideas. After obtaining the principles of theory and also the method of semiology, they are redefined in an architectural system based on an adaptive method. Finally, the research offers a conceptual model which is called the semiology approach by considering the architectural system as a system of signs. The approach can be used to decode the content of meanings and forms and analyses of the architectural mechanism in order to obtain its meanings and concepts. In this way and based on this approach, the residential architecture of the traditional city of Bushehr – Iran was analyzed as a case of study and its concepts were extracted. The results of this research demonstrate the effectiveness of this approach in structure detection and identification of an architectural system. Besides, this approach has the capability to be used in processes of sustainable development and also be a basis for deconstruction of architectural texts. The research methods of this study are qualitative based on comparative and descriptive analyses.

  15. Development of Integrated Modular Avionics Application Based on Simulink and XtratuM

    Science.gov (United States)

    Fons-Albert, Borja; Usach-Molina, Hector; Vila-Carbo, Joan; Crespo-Lorente, Alfons

    2013-08-01

    This paper presents an integral approach for designing avionics applications that meets the requirements for software development and execution of this application domain. Software design follows the Model-Based design process and is performed in Simulink. This approach allows easy and quick testbench development and helps satisfying DO-178B requirements through the use of proper tools. The software execution platform is based on XtratuM, a minimal bare-metal hypervisor designed in our research group. XtratuM provides support for IMA-SP (Integrated Modular Avionics for Space) architectures. This approach allows the code generation of a Simulink model to be executed on top of Lithos as XtratuM partition. Lithos is a ARINC-653 compliant RTOS for XtratuM. The paper concentrates in how to smoothly port Simulink designs to XtratuM solving problems like application partitioning, automatic code generation, real-time tasking, interfacing, and others. This process is illustrated with an autopilot design test using a flight simulator.

  16. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  17. Reconfigurable fault tolerant avionics system

    Science.gov (United States)

    Ibrahim, M. M.; Asami, K.; Cho, Mengu

    This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.

  18. Conveying Architectural Form and Space with Virtual Reality

    DEFF Research Database (Denmark)

    Kreutzberg, Anette

    2015-01-01

    The purpose of this study was to explore the user experience of non-specialists viewing and navigating in an architectural native (Revit) BIM model in Virtual Reality (VR) with a head mounted display (HMD). The perceived sense of presence as well as the quality of vision and total VR experience...

  19. Common Space : Politics and the Production of Architectural Knowledge

    NARCIS (Netherlands)

    Djalali, A.

    2014-01-01

    Today we are familiar with definitions of architecture as an integrated, multidisciplinary “networked practice,” which takes its cognitive potential from a “diffused design intelligence.” These definitions were introduced to counter an individual, authorial approach to design which allegedly

  20. Design and Test Space Exploration of Transport-Triggered Architectures

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.

    2000-01-01

    This paper describes a new approach in the high level design and test of transport-triggered architectures (TTA), a special type of application specific instruction processors (ASIP). The proposed method introduces the test as an additional constraint, besides throughput and circuit area. The

  1. A Flexible Cognitive Architecture for Space Exploration Agents, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In space operations, carrying out the activities of mission plans by executing procedures often requires close collaboration between ground controllers who have deep...

  2. Space Based Radar-System Architecture Design and Optimization for a Space Based Replacement to AWACS

    National Research Council Canada - National Science Library

    Wickert, Douglas

    1997-01-01

    Through a process of system architecture design, system cost modeling, and system architecture optimization, we assess the feasibility of performing the next generation Airborne Warning and Control System (AWACS...

  3. Architectural Building A Public Key Infrastructure Integrated Information Space

    Directory of Open Access Journals (Sweden)

    Vadim Ivanovich Korolev

    2015-10-01

    Full Text Available The article keeps under consideration the mattersto apply the cryptographic system having a public key to provide information security and to implya digital signature. It performs the analysis of trust models at the formation of certificates and their use. The article describes the relationships between the trust model and the architecture public key infrastructure. It contains conclusions in respect of the options for building the public key infrastructure for integrated informationspace.

  4. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  5. CanOpen on RASTA: The Integration of the CanOpen IP Core in the Avionics Testbed

    Science.gov (United States)

    Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele; Ortega, Carlos Urbina; Valverde, Alberto

    2013-08-01

    This paper presents the work done within the ESA Estec Data Systems Division, targeting the integration of the CanOpen IP Core with the existing Reference Architecture Test-bed for Avionics (RASTA). RASTA is the reference testbed system of the ESA Avionics Lab, designed to integrate the main elements of a typical Data Handling system. It aims at simulating a scenario where a Mission Control Center communicates with on-board computers and systems through a TM/TC link, thus providing the data management through qualified processors and interfaces such as Leon2 core processors, CAN bus controllers, MIL-STD-1553 and SpaceWire. This activity aims at the extension of the RASTA with two boards equipped with HurriCANe controller, acting as CANOpen slaves. CANOpen software modules have been ported on the RASTA system I/O boards equipped with Gaisler GR-CAN controller and acts as master communicating with the CCIPC boards. CanOpen serves as upper application layer for based on CAN defined within the CAN-in-Automation standard and can be regarded as the definitive standard for the implementation of CAN-based systems solutions. The development and integration of CCIPC performed by SITAEL S.p.A., is the first application that aims to bring the CANOpen standard for space applications. The definition of CANOpen within the European Cooperation for Space Standardization (ECSS) is under development.

  6. Transformation of artistic ideas of visual art into architectural space

    OpenAIRE

    Enyutina Ekaterina Dmitrievna

    2014-01-01

    Transformation of a two-dimensional composition into a volumetric and spatial solution is based on the abstract art painting. Theoretical part of the style of the twenties laid the basic groundwork for this solution. The group "Unovis" under the supervision of Malevich aimed to create the "Suprematic Utilitarian World": the development of a new architecture, a new ornament and new forms of furniture, as well as a new type of a modern book. The theory of P. Mondrian and the group "Style" had a...

  7. From Point Clouds to Definitions of Architectural Space

    DEFF Research Database (Denmark)

    Tamke, Martin; Blümel, Ina; Ochmann, Sebastian

    2014-01-01

    Regarding interior building topology as an important aspect in building design and management, several approaches to indoor point cloud structuring have been introduced recently. Apart from a high-level semantic segmentation of the formerly unstructured point clouds into stories and rooms...... possible applications of these approaches in architectural design and building management and comment on the possible benefits for the building profession. While contemporary practice of spatial arrangement is predominantly based on the manual iteration of spatial topologies, we show that the segmentation...

  8. Coordinating space telescope operations in an integrated planning and scheduling architecture

    Science.gov (United States)

    Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela

    1992-01-01

    The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.

  9. Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  10. Space Telecommunications Radio System (STRS) Architecture Standard. Release 1.02.1

    Science.gov (United States)

    Reinhart, Richard C.; Kacpura, Thomas J.; Handler, Louis M.; Hall, C. Steve; Mortensen, Dale J.; Johnson, Sandra K.; Briones, Janette C.; Nappier, Jennifer M.; Downey, Joseph A.; Lux, James P.

    2012-01-01

    This document contains the NASA architecture standard for software defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer.

  11. Architecture Design for the Space Situational Awareness System in the Preparedness Plan for Space Hazards of Republic of Korea

    Science.gov (United States)

    Choi, E.; Cho, S.; Shin, S.; Park, J.; Kim, J.; Kim, D.

    The threat posed by asteroids and comets has become one of the important issues. Jinju meteorite discovered in March 2014 has expanded the interest of the people of the fall of the natural space objects. Furthermore, the growing quantity of space debris is a serious threat to satellites and other spacecraft, which risk being damaged or even destroyed. In May of 2014, Korea established the preparedness plan for space hazards according to the space development promotion act which is amended to take action with respect to hazards from space. This plan is largely composed of 3 items such as system, technology and infrastructure. System is included the establishment and management of national space hazards headquarters at risk situation. Korea Astronomy and Space Science Institute (KASI) was designated as a space environment monitoring agency under the ministry of science, ICT and future planning (MSIP). Technology is supposed to develop the space situational awareness system that can monitor and detect space objects. For infrastructure, research and development of core technology will be promoted for capabilities improvement of space hazards preparedness such as software tools, application and data systems. This paper presents the architectural design for building space situational awareness system. The trade-off study of space situational awareness system for the Korea situation was performed. The results have shown the proposed architectural design. The baseline architecture is composed of Integrated Analysis System and Space Objects Monitoring System. Integrated Analysis System collects the status data from Space Objects Monitoring System and analyzes the space risk information through a data processing. For Space Objects Monitoring System, the all-sky surveillance camera, array radar and meteoroid surveillance sensor networks were considered. This system focuses on not only the threat of a large artificial satellite and natural space objects such as asteroids that

  12. Psychological aspects of living in space - architectural challenges

    Science.gov (United States)

    Häuplik, Sandra; Lorenz, Susanne

    2002-10-01

    Space missions have generally involved crews, drawn from a highly homogeneous pool (such as white, educated, young adult males) and functioned for limited periods of time. Future missions may involve crews drawn from a more heterogeneous pool and missions could eventually last years. 3 to 5-person groups are considered appropriate for the Space Shuttle and the first interplanetry missions. In addition to the above mentioned topics the success of a mission will no longer be dependent only on safety issues due to technological progress, but sociological and psychological aspects will become important determinants off the success or failure of future space missions. To create and ensure the social and psychological balance an adequate spatial planning is essential. In the following essay notions for a conception basis of designing a space station will be described.

  13. Starshade Assembly Enabled by the Deep Space Gateway Architecture

    Science.gov (United States)

    Grunsfeld, J. M.; Siegler, N.; Mukherjee, R.

    2018-02-01

    A starshade is a large external coronagraph which will allow the direct imaging and analysis of planets around nearby stars. We present how the Deep Space Gateway would enable the robotic/astronaut construction of a starshade.

  14. CSP: A Multifaceted Hybrid Architecture for Space Computing

    Science.gov (United States)

    Rudolph, Dylan; Wilson, Christopher; Stewart, Jacob; Gauvin, Patrick; George, Alan; Lam, Herman; Crum, Gary Alex; Wirthlin, Mike; Wilson, Alex; Stoddard, Aaron

    2014-01-01

    Research on the CHREC Space Processor (CSP) takes a multifaceted hybrid approach to embedded space computing. Working closely with the NASA Goddard SpaceCube team, researchers at the National Science Foundation (NSF) Center for High-Performance Reconfigurable Computing (CHREC) at the University of Florida and Brigham Young University are developing hybrid space computers that feature an innovative combination of three technologies: commercial-off-the-shelf (COTS) devices, radiation-hardened (RadHard) devices, and fault-tolerant computing. Modern COTS processors provide the utmost in performance and energy-efficiency but are susceptible to ionizing radiation in space, whereas RadHard processors are virtually immune to this radiation but are more expensive, larger, less energy-efficient, and generations behind in speed and functionality. By featuring COTS devices to perform the critical data processing, supported by simpler RadHard devices that monitor and manage the COTS devices, and augmented with novel uses of fault-tolerant hardware, software, information, and networking within and between COTS devices, the resulting system can maximize performance and reliability while minimizing energy consumption and cost. NASA Goddard has adopted the CSP concept and technology with plans underway to feature flight-ready CSP boards on two upcoming space missions.

  15. Research on the Reliability Analysis of the Integrated Modular Avionics System Based on the AADL Error Model

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2018-01-01

    Full Text Available In recent years, the integrated modular avionics (IMA concept has been introduced to replace the traditional federated avionics. Different avionics functions are hosted in a shared IMA platform, and IMA adopts partition technologies to provide a logical isolation among different functions. The IMA architecture can provide more sophisticated and powerful avionics functionality; meanwhile, the failure propagation patterns in IMA are more complex. The feature of resource sharing introduces some unintended interconnections among different functions, which makes the failure propagation modes more complex. Therefore, this paper proposes an architecture analysis and design language- (AADL- based method to establish the reliability model of IMA platform. The single software and hardware error behavior in IMA system is modeled. The corresponding AADL error model of failure propagation among components, between software and hardware, is given. Finally, the display function of IMA platform is taken as an example to illustrate the effectiveness of the proposed method.

  16. Altered states, altered spaces : architecture, space and landscape in the film and television of Stanley Kubrick and Ken Russell

    OpenAIRE

    Melia, Matthew

    2017-01-01

    Altered States, Altered Spaces: Architecture, Landscape and Space in the work of Stanley Kubrick and Ken Russell.\\ud \\ud Stanley Kubrick and Ken Russell, at first, seem like unlikely bedfellows for a critical comparison: the combined Baroque, Mannerist, frequently excessive and romantic nature of Russell’s screen standing in apparent contrast to the structure, order, organisation, Brutalism and spatial complexity of Kubrick’s.\\ud \\ud In an online blogpost1 (2007) Russell biographer Paul Sutto...

  17. The value of ancient architecture for educational program of masters of architectural space design

    Directory of Open Access Journals (Sweden)

    Prishchepa Aleksandr

    2017-01-01

    Full Text Available The existence of archaeological sites of ancient Greek colony-towns and medieval fortresses gives a real insight into the interaction of all spheres of human activity in ancient times. Ancient Greek Emporium is a vivid example of the architecture, art, archaeology and urban planning synthesis. Archaeological excavations provide an opportunity to study the artefacts of the ancient world belonging to several fields, such as sculpture, decorative arts, fashion design and household. Studying history of archaeology right on the place of excavation of an ancient city masters can imagine the scale of buildings, streets layout and location of business, administrative and residential buildings. It allows students to form professional way of thinking in a short period in order to gather the material and work on the master thesis.

  18. Towards a computational spatial knowledge acquisition model in architectural space

    NARCIS (Netherlands)

    Lyu, J.; Vries, de B.; Sun, C.; Sun, C.; Zhang, J.

    2013-01-01

    Abstract. Existing research which is related to spatial knowledge acquisition often shows a limited scope because of the complexity in the cognition process. Research in spatial representation such as space syntax presumes that vision drives movement. This assumption is only true under certain

  19. Avionic Data Bus Integration Technology

    Science.gov (United States)

    1991-12-01

    address the hardware-software interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion ...the SCP. In 1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error... MULTIVERSION PROGRAMMING. N-version programming. 226 N-VERSION PROGRAMMING. The independent coding of a number, N, of redundant computer programs that

  20. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    Science.gov (United States)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software

  1. Estimation of environmental noise impacts within architectural spaces

    International Nuclear Information System (INIS)

    Chang, Y. S.; Liebich, R. E.; Chun, K. C.

    2002-01-01

    Public Law 91-596, ''Occupational Safety and Health Act of 1970,'' Dec. 29, 1970, stimulated interest in modeling the impacts of interior noise on employees, as well as the intelligibility of interior public-address and other speech intra-communication systems. The classical literature on this topic has primarily featured a statistical uniform diffuse-field model. This was pioneered by Leo L. Beranek in the 1950s, based on energy-density formulations at the former Bell Telephone (AT and T) Laboratories in the years from 1930 to 1950. This paper compares the classical prediction approach to the most recent statistical methods. Such models were developed in the late 1970s and included innovations such as consideration of irregularly shaped (e.g., L-shaped) interior room spaces and coupled spaces

  2. The mathematics of the modernist villa architectural analysis using space syntax and isovists

    CERN Document Server

    Ostwald, Michael J

    2018-01-01

    This book presents the first detailed mathematical analysis of the social, cognitive and experiential properties of Modernist domestic architecture. The Modern Movement in architecture, which came to prominence during the first half of the twentieth century, may have been famous for its functional forms and machine-made aesthetic, but it also sought to challenge the way people inhabit, understand and experience space. Ludwig Mies van der Rohe’s buildings were not only minimalist and transparent, they were designed to subvert traditional social hierarchies. Frank Lloyd Wright’s organic Modernism not only attempted to negotiate a more responsive relationship between nature and architecture, but also shape the way people experience space. Richard Neutra’s Californian Modernism is traditionally celebrated for its sleek, geometric forms, but his intention was to use design to support a heightened understanding of context. Glenn Murcutt’s pristine pavilions, seemingly the epitome of regional Modernism, actu...

  3. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    Science.gov (United States)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  4. The Cacophony of Space and the Clink Clunk Clang in Architecture The mall corridor redux

    Science.gov (United States)

    Cipriano, Nolan

    The element of sound is nearly inescapable. The various ways in which sound is generated, perceived, represented, and hindered resonates not only within the realm of the auditory sense, but as well as the visual and tactile. Through investigating the representation of sound, both in the aural and visual worlds, a deeper understanding of its profound effects can be observed. In the world of architectural space it is the element of sound that is often forgotten, whereas the sonic nature of a space is not designed. This thesis endeavours to examine how, through a comprehensive understanding of the various facets of sound representations, effects, and history, it can inform specifically designed sonorously beneficial spaces that directly reflect and support their purpose. This notion will be explored through the redesign of the shopping-mall corridor within the heritage structure of the Ogilvy Building in Ottawa, Ontario. Through adaptive architecture, the possibility exists to create a subjective aural space.

  5. SpaceCubeX: A Framework for Evaluating Hybrid Multi-Core CPU FPGA DSP Architectures

    Science.gov (United States)

    Schmidt, Andrew G.; Weisz, Gabriel; French, Matthew; Flatley, Thomas; Villalpando, Carlos Y.

    2017-01-01

    The SpaceCubeX project is motivated by the need for high performance, modular, and scalable on-board processing to help scientists answer critical 21st century questions about global climate change, air quality, ocean health, and ecosystem dynamics, while adding new capabilities such as low-latency data products for extreme event warnings. These goals translate into on-board processing throughput requirements that are on the order of 100-1,000 more than those of previous Earth Science missions for standard processing, compression, storage, and downlink operations. To study possible future architectures to achieve these performance requirements, the SpaceCubeX project provides an evolvable testbed and framework that enables a focused design space exploration of candidate hybrid CPU/FPGA/DSP processing architectures. The framework includes ArchGen, an architecture generator tool populated with candidate architecture components, performance models, and IP cores, that allows an end user to specify the type, number, and connectivity of a hybrid architecture. The framework requires minimal extensions to integrate new processors, such as the anticipated High Performance Spaceflight Computer (HPSC), reducing time to initiate benchmarking by months. To evaluate the framework, we leverage a wide suite of high performance embedded computing benchmarks and Earth science scenarios to ensure robust architecture characterization. We report on our projects Year 1 efforts and demonstrate the capabilities across four simulation testbed models, a baseline SpaceCube 2.0 system, a dual ARM A9 processor system, a hybrid quad ARM A53 and FPGA system, and a hybrid quad ARM A53 and DSP system.

  6. Considerations for the Next Revision of NASA's Space Telecommunications Radio System Architecture

    Science.gov (United States)

    Johnson, Sandra K.; Handler, Louis M.; Briones, Janette C.

    2016-01-01

    Development of NASA's Software Defined Radio architecture, the Space Telecommunication Radio System (STRS), was initiated in 2004 with a goal of reducing the cost, risk and schedule when implementing Software Defined Radios (SDR) for National Aeronautics and Space Administration (NASA) space missions. Since STRS was first flown in 2012 on three Software Defined Radios on the Space Communication and Navigation (SCaN) Testbed, only minor changes have been made to the architecture. Multiple entities have since implemented the architecture and provided significant feedback for consideration for the next revision of the standard. The focus for the first set of updates to the architecture is items that enhance application portability. Items that require modifications to existing applications before migrating to the updated architecture will only be considered if there is compelling reasons to make the change. The significant suggestions that were further evaluated for consideration include expanding and clarifying the timing Application Programming Interfaces (APIs), improving handle name and identification (ID) definitions and use, and multiple items related to implementation of STRS Devices. In addition to ideas suggested while implementing STRS, SDR technology has evolved significantly and this impact to the architecture needs to be considered. These include incorporating cognitive concepts - learning from past decisions and making new decisions that the radio can act upon. SDRs are also being developed that do not contain a General Purpose Module - which is currently required for the platform to be STRS compliant. The purpose of this paper is to discuss the comments received, provide a summary of the evaluation considerations, and examine planned dispositions.

  7. Architectural Design Space Exploration of an FPGA-based Compressed Sampling Engine

    DEFF Research Database (Denmark)

    El-Sayed, Mohammad; Koch, Peter; Le Moullec, Yannick

    2015-01-01

    We present the architectural design space exploration of a compressed sampling engine for use in a wireless heart-rate monitoring system. We show how parallelism affects execution time at the register transfer level. Furthermore, two example solutions (modified semi-parallel and full...

  8. A Principled Approach to the Specification of System Architectures for Space Missions

    Science.gov (United States)

    McKelvin, Mark L. Jr.; Castillo, Robert; Bonanne, Kevin; Bonnici, Michael; Cox, Brian; Gibson, Corrina; Leon, Juan P.; Gomez-Mustafa, Jose; Jimenez, Alejandro; Madni, Azad

    2015-01-01

    Modern space systems are increasing in complexity and scale at an unprecedented pace. Consequently, innovative methods, processes, and tools are needed to cope with the increasing complexity of architecting these systems. A key systems challenge in practice is the ability to scale processes, methods, and tools used to architect complex space systems. Traditionally, the process for specifying space system architectures has largely relied on capturing the system architecture in informal descriptions that are often embedded within loosely coupled design documents and domain expertise. Such informal descriptions often lead to misunderstandings between design teams, ambiguous specifications, difficulty in maintaining consistency as the architecture evolves throughout the system development life cycle, and costly design iterations. Therefore, traditional methods are becoming increasingly inefficient to cope with ever-increasing system complexity. We apply the principles of component-based design and platform-based design to the development of the system architecture for a practical space system to demonstrate feasibility of our approach using SysML. Our results show that we are able to apply a systematic design method to manage system complexity, thus enabling effective data management, semantic coherence and traceability across different levels of abstraction in the design chain. Just as important, our approach enables interoperability among heterogeneous tools in a concurrent engineering model based design environment.

  9. Sites of flux: imagining space in the dance-architectures of The Changing Room and Sea Unsea

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    contemporary architectural concepts of space and inhabitation can allow for a new framing of interactive experiences. Presenting the two dance-architectures The Changing Room and Sea Unsea as case studies, the paper seeks to demonstrate challenges to the way space and place are understood in Human...

  10. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics.

    Science.gov (United States)

    Banaei, Maryam; Hatami, Javad; Yazdanfar, Abbas; Gramann, Klaus

    2017-01-01

    Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants' emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers' affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D) architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI) approach recording the electroencephalogram (EEG) of participants while they naturally walk through different interior forms in virtual reality (VR). The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC). Theta band activity in ACC correlated with specific feature types ( r s (14) = 0.525, p = 0.037) and geometry ( r s (14) = -0.579, p = 0.019), providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces.

  11. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics

    Directory of Open Access Journals (Sweden)

    Maryam Banaei

    2017-09-01

    Full Text Available Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants’ emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers’ affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI approach recording the electroencephalogram (EEG of participants while they naturally walk through different interior forms in virtual reality (VR. The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC. Theta band activity in ACC correlated with specific feature types (rs (14 = 0.525, p = 0.037 and geometry (rs (14 = −0.579, p = 0.019, providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces.

  12. Development of Avionics Installation Interface Standards. Revision.

    Science.gov (United States)

    1981-08-01

    Shakil Rockwell Collins William Rupp Bendix Air Transport, Avionics Division * D. T. Engen Bendix Air Transport, Avionics Division J. C. Hoelz Bendix...flow is specified in recognition of the situation in whichj 220 kilograms per hour per kilowatt air flow available in a civil configuration D-1

  13. Space Station data system analysis/architecture study. Task 1: Functional requirements definition, DR-5

    Science.gov (United States)

    1985-01-01

    The initial task in the Space Station Data System (SSDS) Analysis/Architecture Study is the definition of the functional and key performance requirements for the SSDS. The SSDS is the set of hardware and software, both on the ground and in space, that provides the basic data management services for Space Station customers and systems. The primary purpose of the requirements development activity was to provide a coordinated, documented requirements set as a basis for the system definition of the SSDS and for other subsequent study activities. These requirements should also prove useful to other Space Station activities in that they provide an indication of the scope of the information services and systems that will be needed in the Space Station program. The major results of the requirements development task are as follows: (1) identification of a conceptual topology and architecture for the end-to-end Space Station Information Systems (SSIS); (2) development of a complete set of functional requirements and design drivers for the SSIS; (3) development of functional requirements and key performance requirements for the Space Station Data System (SSDS); and (4) definition of an operating concept for the SSIS. The operating concept was developed both from a Space Station payload customer and operator perspective in order to allow a requirements practicality assessment.

  14. Avionics system design for requirements for the United States Coast Guard HH-65A Dolphin

    Science.gov (United States)

    Young, D. A.

    1984-01-01

    Aerospatiale Helicopter Corporation (AHC) was awarded a contract by the United States Coast Guard for a new Short Range Recovery (SRR) Helicopter on 14 June 1979. The award was based upon an overall evaluation of performance, cost, and technical suitability. In this last respect, the SRR helicopter was required to meet a wide variety of mission needs for which the integrated avionics system has a high importance. This paper illustrates the rationale for the avionics system requirements, the system architecture, its capabilities and reliability and its adaptability to a wide variety of military and commercial purposes.

  15. Modern Architecture, Spatial Precarity and the Female Body in the Domestic Spaces in Iran

    Directory of Open Access Journals (Sweden)

    Ladan Rahbari

    2016-12-01

    Full Text Available Iranian home is used as private, semi-private and public spaces. It has kept its traditional functions despite alterations in its structure and is a space for women to engage in caretaking and housekeeping activities. In this paper, I will discuss how modern architecture and its consequences such as the deletion of women-only spaces called Andarooni, has not acknowledged women's appropriation of the domestic space as it is not conformed to the Iranian lifestyle and patterns of social relations. Using ethnography, participant observation and informal conversations with Iranian women, I investigate the characteristics of the contemporary home which reveal how disappearing privateness of the domestic space has contributed to women's precarious bodily freedom in domestic spaces.

  16. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-06-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  17. Modular Open System Architecture for Reducing Contamination Risk in the Space and Missile Defense Supply Chain

    Science.gov (United States)

    Seasly, Elaine

    2015-01-01

    To combat contamination of physical assets and provide reliable data to decision makers in the space and missile defense community, a modular open system architecture for creation of contamination models and standards is proposed. Predictive tools for quantifying the effects of contamination can be calibrated from NASA data of long-term orbiting assets. This data can then be extrapolated to missile defense predictive models. By utilizing a modular open system architecture, sensitive data can be de-coupled and protected while benefitting from open source data of calibrated models. This system architecture will include modules that will allow the designer to trade the effects of baseline performance against the lifecycle degradation due to contamination while modeling the lifecycle costs of alternative designs. In this way, each member of the supply chain becomes an informed and active participant in managing contamination risk early in the system lifecycle.

  18. Shaping space programme as a tool for educating youth about architecture

    Science.gov (United States)

    Marczak, Piotr

    2017-10-01

    The Polish Architectural Policy’s vision of a systematic promotion of spatial culture has made its way into the national curriculum for 2009 - 2016 designed for various stages of child and teenager education. The objective of this effort was to furnish a basis for a system of architectural education which allows teaching society to be more conscious in their decisions as to spatial order with the effect of improving the quality of our living space. Educating individuals to engage consciously in activities related to the protection of space and transformations taking place within that space requires an understanding of basic issues connected with space, the nature of space and the interrelations of various elements which form it. The “Shaping space” programme under the patronage of the Chamber of Polish Architects is one of the tools dedicated to students of lower and higher secondary schools, designed to assist teachers as architectural educators. The aim of this paper is to present the results of a survey related to the implementation of the programme in Lower Secondary School 3 in Malbork in the years 2013-2016. The programme involved observation of students (of grades 1 to 3) in architecture-oriented classes, assistance for the teacher in the class rooms well as an evaluation of the usefulness of educational materials. A number of problems became evident during the implementation of the “Shaping space” programme which is now available in book form. The size of the book is large enough to discourage any potential readers. The subject matter of the book is not suitable for the intended age group (age: 13-16). Another issue was the teacher’s suitability to conduct this type of class. Class observation in grades 1-3 of the lower secondary school and discussions with teachers in charge of that programme served as a basis for developing our own tools and materials in the form of multimedia presentations, templates and lesson scenarios designed to convey

  19. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    Science.gov (United States)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  20. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  1. Experimental characterization of a new multicasting node architecture based on space splitters and wavelength converters

    Science.gov (United States)

    He, Hao; Su, Yikai; Hu, Peigang; Hu, Weisheng

    2005-11-01

    IPTV-based broadband services such as interactive multimedia and video conferencing are considered as promising revenue-adding services, and multicast is proven to be a good supplier to support these applications for its reduced consumption of network bandwidth. Generally there are two approaches to implement optical layer multicast. One is space-domain multicast using space-splitter which is low cost but has wavelength continuity constraint, the other is frequency-domain multicast using wavelength converter which resolves the wavelength continuity but with high costs. A new multicasting node which adopts both space-domain multicast and frequency-domain multicast is recently discussed. In this paper we present an experimental demonstration of the new multicasting node architecture based on space splitters and wavelength converters, measurements to characterize such a node are provided.

  2. Economic Analysis on the Space Transportation Architecture Study (STAS) NASA Team

    Science.gov (United States)

    Shaw, Eric J.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) performed the Space Transportation Architecture Study (STAS) to provide information to support end-of-the-decade decisions on possible near-term US Government (USG) investments in space transportation. To gain a clearer understanding of the costs and benefits of the broadest range of possible space transportation options, six teams, five from aerospace industry companies and one internal to NASA, were tasked to answer three primary questions: a) If the Space Shuttle system should be replaced; b) If so, when the replacement should take place and how the transition should be implemented; and c) If not, what is the upgrade strategy to continue safe and affordable flight of the Space Shuttle beyond 2010. The overall goal of the Study was "to develop investment options to be considered by the Administration for the President's FY2001 budget to meet NASA's future human space flight requirements with significant reductions in costs." This emphasis on government investment, coupled with the participation by commercial f'trms, required an unprecedented level of economic analysis of costs and benefits from both industry and government viewpoints. This paper will discuss the economic and market models developed by the in-house NASA Team to analyze space transportation architectures, the results of those analyses, and how those results were reflected in the conclusions and recommendations of the STAS NASA Team. Copyright 1999 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.$. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

  3. Washington Alexandria Architecture Center students merge creative concepts of dance and space to design dance studio in Arlington

    OpenAIRE

    Micale, Barbara L.

    2009-01-01

    Elements of dance and dance-theatre -- including movement and exercise, flowing costumes, and expressive lighting --inspired students in the Architecture Master's design studio at the Washington Alexandria Architecture Center to imagine innovative ways of merging public and private space for a dance studio in nearby Arlington.

  4. A Systems Approach to Developing an Affordable Space Ground Transportation Architecture using a Commonality Approach

    Science.gov (United States)

    Garcia, Jerry L.; McCleskey, Carey M.; Bollo, Timothy R.; Rhodes, Russel E.; Robinson, John W.

