WorldWideScience

Sample records for soybean storage protein

  1. Engineering of soybean seed storage proteins

    International Nuclear Information System (INIS)

    Dickinson, C.D.; Floener, L.A.; Evans, R.P.; Nielsen, N.C.

    1987-01-01

    Protein engineering is one approach to the improvement of seed quality. With this in mind, a rapid in vitro system has been developed to assay the effect structural modifications have on the assembly of glycinin and β-conglycinin subunit complexes. Transcription plasmids were constructed for production of synthetic glycinin and β-conglycinin mRNAs by SP6 RNA-polymerase. Radiolabeled translation products from these messages were tested for their ability to form complexes. Gy4 and Gy5 proglycinins (group-2 subunits) and the a-subunit of β-conglycinin self-assembled into trimers. Proglycinin Gy2 (group-1 subunit) did not self-assemble, but assembled into mixed trimers in combination with Gy4 proglycinin. No assembly was observed for preproglycinins Gyl and Gy4, or for a Gy4 proglycinin which lacked 27 amino acids in a highly conserved internal sequence. Insertion of alternating MET-ARG residues in predicted turn regions of a hypervariable sequence in Gy4 proglycinin were tolerated when the string was short but inhibited trimer assembly as it became longer. The response to several different long deletions in this hypervariable region have also been tested. Different levels of trimer assembly were obtained and may depend on the secondary structures of the regions being joined in the engineered subunits. This system will be useful to study the assembly of storage protein complexes and to screen against modifications that interfere with subunit assembly

  2. Coregulation of Soybean Vegetative Storage Protein Gene Expression by Methyl Jasmonate and Soluble Sugars 1

    Science.gov (United States)

    Mason, Hugh S.; DeWald, Daryll B.; Creelman, Robert A.; Mullet, John E.

    1992-01-01

    The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves. ImagesFigure 1Figure 4Figure 5 PMID:16668757

  3. Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars.

    Science.gov (United States)

    Mason, H S; Dewald, D B; Creelman, R A; Mullet, J E

    1992-03-01

    The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves.

  4. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization.

    Science.gov (United States)

    Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C

    2018-02-01

    This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.

  5. Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance.

    Science.gov (United States)

    González-Ferrero, C; Irache, J M; González-Navarro, C J

    2018-01-15

    The present work describes the encapsulation of probiotics using a by-product as wall material and a process feasible to be scaled-up: coacervation of soybean protein concentrate (SPC) by using calcium salts and spray-drying. SPC was extracted from soybean flour, produced during the processing of soybean milk, by alkaline extraction following isoelectric precipitation. Two probiotic strains were selected for encapsulation (Lactobacillus plantarum CECT 220 and Lactobacillus casei CECT 475) in order to evaluate the ability of SPC to encapsulate and protect bacteria from stress conditions. The viability of these encapsulated strains under in vitro gastrointestinal conditions and shelf-life during storage were compared with the most common forms commercialized nowadays. Results show that SPC is a feasible material for the development of probiotic microparticles with adequate physicochemical properties and enhanced significantly both probiotic viability and tolerance against simulated gastrointestinal fluids when compared to current available commercial forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Molecular structure, dynamics and hydration studies of soybean storage proteins and model systems by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Kakalis, L.T.

    1989-01-01

    The potential of high-resolution 13 C NMR for the characterization of soybean storage proteins was explored. The spectra of a commercial soy protein isolate as well as those of alkali-denatured 7S and 11S soybean globulins were well resolved and tentatively assigned. Relaxation measurements indicated fast motion for several side chains and the protein backbone. Protein fractions (11S and 7S) were also investigated at various states of molecular association. The large size of the multisubunit soybean storage proteins affected adversely both the resolution and the sensitivity of their 13 C NMR spectra. A comparison of 17 O and 2 H NMR relaxation rates of water in solutions of lysozyme (a model system) as a function of concentration, pH and magnetic field suggested that only 17 O monitors directly the hydration of lysozyme. Analysis of 17 O NMR lysozyme hydration data in terms of a two-state, fast-exchange, anisotropic model resulted in hydration parameters which are consistent with the protein's physico-chemical properties. The same model was applied to the calculation of the amount and mobility of bound water in soy protein dispersions by means of 17 O NMR relaxation measurements as a function of protein concentration. The protein concentration dependences of 1 H transverse NMR relaxation measurements at various pH and ionic strength values were fitted by a viral expansion. The interpretation of the data was based on the effects of protein aggregation, salt binding and protein group ionization on the NMR measurements. In all cases, relaxation rates showed a linear dependence on protein activity

  7. Genetic mapping and validation of the loci controlling 7S α' and 11S A-type storage protein subunits in soybean [Glycine max (L.) Merr.].

    Science.gov (United States)

    Boehm, Jeffrey D; Nguyen, Vi; Tashiro, Rebecca M; Anderson, Dale; Shi, Chun; Wu, Xiaoguang; Woodrow, Lorna; Yu, Kangfu; Cui, Yuhai; Li, Zenglu

    2018-03-01

    Four soybean storage protein subunit QTLs were mapped using bulked segregant analysis and an F 2 population, which were validated with an F 5 RIL population. The storage protein globulins β-conglycinin (7S subunit) and glycinin (11S subunits) can affect the quantity and quality of proteins found in soybean seeds and account for more than 70% of the total soybean protein. Manipulating the storage protein subunits to enhance soymeal nutrition and for desirable tofu manufacturing characteristics are two end-use quality goals in soybean breeding programs. To aid in developing soybean cultivars with desired seed composition, an F 2 mapping population (n = 448) and an F 5 RIL population (n = 180) were developed by crossing high protein cultivar 'Harovinton' with the breeding line SQ97-0263_3-1a, which lacks the 7S α', 11S A 1 , 11S A 2 , 11S A 3 and 11S A 4 subunits. The storage protein composition of each individual in the F 2 and F 5 populations were profiled using SDS-PAGE. Based on the presence/absence of the subunits, genomic DNA bulks were formed among the F 2 plants to identify genomic regions controlling the 7S α' and 11S protein subunits. By utilizing polymorphic SNPs between the bulks characterized with Illumina SoySNP50K iSelect BeadChips at targeted genomic regions, KASP assays were designed and used to map QTLs causing the loss of the subunits. Soybean storage protein QTLs were identified on Chromosome 3 (11S A 1 ), Chromosome 10 (7S α' and 11S A 4 ), and Chromosome 13 (11S A 3 ), which were also validated in the F 5 RIL population. The results of this research could allow for the deployment of marker-assisted selection for desired storage protein subunits by screening breeding populations using the SNPs linked with the subunits of interest.

  8. Transgenic soybeans and soybean protein analysis: an overview.

    Science.gov (United States)

    Natarajan, Savithiry; Luthria, Devanand; Bae, Hanhong; Lakshman, Dilip; Mitra, Amitava

    2013-12-04

    To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.

  9. Effects of long-term storage on the quality of soybean, Glycine max ...

    African Journals Online (AJOL)

    Soybean, Glycine max (L.) Merrill, is one of the five most important legumes in the tropics and provides the protein eaten by most people in the region. One of the major constraints to soybean production is that the seed quality deteriorates rapidly during storage. This study was undertaken to assess the effect of some storage ...

  10. Quality of second season soybean submitted to drying and storage

    Directory of Open Access Journals (Sweden)

    Cesar Pedro Hartmann Filho

    2016-09-01

    Full Text Available Drying agricultural products reduces the moisture content to suitable levels for storage, in order to maintain the product quality. However, special care with the temperatures applied in the process is important for the integrity and longevity of the material. The present study aimed at determining the immediate and latent effect of air-drying temperatures on the quality of soybean produced as a second season crop. The grains were collected at the R8 stage, close to the physiological maturity, with moisture content of approximately 23 % (w.b., submitted to drying temperatures of 40 ºC, 50 ºC, 60 ºC, 70 ºC and 80 ºC, up to a moisture content of 12.5 ± 0.7 % (w.b., and then stored under non-controlled humidity and temperature for 180 days. Thereafter, quality was assessed every 45 days by determining the dry matter loss, color and crude protein and lipid contents, as well as the acidity and peroxide indices of the crude oil extracted. Based on the results obtained, it was concluded that the increase in the air-drying temperature affects the soybean quality and crude oil extracted, being this effect enhanced with the storage time; the soybean and crude oil quality decline with an increase in the air-drying temperature and storage time; the air temperature of 40 ºC has the least effect on the quality of soybean grains and crude oil extracted.

  11. Study on seed storage protein of offspring 60Co γ-rays induced mutants of soybean Jindou-24

    International Nuclear Information System (INIS)

    Li Huifeng; Li Guiquan; Li Ling

    2008-01-01

    Seed of soybean variety Jindou-24 were irradiated with 60 Co γ-rays and the offspring of mutants were used to research the relative contents of glycinin (11S) and β-conglycinin (7S), the composition of its subunits, the contents of different subunits and the rules of its variance by using SDS-PAGE technique. the results indicated that the content of different subunits or the same subunit of different varieties varied greatly in the offspring of mutants. Significant difference existed in the contents of different subunits of the same variety or the same subunits of different varieties. The content of 11S negatively correlated with that of 7S, and positively correlated with 11S/7S. Cluster analysis showed the mutants were divided into three groups (average 11S/7S rate 1.70, 1.25 and 0.79) according to the rate of 11S/7S. The results could provide theoretical guidance to breed new soybean varieties with the character of high quality and other special purpose. (authors)

  12. Incidence of storage fungi and hydropriming on soybean seeds

    OpenAIRE

    Costa,Denis Santiago da; Bonassa,Nathalie; Novembre,Ana Dionisia da Luz Coelho

    2013-01-01

    Priming is a technique applicable to seeds of various plant species; however, for soybean seed there is little available information correlating such technique to the storage fungi. The objective of this study was to assess hydropriming on soybeans seeds and correlate this technique to occurrence of such fungi. For this, soon after acquisition the soybean seeds, cv. M-SOY 7908 RR, were characterized by: moisture content, mechanical damage, viability (seed germination and seedling emergence) a...

  13. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties.

    Science.gov (United States)

    James, Andrew T; Yang, Aijun

    2016-03-01

    The content and globulin subunit composition of soybean proteins are known to affect tofu quality and food-grade soybeans usually have higher levels of proteins. We studied the tofu quality of soybeans with high (44.8%) or low (39.1%) protein content and with or without the 11S globulin polypeptide, 11SA4. Both protein content and 11SA4 significantly affected tofu gel properties. Soybeans containing more protein had smaller seeds which produced significantly firmer (0.663 vs.0.557 N, pseed size, tofu hardness and water holding capacity and led to significant changes to the profile of storage protein subunits, which may have contributed to the improvement in tofu gel properties. These results suggest that, in combination with higher protein content, certain protein subunits or their polypeptides can also be targeted in selecting soybeans to further improve soy food quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future.

    Science.gov (United States)

    Patil, Gunvant; Mian, Rouf; Vuong, Tri; Pantalone, Vince; Song, Qijian; Chen, Pengyin; Shannon, Grover J; Carter, Tommy C; Nguyen, Henry T

    2017-10-01

    Genetic improvement of soybean protein meal is a complex process because of negative correlation with oil, yield, and temperature. This review describes the progress in mapping and genomics, identifies knowledge gaps, and highlights the need of integrated approaches. Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major quantitative trait loci (QTL) for soybean protein have been detected and repeatedly mapped on chromosomes (Chr.) 20 (LG-I), and 15 (LG-E). However, practical breeding progress is challenging because of seed protein content's negative genetic correlation with seed yield, other seed components such as oil and sucrose, and interaction with environmental effects such as temperature during seed development. In this review, we discuss rate-limiting factors related to soybean protein content and nutritional quality, and potential control factors regulating seed storage protein. In addition, we describe advances in next-generation sequencing technologies for precise detection of natural variants and their integration with conventional and high-throughput genotyping technologies. A syntenic analysis of QTL on Chr. 15 and 20 was performed. Finally, we discuss comprehensive approaches for integrating protein and amino acid QTL, genome-wide association studies, whole-genome resequencing, and transcriptome data to accelerate identification of genomic hot spots for allele introgression and soybean meal protein improvement.

  15. Oil Bodies Extracted from High-Fat and Low-Fat Soybeans: Stability and Composition During Storage.

    Science.gov (United States)

    Wang, Qiu Ling; Li Cui, Chun; Jiang, Lian Zhou; Liu, Yue; Liang, Xin Ting; Hou, Jun Cai

    2017-06-01

    Soybeans contain oil bodies (OBs) that encapsulate triacylglycerols (TAGs) with a phospholipid monolayer carrying scattered proteins. In nature, soybean OBs can form natural emulsions in aqueous media and may serve as natural, minimally processed, stable, and pre-emulsified oil for addition into appropriate food systems. In this study, OBs were obtained by aqueous extraction from the mature seeds of 2 soybean crop cultivars, high-fat soybean and low-fat soybeans. The compositions of the extracted OBs were analyzed during storage at room temperature up to 14 d (pH = 7). The oxidative stability of these OBs, stored at 60 °C, was evaluated by measuring the presence of primary (lipid hydroperoxides) and secondary lipid oxidation products (malondialdehyde) by determining the standard peroxide value (PV) and thiobarbituric acid-reactive substances (TBARS) value. During storage, the contents of unsaturated fatty acids, phospholipids, and tocopherols declined in both OBs, while their mean particle diameters (d 32 ) and ζ-potentials increased. The changes in PV and TBARS values exhibited a similar trend for both OBs, but the OBs from low-fat soybeans had significantly lower PV and higher TBARS values than the OBs from high-fat soybean cultivars (P soybean cultivars had good stability during storage. © 2017 Institute of Food Technologists®.

  16. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    Science.gov (United States)

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing

    2015-04-01

    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Limited hydrolysis of soybean protein concentrate and isolate with ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... world, since its proteins have high biological value while its cost is ... literatures that limited proteolysis of soybean protein pro- ducts offered a ..... hydrolysis of soluble protein present in waste liquors from soy processing.

  18. Chemical properties of Aspergillus flavus-infected soybean seeds exposed to gamma-irradiation during storage

    International Nuclear Information System (INIS)

    Mahrous, S.R.

    2007-01-01

    The aim of the present study was to examine the chemical properties of Aspergillus flavus-infected soybean seeds exposed to different levels of gamma-irradiation; 0 1, 3 and 5 kGy, during storage. The results revealed that there was no effect of irradiation at different dose levels on moisture, protein, total lipids and amino acids content of the seeds for overall 60 days of storage under ambient temperature. At zero time, irradiation of A. flavus- infected-soybean seeds at 5.0 kGy caused a slight increase in peroxide value, no change in acid value, a slight decrease in saponification and iodine values in the crude oil extracted from the seeds. An increase in saturated fatty acids associated with a decrease in un-saturated fatty acids was also observed in the oil extracted from the seeds. Furthermore, at dose level 5 kGy the fungus growth was completely inhibited and there was no detection of aflatoxin B1 after 60 days of storage. It is concluded that gamma-irradiation of A. flavus-infected soybean seeds at dose level 5 kGY is sufficient to inhibit fungus growth and aflatoxin production over a storage period of 60 days without changes in major chemical properties of the seeds and the oil extracted from seeds

  19. Rheological properties of soybean protein isolate gels containing emulsion droplets

    NARCIS (Netherlands)

    Kim, K.H.; Renkema, J.M.S.; Vliet, van T.