    2012-01-01

    This paper presents a structured approach for achieving a compatible Ground System (GS) and Flight System (FS) architecture that is affordable, productive and sustainable. This paper is an extension of the paper titled "Approach to an Affordable and Productive Space Transportation System" by McCleskey et al. This paper integrates systems engineering concepts and operationally efficient propulsion system concepts into a structured framework for achieving GS and FS compatibility in the mid-term and long-term time frames. It also presents a functional and quantitative relationship for assessing system compatibility called the Architecture Complexity Index (ACI). This paper: (1) focuses on systems engineering fundamentals as it applies to improving GS and FS compatibility; (2) establishes mid-term and long-term spaceport goals; (3) presents an overview of transitioning a spaceport to an airport model; (4) establishes a framework for defining a ground system architecture; (5) presents the ACI concept; (6) demonstrates the approach by presenting a comparison of different GS architectures; and (7) presents a discussion on the benefits of using this approach with a focus on commonality.

  5. Architecture and Knowledge-Driven Self-Adaptive Security in Smart Space

    Directory of Open Access Journals (Sweden)

    Antti Evesti

    2013-03-01

    Full Text Available Dynamic and heterogeneous smart spaces cause challenges for security because it is impossible to anticipate all the possible changes at design-time. Self-adaptive security is an applicable solution for this challenge. This paper presents an architectural approach for security adaptation in smart spaces. The approach combines an adaptation loop, Information Security Measuring Ontology (ISMO and a smart space security-control model. The adaptation loop includes phases to monitor, analyze, plan and execute changes in the smart space. The ISMO offers input knowledge for the adaptation loop and the security-control model enforces dynamic access control policies. The approach is novel because it defines the whole adaptation loop and knowledge required in each phase of the adaptation. The contributions are validated as a part of the smart space pilot implementation. The approach offers reusable and extensible means to achieve adaptive security in smart spaces and up-to-date access control for devices that appear in the space. Hence, the approach supports the work of smart space application developers.

  6. Avionics Simulation, Development and Software Engineering

    Science.gov (United States)

    2002-01-01

    During this reporting period, all technical responsibilities were accomplished as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED14), the MSFC EXPRESS Project Office (FD31), and the Huntsville Boeing Company. Accomplishments included: performing special tasks; supporting Software Review Board (SRB), Avionics Test Bed (ATB), and EXPRESS Software Control Panel (ESCP) activities; participating in technical meetings; and coordinating issues between the Boeing Company and the MSFC Project Office.

  7. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  8. Memory and innovation in the spaces of higher education. The contribution of the architectural limit

    Directory of Open Access Journals (Sweden)

    Pablo Campos Calvo-Sotelo

    2016-03-01

    Full Text Available The current panorama of Higher Education recommends to carry out a review of the space/time places where teaching/learning processes are hosted. The spatial consequences derived from the innovation in teaching demand the incorporation of new academic places, alternative to the traditional typology of the classroom, in order to optimize the integral formation of the student —the ultimate mission of Universities—. The historical and obsolete architectural design of the classroom, as a rigid space/time container, must start a process of de-materialization, in such a way that it fosters more versatile learning methods, that can be activated in any time and place. To accomplish such a goal, more creative ambits must be generated, adapted to a modern understanding of the idea of learning, which must abandon its old-fashion passive and static format, in order to be transformed into a dynamic modality, closed to the student and committed to him. Innovation regarding the architectural configuration is directly connected tothe nature and transformation of the architectural limits which embrace and give shape to those places where formation occurs. The current demand of diversification and flexibility in learning areas must be satisfied by means of a correct articulation between the internal space of the classroom and its direct surrounding context, together with its social and cultural environment. Spatial and visual continuity generate new atmospheres that increase the quality of the teaching/learning processes. The new course of Higher Education needs a proactive review of the space/time dimensions of the traditional classroom, associated to the paradigm shift affecting modalities of teaching/learning, with the aim of generating new opportunities of innovation in Universities.

  9. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  10. Schools and cities from sertão (1933-1945: space, address and architecture

    Directory of Open Access Journals (Sweden)

    Rubia-Mar Nunes Pinto

    2012-11-01

    Full Text Available The text goal is to approach, as discourse of modernity in Goiás state, the conformation of the architectural and urban materiality of schools of the capital, Goiânia, at the moment the city was planned, built and occupied. We used cartographic, textual, iconographic and oral sources to analyze the urban fabric of the capital city and to find space, address and architecture of the schools. The theoretical dialogue is established with historians of the brazilian education that deal with relations between the urban and schools and the authors engaged in demonstrate how the discourse constitutes meanings about the city. The findings point to the role of schools in the project of modernity that was under way in Goiás and to the relevance of school materiality in the making of the urban culture of Goiânia.

  11. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Bowie, Jonathan T.; Blanco, Raul A.; Watson, Richard D.; Kelly, Cody; Buffington, Jesse; Sipila, Stephanie A.

    2014-01-01

    This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided.

  12. Prime focus architectures for large space telescopes: reduce surfaces to save cost

    Science.gov (United States)

    Breckinridge, J. B.; Lillie, C. F.

    2016-07-01

    Conceptual architectures are now being developed to identify future directions for post JWST large space telescope systems to operate in the UV Optical and near IR regions of the spectrum. Here we show that the cost of optical surfaces within large aperture telescope/instrument systems can exceed $100M/reflection when expressed in terms of the aperture increase needed to over come internal absorption loss. We recommend a program in innovative optical design to minimize the number of surfaces by considering multiple functions for mirrors. An example is given using the Rowland circle imaging spectrometer systems for UV space science. With few exceptions, current space telescope architectures are based on systems optimized for ground-based astronomy. Both HST and JWST are classical "Cassegrain" telescopes derived from the ground-based tradition to co-locate the massive primary mirror and the instruments at the same end of the metrology structure. This requirement derives from the dual need to minimize observatory dome size and cost in the presence of the Earth's 1-g gravitational field. Space telescopes, however function in the zero gravity of space and the 1- g constraint is relieved to the advantage of astronomers. Here we suggest that a prime focus large aperture telescope system in space may have potentially have higher transmittance, better pointing, improved thermal and structural control, less internal polarization and broader wavelength coverage than Cassegrain telescopes. An example is given showing how UV astronomy telescopes use single optical elements for multiple functions and therefore have a minimum number of reflections.

  13. A Sustainable, Reliable Mission-Systems Architecture that Supports a System of Systems Approach to Space Exploration

    Science.gov (United States)

    Watson, Steve; Orr, Jim; O'Neil, Graham

    2004-01-01

    A mission-systems architecture based on a highly modular "systems of systems" infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is absolutely essential for an affordable and sustainable space exploration program. This architecture requires (a) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimum sustaining engineering. This paper proposes such an architecture. Lessons learned from the space shuttle program are applied to help define and refine the model.

  14. REUSABLE PROPULSION ARCHITECTURE FOR SUSTAINABLE LOW-COST ACCESS TO SPACE

    Science.gov (United States)

    Bonometti, Joseph; Frame, Kyle L.; Dankanich, John W.

    2005-01-01

    Two transportation architecture changes are presented at either end of a conventional two-stage rocket flight: 1) Air launch using a large, conventional, pod hauler design (i.e., Crossbow)ans 2) Momentum exchange tether (i.e., an in-space asset like MXER). Air launch has ana analytically justified cost reduction of approx. 10%, but its intangible benefits suggest real-world operations cost reductions much higher: 1) Inherent launch safety; 2) Mission Risk Reduction; 3) Favorable payload/rocket limitations; and 4) Leveraging the aircraft for other uses (military transport, commercial cargo, public outreach activities, etc.)

  15. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    Science.gov (United States)

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  16. Avionics Configuration Assessment for Flightdeck Interval Management: A Comparison of Avionics and Notification Methods

    Science.gov (United States)

    Latorella, Kara A.

    2015-01-01

    Flightdeck Interval Management is one of the NextGen operational concepts that FAA is sponsoring to realize requisite National Airspace System (NAS) efficiencies. Interval Management will reduce variability in temporal deviations at a position, and thereby reduce buffers typically applied by controllers - resulting in higher arrival rates, and more efficient operations. Ground software generates a strategic schedule of aircraft pairs. Air Traffic Control (ATC) provides an IM clearance with the IM spacing objective (i.e., the TTF, and at which point to achieve the appropriate spacing from this aircraft) to the IM aircraft. Pilots must dial FIM speeds into the speed window on the Mode Control Panel in a timely manner, and attend to deviations between actual speed and the instantaneous FIM profile speed. Here, the crew is assumed to be operating the aircraft with autothrottles on, with autopilot engaged, and the autoflight system in Vertical Navigation (VNAV) and Lateral Navigation (LNAV); and is responsible for safely flying the aircraft while maintaining situation awareness of their ability to follow FIM speed commands and to achieve the FIM spacing goal. The objective of this study is to examine whether three Notification Methods and four Avionics Conditions affect pilots' performance, ratings on constructs associated with performance (workload, situation awareness), or opinions on acceptability. Three Notification Methods (alternate visual and aural alerts that notified pilots to the onset of a speed target, conformance deviation from the required speed profile, and reminded them if they failed to enter the speed within 10 seconds) were examined. These Notification Methods were: VVV (visuals for all three events), VAV (visuals for all three events, plus an aural for speed conformance deviations), and AAA (visual indications and the same aural to indicate all three of these events). Avionics Conditions were defined by the instrumentation (and location) used to

  17. Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign

    Science.gov (United States)

    McVay, Eric S.; Jones, Christopher A.; Merrill, Raymond G.

    2016-01-01

    Human exploration missions to Mars or other destinations in the solar system require large quantities of propellant to enable the transportation of required elements from Earth's sphere of influence to Mars. Current and proposed launch vehicles are incapable of launching all of the requisite mass on a single vehicle; hence, multiple launches and in-space aggregation are required to perform a Mars mission. This study examines the potential of reusable chemical propulsion stages based in cis-lunar space to meet the transportation objectives of the Evolvable Mars Campaign and identifies cis-lunar propellant supply requirements. These stages could be supplied with fuel and oxidizer delivered to cis-lunar space, either launched from Earth or other inner solar system sources such as the Moon or near Earth asteroids. The effects of uncertainty in the model parameters are evaluated through sensitivity analysis of key parameters including the liquid propellant combination, inert mass fraction of the vehicle, change in velocity margin, and change in payload masses. The outcomes of this research include a description of the transportation elements, the architecture that they enable, and an option for a campaign that meets the objectives of the Evolvable Mars Campaign. This provides a more complete understanding of the propellant requirements, as a function of time, that must be delivered to cis-lunar space. Over the selected sensitivity ranges for the current payload and schedule requirements of the 2016 point of departure of the Evolvable Mars Campaign destination systems, the resulting propellant delivery quantities are between 34 and 61 tonnes per year of hydrogen and oxygen propellant, or between 53 and 76 tonnes per year of methane and oxygen propellant, or between 74 and 92 tonnes per year of hypergolic propellant. These estimates can guide future propellant manufacture and/or delivery architectural analysis.

  18. Space-Filling Supercapacitor Carpets: Highly scalable fractal architecture for energy storage

    Science.gov (United States)

    Tiliakos, Athanasios; Trefilov, Alexandra M. I.; Tanasǎ, Eugenia; Balan, Adriana; Stamatin, Ioan

    2018-04-01

    Revamping ground-breaking ideas from fractal geometry, we propose an alternative micro-supercapacitor configuration realized by laser-induced graphene (LIG) foams produced via laser pyrolysis of inexpensive commercial polymers. The Space-Filling Supercapacitor Carpet (SFSC) architecture introduces the concept of nested electrodes based on the pre-fractal Peano space-filling curve, arranged in a symmetrical equilateral setup that incorporates multiple parallel capacitor cells sharing common electrodes for maximum efficiency and optimal length-to-area distribution. We elucidate on the theoretical foundations of the SFSC architecture, and we introduce innovations (high-resolution vector-mode printing) in the LIG method that allow for the realization of flexible and scalable devices based on low iterations of the Peano algorithm. SFSCs exhibit distributed capacitance properties, leading to capacitance, energy, and power ratings proportional to the number of nested electrodes (up to 4.3 mF, 0.4 μWh, and 0.2 mW for the largest tested model of low iteration using aqueous electrolytes), with competitively high energy and power densities. This can pave the road for full scalability in energy storage, reaching beyond the scale of micro-supercapacitors for incorporating into larger and more demanding applications.

  19. Architectural style and green spaces predict older adults' evaluations of residential facilities.

    Science.gov (United States)

    Cerina, Veronica; Fornara, Ferdinando; Manca, Sara

    2017-09-01

    The purpose of this study was to analyse the effects of residential facilities' design features on older adults' psychosocial responses. Participants ( N  = 192) were over 65-year-old residents who were randomly exposed to different experimental scenarios concerning a hypothetical residential facility for older adults, using a 3 × 2 between-subjects design (i.e. home-like vs. hotel-like vs. usual-standard architectural style; presence vs. absence of green spaces). After the experimental session, participants were asked to fill in a questionnaire that measured their attitudes towards short- and long-term relocation, anticipated residential satisfaction with the facility, and feelings of broken home attachment. The results showed (1) more positive responses to "home-like" and "hotel-like" architectural styles than the usual-standard type and (2) the positive impact of green spaces on the assessment of the facilities. These design features should thus play a role in both reducing the stressful impact of leaving home and promoting beneficial patterns, hence fostering "successful ageing".

  20. A study of space station needs, attributes and architectural options, volume 2, technical. Book 3: Economic benefits, costs and programmatics

    Science.gov (United States)

    1983-01-01

    The economic benefits, cost analysis, and industrial uses of the manned space station are investigated. Mission payload costs are examined in relation to alternative architectures and projected technological evolution. Various approaches to industrial involvement for financing, development, and marketing of space station resources are described.

  1. HH-65A Dolphin digital integrated avionics

    Science.gov (United States)

    Huntoon, R. B.

    1984-01-01

    Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.

  2. Projection display technology for avionics applications

    Science.gov (United States)

    Kalmanash, Michael H.; Tompkins, Richard D.

    2000-08-01

    Avionics displays often require custom image sources tailored to demanding program needs. Flat panel devices are attractive for cockpit installations, however recent history has shown that it is not possible to sustain a business manufacturing custom flat panels in small volume specialty runs. As the number of suppliers willing to undertake this effort shrinks, avionics programs unable to utilize commercial-off-the-shelf (COTS) flat panels are placed in serious jeopardy. Rear projection technology offers a new paradigm, enabling compact systems to be tailored to specific platform needs while using a complement of COTS components. Projection displays enable improved performance, lower cost and shorter development cycles based on inter-program commonality and the wide use of commercial components. This paper reviews the promise and challenges of projection technology and provides an overview of Kaiser Electronics' efforts in developing advanced avionics displays using this approach.

  3. Space, place and atmosphere. Emotion and peripherical perception in architectural experience

    Directory of Open Access Journals (Sweden)

    Juhani Pallasmaa

    2014-07-01

    Full Text Available Architectural experiences are essentially multi-sensory and simultaneous, and a complex entity is usually grasped as an atmosphere, ambience or feeling. In fact, the judgement concerning the character of a space or place calls for categories of sensing that extend beyond the five Aristotelian senses, such as the embodied existential sense, and, as a result, the entity is perceived in a diffuse, peripheral and unconscious manner. Paradoxically, we grasp an atmosphere before we have consciously identified its constituent factors and ingredients. «We perceive atmospheres through our emotional sensibility – a form of perception that works incredibly quickly, and which we humans evidently need to help us survive», Peter Zumthor suggests. We are mentally and emotionally affected by works of art before we understand them, or we may not understand them intellectually at all. Sensitive artists and architects intuit experiential and emotive qualities of spaces, places and images. This capacity calls for a specific kind of imagination, an emphatic imagination. Atmospheres are percieved peripherally through diffuse vision interacting with other sense modalities, and they are experienced emotionally rather than intellectually. The studies on the differentiation of the two brain hemispheres suggest that atmospheres are perceived through the right hemisphere. Somewhat surprisingly, atmospheres are more conscious objectives in literature, cinema, theater, painting and music than in architecture, which has been traditionally approached formally and perceived primarily through focused vision. Yet, when we see a thing in focus, we are outsiders to it, whereas the experience of being in a space calls for peripheral and unfocused perception. One of the reasons for the experiential poverty of contemporary settings could be in the poverty of their peripheral stimuli.

  4. Developing A Generic Optical Avionic Network

    DEFF Research Database (Denmark)

    Zhang, Jiang; An, Yi; Berger, Michael Stübert

    2011-01-01

    We propose a generic optical network design for future avionic systems in order to reduce the weight and power consumption of current networks on board. A three-layered network structure over a ring optical network topology is suggested, as it can provide full reconfiguration flexibility...... and support a wide range of avionic applications. Segregation can be made on different hierarchies according to system criticality and security requirements. The structure of each layer is discussed in detail. Two network configurations are presented, focusing on how to support different network services...... by such a network. Finally, three redundancy scenarios are discussed and compared....

  5. House, a feminine noun: representating architectural spaces in Casa e Jardim and Casa Claudia in age the great magazines

    Directory of Open Access Journals (Sweden)

    Rafael Alves Pinto Junior

    2011-12-01

    Full Text Available The emergence of magazines focusing on architecture and aimed at the general public, such as Casa e jardim in the 1950s and Casa Claudia in the 1970s, represented the creation of a culture of living associated with domestic spaces and the values this space represents as a typological object after the second half of the 20th century. Among other things, it affirmed the values of the social roles of women and architecture as the depository of the attributes of privacy and intimacy: the locus of family, memory and affection. The magazines set the tone for representing the architectural space as an area for living, legitimizing behaviors while exercising an aesthetic pedagogy, ushering in a culture associated with living and establishing a source for imagined ways of building in Brazil. By affirming an image of civilization, both Casa e jardim and Casa Claudia became a benchmark for other periodicals devoted to this theme.

  6. Enabling Wireless Avionics Intra-Communications

    Science.gov (United States)

    Torres, Omar; Nguyen, Truong; Mackenzie, Anne

    2016-01-01

    The Electromagnetics and Sensors Branch of NASA Langley Research Center (LaRC) is investigating the potential of an all-wireless aircraft as part of the ECON (Efficient Reconfigurable Cockpit Design and Fleet Operations using Software Intensive, Networked and Wireless Enabled Architecture) seedling proposal, which is funded by the Convergent Aeronautics Solutions (CAS) project, Transformative Aeronautics Concepts (TAC) program, and NASA Aeronautics Research Institute (NARI). The project consists of a brief effort carried out by a small team in the Electromagnetic Environment Effects (E3) laboratory with the intention of exposing some of the challenges faced by a wireless communication system inside the reflective cavity of an aircraft and to explore potential solutions that take advantage of that environment for constructive gain. The research effort was named EWAIC for "Enabling Wireless Aircraft Intra-communications." The E3 laboratory is a research facility that includes three electromagnetic reverberation chambers and equipment that allow testing and generation of test data for the investigation of wireless systems in reflective environments. Using these chambers, the EWAIC team developed a set of tests and setups that allow the intentional variation of intensity of a multipath field to reproduce the environment of the various bays and cabins of large transport aircraft. This setup, in essence, simulates an aircraft environment that allows the investigation and testing of wireless communication protocols that can effectively be used as a tool to mitigate some of the risks inherent to an aircraft wireless system for critical functions. In addition, the EWAIC team initiated the development of a computational modeling tool to illustrate the propagation of EM waves inside the reflective cabins and bays of aircraft and to obtain quantifiable information regarding the degradation of signals in aircraft subassemblies. The nose landing gear of a UAV CAD model was used

  7. Does NASA's Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    Science.gov (United States)

    Thronson, Harley; Lester, Daniel F.

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the US have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a approx. 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover. as the recent Orbital Express and Automated Transfer Vehicle missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth. In addition to multiplying the value of NASA's architecture for future human spaceflight to achieve the goals multiple major stakeholders. if humans one day travel beyond the Earth-Moon system - say, to Mars - technologies and capabilities for operating

  8. The Architecture of Investment Climate Surveillance and the Space for Non- Orthodox Policy

    Directory of Open Access Journals (Sweden)

    Håvard Haarstad

    2012-03-01

    Full Text Available The purpose of this article is to take preliminary steps towards a critical theory of what is termed an ‘architecture of investment climate surveillance’. The paper outlines the contours of this architecture, which it suggests is made up of various private and publicagents that have authoritative positions in the market for evaluating investment opportunities and risks. By way of illustrating basic linkages and mechanisms, it examines the way in which these agents ‘read’ the implementation of a piece of non-orthodox policy: Bolivia’s nationalisation of gas. Though not unproblematic, Bolivia’s policy of nationalisation has significantly increased state revenue and allowed new social spending on poverty reduction. Yet despite these positive developmental effects, readings of this policy shift within the investment community have been highly critical, illustrating the investor-centred values on which these evaluations are based. The article concludes bysuggesting that scholars of globalisation must pay more attention to whether and how such discursive responses are able to delimit the space for non-orthodox policy in the global South.

  9. Model-driven methodology for rapid deployment of smart spaces based on resource-oriented architectures.

    Science.gov (United States)

    Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R

    2012-01-01

    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  10. Model-Driven Methodology for Rapid Deployment of Smart Spaces Based on Resource-Oriented Architectures

    Directory of Open Access Journals (Sweden)

    José R. Casar

    2012-07-01

    Full Text Available Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT and Web of Things (WoT are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i to integrate sensing and actuating functionalities into everyday objects, and (ii to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD methodology based on the Model Driven Architecture (MDA. This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  11. Value-centric design architecture based on analysis of space system characteristics

    Science.gov (United States)

    Xu, Q.; Hollingsworth, P.; Smith, K.

    2018-03-01

    Emerging design concepts such as miniaturisation, modularity, and standardisation, have contributed to the rapid development of small and inexpensive platforms, particularly cubesats. This has been stimulating an upcoming revolution in space design and development, leading satellites into the era of "smaller, faster, and cheaper". However, the current requirement-centric design philosophy, focused on bespoke monolithic systems, along with the associated development and production process does not inherently fit with the innovative modular, standardised, and mass-produced technologies. This paper presents a new categorisation, characterisation, and value-centric design architecture to address this need for both traditional and novel system designs. Based on the categorisation of system configurations, a characterisation of space systems, comprised of duplication, fractionation, and derivation, is proposed to capture the overall system configuration characteristics and promote potential hybrid designs. Complying with the definitions of the system characterisation, mathematical mapping relations between the system characterisation and the system properties are described to establish the mathematical foundation of the proposed value-centric design methodology. To illustrate the methodology, subsystem reliability relationships are therefore analysed to explore potential system configurations in the design space. The results of the applications of system characteristic analysis clearly show that the effects of different configuration characteristics on the system properties can be effectively analysed and evaluated, enabling the optimization of system configurations.

  12. High Intensity Laser Power Beaming Architecture for Space and Terrestrial Missions

    Science.gov (United States)

    Nayfeh, Taysir; Fast, Brian; Raible, Daniel; Dinca, Dragos; Tollis, Nick; Jalics, Andrew

    2011-01-01

    High Intensity Laser Power Beaming (HILPB) has been developed as a technique to achieve Wireless Power Transmission (WPT) for both space and terrestrial applications. In this paper, the system architecture and hardware results for a terrestrial application of HILPB are presented. These results demonstrate continuous conversion of high intensity optical energy at near-IR wavelengths directly to electrical energy at output power levels as high as 6.24 W from the single cell 0.8 cm2 aperture receiver. These results are scalable, and may be realized by implementing receiver arraying and utilizing higher power source lasers. This type of system would enable long range optical refueling of electric platforms, such as MUAV s, airships, robotic exploration missions and provide power to spacecraft platforms which may utilize it to drive electric means of propulsion.

  13. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  14. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  15. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of

  16. Spacecraft Avionics Software Development Then and Now: Different but the Same

    Science.gov (United States)

    Mangieri, Mark L.; Garman, John (Jack); Vice, Jason

    2012-01-01

    NASA has always been in the business of balancing new technologies and techniques to achieve human space travel objectives. NASA s historic Software Production Facility (SPF) was developed to serve complex avionics software solutions during an era dominated by mainframes, tape drives, and lower level programming languages. These systems have proven themselves resilient enough to serve the Shuttle Orbiter Avionics life cycle for decades. The SPF and its predecessor the Software Development Lab (SDL) at NASA s Johnson Space Center (JSC) hosted flight software (FSW) engineering, development, simulation, and test. It was active from the beginning of Shuttle Orbiter development in 1972 through the end of the shuttle program in the summer of 2011 almost 40 years. NASA s Kedalion engineering analysis lab is on the forefront of validating and using many contemporary avionics HW/SW development and integration techniques, which represent new paradigms to NASA s heritage culture in avionics software engineering. Kedalion has validated many of the Orion project s HW/SW engineering techniques borrowed from the adjacent commercial aircraft avionics environment, inserting new techniques and skills into the Multi-Purpose Crew Vehicle (MPCV) Orion program. Using contemporary agile techniques, COTS products, early rapid prototyping, in-house expertise and tools, and customer collaboration, NASA has adopted a cost effective paradigm that is currently serving Orion effectively. This paper will explore and contrast differences in technology employed over the years of NASA s space program, due largely to technological advances in hardware and software systems, while acknowledging that the basic software engineering and integration paradigms share many similarities.

  17. Architecture for the silver generation: exploring the meaning of appropriate space for ageing in a Swedish municipality.

    Science.gov (United States)

    Andersson, Jonas E

    2011-03-01

    This paper focuses on an architecture competition for the silver generation, namely those aged 65 years and older. Twenty-seven Swedish informants were interviewed using an interviewing guide that included a photographic survey. The informants emphasised aesthetic dimensions in architecture for the prolongation of ageing in place and independent living in a residential home. This study highlights the individual adjustment of space, and the integrated location in existing urban settings near nature. Based on the findings, a habitational model for exploring the appropriate space for ageing is formulated. It suggests that architecture through location and spatial features needs to generate positive associations with the users. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Architectural design of a ground-based deep-space optical reception antenna

    Science.gov (United States)

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  19. Architecture of interstitial nodal spaces in the rodent renal inner medulla.

    Science.gov (United States)

    Gilbert, Rebecca L; Pannabecker, Thomas L

    2013-09-01

    Every collecting duct (CD) of the rat inner medulla is uniformly surrounded by about four abutting ascending vasa recta (AVR) running parallel to it. One or two ascending thin limbs (ATLs) lie between and parallel to each abutting AVR pair, opposite the CD. These structures form boundaries of axially running interstitial compartments. Viewed in transverse sections, these compartments appear as four interstitial nodal spaces (INSs) positioned symmetrically around each CD. The axially running compartments are segmented by interstitial cells spaced at regular intervals. The pairing of ATLs and CDs bounded by an abundant supply of AVR carrying reabsorbed water, NaCl, and urea make a strong argument that the mixing of NaCl and urea within the INSs and countercurrent flows play a critical role in generating the inner medullary osmotic gradient. The results of this study fully support that hypothesis. We quantified interactions of all structures comprising INSs along the corticopapillary axis for two rodent species, the Munich-Wistar rat and the kangaroo rat. The results showed remarkable similarities in the configurations of INSs, suggesting that the structural arrangement of INSs is a highly conserved architecture that plays a fundamental role in renal function. The number density of INSs along the corticopapillary axis directly correlated with a loop population that declines exponentially with distance below the outer medullary-inner medullary boundary. The axial configurations were consistent with discrete association between near-bend loop segments and INSs and with upper loop segments lying distant from INSs.

  20. The effect of requirements prioritization on avionics system conceptual design

    Science.gov (United States)

    Lorentz, John

    project schedule, resulting in greater success during system deployment and operational testing. This dissertation will discuss the data and findings from participant studies, present a literature review of systems engineering and design processes, and test the hypothesis that the prioritization process had no effect on stakeholder sentiment related to the conceptual design. In addition, the "Requirements Rationalization" process will be discussed in detail. Avionics, like many other systems, has transitioned from a discrete electronics engineering, hard engineering discipline to incorporate software engineering as a core process of the technology development cycle. As with other software-based systems, avionics now has significant soft system attributes that must be considered in the design process. The boundless opportunities that exist in software design demand prioritization to focus effort onto the critical functions that the software must provide. This has been a well documented and understood phenomenon in the software development community for many years. This dissertation will attempt to link the effect of software integrated avionics to the benefits of prioritization of requirements in the problem space and demonstrate the sociological and technical benefits of early prioritization practices.

  1. NATURAL LIGHTING OF DEEP ARCHITECTURAL SPACE: THE PERCEPTION OF NEW ZEALAND ARCHITECTS

    Directory of Open Access Journals (Sweden)

    Richard Barrett

    2008-07-01

    Full Text Available The paper considers aspects of a survey carried out amongst a group of registered New Zealand architects in order to establish their knowledge and experience in using core-daylighting systems and methods (Barrett, 2003. Core-daylighting comprises systems and methods for bringing natural light into deep architectural space where conventional methods (such as windows and skylights cannot readily be used. Examples of these methods are: atria (Matusiak, 1998, sun tracking heliostats, sun and light pipes, light scoops, Fresnel lenses, anidolic zenithal systems, prismatic daylight systems, light shelves, tapping mirrors, light reflectors and louvres (Littlefair, 1991, 1996 & 2000, lightwells, internal courts (Lam, 1986, fibre optic cable (Kay,1999, and other systems for light re-direction. The survey was carried out using a questionnaire as described below (Survey Methods. The findings were analysed, resulting in a clear indication that the respondents were not especially experienced or knowledgeable, and a majority felt this to be an area of their skill base in need of development. Whilst the survey was strictly intended to gather quantitative material, respondents were invited to comment freely as they progressed through to completion of the questionnaire. This paper draws on this qualitative data as an insight into several areas, including the attitudes of respondents towards their clients when making decisions about designing buildings for natural daylighting.

  2. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.

    Science.gov (United States)

    Cowin, Stephen C; Cardoso, Luis

    2015-03-18

    There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Case Study of Using High Performance Commercial Processors in Space

    Science.gov (United States)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project (1999 2004) was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the re-evaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s were radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but had some ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  4. ARCHITECTURAL CORRELATION ANALYSIS OF THE HAMM MS OF CHERCHELL, ALGERIA: LINEAR VS AGGREGATE SPACE IN THE TRADITIONAL BATH

    Directory of Open Access Journals (Sweden)

    Youcef Chennaoui

    2009-11-01

    Full Text Available The architecture of traditional historic cities in Algeria has specific spatial and constructive characteristics despite the influence of the Andalusian-Ottoman style. In the case of Cherchell (a historic city 100kms west of Algiers, the architectural elements interpret these architectural references. These elements exist in a complex archaeological, historic and cultural fabric based on architectural and urban analogies, reminders and references. The paper focuses on the typological study of the historic hammāms of Cherchell. It is aimed to analyse the diverse correlations between specific urban amenities and the residential fabric framed within the spatial organization, proportional modulation and structural modes. In this paper, the spatial organisation of the public baths of Cherchell is identified. It is a nodal spiral organization developed around the hot room. It follows the Ottoman spatial prototype of Algiers hammāms. However, the specific characteristic of Cherchell baths is in their constructive system for the roofing covering the central space of the hot room. The roofing consists of an octagonal dome, where the transition to the large square of the hot room is covered by trusses supporting tiled roofing, inspired by the domestic Cherchell architecture of that era.

  5. Space Station needs, attributes and architectural options. Volume 2, book 2, part 2, Task 2: Information management system

    Science.gov (United States)

    1983-01-01

    Missions to be performed, station operations and functions to be carried out, and technologies anticipated during the time frame of the space station were examined in order to determine the scope of the overall information management system for the space station. This system comprises: (1) the data management system which includes onboard computer related hardware and software required to assume and exercise control of all activities performed on the station; (2) the communication system for both internal and external communications; and (3) the ground segment. Techniques used to examine the information system from a functional and performance point of view are described as well as the analyses performed to derive the architecture of both the onboard data management system and the system for internal and external communications. These architectures are then used to generate a conceptual design of the onboard elements in order to determine the physical parameters (size/weight/power) of the hardware and software. The ground segment elements are summarized.

  6. A revolutionary lunar space transportation system architecture using extraterrestrial LOX-augmented NTR propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; McIlwain, Mel C.

    1994-08-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on

  7. Integrated Modular Avionics: The Challenges

    Science.gov (United States)

    Charrier, O.

    2009-05-01

    The need to reduce Space, Weight, and Power (SWaP) across the embedded market leads many Systems Suppliers to run multiple applications on the same processor. The concept seems deceptively simple. However, a lack of experience using this approach, may lead to many mistakes, resulting in unacceptable system performance and unacceptable costs. The objective of this paper is to review the challenges of controlling the execution of multiple applications on the same processor in a Safety or Mission Critical context and, based on return of experiences, point out some of the common mistakes and the limit of what an operating system can control. As no-one has an unlimited budget, the ability to develop and verify such system at reasonable cost, reduced risk, and re-use of the expended effort will be emphasized.

  8. Space station needs, attributes and architectural options. Volume 4, task 2 and 3: Mission implementation and cost

    Science.gov (United States)

    1983-01-01

    An overview of the basic space station infrastructure is presented. A strong case is made for the evolution of the station using the basic Space Transportation System (STS) to achieve a smooth transition and cost effective implementation. The integrated logistics support (ILS) element of the overall station infrastructure is investigated. The need for an orbital transport system capability that is the key to servicing and spacecraft positioning scenarios and associated mission needs is examined. Communication is also an extremely important element and the basic issue of station autonomy versus ground support effects the system and subsystem architecture.

  9. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  10. Space Power Program, Instrumentation and Control System Architecture, Preconceptual Design, for Information

    International Nuclear Information System (INIS)

    JM Ross

    2005-01-01

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I and C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1 and C system architecture was considered a key planning document for development of the I and C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I and C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured

  11. Space Power Program, Instrumentation and Control System Architecture, Pre-conceptual Design, for Information

    Energy Technology Data Exchange (ETDEWEB)

    JM Ross

    2005-10-20

    The purpose of this letter is to forward the Prometheus preconceptual Instrumentation and Control (I&C) system architecture (Enclosure (1)) to NR for information as part of the Prometheus closeout work. The preconceptual 1&C system architecture was considered a key planning document for development of the I&C system for Project Prometheus. This architecture was intended to set the technical approach for the entire I&C system. It defines interfaces to other spacecraft systems, defines hardware blocks for future development, and provides a basis for accurate cost and schedule estimates. Since the system requirements are not known at this time, it was anticipated that the architecture would evolve as the design of the reactor module was matured.

  12. Development of a Lunar Surface Architecture Using the Deep Space Gateway

    Science.gov (United States)

    Corrigan, A. M.; Kitmanyen, V. A.; Prakash, A.

    2018-02-01

    Prior to sending crews to Mars, the ability to perform activities intended for martian missions must first be thoroughly tested and successfully demonstrated in a similar environment. This paper outlines a lunar surface architecture to meet this goal.

  13. Space station needs, attributes and architectural options. Volume 4, attachment 1: Task 2 and 3 mission implementation and cost

    Science.gov (United States)

    1983-01-01

    Mission scenario analysis and architectural concepts, alternative systems concepts, mission operations and architectural development, architectural analysis trades, evolution, configuration, and technology development are assessed.

  14. A Hybrid Power Management (HPM) Based Vehicle Architecture

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    Society desires vehicles with reduced fuel consumption and reduced emissions. This presents a challenge and an opportunity for industry and the government. The NASA John H. Glenn Research Center (GRC) has developed a Hybrid Power Management (HPM) based vehicle architecture for space and terrestrial vehicles. GRC's Electrical and Electromagnetics Branch of the Avionics and Electrical Systems Division initiated the HPM Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, providing all power to a common energy storage system, which is used to power the drive motors and vehicle accessory systems, as well as provide power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. This flexible vehicle architecture can be applied to all vehicles to considerably improve system efficiency, reliability, safety, security, and performance. This unique vehicle architecture has the potential to alleviate global energy concerns, improve the environment, stimulate the economy, and enable new missions.

  15. Micro-Scale Avionics Thermal Management

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.

  16. Hotel architecture from the perspective of sustainability and space hospitality : a study on the application of the concepts of sustainability and hospitality space in hotel projects

    Directory of Open Access Journals (Sweden)

    Josildete Pereira Oliveira

    2016-03-01

    Full Text Available This present study aims to discuss the concept of both sustainability and hospitality into the context of city contemporary architecture which, in a certain way had been reinterpreted or asked in what is concerned to the concept of environmental sustainability. In this sense, the main goal of the research was to analyze two hotel projects in Santa Catarina, Brazil, been one of them configured as a small sized one and the other as a big hotel, where all the mentioned conditions had been manifested in a tight way and even had not been systematized into one of the hotel architecture samples, as a reference of sustainable and hospitable architecture. The methodology characterized by an initial bibliographic study, as well as documentary study, followed by a field research characterized by an intensive direct observation, as well as a group and systematic one, also considered both observation and questionnaires application (Marconi & Lakatos, 2006 and it tried to rescue the history of hotel architecture in order to identify environmental sustainability contents, as well as hospitality ones, concerned to the constructed spaces, so that it would be possible, in a following moment, to analyze the hotel samples selected, which do manifest all the mentioned conditions. It was realized that considering its realities and sizes, both studied hotels do count with actions and elements that may be considered sustainable, as well as friendly environmental actions, what, doubtless, do provide hospitality in a certain way. Similarly, both hotels still have potentialities to be developed.

  17. SpaceCubeX: A Hybrid Multi-core CPU/FPGA/DSP Flight Architecture for Next Generation Earth Science Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASAs Earth Science missions and climate architecture plan and its underlying needs for high performance, modular, and scalable on-board...

  18. Sustainable Spaces with Psychological Values: Historical Architecture as Reference Book for Biomimetic Models with Biophilic Qualities

    Directory of Open Access Journals (Sweden)

    Nely Ramzy

    2015-07-01

    Full Text Available Biomimicry is a growing area of interest in architecture due to the potentials it offers for innovative architectural solutions and for more sustainable, regenerative built environment. Yet, a growing body of research identified various deficiencies to the employment of this approach in architecture. Of particular note are that: first, some biomimetic technologies are not inherently more sustainable or Nature-friendly than conventional equivalents; second, they lack any spatial expression of Nature and are visually ill-integrated into it. In a trial to redeem these deficiencies, this paper suggests a frame-work for more sustainable strategy that combines this approach with the relative approach of "Biophilia", with reference to examples from historical architecture. Using pioneering strategies and applications from different historical styles, the paper shows that the combination of these two approaches may lead to enhanced outcomes in terms of sustainability as well as human psychology and well-being. In doing so, architects may go beyond simply mimicking Nature to synthesizing architecture in tune with it and bringing in bio-inspired solutions that is more responsive to human needs and well-being.

  19. Evaluation Algorithm of the Educacional Potential of Architectural Spaces in Centers of Vocacional Training

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez Fuentes

    2016-12-01

    Full Text Available The importance of educational facilities from the architectural point of view are not limited to vital questions of habitability required as a physical container of activities. The good service they provide to the educational process has also to do with the educational potential conferred upon them. The transformations of architectural programs in educational institutions to absorb the continuous curriculum changes that educational policies provide make of the architectural evaluation a necessity of first order as a guarantee of their pertinence. This work contains the procedure followed for the architectural evaluation of a specific Vocational Training centre: approach and methodological strategy, instruments used for data collection and treatment of the information gathered, to make decisions about how to ignite the potential of the arranged workspacewith a view to their optimization. Evaluation indicators resulting from the previous process constitute a reference framework for the design of instruments that speed up the task of evaluation of any Center similar to the case of study.

  20. Typical Plan : The Architecture of Labor and the Space of Production

    NARCIS (Netherlands)

    Marullo, F.

    2014-01-01

    In a short essay dealing with the repetitive homogeneity of the Manhattan’s office layouts, Rem Koolhaas defined the term Typical Plan as one of the purest American architectural archetypes. A plan stripped of all its qualities and reduced to a calculated relation between discreet standardised

  1. Case Study of Using High Performance Commercial Processors in a Space Environment

    Science.gov (United States)

    Ferguson, Roscoe C.; Olivas, Zulema

    2009-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. An early version of this system was tested at the Johnson Space Center for one month by teams of astronauts. The results were positive, but NASA eventually cancelled the project towards the end of the development cycle. The goal to reduce crew workload and improve situational awareness resulted in the need for high performance Central Processing Units (CPUs). The choice of CPU selected was the PowerPC family, which is a reduced instruction set computer (RISC) known for its high performance. However, the requirement for radiation tolerance resulted in the reevaluation of the selected family member of the PowerPC line. Radiation testing revealed that the original selected processor (PowerPC 7400) was too soft to meet mission objectives and an effort was established to perform trade studies and performance testing to determine a feasible candidate. At that time, the PowerPC RAD750s where radiation tolerant, but did not meet the required performance needs of the project. Thus, the final solution was to select the PowerPC 7455. This processor did not have a radiation tolerant version, but faired better than the 7400 in the ability to detect failures. However, its cache tags did not provide parity and thus the project incorporated a software strategy to detect radiation failures. The strategy was to incorporate dual paths for software generating commands to the legacy Space Shuttle avionics to prevent failures due to the softness of the upgraded avionics.

  2. Space station needs, attributes and architectural options study. Volume 3: Mission requirements

    Science.gov (United States)

    1983-04-01

    User missions that are enabled or enhanced by a manned space station are identified. The mission capability requirements imposed on the space station by these users are delineated. The accommodation facilities, equipment, and functional requirements necessary to achieve these capabilities are identified, and the economic, performance, and social benefits which accrue from the space station are defined.

  3. Avionics Systems Laboratory/Building 16. Historical Documentation

    Science.gov (United States)

    Slovinac, Patricia; Deming, Joan

    2011-01-01

    As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities that was conducted by NASA s Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC s contractor, Archaeological Consultants, Inc. As a result of this survey, the Avionics Systems Laboratory (Building 16) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 16 was still used to support the SSP as an engineering research facility, which is also sometimes used for astronaut training. This documentation package precedes any undertaking as defined by Section 106 of the NHPA, as amended, and implemented in 36 CFR Part 800, as NASA JSC has decided to proactively pursue efforts to mitigate the potential adverse affects of any future modifications to the facility. It includes a historical summary of the Space Shuttle program; the history of JSC in relation to the SSP; a narrative of the history of Building 16 and how it supported the SSP; and a physical description of the structure. In addition, photographs documenting the construction and historical use of Building 16 in support of the SSP, as well as photographs of the facility documenting the existing conditions, special technological features, and engineering details, are included. A contact sheet printed on archival paper, and an electronic copy of the work product on CD, are

  4. Conceptual Design and Analysis of Service Oriented Architecture (SOA) for Command and Control of Space Assets

    Science.gov (United States)

    2010-12-01

    organizational inertia (26) play a role here: o Distorted Perception  Myopia – According to organizational theory, the simplest source of induced myopia is... reality . Also complicating the presentation of these functions as services are the associated stringent performance requirements. These services...Reference Architecture Factsheet. GMSEC Home. [Online] March 2004. http://gmsec.gsfc.nasa.gov/factSheets/GMSECarch.ppt. 16. Virtual Mission Operations

  5. Control System Architectures, Technologies and Concepts for Near Term and Future Human Exploration of Space

    Science.gov (United States)

    Boulanger, Richard; Overland, David

    2004-01-01

    Technologies that facilitate the design and control of complex, hybrid, and resource-constrained systems are examined. This paper focuses on design methodologies, and system architectures, not on specific control methods that may be applied to life support subsystems. Honeywell and Boeing have estimated that 60-80Y0 of the effort in developing complex control systems is software development, and only 20-40% is control system development. It has also been shown that large software projects have failure rates of as high as 50-65%. Concepts discussed include the Unified Modeling Language (UML) and design patterns with the goal of creating a self-improving, self-documenting system design process. Successful architectures for control must not only facilitate hardware to software integration, but must also reconcile continuously changing software with much less frequently changing hardware. These architectures rely on software modules or components to facilitate change. Architecting such systems for change leverages the interfaces between these modules or components.

  6. Architecture, space and power in historical multi-ethnic city Gresik

    Directory of Open Access Journals (Sweden)

    Ariestadi Dian

    2017-01-01

    Full Text Available The study of historical-morphology cities is conducted to discover the socio-cultural characteristics which influence the formation and development of spatial patterns and architecture. Gresik as the historical multi-ethnic city on the north coast of East Java, is known as a major trading port, the center spread of the Islamic religion, and the government city in the colonial era. This research has been made to know the morphological phenomenon of the historical city, by using a qualitative method. The result has shown: 1 the urban structure with the segregation of settlements based on ethnicity indicates the authority power to control its territory, 2 the building form which is dominated by colonial architecture shows the authority power to control the physical changes, 3 the courtyard-house concept which is widely applied in Kampung Arab indicates about the ethnic power to arrange the environment, and 4 the use of landhuis type and luxury mansions in Kampong Kemasan represents the power of successful people as government officials and entrepreneur. The spatial patterns and architecture of the historical multi-ethnic city - Gresik were influenced by the power aspects in the form of efforts to dominate each other and self-defense in the personal and communal levels.

  7. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Science.gov (United States)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  8. Avionics System Development for a Rotary Wing Unmanned Aerial Vehicle

    National Research Council Canada - National Science Library

    Greer, Daniel

    1998-01-01

    .... A helicopter with sufficient lift capability was selected and a lightweight aluminum structure was built to serve as both an avionics platform for the necessary equipment and also as a landing skid...

  9. Selection of a Data Acquisition and Controls System Communications and Software Architecture for Johnson Space Center's Space Environment Simulation Laboratory Thermal and Vacuum Test Facilities

    Science.gov (United States)

    Jordan, Eric A.

    2004-01-01

    Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.

  10. Next generation space interconnect research and development in space communications

    Science.gov (United States)

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  11. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Science.gov (United States)

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  12. Increasing reliability and availability in smart spaces : a novel architecture for resource and service management

    NARCIS (Netherlands)

    Bhardwaj, S.; Ozcelebi, T.; Ozunlu, O.; Lukkien, J.J.

    2012-01-01

    Smart spaces are physical spaces where services provided by Consumer Electronics (CE) devices with varying resource availabilities work together to realize user-specific automated scenarios. These scenarios may be interrupted in case one of the services making up the scenario stops, e.g. due to lack

  13. Increasing reliability and availability in smart spaces : a novel architecture for resource and service management

    NARCIS (Netherlands)

    Bhardwaj, S.; Ozcelebi, T.; Syed, Aly; Ozunlu, O.; Lukkien, J.J.

    2012-01-01

    Smart spaces are physical spaces where services provided by Consumer Electronics (CE) devices with varying resource availabilities work together to realize user-specific automated scenarios. These scenarios may be interrupted in case one of the services making up the scenario stops working, e.g. due

  14. Semiautonomous Avionics-and-Sensors System for a UAV

    Science.gov (United States)

    Shams, Qamar

    2006-01-01

    Unmanned Aerial Vehicles (UAVs) autonomous or remotely controlled pilotless aircraft have been recently thrust into the spotlight for military applications, for homeland security, and as test beds for research. In addition to these functions, there are many space applications in which lightweight, inexpensive, small UAVS can be used e.g., to determine the chemical composition and other qualities of the atmospheres of remote planets. Moreover, on Earth, such UAVs can be used to obtain information about weather in various regions; in particular, they can be used to analyze wide-band acoustic signals to aid in determining the complex dynamics of movement of hurricanes. The Advanced Sensors and Electronics group at Langley Research Center has developed an inexpensive, small, integrated avionics-and-sensors system to be installed in a UAV that serves two purposes. The first purpose is to provide flight data to an AI (Artificial Intelligence) controller as part of an autonomous flight-control system. The second purpose is to store data from a subsystem of distributed MEMS (microelectromechanical systems) sensors. Examples of these MEMS sensors include humidity, temperature, and acoustic sensors, plus chemical sensors for detecting various vapors and other gases in the environment. The critical sensors used for flight control are a differential- pressure sensor that is part of an apparatus for determining airspeed, an absolute-pressure sensor for determining altitude, three orthogonal accelerometers for determining tilt and acceleration, and three orthogonal angular-rate detectors (gyroscopes). By using these eight sensors, it is possible to determine the orientation, height, speed, and rates of roll, pitch, and yaw of the UAV. This avionics-and-sensors system is shown in the figure. During the last few years, there has been rapid growth and advancement in the technological disciplines of MEMS, of onboard artificial-intelligence systems, and of smaller, faster, and

  15. Opto-VLSI-based reconfigurable free-space optical interconnects architecture

    DEFF Research Database (Denmark)

    Aljada, Muhsen; Alameh, Kamal; Chung, Il-Sug

    2007-01-01

    is the Opto-VLSI processor which can be driven by digital phase steering and multicasting holograms that reconfigure the optical interconnects between the input and output ports. The optical interconnects architecture is experimentally demonstrated at 2.5 Gbps using high-speed 1×3 VCSEL array and 1......×3 photoreceiver array in conjunction with two 1×4096 pixel Opto-VLSI processors. The minimisation of the crosstalk between the output ports is achieved by appropriately aligning the VCSEL and PD elements with respect to the Opto-VLSI processors and driving the latter with optimal steering phase holograms....

  16. Flexible feature-space-construction architecture and its VLSI implementation for multi-scale object detection

    Science.gov (United States)

    Luo, Aiwen; An, Fengwei; Zhang, Xiangyu; Chen, Lei; Huang, Zunkai; Jürgen Mattausch, Hans

    2018-04-01

    Feature extraction techniques are a cornerstone of object detection in computer-vision-based applications. The detection performance of vison-based detection systems is often degraded by, e.g., changes in the illumination intensity of the light source, foreground-background contrast variations or automatic gain control from the camera. In order to avoid such degradation effects, we present a block-based L1-norm-circuit architecture which is configurable for different image-cell sizes, cell-based feature descriptors and image resolutions according to customization parameters from the circuit input. The incorporated flexibility in both the image resolution and the cell size for multi-scale image pyramids leads to lower computational complexity and power consumption. Additionally, an object-detection prototype for performance evaluation in 65 nm CMOS implements the proposed L1-norm circuit together with a histogram of oriented gradients (HOG) descriptor and a support vector machine (SVM) classifier. The proposed parallel architecture with high hardware efficiency enables real-time processing, high detection robustness, small chip-core area as well as low power consumption for multi-scale object detection.

  17. Design and Optimization of Space System Architectures: Applying and Extracting Lessons Learned

    Data.gov (United States)

    National Aeronautics and Space Administration — TABS 11.2.6, TABS 11.3.3, and TABS 11.4.2 call for improvements in tradespace exploration and analysis technology that takes advantage of model based system...

  18. Near Earth Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    In the near future the National Aeronautics and Space Administration anticipates a significant increase in demand for long-haul communications services from deep space to Earth. Distances will range from 0.1 to 40 AU, with data rate requirements in the 1's to 1000's of Mbits/second. The near term demand is driven by NASA's Space Science Enterprise which wishes to deploy more capable instruments onboard spacecraft and increase the number of deep space missions. The long term demand is driven by missions with extreme communications challenges such as very high data rates from the outer planets, supporting sub-surface exploration, or supporting NASA's Human Exploration and Development of Space Enterprise beyond Earth orbit. Laser communications is a revolutionary communications technology that will dramatically increase NASA's ability to transmit information across the solar system. Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas. This paper provides an overview of different network options at Earth to meet NASA's deep space lasercom requirements. It is based mainly on work done for the Mars Laser Communications Demonstration Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done for the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telesat Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  19. Customer Avionics Interface Development and Analysis (CAIDA) Lab DEWESoft Display Creation

    Science.gov (United States)

    Coffey, Connor

    2015-01-01

    The Customer Avionics Interface Development and Analysis (CAIDA) Lab supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objectives of the year-long internship were to support day-to-day operations of the CAIDA Lab, create prelaunch and tracking displays for Orion's Exploration Flight Test 1 (EFT-1), and create a program to automate the creation of displays for SLS and MPCV to be used by CAIDA and the Record and Playback Subsystem (RPS).

  20. Systemic Architecture

    DEFF Research Database (Denmark)

    Poletto, Marco; Pasquero, Claudia

    -up or tactical design, behavioural space and the boundary of the natural and the artificial realms within the city and architecture. A new kind of "real-time world-city" is illustrated in the form of an operational design manual for the assemblage of proto-architectures, the incubation of proto-gardens...... and the coding of proto-interfaces. These prototypes of machinic architecture materialize as synthetic hybrids embedded with biological life (proto-gardens), computational power, behavioural responsiveness (cyber-gardens), spatial articulation (coMachines and fibrous structures), remote sensing (FUNclouds...

  1. Linux OS integrated modular avionics application development framework with apex API of ARINC653 specification

    Directory of Open Access Journals (Sweden)

    Anna V. Korneenkova

    2017-01-01

    Full Text Available The framework is made to provide tools to develop the integrated modular avionics (IMA applications, which could be launched on the target platform LynxOs-178 without modifying their source code. The framework usage helps students to form skills for developing modern modules of the avionics. In addition, students obtain deeper knowledge for the development of competencies in the field of technical creativity by using of the framework.The article describes the architecture and implementation of the Linux OS framework for ARINC653 compliant OS application development.The proposed approach reduces ARINC-653 application development costs and gives a unified tool to implement OS vendor independent code that meets specification. To achieve import substitution free and open-source Linux OS is used as an environment for developing IMA applications.The proposed framework is applicable for using as the tool to develop IMA applications and as the tool for development of the following competencies: the ability to master techniques of using software to solve practical problems, the ability to develop components of hardware and software systems and databases, using modern tools and programming techniques, the ability to match hardware and software tools in the information and automated systems, the readiness to apply the fundamentals of informatics and programming to designing, constructing and testing of software products, the readiness to apply basic methods and tools of software development, knowledge of various technologies of software development.

  2. CITY TRANSPORT IN BARRIER-FREE ARCHITECTURAL PLANNING SPACE FOR PEOPLE WITH LIMITED MOBILITY

    Directory of Open Access Journals (Sweden)

    Pryadko Igor’ Petrovich

    2014-09-01

    Full Text Available This paper reviews the current state of transport organization for people with limited mobility. The article evaluates the results of the actions the executive authorities of Moscow and Moscow Region take. Barrier-free space organization for disabled people and parents with prams is given a special attention. The lack of strategy in the sphere leads to considerable difficulties for people with limited ability. This problem should be solved in cooperation with the survey of other peoples' needs. The article gives examples of comfortable urban space in Sochi, Moscow, Chita, Mytishchi and analyses the ways urbanism influences people with limited abilities.

  3. An extensible agent architecture for a competitive market-based allocation of consumer attention space

    NARCIS (Netherlands)

    P.J. 't Hoen (Pieter Jan); S.M. Bohte (Sander); E.H. Gerding (Enrico); J.A. La Poutré (Han)

    2002-01-01

    textabstractA competitive distributed recommendation mechanism is introduced based on adaptive software agents for efficiently allocating the ``customer attention space'', or banners. In the example of an electronic shopping mall, the task of correctly profiling and analyzing the customers is

  4. Does the NASA Constellation Architecture Offer Opportunities to Achieve Multiple Additional Goals in Space?

    Science.gov (United States)

    Thronson, Harley; Lester, Daniel

    2008-01-01

    Every major NASA human spaceflight program in the last four decades has been modified to achieve goals in space not incorporated within the original design goals: the Apollo Applications Program, Skylab, Space Shuttle, and International Space Station. Several groups in the U.S. have been identifying major future science goals, the science facilities necessary to investigate them, as well as possible roles for augmented versions of elements of NASA's Constellation program. Specifically, teams in the astronomy community have been developing concepts for very capable missions to follow the James Webb Space Telescope that could take advantage of - or require - free-space operations by astronauts and/or robots. Taking as one example, the Single-Aperture Far-InfraRed (SAFIR) telescope with a 10+ m aperture proposed for operation in the 2020 timeframe. According to current NASA plans, the Ares V launch vehicle (or a variant) will be available about the same time, as will the capability to transport astronauts to the vicinity of the Moon via the Orion Crew Exploration Vehicle and associated systems. [As the lunar surface offers no advantages - and major disadvantages - for most major optical systems, the expensive system for landing and operating on the lunar surface is not required.] Although as currently conceived, SAFIR and other astronomical missions will operate at the Sun-Earth L2 location, it appears trivial to travel for servicing to the more accessible Earth-Moon L1,2 locations. Moreover, as the recent Orbital Express and Automated Transfer Vehicle Missions have demonstrated, future robotic capabilities should offer capabilities that would (remotely) extend human presence far beyond the vicinity of the Earth.

  5. Does initial spacing influence crown and hydraulic architecture of Eucalyptus marginata?

    Science.gov (United States)

    Grigg, A H; Macfarlane, C; Evangelista, C; Eamus, D; Adams, M A

    2008-05-01

    Long-term declines in rainfall in south-western Australia have resulted in increased interest in the hydraulic characteristics of jarrah (Eucalyptus marginata Donn ex Smith) forest established in the region's drinking water catchments on rehabilitated bauxite mining sites. We hypothesized that in jarrah forest established on rehabilitated mine sites: (1) leaf area index (L) is independent of initial tree spacing; and (2) more densely planted trees have less leaf area for the same leaf mass, or the same sapwood area, and have denser sapwood. Initial stand densities ranged from about 600 to 9000 stems ha(-1), and trees were 18 years old at the time of sampling. Leaf area index was unaffected by initial stand density, except in the most sparsely stocked stands where L was 1.2 compared with 2.0-2.5 in stands at other spacings. The ratio of leaf area to sapwood area (A(l):A(s)) was unaffected by tree spacing or tree size and was 0.2 at 1.3 m height and 0.25 at the crown base. There were small increases in sapwood density and decreases in leaf specific area with increased spacing. Tree diameter or basal area was a better predictor of leaf area than sapwood area. At the stand scale, basal area was a good predictor of L (r(2) = 0.98, n = 15) except in the densest stands. We conclude that the hydraulic attributes of this forest type are largely independent of initial tree spacing, thus simplifying parameterization of stand and catchment water balance models.

  6. Design and Realization of Avionics Integration Simulation System Based on RTX

    Directory of Open Access Journals (Sweden)

    Wang Liang

    2016-01-01

    Full Text Available Aircraft avionics system becoming more and more complicated, it is too hard to test and verify real avionics systems. A design and realization method of avionics integration simulation system based on RTX was brought forward to resolve the problem. In this simulation system, computer software and hardware resources were utilized entirely. All kinds of aircraft avionics system HIL (hardware-in-loop simulations can be implemented in this platform. The simulation method provided the technical foundation of testing and verifying real avionics system. The research has recorded valuable data using the newly-developed method. The experiment results prove that the avionics integration simulation system was used well in some helicopter avionics HIL simulation experiment. The simulation experiment results provided the necessary judgment foundation for the helicopter real avionics system verification.

  7. [Hygienic principles of the design of the space and architectural environment of kindergartens].

    Science.gov (United States)

    Stepanova, M I; Kuchma, V R

    In the article there are considered current requirements for the design of the architectural environment of preschool institutions. These requirements provide conditions ofpreservation and promotion of health ofpreschool children. Among them are: the association of rooms according to a functional purpose; division of children collectives according to the age; rational placement of main rooms for the prevention ofpenetration of noise and pollution; ensuring convenientfunctional connections between different premises and group rooms and the parcel ofpreschool institutions; optimal solution of the light mode; rational air and thermal mode. There are made proposals for the expansion of the list of hygienic principles of the design of buildings of kindergartens: provision of conditions for realization of physical activity of children, the safe use of electronic educational equipment, and the creation of the barrier-free environment. There was established the insufficiency of areas of group rooms for the realization of voluntary motor activity of children in modern kindergartens and the need of the revision of the standard of the area of the group room per one child.

  8. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    Science.gov (United States)

    Bowie, Jonathan; Buffington, Jesse; Hood, Drew; Kelly, Cody; Naids, Adam; Watson, Richard; Blanco, Raul; Sipila, Stephanie

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability from the Orion spacecraft. For this mission, the pressure garment selected for both functions is the Modified Advanced Crew Escape Suit (MACES) with EVA enhancements and the life support option that was selected is the Exploration Portable Life Support System (PLSS) currently under development for Advanced Exploration Systems (AES). The proposed architecture meets the ARCM constraints, but much more work is required to determine the details of the suit upgrades, the integration with the PLSS, and the tools and equipment necessary to accomplish the mission. This work has continued over the last year to better define the operations and hardware maturation of these systems. EVA simulations were completed in the Neutral Buoyancy Lab (NBL) and interfacing options were prototyped and analyzed with testing planned for late 2014. This paper discusses the work done over the last year on the MACES enhancements, the use of tools while using the suit, and the integration of the PLSS with the MACES.

  9. Prototype architecture for a VLSI level zero processing system. [Space Station Freedom

    Science.gov (United States)

    Shi, Jianfei; Grebowsky, Gerald J.; Horner, Ward P.; Chesney, James R.

    1989-01-01

    The prototype architecture and implementation of a high-speed level zero processing (LZP) system are discussed. Due to the new processing algorithm and VLSI technology, the prototype LZP system features compact size, low cost, high processing throughput, and easy maintainability and increased reliability. Though extensive control functions have been done by hardware, the programmability of processing tasks makes it possible to adapt the system to different data formats and processing requirements. It is noted that the LZP system can handle up to 8 virtual channels and 24 sources with combined data volume of 15 Gbytes per orbit. For greater demands, multiple LZP systems can be configured in parallel, each called a processing channel and assigned a subset of virtual channels. The telemetry data stream will be steered into different processing channels in accordance with their virtual channel IDs. This super system can cope with a virtually unlimited number of virtual channels and sources. In the near future, it is expected that new disk farms with data rate exceeding 150 Mbps will be available from commercial vendors due to the advance in disk drive technology.