    2001-01-01

    Rheological properties of soybean protein gels containing various volume fractions oil droplets have been studied at small and large deformations. Dynamic viscoelastic properties of soybean protein isolate gels were determined as a function of the volume fraction of oil droplets stabilised by the

  20. Improved protein quality in transgenic soybean expressing a de novo synthetic protein, MB-16.

    Science.gov (United States)

    Zhang, Yunfang; Schernthaner, Johann; Labbé, Natalie; Hefford, Mary A; Zhao, Jiping; Simmonds, Daina H

    2014-06-01

    To improve soybean [Glycine max (L.) Merrill] seed nutritional quality, a synthetic gene, MB-16 was introduced into the soybean genome to boost seed methionine content. MB-16, an 11 kDa de novo protein enriched in the essential amino acids (EAAs) methionine, threonine, lysine and leucine, was originally developed for expression in rumen bacteria. For efficient seed expression, constructs were designed using the soybean codon bias, with and without the KDEL ER retention sequence, and β-conglycinin or cruciferin seed specific protein storage promoters. Homozygous lines, with single locus integrations, were identified for several transgenic events. Transgene transmission and MB-16 protein expression were confirmed to the T5 and T7 generations, respectively. Quantitative RT-PCR analysis of developing seed showed that the transcript peaked in growing seed, 5-6 mm long, remained at this peak level to the full-sized green seed and then was significantly reduced in maturing yellow seed. Transformed events carrying constructs with the rumen bacteria codon preference showed the same transcription pattern as those with the soybean codon preference, but the transcript levels were lower at each developmental stage. MB-16 protein levels, as determined by immunoblots, were highest in full-sized green seed but the protein virtually disappeared in mature seed. However, amino acid analysis of mature seed, in the best transgenic line, showed a significant increase of 16.2 and 65.9 % in methionine and cysteine, respectively, as compared to the parent. This indicates that MB-16 elevated the sulfur amino acids, improved the EAA seed profile and confirms that a de novo synthetic gene can enhance the nutritional quality of soybean.

  1. Seed storage protein components are associated with curled ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... analysis suggests that the two increased protein spots in mutants were ... The main objective of this work was to gain further understanding of the influence of curled cotyledon on the seed storage protein components in soybean by com- .... cotyledon formation during Arabidopsis embryogenesis: interaction.

  2. Tuber storage proteins.

    Science.gov (United States)

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  3. Effects of storage and processing on residue levels of chlorpyrifos in soybeans.

    Science.gov (United States)

    Zhao, Liuwei; Ge, Jing; Liu, Fengmao; Jiang, Naiwen

    2014-05-01

    The residue levels of chlorpyrifos in soybeans during storage and processing were investigated. Soybeans were treated with chlorpyrifos aqueous solution and placed in a sealed plastic container. The residue of chlorpyrifos was determined in soybeans at six time points within 0 and 112days during storage and oil processing of the soybeans was conducted. The analysis of the residues of chlorpyrifos was carried out by gas chromatography-mass spectrometry (GC-MS). Results show that the dissipation of chlorpyrifos in soybeans is about 62% during the storage period. Moreover, the carryover of the residues from soybeans into oil is found to be related to the processing methods. Processing factor, which is defined as the ratio of chlorpyrifos residue concentration in oil sample to that in the soybean samples, was 11 and 0.25 after cold and hot pressing, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Diets based on soybean protein for Mediterranean fruit fly

    International Nuclear Information System (INIS)

    Sobrinho, Raimundo Braga; Caceres, Carlos; Islam, Amirul; Wornoayporn, Vivat; Enkerlin, Walter

    2006-01-01

    The objective of this work was to develop suitable and economic diets for mass rearing Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Diets containing sugar beet bagasse, wheat bran, brewer yeast, and others with wheat bran and palletized soybean protein from Brazil were tested. Diets based on soybean protein have shown promising results regarding pupal recovery, pupal weight and adult emergence. Soybean bagasse in the form of pellets with 60% of protein can be a very important substitute for other expensive sources of protein. (author)

  5. Diets based on soybean protein for Mediterranean fruit fly

    Energy Technology Data Exchange (ETDEWEB)

    Sobrinho, Raimundo Braga [Embrapa Agroindustria Tropical, Rua Dra. Sara Mesquita, 2270, CEP 60511-110 Fortaleza, CE (Brazil)]. E-mail: braga@cnpat.embrapa.br; Caceres, Carlos; Islam, Amirul; Wornoayporn, Vivat [Food and Agriculture Organization (FAO), International Atomic Energy Agency (IAEA), Agriculture and Biotechnology Laboratory, A-2444 Seibersdorf (Austria)]. E-mail: C.Caceres@iaea.org; Enkerlin, Walter [Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria)]. E-mail: W.Enkerlin@iaea.org

    2006-04-15

    The objective of this work was to develop suitable and economic diets for mass rearing Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Diets containing sugar beet bagasse, wheat bran, brewer yeast, and others with wheat bran and palletized soybean protein from Brazil were tested. Diets based on soybean protein have shown promising results regarding pupal recovery, pupal weight and adult emergence. Soybean bagasse in the form of pellets with 60% of protein can be a very important substitute for other expensive sources of protein. (author)

  6. Influences of Soaking Temperature and Storage Conditions on Hardening of Soybeans (Glycine max) and Red Kidney Beans (Phaseolus vulgaris).

    Science.gov (United States)

    Koriyama, Takako; Sato, Yoko; Iijima, Kumiko; Kasai, Midori

    2017-07-01

    The influences of soaking treatment and storage conditions on the softening of cooked beans, namely, soybeans and red kidney beans, were investigated. It was revealed that the softening of fresh soybeans and fresh red kidney beans was suppressed during subsequent boiling after soaking treatment at 50 and 60 °C. Furthermore, in treated aged soybeans and red kidney beans that were subjected to storage at 30 °C/75% relative humidity for 6 mo and soaking treatment at 50 to 60 °C, the hardness during cooking was further amplified. This suggested that the mechanism of softening suppression differs depending on the influences of soaking and storage. Analysis of the pectin fraction in alcohol insoluble solid showed insolubilization of metal ions upon storage at high temperature and high humidity in both soybeans and red kidney beans, which suggests interaction between Ca ions and hemicellulose or cellulose as cell wall polysaccharides. The results of differential scanning calorimetry (DSC) showed that aged soybeans exhibited a shift in the thermal transition temperature of glycinin-based protein to a higher temperature compared with fresh soybeans. From the results of DSC and scanning electron microscopy for aged red kidney beans, damaged starch is not conspicuous in the raw state after storage but is abundant upon soaking treatment. As for the influence of soaking at 60 °C, it can be suggested that its influence on cell wall crosslinking was large in soybeans and red kidney beans in both a fresh state and an aged state. © 2017 Institute of Food Technologists®.

  7. Tuber Storage Proteins

    OpenAIRE

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits act...

  8. Improving protein quality of soybean through induced mutations

    International Nuclear Information System (INIS)

    Manjaya, J.G.

    2011-01-01

    Soybean is one of the most economical and nutritious food packed with basic nutrients that combat diseases stemming from mal- and under-nutrition. Despite its rich nutritional profile, use of soybean in food has been limited because soybean proteins are often associated with compounds, which could exert a negative impact on the nutritional quality of the protein. Trypsin inhibitor (TI) is one of the important anti-nutritional factors that exert negative effect by causing growth inhibition. Soybean cultivar VLS-2 was irradiated with 250 Gy gamma rays in a gamma cell (200) with 60 Co source installed at BARC to induce mutations for low trypsin inhibitor content. Three mutants with lower levels of TI content were identified and can be utilized for developing elite varieties of soybean. (author)

  9. EFFECT OF HEAT TREATMENT ON SOYBEAN PROTEIN SOLUBILITY

    Directory of Open Access Journals (Sweden)

    RODICA CĂPRIŢĂ

    2007-05-01

    Full Text Available The use of soybean products in animal feeds is limited due to the presence of antinutritional factors (ANF. Proper heat processing is required to destroy ANF naturally present in raw soybeans and to remove solvent remaining from the oil extraction process. Over and under toasting of soybean causes lower nutritional value. Excessive heat treatment causes Maillard reaction which affects the availability of lysine in particular and produces changes to the chemical structure of proteins resulting in a decrease of the nutritive value. The objective of this study was to evaluate the effect of heating time on the protein solubility. The investigation of the heating time on protein solubility in soybean meal (SBM revealed a negative correlation (r = -0.9596. Since the urease index is suitable only for detecting under processed SBM, the protein solubility is an important index for monitoring SBM quality.

  10. Soybean Protein Fibres Part 1: Structure, Production and Environmental Effects of Soybean Protein Fibres

    Directory of Open Access Journals (Sweden)

    Fatma Filiz YILDIRIM

    2014-12-01

    Full Text Available Soybean fiber (SPF is a protein based botanic fibre. These fibers exhibit very good physical properties such as brightness, softness and drape. Moreover, SPF has a variety of health functionalities and anti-bacterial properties. Fibers were first produced in the 20th mid-century. However due to the significant challenges encountered during the production of SPF, interest for these fibers was decreased. At the end of the 20 th century, SPF re-captured attention due to an increased awakening on ecological, renewable and sustainable fiber concept. Soybean is cheap and abundant. Tenacity of SPF was improved by including polyvinyl alcohol (PVA. Therefore, the production and the usage of SPF are increasing rapidly because of these key advantages. Soybean fibers usually is used in blends with other fibers. In Turkey, a variety of different products are produced from this special fiber. This review, about SPF, is divided into two sections. In the first part; structure and production stages of SPF and its enviromental effects have been described. In the second part of this review, properties and application areas of SPF have been described. The purpose of this review is to fill a gap in the Turkish literature about this bio-degradable, renewable and sustainable SPF. 

  11. Genetic similarity of soybean genotypes revealed by seed protein

    Directory of Open Access Journals (Sweden)

    Nikolić Ana

    2005-01-01

    Full Text Available More accurate and complete descriptions of genotypes could help determinate future breeding strategies and facilitate introgression of new genotypes in current soybean genetic pool. The objective of this study was to characterize 20 soybean genotypes from the Maize Research Institute "Zemun Polje" collection, which have good agronomic performances, high yield, lodging and drought resistance, and low shuttering by seed proteins as biochemical markers. Seed proteins were isolated and separated by PAA electrophoresis. On the basis of the presence/absence of protein fractions coefficients of similarity were calculated as Dice and Roger and Tanamoto coefficient between pairs of genotypes. The similarity matrix was submitted for hierarchical cluster analysis of un weighted pair group using arithmetic average (UPGMA method and necessary computation were performed using NTSYS-pc program. Protein seed analysis confirmed low level of genetic diversity in soybean. The highest genetic similarity was between genotypes P9272 and Kador. According to obtained results, soybean genotypes were assigned in two larger groups and coefficients of similarity showed similar results. Because of the lack of pedigree data for analyzed genotypes, correspondence with marker data could not be determined. In plant with a narrow genetic base in their gene pool, such as soybean, protein markers may not be sufficient for characterization and study of genetic diversity.

  12. Relationship between Protein Accumulation Regulation and Yield Formation in Soybean

    Institute of Scientific and Technical Information of China (English)

    CHEN Lihua; LI Jie; LIU Lijun; ZU Wei

    2006-01-01

    Three different genotypes soybeans were adopted in this experiment under three fertilizer levels.The object of this study was to investigate protein accumulation regulation of soybean cultivars under the condition of different nutrient levels, and their effects on soybean yield and quality, and to provide theoretical evidence for breed, cultivation and agricultural production, also man-powered controllable locations. The concentration of N in the leaves declined after seedling stage, then increased again at stage of early flowering, and started to decrease up to leaf senescence, declined rapidly from seed-filling season to stage of yellow ripeness. The concentration of N in the stems and pod walls declined with growth stage. High seed protein genotypes exhibited higher N assimilating and partitioning during whole growth stages. Pod walls were media of N partitioning. Protein was accumulated mainly during the later period of reproductive growth stage up to harvest, so plant growth after stage of yellow ripeness could not be neglected.

  13. Genetic improvement of soybean seed proteins by γ-ray irradiation

    International Nuclear Information System (INIS)

    Kitamura, Keisuke

    1998-01-01

    Although soybeans have the highest protein content among seed crops, the protein quality is poor due to the low content of the sulfur-containing amino acids, cysteine and methionine. Soybean 7S globulin and 11S globulin are the two major protein components, accounting for about 70% of the total seed protein. The 11S globulin contains three to four times more methionine and cysteine per unit protein than that of the 7S globulin. Furthermore, the two globulins show considerable differences in food processing properties such as gel-making ability and emulsifying capacity. The 7S globulin is composed of three kinds of polypeptides, designated as α, α' and β subunits. A variety of soybean cv. Keburi, which lacks α' subunit was identified in a germplasm collection. An induced mutant line which lacks both α and α' subunits, was recently identified in the progeny of γ-ray-irradiated seeds from a line lacking α' subunit. On the other hand, the 11S globulin is composed of the A 1a B 2 , A 1b B 1b , A 2 B 1a , A 3 B 4 and A 4 A 5 B 3 subunits. It has become possible to breed soybeans with markedly modified protein composition from extremely high to extremely low 7S : 11S ratios using mutant genes for the subunits of the two globulins. Lipoxygenase catalyzes the hydroperoxydation of unsaturated fatty acids and polyunsaturated lipids. Soybean seeds contain three lipoxygenase isozymes, called L-1, L-2 and L-3, which are responsible for the generation of grassy-beany and bitter tastes, limiting the use of whole soybeans and soy proteins in certain food products. In the early 1980s, three types of spontaneous mutant soybean varieties lacking L-1, L-2 or L-3 were detected. Soybean cultivars having the lipoxygenase-null traits could become economically valuable for the manufacture of soy products such as soy milk due to their low levels of beany taste and their enhanced storage stability. (J.P.N.)

  14. Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content.

    Science.gov (United States)

    Min, Chul Woo; Gupta, Ravi; Kim, So Wun; Lee, So Eui; Kim, Yong Chul; Bae, Dong Won; Han, Won Young; Lee, Byong Won; Ko, Jong Min; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2015-08-19

    This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.

  15. Silkworm caterpillar - soybean meal blend as dietary protein source ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate the utilization of silkworm caterpillar meat (SCM) blended with soybean meal (SBM) as a dietary protein source in the practical diet of Heterobranchus bidorsalis fingerlings (M±SE=17.04±_0.02g). The fish were fed five isonitrogenous and isocaloric diets containing blends of SCM ...

  16. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  17. Soybean Protein Fibres Part 2: Soybean Fibres Properties and Application Areas

    Directory of Open Access Journals (Sweden)

    Fatma Filiz Yıldırım

    2015-01-01

    Full Text Available Soybean protein fibres (SPF, which is a protein based botanic fibre, has various beneficialproperties such as softness, brightness, smoothness, drape, UV and bacterial resistance. These fibers areused in production of various yarn blends, woven, knit and nonwoven fabrics to manufature apperal andhome textiles such as t-shirts, bedding, sweater and baby dress due to these superior properties. This review,about SPF, is divided into two sections. In the first part; structure and production stages of SPF and itsenviromental effects had been described. In the second part of this review, properties and application areasof SPF have been described.

  18. Purification and characterization of a soybean cell wall protein

    International Nuclear Information System (INIS)

    San Francisco, S.; Tierney, M.L.

    1989-01-01

    Plant cell wall composition is thought to reflect cellular responses to developmental and environmental signals. We have purified a 33 kDa protein from cell wall extracts of soybean seedlings which is most abundant in extracts from the hook region of the hypocotyl and is rich in proline and hydroxypyroline. In vivo 3 H-proline labelling of hypocotyl tissues indicates that the hook tissue is the predominant site for synthesis of this protein. In unwounded hook, label is incorporated into a 33 kDa protein, while in wounded hook this and additional proteins rich in proline are synthesized. Similarly treated cell wall extracts analyzed by Western blot analysis, using a polyclonal antibody raised against this 33kD protein, showed that the 33 kDa protein is most abundant in cell wall extracts from the hook region of unwounded seedlings and does not increase upon wounding. An immunologically related 35kD protein is also apparent in extracts from wounded hooks and appears to co-migrate with one of the labelled proteins extractable from this tissue. These data indicate that there are two related, proline-rich cell wall proteins in the hook region of soybean seedlings, one of which (33 kDa) is prominent during seedling development and another (35 kDa) which is wound inducible

  19. Experimental silo-dryer-aerator for the storage of soybean grains

    Directory of Open Access Journals (Sweden)

    Paulo C. Coradi

    Full Text Available ABSTRACT This study aimed to verify the capacity of silo-dryer-aerator prototype equipment operating as a silo-storage-aerator for soybean quality analysis. Soybeans with water content of 17% (wet basis – w.b. were dried and stored in a silo-dryer-aerator system that was designed using a drying chamber, four independent storage cells, and a static capacity of 164 kg. Another batch of grains was stored in a silo-storage-aerator with a capacity of 1,200 kg. The experiment was set up in a completely randomized factorial 5 × 4 experimental design including five grain batches stored after being dried at 30, 40, and 50 °C (mixed grains were dried at three temperatures in the silo-dryer-aerator cells and one mixed grain batch stored in the silo-storage-aerator system under ambient air conditions for four storage times (zero, one, two, and three months. There was no difference between the grains stored in the silo-dryer-aerator and silo-storage-aerator at the end of the three-month storage in terms of the physico-chemical quality. The storage time associated with drying at 50 °C caused a reduction in the physical-chemical quality of the grains. The silo-dryer-aerator system was presented as a possible alternative to store soybean (Glycine max L. grains.

  20. Influence of ionizing radiation and storage conditions upon some quality parameters of soybeans

    International Nuclear Information System (INIS)

    Beczner, J.; Kiss, I.; Peredi, J.

    1983-01-01

    Soyflour produced for animal feeding in a pilot plant was occasionally contaminated to an extent exceeding the microbiological standard set for human consumption. The suitability of ionizing radiation to reduce microbiological contamination was investigated. Soybeans of different moisture content (9 and 13%) were irradiated and stored in spaces of different relative humidity (55 and 75%) at 5-15 deg C or 20-25 deg C temperature. The soybeans samples were irradiated with 1 and 5 kGy, resp. The storage experiments have shown the humidity of the storage room to be of extreme importance to the propagation of moulds. The inhibitory effect of a temperature of 5-10 deg C in itself is not sufficient, neither is the effect of the radiation dose applied during a longer storage period. It was established that the moisture content of the seeds affected strongly the quality of the extracted oil. The unfavourable effects increase at higher temperatures. The radiation doses applied in the experiments did not affect the quality of the oil. It was concluded that the microbial contamination of soybeans can be kept at the initial low value by treatment with 1 kGy radiation dose, even under unfavourable storage conditions for a period of 2 months. Thus, irradiation may be applied as a temporary solution to stabilize the microbiological state of soybeans. (author)

  1. High-Protein Soybean Mutants by Using Irradiation Technique

    International Nuclear Information System (INIS)

    Yathaputanon, C.; Kumsueb, B.; Srisombun, S.

    2009-07-01

    Full text: Soybean variety improvement for high seed protein using induced mutation was initiated. Approximately 5,000 seeds of soybean variety Chiang Mai 60 were irradiated with gamma rays at the dose of 200 Grays at Kasetsart University. High-protein seed mutants in M2 to M4 generations were selected at Nakhon Ratchasima Field Crops Research Center during 2004-2008. The Pedigree method of selection was used. Kjeldahl method was used to analyze seed protein percentages. The M2 seeds protein content of the M2 generation was 45.2% while that of the original parent was 43.0%. M3s were seeded plant to row. In each row, the best four plants were selected for protein analysis. The average protein content of selected mutant lines was 3.9% while the check variety had average protein content of 42.4%. In the M4 generation, the result showed that the average protein contents of the selected mutant lines and the check variety were 42.8% and 42.0%, respectively. In the 2007-2008 trials, four promising mutants had and average protein content of 428%, while the check variety had and average protein content of 41.1%. The four mutants produced the mean grain yield of 2.20-2.42 t/Ha, which was 10.21% higher than that of Chiang Mai 60. The mutant lines produced both a high grain protein content and a high grain yield. They will be further tested their adaptability in the research centers and farmer fields

  2. Yield and acidity indices of sunflower and soybean oils in function of grain drying and storage

    Directory of Open Access Journals (Sweden)

    Paulo Carteri Coradi

    2017-04-01

    Full Text Available The aim of this study was to identify the best conditions for drying and storing soybeans and sunflower grains to maintain their quality. In the first experiment, the soybeans were found to have initial moisture contents of 25 and 19% (w.b. at different drying air temperatures (75, 90, 105, and 120°C. In the second step, the soybeans were evaluated after they were stored in paper bags and plastic polyethylene at temperatures of 3, 10 and 23°C for six months. In the third experiment, sunflower grains were tested after exposure to drying air temperatures of 45, 55, 65, and 75°C, and under storage conditions of 25°C and 50%, 20°C and 60%, 30°C and 40% RH over six months in paper bags and raffia. Drying the sunflower seeds at 45°C and storing them at 30°C and 40% RH led to higher oil yields and lower acid numbers. The oil that was extracted from the acid number was higher for soybean grains that were dried down from initial concentrations of 25% water at a drying air temperature of 120°C. The air temperature in storage at 3°C favored for yield and reduction of the soybean oil acidity.

  3. Protein Solubility as Quality Index for Processed Soybean

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2010-05-01

    Full Text Available Protein quality of soybean meal (SBM is linked to both the reduction of antinutritional factors (ANFs, and the optimization of protein digestibility. Both insufficient- and over-heating result in poor quality SBM. Inadequate heating fails to completely destroy the ANFs, which may have a detrimental impact on animal performance, while excessive heating reduces the availability of lysine via the Maillard reaction and possibly, to a lesser extent, of other amino acids. The objective of our study was to compare some biochemical laboratory procedures for assessing quality of SBM: urease index (UI, protein dispersibility index (PDI, KOH protein solubility (PS, and nitrogen solubility index (NSI. The experimental data reveal that UI is not useful to determine excessive heat treatment since additional heating has no effect on the urease index. KOH protein solubility remains high, during initial heat treatment. In marked contrast, the PDI and NSI decreased incrementally from 78% to 20% and from 97% to 60%, respectively, when heating 0 to 30 minutes. Combing the PDI test with the urease test could be useful to monitor soybean quality. SBM containing low UI (0.3 or below and high PDI (40 to 45% may indicate that the sample is definitely high quality because it has been adequately heat processed, but not overprocessed.

  4. In vivo protein quality of selected cereal-based staple foods enriched with soybean proteins

    Directory of Open Access Journals (Sweden)

    Laura Acevedo-Pacheco

    2016-10-01

    Full Text Available Background: One way to diminish protein malnutrition in children is by enriching cereal-based flours for the manufacturing of maize tortillas, wheat flour tortillas, and yeast-leavened breads, which are widely consumed among low socio-economic groups. Objective: The aim was to determine and compare the essential amino acid (EAA scores, protein digestibility corrected amino acid scores (PDCAAS, and in vivo protein quality (protein digestibility, protein efficiency ratio (PER, biological values (BV, and net protein utilization (NPU values of regular versus soybean-fortified maize tortillas, yeast-leavened bread, and wheat flour tortillas. Design: To comparatively assess differences in protein quality among maize tortillas, wheat flour tortillas, and yeast-leavened breads, EAA compositions and in vivo studies with weanling rats were performed. The experimental diets based on regular or soybean-fortified food products were compared with a casein-based diet. Food intake, weight gains, PER, dry matter and protein digestibility, BV, NPU, and PDCAAS were assessed. The soybean-fortified tortillas contained 6% of defatted soybean flour, whereas the yeast-leavened bread flour contained 4.5% of soybean concentrate. Results: The soybean-fortified tortillas and bread contained higher amounts of lysine and tryptophan, which improved their EAA scores and PDCAAS. Rats fed diets based on soybean-fortified maize or wheat tortillas gained considerably more weight and had better BV and NPU values compared with counterparts fed with respective regular products. As a result, fortified maize tortillas and wheat flour tortillas improved PER from 0.73 to 1.64 and 0.69 to 1.77, respectively. The PER improvement was not as evident in rats fed the enriched yeast-leavened bread because the formulation contained sugar that decreased lysine availability possibly to Maillard reactions. Conclusions: The proposed enrichment of cereal-based foods with soybean proteins greatly

  5. Gamma irradiation effect on soy protein modification, protein - phenolic interaction and antioxidant activity in soybean

    International Nuclear Information System (INIS)

    Kumari, Sweta; Dahuja, Anil; Vinutha, T.; Singh, Bhupinder

    2014-01-01

    Soy protein is one of the most important sources of protein to feed the world population in the future. Consumption of soybean quality protein and their texture is dependent on the protein modification. In the present study, four soybean genotypes PL5039 (black), EC 472143 (black), Pusa 9814 (yellow) and SL525 (yellow), differing in their seed coat colour were gamma irradiated at 0.5,1.0, 2.0 and 5.0 kGy and the extent of protein modification and parameters affecting it viz. free phenolics, bound phenolics, lip oxygenase and antioxidant activity were analysed. Modifications of soybean proteins were investigated by chemical analysis and electrophoresis. The irradiation dose of 1.0 kGy showed decreased turbidity, protein oxidation, surface hydrophobicity but increased solubility and sulfhydryl and disulfide contents in all the genotypes. Further, SDS PAGE profile of treated soybean seeds revealed remarkable difference in electrophoretic bands as compared to the untreated seeds. Lipoxygense activity in all the genotypes decreased with increased exposure of gamma irradiation, which produced peroxide products that changes the structural characteristics of soy protein. Free phenolics, bound phenolics and total antioxidant activity measured in terms of FRAP in all the genotypes increased significantly at a dose of 2.0 kGy and it declined at a dose of 5.0 kGy. Antioxidant potential measured in terms of 1,1-diphenyl-2- picrylhydrazyl (DPPH) scavenging activity showed an increasing trend with dose, indicating that radiation processing as a method of food preservation has a positive nutritional implication. Hence, it is suggested that, mild gamma irradiation upto 2.0 kGy may reduce the protein oxidation, enhance the antioxidant activity and improve the soybean protein quality compared to higher dose 5.0 kGy, which reduced the protein quality. (author)

  6. The effect of aging on mitochondrial proteins in germinating soybean embryonic axes

    International Nuclear Information System (INIS)

    Furman, K.C.

    1988-01-01

    Aging-induced deterioration is a major problem associated with seed storage. Impairment of mitochondrial function is one of the first effects of aging. The composition and synthesis of nuclear and mito-coded mitochondrial proteins from soybean (Glycine max. L. Merr.) embryonic axes were studied to elucidate the cause of impaired respiratory development during germination of aged seeds. Axes excised from high vigor (HV) seeds and aged or low vigor (LV) seeds were protected from imbibition injury and germinated for various times, or excised from developing seeds, and then radiolabeled for one hour in [ 35 S]methionine. Mitochondria were then isolated and total mitochondrial protein was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by quantitative staining and fluorography of labeled polypeptides. Alternatively, an original two-dimensional native-to-denaturing gel electrophoretic technique was used to analyze native protein associations and to purify a 23 kD polypeptide

  7. Introgression of leginsulin, a cysteine-rich protein, and high-protein trait from an Asian soybean plant introduction genotype into a North American experimental soybean line.

    Science.gov (United States)

    Krishnan, Hari B; Kim, Won-Seok; Oehrle, Nathan W; Alaswad, Alaa A; Baxter, Ivan; Wiebold, William J; Nelson, Randall L

    2015-03-25

    Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur-containing amino acids could enhance the nutritive value of soybean meal. Leginsulin, a cysteine-rich peptide, predominantly accumulates in Asian soybean accessions but not in most North American cultivars. By screening diverse soybean accessions from the USDA Soybean Germplasm Collection, we were able to identify one plant introduction, PI 427138, as a high-protein line with relatively high amounts of both elemental sulfur and leginsulin. We introgressed these desirable traits from PI 427138 into an experimental line with the aim of improving the overall protein content and quality of seed proteins. Biochemical characterization of inbred progenies from the cross of LD00-3309 with PI 427138 grown at six locations revealed stable ingression of high protein, high elemental sulfur, and high leginsulin accumulation. Comparison of soybean seed proteins resolved by high-resolution 2-D gel electrophoresis in combination with Delta2D image analysis software revealed preferential accumulation of a few glycinin subunits contributed to the increased protein content in the introgressed lines. Amino acid analysis revealed that even though the leginsulin introgressed lines had higher protein, leginsulin, and elemental sulfur, the overall concentration of sulfur-containing amino acids was not significantly altered when compared with the parental lines. The experimental soybean lines developed during this study (Leg-3, Leg-7, and Leg-8) lack A5, A4, and B3 glycinin subunits and could be utilized in breeding programs to develop high-quality tofu cultivars.