  10. Space-Based Solar Power As an Opportunity for Strategic Security: Phase 0 Architecture Feasibility Study

    Science.gov (United States)

    2007-10-10

    density liquid hydrocarbons.  Put plainly, SBSP  could be utilized to split hydrogen from  water  and the carbon monoxide (syngas) from carbon  dioxide...facilitate  water   purification and irrigation, prevent frosts, extend growing seasons (if a little of the  energy were used locally) etc.  In the plains of...SBSP Issues    Alan  Wasser   Chairman  The Space Settlement Institute  Key Expertise: harnessing space property rights as a driver  for privately funded

  11. Religious architecture: anthropological perspectives

    NARCIS (Netherlands)

    Verkaaik, O.

    2013-01-01

    Religious Architecture: Anthropological Perspectives develops an anthropological perspective on modern religious architecture, including mosques, churches and synagogues. Borrowing from a range of theoretical perspectives on space-making and material religion, this volume looks at how religious

  12. RATS: Reactive Architectures

    National Research Council Canada - National Science Library

    Christensen, Marc

    2004-01-01

    This project had two goals: To build an emulation prototype board for a tiled architecture and to demonstrate the utility of a global inter-chip free-space photonic interconnection fabric for polymorphous computer architectures (PCA...

  13. Solid-State Power Generating Microdevices for Distributed Space System Architectures

    Science.gov (United States)

    Fleurial, J.-P.; Patel, J.; Snyder, G. J.; Huang, C.-K.; Averback, R.; Hill, C.; Chen, G.

    2001-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Conventional power generating devices become inefficient at very low temperatures (temperatures lower than 200 K encountered during Mars missions for example) and rechargeable energy storage devices cannot be operated thereby limiting mission duration. At elevated temperatures (for example for planned solar probe or Venus lander missions), thin film interdiffusion destroys electronic devices used for generating and storing power. Solar power generation strongly depends upon the light intensity, which falls rapidly in deep interplanetary missions (beyond 5 AU), and in planetary missions in the sun shadow or in dusty environments (Mars, for example). Radioisotope thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However, their energy conversion efficiency and specific power characteristics are quite low, and this technology has been limited to relatively large systems (more than 100 W). The National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) have been planning the use of much smaller spacecrafts that will incorporate a variety of microdevices and miniature vehicles such as microdetectors, microsensors, and microrovers. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Novel technologies that will function reliably over a long duration mission (ten years and over), in harsh environments (temperature, pressure, and atmosphere) must be developed to enable the success of future space missions. It is also expected that such micropower sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Additional information is contained in the original

  14. Definition, analysis and development of an optical data distribution network for integrated avionics and control systems. Part 2: Component development and system integration

    Science.gov (United States)

    Yen, H. W.; Morrison, R. J.

    1984-01-01

    Fiber optic transmission is emerging as an attractive concept in data distribution onboard civil aircraft. Development of an Optical Data Distribution Network for Integrated Avionics and Control Systems for commercial aircraft will provide a data distribution network that gives freedom from EMI-RFI and ground loop problems, eliminates crosstalk and short circuits, provides protection and immunity from lightning induced transients and give a large bandwidth data transmission capability. In addition there is a potential for significantly reducing the weight and increasing the reliability over conventional data distribution networks. Wavelength Division Multiplexing (WDM) is a candidate method for data communication between the various avionic subsystems. With WDM all systems could conceptually communicate with each other without time sharing and requiring complicated coding schemes for each computer and subsystem to recognize a message. However, the state of the art of optical technology limits the application of fiber optics in advanced integrated avionics and control systems. Therefore, it is necessary to address the architecture for a fiber optics data distribution system for integrated avionics and control systems as well as develop prototype components and systems.

  15. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the Cis

  16. Adapting the SpaceCube v2.0 Data Processing System for Mission-Unique Application Requirements

    Science.gov (United States)

    Petrick, David; Gill, Nat; Hasouneh, Munther; Stone, Robert; Winternitz, Luke; Thomas, Luke; Davis, Milton; Sparacino, Pietro; Flatley, Thomas

    2015-01-01

    The SpaceCube (sup TM) v2.0 system is a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. This paper provides an overview of the design architecture, flexibility, and the advantages of the modular SpaceCube v2.0 high performance data processing system for space applications. The current state of the proven SpaceCube technology is based on nine years of engineering and operations. Five systems have been successfully operated in space starting in 2008 with four more to be delivered for launch vehicle integration in 2015. The SpaceCube v2.0 system is also baselined as the avionics solution for five additional flight projects and is always a top consideration as the core avionics for new instruments or spacecraft control. This paper will highlight how this multipurpose system is currently being used to solve design challenges of three independent applications. The SpaceCube hardware adapts to new system requirements by allowing for application-unique interface cards that are utilized by reconfiguring the underlying programmable elements on the core processor card. We will show how this system is being used to improve on a heritage NASA GPS technology, enable a cutting-edge LiDAR instrument, and serve as a typical command and data handling (C&DH) computer for a space robotics technology demonstration.

  17. NASA/NBS (National Aeronautics and Space Administration/National Bureau of Standards) standard reference model for telerobot control system architecture (NASREM)

    Science.gov (United States)

    Albus, James S.; Mccain, Harry G.; Lumia, Ronald

    1989-01-01

    The document describes the NASA Standard Reference Model (NASREM) Architecture for the Space Station Telerobot Control System. It defines the functional requirements and high level specifications of the control system for the NASA space Station document for the functional specification, and a guideline for the development of the control system architecture, of the 10C Flight Telerobot Servicer. The NASREM telerobot control system architecture defines a set of standard modules and interfaces which facilitates software design, development, validation, and test, and make possible the integration of telerobotics software from a wide variety of sources. Standard interfaces also provide the software hooks necessary to incrementally upgrade future Flight Telerobot Systems as new capabilities develop in computer science, robotics, and autonomous system control.

  18. An assessment of General Aviation utilization of advanced avionics technology

    Science.gov (United States)

    Quinby, G. F.

    1980-01-01

    Needs of the general aviation industry for services and facilities which might be supplied by NASA were examined. In the data collection phase, twenty-one individuals from nine manufacturing companies in general aviation were interviewed against a carefully prepared meeting format. General aviation avionics manufacturers were credited with a high degree of technology transfer from the forcing industries such as television, automotive, and computers and a demonstrated ability to apply advanced technology such as large scale integration and microprocessors to avionics functions in an innovative and cost effective manner. The industry's traditional resistance to any unnecessary regimentation or standardization was confirmed. Industry's self sufficiency in applying advanced technology to avionics product development was amply demonstrated. NASA research capability could be supportive in areas of basic mechanics of turbulence in weather and alternative means for its sensing.

  19. Sound in ecclesiastical spaces in Cordoba. Architectural projects incorporating acoustic methodology (El sonido del espacio eclesial en Cordoba. El proyecto arquitectonico como procedimiento acustico)

    Science.gov (United States)

    Suarez, Rafael

    2003-11-01

    This thesis is concerned with the acoustic analysis of ecclesiastical spaces, and the subsequent implementation of acoustic design methodology in architectural renovations. One begins with an adequate architectural design of specific elements (shape, materials, and textures), with the intention of elimination of acoustic deficiencies that are common in such spaces. These are those deficiencies that impair good speech intelligibility and good musical audibility. The investigation is limited to churches in the province of Cordoba and to churches built after the reconquest of Spain (1236) and up until the 18th century. Selected churches are those that have undergone architectural renovations to adapt them to new uses or to make them more suitable for liturgical use. The thesis attempts to summarize the acoustic analyses and the acoustical solutions that have been implemented. The results are presented in a manner that should be useful for the adoption of a model for the functional renovation of ecclesiastical spaces. Such would allow those involved in architectural projects to specify the nature of the sound, even though somewhat intangible, within the ecclesiastical space. Thesis advisors: Jaime Navarro and Juan J. Sendra Copies of this thesis written in Spanish may be obtained by contacting the advisor, Jaime Navarro, E.T.S. de Arquitectura de Sevilla, Dpto. de Construcciones Arquitectonicas I, Av. Reina Mercedes, 2, 41012 Sevilla, Spain. E-mail address: jnavarro@us.es

  20. Model-based system-of-systems engineering for space-based command, control, communication, and information architecture design

    Science.gov (United States)

    Sindiy, Oleg V.

    This dissertation presents a model-based system-of-systems engineering (SoSE) approach as a design philosophy for architecting in system-of-systems (SoS) problems. SoS refers to a special class of systems in which numerous systems with operational and managerial independence interact to generate new capabilities that satisfy societal needs. Design decisions are more complicated in a SoS setting. A revised Process Model for SoSE is presented to support three phases in SoS architecting: defining the scope of the design problem, abstracting key descriptors and their interrelations in a conceptual model, and implementing computer-based simulations for architectural analyses. The Process Model enables improved decision support considering multiple SoS features and develops computational models capable of highlighting configurations of organizational, policy, financial, operational, and/or technical features. Further, processes for verification and validation of SoS models and simulations are also important due to potential impact on critical decision-making and, thus, are addressed. Two research questions frame the research efforts described in this dissertation. The first concerns how the four key sources of SoS complexity---heterogeneity of systems, connectivity structure, multi-layer interactions, and the evolutionary nature---influence the formulation of SoS models and simulations, trade space, and solution performance and structure evaluation metrics. The second question pertains to the implementation of SoSE architecting processes to inform decision-making for a subset of SoS problems concerning the design of information exchange services in space-based operations domain. These questions motivate and guide the dissertation's contributions. A formal methodology for drawing relationships within a multi-dimensional trade space, forming simulation case studies from applications of candidate architecture solutions to a campaign of notional mission use cases, and

  1. Free space-planning solutions in the architecture of multi-storey buildings

    Directory of Open Access Journals (Sweden)

    Ibragimov Alexander

    2018-01-01

    Full Text Available Here some aspects of the development of steel frame structure design from the standpoint of geometry and morphogenesis of bearing steel structures of civil engineering objects. An alternative approach to forming constructive schemes may be application of curved steel elements in the main load-bearing system. As an example, it may be circular and parabolic arches or segments of varying outline and orientation. The considered approach implies creating large internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in buildings of a "skyscraper" type contributes to resolving a great number of problems, including those of communicative nature.

  2. Free space-planning solutions in the architecture of multi-storey buildings

    Science.gov (United States)

    Ibragimov, Alexander; Danilov, Alexander

    2018-03-01

    Here some aspects of the development of steel frame structure design from the standpoint of geometry and morphogenesis of bearing steel structures of civil engineering objects. An alternative approach to forming constructive schemes may be application of curved steel elements in the main load-bearing system. As an example, it may be circular and parabolic arches or segments of varying outline and orientation. The considered approach implies creating large internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in buildings of a "skyscraper" type contributes to resolving a great number of problems, including those of communicative nature.

  3. Landsat Data Continuity Mission (LDCM) space to ground mission data architecture

    Science.gov (United States)

    Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM

  4. Fourier Transform Spectrometer Controller for Partitioned Architectures

    DEFF Research Database (Denmark)

    Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.

    2013-01-01

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Resear......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....

  5. High Level Architecture Distributed Space System Simulation for Simulation Interoperability Standards Organization Simulation Smackdown

    Science.gov (United States)

    Li, Zuqun

    2011-01-01

    Modeling and Simulation plays a very important role in mission design. It not only reduces design cost, but also prepares astronauts for their mission tasks. The SISO Smackdown is a simulation event that facilitates modeling and simulation in academia. The scenario of this year s Smackdown was to simulate a lunar base supply mission. The mission objective was to transfer Earth supply cargo to a lunar base supply depot and retrieve He-3 to take back to Earth. Federates for this scenario include the environment federate, Earth-Moon transfer vehicle, lunar shuttle, lunar rover, supply depot, mobile ISRU plant, exploratory hopper, and communication satellite. These federates were built by teams from all around the world, including teams from MIT, JSC, University of Alabama in Huntsville, University of Bordeaux from France, and University of Genoa from Italy. This paper focuses on the lunar shuttle federate, which was programmed by the USRP intern team from NASA JSC. The shuttle was responsible for provide transportation between lunar orbit and the lunar surface. The lunar shuttle federate was built using the NASA standard simulation package called Trick, and it was extended with HLA functions using TrickHLA. HLA functions of the lunar shuttle federate include sending and receiving interaction, publishing and subscribing attributes, and packing and unpacking fixed record data. The dynamics model of the lunar shuttle was modeled with three degrees of freedom, and the state propagation was obeying the law of two body dynamics. The descending trajectory of the lunar shuttle was designed by first defining a unique descending orbit in 2D space, and then defining a unique orbit in 3D space with the assumption of a non-rotating moon. Finally this assumption was taken away to define the initial position of the lunar shuttle so that it will start descending a second after it joins the execution. VPN software from SonicWall was used to connect federates with RTI during testing

  6. The Trombe Wall during the 1970s: technological device or architectural space? Critical inquiry on the Trombe Wall in Europe and the role of architectural magazines

    Directory of Open Access Journals (Sweden)

    Piero Medici

    2017-12-01

    Full Text Available During the 1970s, before and after the international oil crisis of 1973, some European architectural periodicals were critical of standard construction methods and the architecture of the time. They described how architects and engineers reacted to the crisis, proposing new techniques and projects in order to intervene innovatively in the built environment, using energy and natural resources more efficiently. This article will provide a critical analysis of the role of architectural magazines of the time, describing the technological innovation of the Trombe Wall in Europe. It will treat when, how, and what specific aspects were described. It will also carry out a critical analysis of the Trombe Wall itself: about its performances, its evolution throughout the 1970s, its integration in different houses, and its influence on inhabitants’ behaviour. Using three houses as case studies, an analysis of the architects’ efforts to integrate the technology of the Trombe Wall with architectural elements such as shape, aesthetic, materiality, and natural light will be carried out. Though this article is historical in character, it aims to inform the contemporary debate, especially concerning issues of the built environment meeting the Paris agreement on climate change (AA, 2015.

  7. On the Development and Application of High Data Rate Architecture (HiDRA) in Future Space Networks

    Science.gov (United States)

    Hylton, Alan; Raible, Daniel; Clark, Gilbert

    2017-01-01

    Historically, space missions have been severely constrained by their ability to downlink the data they have collected. These constraints are a result of relatively low link rates on the spacecraft as well as limitations on the time during which data can be sent. As part of a coherent strategy to address existing limitations and get more data to the ground more quickly, the Space Communications and Navigation (SCaN) program has been developing an architecture for a future solar system Internet. The High Data Rate Architecture (HiDRA) project is designed to fit into such a future SCaN network. HiDRA's goal is to describe a general packet-based networking capability which can be used to provide assets with efficient networking capabilities while simultaneously reducing the capital costs and operational costs of developing and flying future space systems.Along these lines, this paper begins by reviewing various characteristics of modern satellite design as well as relevant characteristics of emerging technologies (such as free-space optical links capable of working at 100+ Gbps). Next, the paper describes HiDRA's design, and how the system is able to both integrate and support the operation of not only today's high-rate systems, but also the high-rate systems likely to be found in the future. This section also explores both existing and future networking technologies, such as Delay Tolerant Networking (DTN) protocol (RFC4838 citeRFC:1, RFC5050citeRFC:2), and explains how HiDRA supports them. Additionally, this section explores how HiDRA is used for scheduling data movement through both proactive and reactive link management. After this, the paper moves on to explore a reference implementation of HiDRA. This implementation is currently being realized based on a Field Programmable Gate Array (FPGA) memory and interface controller that is itself controlled by a local computer running DTN software. Next, this paper explores HiDRA's natural evolution, which includes an

  8. Exploration of a capability-focused aerospace system of systems architecture alternative with bilayer design space, based on RST-SOM algorithmic methods.

    Science.gov (United States)

    Li, Zhifei; Qin, Dongliang; Yang, Feng

    2014-01-01

    In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping) techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method provides a computational analysis and implementation scheme for large-scale simulation.

  9. An architecture for object-oriented intelligent control of power systems in space

    Science.gov (United States)

    Holmquist, Sven G.; Jayaram, Prakash; Jansen, Ben H.

    1993-01-01

    A control system for autonomous distribution and control of electrical power during space missions is being developed. This system should free the astronauts from localizing faults and reconfiguring loads if problems with the power distribution and generation components occur. The control system uses an object-oriented simulation model of the power system and first principle knowledge to detect, identify, and isolate faults. Each power system component is represented as a separate object with knowledge of its normal behavior. The reasoning process takes place at three different levels of abstraction: the Physical Component Model (PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model (FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the EEM level the power system components are reasoned about as their electrical equivalents, e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge about the component's specific characteristics is taken into account. The FSM level models the system at the subsystem level, a level appropriate for reconfiguration and scheduling. The control system operates in two modes, a reactive and a proactive mode, simultaneously. In the reactive mode the control system receives measurement data from the power system and compares these values with values determined through simulation to detect the existence of a fault. The nature of the fault is then identified through a model-based reasoning process using mainly the EEM. Compound component models are constructed at the EEM level and used in the fault identification process. In the proactive mode the reasoning takes place at the PCM level. Individual components determine their future health status using a physical model and measured historical data. In case changes in the health status seem imminent the component warns the control system about its impending failure. The fault isolation

  10. Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems

    Science.gov (United States)

    Rojdev, Kristina; Koontz, Steve; Atwell, William; Boeder, Paul

    2014-01-01

    NASA's future missions are focused on long-duration deep space missions for human exploration which offers no options for a quick emergency return to Earth. The combination of long mission duration with no quick emergency return option leads to unprecedented spacecraft system safety and reliability requirements. It is important that spacecraft avionics systems for human deep space missions are not susceptible to Single Event Effect (SEE) failures caused by space radiation (primarily the continuous galactic cosmic ray background and the occasional solar particle event) interactions with electronic components and systems. SEE effects are typically managed during the design, development, and test (DD&T) phase of spacecraft development by using heritage hardware (if possible) and through extensive component level testing, followed by system level failure analysis tasks that are both time consuming and costly. The ultimate product of the SEE DD&T program is a prediction of spacecraft avionics reliability in the flight environment produced using various nuclear reaction and transport codes in combination with the component and subsystem level radiation test data. Previous work by Koontz, et al.1 utilized FLUKA, a Monte Carlo nuclear reaction and transport code, to calculate SEE and single event upset (SEU) rates. This code was then validated against in-flight data for a variety of spacecraft and space flight environments. However, FLUKA has a long run-time (on the order of days). CREME962, an easy to use deterministic code offering short run times, was also compared with FLUKA predictions and in-flight data. CREME96, though fast and easy to use, has not been updated in several years and underestimates secondary particle shower effects in spacecraft structural shielding mass. Thus, this paper will investigate the use of HZETRN 20103, a fast and easy to use deterministic transport code, similar to CREME96, that was developed at NASA Langley Research Center primarily for

  11. A Modeling Framework for Schedulability Analysis of Distributed Avionics Systems

    DEFF Research Database (Denmark)

    Han, Pujie; Zhai, Zhengjun; Nielsen, Brian

    2018-01-01

    This paper presents a modeling framework for schedulability analysis of distributed integrated modular avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules connected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata (SWA) in UPPAAL...

  12. A Comparison of Bus Architectures for Safety-Critical Embedded Systems

    Science.gov (United States)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2003-01-01

    We describe and compare the architectures of four fault-tolerant, safety-critical buses with a view to deducing principles common to all of them, the main differences in their design choices, and the tradeoffs made. Two of the buses come from an avionics heritage, and two from automobiles, though all four strive for similar levels of reliability and assurance. The avionics buses considered are the Honeywell SAFEbus (the backplane data bus used in the Boeing 777 Airplane Information Management System) and the NASA SPIDER (an architecture being developed as a demonstrator for certification under the new DO-254 guidelines); the automobile buses considered are the TTTech Time-Triggered Architecture (TTA), recently adopted by Audi for automobile applications, and by Honeywell for avionics and aircraft control functions, and FlexRay, which is being developed by a consortium of BMW, DaimlerChrysler, Motorola, and Philips.

  13. A Cost Effective System Design Approach for Critical Space Systems

    Science.gov (United States)

    Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai

    2000-01-01

    NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically

  14. Relational Architecture

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2018-01-01

    in a scholarly institution (element #3), as well as the certified PhD scholar (element #4) and the architectural profession, notably its labour market (element #5). This first layer outlines the contemporary context which allows architectural research to take place in a dynamic relationship to doctoral education...... a human and institutional development going on since around 1990 when the present PhD institution was first implemented in Denmark. To be sure, the model is centred around the PhD dissertation (element #1). But it involves four more components: the PhD candidate (element #2), his or her supervisor...... and interrelated fields in which history, place, and sound come to emphasize architecture’s relational qualities rather than the apparent three-dimensional solidity of constructed space. A third layer of relational architecture is at stake in the professional experiences after the defence of the authors...

  15. The architecture of space

    DEFF Research Database (Denmark)

    Marcussen, Lars

    Med teoretisk forankring i den Schweiziske psykolog og videnskabsteoretiker Jean Piagets genetiske strukturalisme og et deraf afledt evolutionistisk historiebegreb, beskrives den europæiske arkitekturs udvikling fra forhistorisk tid til nutiden som element i de rumlige ideers historie i en bred...

  16. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Science.gov (United States)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  17. Metabolistic Architecture

    DEFF Research Database (Denmark)

    2013-01-01

    Textile Spaces presents different approaches to using textile as a spatial definer and artistic medium. The publication collages images and text, art and architecture, science, philosophy and literature, process and product, past, present and future. It forms an insight into soft materials' funct......' functional and poetic potentials, linking the disciplines through fragments that aim to inspire a further look into the artists' and architects' practices, while simultaneously framing these textile visions in a wider context.......Textile Spaces presents different approaches to using textile as a spatial definer and artistic medium. The publication collages images and text, art and architecture, science, philosophy and literature, process and product, past, present and future. It forms an insight into soft materials...

  18. A critique of reliability prediction techniques for avionics applications

    Directory of Open Access Journals (Sweden)

    Guru Prasad PANDIAN

    2018-01-01

    Full Text Available Avionics (aeronautics and aerospace industries must rely on components and systems of demonstrated high reliability. For this, handbook-based methods have been traditionally used to design for reliability, develop test plans, and define maintenance requirements and sustainment logistics. However, these methods have been criticized as flawed and leading to inaccurate and misleading results. In its recent report on enhancing defense system reliability, the U.S. National Academy of Sciences has recently discredited these methods, judging the Military Handbook (MIL-HDBK-217 and its progeny as invalid and inaccurate. This paper discusses the issues that arise with the use of handbook-based methods in commercial and military avionics applications. Alternative approaches to reliability design (and its demonstration are also discussed, including similarity analysis, testing, physics-of-failure, and data analytics for prognostics and systems health management.

  19. Electronics/avionics integrity - Definition, measurement and improvement

    Science.gov (United States)

    Kolarik, W.; Rasty, J.; Chen, M.; Kim, Y.

    The authors report on the results obtained from an extensive, three-fold research project: (1) to search the open quality and reliability literature for documented information relative to electronics/avionics integrity; (2) to interpret and evaluate the literature as to significant concepts, strategies, and tools appropriate for use in electronics/avionics product and process integrity efforts; and (3) to develop a list of critical findings and recommendations that will lead to significant progress in product integrity definition, measurement, modeling, and improvements. The research consisted of examining a broad range of trade journals, scientific journals, and technical reports, as well as face-to-face discussions with reliability professionals. Ten significant recommendations have been supported by the research work.

  20. Sail GTS ground system analysis: Avionics system engineering

    Science.gov (United States)

    Lawton, R. M.

    1977-01-01

    A comparison of two different concepts for the guidance, navigation and control test set signal ground system is presented. The first is a concept utilizing a ground plate to which crew station, avionics racks, electrical power distribution system, master electrical common connection assembly and marshall mated elements system grounds are connected by 4/0 welding cable. An alternate approach has an aluminum sheet interconnecting the signal ground reference points between the crew station and avionics racks. The comparison analysis quantifies the differences between the two concepts in terms of dc resistance, ac resistance and inductive reactance. These parameters are figures of merit for ground system conductors in that the system with the lowest impedance is the most effective in minimizing noise voltage. Although the welding cable system is probably adequate, the aluminum sheet system provides a higher probability of a successful system design.

  1. Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer

    National Research Council Canada - National Science Library

    Hofer, Thomas W

    2006-01-01

    ... avionics curriculum does not yet exist that satisfies the needs of graduates who will serve as aeronautical engineers involved with the development, integration, testing, fielding, and supporting...

  2. SPACE FOR PEOPLE IN A CONTEMPORARY CITY - WHAT ARCHITECTURAL AND TOWN PLANNING SOLUTIONS HELP IN SHAPING A FUNCTIONAL AND CONVENIENT STREET

    Directory of Open Access Journals (Sweden)

    Joanna DUDEK

    Full Text Available One of the basic ingredients of the city tissue are streets. Closely related to the buildings, they defined the pattern of the tissue, or constituted its derivative. The street has always been an important element shaping the character of a city. It played not only the role of transport, but also served as a place for meetings and trade exchange. According to the contemporary urban planning trends, while designing building complexes one should employ an interdisciplinary approach. Apart from classical engineering one should also use the achievements of sociology and psychology. Besides the proportions of a horizontal surface, the architectural solutions of buildings in a street have the most significant influence on the way that a street is perceived by its users. The examples of guidelines on shaping the right space of a street are as follows: the right height of buildings, their location relative to the street or the right arrangement of window and door openings. The purpose of the article is to introduce and compile the sources describing the urban planning and architectural guidelines that influence the creation of a people-friendly street. The analyzed texts concern both architectural solutions and issues from the field of psychology of space.

  3. Assessment of building facade performance in terms of daylighting and the associated energy consumption in architectural spaces: Vertical and horizontal shading devices for southern exposure facades

    Energy Technology Data Exchange (ETDEWEB)

    Alzoubi, Hussain H.; Al-Zoubi, Amneh H. [Department of Architecture, Jordan University of Science and Technology, Irbid 22110 (Jordan)

    2010-08-15

    This paper examines the effect of vertical and horizontal shading devices on the quality of daylight in buildings and the associated energy saving. Excessive daylight in architectural spaces contributes negatively to the energy consumption in buildings. Blinds and shading devices are good solutions to attenuate the surplus amount of daylight in spaces. Accordingly, this study evaluates the effect of shading devices on the amount of light flux and the associated solar energy in buildings. It estimates the energy consumption attributed to lighting spaces for three common positions of shading devices. Computer simulation strategy was undertaken to correlate the illuminance level in spaces with room geometry and architectural shading elements. The Holophane model for lighting calculations was used to estimate the average illuminance level on workplane and correlate it with the expected saving energy in buildings. The study concluded that there is an optimal orientation for shading devices that keeps the internal illuminance level within the acceptable range with minimum amount of solar heat gain. (author)

  4. Managing Complexity in the MSL/Curiosity Entry, Descent, and Landing Flight Software and Avionics Verification and Validation Campaign

    Science.gov (United States)

    Stehura, Aaron; Rozek, Matthew

    2013-01-01

    The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.

  5. Space Shuttle GN and C Development History and Evolution

    Science.gov (United States)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  6. High-Level Design Space and Flexibility Exploration for Adaptive, Energy-Efficient WCDMA Channel Estimation Architectures

    Directory of Open Access Journals (Sweden)

    Zoltán Endre Rákossy

    2012-01-01

    Full Text Available Due to the fast changing wireless communication standards coupled with strict performance constraints, the demand for flexible yet high-performance architectures is increasing. To tackle the flexibility requirement, software-defined radio (SDR is emerging as an obvious solution, where the underlying hardware implementation is tuned via software layers to the varied standards depending on power-performance and quality requirements leading to adaptable, cognitive radio. In this paper, we conduct a case study for representatives of two complexity classes of WCDMA channel estimation algorithms and explore the effect of flexibility on energy efficiency using different implementation options. Furthermore, we propose new design guidelines for both highly specialized architectures and highly flexible architectures using high-level synthesis, to enable the required performance and flexibility to support multiple applications. Our experiments with various design points show that the resulting architectures meet the performance constraints of WCDMA and a wide range of options are offered for tuning such architectures depending on power/performance/area constraints of SDR.

  7. Applying emerging digital video interface standards to airborne avionics sensor and digital map integrations: benefits outweigh the initial costs

    Science.gov (United States)

    Kuehl, C. Stephen

    1996-06-01

    Video signal system performance can be compromised in a military aircraft cockpit management system (CMS) with the tailoring of vintage Electronics Industries Association (EIA) RS170 and RS343A video interface standards. Video analog interfaces degrade when induced system noise is present. Further signal degradation has been traditionally associated with signal data conversions between avionics sensor outputs and the cockpit display system. If the CMS engineering process is not carefully applied during the avionics video and computing architecture development, extensive and costly redesign will occur when visual sensor technology upgrades are incorporated. Close monitoring and technical involvement in video standards groups provides the knowledge-base necessary for avionic systems engineering organizations to architect adaptable and extendible cockpit management systems. With the Federal Communications Commission (FCC) in the process of adopting the Digital HDTV Grand Alliance System standard proposed by the Advanced Television Systems Committee (ATSC), the entertainment and telecommunications industries are adopting and supporting the emergence of new serial/parallel digital video interfaces and data compression standards that will drastically alter present NTSC-M video processing architectures. The re-engineering of the U.S. Broadcasting system must initially preserve the electronic equipment wiring networks within broadcast facilities to make the transition to HDTV affordable. International committee activities in technical forums like ITU-R (former CCIR), ANSI/SMPTE, IEEE, and ISO/IEC are establishing global consensus on video signal parameterizations that support a smooth transition from existing analog based broadcasting facilities to fully digital computerized systems. An opportunity exists for implementing these new video interface standards over existing video coax/triax cabling in military aircraft cockpit management systems. Reductions in signal

  8. Architecture and Stages

    DEFF Research Database (Denmark)

    Kiib, Hans

    2009-01-01

    as "experiencescape" - a space between tourism, culture, learning and economy. Strategies related to these challenges involve new architectural concepts and art as ‘engines' for a change. New expressive architecture and old industrial buildings are often combined into hybrid narratives, linking the past...... with the future. But this is not enough. The agenda is to develop architectural spaces, where social interaction and learning are enhanced by art and fun. How can we develop new architectural designs in our inner cities and waterfronts where eventscapes, learning labs and temporal use are merged with everyday...

  9. Low-Level Space Optimization of an AES Implementation for a Bit-Serial Fully Pipelined Architecture

    Science.gov (United States)

    Weber, Raphael; Rettberg, Achim

    A previously developed AES (Advanced Encryption Standard) implementation is optimized and described in this paper. The special architecture for which this implementation is targeted comprises synchronous and systematic bit-serial processing without a central controlling instance. In order to shrink the design in terms of logic utilization we deeply analyzed the architecture and the AES implementation to identify the most costly logic elements. We propose to merge certain parts of the logic to achieve better area efficiency. The approach was integrated into an existing synthesis tool which we used to produce synthesizable VHDL code. For testing purposes, we simulated the generated VHDL code and ran tests on an FPGA board.