  8. Subunit composition of seed storage proteins in high-protein soybean genotypes Composição de subunidades de proteínas de reserva em genótipos de soja com alto teor de proteína

    Directory of Open Access Journals (Sweden)

    Ksenija Taski-Ajdukovic

    2010-07-01

    Full Text Available The objective of this work was to quantify the accumulation of the major seed storage protein subunits, β-conglycinin and glycinin, and how they influence yield and protein and oil contents in high-protein soybean genotypes. The relative accumulation of subunits was calculated by scanning SDS-PAGE gels using densitometry. The protein content of the tested genotypes was higher than control cultivar in the same maturity group. Several genotypes with improved protein content and with unchanged yield or oil content were developed as a result of new breeding initiatives. This research confirmed that high-protein cultivars accumulate higher amounts of glycinin and β-conglycinin. Genotypes KO5427, KO5428, and KO5429, which accumulated lower quantities of all subunits of glycinin and β-conglycinin, were the only exceptions. Attention should be given to genotypes KO5314 and KO5317, which accumulated significantly higher amounts of both subunits of glycinin, and to genotypes KO5425, KO5319, KO539 and KO536, which accumulated significantly higher amounts of β-conglycinin subunits. These findings suggest that some of the tested genotypes could be beneficial in different breeding programs aimed at the production of agronomically viable plants, yielding high-protein seed with specific composition of storage proteins for specific food applications.O objetivo deste trabalho foi quantificar o acúmulo das principais subunidades de proteínas de reserva da soja, β-conglicinina e glicinina, e como elas influenciam a produtividade e os conteúdos de proteína e de óleo em genótipos de soja com alto conteúdo de proteína. A acumulação relativa de subunidades foi calculada por escaneamento em géis SDS-PAGE, com uso de densitometria. O conteúdo de proteínas dos genótipos testados foi maior que o da cultivar controle dentro do mesmo grupo de maturação. Vários genótipos com conteúdo de proteína aumentado, mas com produtividade ou conteúdo de

  9. The integral and extrinsic bioactive proteins in the aqueous extracted soybean oil bodies.

    Science.gov (United States)

    Zhao, Luping; Chen, Yeming; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei

    2013-10-09

    Soybean oil bodies (OBs), naturally pre-emulsified soybean oil, have been examined by many researchers owing to their great potential utilizations in food, cosmetics, pharmaceutical, and other applications requiring stable oil-in-water emulsions. This study was the first time to confirm that lectin, Gly m Bd 28K (Bd 28K, one soybean allergenic protein), Kunitz trypsin inhibitor (KTI), and Bowman-Birk inhibitor (BBI) were not contained in the extracted soybean OBs even by neutral pH aqueous extraction. It was clarified that the well-known Gly m Bd 30K (Bd 30K), another soybean allergenic protein, was strongly bound to soybean OBs through a disulfide bond with 24 kDa oleosin. One steroleosin isoform (41 kDa) and two caleosin isoforms (27 kDa, 29 kDa), the integral bioactive proteins, were confirmed for the first time in soybean OBs, and a considerable amount of calcium, necessary for the biological activities of caleosin, was strongly bound to OBs. Unexpectedly, it was found that 24 kDa and 18 kDa oleosins could be hydrolyzed by an unknown soybean endoprotease in the extracted soybean OBs, which might give some hints for improving the enzyme-assisted aqueous extraction processing of soybean free oil.

  10. Seed quality preservation advantage of gamma irradiation seed pre-treatment during long term storage in soybean

    International Nuclear Information System (INIS)

    Guha, Sameer Kumar; Sumedha; Singh, Bhupinder

    2014-01-01

    The experiment was conducted to analyse the effect of gamma irradiation seed pre-treatment on insect damage and quality preservation of soybean seeds during long term storage at ambient temperature (27-42 ℃) and relative humidity (50-95%). Freshly harvested seeds of soybean (cv. Pusa-9814) were treated with control (0), 0.01, 0.05, 0.5, 1.0, 3.0, 5.0 kGy gamma radiation on a Gamma irradiator (Gamma Chamber 5000, 60 Co source, activity 12000 Ci, BRIT, Mumbai, India) at the Nuclear Research Laboratory, IARI, New Delhi and were stored over one year in cotton cloth bags under ambient conditions. Protein and oil per cent and fatty acid profile was measured in freshly harvested zero time unirradiated control, aged unirradiated control and other treatments of ionizing radiation. Seed oil was extracted through the soxhlet extraction method and oil profiling was done by gas chromatography. Change in saturated and unsaturated fatty acids like palmitic, stearic, oleic, linolic, linolenic acid and oleic to linoleic ratio was measured. Oil content of unirradiated stored seeds compared to that of the freshly harvested control was lower. However, radiation in general, helped in maintaining a higher seed oil during storage when compared with that of the aged unirradiated control and was insignificantly reduced over the fresh unirrradiated control. Further, gamma irradiation treatment did not yield any adverse affect on the seed protein even after prolonged storage. The results reveal a reduced rate of lipid degradation and improved seed hardness over untreated control with no significant change in fatty acid profile of the irradiated and the unirradiated seeds over a long term storage period. (author)

  11. Hydrolysis of Soybean Protein by Aspergillus Sojae, a. Oryzae, and Rhizpus Oligosporus

    OpenAIRE

    Rahayu, Endang Sutriswati

    1991-01-01

    Three species of molds, i.e. Aspergillus sojae. A. oryzae and Rhizopus oligosporus were used to hydrolyze soybean proteins. Whole soybeans were soaked overnight and cooked in boiling water for an hour, drained, sterilized at 121°C for 15 minutes, then cooled and inoculated with A. oryzae. A. sojae, and R. oligosporus. As a control treatment another batch of soybeans was prepared for spontaneous fermentation. Fermentation tasted for five days. Based on the colony forming units (CFU), A. sojae,...

  12. Effect of dietary soybean oil and soybean protein concentration on the concentration of digestible amino acids in soybean products fed to growing pigs.

    Science.gov (United States)

    Cervantes-Pahm, S K; Stein, H H

    2008-08-01

    An experiment was conducted to measure the effect of adding soybean oil to soybean meal (SBM) and soy protein concentrate (SPC) on apparent (AID) and standardized (SID) ileal digestibility of CP and AA by growing pigs. A second objective was to compare AID and SID of AA in a new high-protein variety of full fat soybeans (FFSB) to values obtained in other soybean products. Commercial sources of FFSB (FFSB-CV), SBM, and SPC, and of a new high-protein variety of FFSB (FFSB-HP) were used in the experiment. Four diets were prepared using each soybean product as the sole source of CP and AA in 1 diet. Two additional diets were formulated by adding soybean oil (7.55 and 7.35%, respectively) to the diets containing SBM and SPC. A nitrogen-free diet was also used to measure basal endogenous losses of CP and AA. The 2 sources of FFSB were extruded at 150 degrees C before being used in the experiment. Seven growing barrows (initial BW = 26.2 kg) were prepared with a T-cannula in the distal ileum and allotted to a 7 x 7 Latin square design. Ileal digesta were collected from the pigs on d 6 and 7 of each period. All digesta samples were lyophilized and analyzed for DM, CP, AA, and chromium, and values for AID and SID of CP and AA were calculated. The addition of oil improved (P oil and SPC, but these values were lower (P oil. In conclusion, the addition of oil improved the SID of most AA in SBM and SPC fed to growing pigs, and the SID of AA in FFSB-HP were greater than in SBM and similar to the SID of AA in SBM with oil and in SPC.

  13. Enzymatic extractability of soybean meal proteins and carbohydrates : heat and humidity effects

    NARCIS (Netherlands)

    Fischer, M.; Kofod, L.V.; Schols, H.A.; Piersma, S.R.; Gruppen, H.; Voragen, A.G.J.

    2001-01-01

    To study the incomplete enzymatic extractability of proteins and carbohydrates of thermally treated soybean meals, one unheated and three heat-treated soybean meals were produced. To obtain truly enzyme-resistant material, the meals were extracted by a repeated hydrolysis procedure using excessive

  14. A comparison of protein and phenolic compounds in seed from GMO and non-GMO soybean

    Science.gov (United States)

    Soybean protein is a valuable and important component in human and animal diets. Approximately 94% of the soybean planted in the US is genetically modified (GM) to enhance quality and productivity. Since value-added traits are continuously being developed by genetic modification, it is important t...

  15. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    Science.gov (United States)

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress.

  16. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    Science.gov (United States)

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybeanproteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  17. Is Peripheral Benzodiazepine Receptor (PBR) Gene Expression Involved in Breast Cancer Suppression by Dietary Soybean Protein

    National Research Council Canada - National Science Library

    Das, Salil

    2004-01-01

    ...% casein and those of groups 3 and 4 received same diet containing 20% soybean protein. Animals of groups 2 and 4 received DMBA in sesame oil by gavage (15 mg per animal). Control animals (groups 1 and 3...

  18. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    Science.gov (United States)

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  19. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    Science.gov (United States)

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  20. Enrichment of trace metals in water utilizing the coagulation of soybean protein

    International Nuclear Information System (INIS)

    Musha, Soichiro; Takahashi, Yoshihisa.

    1975-01-01

    An enrichment of trace metals in water with a coagulated soybean protein and the complex-forming character of heavy metal ions with the soybean protein were investigated by means of emission spectrography. Fixed amounts of soybean milk (collector) and delta-gluconic lactone (coagulant) were added to a sample solution containing various metal ions, and then the mixture was heated to boiling in order to coagulate the protein. The coagulum (soybean curd) separated from the suspension with a centrifuge was burned to ashes with a low temperature plasma asher. Then metals enriched in the soybean curd were determined by means of emission spectrography. The pH of the solution was adjusted to 4.4--5.0 by adding suitable amounts of delta-gluconic lactone for the complete coagulation of the soybean protein. The proposed method can be applied to the collection and enrichment of various metal ions such as gold, silver, mercury, platinum, cadmium, beryllium, palladium, antimony, gallium, indium, cerium, lanthanum, thorium, yttrium, zirconium, etc. Those metals are not detectable in the original soybean. (auth.)

  1. Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss.

    Science.gov (United States)

    Sadeghi, Ehsan; Mahtabani, Aidin; Etminan, Alireza; Karami, Farahnaz

    2016-02-01

    This study has been considered effect of Ferulago angulata essential oil on stabilizing soybean oil during accelerated storage. The essential oil was extracted by Clevenger-type apparatus. For analysis of the essential oil, GC/MS was used. Main components of the essential oil were monoterpene and sesquiterpene hydrocarbons. The essential oil of F. angulata at four concentrations, i.e. 125 (SBO-125), 250 (SBO-250), 500 (SBO-500) and SBO-Mixture (60 ppm TBHQ +60 ppm essential oil) were added to preheated refined soybean oil. TBHQ was used at 120 ppm as standard besides the control. Antioxidant activity index (AAI), free fatty acid (FFA) content, peroxide value (PV) and p-anisidine value (p-AnV) were served for appreciation of efficacy of F. angulata in stabilization of soybean oil. Results from different tests showed that SBO-mixture had highest effect and followed by SBO-TBHQ, SBO-250, SBO-125, SBO-500 and Ctrl. These results reveal F. angulata is a strong antioxidant and can be used instead of synthetic antioxidant.

  2. Armazenamento de soja em silos tipo bolsa Soybean storage in bag type silos

    Directory of Open Access Journals (Sweden)

    Lêda R. A. Faroni

    2009-03-01

    Full Text Available Avaliaram-se as principais alterações qualitativas de soja armazenada em silos tipo bolsa e do óleo bruto extraído de soja com teores de água de 17,4% e 13,3%, armazenada em dois silos tipo bolsa, por 180 dias. Realizaram-se amostragens no dia do enchimento das bolsas, aos 30; 90 e 180 dias de armazenamento. Analisaram-se o teor de água, a condutividade elétrica, o percentual de germinação, a massa específica aparente da soja, além do teor de ácidos graxos livres e o índice de peróxido do óleo bruto extraído dela. Os teores de água da soja armazenada úmida e seca mantiveram-se próximos dos valores obtidos no início do período de armazenamento. Observou-se tendência de elevação da condutividade elétrica e decréscimo do percentual de germinação somente na soja úmida, principalmente após 90 dias de armazenamento. Não foi verificado decréscimo da massa específica aparente do material armazenado úmido e seco. Com relação aos parâmetros qualitativos do óleo bruto, observou-se que os valores obtidos se mantiveram abaixo do limite máximo exigido pela legislação para a comercialização de óleo bruto de soja. Pode-se concluir que os silos tipo bolsa representam alternativa viável do ponto de vista qualitativo para armazenagem de soja, e esse tipo de estrutura não ocasiona alterações qualitativas significativas no óleo bruto obtido desse material, em condições similares àquelas deste estudo.This study reports major qualitative changes in the soybean grains and the extracted crude oil when stored in bag type silos. Grains with moisture content of 17.4 or 13.3% were stored in two bag type silos. Samples were taken 30, 90 and 180 days of storage , to determine moisture content, electric conductivity of the grain leachate, germination percentage, apparent specific grain mass, and free fatty acid content, and peroxide index of the crude oil extracted from these grains. The wet and dry grains remained with

  3. Protein and oil composition predictions of single soybeans by transmission Raman spectroscopy.

    Science.gov (United States)

    Schulmerich, Matthew V; Walsh, Michael J; Gelber, Matthew K; Kong, Rong; Kole, Matthew R; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Kull, Linda S; Bhargava, Rohit

    2012-08-22

    The soybean industry requires rapid, accurate, and precise technologies for the analyses of seed/grain constituents. While the current gold standard for nondestructive quantification of economically and nutritionally important soybean components is near-infrared spectroscopy (NIRS), emerging technology may provide viable alternatives and lead to next generation instrumentation for grain compositional analysis. In principle, Raman spectroscopy provides the necessary chemical information to generate models for predicting the concentration of soybean constituents. In this communication, we explore the use of transmission Raman spectroscopy (TRS) for nondestructive soybean measurements. We show that TRS uses the light scattering properties of soybeans to effectively homogenize the heterogeneous bulk of a soybean for representative sampling. Working with over 1000 individual intact soybean seeds, we developed a simple partial least-squares model for predicting oil and protein content nondestructively. We find TRS to have a root-mean-standard error of prediction (RMSEP) of 0.89% for oil measurements and 0.92% for protein measurements. In both calibration and validation sets, the predicative capabilities of the model were similar to the error in the reference methods.

  4. Study Quality Protein and Fat in Some Romanian and Foreign Soybean Varieties

    Directory of Open Access Journals (Sweden)

    Daniela Cenan (Pasc

    2014-11-01

    Full Text Available Worldwide soy is one of the most important sources of vegetable protein and vegetable fats supplying plant. Soybean proteins are important both for human food and animal feed industry concentrated. In the last twenty years soybeans have become an irreplaceable product for the food industry. This paper presents the results of the production capacity, protein and oil content of 25 soybean genotypes studied in 2011-2013 at Agricultural Research Station Turda Development. Were calculated  the amounts of protein and oil produced by each genotype in part each year and averaged over three experimental years. Protein content was between 39 per cent and 43.9 per cent and for fat percentage values ​​were between 18.9 per cent and 21.8 per cent. Romanian genotypes quality results are similar to those obtained for foreign genotypes. These genotypes can be grown in climatic conditions of Transylvania resulting quality for there production.

  5. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  6. Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds.

    Science.gov (United States)

    Li, Runzhi; Yu, Keshun; Wu, Yongmei; Tateno, Mizuki; Hatanaka, Tomoko; Hildebrand, David F

    2012-01-01

    Plant oils can be useful chemical feedstocks such as a source of epoxy fatty acids. High seed-specific expression of a Stokesia laevis epoxygenase (SlEPX) in soybeans only results in 3-7% epoxide levels. SlEPX-transgenic soybean seeds also exhibited other phenotypic alterations, such as altered seed fatty acid profiles, reduced oil accumulation, and variable protein levels. SlEPX-transgenic seeds showed a 2-5% reduction in total oil content and protein levels of 30.9-51.4%. To address these pleiotrophic effects of SlEPX expression on other traits, transgenic soybeans were developed to co-express SlEPX and DGAT (diacylglycerol acyltransferase) genes (VgDGAT1 & 2) isolated from Vernonia galamensis, a high accumulator of epoxy fatty acids. These side effects of SlEPX expression were largely overcome in the DGAT co-expressing soybeans. Total oil and protein contents were restored to the levels in non-transgenic soybeans, indicating that both VgDGAT1 and VgDGAT2 could complement the disrupted phenotypes caused by over-expression of an epoxygenase in soybean seeds. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effect of nitrogen and Nitragin application on soybean yield and protein content

    Directory of Open Access Journals (Sweden)

    Đukić Vojin

    2010-01-01

    Full Text Available A three-year experiment was conducted to study the effect of different doses of nitrogen fertilizer applied under previous crop and seed inoculation with a microbial preparation NS Nitragin on soybean yield and protein content in grain. The experiment was set up in four replications at Rimski Šančevi experiment field of Institute of Field and Vegetable Crops, Novi Sad. Presowing seed inoculation contributed to a statistically significant increase in yield and protein content in all three research years, while the highest nitrogen dose had a positive impact on soybean yield only in 2007 and on protein content in 2006 and 2007. .

  8. Differential regulation of defense-related proteins in soybean during compatible and incompatible interactions between Phytophthora sojae and soybean by comparative proteomic analysis.

    Science.gov (United States)

    Jing, Maofeng; Ma, Hongyu; Li, Haiyang; Guo, Baodian; Zhang, Xin; Ye, Wenwu; Wang, Haonan; Wang, Qiuxia; Wang, Yuanchao

    2015-07-01

    Few proteomic studies have focused on the plant- Phytophthora interactions, our study provides important information regarding the use of proteomic methods for investigation of the basic mechanisms of plant-Phytophthora interactions. Phytophthora sojae is a fast-spreading and devastating pathogen that is responsible for root and stem rot in soybean crops worldwide. To better understand the response of soybean seedlings to the stress of infection by virulent and avirulent pathogens at the proteomic level, proteins extracted from the hypocotyls of soybean reference cultivar Williams 82 infected by P. sojae P6497 (race 2) and P7076 (race 19), respectively, were analyzed by two-dimensional gel electrophoresis. 95 protein spots were differently expressed, with 83 being successfully identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and subjected to further analysis. Based on the majority of the 83 defense-responsive proteins, and defense-related pathway genes supplemented by a quantitative reverse transcription PCR assay, a defense-related network for soybean infected by virulent and avirulent pathogens was proposed. We found reactive oxygen species (ROS) burst, the expression levels of salicylic acid (SA) signal pathway and biosynthesis of isoflavones were significantly up-regulated in the resistant soybean. Our results imply that following the P. sojae infection, ROS and SA signal pathway in soybean play the major roles in defense against P. sojae. This research will facilitate further investigation of the molecular regulatory mechanism of the defense response in soybean following infection by P. sojae.

  9. Seed Protein Content and Consistency of Tofu Prepared with Different Magnesium Chloride Concentrations in Six Japanese Soybean Varieties

    OpenAIRE

    Toda, Kyoko; Ono, Tomotada; Kitamura, Keisuke; Hajika, Makita; Takahashi, Koji; Nakamura, Yoshiyuki

    2003-01-01

    The relationship between the protein content of soybean seeds and the consistency of tofu was examined for six Japanese soybean varieties, Enrei, Fukuyutaka, Sachiyutaka, Ayakogane, Hatayutaka and Tachinagaha. The seed protein content was estimated by determining the nitrogen content using the Dumas method. Tofu was prepared from a raw homogenate of water-soaked soybeans by heating and by the addition of MgCl_2 as a coagulant. The tofu consistency was evaluated by measuring the breaking stres...

  10. Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean

    Directory of Open Access Journals (Sweden)

    Puji eLestari

    2013-06-01

    Full Text Available Understanding several modes of duplication contributing on the present genome structure is getting an attention because it could be related to numerous agronomically important traits. Since soybean serves as a rich protein source for animal feeds and human consumption, breeding efforts in soybean have been directed toward enhancing seed protein content. The publicly available soybean sequences and its genomically featured elements facilitate comprehending of quantitative trait loci (QTL for seed protein content in concordance with homeologous regions in soybean genome. Although parts of chromosome (Chr 20 and Chr 10 showed synteny, QTLs for seed protein content present only on Chr 20. Using comparative analysis of gene contents in recently duplicated genomic regions harboring QTL for protein/oil content on Chrs 20 and 10, a total of 27 genes are present in duplicated regions of both chromosomes. Notably, 4 tandem duplicates of the putative homeobox protein 22 (HB22 are present only on Chr 20 and this Medicago truncatula homolog expressed in endosperm at seed filling stage. These tandem duplicates could contribute on the protein/oil QTL of Chr 20. Our study suggests that non-shared gene contents within the duplicated genomic regions might lead to absence/presence of QTL related to protein/oil content.

  11. Influence of foliar fertilization with manganese on germination, vigor and storage time of RR soybean seeds

    Directory of Open Access Journals (Sweden)

    Vanessa Leonardo Ignácio

    2015-10-01

    Full Text Available ABSTRACTThis study aimed to evaluate the influence of foliar fertilizer doses containing Mn of phenological stages of suggested application in RR soybeans, to recover management damages with glyphosate at postemergence application on seed vigor in post-harvest and post six months storage. The seeds originated from a field experiment conducted , which included two applications of glyphosate, concomitant with foliar fertilizer in growth stages V4 and V6, with 0.00, 113.50 and 227.00 mg ha-1doses of Mn2+. Germination, GSI (Germination Speed Index, electrical conductivity tests and the first count of seeds were conducted. The application of Mn did not affect the physiological quality of RR soy in postharvest. However, in post-storage, higher doses of Mn had a negative effect on tests of abnormal seedlings, GSI and electrical conductivity. The applications of Mn, regardless of the developmental stage, did not interfere in the germination and first count tests, with and without storage. The electrical conductivity test showed a higher correlation with the seed germination test in the post-harvest treatment.

  12. Lipoxygenase activity of soybean and protein evaluation of soy milk produced from irradiated grains

    International Nuclear Information System (INIS)

    Barros, Erica A.; Broetto, Fernando; Costa, Vladimir E.

    2011-01-01

    Soybean and its derivative are considered as a functional food because it has high quality protein and are used for the prevention of chronic degenerative diseases. The irradiation technique is used in soybeans to increase shelf life and avoid problems in plant products consumed raw or processed. However, the controversy in the literature that the irradiation dose up 10 kGy food can alter the functional properties and structures of macronutrients. With the prospect of more information on the use of radiation on soybeans, the objective of this study was to determine the activity of lipoxygenase in soybeans and to evaluate possible changes in the protein content of soymilk processed from grain-BRS 213, BRS 258 and Embrapa 48 subjected to dosages of 2.5 , 5.0 and 10.0 kGy of gamma radiation. The soybean cultivars were wrapped in plastic bags and subjected to gamma radiation source 60 Co, Gammacell 220 (Atomic Energy of Canada Ltd.), except the control. The grains irradiated induced reduction of enzyme activity. The results for the protein content of soymilk were similar, appropriate to that required by ANVISA and showed little protein solubility for cultivars BRS-258 and Embrapa48. It was concluded that the technique of irradiation beyond to keep the nutritional value of soy can contribute to the organoleptic quality of soymilk. (author)

  13. Lipoxygenase activity of soybean and protein evaluation of soy milk produced from irradiated grains

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Erica A., E-mail: ericabarros@fca.unesp.br [UNESP - Fazenda Experimental Lageado, Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas; Broetto, Fernando, E-mail: broetto@ibb.unesp.br [UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Quimica e Bioquimica; Costa, Vladimir E., E-mail: vladimir@ibb.unesp.br [UNESP - Universidade Estadual Paulista Julio de Mesquita Filho, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Fisica e Biofisica

    2011-07-01

    Soybean and its derivative are considered as a functional food because it has high quality protein and are used for the prevention of chronic degenerative diseases. The irradiation technique is used in soybeans to increase shelf life and avoid problems in plant products consumed raw or processed. However, the controversy in the literature that the irradiation dose up 10 kGy food can alter the functional properties and structures of macronutrients. With the prospect of more information on the use of radiation on soybeans, the objective of this study was to determine the activity of lipoxygenase in soybeans and to evaluate possible changes in the protein content of soymilk processed from grain-BRS 213, BRS 258 and Embrapa 48 subjected to dosages of 2.5 , 5.0 and 10.0 kGy of gamma radiation. The soybean cultivars were wrapped in plastic bags and subjected to gamma radiation source {sup 60}Co, Gammacell 220 (Atomic Energy of Canada Ltd.), except the control. The grains irradiated induced reduction of enzyme activity. The results for the protein content of soymilk were similar, appropriate to that required by ANVISA and showed little protein solubility for cultivars BRS-258 and Embrapa48. It was concluded that the technique of irradiation beyond to keep the nutritional value of soy can contribute to the organoleptic quality of soymilk. (author)

  14. Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil.

    Science.gov (United States)

    Marques, Luiz H; Santos, Antonio C; Castro, Boris A; Storer, Nicholas P; Babcock, Jonathan M; Lepping, Miles D; Sa, Verissimo; Moscardini, Valéria F; Rule, Dwain M; Fernandes, Odair A

    2018-01-01

    Field-scale studies that examine the potential for adverse effects of Bt crop technology on non-target arthropods may supplement data from laboratory studies to support an environmental risk assessment. A three year field study was conducted in Brazil to evaluate potential for adverse effects of cultivating soybean event DAS-81419-2 that produces the Cry1Ac and Cry1F proteins. To do so, we examined the diversity and abundance of non-target arthropods (NTAs) in Bt soybean in comparison with its non-Bt near isoline, with and without conventional insecticide applications, in three Brazilian soybean producing regions. Non-target arthropod abundance was surveyed using Moericke traps (yellow pan) and pitfall trapping. Total abundance (N), richness (S), Shannon-Wiener (H'), Simpson's (D) and Pielou's evenness (J) values for arthropod samples were calculated for each treatment and sampling period (soybean growth stages). A faunistic analysis was used to select the most representative NTAs which were used to describe the NTA community structure associated with soybean, and to test for effects due to the treatments effects via application of the Principal Response Curve (PRC) method. Across all years and sites, a total of 254,054 individuals from 190 taxa were collected by Moericke traps, while 29,813 individuals from 100 taxa were collected using pitfall traps. Across sites and sampling dates, the abundance and diversity measurements of representative NTAs were not significantly affected by Bt soybean as compared with non-sprayed non-Bt soybean. Similarly, community analyses and repeated measures ANOVA, when applicable, indicated that neither Bt soybean nor insecticide sprays altered the structure of the NTA communities under study. These results support the conclusion that transgenic soybean event DAS-81419-2 producing Cry1Ac and Cry1F toxins does not adversely affect the NTA community associated with soybean.

  15. Amino acids digestibility of pelleted microparticle protein of fish meal and soybean meal in broiler chickens

    Directory of Open Access Journals (Sweden)

    N. Suthama

    2018-05-01

    Full Text Available Commom protein sources for poultry, fish meal and soybean meal, were ground to obtain reduced particle size. The particle was then dissolved in distilled water (1 : 4 w/v, and added with 2 mL virgin coconut oil for every 500 mL solution prior to ultrasound transducer (ultrasonic bath treatment to obtain protein microparticle. Reducing particle size is one possible way to increase protein utilization.180 birds were used for forced feeding and 10 other birds were plotted for endogenous correction, when they were one month and a half old. Microparticle protein of both ingredients were tested separately in either mash or pelleted forms and compared to intact protein. Completely randomized design with 3 treatments (intact, mash, and pellet and 6 replications (10 bidrs each was arranged for the respective ingredient. Protein and essential amino acid digestibilities, and calcium retention were the parameters measured. Analysis of variance continued to Duncan test were applied to statistically evaluate the data. Pelleted microparticle protein of fish meal and soybean meal, respectively, resulted in significantly (P<0.05 highest protein and amino acids digestibilities, and Ca retention although lower disgestibility of fewer amino acids was found in mash form. In conclusion, pelleted form of microparticle protein of either fish meal or soybean meal improve protein and mostly amino acids digestibilities, and calcium retention in broiler.

  16. Expression of the double-stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants.

    Science.gov (United States)

    Meng, Fanli; Li, Yang; Zang, Zhenyuan; Li, Na; Ran, Ruixue; Cao, Yingxue; Li, Tianyu; Zhou, Quan; Li, Wenbin

    2017-12-01

    The soybean pod borer [SPB; Leguminivora glycinivorella (Matsumura) (Lepidoptera: Tortricidae)] is the most important soybean pest in northeastern Asia. Silencing genes using plant-mediated RNA-interference is a promising strategy for controlling SPB infestations. The ribosomal protein P0 is important for protein translation and DNA repair in the SPB. Thus, transferring P0 double-stranded RNA (dsRNA) into plants may help prevent SPB-induced damage. We investigated the effects of SpbP0 dsRNA injections and SpbP0 dsRNA-expressing transgenic soybean plants on the SPB. Larval mortality rates were greater for SpbP0 dsRNA-injected larvae (96%) than for the control larvae (31%) at 14 days after injections. Transgenic T 2 soybean plants expressing SpbP0 dsRNA sustained less damage from SPB larvae than control plants. In addition, the expression level of the SpbP0 gene decreased and the mortality rate increased when SPB larvae were fed on T 3 transgenic soybean pods. Moreover, the surviving larvae were deformed and exhibited inhibited growth. Silencing SpbP0 expression is lethal to the SPB. Transgenic soybean plants expressing SpbP0 dsRNA are more resistant to the SPB than wild-type plants. Thus, SpbP0 dsRNA-expressing transgenic plants may be useful for controlling insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Replacement of soybean meal in compound feed by European protein sources : effects on carbon footprint

    NARCIS (Netherlands)

    Boer, de H.C.; Krimpen, van M.M.; Blonk, H.; Tyszler, M.

    2014-01-01

    The overall aim was to investigate if soybean products from South American can be replaced by protein sources produced in Europe in a sustainable way. Based on data from literature, and based on the systematics of the FeedPrint programme, the nutritional value and the carbon footprint (CFP) of these

  18. Increasing intake of soybean protein or casein, but not cod meal, reduces nephrocalcinosis in female rats.

    NARCIS (Netherlands)

    Zhang, X.; Beynen, A.C.

    1992-01-01

    Female weanling rats were fed diets with soybean protein, casein or cod meal at 171, 342 or 513 mmol nitrogen/100 g for 3 wk. The diets were isonitrogenous and balanced for fat, cholesterol, calcium, magnesium and phosphorus. Cod meal feeding at 171 and 342 mmol nitrogen/100 g diet produced lower

  19. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications

    NARCIS (Netherlands)

    Vaz, C.M.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al2O3) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity

  20. Ternary diagram of extract proteins / solvent systems: Sesame, soybean and lupine proteins

    Directory of Open Access Journals (Sweden)

    Mohamed, S. S.