  10. Architectural prototyping

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2004-01-01

    A major part of software architecture design is learning how specific architectural designs balance the concerns of stakeholders. We explore the notion of "architectural prototypes", correspondingly architectural prototyping, as a means of using executable prototypes to investigate stakeholders...

  11. Architecture on Architecture

    DEFF Research Database (Denmark)

    Olesen, Karen

    2016-01-01

    that is not scientific or academic but is more like a latent body of data that we find embedded in existing works of architecture. This information, it is argued, is not limited by the historical context of the work. It can be thought of as a virtual capacity – a reservoir of spatial configurations that can...... correlation between the study of existing architectures and the training of competences to design for present-day realities.......This paper will discuss the challenges faced by architectural education today. It takes as its starting point the double commitment of any school of architecture: on the one hand the task of preserving the particular knowledge that belongs to the discipline of architecture, and on the other hand...

  12. To Build Proportions in Time, or Tie Knots in Space? A Reassessment of the Renaissance Turn in Architectural Proportions

    Directory of Open Access Journals (Sweden)

    Marvin Trachtenberg

    2014-06-01

    Full Text Available Since Alberti, and most critically since Wittkower’s 'Architectural Principles', architectural theory has tended to construe ‘proportions’ in plenary, static terms. The dimension of time and change that relentlessly affects all human endeavor is not accommodated by the celebrated Albertian ideal of immutable design perfection, so perfect in all respects that once attained ‘nothing can be added, taken away, or altered, but for the worse’. This article, drawing on the author’s recent book, 'Building-in-Time from Giotto to Alberti and Modern Oblivion' (Yale, 2010, outlines the antithetical, dynamic proportional methodology of the pre-Albertian architectural regime. Its point of departure was the author’s concept of durational aesthetics, according to which perfected architectural form is produced by a process of incessant revision. What distinguished this process from related ancient or neo-antique doctrines was above all its dynamic modality and participation in the fluid orientation and processes of ‘building-in-time’.

  13. School Architecture, Curriculum, and Pedagogy: Shifts in the Discursive Space of the "School" as Forms of Governmentality.

    Science.gov (United States)

    Hennon, Lisa

    The historical shifts in United States discourses of school architecture as they relate to reforms and inventions of new pedagogical techniques are examined using Michel Foucault's conceptualization of "governmentality" and related scholarship. The purpose is to question assumptions underlying two claims currently being made about school…

  14. Kosmos = architecture

    Directory of Open Access Journals (Sweden)

    Tine Kurent

    1985-12-01

    Full Text Available The old Greek word "kosmos" means not only "cosmos", but also "the beautiful order", "the way of building", "building", "scenography", "mankind", and, in the time of the New Testament, also "pagans". The word "arhitekton", meaning first the "master of theatrical scenography", acquired the meaning of "builder", when the words "kosmos" and ~kosmetes" became pejorative. The fear that architecture was not considered one of the arts before Renaissance, since none of the Muses supervised the art of building, results from the misunderstanding of the word "kosmos". Urania was the Goddes of the activity implied in the verb "kosmein", meaning "to put in the beautiful order" - everything, from the universe to the man-made space, i. e. the architecture.

  15. In-Space Propulsion Engine Architecture based on Sublimation of Planetary Resources: From Exploration Robots to NEO Mitigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The sources of power used for deep space probe missions are usually derived from either solar panels for electrical energy, radioisotope thermal generators for...

  16. Exporting Humanist Architecture

    DEFF Research Database (Denmark)

    Nielsen, Tom

    2016-01-01

    The article is a chapter in the catalogue for the Danish exhibition at the 2016 Architecture Biennale in Venice. The catalogue is conceived at an independent book exploring the theme Art of Many - The Right to Space. The chapter is an essay in this anthology tracing and discussing the different...... values and ethical stands involved in the export of Danish Architecture. Abstract: Danish architecture has, in a sense, been driven by an unwritten contract between the architects and the democratic state and its institutions. This contract may be viewed as an ethos – an architectural tradition...... with inherent aesthetic and moral values. Today, however, Danish architecture is also an export commodity. That raises questions, which should be debated as openly as possible. What does it mean for architecture and architects to practice in cultures and under political systems that do not use architecture...

  17. Architecture for the senses

    DEFF Research Database (Denmark)

    Ryhl, Camilla

    2009-01-01

    Accommodating sensory disabilities in architectural design requires specific design considerations. These are different from the ones included by the existing design concept 'accessibility', which primarily accommodates physical disabilites. Hence a new design concept 'sensory accessbility......' is presented as a parallel and complementary concept to the existing one. Sensory accessiblity accommodates sensory disabilities and describes architectural design requirements needed to ensure access to to the sensory experiences and architectural quality of a given space. The article is based on research...

  18. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    Science.gov (United States)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  19. Integrated communication, navigation, and identification avionics: Impact analysis. Executive summary

    Science.gov (United States)

    Veatch, M. H.; McManus, J. C.

    1985-10-01

    This paper summarizes the approach and findings of research into reliability, supportability, and survivability prediction techniques for fault-tolerant avionics systems. Since no technique existed to analyze the fault tolerance of reconfigurable systems, a new method was developed and implemented in the Mission Reliability Model (MIREM). The supportability analysis was completed by using the Simulation of Operational Availability/Readiness (SOAR) model. Both the Computation of Vulnerable Area and Repair Time (COVART) model and FASTGEN, a survivability model, proved valuable for the survivability research. Sample results are presented and several recommendations are also given for each of the three areas investigated under this study: reliability supportablility and survivability.

  20. Teaching American Indian Architecture.

    Science.gov (United States)

    Winchell, Dick

    1991-01-01

    Reviews "Native American Architecture," by Nabokov and Easton, an encyclopedic work that examines technology, climate, social structure, economics, religion, and history in relation to house design and the "meaning" of space among tribes of nine regions. Describes this book's use in a college course on Native American architecture. (SV)

  1. A Communication Architecture for an Advanced Extravehicular Mobile Unit

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 1.0 subsystem for the Advanced Extravehicular Mobility Unit (AEMU). The following systems are described in detail: Caution Warning and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS subsystem being developed at Glenn Research Center (GRC).

  2. Bringing 3D Memory Cubes to Space: a "Rad-Hard by Design Study" with an Open Architecture, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The computing capabilities of onboard spacecraft are a major limiting factor for accomplishing many classes of future missions. Although technology development...

  3. Bringing 3D Memory Cubes to Space: a "Rad-Hard by Design Study" with an Open Architecture, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The computing capabilities of onboard spacecraft are a major limiting factor for accomplishing many classes of future missions. Although technology development...

  4. An electronic flight bag for NextGen avionics

    Science.gov (United States)

    Zelazo, D. Eyton

    2012-06-01

    The introduction of the Next Generation Air Transportation System (NextGen) initiative by the Federal Aviation Administration (FAA) will impose new requirements for cockpit avionics. A similar program is also taking place in Europe by the European Organisation for the Safety of Air Navigation (Eurocontrol) called the Single European Sky Air Traffic Management Research (SESAR) initiative. NextGen will require aircraft to utilize Automatic Dependent Surveillance-Broadcast (ADS-B) in/out technology, requiring substantial changes to existing cockpit display systems. There are two ways that aircraft operators can upgrade their aircraft in order to utilize ADS-B technology. The first is to replace existing primary flight displays with new displays that are ADS-B compatible. The second, less costly approach is to install an advanced Class 3 Electronic Flight Bag (EFB) system. The installation of Class 3 EFBs in the cockpit will allow aircraft operators to utilize ADS-B technology in a lesser amount of time with a decreased cost of implementation and will provide additional benefits to the operator. This paper describes a Class 3 EFB, the NexisTM Flight-Intelligence System, which has been designed to allow users a direct interface with NextGen avionics sensors while additionally providing the pilot with all the necessary information to meet NextGen requirements.

  5. Software testability and its application to avionic software

    Science.gov (United States)

    Voas, Jeffrey M.; Miller, Keith W.; Payne, Jeffery E.

    1993-01-01

    Randomly generated black-box testing is an established yet controversial method of estimating software reliability. Unfortunately, as software applications have required higher reliabilities, practical difficulties with black-box testing have become increasingly problematic. These practical problems are particularly acute in life-critical avionics software, where requirements of 10 exp -7 failures per hour of system reliability can translate into a probability of failure (POF) of perhaps 10 exp -9 or less for each individual execution of the software. This paper describes the application of one type of testability analysis called 'sensitivity analysis' to B-737 avionics software; one application of sensitivity analysis is to quantify whether software testing is capable of detecting faults in a particular program and thus whether we can be confident that a tested program is not hiding faults. We so 80 by finding the testabilities of the individual statements of the program, and then use those statement testabilities to find the testabilities of the functions and modules. For the B-737 system we analyzed, we were able to isolate those functions that are more prone to hide errors during system/reliability testing.

  6. Lunar architecture and urbanism

    Science.gov (United States)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  7. Aesthetics for the frail ageing in Swedish architecture. On the visualization of the appropriate space for the dependent ageing with dependency in six Swedish architecture competitions during the period of 1907 to 2012

    DEFF Research Database (Denmark)

    Andersson, Jonas E

    the debate; home has become an aesthetic vision to realize in architecture. During the 20th century, the positive connotations of the home were merged into a normative architecture, and the criterion was further sharpened by the use of six national architecture competitions during the period of 1907 to 2012...

  8. Architectural slicing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2013-01-01

    Architectural prototyping is a widely used practice, con- cerned with taking architectural decisions through experiments with light- weight implementations. However, many architectural decisions are only taken when systems are already (partially) implemented. This is prob- lematic in the context...... of architectural prototyping since experiments with full systems are complex and expensive and thus architectural learn- ing is hindered. In this paper, we propose a novel technique for harvest- ing architectural prototypes from existing systems, \\architectural slic- ing", based on dynamic program slicing. Given...... a system and a slicing criterion, architectural slicing produces an architectural prototype that contain the elements in the architecture that are dependent on the ele- ments in the slicing criterion. Furthermore, we present an initial design and implementation of an architectural slicer for Java....

  9. Software and Tools for Electronics Printing in Space(STEPS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing an to develop a direct write electronics and avionics printing capability within the Techshot BioFabrication Facility currently funded and...

  10. Packet Classification by Multilevel Cutting of the Classification Space: An Algorithmic-Architectural Solution for IP Packet Classification in Next Generation Networks

    Directory of Open Access Journals (Sweden)

    Motasem Aldiab

    2008-01-01

    Full Text Available Traditionally, the Internet provides only a “best-effort” service, treating all packets going to the same destination equally. However, providing differentiated services for different users based on their quality requirements is increasingly becoming a demanding issue. For this, routers need to have the capability to distinguish and isolate traffic belonging to different flows. This ability to determine the flow each packet belongs to is called packet classification. Technology vendors are reluctant to support algorithmic solutions for classification due to their nondeterministic performance. Although content addressable memories (CAMs are favoured by technology vendors due to their deterministic high-lookup rates, they suffer from the problems of high-power consumption and high-silicon cost. This paper provides a new algorithmic-architectural solution for packet classification that mixes CAMs with algorithms based on multilevel cutting of the classification space into smaller spaces. The provided solution utilizes the geometrical distribution of rules in the classification space. It provides the deterministic performance of CAMs, support for dynamic updates, and added flexibility for system designers.

  11. Receiver Architecture for 12.5 Gb/s 16-ary Pulse Position Modulation (PPM) Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Gagliardi, R M; Hernandez, V J; Bennett, C V

    2008-07-11

    PPM is a signaling scheme that enables the transmission of multiple bits per symbol [1]. It has found favor in the regime of free space optical communications ('FSO' or 'Lasercom'); however, PPM has yet to be widely applied to fiber optic-based communications. Its limitation in fiber results from the exceedingly high bandwidth requirements needed to electronically process a directly detected pulse, especially as the symbol rate increases and the pulse width correspondingly decreases. As a solution, we introduced the concept of a virtual quadrant receiver for receiving 1.25 Gb/s 4-ary PPM, where photonic processing reduced the number of required electronic components [2]. In this paper, we extend these photonic process techniques to a 16-ary, 12.5 Gb/s (10 Gb/s plus 8B/10B line coding) PPM communications system for fiber optic avionics, wherein much of the receiver processing is enabled by techniques based on planar lightwave circuits (PLCs). The architecture is applicable to higher input data rates and M-ary PPM. In the following, we present the PPM encoding and decoding architectures and numerically simulated results.

  12. Solubility-Parameter-Guided Solvent Selection to Initiate Ostwald Ripening for Interior Space-Tunable Structures with Architecture-Dependent Electrochemical Performance.

    Science.gov (United States)

    Mao, Baoguang; Guo, Donglei; Qin, Jinwen; Meng, Tao; Wang, Xin; Cao, Minhua

    2018-01-08

    Despite significant advancement in preparing various hollow structures by Ostwald ripening, one common problem is the intractable uncontrollability of initiating Ostwald ripening due to the complexity of the reaction processes. Here, a new strategy on Hansen solubility parameter (HSP)-guided solvent selection to initiate Ostwald ripening is proposed. Based on this comprehensive principle for solvent optimization, N,N-dimethylformamide (DMF) was screened out, achieving accurate synthesis of interior space-tunable MoSe 2 spherical structures (solid, core-shell, yolk-shell and hollow spheres). The resultant MoSe 2 structures exhibit architecture-dependent electrochemical performances towards hydrogen evolution reaction and sodium-ion batteries. This pre-solvent selection strategy can effectively provide researchers great possibility in efficiently synthesizing various hollow structures. This work paves a new pathway for deeply understanding Ostwald ripening. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    Science.gov (United States)

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  14. Nest spacing and architecture, and swarming of males of Dinoponera quadriceps (Hymenoptera, Formicidae in a remnant of the Atlantic Forest in Northeast Brazil

    Directory of Open Access Journals (Sweden)

    A. Vasconcellos

    Full Text Available Dinoponera quadriceps is a queenless neotropical ponerinae ant. Nest spacing and abundance were investigated in a remnant of the Atlantic forest in Northeast Brazil. Males were captured with a light trap between August 1994 and July 1996. Nest density varied from 15 to 40 ha-1. An overdispersion of nests suggests that the intraspecific competition may be an important factor regulating their spatial arrangement. Territory size was correlated with worker population size of the colonies. The nests had up to 16 chambers, with variations in their architecture closely related to habitat diversification. Populations varied from 12 to 97 adult workers per nest, with a mean density of 1,618 workers ha-1 and a live biomass of 461 g ha-1 (n = 13 nests. Males swarm continually throughout almost all months of the year, suggesting that production and swarming are more influenced by mechanisms that regulate the sexual activity of workers than by climatic factors.

  15. New Generation Power System for Space Applications

    Science.gov (United States)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  16. Estimation of Airline Benefits from Avionics Upgrade under Preferential Merge Re-sequence Scheduling

    Science.gov (United States)

    Kotegawa, Tatsuya; Cayabyab, Charlene Anne; Almog, Noam

    2013-01-01

    Modernization of the airline fleet avionics is essential to fully enable future technologies and procedures for increasing national airspace system capacity. However in the current national airspace system, system-wide benefits gained by avionics upgrade are not fully directed to aircraft/airlines that upgrade, resulting in slow fleet modernization rate. Preferential merge re-sequence scheduling is a best-equipped-best-served concept designed to incentivize avionics upgrade among airlines by allowing aircraft with new avionics (high-equipped) to be re-sequenced ahead of aircraft without the upgrades (low-equipped) at enroute merge waypoints. The goal of this study is to investigate the potential benefits gained or lost by airlines under a high or low-equipped fleet scenario if preferential merge resequence scheduling is implemented.

  17. A method of distributed avionics data processing based on SVM classifier

    Science.gov (United States)

    Guo, Hangyu; Wang, Jinyan; Kang, Minyang; Xu, Guojing

    2018-03-01

    Under the environment of system combat, in order to solve the problem on management and analysis of the massive heterogeneous data on multi-platform avionics system, this paper proposes a management solution which called avionics "resource cloud" based on big data technology, and designs an aided decision classifier based on SVM algorithm. We design an experiment with STK simulation, the result shows that this method has a high accuracy and a broad application prospect.

  18. Architectural Drawing

    DEFF Research Database (Denmark)

    Steinø, Nicolai

    2018-01-01

    In a time of computer aided design, computer graphics and parametric design tools, the art of architectural drawing is in a state of neglect. But design and drawing are inseparably linked in ways which often go unnoticed. Essentially, it is very difficult, if not impossible, to conceive of a design...... is that computers can represent graphic ideas both faster and better than most medium-skilled draftsmen, drawing in design is not only about representing final designs. In fact, several steps involving the capacity to draw lie before the representation of a final design. Not only is drawing skills an important...... prerequisite for learning about the nature of existing objects and spaces, and thus to build a vocabulary of design. It is also a prerequisite for both reflecting and communicating about design ideas. In this paper, a taxonomy of notation, reflection, communication and presentation drawing is presented...

  19. Lab architecture

    Science.gov (United States)

    Crease, Robert P.

    2008-04-01

    There are few more dramatic illustrations of the vicissitudes of laboratory architecturethan the contrast between Building 20 at the Massachusetts Institute of Technology (MIT) and its replacement, the Ray and Maria Stata Center. Building 20 was built hurriedly in 1943 as temporary housing for MIT's famous Rad Lab, the site of wartime radar research, and it remained a productive laboratory space for over half a century. A decade ago it was demolished to make way for the Stata Center, an architecturally striking building designed by Frank Gehry to house MIT's computer science and artificial intelligence labs (above). But in 2004 - just two years after the Stata Center officially opened - the building was criticized for being unsuitable for research and became the subject of still ongoing lawsuits alleging design and construction failures.

  20. Space Station needs, attributes and architectural options. Volume 2, book 1, part 3: Manned Space Station relevance to commercial telecommunications satellites

    Science.gov (United States)

    1983-01-01

    A document containing a forecast of satellite traffic and revelant technology trends to the year 2000 was prepared which includes those space station capabilities and characteristics that should be provided to make the station useful to commercial satellite owners. The document was circulated to key representative organizations within the commercial telecommunications satellite and related communities of interest, including spacecraft manufacturers, commercial satellite owners, communications carriers, networks and risk insurers. The prospectus document is presented as well as the transmittal letter and the mailing list of the people and companies that were asked to review it. Key commercial telecommunications comments are summarized the actual response letters from the industry are included.

  1. Autonomous safety and reliability features of the K-1 avionics system

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, G.E.; Kohrs, D.; Bailey, R.; Lai, G. [Kistler Aerospace Corp., Kirkland, WA (United States)

    2004-03-01

    Kistler Aerospace Corporation is developing the K-1, a fully reusable, two-stage-to-orbit launch vehicle. Both stages return to the launch site using parachutes and airbags. Initial flight operations will occur from Woomera, Australia. K-1 guidance is performed autonomously. Each stage of the K- 1 employs a triplex, fault tolerant avionics architecture, including three fault tolerant computers and three radiation hardened Embedded GPS/INS units with a hardware voter. The K-1 has an Integrated Vehicle Health Management (IVHM) system on each stage residing in the three vehicle computers based on similar systems in commercial aircraft. During first-stage ascent, the IVHM system performs an Instantaneous Impact Prediction (IIP) calculation 25 times per second, initiating an abort in the event the vehicle is outside a predetermined safety corridor for at least three consecutive calculations. In this event, commands are issued to terminate thrust, separate the stages, dump all propellant in the first-stage, and initiate a normal landing sequence. The second-stage flight computer calculates its ability to reach orbit along its state vector, initiating an abort sequence similar to the first stage if it cannot. On a nominal mission, following separation, the second-stage also performs calculations to assure its impact point is within a safety corridor. The K-1's guidance and control design is being tested through simulation with hardware-in-the-loop at Draper Laboratory. Kistler's verification strategy assures reliable and safe operation of the K-1. (author)

  2. Formal Verification Method for Configuration of Integrated Modular Avionics System Using MARTE

    Directory of Open Access Journals (Sweden)

    Lisong Wang

    2018-01-01

    Full Text Available The configuration information of Integrated Modular Avionics (IMA system includes almost all details of whole system architecture, which is used to configure the hardware interfaces, operating system, and interactions among applications to make an IMA system work correctly and reliably. It is very important to ensure the correctness and integrity of the configuration in the IMA system design phase. In this paper, we focus on modelling and verification of configuration information of IMA/ARINC653 system based on MARTE (Modelling and Analysis for Real-time and Embedded Systems. Firstly, we define semantic mapping from key concepts of configuration (such as modules, partitions, memory, process, and communications to components of MARTE element and propose a method for model transformation between XML-formatted configuration information and MARTE models. Then we present a formal verification framework for ARINC653 system configuration based on theorem proof techniques, including construction of corresponding REAL theorems according to the semantics of those key components of configuration information and formal verification of theorems for the properties of IMA, such as time constraints, spatial isolation, and health monitoring. After that, a special issue of schedulability analysis of ARINC653 system is studied. We design a hierarchical scheduling strategy with consideration of characters of the ARINC653 system, and a scheduling analyzer MAST-2 is used to implement hierarchical schedule analysis. Lastly, we design a prototype tool, called Configuration Checker for ARINC653 (CC653, and two case studies show that the methods proposed in this paper are feasible and efficient.

  3. A knowledge-based flight status monitor for real-time application in digital avionics systems

    Science.gov (United States)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  4. Space station data system analysis/architecture study. Task 1: Functional requirements definition, DR-5. Appendix: Requirements data base

    Science.gov (United States)

    1985-01-01

    Appendix A contains data that characterize the system functions in sufficient depth as to determine the requirements for the Space Station Data System (SSDS). This data is in the form of: (1) top down traceability report; (2) bottom up traceability report; (3) requirements data sheets; and (4) cross index of requirements paragraphs of the source documents and the requirements numbers. A data base users guide is included that interested parties can use to access the requirements data base and get up to date information about the functions.

  5. ``DMS-R, the Brain of the ISS'', 10 Years of Continuous Successful Operation in Space

    Science.gov (United States)

    Wolff, Bernd; Scheffers, Peter

    2012-08-01

    Space industries on both sides of the Atlantic were faced with a new situation of collaboration in the beginning of the 1990s.In 1995, industrial cooperation between ASTRIUM ST, Bremen and RSC-E, Moscow started aiming the outfitting of the Russian Service Module ZVEZDA for the ISS with computers. The requested equipments had to provide not only redundancy but fault tolerance and high availability. The design and development of two fault tolerant computers, (FTCs) responsible for the telemetry (Telemetry Computer: TC) and the central control (CC), as well as the man machine interface CPC were contracted to ASTRIUM ST, Bremen. The computer system is responsible e.g. for the life support system and the ISS re-boost control.In July 2000, the integration of the Russian Service Module ZVEZDA with Russian ZARYA FGB and American Node 1 bears witness for transatlantic and European cooperation.The Russian Service module ZVEZDA provides several basic functions as Avionics Control, the Environmental Control and Life Support (ECLS) in the ISS and control of the docked Automatic Transfer Vehicle (ATV) which includes re-boost of ISS. If these elementary functions fail or do not work reliable the effects for the ISS will be catastrophic with respect to Safety (manned space) and ISS mission.For that reason the responsible computer system Data Management System - Russia (DMS-R) is also called "The brain of the ISS".The Russian Service module ZVEZDA, including DMS-R, was launched on 12th of July, 2000. DMS-R was operational also during launch and docking.The talk provide information about the definition, design and development of DMS-R, the integration of DMS-R in the Russian Service module and the maintenance of the system in space. Besides the technical aspects are also the German - Russian cooperation an important subject of this speech. An outlook finalises the talk providing further development activities and application of fault tolerant systems.The importance of the DMS

  6. Soil Infrastructure, Interfaces & Translocation Processes in Inner Space ("Soil-it-is": towards a road map for the constraints and crossroads of soil architecture and biophysical processes

    Directory of Open Access Journals (Sweden)

    L. W. de Jonge

    2009-08-01

    Full Text Available Soil functions and their impact on health, economy, and the environment are evident at the macro scale but determined at the micro scale, based on interactions between soil micro-architecture and the transport and transformation processes occurring in the soil infrastructure comprising pore and particle networks and at their interfaces. Soil structure formation and its resilience to disturbance are highly dynamic features affected by management (energy input, moisture (matric potential, and solids composition and complexation (organic matter and clay interactions. In this paper we review and put into perspective preliminary results of the newly started research program "Soil-it-is" on functional soil architecture. To identify and quantify biophysical constraints on soil structure changes and resilience, we claim that new approaches are needed to better interpret processes and parameters measured at the bulk soil scale and their links to the seemingly chaotic soil inner space behavior at the micro scale. As a first step, we revisit the soil matrix (solids phase and pore system (water and air phases, constituting the complementary and interactive networks of soil infrastructure. For a field-pair with contrasting soil management, we suggest new ways of data analysis on measured soil-gas transport parameters at different moisture conditions to evaluate controls of soil matrix and pore network formation. Results imply that some soils form sponge-like pore networks (mostly healthy soils in terms of agricultural and environmental functions, while other soils form pipe-like structures (agriculturally poorly functioning soils, with the difference related to both complexation of organic matter and degradation of soil structure. The recently presented Dexter et al. (2008 threshold (ratio of clay to organic carbon of 10 kg kg−1 is found to be a promising constraint for a soil's ability to maintain or regenerate functional structure. Next

  7. Religious Architecture : Anthropological Perspectives

    OpenAIRE

    2013-01-01

    Religious Architecture: Anthropological Perspectives develops an anthropological perspective on modern religious architecture, including mosques, churches and synagogues. Borrowing from a range of theoretical perspectives on space-making and material religion, this volume looks at how religious buildings take their place in opposition to the secular surroundings, how they, as evocations of the sublime, help believers to move beyond the boundaries of modern subjectivity, and how they, in their...

  8. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    Science.gov (United States)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits

  9. BIM with VR for architectural simulations

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Bundgård, Ture Slot

    2018-01-01

    experienced in physical space conditions and in virtual reality. The research intents to clarify to what extend subjective and objective attributes of architectural space can be conveyed through a direct use of BIM (Building Information Models) in Virtual Reality. Sixty test subjects experienced the same...... architectural BIM models can meaningfully improve architectural representation....

  10. Analysis of technology requirements and potential demand for general aviation avionics systems for operation in the 1980's

    Science.gov (United States)

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.

    1974-01-01

    Avionics systems are identified which promise to reduce economic constraints and provide significant improvements in performance, operational capability and utility for general aviation aircraft in the 1980's.

  11. Robotic architectures

    CSIR Research Space (South Africa)

    Mtshali, M

    2010-01-01

    Full Text Available In the development of mobile robotic systems, a robotic architecture plays a crucial role in interconnecting all the sub-systems and controlling the system. The design of robotic architectures for mobile autonomous robots is a challenging...

  12. Architecture & Environment

    Science.gov (United States)

    Erickson, Mary; Delahunt, Michael

    2010-01-01

    Most art teachers would agree that architecture is an important form of visual art, but they do not always include it in their curriculums. In this article, the authors share core ideas from "Architecture and Environment," a teaching resource that they developed out of a long-term interest in teaching architecture and their fascination with the…

  13. Facies architecture of basin-margin units in time and space: Lower to Middle Miocene Sivas Basin, Turkey

    Science.gov (United States)

    Çiner, A.; Kosun, E.

    2003-04-01

    The Miocene Sivas Basin is located within a collision zone, forming one of the largest basins in Central Turkey that developed unconformably on a foundered Paleozoic-Mesozoic basement and Eocene-Oligocene deposits. The time and space relationships of sedimentary environments and depositional evolution of Lower to Middle Miocene rocks exposed between Zara and Hafik towns is studied. A 4 km thick continuous section is subdivided into the Agilkaya and Egribucak Formations. Each formation shows an overall fining upward trend and contains three members. Although a complete section is present at the western part (near Hafik) of the basin, to the east the uppermost two members (near Zara) are absent. The lower members of both formations are composed of fluvial sheet-sandstone and red mudstone that migrate laterally on a flood basin within a semi-arid fan system. In the Agilkaya Formation that crops out near Zara, alluvial fans composed of red-pink volcanic pebbles are also present. The middle members are composed of bedded to massive gypsum and red-green mudstone of a coastal and/or continental sabkha environment. While the massive gypsum beds reach several 10’s of m in Hafik area, near Zara, they are only few m thick and alternate with green mudstones. In Hafik, bedded gypsums are intercalated with lagoonal dolomitic limestone and bituminous shale in the Agilkaya Formation and with fluvial red-pink sandstone-red mudstone in the Egribucak Formation. The upper members are made up of fossiliferous mudstone and discontinuous sandy limestone beds with gutter casts, HCS, and 3-D ripples. They indicate storm-induced sedimentation in a shallow marine setting. The disorganized accumulations of ostreid and cerithiid shells, interpreted as coquina bars, are the products of storm generated reworking processes in brackish environments. Rapid vertical and horizontal facies changes and the facies associations in both formations reflect the locally subsiding nature of this molassic

  14. MATHEMATICAL MODELS OF PROCESSES AND SYSTEMS OF TECHNICAL OPERATION FOR ONBOARD COMPLEXES AND FUNCTIONAL SYSTEMS OF AVIONICS

    Directory of Open Access Journals (Sweden)

    Sergey Viktorovich Kuznetsov

    2017-01-01

    Full Text Available Modern aircraft are equipped with complicated systems and complexes of avionics. Aircraft and its avionics tech- nical operation process is observed as a process with changing of operation states. Mathematical models of avionics pro- cesses and systems of technical operation are represented as Markov chains, Markov and semi-Markov processes. The pur- pose is to develop the graph-models of avionics technical operation processes, describing their work in flight, as well as during maintenance on the ground in the various systems of technical operation. The graph-models of processes and sys- tems of on-board complexes and functional avionics systems in flight are proposed. They are based on the state tables. The models are specified for the various technical operation systems: the system with control of the reliability level, the system with parameters control and the system with resource control. The events, which cause the avionics complexes and func- tional systems change their technical state, are failures and faults of built-in test equipment. Avionics system of technical operation with reliability level control is applicable for objects with constant or slowly varying in time failure rate. Avion- ics system of technical operation with resource control is mainly used for objects with increasing over time failure rate. Avionics system of technical operation with parameters control is used for objects with increasing over time failure rate and with generalized parameters, which can provide forecasting and assign the borders of before-fail technical states. The pro- posed formal graphical approach avionics complexes and systems models designing is the basis for models and complex systems and facilities construction, both for a single aircraft and for an airline aircraft fleet, or even for the entire aircraft fleet of some specific type. The ultimate graph-models for avionics in various systems of technical operation permit the beginning of

  15. Status of NASA's Space Launch System

    Science.gov (United States)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing

  16. Architectural Prototyping in Industrial Practice

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2008-01-01

    Architectural prototyping is the process of using executable code to investigate stakeholders’ software architecture concerns with respect to a system under development. Previous work has established this as a useful and cost-effective way of exploration and learning of the design space of a system......, in addressing issues regarding quality attributes, in addressing architectural risks, and in addressing the problem of knowledge transfer and conformance. Little work has been reported so far on the actual industrial use of architectural prototyping. In this paper, we report from an ethnographical study...... and focus group involving architects from four companies in which we have focused on architectural prototypes. Our findings conclude that architectural prototypes play an important role in resolving problems experimentally, but less so in exploring alternative solutions. Furthermore, architectural...