    2004-09-01

    Full Text Available Solvent extraction as a method of extracting protein from oilseed meals offers the advantage of higher efficiency. Unfortunately, the published literature points to the gap in the work concerned with the necessary equilibrium diagram to design due process equipment for such extracts. Initiated by this lack of basic knowledge, the present study has been undertaken to provide the equilibrium data for three different ternary systems, namely: sesame protein / sodium hydroxide solution system, soybean protein / sodium hydroxide solution system and lupine protein / sodium hydroxide solution system. These oilseed meals were selected because of their high protein content (53.4 %, 46.2 % and 42.3 % protein, respectively. The study also concentrated on the evaluation of the major parameters affecting the extraction process, i.e. the normality of the sodium hydroxide solution used as extracting solvent and the initial oilseed solvent to meal feeding ratio. The results obtained indicate that the best normality of sodium hydroxide solution used for extracting soybean and lupine protein is 0.02N, while 0.04N solution is required for extracting sesame protein. Also, operating at a liquid to solid feed ratio of 30:1 and 50:1 for soybean, sesame and lupine, respectively, is enough to reach a high protein extract. Correlations were presented for each locus of under flow compositions, graphically acquired, and the data are compared with those calculated by analytical solutions.La extracción con disolventes es un método de extracción de proteínas de las harinas de semillas oleaginosas que ofrece la ventaja de su elevada eficacia. Desafortunadamente, la bibliografía coincide en el vacío existente con respecto a los diagramas de equilibrio necesarios para el diseño de los equipos adecuados. Debido a esta falta de conocimientos, el presente estudio se ha llevado a cabo para obtener datos de tres sistemas ternarios: sistema proteína de sésamo / disolución de

  1. Identification of marker proteins for the adulteration of meat products with soybean proteins by multidimensional liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Leitner, Alexander; Castro-Rubio, Florentina; Marina, Maria Luisa; Lindner, Wolfgang

    2006-09-01

    Soybean proteins are frequently added to processed meat products for economic reasons and to improve their functional properties. Monitoring of the addition of soybean protein to meat products is of high interest due to the existence of regulations forbidding or limiting the amount of soybean proteins that can be added during the processing of meat products. We have used chromatographic prefractionation on the protein level by perfusion liquid chromatography to isolate peaks of interest from extracts of soybean protein isolate (SPI) and of meat products containing SPI. After enzymatic digestion using trypsin, the collected fractions were analyzed by nanoflow liquid chromatography-tandem mass spectrometry. Several variants and subunits of the major seed proteins, glycinin and beta-conglycinin, were identified in SPI, along with two other proteins. In soybean-protein-containing meat samples, different glycinin A subunits could be identified from the peak discriminating between samples with and without soybean proteins added. Among those, glycinin G4 subunit A4 was consistently found in all samples. Consequently, this protein (subunit) can be used as a target for new analytical techniques in the course of identifying the addition of soybean protein to meat products.

  2. Replacement of fish meal by protein soybean concentrate in practical diets for Pacific white shrimp

    Directory of Open Access Journals (Sweden)

    Mariana Soares

    2015-10-01

    Full Text Available ABSTRACTThe objective of this work was to evaluate the performance of Litopenaeus vannameifed different levels (0, 25, 50, 75, and 100% of soybean protein concentrate (63.07% crude protein, CP to replace fish meal-by product (61.24% CP. The study was conducted in clear water in fifteen 800 L tanks equipped with aeration systems, constant heating (29 ºC, and daily water exchange (30%. Each tank was stocked with 37.5 shrimp/m3 (3.03±0.14 g. Feed was supplied four times a day, at 6% of the initial biomass, adjusted daily. After 42 days, the weight gain of shrimp fed diets with 0 and 25% protein replacement was higher than that observed in shrimp fed 100% replacement, and there were no differences among those fed the other diets. Feed efficiency and survival did not differ among shrimp fed different protein replacements. There was a negative linear trend for growth parameters and feed intake as protein replacement with soybean protein concentrate increased. Fish meal by-product can be replaced by up to 75% of soybean protein concentrate, with no harm to the growth of Pacific white shrimp.

  3. Quantification of anti-nutritional factors and their correlations with protein and oil in soybeans

    Directory of Open Access Journals (Sweden)

    RAFAEL D. BUENO

    Full Text Available ABSTRACT Soybeans contain about 30% carbohydrate, mainly consisting of non-starch polysaccharides (NSP and oligosaccharides. NSP are not hydrolyzed in the gastrointestinal tract of monogastric animals. These NSP negatively affect the development of these animals, especially the soluble fraction. This work aimed to establish a method to quantify NSP in soybeans, using high performance liquid chromatography (HPLC, and to estimate correlations between NSP, oligosaccharides, protein and oil. Sucrose, raffinose + stachyose, soluble and insoluble NSP contents were determined by HPLC. Oil and protein contents were determined by near-infrared spectroscopy (NIRS. The soluble PNAs content showed no significant correlation with protein, oil, sucrose and raffinose + stachyose contents, but oligosaccharides showed a negative correlation with protein content. These findings open up the possibility of developing cultivars with low soluble NSP content, aiming to develop feed for monogastric animals.

  4. Quantification of anti-nutritional factors and their correlations with protein and oil in soybeans.

    Science.gov (United States)

    Bueno, Rafael D; Borges, Leandro L; God, Pedro I V Good; Piovesan, Newton D; Teixeira, Arlindo I; Cruz, Cosme Damião; Barros, Everaldo G DE

    2018-01-01

    Soybeans contain about 30% carbohydrate, mainly consisting of non-starch polysaccharides (NSP) and oligosaccharides. NSP are not hydrolyzed in the gastrointestinal tract of monogastric animals. These NSP negatively affect the development of these animals, especially the soluble fraction. This work aimed to establish a method to quantify NSP in soybeans, using high performance liquid chromatography (HPLC), and to estimate correlations between NSP, oligosaccharides, protein and oil. Sucrose, raffinose + stachyose, soluble and insoluble NSP contents were determined by HPLC. Oil and protein contents were determined by near-infrared spectroscopy (NIRS). The soluble PNAs content showed no significant correlation with protein, oil, sucrose and raffinose + stachyose contents, but oligosaccharides showed a negative correlation with protein content. These findings open up the possibility of developing cultivars with low soluble NSP content, aiming to develop feed for monogastric animals.

  5. Enzymatic Hydrolysis Does Not Reduce the Biological Reactivity of Soybean Proteins for All Allergic Subjects.

    Science.gov (United States)

    Panda, Rakhi; Tetteh, Afua O; Pramod, Siddanakoppalu N; Goodman, Richard E

    2015-11-04

    Many soybean protein products are processed by enzymatic hydrolysis to attain desirable functional food properties or in some cases to reduce allergenicity. However, few studies have investigated the effects of enzymatic hydrolysis on the allergenicity of soybean products. In this study the allergenicity of soybean protein isolates (SPI) hydrolyzed by Alcalase, trypsin, chymotrypsin, bromelain, or papain was evaluated by IgE immunoblots using eight soybean-allergic patient sera. The biological relevance of IgE binding was evaluated by a functional assay using a humanized rat basophilic leukemia (hRBL) cell line and serum from one subject. Results indicated that hydrolysis of SPI by the enzymes did not reduce the allergenicity, and hydrolysis by chymotrypsin or bromelain has the potential to increase the allergenicity of SPI. Two-dimensional (2D) immunoblot and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the chymotrypsin-hydrolyzed samples indicated fragments of β-conglycinin protein are responsible for the apparent higher allergenic potential of digested SPI.

  6. Replacing soybean meal with gelatin extracted from cow skin and corn protein concentrate as a protein source in broiler diets.

    Science.gov (United States)

    Khalaji, S; Manafi, M; Olfati, Z; Hedyati, M; Latifi, M; Veysi, A

    2016-02-01

    Two experiments were conducted to investigate the effects of replacing soybean meal with gelatin extracted from cow skin and corn protein concentrate as a protein source in broiler diets. Experiments were carried out as a completely randomized design where each experiment involved 4 treatments of 6 replicates and 10 chicks in each pen. Soybean meal proteins in a corn-soy control diet were replaced with 15, 30, and 45% of cow skin gelatin (CSG) or corn protein concentrate (CPC), respectively, in experiments 1 and 2. BW and cumulative feed intake were measured at 7, 21, and 42 d of age. Blood characteristics, relative organs weight and length, ileal digesta viscosity, ileal morphology, and cecal coliform and Salmonella population were measured at 42 d of age. Apparent total tract digestibility of protein was determined during 35 to 42 d of age. Replacement of soybean meal with CSG severely inhibited BW gain, decreased feed intake, and increased FCR in broilers during the experimental period (P ≤ 0.01). The inclusion of CPC reduced BW and increased FCR significantly (P ≤ 0.05) at 21 and 42 d of age without any consequence in feed intake. Protein digestibility was reduced and ileal digesta viscosity was increased linearly by increasing the amount of CSG and CPC in the control diet (P ≤ 0.01). Replacement of soybean meal with CSG and CPC did not significantly alter blood cell profile and plasma phosphorus, creatinine, blood urea nitrogen, Aspartate transaminase, and HDL and LDL cholesterol concentration. The inclusion of CSG linearly (P ≤ 0.05) increased plasma uric acid concentration and alkaline phosphatase activity. Triglyceride and cholesterol levels were decreased significantly (P ≤ 0.05) when the amount of CSG replacement was 15%. The results of this experiment showed that using CSG and CPC negatively affects broiler performance and therefore is not a suitable alternative to soybean meal in commercial diets. © 2015 Poultry Science Association Inc.

  7. Corn Storage Protein - A Molecular Genetic Model

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Joachim [Rutgers Univ., Piscataway, NJ (United States)

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  8. Factors affecting antioxidant activity of soybean meal and caseine protein hydrolysates

    International Nuclear Information System (INIS)

    Korczak, J.

    1998-01-01

    Antioxidative activity of protein hydrolysates was dependent on the raw material, condition of hydrolysis and lipid substrate used in model systems. Soybean meal hydrolysate was more active in lard and in linoleic acid emulsion than caseine hydrolysate, whereas caseine was more active in vegetable oils. Antioxidant activity of evaluated protein hydrolysates in all lipid systems, with or without oxidation catalysts, suggests them as natural food additives for lipid stabilization, thus for improvement of its nutritional value and sensory properties

  9. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  10. In Vitro Ruminal Degradability of Soybean Meal Protein Protected with Natural Tannin

    Science.gov (United States)

    Prasetiyono, B. W. H. E.; Subrata, A.; Tampoebolon, B. I. M.; Surono; Widiyanto

    2018-02-01

    The influence of tannin from tea waste and gambier as natural tannin sources on ruminal protein degradability was studied in this investigation. The soybean meal was used as protein source in this investigation. There were three treatments in this investigation mainly without protection (NT); protection with tea waste (Tt); and protection with gambier (Tg). The measured parameters consisted of in vitro dry matter digestibility (IVDMD), in vitro organic matter digestibility (IVOMD), and the ruminal fermentation characteristics. Results of this experiment showed that protection with tannin from tea waste as well as gambier increased (pRUP) in Tt and Tg group was higher than that in NT group (66.29 and 69.20 vs 51.10%). The ruminal protozoa population decreased (pRUP. The ruminal protozoa population and ammonia concentration, on the other hand, were decreased by tannin protection from those tannin natural sources. The natural tannin from gambier was the most effective protection agent for soybean meal protein.

  11. THE EFFECT OF SOME RHIZOBACTERIAN STRAINS ON SOLUBLE PROTEINS CONTENT IN SOYBEANS (GLYCINE MAX L. MERR.

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2007-08-01

    Full Text Available Now it is an accepted fact that plant growth-promoting rhizobacteria (PGPR can increase the productivity of several crops. The main objective of the present study was to find if there are any differences in protein content in the seeds of soybean (Glycine max L. MERR.. Using spectrophotometric methods for analyzing the protein contents and electrophoretic methods for qualitative analysis it was observed that no major modifications occur in protein spectrum. Looking at the quantitative side there was a small improvement in protein quantity.

  12. Effect of pods' position on the protein content in soybean grains at low latitude

    Directory of Open Access Journals (Sweden)

    Paulo Victor Gomes Sales

    2016-12-01

    Full Text Available Soybean grains have a high protein content, which can vary depending on various factors, as the pods' position throughout the plant. In this sense, aiming to study the effect of pods' position on the main stem of the plant for grades of soybean proteins, It has been accomplished in the years 2010 and 2011, a trial with ten soybean cultivars in the experimental area of the Federal University of Tocantins in Palmas. The experimental area was randomized blocks with 30 treatments and three replications. Treatments were arranged in one a split plot, being allocated in Ten cultivars plots (BRS Valuable, P98Y51, P98Y70, P99R03, M8527RR, M8925RR, M9144RR, M8867RR, and TMG103RR, and the sub plots In the pods' position on the plant (upper third, intermediate, and basal third. According to the results, we can conclude that there is variability among the pods' position. The grains located in the median and apical plant showed a trend of higher protein content. Cultivar P98Y70 showed the highest protein value. In the sampling grain for protein quantitation, it is recommended to use grains of pods located at the same position of the plant.

  13. Biomimetic materials for protein storage and transport

    Science.gov (United States)

    Firestone, Millicent A [Elmhurst, IL; Laible, Philip D [Villa Park, IL

    2012-05-01

    The invention provides a method for the insertion of protein in storage vehicles and the recovery of the proteins from the vehicles, the method comprising supplying isolated protein; mixing the isolated protein with a fluid so as to form a mixture, the fluid comprising saturated phospholipids, lipopolymers, and a surfactant; cycling the mixture between a first temperature and a second temperature; maintaining the mixture as a solid for an indefinite period of time; diluting the mixture in detergent buffer so as to disrupt the composition of the mixture, and diluting to disrupt the fluid in its low viscosity state for removal of the guest molecules by, for example, dialysis, filtering or chromatography dialyzing/filtering the emulsified solid.

  14. Characterization of proteins in soybean roots under flooding and drought stresses.

    Science.gov (United States)

    Oh, MyeongWon; Komatsu, Setsuko

    2015-01-30

    Flooding and drought affect soybean growth because soybean is a stress-sensitive crop. In 2-day-old plants exposed to 2-day flooding or drought, the fresh weight of roots was markedly suppressed, although the root morphology clearly differed between two conditions. To understand the response mechanisms of soybean to flooding and drought stresses, a gel-free proteomic technique was used. A total of 97 and 48 proteins were significantly changed in response to flooding and drought stresses, respectively. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses. This study reported on the response mechanisms of soybean to flooding and drought stresses using the gel-free proteomic technique. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to

  15. Enrichment of trace cadmium by soybean protein for the analysis by atomic absorption method

    International Nuclear Information System (INIS)

    Musha, Soichiro; Takahashi, Yoshihisa.

    1975-01-01

    A method for enrichment of the ppb level of cadmium in water by using the coagulation of soybean protein by adding acids or its complex-forming character with heavy metal ions was investigated. After adding fixed amounts of soybean milk and 2% sodium diethyldithiocarbamate(DDTC) aqueous solution and a suitable amount of delta-gluconic lactone (delta-GL) to a sample solution, the mixture was heated to boiling in order to coagulate the protein. The coagulum(soybean curd) was separated from the suspension by centrifugation and burned to ashes with a low temperature plasma asher. Then the cadmium enriched in it was determined by atomic absorption spectrometry. Various factors such as the pH of the sample solution, the amounts of soybean milk and the collection additives, and the concentration of NaCl in the sample solution on the recovery of cadmium were examined systematically. The best recovery was obtained under the following conditions: To a certain amount of sample solution were added 30 ml of 6.34% soybean milk and a 5 ml of 2% DDTC solution, and its pH was adjusted to 5.50--5.80 by adding the suitable amounts of delta-GL (0.10 g/ml, (0.40--0.80)ml). NaCl in the sample solution tended to decrease the recovery, especially at the concentration of around 10% of NaCl solution. Under the optimum conditions, the recovery of cadmium was about 98%. The proposed method was applied to the determination of cadmium at the ppb level in sample solutions such as water, 3% NaCl solution and artifical sea water. This method was also applied to the determination of cadmium in common and industrial salts. (auth.)