  17. Interior Design in Architectural Education

    Science.gov (United States)

    Gurel, Meltem O.; Potthoff, Joy K.

    2006-01-01

    The domain of interiors constitutes a point of tension between practicing architects and interior designers. Design of interior spaces is a significant part of architectural profession. Yet, to what extent does architectural education keep pace with changing demands in rendering topics that are identified as pertinent to the design of interiors?…

  18. Information network architectures

    Science.gov (United States)

    Murray, N. D.

    1985-01-01

    Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.

  19. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  20. Predicting Cost/Reliability/Maintainability of Advanced General Aviation Avionics Equipment

    Science.gov (United States)

    Davis, M. R.; Kamins, M.; Mooz, W. E.

    1978-01-01

    A methodology is provided for assisting NASA in estimating the cost, reliability, and maintenance (CRM) requirements for general avionics equipment operating in the 1980's. Practical problems of predicting these factors are examined. The usefulness and short comings of different approaches for modeling coast and reliability estimates are discussed together with special problems caused by the lack of historical data on the cost of maintaining general aviation avionics. Suggestions are offered on how NASA might proceed in assessing cost reliability CRM implications in the absence of reliable generalized predictive models.

  1. Space Architecture: Building The Future

    Science.gov (United States)

    Adams, Constance

    1999-01-01

    There's been a good deal of flag-waving over the last five years about technology-or rather, a certain terror of technology that underlies almost all recent talk of the global avant-garde. Don't be fooled: the cool, clinical praise of the cyborg and the virtual realm is no more than critical bravado. It's an existential machismo in the world of semiotics which forces the contemporary philosopher to ante up, to get theoretically comfortable with an anti-sensual world of possibilities to which we all respond-let's be frank-with profound discomfort. Does this flag-waving about media, Y2K, robotics and biotechnology serve to cover a pervasive, cross-cultural mesh of fear? Or are we waving our surrender to a process we ourselves have set in motion? Let's look at the medium of a flag-the image and its underlying message.

  2. Evaluation of Enterprise Architecture Interoperability

    National Research Council Canada - National Science Library

    Jamison, Theresa A; Niska, Brice T; Layman, Phillip A; Whitney, Steven P

    2005-01-01

    ...), which describes these architectures. The purpose of this project, suggested by Air Force Space Command, was to examine the value of existing analytical tools in making an interoperability assessment of individual enterprises, as well...

  3. Architectural Contestation

    NARCIS (Netherlands)

    Merle, J.

    2012-01-01

    This dissertation addresses the reductive reading of Georges Bataille's work done within the field of architectural criticism and theory which tends to set aside the fundamental ‘broken’ totality of Bataille's oeuvre and also to narrowly interpret it as a mere critique of architectural form,

  4. Architecture Sustainability

    NARCIS (Netherlands)

    Avgeriou, Paris; Stal, Michael; Hilliard, Rich

    2013-01-01

    Software architecture is the foundation of software system development, encompassing a system's architects' and stakeholders' strategic decisions. A special issue of IEEE Software is intended to raise awareness of architecture sustainability issues and increase interest and work in the area. The

  5. Memory architecture

    NARCIS (Netherlands)

    2012-01-01

    A memory architecture is presented. The memory architecture comprises a first memory and a second memory. The first memory has at least a bank with a first width addressable by a single address. The second memory has a plurality of banks of a second width, said banks being addressable by components

  6. A DISTRIBUTED PROGNOSTIC HEALTH MANAGEMENT ARCHITECTURE

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper introduces a generic distributed prognostic health management (PHM) architecture with specific application to the electrical power systems domain. Current...

  7. Architectural Narratives

    DEFF Research Database (Denmark)

    Kiib, Hans

    2010-01-01

    a functional framework for these concepts, but tries increasingly to endow the main idea of the cultural project with a spatially aesthetic expression - a shift towards “experience architecture.” A great number of these projects typically recycle and reinterpret narratives related to historical buildings......In this essay, I focus on the combination of programs and the architecture of cultural projects that have emerged within the last few years. These projects are characterized as “hybrid cultural projects,” because they intend to combine experience with entertainment, play, and learning. This essay...... and architectural heritage; another group tries to embed new performative technologies in expressive architectural representation. Finally, this essay provides a theoretical framework for the analysis of the political rationales of these projects and for the architectural representation bridges the gap between...

  8. Architectural communication: Intra and extra activity of architecture

    Directory of Open Access Journals (Sweden)

    Stamatović-Vučković Slavica

    2013-01-01

    Full Text Available Apart from a brief overview of architectural communication viewed from the standpoint of theory of information and semiotics, this paper contains two forms of dualistically viewed architectural communication. The duality denotation/connotation (”primary” and ”secondary” architectural communication is one of semiotic postulates taken from Umberto Eco who viewed architectural communication as a semiotic phenomenon. In addition, architectural communication can be viewed as an intra and an extra activity of architecture where the overall activity of the edifice performed through its spatial manifestation may be understood as an act of communication. In that respect, the activity may be perceived as the ”behavior of architecture”, which corresponds to Lefebvre’s production of space.

  9. Iraqi architecture in mogul period

    Directory of Open Access Journals (Sweden)

    Hasan Shatha

    2018-01-01

    Full Text Available Iraqi architecture have many periods passed through it until now, each on from these periods have it is architectural style, also through time these styles interacted among us, to creating kind of space forming, space relationships, and architectural elements (detailed treatments, the research problem being from the multi interacted architectural styles causing some of confused of general characteristic to every style, that we could distinguish by it. Research tries to study architecture style through Mogul Conquest to Baghdad. Aim of research follow main characteristic for this architectural style in the Mogul periods on the level of form, elements, and treatments. Research depending on descriptive and analytical all buildings belong to this period, so from analyzing there style by, general form for building, architectural elements, and it architectural treatment, therefore; repeating this procedures to every building we get some similarities, from these similarities we can making conclusion about pure characteristic of the style of these period. Other side, we also discover some Dissimilar in the building periods, these will lead research to make what interacting among styles in this period, after all that we can drew clearly main characteristic of Architectural Style for Mogul Conquest in Baghdad

  10. SWIFT-nanoLV Avionics Platform, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — With the increased demand for and utility of nano- and micro-satellites, the demand for responsive, low-cost access to space has also increased. To meet this demand,...

  11. Architecture and communication

    Directory of Open Access Journals (Sweden)

    Špela Hudnik

    2003-01-01

    Full Text Available The article presents effects of technology, science and capital strategies on changes in traditional forms and definitions of space, architecture and bodies. It confronts us with new processes of thinking and living that are constantly being transformed into new dynamic time and spatial contexts. Space is becoming the information filter, communication network. A cross-section of three landscapes: landscape of megastructures, nomadic landscapes and psychedelic landscapes, theory contributes to understanding of media and space-age technology, information technology and electronical language. It offers designs of various megastructures, media surfaces and envelopes of contemporary information society: the anthropological module, hyper- and infra-bodies, bio-electronical bodies and population genetics bodies. It presents the architecture of communication.

  12. Application of industry-standard guidelines for the validation of avionics software

    Science.gov (United States)

    Hayhurst, Kelly J.; Shagnea, Anita M.

    1990-01-01

    The application of industry standards to the development of avionics software is discussed, focusing on verification and validation activities. It is pointed out that the procedures that guide the avionics software development and testing process are under increased scrutiny. The DO-178A guidelines, Software Considerations in Airborne Systems and Equipment Certification, are used by the FAA for certifying avionics software. To investigate the effectiveness of the DO-178A guidelines for improving the quality of avionics software, guidance and control software (GCS) is being developed according to the DO-178A development method. It is noted that, due to the extent of the data collection and configuration management procedures, any phase in the life cycle of a GCS implementation can be reconstructed. Hence, a fundamental development and testing platform has been established that is suitable for investigating the adequacy of various software development processes. In particular, the overall effectiveness and efficiency of the development method recommended by the DO-178A guidelines are being closely examined.

  13. Architectural technology

    DEFF Research Database (Denmark)

    2005-01-01

    The booklet offers an overall introduction to the Institute of Architectural Technology and its projects and activities, and an invitation to the reader to contact the institute or the individual researcher for further information. The research, which takes place at the Institute of Architectural...... Technology at the Roayl Danish Academy of Fine Arts, School of Architecture, reflects a spread between strategic, goal-oriented pilot projects, commissioned by a ministry, a fund or a private company, and on the other hand projects which originate from strong personal interests and enthusiasm of individual...

  14. Humanizing Architecture

    DEFF Research Database (Denmark)

    Toft, Tanya Søndergaard

    2015-01-01

    The article proposes the urban digital gallery as an opportunity to explore the relationship between ‘human’ and ‘technology,’ through the programming of media architecture. It takes a curatorial perspective when proposing an ontological shift from considering media facades as visual spectacles...... agency and a sense of being by way of dematerializing architecture. This is achieved by way of programming the symbolic to provide new emotional realizations and situations of enlightenment in the public audience. This reflects a greater potential to humanize the digital in media architecture....

  15. A Systems Engineering Approach to Architecture Development

    Science.gov (United States)

    Di Pietro, David A.

    2015-01-01

    Architecture development is often conducted prior to system concept design when there is a need to determine the best-value mix of systems that works collectively in specific scenarios and time frames to accomplish a set of mission area objectives. While multiple architecture frameworks exist, they often require use of unique taxonomies and data structures. In contrast, this paper characterizes architecture development using terminology widely understood within the systems engineering community. Using a notional civil space architecture example, it employs a multi-tier framework to describe the enterprise level architecture and illustrates how results of lower tier, mission area architectures integrate into the enterprise architecture. It also presents practices for conducting effective mission area architecture studies, including establishing the trade space, developing functions and metrics, evaluating the ability of potential design solutions to meet the required functions, and expediting study execution through the use of iterative design cycles

  16. DISEÑO E IMPLEMENTACIÓN DEL SISTEMA DE COMUNICACIONES BASADO EN CAN PARA LA AVIÓNICA EN UN VEHÍCULO AÉREO AUTÓNOMO NO TRIPULADO DESIGN AND IMPLEMENTATION OF A COMMUNICATION SYSTEM BASED ON CAN FOR AVIONICS IN A ROBOT MINI-HELICOPTER

    Directory of Open Access Journals (Sweden)

    Jairo Miguel Vergara Díaz

    2007-07-01

    Full Text Available La necesidad de diseñar el sistema de comunicaciones para la aviónica de un mini helicóptero robot basada en la arquitectura distribuida CAN es la propuesta presentada. El sistema de comunicaciones involucra los aspectos de hardware y software necesarios para permitir el intercambio de datos sobre una red o bus de aviónica desde los sensores y/o hacia los actuadores con el computador central o computador de vuelo. La principal característica de la arquitectura es que permite escalabilidad en la agregación de nuevos dispositivos, garantizando los requerimientos temporales necesarios para la adquisición de datos. Se presentan resultados de intercambio de datos sobre la red de aviónica mostrando las frecuencias de operación alcanzadas.This paper presents the design of the internal communication system for avionics of a robot mini-helicopter based on the CAN distributed architecture. The communication system involves several hardware and software aspects related to data exchange on avionics bus from sensors and actuators with the flight computer. The main characteristic of the architecture is scalability in the addition of new devices, maintaining time requirements for data acquisition. Results of data exchange on the avionics network showing the reached operating update rates for each node are shown.

  17. VIRTUAL AND PHYSICAL ARCHITECTURAL ATMOSPHERE

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars

    2016-01-01

    This study, of the similarities between the perception of architectural space experienced in physical space conditions and in Virtual Reality, intents to clarify to what extend subjective and objective attributes of architectural space can be conveyed through a direct use of Building Information...... Models in Virtual Reality. 60 test persons experienced a specific test space as either a physical or a virtual environment, while data from their experiences was collected through a quantitative/qualitative questionnaire. The overall conclusion, from this phase of the study, is that even a simple BIM...... model through HMD VR can convey rather precise information about both subjective and objective experiences of architectural space, ambience and atmosphere. Next phase of the study will include eye-tracking data from the two scenarios....

  18. Architectural Theatricality

    DEFF Research Database (Denmark)

    Tvedebrink, Tenna Doktor Olsen

    environments and a knowledge gap therefore exists in present hospital designs. Consequently, the purpose of this thesis has been to investigate if any research-based knowledge exist supporting the hypothesis that the interior architectural qualities of eating environments influence patient food intake, health...... and well-being, as well as outline a set of basic design principles ‘predicting’ the future interior architectural qualities of patient eating environments. Methodologically the thesis is based on an explorative study employing an abductive approach and hermeneutic-interpretative strategy utilizing tactics...... and food intake, as well as a series of references exist linking the interior architectural qualities of healthcare environments with the health and wellbeing of patients. On the basis of these findings, the thesis presents the concept of Architectural Theatricality as well as a set of design principles...

  19. Design and Analysis of Architectures for Structural Health Monitoring Systems

    Science.gov (United States)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  20. Base Camp Architecture

    Directory of Open Access Journals (Sweden)

    Warebi Gabriel Brisibe

    2016-03-01

    Full Text Available Longitudinal or time line studies of change in the architecture of a particular culture are common, but an area still open to further research is change across space or place. In particular, there is need for studies on architectural change of cultures stemming from the same ethnic source split between their homeland and other Diasporas. This change may range from minor deviations to drastic shifts away from an architectural norm and the accumulation of these shifts within a time frame constitutes variations. This article focuses on identifying variations in the architecture of the Ijo fishing group that migrates along the coastline of West Africa. It examines the causes of cross-cultural variation between base camp dwellings of Ijo migrant fishermen in the Bakassi Peninsula in Cameroon and Bayelsa State in Nigeria. The study draws on the idea of the inevitability of cultural and social change over time as proposed in the theories of cultural dynamism and evolution. It tests aspects of cultural transmission theory using the principal coordinates analysis to ascertain the possible causes of variation. From the findings, this research argues that migration has enhanced the forces of cultural dynamism, which have resulted in significant variations in the architecture of this fishing group.

  1. Architecture and Phenomenology: Introduction

    Directory of Open Access Journals (Sweden)

    Brendan O’ Byrne

    2014-07-01

    Full Text Available The implications of philosophical aesthetics in the consideration of architecture have been relatively slight. Part of the reason is the neglect of architecture in the work of Baumgarten, Burke and Kant. Within the discourse of architecture the questions raised for philosophical consideration arising out of practice restricted the area of reflection and investigation. The dominant positions were to become either a version of neo-Kantianism, or a direct re-working of Hegel’s Lectures on Aesthetics. The significance of Kant’s distinction between ‘free’ and ‘dependent beauty’ is analysed, and in consequence the need to philosophically question again the relation of architecture to buiding, to dwelling and space. For this the question of accessibility as raised in the phenomenological enquiry, in the work of Brentano, Sartre, Bachelard, Merleau-Ponty, and especially Heidegger points to a different route for the appraisal of philosophical and architectural relations which are exhibited in the contributions of the 10 authors to this issue of Footprint.

  2. Architecture and Phenomenology: Introduction

    Directory of Open Access Journals (Sweden)

    Brendan O’ Byrne

    2008-10-01

    Full Text Available The implications of philosophical aesthetics in the consideration of architecture have been relatively slight. Part of the reason is the neglect of architecture in the work of Baumgarten, Burke and Kant. Within the discourse of architecture the questions raised for philosophical consideration arising out of practice restricted the area of reflection and investigation. The dominant positions were to become either a version of neo-Kantianism, or a direct re-working of Hegel’s Lectures on Aesthetics. The significance of Kant’s distinction between ‘free’ and ‘dependent beauty’ is analysed, and in consequence the need to philosophically question again the relation of architecture to building, to dwelling and space. For this the question of accessibility as raised in the phenomenological enquiry, in the work of Brentano, Sartre, Bachelard, Merleau-Ponty, and especially Heidegger points to a different route for the appraisal of philosophical and architectural relations which are exhibited in the contributions of the 10 authors to this issue of Footprint.

  3. Architectural freedom and industrialized architecture

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    2012-01-01

    to explain that architecture can be thought as a complex and diverse design through customization, telling exactly the revitalized storey about the change to a contemporary sustainable and better performing expression in direct relation to the given context. Through the last couple of years we have...... proportions, to organize the process on site choosing either one room wall components or several rooms wall components – either horizontally or vertically. Combined with the seamless joint the playing with these possibilities the new industrialized architecture can deliver variations in choice of solutions...... for retrofit design. If we add the question of the installations e.g. ventilation to this systematic thinking of building technique we get a diverse and functional architecture, thereby creating a new and clearer story telling about new and smart system based thinking behind architectural expression....

  4. Architectural freedom and industrialized architecture

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    2012-01-01

    to explain that architecture can be thought as a complex and diverse design through customization, telling exactly the revitalized storey about the change to a contemporary sustainable and better performing expression in direct relation to the given context. Through the last couple of years we have...... expression in the specific housing area. It is the aim of this article to expand the different design strategies which architects can use – to give the individual project attitudes and designs with architectural quality. Through the customized component production it is possible to choose different...... for retrofit design. If we add the question of the installations e.g. ventilation to this systematic thinking of building technique we get a diverse and functional architecture, thereby creating a new and clearer story telling about new and smart system based thinking behind architectural expression....

  5. Architectural freedom and industrialised architecture

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    2012-01-01

    Architectural freedom and industrialized architecture. Inge Vestergaard, Associate Professor, Cand. Arch. Aarhus School of Architecture, Denmark Noerreport 20, 8000 Aarhus C Telephone +45 89 36 0000 E-mai l inge.vestergaard@aarch.dk Based on the repetitive architecture from the "building boom" 1960...... customization, telling exactly the revitalized storey about the change to a contemporary sustainable and better performed expression in direct relation to the given context. Through the last couple of years we have in Denmark been focusing a more sustainable and low energy building technique, which also include...... to the building physic problems a new industrialized period has started based on light weight elements basically made of wooden structures, faced with different suitable materials meant for individual expression for the specific housing area. It is the purpose of this article to widen up the different design...

  6. PICNIC Architecture.

    Science.gov (United States)

    Saranummi, Niilo

    2005-01-01

    The PICNIC architecture aims at supporting inter-enterprise integration and the facilitation of collaboration between healthcare organisations. The concept of a Regional Health Economy (RHE) is introduced to illustrate the varying nature of inter-enterprise collaboration between healthcare organisations collaborating in providing health services to citizens and patients in a regional setting. The PICNIC architecture comprises a number of PICNIC IT Services, the interfaces between them and presents a way to assemble these into a functioning Regional Health Care Network meeting the needs and concerns of its stakeholders. The PICNIC architecture is presented through a number of views relevant to different stakeholder groups. The stakeholders of the first view are national and regional health authorities and policy makers. The view describes how the architecture enables the implementation of national and regional health policies, strategies and organisational structures. The stakeholders of the second view, the service viewpoint, are the care providers, health professionals, patients and citizens. The view describes how the architecture supports and enables regional care delivery and process management including continuity of care (shared care) and citizen-centred health services. The stakeholders of the third view, the engineering view, are those that design, build and implement the RHCN. The view comprises four sub views: software engineering, IT services engineering, security and data. The proposed architecture is founded into the main stream of how distributed computing environments are evolving. The architecture is realised using the web services approach. A number of well established technology platforms and generic standards exist that can be used to implement the software components. The software components that are specified in PICNIC are implemented in Open Source.

  7. Architectural freedom and industrialised architecture

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    2012-01-01

    to the building physic problems a new industrialized period has started based on light weight elements basically made of wooden structures, faced with different suitable materials meant for individual expression for the specific housing area. It is the purpose of this article to widen up the different design...... to this systematic thinking of the building technique we get a diverse and functional architecture. Creating a new and clearer story telling about new and smart system based thinking behind the architectural expression....

  8. Architectural geometry

    KAUST Repository

    Pottmann, Helmut; Eigensatz, Michael; Vaxman, Amir; Wallner, Johannes

    2014-01-01

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  9. Architectural geometry

    KAUST Repository

    Pottmann, Helmut

    2014-11-26

    Around 2005 it became apparent in the geometry processing community that freeform architecture contains many problems of a geometric nature to be solved, and many opportunities for optimization which however require geometric understanding. This area of research, which has been called architectural geometry, meanwhile contains a great wealth of individual contributions which are relevant in various fields. For mathematicians, the relation to discrete differential geometry is significant, in particular the integrable system viewpoint. Besides, new application contexts have become available for quite some old-established concepts. Regarding graphics and geometry processing, architectural geometry yields interesting new questions but also new objects, e.g. replacing meshes by other combinatorial arrangements. Numerical optimization plays a major role but in itself would be powerless without geometric understanding. Summing up, architectural geometry has become a rewarding field of study. We here survey the main directions which have been pursued, we show real projects where geometric considerations have played a role, and we outline open problems which we think are significant for the future development of both theory and practice of architectural geometry.

  10. Islam, Modernity, and the Liminal Space Between: A Vertical Case Study of the Institute of Traditional Islamic Art and Architecture in Amman, Jordan

    Science.gov (United States)

    Meehan, Mark W.

    2012-01-01

    This dissertation investigates the development and function of the Institute of Traditional Islamic Art and Architecture in Amman, Jordan. A vertical case study using grounded theory methodology, the research attempts to create a rich and holistic understanding of the Institute. Specific areas of study include the factors involved in the founding…

  11. Effects of Spatial Experiences & Cognitive Styles in the Solution Process of Space-Based Design Problems in the First Year of Architectural Design Education

    Science.gov (United States)

    Erkan Yazici, Yasemin

    2013-01-01

    There are many factors that influence designers in the architectural design process. Cognitive style, which varies according to the cognitive structure of persons, and spatial experience, which is created with spatial data acquired during life are two of these factors. Designers usually refer to their spatial experiences in order to find solutions…

  12. On the chanting space and hymns that were sung in it. Searching for chanting-architectural connections in the middle ages

    Directory of Open Access Journals (Sweden)

    Peno Vesna

    2017-01-01

    Full Text Available The search for the unexplained interactions of domestic medieval liturgical music and sacred architecture of the Moravian style has not been the subject of interdisciplinary study so far. A reflection on the potential relationg between church chanting and architecture is absent from the largest part of the existing literature on the development of medieval sacral art. The scarcity of written historical sources, and especially musical ones, made it particularly difficult to define the connection between the chanting circumstances and the changes in the architectural form of the late Byzantine period, which is almost a standardized Moravian architectural form. The earliest preserved bilingual - Greek-Slavic neumatic manuscripts, mentioning both the names of the first famous Serbian medieval composers, and the more or less well known late Byzantine musicians who had actively participated in the earliest religious services of the Serbian Church, confirm that the culmination of the chanting art in Serbia occured precisely at the turn of the 15th century and then until the fall of Serbia under Turkish rule. Comparing the available data, with a general insight into the migration flows that led to the Byzantinization of Serbian culture in that period, showed that after the reconciliation of the Serbian Patriarchate and the Patriarchate of Constantinople, in 1374, the world-class building tradition was adopted, which until then was sporadically seen on the Serbian soil. The architectural form of the Moravian style would become recognizable by the singing apses in the axis of the transept, in the middle of the already adopted form of the inscribed cross from the early 14th century. Within the framework of the overall church, political and cultural transformation that was visible in Serbian society, the chanting practice of the Serbian Church, or more precisely the greater affirmation of the liturgical art and the increase in the number of the chanters

  13. Architectural Anthropology

    DEFF Research Database (Denmark)

    Stender, Marie

    Architecture and anthropology have always had a common focus on dwelling, housing, urban life and spatial organisation. Current developments in both disciplines make it even more relevant to explore their boundaries and overlaps. Architects are inspired by anthropological insights and methods......, while recent material and spatial turns in anthropology have also brought an increasing interest in design, architecture and the built environment. Understanding the relationship between the social and the physical is at the heart of both disciplines, and they can obviously benefit from further...... collaboration: How can qualitative anthropological approaches contribute to contemporary architecture? And just as importantly: What can anthropologists learn from architects’ understanding of spatial and material surroundings? Recent theoretical developments in anthropology stress the role of materials...

  14. Architectural Engineers

    DEFF Research Database (Denmark)

    Petersen, Rikke Premer

    engineering is addresses from two perspectives – as an educational response and an occupational constellation. Architecture and engineering are two of the traditional design professions and they frequently meet in the occupational setting, but at educational institutions they remain largely estranged....... The paper builds on a multi-sited study of an architectural engineering program at the Technical University of Denmark and an architectural engineering team within an international engineering consultancy based on Denmark. They are both responding to new tendencies within the building industry where...... the role of engineers and architects increasingly overlap during the design process, but their approaches reflect different perceptions of the consequences. The paper discusses some of the challenges that design education, not only within engineering, is facing today: young designers must be equipped...

  15. Avionics for Scaled Remotely Operated Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of UAVs has increased exponentially since 1995, and this growth is expected to continue. Many of these applications require extensive Research and...

  16. Avionics for Scaled Remotely Operated Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of UAS's in the military and the commercial field has grown tremendously over the last few years and is set to explode over next several. An...

  17. Modular, Plug and Play, Distributed Avionics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this SBIR effort was to prove the viability of an Ethernet version of the MicroSat Systems, Inc. (MSI) modular, plug and play (PnP) spacecraft...

  18. Reframing Architecture

    DEFF Research Database (Denmark)

    Riis, Søren

    2013-01-01

    I would like to thank Prof. Stephen Read (2011) and Prof. Andrew Benjamin (2011) for both giving inspiring and elaborate comments on my article “Dwelling in-between walls: the architectural surround”. As I will try to demonstrate below, their two different responses not only supplement my article...... focuses on how the absence of an initial distinction might threaten the endeavour of my paper. In my reply to Read and Benjamin, I will discuss their suggestions and arguments, while at the same time hopefully clarifying the postphenomenological approach to architecture....

  19. A Cognitive Architecture Using Reinforcement Learning to Enable Autonomous Spacecraft Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an architecture to enable the modular development and deployment of autonomous intelligent agents in support of spacecraft operations. This architecture...

  20. Urban Sustainability through Public Architecture

    Directory of Open Access Journals (Sweden)

    Soomi Kim

    2018-04-01

    Full Text Available As the sustainability of contemporary cities has gained emphasis, interest in architecture has increased, due to its social and public responsibility. Since sustainability is linked to public values, research on sustainable public spaces is an important way to secure sustainability in cities. Based on this, we analyzed the sustainability of European cities by examining the design methods of public architecture according to the region. The aim of the study is to derive architectural methodology corresponding to local characteristics, and to suggest issues to consider in public architecture design to promote urban sustainability based on this. First, regarding the environmental aspect, it can be observed that there is an effort to secure sustainability. Second, in terms of social sustainability, historical value remains as a trace of architectural place, so that it continues in people’s memory. In addition, public architecture provides public places where citizens can gather and enjoy programs, while the architectural methods showed differences influenced by cultural conditions. Third, in economic sustainability, it was shown that energy saving was achieved through cost reduction through recycling of materials, facilities, or environmental factors. In conclusion, the issues to be considered in public architectural design are the voiding of urban space through architectural devices in the construction method. In other words, the intention is to form “ground” that attempts to be part of the city, and thereby create better places. Since skin and material have a deep relationship with the environment, they should have the durability and an outer skin that are suitable for the regional environment. Finally, sustainability is to be utilized through the influx of programs that meet local and environmental characteristics. Design research into public architecture that is oriented towards urban sustainability will be a task to be carried out by the

  1. Space Propulsion Hazards Analysis Manual (SPHAM). Volume 2. Appendices

    Science.gov (United States)

    1988-10-01

    Vanderwall, E.M. and Schaplowsky, R.F., USAF PROPELLANT HA& nBOOKS , Volume III, Part B, "Nitrogen Trifluoride, Bibliography," p. 4-508, Aerojeft Liquid...not economically desirable to maintain two different avionic configurations in the space-based program. Guidance and navigation information is

  2. Textile Architecture

    DEFF Research Database (Denmark)

    Heimdal, Elisabeth Jacobsen

    2010-01-01

    Textiles can be used as building skins, adding new aesthetic and functional qualities to architecture. Just like we as humans can put on a coat, buildings can also get dressed. Depending on our mood, or on the weather, we can change coat, and so can the building. But the idea of using textiles...

  3. Digital avionics systems - Overview of FAA/NASA/industry-wide briefing

    Science.gov (United States)

    Larsen, William E.; Carro, Anthony

    1986-01-01

    The effects of incorporating digital technology into the design of aircraft on the airworthiness criteria and certification procedures for aircraft are investigated. FAA research programs aimed at providing data for the functional assessment of aircraft which use digital systems for avionics and flight control functions are discussed. The need to establish testing, assurance assessment, and configuration management technologies to insure the reliability of digital systems is discussed; consideration is given to design verification, system performance/robustness, and validation technology.

  4. Digital Systems Validation Handbook. Volume 2. Chapter 18. Avionic Data Bus Integration Technology

    Science.gov (United States)

    1993-11-01

    interaction between a digital data bus and an avionic system. Very Large Scale Integration (VLSI) ICs and multiversion software, which make up digital...1984, the Sperry Corporation developed a fault tolerant system which employed multiversion programming, voting, and monitoring for error detection and...formulate all the significant behavior of a system. MULTIVERSION PROGRAMMING. N-version programming. N-VERSION PROGRAMMING. The independent coding of a

  5. NI Based System for Seu Testing of Memory Chips for Avionics

    Directory of Open Access Journals (Sweden)

    Boruzdina Anna

    2016-01-01

    Full Text Available This paper presents the results of implementation of National Instrument based system for Single Event Upset testing of memory chips into neutron generator experimental facility, which used for SEU tests for avionics purposes. Basic SEU testing algorithm with error correction and constant errors detection is presented. The issues of radiation shielding of NI based system are discussed and solved. The examples of experimental results show the applicability of the presented system for SEU memory testing under neutrons influence.

  6. Spatial Modernist Architectural Artistic Concepts

    Science.gov (United States)

    Gudkova, T. V.; Gudkov, A. A.

    2017-11-01

    The development of a single spatial modernist conception had continued until the middle of the twentieth century. The first authors who proposed the new conceptual solutions of an architectural space that had the greatest impact on the further development of architecture were Le Corbusier, Frank Lloyd Wright, Mies van der Rohein. They embodied different approaches within the common modernist spatial concept using the language of morphological, symbolic and phenomenological descriptions of space. The concept was based on the simplification of functional links, integration of internal architectural space with the environment due to the vanishing of boundaries between them and expansion of their interrelation. Le Corbusier proposed a spatio-temporal concept based on the movement and tempo-rhythmics of the space “from inside to outside.” Frank Lloyd Wright proposed the concept of integral space where inner and outer spaces were the parts of a whole. Mies van der Rohein was the author of the universal space concept in which the idea of the “dissolution” of the inner space in the outer space was embodied.