  16. A study on γ-ray radiation decontamination of soybean protein product

    International Nuclear Information System (INIS)

    Zhu Jun; Chen Haijun; Li Aimei; Yang Mingcheng; Zhengzhou Univ., Zhengzhou

    2006-01-01

    Dose distribution of soybean protein product irradiated by 60 Co γ-ray with a pile-up irradiation technology was studied. The product bags were irradiated to half dose by the γ-ray source at two positions (low and high), and the second half dose was delivered in the same way to the product after position-change of the bags. Effects of the γ-ray irradiation, which included hygiene quality, physical and chemical index, functions and appearance of the soybean protein product, were investigated. The results show that decontamination of the product can be achieved by 3-5 kGy of the irradiation, with improved utilization efficiency of irradiation source and high quality of the product. (authors)

  17. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.

    Science.gov (United States)

    Nanjo, Yohei; Nakamura, Takuji; Komatsu, Setsuko

    2013-11-01

    Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.

  18. Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean.

    Science.gov (United States)

    Weber, Ricardo Luís Mayer; Wiebke-Strohm, Beatriz; Bredemeier, Christian; Margis-Pinheiro, Márcia; de Brito, Giovani Greigh; Rechenmacher, Ciliana; Bertagnolli, Paulo Fernando; de Sá, Maria Eugênia Lisei; Campos, Magnólia de Araújo; de Amorim, Regina Maria Santos; Beneventi, Magda Aparecida; Margis, Rogério; Grossi-de-Sa, Maria Fátima; Bodanese-Zanettini, Maria Helena

    2014-12-10

    Drought is by far the most important environmental factor contributing to yield losses in crops, including soybeans [Glycine max (L.) Merr.]. To address this problem, a gene that encodes an osmotin-like protein isolated from Solanum nigrum var. americanum (SnOLP) driven by the UBQ3 promoter from Arabidopsis thaliana was transferred into the soybean genome by particle bombardment. Two independently transformed soybean lines expressing SnOLP were produced. Segregation analyses indicated single-locus insertions for both lines. qPCR analysis suggested a single insertion of SnOLP in the genomes of both transgenic lines, but one copy of the hpt gene was inserted in the first line and two in the second line. Transgenic plants exhibited no remarkable phenotypic alterations in the seven analyzed generations. When subjected to water deficit, transgenic plants performed better than the control ones. Leaf physiological measurements revealed that transgenic soybean plants maintained higher leaf water potential at predawn, higher net CO2 assimilation rate, higher stomatal conductance and higher transpiration rate than non-transgenic plants. Grain production and 100-grain weight were affected by water supply. Decrease in grain productivity and 100-grain weight were observed for both transgenic and non-transgenic plants under water deficit; however, it was more pronounced for non-transgenic plants. Moreover, transgenic lines showed significantly higher 100-grain weight than non-transgenic plants under water shortage. This is the first report showing that expression of SnOLP in transgenic soybeans improved physiological responses and yield components of plants when subjected to water deficit, highlighting the potential of this gene for biotechnological applications.

  19. The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean

    Directory of Open Access Journals (Sweden)

    Shuxian Li

    2018-04-01

    Full Text Available Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla is the primary cause of Phomopsis seed decay (PSD in soybean, Glycine max (L. Merrill. This disease results in poor seed quality and is one of the most economically important seed diseases in soybean. The objectives of this study were to infer protein–protein interactions (PPI and to identify conserved global networks and pathogenicity subnetworks in P. longicolla including orthologous pathways for cell signaling and pathogenesis. The interlog method used in the study identified 215,255 unique PPIs among 3,868 proteins. There were 1,414 pathogenicity related genes in P. longicolla identified using the pathogen host interaction (PHI database. Additionally, 149 plant cell wall degrading enzymes (PCWDE were detected. The network captured five different classes of carbohydrate degrading enzymes, including the auxiliary activities, carbohydrate esterases, glycoside hydrolases, glycosyl transferases, and carbohydrate binding molecules. From the PPI analysis, novel interacting partners were determined for each of the PCWDE classes. The most predominant class of PCWDE was a group of 60 glycoside hydrolases proteins. The glycoside hydrolase subnetwork was found to be interacting with 1,442 proteins within the network and was among the largest clusters. The orthologous proteins FUS3, HOG, CYP1, SGE1, and the g5566t.1 gene identified in this study could play an important role in pathogenicity. Therefore, the P. longicolla protein interactome (PiPhom generated in this study can lead to a better understanding of PPIs in soybean pathogens. Furthermore, the PPI may aid in targeting of genes and proteins for further studies of the pathogenicity mechanisms.

  20. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko

    2017-05-10

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  1. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    Science.gov (United States)

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  2. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-01-01

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  3. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1

    Directory of Open Access Journals (Sweden)

    Sandhu Devinder

    2009-08-01

    Full Text Available Abstract Background Systemic acquired resistance (SAR is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR genes. Arabidopsis non-expressor of PR1 (NPR1 is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Results Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i PR-1 was induced following INA treatment and (ii BGL2 following infection with Pseudomonas syringae pv. tomato (Pst, and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Conclusion Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential

  4. Systemic acquired resistance in soybean is regulated by two proteins, Orthologous to Arabidopsis NPR1.

    Science.gov (United States)

    Sandhu, Devinder; Tasma, I Made; Frasch, Ryan; Bhattacharyya, Madan K

    2009-08-05

    Systemic acquired resistance (SAR) is induced in non-inoculated leaves following infection with certain pathogenic strains. SAR is effective against many pathogens. Salicylic acid (SA) is a signaling molecule of the SAR pathway. The development of SAR is associated with the induction of pathogenesis related (PR) genes. Arabidopsis non-expressor of PR1 (NPR1) is a regulatory gene of the SA signal pathway 123. SAR in soybean was first reported following infection with Colletotrichum trancatum that causes anthracnose disease. We investigated if SAR in soybean is regulated by a pathway, similar to the one characterized in Arabidopsis. Pathogenesis-related gene GmPR1 is induced following treatment of soybean plants with the SAR inducer, 2,6-dichloroisonicotinic acid (INA) or infection with the oomycete pathogen, Phytophthora sojae. In P. sojae-infected plants, SAR was induced against the bacterial pathogen, Pseudomonas syringae pv. glycinea. Soybean GmNPR1-1 and GmNPR1-2 genes showed high identities to Arabidopsis NPR1. They showed similar expression patterns among the organs, studied in this investigation. GmNPR1-1 and GmNPR1-2 are the only soybean homologues of NPR1and are located in homoeologous regions. In GmNPR1-1 and GmNPR1-2 transformed Arabidopsis npr1-1 mutant plants, SAR markers: (i) PR-1 was induced following INA treatment and (ii) BGL2 following infection with Pseudomonas syringae pv. tomato (Pst), and SAR was induced following Pst infection. Of the five cysteine residues, Cys82, Cys150, Cys155, Cys160, and Cys216 involved in oligomer-monomer transition in NPR1, Cys216 in GmNPR1-1 and GmNPR1-2 proteins was substituted to Ser and Leu, respectively. Complementation analyses in Arabidopsis npr1-1 mutants revealed that homoeologous GmNPR1-1 and GmNPR1-2 genes are orthologous to Arabidopsis NPR1. Therefore, SAR pathway in soybean is most likely regulated by GmNPR1 genes. Substitution of Cys216 residue, essential for oligomer-monomer transition of Arabidopsis NPR1

  5. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions.

    Science.gov (United States)

    Li, Dongmei; Zhao, Xue; Han, Yingpeng; Li, Wenbin; Xie, Futi

    2018-01-08

    Soybean is globally cultivated primarily for its protein and oil. The protein and oil contents of the seeds are quantitatively inherited traits determined by the interaction of numerous genes. In order to gain a better understanding of the molecular foundation of soybean protein and oil content for the marker-assisted selection (MAS) of high quality traits, a population of 185 soybean germplasms was evaluated to identify the quantitative trait loci (QTLs) associated with the seed protein and oil contents. Using specific length amplified fragment sequencing (SLAF-seq) technology, a total of 12,072 single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) ≥ 0.05 were detected across the 20 chromosomes (Chr), with a marker density of 78.7 kbp. A total of 31 SNPs located on 12 of the 20 soybean chromosomes were correlated with seed protein and oil content. Of the 31 SNPs that were associated with the two target traits, 31 beneficial alleles were identified. Two SNP markers, namely rs15774585 and rs15783346 on Chr 07, were determined to be related to seed oil content both in 2015 and 2016. Three SNP markers, rs53140888 on Chr 01, rs19485676 on Chr 13, and rs24787338 on Chr 20 were correlated with seed protein content both in 2015 and 2016. These beneficial alleles may potentially contribute towards the MAS of favorable soybean protein and oil characteristics. Copyright © 2018. Published by Elsevier Inc.

  6. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    Science.gov (United States)

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement. Copyright © 2015. Published by Elsevier Ltd.

  7. Increased Levels of Antinutritional and/or Defense Proteins Reduced the Protein Quality of a Disease-Resistant Soybean Cultivar.

    Science.gov (United States)

    Sousa, Daniele O B; Carvalho, Ana F U; Oliveira, José Tadeu A; Farias, Davi F; Castelar, Ivan; Oliveira, Henrique P; Vasconcelos, Ilka M

    2015-07-22

    The biochemical and nutritional attributes of two soybean (Glycine max (L.) Merr.) cultivars, one susceptible (Seridó) and the other resistant (Seridó-RCH) to stem canker, were examined to assess whether the resistance to pathogens was related to levels of antinutritional and/or defense proteins in the plant and subsequently affected the nutritional quality. Lectin, urease, trypsin inhibitor, peroxidase and chitinase activities were higher in the resistant cultivar. Growing rats were fed with isocaloric and isoproteic diets prepared with defatted raw soybean meals. Those on the Seridó-RCH diet showed the worst performance in terms of protein quality indicators. Based on regression analysis, lectin, trypsin inhibitor, peroxidase and chitinase appear to be involved in the resistance trait but also in the poorer nutritional quality of Seridó-RCH. Thus, the development of cultivars for disease resistance may lead to higher concentrations of antinutritional compounds, affecting the quality of soybean seeds. Further research that includes the assessment of more cultivars/genotypes is needed.

  8. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  9. Oxidative stability of rice bran, corn, canola, sunflower and soybean oils d baking process and storage of bread

    Directory of Open Access Journals (Sweden)

    Najmeh Jahani

    2016-01-01

    Full Text Available Oxidation of bread lipids during baking and storage reduces the nutritional value of the product and leads to the formation of off-flavors and off-odors. In this research, oxidative stability of rice bran, corn, canola, sunflower and soybean oils during Brotchen bread baking process and storage was evaluated. Baking process caused a significant increase in oxidative indices such as peroxide, anisidine, Totox and thiobarbitoric acid values and free fatty acid content. However, storage of breads for 6 days in room temperature did not affect the value of the indices. Generaly, the value of the indices in bread containing rice bran oil was lower than those of the other breads, which indicated the higher oxidative stability of rice bran oil in baking process and storage. Pure oils treated in simulated baking process and storage had an oxidative quality similar to that of breads. This means that bread ingridients may not have an effect on oil oxidative stability. Bread containing rice bran oil gained also higher scores in sensory evaluation, which of course were in agree with its better oxidative status.

  10. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy.

    Science.gov (United States)

    Li, Jiajia; Ding, Xianlong; Han, Shaohuai; He, Tingting; Zhang, Hao; Yang, Longshu; Yang, Shouping; Gai, Junyi

    2016-04-14

    To further elucidate the molecular mechanism of cytoplasmic male sterility (CMS) in soybean, a differential proteomic analysis was completed between the CMS line NJCMS1A and its maintainer NJCMS1B using iTRAQ-based strategy. As a result, 180 differential abundance proteins (DAPs) were identified, of which, 60 were down-regulated and 120 were up-regulated in NJCMS1A compared with NJCMS1B. Bioinformatic analysis showed that 167 DAPs were annotated in 41 Gene Ontology functional groups, 106 DAPs were classified into 20 clusters of orthologous groups of protein categories, and 128 DAPs were enrichment in 53 KEGG pathways. Fifteen differential level proteins/genes with the same expression pattern were identified in the further conjoint analysis of DAPs and the previously reported differential expression genes. Moreover, multiple reaction monitoring test, qRT-PCR analysis and enzyme activity assay validated that the iTRAQ results were reliable. Based on functional analysis of DAPs, we concluded that male sterility in NJCMS1A might be related to insufficiencies in energy supply, unbalance of protein synthesis and degradation, disruption of flavonoid synthesis, programmed cell death, abnormalities of substance metabolism, etc. These results might facilitate our understanding of the molecular mechanisms behind CMS in soybean. Soybean is an important global crop that provides protein and oil. Heterosis is a significantly potential approach to increase the yield of soybean. Cytoplasmic male sterility (CMS) plays a vital role in the production of hybrid seeds. However, the genetic and molecular mechanisms of male sterility in soybean still need to be further elucidated. In the present paper, a differential proteomic analysis was carried out and the results showed that several key proteins involved in key pathways were associated with male sterility in soybean. This work provides a new insight to understand the genetic and molecular mechanisms underlying CMS in soybean

  11. Potassium fertilization and sowing seasons on protein yield in soybean cultivars

    Directory of Open Access Journals (Sweden)

    Maria D. de Lima

    Full Text Available ABSTRACT The present study was conducted in order to determine the effects of potassium (K fertilizer doses on the protein yield of different soybean cultivars, sown in two seasons, in the agricultural year 2013/14 (12/05/13 and 01/23/14, in Palmas-TO, Brazil. The experimental design, in each sowing season, was randomized blocks with 60 treatments and three replicates. The treatments were arranged in a 10 × 6 factorial scheme, represented by ten cultivars (BRS 325RR, M 9144RR, BRS 33871RR, TMG 1288RR, BRS 333RR, P 98Y70RR, TMG 1180RR, BRS 9090RR, M 8766RR and BRS 8990RR and six doses of K fertilizer (0, 40, 80, 120, 160 and 200 kg ha-1 K2O. The late sowing decreased the protein yield. K fertilization increased the protein yield in soybean cultivars. The BRS 9090RR, BRS 33871RR and BRS 333RR cultivars, at high and low K doses, were the most promising for the protein yield, and their cultivation is strategic from the economic and environmental point of view.