  7. Optical linear algebra processors - Architectures and algorithms

    Science.gov (United States)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  8. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy -Major Accomplishments and Lessons Learned

    Science.gov (United States)

    Orr, James K.

    2010-01-01

    This presentation has shown the accomplishments of the PASS project over three decades and highlighted the lessons learned. Over the entire time, our goal has been to continuously improve our process, implement automation for both quality and increased productivity, and identify and remove all defects due to prior execution of a flawed process in addition to improving our processes following identification of significant process escapes. Morale and workforce instability have been issues, most significantly during 1993 to 1998 (period of consolidation in aerospace industry). The PASS project has also consulted with others, including the Software Engineering Institute, so as to be an early evaluator, adopter, and adapter of state-of-the-art software engineering innovations.

  9. MUF architecture /art London

    DEFF Research Database (Denmark)

    Svenningsen Kajita, Heidi

    2009-01-01

    Om MUF architecture samt interview med Liza Fior og Katherine Clarke, partnere i muf architecture/art......Om MUF architecture samt interview med Liza Fior og Katherine Clarke, partnere i muf architecture/art...

  10. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-26

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, socalled panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects. © 2010 ACM.

  11. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-25

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, so-called panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects.

  12. Architectural fragments

    DEFF Research Database (Denmark)

    Bang, Jacob Sebastian

    2018-01-01

    I have created a large collection of plaster models: a collection of Obstructions, errors and opportunities that may develop into architecture. The models are fragments of different complex shapes as well as more simple circular models with different profiling and diameters. In this contect I have....... I try to invent the ways of drawing the models - that decode and unfold them into architectural fragments- into future buildings or constructions in the landscape. [1] Luigi Moretti: Italian architect, 1907 - 1973 [2] Man Ray: American artist, 1890 - 1976. in 2015, I saw the wonderful exhibition...... "Man Ray - Human Equations" at the Glyptotek in Copenhagen, organized by the Philips Collection in Washington D.C. and the Israel Museum in Jerusalem (in 2013). See also: "Man Ray - Human Equations" catalogue published by Hatje Cantz Verlag, Germany, 2014....

  13. Computational Strategies for the Architectural Design of Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Nicholas, Paul

    2013-01-01

    Active bending introduces a new level of integration into the design of architectural structures, and opens up new complexities for the architectural design process. In particular, the introduction of material variation reconfigures the design space. Through the precise specification...

  14. Santiago de Chile, nueva arquitectura y espacio público. Arquitecturas de fin de crisis. 1999-2004. / Santiago de Chile, new architecture and public space. Architectures at the end of the crisis of 1999-2004.

    Directory of Open Access Journals (Sweden)

    Aránguiz P., Javier

    2004-12-01

    Full Text Available Este artículo trata de un estudio comparado -siempre parcial en estos casos- del estado actual de arquitectura chilena concentrada en la ciudad de Santiago. Su valor estaría en reivindicar lo que denomino común reflexión de ciertos autores entorno a modalidades y gestiones convergentes, superando maneras particulares de hacer y diferentes escalas de intervención. No pretende más que generar, indicar de cierta manera, la conjunción de pensamientos al momento de obrar la arquitectura como objeto urbano. Esta reflexión se realiza en términos de contexto dinámico e inicio de planes operativos, que sin perder las líneas invariantes de analogía y relación a ciertas obras escogidas en este período de tiempo definido, puedan marcar el derrotero de la ciudad de cara a las propuestas de renovación urbana que se avecinan. Para esto utilizaré una escritura, que sin ser texto exhaustivo desde lo académico, se perfila como discurso apriorístico para futuras investigaciones de base objetual y ejercicio crítico. Es un intento también de síntesis de las aportaciones arquitectónicas -en clave de proyectación- refrendadas desde el germen de la economía urbana como matriz ineludible en el concepto de ciudad futura./This article deals with a comparative study of present chilean architecture concentrated in the city of Santiago. It points out the importance of a comprehensive thought process capable of integrating single and unrelated enterprizes to urban systems. This is accomplished by coordinating different scales and functions in order to search for the opportunity to reach a better result in terms of urban morphology and urban functions.

  15. Architectural considerations in the certification of modular systems

    Energy Technology Data Exchange (ETDEWEB)

    Bate, Iain; Kelly, Tim

    2003-09-01

    Modular system architectures, such as integrated modular avionics (IMA) in the aerospace sector, offer potential benefits of improved flexibility in function allocation, reduced development costs and improved maintainability. However, they require a new certification approach. The traditional approach to certification is to prepare monolithic safety cases as bespoke developments for a specific system in a fixed configuration. However, this nullifies the benefits of flexibility and reduced rework claimed of IMA-based systems and will necessitate the development of new safety cases for all possible (current and future) configurations of the architecture. This paper discusses a modular approach to safety case construction, whereby the safety case is partitioned into separable arguments of safety corresponding with the components of the system architecture. Such an approach relies upon properties of the IMA system architecture (such as segregation and location independence) having been established. The paper describes how such properties can be assessed to show that they are met and trade-offs performed during architecture definition reusing information and techniques from the safety argument process.

  16. Architectural considerations in the certification of modular systems

    International Nuclear Information System (INIS)

    Bate, Iain; Kelly, Tim

    2003-01-01

    Modular system architectures, such as integrated modular avionics (IMA) in the aerospace sector, offer potential benefits of improved flexibility in function allocation, reduced development costs and improved maintainability. However, they require a new certification approach. The traditional approach to certification is to prepare monolithic safety cases as bespoke developments for a specific system in a fixed configuration. However, this nullifies the benefits of flexibility and reduced rework claimed of IMA-based systems and will necessitate the development of new safety cases for all possible (current and future) configurations of the architecture. This paper discusses a modular approach to safety case construction, whereby the safety case is partitioned into separable arguments of safety corresponding with the components of the system architecture. Such an approach relies upon properties of the IMA system architecture (such as segregation and location independence) having been established. The paper describes how such properties can be assessed to show that they are met and trade-offs performed during architecture definition reusing information and techniques from the safety argument process

  17. Future Standardization of Space Telecommunications Radio System with Core Flight System

    Science.gov (United States)

    Briones, Janette C.; Hickey, Joseph P.; Roche, Rigoberto; Handler, Louis M.; Hall, Charles S.

    2016-01-01

    NASA Glenn Research Center (GRC) is integrating the NASA Space Telecommunications Radio System (STRS) Standard with the Core Flight System (cFS), an avionics software operating environment. The STRS standard provides a common, consistent framework to develop, qualify, operate and maintain complex, reconfigurable and reprogrammable radio systems. The cFS is a flexible, open architecture that features a plugand- play software executive called the Core Flight Executive (cFE), a reusable library of software components for flight and space missions and an integrated tool suite. Together, STRS and cFS create a development environment that allows for STRS compliant applications to reference the STRS application programmer interfaces (APIs) that use the cFS infrastructure. These APIs are used to standardize the communication protocols on NASAs space SDRs. The cFS-STRS Operating Environment (OE) is a portable cFS library, which adds the ability to run STRS applications on existing cFS platforms. The purpose of this paper is to discuss the cFS-STRS OE prototype, preliminary experimental results performed using the Advanced Space Radio Platform (ASRP), the GRC S- band Ground Station and the SCaN (Space Communication and Navigation) Testbed currently flying onboard the International Space Station (ISS). Additionally, this paper presents a demonstration of the Consultative Committee for Space Data Systems (CCSDS) Spacecraft Onboard Interface Services (SOIS) using electronic data sheets (EDS) inside cFE. This configuration allows for the data sheets to specify binary formats for data exchange between STRS applications. The integration of STRS with cFS leverages mission-proven platform functions and mitigates barriers to integration with future missions. This reduces flight software development time and the costs of software-defined radio (SDR) platforms. Furthermore, the combined benefits of STRS standardization with the flexibility of cFS provide an effective, reliable and

  18. Nanosatellite Architectures for Improved Study of the Hydrologic Cycle

    Science.gov (United States)

    Blackwell, W. J.; Osaretin, I.; Cahoy, K.

    2012-12-01

    The need for low-cost, mission-flexible, and rapidly deployable spaceborne sensors that meet stringent performance requirements pervades the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. To address these challenges, we present nanosatellite constellation architectures that would profoundly improve both the performance and cost/risk/schedule profiles of NASA Earth and Space Science missions by leveraging recent technology advancements. As a key enabling element, we describe a scalable and mission-flexible 6U CubeSat-based self-organizing constellation architecture (the Distributed Observatory for Monitoring of Earth, henceforth "DOME") that will achieve state-of-the-art performance (and beyond) relative to current systems with respect to spatial, spectral, and radiometric resolution. A focus of this presentation is an assessment of the viability of a cross-linked CubeSat constellation with onboard propulsion systems for high-fidelity Earth and Space Science research. Such architecture could provide game-changing advances by reducing costs by at least an order of magnitude while increasing robustness to launch and sensor failures, allowing fast-track insertion of new technologies, and improving science performance. High-resolution passive microwave atmospheric sounding is an ideal sensing modality for nanosatellite implementation due to rapidly advancing microwave and millimeterwave receiver technology. The DOME constellation would nominally comprise 6U CubeSat Microwave Atmospheric Sounder (CMAS) satellites. Each CMAS satellite would host a complete 6U CubeSat atmospheric sounder, including a radiometer payload module with passive microwave receivers operating near atmospheric absorption lines near 60 and 183.31 GHz, and a spacecraft bus with attitude determination and control, avionics, power, cross-linked communications (spacecraft-to-spacecraft and spacecraft-to-ground), and propulsion systems. A

  19. Functional Interface Considerations within an Exploration Life Support System Architecture

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

  20. Connecting Architecture and Implementation

    Science.gov (United States)

    Buchgeher, Georg; Weinreich, Rainer

    Software architectures are still typically defined and described independently from implementation. To avoid architectural erosion and drift, architectural representation needs to be continuously updated and synchronized with system implementation. Existing approaches for architecture representation like informal architecture documentation, UML diagrams, and Architecture Description Languages (ADLs) provide only limited support for connecting architecture descriptions and implementations. Architecture management tools like Lattix, SonarJ, and Sotoarc and UML-tools tackle this problem by extracting architecture information directly from code. This approach works for low-level architectural abstractions like classes and interfaces in object-oriented systems but fails to support architectural abstractions not found in programming languages. In this paper we present an approach for linking and continuously synchronizing a formalized architecture representation to an implementation. The approach is a synthesis of functionality provided by code-centric architecture management and UML tools and higher-level architecture analysis approaches like ADLs.

  1. Space Shuttle RTOS Bayesian Network

    Science.gov (United States)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores

  2. Future of information architecture

    CERN Document Server

    Baofu, Peter

    2008-01-01

    The Future of Information Architecture examines issues surrounding why information is processed, stored and applied in the way that it has, since time immemorial. Contrary to the conventional wisdom held by many scholars in human history, the recurrent debate on the explanation of the most basic categories of information (eg space, time causation, quality, quantity) has been misconstrued, to the effect that there exists some deeper categories and principles behind these categories of information - with enormous implications for our understanding of reality in general. To understand this, the b

  3. Italian bioclimatic architecture

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, E

    1987-04-01

    This paper deals with the results of solar space heating research developed within the Finalized Energy Project of the National Research Council of Italy. Energy and cost/benefit parameters were compared for a certain number of Italian buildings incorporating solar architecture. The technical and economic analysis was performed on 31 buildings, of which 24 are residential, and 7 are schools, with different solar devices (direct gain, Trombe walls, sunspaces, hybrid systems). The buildings were constructed between 1976 and 1982. The results emphasize that simple technologies with lower costs and good design usually have a higher performance/cost ratio.

  4. 3D-models in landscape architecture

    NARCIS (Netherlands)

    Nijhuis, S.; Stellingwerff, M.C.

    2011-01-01

    Landscape architecture consists of a basic attitude that involves four principles of study and practice. These are: anamnesis (palimpsest), process, three-dimensional space and scale-continuum (relational context). The core of landscape architecture as a design discipline is the construction and

  5. Deterministic bound for avionics switched networks according to networking features using network calculus

    Directory of Open Access Journals (Sweden)

    Feng HE

    2017-12-01

    Full Text Available The state of the art avionics system adopts switched networks for airborne communications. A major concern in the design of the networks is the end-to-end guarantee ability. Analytic methods have been developed to compute the worst-case delays according to the detailed configurations of flows and networks within avionics context, such as network calculus and trajectory approach. It still lacks a relevant method to make a rapid performance estimation according to some typically switched networking features, such as networking scale, bandwidth utilization and average flow rate. The goal of this paper is to establish a deterministic upper bound analysis method by using these networking features instead of the complete network configurations. Two deterministic upper bounds are proposed from network calculus perspective: one is for a basic estimation, and another just shows the benefits from grouping strategy. Besides, a mathematic expression for grouping ability is established based on the concept of network connecting degree, which illustrates the possibly minimal grouping benefit. For a fully connected network with 4 switches and 12 end systems, the grouping ability coming from grouping strategy is 15–20%, which just coincides with the statistical data (18–22% from the actual grouping advantage. Compared with the complete network calculus analysis method for individual flows, the effectiveness of the two deterministic upper bounds is no less than 38% even with remarkably varied packet lengths. Finally, the paper illustrates the design process for an industrial Avionics Full DupleX switched Ethernet (AFDX networking case according to the two deterministic upper bounds and shows that a better control for network connecting, when designing a switched network, can improve the worst-case delays dramatically. Keywords: Deterministic bound, Grouping ability, Network calculus, Networking features, Switched networks

  6. Avionics Integrity Issues Presented during NAECON (National Aerospace and Electronics Convention) 1984.

    Science.gov (United States)

    1984-12-01

    insistence on * reliability by our program offices combined with the Avionics Integrity Program. Second: competition based or rellabi]Jty. Tbird: some...typically 0 hinges unless they are wedge clamped]~ (wedge clamps give a very high L 2.0 I I-6.5 mechanical advantage such that theLi n ni boundary...aj &02Lt.e may have been diideten Soot IkeAe Ctot. The j4U AM1S uteA ame the 4A" AFM 64-1 det 4oit the Adue Usne 14we a6 4,en the CENT teatA woe

  7. THE UNMANNED MISSION AVIONICS TEST HELICIOPTER – A FLEXIBLE AND VERSATILE VTOL-UAS EXPERIMENTAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Dr. H.-W. Schulz

    2012-09-01

    Full Text Available civil customers. These applications cover a wide spectrum from R&D programs for the military customer to special services for the civil customer. This paper focuses on the technical conversion of a commercially available VTOL-UAS to ESG's Unmanned Mission Avionics Test Helicopter (UMAT, its concept and operational capabilities. At the end of the paper, the current integration of a radar sensor is described as an example of the UMATs flexibility. The radar sensor is developed by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR. It is integrated by ESG together with the industrial partner SWISS UAV.

  8. Mars Sample Return Architecture Assessment Study

    Science.gov (United States)

    Centuori, S.; Hermosín, P.; Martín, J.; De Zaiacomo, G.; Colin, S.; Godfrey, A.; Myles, J.; Johnson, H.; Sachdev, T.; Ahmed, R.

    2018-04-01

    Current paper presents the results of ESA funded activity "Mars Sample Return Architecture Assessment Study" carried-out by DEIMOS Space, Lockheed Martin UK Ampthill, and MDA Corporation, where more than 500 mission design options have been studied.

  9. A REST-ful interpretation for embedded modular systems based on open architecture

    Science.gov (United States)

    Lyke, James

    2016-05-01

    The much-anticipated revolution of the "Internet of things" (IoT) is expected to generate one trillion internet devices within the next 15 years, mostly in the form of simple wireless sensor devices. While this revolution promises to transform silicon markets and drive a number of disruptive changes in society, it is also the case that the protocols, complexity, and security issues of extremely large dynamic, co-mingled networks is still poorly understood. Furthermore, embedded system developers, to include military and aerospace users, have largely ignored the potential (good and bound) of the cloudlike, possibly intermingling networks having variable structure to how future systems might be engineered. In this paper, we consider a new interpretation of IoT inspired modular architecture strategies involving the representational state transfer (REST) model, in which dynamic networks with variable structure employ stateless application programming interface (API) concepts. The power of the method, which extends concepts originally developed for space plug-and-play avionics, is that it allows for the fluid co-mingling of hardware and software in networks whose structure can overlap and evolve. Paradoxically, these systems may have the most stringent determinism and fault-tolerant needs. In this paper we review how RESTful APIs can potentially be used to design, create, test, and deploy systems rapidly while addressing security and referential integrity even when the nodes of many systems might physically co-mingle. We will also explore ways to take advantage of the RESTful paradigm for fault tolerance and what extensions might be necessary to deal with high-performance and determinism.

  10. Architectural Theatricality

    DEFF Research Database (Denmark)

    Tvedebrink, Tenna Doktor Olsen; Fisker, Anna Marie; Kirkegaard, Poul Henning

    2013-01-01

    In the attempt to improve patient treatment and recovery, researchers focus on applying concepts of hospitality to hospitals. Often these concepts are dominated by hotel-metaphors focusing on host–guest relationships or concierge services. Motivated by a project trying to improve patient treatment...... is known for his writings on theatricality, understood as a holistic design approach emphasizing the contextual, cultural, ritual and social meanings rooted in architecture. Relative hereto, the International Food Design Society recently argued, in a similar holistic manner, that the methodology used...... to provide an aesthetic eating experience includes knowledge on both food and design. Based on a hermeneutic reading of Semper’s theory, our thesis is that this holistic design approach is important when debating concepts of hospitality in hospitals. We use this approach to argue for how ‘food design...

  11. Sculpture Versus Architecture?

    Directory of Open Access Journals (Sweden)

    Alexander Rappaport

    2007-07-01

    Full Text Available Many critics consider Richard Serra the leading sculptor of the 20th century. He is famous not only for inventing something new in sculpture (abstract sculpture compositions existed before him, having been opened by constructivist vanguard of the beginning of the 20th century. Material selections by Vladimir Tatlin and sculptures by Osip Tsadkin, as well as compositions by Henry Moor appeared before Serra. Serra is famous for transferring his works' accent from the works as they are, which could be installed in any place, to their environment. That is he saw in the sculpture a key to understanding the urban space. His crude metal sheets and profiles, rectangular and curvilinear, exceeding regular scale of sculpture, come closer to architecture. Richard Serra places them near architectural constructions as checkpoints of intermediate scale category of space located between so-called «street furniture» – lamp posts, stalls, fountains and benches – and buildings, especially huge modern ones.But the matter is not only in the scale. Serra's sculptures are not only abstract compositions that harmoniously add to the space with their spacious scale. They have some mystery, some implicit sense appearing before a pedestrian as an enigma. Their mystique opposes both street furniture and architecture. But first of all it opposes the historical sculpture with its enigma always overshadowed by historical or biographical topic. Krylov's sculpture in the Summer Garden or Minin and Pozharsky's monument on the Red Square do not strike us, because we know that those monuments are erected IN COMMEMORATION of prominent people, as fellow citizens' tribute to their great contribution to the national history. But the crude metal sheets welded at different angles – what are they for? Who needs them?As an art critic, Edward Goldman, said, fame came to Richard Serra in 1989, when the sculpture composition Tilted Arc erected eight years before it was demolished by

  12. Communications Architecture Recommendations to Enable Joint Vision 2020

    National Research Council Canada - National Science Library

    Armstrong, R. B

    2003-01-01

    The Mission Information Management (MIM) Communications Architecture provides a framework to develop an integrated space, air, and terrestrial communications network that supports all national security users...

  13. Materiales e innovación en arquitectura sanitaria: cobre, barrera antibacteriana para espacios sanitarios = Materials and innovation in sanitary architecture: copper, antibacterial barrier for sanitary spaces

    Directory of Open Access Journals (Sweden)

    Paula Aillón García

    2017-12-01

    Full Text Available La inclusión del cobre como material antibacteriano en la arquitectura sanitaria ayuda a resolver la gran paradoja que existe en los servicios asistenciales; entrar a servicios de salud para sanarse de una enfermedad puntual y adquirir enfermedades de riesgo de muerte. Esta investigación demuestra la eficacia del cobre en formato laminar en vez de sólido, haciendo mediciones de
 con luminometría, abriendo un camino factible para el cobre como revestimiento antibacteriano y dotando de su propiedad antibacteriana superficial a costos reducidos, sin necesidad de cambios de mobiliario ni obras Abstract The inclusion of copper as an antibacterial material in health architecture helps to solve the great paradox that exists in healthcare services; enter health services to heal from a specific illness and acquire life-threatening diseases. This research demonstrates the effectiveness of copper in laminar format instead of solid, making measurements of ATP with luminometry, opening a feasible way for copper as an antibacterial coating and endowing its superficial antibacterial property at reduced costs, without the need for furniture changes or works.

  14. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    Science.gov (United States)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  15. Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module

    Science.gov (United States)

    Ferguson, Stan; Savage, Dick

    1992-01-01

    This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.

  16. Conceptual design of a crewed reusable space transportation system aimed at parabolic flights: stakeholder analysis, mission concept selection, and spacecraft architecture definition

    Science.gov (United States)

    Fusaro, Roberta; Viola, Nicole; Fenoglio, Franco; Santoro, Francesco

    2017-03-01

    This paper proposes a methodology to derive architectures and operational concepts for future earth-to-orbit and sub-orbital transportation systems. In particular, at first, it describes the activity flow, methods, and tools leading to the generation of a wide range of alternative solutions to meet the established goal. Subsequently, the methodology allows selecting a small number of feasible options among which the optimal solution can be found. For the sake of clarity, the first part of the paper describes the methodology from a theoretical point of view, while the second part proposes the selection of mission concepts and of a proper transportation system aimed at sub-orbital parabolic flights. Starting from a detailed analysis of the stakeholders and their needs, the major objectives of the mission have been derived. Then, following a system engineering approach, functional analysis tools as well as concept of operations techniques allowed generating a very high number of possible ways to accomplish the envisaged goals. After a preliminary pruning activity, aimed at defining the feasibility of these concepts, more detailed analyses have been carried out. Going on through the procedure, the designer should move from qualitative to quantitative evaluations, and for this reason, to support the trade-off analysis, an ad-hoc built-in mission simulation software has been exploited. This support tool aims at estimating major mission drivers (mass, heat loads, manoeuverability, earth visibility, and volumetric efficiency) as well as proving the feasibility of the concepts. Other crucial and multi-domain mission drivers, such as complexity, innovation level, and safety have been evaluated through the other appropriate analyses. Eventually, one single mission concept has been selected and detailed in terms of layout, systems, and sub-systems, highlighting also logistic, safety, and maintainability aspects.

  17. Digital architecture, wearable computers and providing affinity

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hanne Louise

    2005-01-01

    as the setting for the events of experience. Contemporary architecture is a meta-space residing almost any thinkable field, striving to blur boundaries between art, architecture, design and urbanity and break down the distinction between the material and the user or inhabitant. The presentation for this paper...... will, through research, a workshop and participation in a cumulus competition, focus on the exploration of boundaries between digital architecture, performative space and wearable computers. Our design method in general focuses on the interplay between the performing body and the environment – between...

  18. Sustainable, Reliable Mission-Systems Architecture

    Science.gov (United States)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  19. SUSTAINABLE ARCHITECTURE : WHAT ARCHITECTURE STUDENTS THINK

    OpenAIRE

    SATWIKO, PRASASTO

    2013-01-01

    Sustainable architecture has become a hot issue lately as the impacts of climate change become more intense. Architecture educations have responded by integrating knowledge of sustainable design in their curriculum. However, in the real life, new buildings keep coming with designs that completely ignore sustainable principles. This paper discusses the results of two national competitions on sustainable architecture targeted for architecture students (conducted in 2012 and 2013). The results a...

  20. Lunar architecture

    Science.gov (United States)

    Malek, Shahin

    The climatic conditions of Earth and human trends for discover the space, make these questions that how we can design a camp on the moon as a base for traveling in space or how we can live on that condition and what kind of camp we can have on the moon?!The first step in this way was creating the International Space Station on earth's orbit. (International Space Station, 2001) Settlement on moon was proposed since knowledge about it growth. Regarding to new technologies, architects parallel to engineers are trying to design and invent new ways for human settlement on moon because of its suitable conditions. Proposed habitats range from the actual spacecraft lander or their used fuel tanks, to inflatable modules of various shapes. Due to the researches until now, the first requirement for the living on other planets is water existence for human breath and fuel and after that we need to solve air pressure and gravity difference. (Colonization of the Moon, 2004) The Goal of this research is to answer to the question which is designing a camp on the Moon. But for this goal, there is need to think and study more about the subject and its factors. With qualitative and comparative methodology, the conditions of the Earth and the Moon will be comparing in different categories such as nature, human and design. I think that after water discovery, with using local materials and appropriate building design which can be on surface or underground, along with new sciences, we can plan for long period living on Moon. The important point is to consider Function, Form and Structure together in designing on the Moon. References: Colonization of the Moon. (2004). Retrieved December 14, 2009, from Wikipedia: http://en.wikipedia.org/wiki/Colonizationo ft heM oonStructure, InternationalSpaceStation.(2001).Retrie http : //en.wikipedia.org/wiki/InternationalS paceS tation

  1. An Empirical Investigation of Architectural Prototyping

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2010-01-01

    Architectural prototyping is the process of using executable code to investigate stakeholders’ software architecture concerns with respect to a system under development. Previous work has established this as a useful and cost-effective way of exploration and learning of the design space of a system...... and in addressing issues regarding quality attributes, architectural risks, and the problem of knowledge transfer and conformance. However, the actual industrial use of architectural prototyping has not been thoroughly researched so far. In this article, we report from three studies of architectural prototyping...... in practice. First, we report findings from an ethnographic study of practicing software architects. Secondly, we report from a focus group on architectural prototyping involving architects from four companies. And, thirdly, we report from a survey study of 20 practicing software architects and software...

  2. Modeling Architectural Patterns Using Architectural Primitives

    NARCIS (Netherlands)

    Zdun, Uwe; Avgeriou, Paris

    2005-01-01

    Architectural patterns are a key point in architectural documentation. Regrettably, there is poor support for modeling architectural patterns, because the pattern elements are not directly matched by elements in modeling languages, and, at the same time, patterns support an inherent variability that

  3. Software architecture 2

    CERN Document Server

    Oussalah, Mourad Chabanne

    2014-01-01

    Over the past 20 years, software architectures have significantly contributed to the development of complex and distributed systems. Nowadays, it is recognized that one of the critical problems in the design and development of any complex software system is its architecture, i.e. the organization of its architectural elements. Software Architecture presents the software architecture paradigms based on objects, components, services and models, as well as the various architectural techniques and methods, the analysis of architectural qualities, models of representation of architectural templa

  4. Lightweight enterprise architectures

    CERN Document Server

    Theuerkorn, Fenix

    2004-01-01

    STATE OF ARCHITECTUREArchitectural ChaosRelation of Technology and Architecture The Many Faces of Architecture The Scope of Enterprise Architecture The Need for Enterprise ArchitectureThe History of Architecture The Current Environment Standardization Barriers The Need for Lightweight Architecture in the EnterpriseThe Cost of TechnologyThe Benefits of Enterprise Architecture The Domains of Architecture The Gap between Business and ITWhere Does LEA Fit? LEA's FrameworkFrameworks, Methodologies, and Approaches The Framework of LEATypes of Methodologies Types of ApproachesActual System Environmen

  5. Software architecture 1

    CERN Document Server

    Oussalah , Mourad Chabane

    2014-01-01

    Over the past 20 years, software architectures have significantly contributed to the development of complex and distributed systems. Nowadays, it is recognized that one of the critical problems in the design and development of any complex software system is its architecture, i.e. the organization of its architectural elements. Software Architecture presents the software architecture paradigms based on objects, components, services and models, as well as the various architectural techniques and methods, the analysis of architectural qualities, models of representation of architectural template

  6. The Legacy of Space Shuttle Flight Software

    Science.gov (United States)

    Hickey, Christopher J.; Loveall, James B.; Orr, James K.; Klausman, Andrew L.

    2011-01-01

    The initial goals of the Space Shuttle Program required that the avionics and software systems blaze new trails in advancing avionics system technology. Many of the requirements placed on avionics and software were accomplished for the first time on this program. Examples include comprehensive digital fly-by-wire technology, use of a digital databus for flight critical functions, fail operational/fail safe requirements, complex automated redundancy management, and the use of a high-order software language for flight software development. In order to meet the operational and safety goals of the program, the Space Shuttle software had to be extremely high quality, reliable, robust, reconfigurable and maintainable. To achieve this, the software development team evolved a software process focused on continuous process improvement and defect elimination that consistently produced highly predictable and top quality results, providing software managers the confidence needed to sign each Certificate of Flight Readiness (COFR). This process, which has been appraised at Capability Maturity Model (CMM)/Capability Maturity Model Integration (CMMI) Level 5, has resulted in one of the lowest software defect rates in the industry. This paper will present an overview of the evolution of the Primary Avionics Software System (PASS) project and processes over thirty years, an argument for strong statistical control of software processes with examples, an overview of the success story for identifying and driving out errors before flight, a case study of the few significant software issues and how they were either identified before flight or slipped through the process onto a flight vehicle, and identification of the valuable lessons learned over the life of the project.

  7. The high speed interconnect system architecture and operation

    Science.gov (United States)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  8. Architecture Framework for Fault Management Assessment and Design (AFFMAD), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Architecture Framework for Fault Management Assessment And Design(AFFMAD) provides Fault Management (FM) trade space exploration and rigorous performance constraint...

  9. Modular Open Network ARCHitecture (MONARCH): Transitioning plug-and-play to aerospace

    Science.gov (United States)

    Martin, M.; Lyke, J.

    The Air Force Research Laboratory (AFRL) developed an initial plug-and-play (PnP) capability for spacecraft, similar to USB on personal computers, which better defines hardware and software interfaces and incorporates self-discovery and auto-configuration in order to simplify spacecraft development and reduce cost and schedule. PnP technology was matured through a suborbital PnP flight experiment in September 2007 and a secondary Spacecraft Avionics Experiment (SAE) payload on the TacSat-3 satellite, which launched in May 2009. AFRL developed and submitted a complete set of PnP standards through the American Institute of Aeronautics and Astronautics (AIAA) in 2011. Space electronics to adapt existing satellite components and implement full PnP on satellites in accordance with these AFRL standards was independently developed in alternate hardware implementations by Goodrich Corp under AFRL and by Northrop Grumman under Operationally Responsive Space (ORS). In 2011, AFRL conducted a cost-benefit analysis of PnP and assembled a collaborative review board (CRB) in Sept 2011 to evaluate PnP. This CRB was comprised of representatives from Space and Missiles Center (SMC), National Reconnaissance Organization (NRO), Naval Research Laboratory (NRL), John Hopkins University (JHU) Applied Physics Laboratory (APL), The Aerospace Corporation, and several large commercial and DOD satellite developers. This CRB laid out a transition path to develop and implement PnP standards for implementation in large (> 1000 kg) DOD and commercial satellites. Transition of PnP technology into operational systems continues in PnP architecture studies for SMC, PnP products from multiple space industry vendors, commercial implementations of PnP, and the Northrop Grumman ORS-2 spacecraft currently project to fly in 2014-2015. This paper provides details related to development of PnP technology, AFRL's cost-benefit analysis of PnP, recommendations of the PnP CRB, and on-going efforts to mature - nd

  10. Open System Architecture design for planet surface systems

    Science.gov (United States)

    Petri, D. A.; Pieniazek, L. A.; Toups, L. D.

    1992-01-01

    The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.

  11. Architecture Level Safety Analyses for Safety-Critical Systems

    Directory of Open Access Journals (Sweden)

    K. S. Kushal

    2017-01-01

    Full Text Available The dependency of complex embedded Safety-Critical Systems across Avionics and Aerospace domains on their underlying software and hardware components has gradually increased with progression in time. Such application domain systems are developed based on a complex integrated architecture, which is modular in nature. Engineering practices assured with system safety standards to manage the failure, faulty, and unsafe operational conditions are very much necessary. System safety analyses involve the analysis of complex software architecture of the system, a major aspect in leading to fatal consequences in the behaviour of Safety-Critical Systems, and provide high reliability and dependability factors during their development. In this paper, we propose an architecture fault modeling and the safety analyses approach that will aid in identifying and eliminating the design flaws. The formal foundations of SAE Architecture Analysis & Design Language (AADL augmented with the Error Model Annex (EMV are discussed. The fault propagation, failure behaviour, and the composite behaviour of the design flaws/failures are considered for architecture safety analysis. The illustration of the proposed approach is validated by implementing the Speed Control Unit of Power-Boat Autopilot (PBA system. The Error Model Annex (EMV is guided with the pattern of consideration and inclusion of probable failure scenarios and propagation of fault conditions in the Speed Control Unit of Power-Boat Autopilot (PBA. This helps in validating the system architecture with the detection of the error event in the model and its impact in the operational environment. This also provides an insight of the certification impact that these exceptional conditions pose at various criticality levels and design assurance levels and its implications in verifying and validating the designs.

  12. Architecture for the silvering society

    DEFF Research Database (Denmark)

    Andersson, Jonas E; Rönn, Magnus

    Abstract In the context of the universal ageing process that is currently taking place in western society, the organization of architecture competitions that deals with space for dependent ageing comes of relevance. Based on the welfare regime theory, it could be argued that this type of architec......Abstract In the context of the universal ageing process that is currently taking place in western society, the organization of architecture competitions that deals with space for dependent ageing comes of relevance. Based on the welfare regime theory, it could be argued that this type...... by the Swedish Institute of Assistive Technology (SIAT), which administered the governmental allocation of 50 million SEK. The research material was accumulated by use of internet searches, interviews and questionnaires. The analysis applied pattern seeking and involved close reading, document analysis...... on ageing, eldercare and space. Consequently, architecture competitions that focus on the emerging ageing society could be seen as a restrained type of space for architects to digress. National welfare goals and existing means to achieve these goals act as inhibitors for an innovative spatial preparation...

  13. Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions

    Science.gov (United States)

    Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad

    2015-01-01

    This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.

  14. Architectural design decisions

    NARCIS (Netherlands)

    Jansen, Antonius Gradus Johannes

    2008-01-01

    A software architecture can be considered as the collection of key decisions concerning the design of the software of a system. Knowledge about this design, i.e. architectural knowledge, is key for understanding a software architecture and thus the software itself. Architectural knowledge is mostly

  15. Information Integration Architecture Development

    OpenAIRE

    Faulkner, Stéphane; Kolp, Manuel; Nguyen, Duy Thai; Coyette, Adrien; Do, Thanh Tung; 16th International Conference on Software Engineering and Knowledge Engineering

    2004-01-01

    Multi-Agent Systems (MAS) architectures are gaining popularity for building open, distributed, and evolving software required by systems such as information integration applications. Unfortunately, despite considerable work in software architecture during the last decade, few research efforts have aimed at truly defining patterns and languages for designing such multiagent architectures. We propose a modern approach based on organizational structures and architectural description lan...

  16. Fragments of Architecture

    DEFF Research Database (Denmark)

    Bang, Jacob Sebastian

    2016-01-01

    Topic 3: “Case studies dealing with the artistic and architectural work of architects worldwide, and the ties between specific artistic and architectural projects, methodologies and products”......Topic 3: “Case studies dealing with the artistic and architectural work of architects worldwide, and the ties between specific artistic and architectural projects, methodologies and products”...

  17. Space Bugz!

    DEFF Research Database (Denmark)

    Birke, Alexander; Schoenau-Fog, Henrik; Reng, Lars

    2012-01-01

    This paper presents Space Bugz! - a novel crowd game for large venues or cinemas that utilises the audience's smartphones as controllers for the game. This paper explains what crowd gaming is and describes how the approach used in Space Bugz! enables more advanced gameplay concepts and individual...... player control than current technologies allow. The gameplay of Space Bugz! is then explained along with the technical architecture of the game. After this, the iterative design process used to create the game is described together with future perspectives. The article concludes with links to a video...

  18. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  19. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  20. Bernard Tschumi Draws Architecture!

    Directory of Open Access Journals (Sweden)

    Gevork Hartoonian

    2014-08-01

    Full Text Available Bernard Tschumi’s delineation prepared for the Museu de Arte Contemporânea provides the starting point for this essay, which discusses the historicity of drawing and highlights the horizontality and the verticality that structure architecture’s contrast with the pictorial realm. Juxtaposing a freehand sketch with the digital image of the same project, Tschumi moves to address the paradox concerning the position of the body and drawing. This drawing also speaks for the reversal in the position of the body brought about by digital reproductivity.The reversal alludes to Tschumi’s theorization of architecture in terms of space and event. These, I will argue, are anticipated in The Manhattan Transcripts (1981 where a set of freehand drawings is used to evoke a filmic mood wherein the image is projected parallel to the spectator’s seated position. The essay goes further, suggesting that the theatricality permeating the present architecture is part of the shift from horizontality to the painterly, and yet the phenomenon is not merely a technical issue. Rather, it alludes to architecture’s dialogical rapport with painting at work since the Renaissance.

  1. Architecture, landscape architecture and interior- Hons B 2009

    CSIR Research Space (South Africa)

    Osman, A

    2010-03-01

    Full Text Available will be as follows: 1. History of Urban Form 2. Urban Renewal and Reactions 3. Urban Order, Security and Power 4. Colonial Impact on Urban From 5. Memory and Conservation 6. Considering the Public and Private Realm 7. Housing and Urban Form ? Type, Poetics 8....e. ?interior design? / ?inte- rior architecture?). Interior design is the reaction to ?found? space and follows three modes of produc- tion: installation, insertion and intervention. Archi- tectural theory pertinent to the discipline?s ontology...

  2. Power, Avionics and Software - Phase 1.0:. [Subsystem Integration Test Report

    Science.gov (United States)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This report describes Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This report covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies to exchange messages and to perform audio testing of both inbound and outbound channels. This report describes each test performed, defines the test, the data, and provides conclusions and recommendations.

  3. Next-generation avionics packaging and cooling 'test results from a prototype system'

    Science.gov (United States)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  4. The Mothership Mission Architecture

    Science.gov (United States)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  5. Loop thermosyphon thermal management of the avionics of an in-flight entertainment system

    International Nuclear Information System (INIS)

    Sarno, C.; Tantolin, C.; Hodot, R.; Maydanik, Yu.; Vershinin, S.

    2013-01-01

    A new generation of in-flight entertainment systems (IFEs) used on board commercial aircrafts is required to provide more and more services (audio, video, internet, multimedia, phone, etc.). But, unlike other avionics systems most of the IFE equipment and boxes are installed inside the cabin and they are not connected to the aircraft cooling system. The most critical equipment of the IFE system is a seat electronic box (SEB) installed under each passenger seat. Fans are necessary to face the increasing power dissipation. But this traditional approach has some drawbacks: extra cost multiplied by the seat number, reliability and maintenance. The objective of this work is to develop and evaluate an alternative completely passive cooling system (PCS) based on a two-phase technology including heat pipes and loop thermosyphons (LTSs) adequately integrated inside the seat structure and using the benefit of the seat frame as a heat sink. Previous works have been performed to evaluate these passive cooling systems which were based on loop heat pipe. This paper presents results of thermal tests of a passive cooling system of the SEB consisting of two LTSs and R141b as a working fluid. These tests have been carried out at different tilt angles and heat loads from 10 to 100 W. It has been shown that the cooled object temperature does not exceed the maximum given value in the range of tilt angles ±20° which is more wider than the range which is typical for ordinary evolution of passenger aircrafts. -- Highlights: ► A passive cooling system has been developed for avionics application. ► The system consists of loop thermosyphons and a passenger seat as a heat sink. ► Successful system tests have been run at heat loads to 100 W and angle tilts to 20°

  6. Inhabiting Adaptive Architecture

    Directory of Open Access Journals (Sweden)

    Holger Schnädelbach

    2017-12-01

    Full Text Available Adaptive Architecture concerns buildings that are specifically designed to adapt to their inhabitants and to their environments. Work in this space has a very long history, with a number of adaptive buildings emerging during the modernist period, such as Rietveld’s Schröder house, Gaudi’s Casa Batlló and Chareau's Maison de Verre. Such early work included manual adaptivity, even if that was motor-assisted. Today, buildings have started to combine this with varying degrees of automation and designed-for adaptivity is commonplace in office buildings and eco homes, where lighting, air conditioning, access and energy generation respond to and influence the behaviour of people, and the internal and external climate.

  7. Launch Vehicle Control Center Architectures

    Science.gov (United States)

    Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom

    2014-01-01

    This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.

  8. Marshall Application Realignment System (MARS) Architecture

    Science.gov (United States)

    Belshe, Andrea; Sutton, Mandy

    2010-01-01

    The Marshall Application Realignment System (MARS) Architecture project was established to meet the certification requirements of the Department of Defense Architecture Framework (DoDAF) V2.0 Federal Enterprise Architecture Certification (FEAC) Institute program and to provide added value to the Marshall Space Flight Center (MSFC) Application Portfolio Management process. The MARS Architecture aims to: (1) address the NASA MSFC Chief Information Officer (CIO) strategic initiative to improve Application Portfolio Management (APM) by optimizing investments and improving portfolio performance, and (2) develop a decision-aiding capability by which applications registered within the MSFC application portfolio can be analyzed and considered for retirement or decommission. The MARS Architecture describes a to-be target capability that supports application portfolio analysis against scoring measures (based on value) and overall portfolio performance objectives (based on enterprise needs and policies). This scoring and decision-aiding capability supports the process by which MSFC application investments are realigned or retired from the application portfolio. The MARS Architecture is a multi-phase effort to: (1) conduct strategic architecture planning and knowledge development based on the DoDAF V2.0 six-step methodology, (2) describe one architecture through multiple viewpoints, (3) conduct portfolio analyses based on a defined operational concept, and (4) enable a new capability to support the MSFC enterprise IT management mission, vision, and goals. This report documents Phase 1 (Strategy and Design), which includes discovery, planning, and development of initial architecture viewpoints. Phase 2 will move forward the process of building the architecture, widening the scope to include application realignment (in addition to application retirement), and validating the underlying architecture logic before moving into Phase 3. The MARS Architecture key stakeholders are most

  9. Architecture design for soft errors

    CERN Document Server

    Mukherjee, Shubu

    2008-01-01

    This book provides a comprehensive description of the architetural techniques to tackle the soft error problem. It covers the new methodologies for quantitative analysis of soft errors as well as novel, cost-effective architectural techniques to mitigate them. To provide readers with a better grasp of the broader problem deffinition and solution space, this book also delves into the physics of soft errors and reviews current circuit and software mitigation techniques.

  10. Architecture for spacecraft operations planning

    Science.gov (United States)

    Davis, William S.

    1991-01-01

    A system which generates plans for the dynamic environment of space operations is discussed. This system synthesizes plans by combining known operations under a set of physical, functional, and temperal constraints from various plan entities, which are modeled independently but combine in a flexible manner to suit dynamic planning needs. This independence allows the generation of a single plan source which can be compiled and applied to a variety of agents. The architecture blends elements of temperal logic, nonlinear planning, and object oriented constraint modeling to achieve its flexibility. This system was applied to the domain of the Intravehicular Activity (IVA) maintenance and repair aboard Space Station Freedom testbed.

  11. JAXA's Space Exploration Scenario

    Science.gov (United States)

    Sato, N. S.

    2018-04-01

    Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.

  12. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  13. Cinematic collage as architectural design research

    OpenAIRE

    Carless, T.; Troiani, I.

    2018-01-01

    This chapter argues that cinematic representation can, and must, be understood as a method of developing a form of critical architectural enquiry and thinking in the same manner as text - a textual analysis and a communication means for practice-based research. The proposition is that cinematic architectural drawing and the discourse of occupied space are inseparable and that the limits of both are products of specific ideological and cultural practices. In this chapter, two different bodies ...

  14. Spacing Identity

    DEFF Research Database (Denmark)

    Stang Våland, Marianne; Georg, Susse

    2018-01-01

    In this paper, we analyze how architectural design, and the spatial and material changes this involves, contributes to the continuous shaping of identities in an organization. Based upon a case study of organizational and architectural change in a municipal administration at a time of major public...... sector reforms, we examine how design interventions were used to (re)form work and professional relationships. The paper examines how engagements with spatial arrangements and material artifacts affected people’s sense of both occupational and organizational identity. Taking a relational approach...... to sociomateriality, the paper contributes to the further theorizing of space in organization studies by proposing the concept of spacing identity to capture the fluidity of identity performance....

  15. Modeling Architectural Patterns’ Behavior Using Architectural Primitives

    NARCIS (Netherlands)

    Waqas Kamal, Ahmad; Avgeriou, Paris

    2008-01-01

    Architectural patterns have an impact on both the structure and the behavior of a system at the architecture design level. However, it is challenging to model patterns’ behavior in a systematic way because modeling languages do not provide the appropriate abstractions and because each pattern

  16. Architectural Thermal Forms II: Brick Envelope

    DEFF Research Database (Denmark)

    Foged, Isak Worre

    2013-01-01

    The paper presents an architectural concept and design method that investigates the use of dynamic factors in evolutionary form finding processes. The architectural construct, phenotype, is based on a brick assembly and how this can be organized based upon material properties and environmental...... aspects selected from the factors used in the Fanger equations to determine perceived comfort. The work finds that the developed method can be applied as performance oriented driver, while at the same time allowing diversity and variation in the architectural design space....

  17. The Field Trip as Part of Spatial (Architectural) Design Art Classes

    Science.gov (United States)

    Batic, Janja

    2011-01-01

    Spatial (architectural) design is one of five fields introduced to pupils as part of art education. In planning architectural design tasks, one should take into consideration the particularities of the architectural design process and enable pupils to experience space and relationships within space through their own movement. Furthermore, pupils…

  18. The Archaeology of Architecture. New models of analysis applied to structures of Alta Andalusia in the Iberian period

    OpenAIRE

    Sánchez, Julia

    1998-01-01

    New theories of architectural space, based on the philosophy of Lao-Tsé emerged at the end of nineteenth century. Interior space was now considered the core of architecture. Developing concepts of the movement of the human body in this space, new contributions focused on the detailed study of architecture have led to the creation of a new discipline called the Archaeology of Architecture. New models of analysis, based on access and visibility, are applied to the interior space of Iberian dome...

  19. Rhein-Ruhr architecture

    DEFF Research Database (Denmark)

    2002-01-01

    katalog til udstillingen 'Rhein - Ruhr architecture' Meldahls smedie, 15. marts - 28. april 2002. 99 sider......katalog til udstillingen 'Rhein - Ruhr architecture' Meldahls smedie, 15. marts - 28. april 2002. 99 sider...

  20. Architecture and Film

    OpenAIRE

    Mohammad Javaheri, Saharnaz

    2016-01-01

    Film does not exist without architecture. In every movie that has ever been made throughout history, the cinematic image of architecture is embedded within the picture. Throughout my studies and research, I began to see that there is no director who can consciously or unconsciously deny the use of architectural elements in his or her movies. Architecture offers a strong profile to distinguish characters and story. In the early days, films were shot in streets surrounde...

  1. Ultra Long-Life Spacecraft for Long Duration Space Exploration Missions

    Science.gov (United States)

    Chau, Savio

    2002-01-01

    After decades of Solar System exploration, NASA has almost completed the initial reconnaissance, and has been planning for landing and sample return missions on many planets, satellites, comets, and asteroids. The next logical step of space exploration is to expand the frontier into other missions within and outside the solar system. These missions can easily last for more than 30 to 50 years. Most of the current technologies and spacecraft design techniques are not adequate to support such long life missions. Many breakthrough technologies and non-conventional system architecture have to develop in order to sustain such long life missions.Some of these technologies are being developed by the NASA Exploration Team (neXt). Based on the projected requirements for ultra long life missions, the costs and benefits of the required technologies can be quantified. The ultra long-life space system should have four attributes: long-term survivability, administration of consumable resources, evolvability and adaptability, and low-cost long-term operations of the spacecraft. The discussion of survivability is the focus of this paper. Conventional fault tolerant system design has to tolerate only random failures, which can be handled effectively by dual or triple redundancy for a relatively short time. In contrast, the predominant failure mode in an ultra long-life system is the wear-out of components. All active components in the system are destined to fail before the end of the mission. Therefore, an ultra long-life system would require a large number of redundant components. This would be impractical in conventional fault tolerant systems because their fault tolerance techniques are very inefficient. For instance, a conventional dual-string avionics system duplicates the all the components including the processor, memory, and I/O controllers on a spacecraft. However, when the same component in both strings fail (e.g., the processor), the system will fail although all other

  2. Elements of Architecture

    DEFF Research Database (Denmark)

    Elements of Architecture explores new ways of engaging architecture in archaeology. It conceives of architecture both as the physical evidence of past societies and as existing beyond the physical environment, considering how people in the past have not just dwelled in buildings but have existed...

  3. Space-Based Solar Power System Architecture

    Science.gov (United States)

    2012-12-01

    to this thesis, “the Boeing 702 offers a range of power up to 18 kW. Dual and triple -junction gallium arsenide solar cells enable such high power...CONCLUSIONS ........................................................................................................85 A. KEY POINTS AND...USAF. Without the proper starting point and frame of reference, this thesis would not have been possible. Thank you to everyone who had an influence on

  4. The Value Proposition for Fractionated Space Architectures

    Science.gov (United States)

    2006-09-01

    fractionation “mass penalty” assumptions , the expected launch costs are nearly a factor of two lower for the fractionated system than for the monolith...humidity variations which may affect fire propagation speed. 23 The Capital Asset Pricing Model ( CAPM ...spacecraft, can be very significant. In any event, however, the assumption that spacecraft cost scales roughly linearly with its mass is an artifact of

  5. Reconfigurable Parallel Computer Architectures for Space Applications

    Science.gov (United States)

    2012-08-07

    63 B-1. Dependency diagram of the hardware blocks implemented with VHDL .................. 64 C-1. The...distribution is unlimited. The CU has been fully implemented in a FPGA using VHDL . The CU hardware design is depicted in Figure 12. It consists of a main...the hardware design implemented in the FPGA using VHDL . The block diagram shows the dependency of all the VHDL blocks included in the design. Each

  6. Vital architecture, slow momentum policy

    DEFF Research Database (Denmark)

    Braae, Ellen Marie

    2010-01-01

    A reflection on the relation between Danish landscape architecture policy and the statements made through current landscape architectural project.......A reflection on the relation between Danish landscape architecture policy and the statements made through current landscape architectural project....

  7. NPOESS System Architecture

    Science.gov (United States)

    Hinnant, F.

    2009-12-01

    The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD and will provide continuity for the NASA Earth Observation System with the launch of the NPOESS Preparatory Project. This poster will provide a top level status update of the program, as well as an overview of the NPOESS system architecture, which includes four segments. The space segment includes satellites in two orbits that carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The NPOESS system design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users through a Command, Control, and Communication Segment (C3S). The data processing for NPOESS is accomplished through an Interface Data Processing Segment (IDPS)/Field Terminal Segment (FTS) that processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government as well as remote terminal users. The Launch Support Segment completes the four segments that make up the NPOESS system that will enhance the connectivity between research and operations and provide critical operational and scientific environmental measurements to military, civil, and scientific users until 2026.

  8. Democratic management and architecture school

    Directory of Open Access Journals (Sweden)

    Silvana Aparecida de Souza

    2011-10-01

    Full Text Available It is a conceptual and theoretical research on school organization and its democratization, focusing on one aspect of an objective nature: its architecture. The study was based on the academic literature on democratization and theoretical contribution of Michel Foucault, with regard to the analysis of space as a resourcecontrol, surveillance and training, going through a historical review of the modelconstruction of school buildings in Brazil. It is therefore a sociological analysis of the school environment, in relation to the democratization process of basic education, understood as ensuring that the conditions of access and permanence to a universalquality education, and conceived and gestated from collective interests of its users.We conclude that the architecture of public schools in Brazil do not provides democratic management, either by format controller of buildings constructed in the republican period, either by the current economic priority for the construction of public school buildings, which includes little or no space for collective activities. The character of the buildings remains controller, no more for its architecture, but made possible by technological development, which allows monitoring by video cameras, which is made with the permission and support of community.

  9. Software architecture evolution

    DEFF Research Database (Denmark)

    Barais, Olivier; Le Meur, Anne-Francoise; Duchien, Laurence

    2008-01-01

    Software architectures must frequently evolve to cope with changing requirements, and this evolution often implies integrating new concerns. Unfortunately, when the new concerns are crosscutting, existing architecture description languages provide little or no support for this kind of evolution....... The software architect must modify multiple elements of the architecture manually, which risks introducing inconsistencies. This chapter provides an overview, comparison and detailed treatment of the various state-of-the-art approaches to describing and evolving software architectures. Furthermore, we discuss...... one particular framework named Tran SAT, which addresses the above problems of software architecture evolution. Tran SAT provides a new element in the software architecture descriptions language, called an architectural aspect, for describing new concerns and their integration into an existing...

  10. Advanced Architectures for Astrophysical Supercomputing

    Science.gov (United States)

    Barsdell, B. R.; Barnes, D. G.; Fluke, C. J.

    2010-12-01

    Astronomers have come to rely on the increasing performance of computers to reduce, analyze, simulate and visualize their data. In this environment, faster computation can mean more science outcomes or the opening up of new parameter spaces for investigation. If we are to avoid major issues when implementing codes on advanced architectures, it is important that we have a solid understanding of our algorithms. A recent addition to the high-performance computing scene that highlights this point is the graphics processing unit (GPU). The hardware originally designed for speeding-up graphics rendering in video games is now achieving speed-ups of O(100×) in general-purpose computation - performance that cannot be ignored. We are using a generalized approach, based on the analysis of astronomy algorithms, to identify the optimal problem-types and techniques for taking advantage of both current GPU hardware and future developments in computing architectures.

  11. Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design

    Science.gov (United States)

    Laughter, Sean A.

    2012-01-01

    The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.

  12. Modeling and characterization of VCSEL-based avionics full-duplex ethernet (AFDX) gigabit links

    Science.gov (United States)

    Ly, Khadijetou S.; Rissons, A.; Gambardella, E.; Bajon, D.; Mollier, J.-C.

    2008-02-01

    Low cost and intrinsic performances of 850 nm Vertical Cavity Surface Emitting Lasers (VCSELs) compared to Light Emitting Diodes make them very attractive for high speed and short distances data communication links through optical fibers. Weight saving and Electromagnetic Interference withstanding requirements have led to the need of a reliable solution to improve existing avionics high speed buses (e.g. AFDX) up to 1Gbps over 100m. To predict and optimize the performance of the link, the physical behavior of the VCSEL must be well understood. First, a theoretical study is performed through the rate equations adapted to VCSEL in large signal modulation. Averaged turn-on delays and oscillation effects are analytically computed and analyzed for different values of the on- and off state currents. This will affect the eye pattern, timing jitter and Bit Error Rate (BER) of the signal that must remain within IEEE 802.3 standard limits. In particular, the off-state current is minimized below the threshold to allow the highest possible Extinction Ratio. At this level, the spontaneous emission is dominating and leads to significant turn-on delay, turn-on jitter and bit pattern effects. Also, the transverse multimode behavior of VCSELs, caused by Spatial Hole Burning leads to some dispersion in the fiber and degradation of BER. VCSEL to Multimode Fiber coupling model is provided for prediction and optimization of modal dispersion. Lastly, turn-on delay measurements are performed on a real mock-up and results are compared with calculations.

  13. Self-Contained Avionics Sensing and Flight Control System for Small Unmanned Aerial Vehicle

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Logan, Michael J. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox, legal representative, Melanie L. (Inventor); Ingham, John C. (Inventor); Laughter, Sean A. (Inventor); Kuhn, III, Theodore R. (Inventor); Adams, James K. (Inventor); Babel, III, Walter C. (Inventor)

    2011-01-01

    A self-contained avionics sensing and flight control system is provided for an unmanned aerial vehicle (UAV). The system includes sensors for sensing flight control parameters and surveillance parameters, and a Global Positioning System (GPS) receiver. Flight control parameters and location signals are processed to generate flight control signals. A Field Programmable Gate Array (FPGA) is configured to provide a look-up table storing sets of values with each set being associated with a servo mechanism mounted on the UAV and with each value in each set indicating a unique duty cycle for the servo mechanism associated therewith. Each value in each set is further indexed to a bit position indicative of a unique percentage of a maximum duty cycle for the servo mechanism associated therewith. The FPGA is further configured to provide a plurality of pulse width modulation (PWM) generators coupled to the look-up table. Each PWM generator is associated with and adapted to be coupled to one of the servo mechanisms.

  14. On the Modern History of Passive Solar Architecture

    DEFF Research Database (Denmark)

    Marsh, Rob

    2017-01-01

    This article examines the paradox of passive solar architecture within the Nordic context of Denmark, Norway and Sweden. Regulative developments to reduce space heating demand since the 1970s oil crisis are explored, highlighting architectural responses and the rise in prom-inence of passive solar...... design. An empirical study of passive solar housing schemes docu-ments architectural strategy, energy savings and extensive problems with overheating. A theo-retical study examines how passive solar was seen as advantageous when viewed with the 1985-2005 space heating paradigm, but actually resulted...... of Nordic modernism meant that passive solar architecture became the de-facto visual, aesthetic and functional expression of environmental design at that time. The article concludes by explor-ing the implications of the environmental paradigm for the architectural profession. By positing the architectural...

  15. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  16. Helicopter Field Testing of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) System fully Integrated with the Morpheus Vertical Test Bed Avionics

    Science.gov (United States)

    Epp, Chirold D.; Robertson, Edward A.; Ruthishauser, David K.

    2013-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was chartered to develop and mature to a Technology Readiness Level (TRL) of six an autonomous system combining guidance, navigation and control with real-time terrain sensing and recognition functions for crewed, cargo, and robotic planetary landing vehicles. The ALHAT System must be capable of identifying and avoiding surface hazards to enable a safe and accurate landing to within tens of meters of designated and certified landing sites anywhere on a planetary surface under any lighting conditions. This is accomplished with the core sensing functions of the ALHAT system: Terrain Relative Navigation (TRN), Hazard Detection and Avoidance (HDA), and Hazard Relative Navigation (HRN). The NASA plan for the ALHAT technology is to perform the TRL6 closed loop demonstration on the Morpheus Vertical Test Bed (VTB). The first Morpheus vehicle was lost in August of 2012 during free-flight testing at Kennedy Space Center (KSC), so the decision was made to perform a helicopter test of the integrated ALHAT System with the Morpheus avionics over the ALHAT planetary hazard field at KSC. The KSC helicopter tests included flight profiles approximating planetary approaches, with the entire ALHAT system interfaced with all appropriate Morpheus subsystems and operated in real-time. During these helicopter flights, the ALHAT system imaged the simulated lunar terrain constructed in FY2012 to support ALHAT/Morpheus testing at KSC. To the best of our knowledge, this represents the highest fidelity testing of a system of this kind to date. During this helicopter testing, two new Morpheus landers were under construction at the Johnson Space Center to support the objective of an integrated ALHAT/Morpheus free-flight demonstration. This paper provides an overview of this helicopter flight test activity, including results and lessons learned, and also provides an overview of recent integrated testing of ALHAT on the second

  17. Architecture of absurd (forms, positions, apposition

    Directory of Open Access Journals (Sweden)

    Fedorov Viktor Vladimirovich

    2014-04-01

    Full Text Available In everyday life we constantly face absurd things, which seem to lack common sense. The notion of the absurd acts as: a an aesthetic category; b an element of logic; c a metaphysical phenomenon. The opportunity of its overcoming is achieved through the understanding of the situation, the faith in the existence of sense and hope for his understanding. The architecture of absurd should be considered as a loss of sense of a part of architectural landscape (urban environment. The ways of organization of the architecture of absurd: the exaggerated forms and proportions, the unnatural position and apposition of various objects. These are usually small-scale facilities that have local spatial and temporary value. There are no large absurd architectural spaces, as the natural architectural environment dampens the perturbation of sense-sphere. The architecture of absurd is considered «pathology» of the environment. «Nonsense» objects and hope (or even faith to detect sense generate a fruitful paradox of architecture of absurd presence in the world.

  18. Temporal Architecture: Poetic Dwelling in Japanese buildings

    Directory of Open Access Journals (Sweden)

    Michael Lazarin

    2014-07-01

    Full Text Available Heidegger’s thinking about poetic dwelling and Derrida’s impressions of Freudian estrangement are employed to provide a constitutional analysis of the experience of Japanese architecture, in particular, the Japanese vestibule (genkan. This analysis is supplemented by writings by Japanese architects and poets. The principal elements of Japanese architecture are: (1 ma, and (2 en. Ma is usually translated as ‘interval’ because, like the English word, it applies to both space and time.  However, in Japanese thinking, it is not so much an either/or, but rather a both/and. In other words, Japanese architecture emphasises the temporal aspect of dwelling in a way that Western architectural thinking usually does not. En means ‘joint, edge, the in-between’ as an ambiguous, often asymmetrical spanning of interior and exterior, rather than a demarcation of these regions. Both elements are aimed at producing an experience of temporality and transiency.

  19. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...... this information is discussed. The conclusion of the paper is that the application of acoustical simulation programs is most beneficial in the last of three phases but that an application of the program to the two first phases would be preferable and possible with an improvement of the interface of the program....

  20. Ragnarok: An Architecture Based Software Development Environment

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    of the development process. The main contributions presented in the thesis have evolved from work with two of the hypotheses: These address the problems of management of evolution, and overview, comprehension and navigation respectively. The first main contribution is the Architectural Software Configuration...... Management Model: A software configuration management model where the abstractions and hierarchy of the logical aspect of software architecture forms the basis for version control and configuration management. The second main contribution is the Geographic Space Architecture Visualisation Model......: A visualisation model where entities in a software architecture are organised geographically in a two-dimensional plane, their visual appearance determined by processing a subset of the data in the entities, and interaction with the project's underlying data performed by direct manipulation of the landscape...