  12. Effects of the Replacement of Soybean Meal with Pea as Dietary Protein Source on the Serum Protein Fractions of Broilers

    Directory of Open Access Journals (Sweden)

    NT Bingol

    Full Text Available ABSTRACT The aim of this study was to determine the effects of the replacement of different levels of protein derived from soybean meal with that from peas in broiler diets on serum protein fractions. A corn-soybean meal basal diet was formulated as the control diet (Control=C (NRC, 1994, and then pea was added to the control diet to replace 20% (P20 or 40% (P40 of the crude protein of the control diet. The diets were randomly fed to 12 pens per treatment, each housing five birds, for 42 days. Blood samples were collected from 36 birds (3 birds x 4 pens x3 treatments and the serum protein fractions were separated. Gamma-globulin percentage was higher in group P20 compared with C and P40 groups. Total protein, beta-globulin, and gamma-globulin concentrations were significantly higher in group P20 compared with those of both control and P40 group (p<0.05.

  13. Comparison of Neuroprotective and Cognition-Enhancing Properties of Hydrolysates from Soybean, Walnut, and Peanut Protein

    Directory of Open Access Journals (Sweden)

    Wenzhi Li

    2016-01-01

    Full Text Available Hydrolysates were prepared from soybean, walnut, and peanut protein by papain, respectively. Their amino acid compositions and molecular weight distributions, the effects of various hydrolysates on H2O2-induced injury PC12 cells, and cognition of mice were investigated, respectively. Results showed that the three hydrolysates were dominated by the peptides with 1–3 KDa with large amount of neurotrophic amino acids. All the hydrolysates exhibited much stronger inhibitory activity against H2O2-induced toxicity than cerebrolysin, and soy protein hydrolysate showed the highest activity. Moreover, the hydrolysates also could reduce the rate of nonviable apoptotic cells at the concentration of 2 mg/mL. The test of animal’s cognition indicated that three hydrolysates could present partly better effect of improving recurred memory ability of normal mice and consolidated memory ability of anisodine-treated mice than piracetam. Therefore, soybean, walnut, and peanut protein hydrolysates were recommended as a potential food raw material for prevention or treatment of neurodegenerative disorders.

  14. Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians.

    Science.gov (United States)

    Lin, Muyang; Tay, Siang Hong; Yang, Hongshun; Yang, Bao; Li, Hongliang

    2017-08-15

    To evaluate the feasibility of substituting eggs in yellow cake by a mixture of soybean proteins, plant polysaccharides, and emulsifiers, the batter properties, including specific gravity and viscosity; cake properties, including specific volume, texture, colour, moisture, microstructures, and structural properties of starch and glutens of the replaced cake and traditional cake containing egg, were evaluated. Replacing eggs with a soy protein isolate and 1% mono-, di-glycerides yielded a similar specific volume, specific gravity, firmness and moisture content (1.92 vs. 2.08cm 3 /g, 0.95 vs. 1.03, 319.8 vs. 376.1g, and 28.03% vs. 29.01%, respectively) compared with the traditional cakes baked with eggs. Structurally, this formulation comprised dominant gliadin aggregates in the size range of 100-200nm and glutenin networking structures containing fewer but larger porosities. The results suggest that a mixture of soybean proteins and emulsifier is a promising substitute for eggs in cakes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Isolation of soybean protein P34 from oil bodies using hydrophobic interaction chromatography

    Directory of Open Access Journals (Sweden)

    Seidel-Morgenstern Andreas

    2008-03-01

    Full Text Available Abstract Background Soybeans play a prominent role in allergologic research due to the high incidence of allergic reactions. For detailed studies on specific proteins it is necessary to have access to a large amount of pure substance. Results In this contribution, a method for purifying soybean (Glycine max protein P34 (also called Gly m Bd 30 K or Gly m 1 using hydrophobic interaction chromatography is presented. After screening experiments using 1 mL HiTrap columns, Butyl Sepharose 4 FF was selected for further systematic investigations. With this stationary phase, suitable operation conditions for two-step gradient elution using ammonium sulphate were determined experimentally. The separation conditions obtained in a small column could be scaled up successfully to column volumes of 7.5 and 75 mL, allowing for high product purities of almost 100% with a yield of 27% for the chromatographic separation step. Conditions could be simplified further using a onestep gradient, which gave comparable purification in a shorter process time. The identity of the purified protein was verified using in-gel digestion and mass spectrometry as well as immunological techniques. Conclusion With the technique presented it is possible to produce, within a short timeframe, pure P34, suitable for further studies where an example antigen is needed.

  16. A SNARE-Like Protein and Biotin Are Implicated in Soybean Cyst Nematode Virulence.

    Directory of Open Access Journals (Sweden)

    Sadia Bekal

    Full Text Available Phytoparasitic nematodes that are able to infect and reproduce on plants that are considered resistant are referred to as virulent. The mechanism(s that virulent nematodes employ to evade or suppress host plant defenses are not well understood. Here we report the use of a genetic strategy (allelic imbalance analysis to associate single nucleotide polymorphisms (SNPs with nematode virulence genes in Heterodera glycines, the soybean cyst nematode (SCN. To accomplish this analysis, a custom SCN SNP array was developed and used to genotype SCN F3-derived populations grown on resistant and susceptible soybean plants. Three SNPs reproducibly showed allele imbalances between nematodes grown on resistant and susceptible plants. Two candidate SCN virulence genes that were tightly linked to the SNPs were identified. One SCN gene encoded biotin synthase (HgBioB, and the other encoded a bacterial-like protein containing a putative SNARE domain (HgSLP-1. The two genes mapped to two different linkage groups. HgBioB contained sequence polymorphisms between avirulent and virulent nematodes. However, the gene encoding HgSLP-1 had reduced copy number in virulent nematode populations and appears to produce multiple forms of the protein via intron retention and alternative splicing. We show that HgSLP-1 is an esophageal-gland protein that is secreted by the nematode during plant parasitism. Furthermore, in bacterial co-expression experiments, HgSLP-1 co-purified with the SCN resistance protein Rhg1 α-SNAP, suggesting that these two proteins physically interact. Collectively our data suggest that multiple SCN genes are involved in SCN virulence, and that HgSLP-1 may function as an avirulence protein and when absent it helps SCN evade host defenses.

  17. MALDI based identification of soybean protein markers--possible analytical targets for allergen detection in processed foods.

    Science.gov (United States)

    Cucu, Tatiana; De Meulenaer, Bruno; Devreese, Bart

    2012-02-01

    Soybean (Glycine max) is extensively used all over the world due to its nutritional qualities. However, soybean is included in the "big eight" list of food allergens. According to the EU directive 2007/68/EC, food products containing soybeans have to be labeled in order to protect the allergic consumers. Nevertheless, soybeans can still inadvertently be present in food products. The development of analytical methods for the detection of traces of allergens is important for the protection of allergic consumers. Mass spectrometry of marker proteolytical fragments of protein allergens is growingly recognized as a detection method in food control. However, quantification of soybean at the peptide level is hindered due to limited information regarding specific stable markers derived after proteolytic digestion. The aim of this study was to use MALDI-TOF/MS and MS/MS as a fast screening tool for the identification of stable soybean derived tryptic markers which were still identifiable even if the proteins were subjected to various changes at the molecular level through a number of reactions typically occurring during food processing (denaturation, the Maillard reaction and oxidation). The peptides (401)Val-Arg(410) from the G1 glycinin (Gly m 6) and the (518)Gln-Arg(528) from the α' chain of the β-conglycinin (Gly m 5) proved to be the most stable. These peptides hold potential to be used as targets for the development of new analytical methods for the detection of soybean protein traces in processed foods. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. SIFAT HIPOGLISEMIK PAKAN TINGGI PROTEIN KEDELAI PADA MODEL DIABEIK INDUKSI ALLOXAN [Hypoglicemic Property of a High-Protein Soybean Based Feed in Model alloxan Induced Diabetic

    Directory of Open Access Journals (Sweden)

    C. Retnaningsih 1

    2001-08-01

    Full Text Available Hypoglicemic properties of soybean protein were evaluated in alloxan-induced diabetic rats. Twenty eight mature male Sprague Dawley (SD rats (250-300g were used and divided into four groups of seven rats. They were: 1 Placebo Standars (PS; 2 Alloxan Injection Standard (AS; 3 Alloxan injection soybean protein 250% (APK 250 dan 4 Alloxen injection soybean protein 100% (APK 100. One group was injected with aquabidest (Placebo and three group were diabetic induced by alloxan injection (80 mg/kg of body weight by intramuscular injection.Placebo-Standard (PS and Alloxan injection Standar (AS groups were fed standard diet whereas APK 250 100 were fed soybean protein deit for 42 days. Concentration of serum glucose was determined before incention (0day and 1, 2, 143, 21, 28, 35, and 42 days after injection.The result showed that alloxan injection increased the level of serum glucose. Bioassay experiment demonstrated that diet on high conceration of soybean protein (250% decreased the level of serum glucose from 351,44 mg/dl to 230,62 mg/dl (34,37% while soy protein 100% descreased the level of serum glucose.

  19. Characterization of soybean genomic features by analysis of its expressed sequence tags

    DEFF Research Database (Denmark)

    Tian, Ai-Guo; Wang, Jun; Cui, Peng

    2004-01-01

    to be fast-evolving. Soybean unigenes with no match to genes within the Arabidopsis genome were identified as soybean-specific genes. These genes were mainly involved in nodule development and the synthesis of seed storage proteins. In addition, we also identified 61 genes regulated by salicylic acid, 1...

  20. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue

    Directory of Open Access Journals (Sweden)

    Chaline Caren Coghetto

    Full Text Available Abstract In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87 g L-1, whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59 g L-1, corresponding to a productivity of 1.46 g L-1 h-1. This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors.

  1. Lactobacillus plantarum BL011 cultivation in industrial isolated soybean protein acid residue.

    Science.gov (United States)

    Coghetto, Chaline Caren; Vasconcelos, Carolina Bettker; Brinques, Graziela Brusch; Ayub, Marco Antônio Záchia

    In this study, physiological aspects of Lactobacillus plantarum BL011 growing in a new, all-animal free medium in bioreactors were evaluated aiming at the production of this important lactic acid bacterium. Cultivations were performed in submerged batch bioreactors using the Plackett-Burman methodology to evaluate the influence of temperature, aeration rate and stirring speed as well as the concentrations of liquid acid protein residue of soybean, soy peptone, corn steep liquor, and raw yeast extract. The results showed that all variables, except for corn steep liquor, significantly influenced biomass production. The best condition was applied to bioreactor cultures, which produced a maximal biomass of 17.87gL -1 , whereas lactic acid, the most important lactic acid bacteria metabolite, peaked at 37.59gL -1 , corresponding to a productivity of 1.46gL -1 h -1 . This is the first report on the use of liquid acid protein residue of soybean medium for L. plantarum growth. These results support the industrial use of this system as an alternative to produce probiotics without animal-derived ingredients to obtain high biomass concentrations in batch bioreactors. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Digestible protein requirement for Nile tilapia fed with rations based on soybean meal and corn

    Directory of Open Access Journals (Sweden)

    William Franco Carneiro

    2017-09-01

    Full Text Available The objective was to determine the requirement of digestible protein (DP for Nile tilapia fed with diets based on soybean meal and corn. Two hundred Nile tilapia juveniles, sexually reversed, were used for a trial period of 100 days. The animals were distributed in 20 boxes of 1000 L-1 in a random design with five treatments and four replications, the boxes were connected to a water recirculation system. Five isoenergetic diets were tested with different levels of digestible protein (DP: 20, 25, 30, 35 and 40%. At the end of the experimental period were evaluated the zootechnical performance data. A quadratic effect (p < 0.05 was shown to parameters of final weight, weight gain, final length, fillet yield and visceral fat with the best points that ranged from 28.3 to 29.9% of DP. The largest area of hepatocytes was found to the lowest levels of DP in the diet (20 and 25% compared to the other levels, which were similar. Thus, Nile tilapia has adequate performance for the consumption of diets based on soybean and corn meal and the recommended level is 28.3% of PD in these conditions.

  3. Heat-treatment reduces anti-nutritional phytochemicals and maintains protein quality in genetically improved hulled soybean flour

    Directory of Open Access Journals (Sweden)

    Ariela Werneck de Carvalho

    2013-06-01

    Full Text Available The soybean is a protein source of high biological value. However, the presence of anti-nutritional factors affects its protein quality and limits the bioavailability of other nutrients. The effect of heat-treatment, 150 ºC for 30 minutes, on hulled and hull-less soybean flour from the cultivar UFVTN 105AP on urease, trypsin inhibitor activity, protein solubility, amino acid profile, and in vivo protein quality was investigated. The treatment reduced the trypsin inhibitor activity and urease, but it did not affect protein solubility. Protein Efficiency Coefficient (PER values of the flours were similar, and the PER of the hull-less soybean flour did not differ from casein. The Net Protein Ratio (NPR did not differ between the experimental groups. The True Digestibility (TD of the flours did not differ, but both were lower in casein and the Protein Digestibility Corrected Amino Acid Score (PDCCAS was lower than the TD, due to limited valine determined by the chemical score. Therefore, the flours showed reduced anti-nutritional phytochemicals and similar protein quality, and therefore the whole flours can be used as a source of high quality protein.

  4. An assessment of soybeans and other vegetable proteins as source of salmonella contamination in pig production

    Directory of Open Access Journals (Sweden)

    Häggblom Per

    2010-02-01

    Full Text Available Abstract Background The impact of salmonella contaminated feed ingredients on the risk for spreading salmonella to pigs was assessed in response to two incidences when salmonella was spread by feed from two feed mills to 78 swine producing herds. Methods The assessment was based on results from the salmonella surveillance of feed ingredients before introduction to feed mills and from HACCP - based surveillance of the feed mills. Results from the mills of the Company (A that produced the salmonella contaminated feed, were by the Chi. Square test compared to the results from all the other (B - E feed producers registered in Sweden. Isolated serovars were compared to serovars from human cases of salmonellosis. Results Salmonella (28 serovars was frequently isolated from imported consignments of soybean meal (14.6% and rape seed meal (10.0%. Company A largely imported soybean meal from crushing plants with a history of unknown or frequent salmonella contamination. The risk for consignments of vegetable proteins to be salmonella contaminated was 2.4 times (P Conclusions Salmonella contaminated feed ingredients are an important source for introducing salmonella into the feed and food chain. Effective HACCP-based control and associated corrective actions are required to prevent salmonella contamination of feed. Efforts should be taken to prevent salmonella contamination already at the crushing plants. This is challenge for the EU - feed industry due to the fact that 98% of the use of soybean/meal, an essential feed ingredient, is imported from crushing plants of third countries usually with an unknown salmonella status.

  5. Protein construct storage: Bayesian variable selection and prediction with mixtures.

    Science.gov (United States)

    Clyde, M A; Parmigiani, G

    1998-07-01

    Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.

  6. Protective effect of soybeans as protein source in the diet against cadmium-aorta redox and morphological alteration

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Díaz, Matías F.F.; Acosta, Mariano; Mohamed, Fabián H.; Ferramola, Mariana L.; Oliveros, Liliana B.; Gimenez, María S., E-mail: marisofigime44@gmail.com

    2013-11-01

    We investigated the effects of cadmium exposition on thoracic aorta redox status and morphology, and the putative protective effect of soybeans in the diet. Male Wistar rats were separated into 6 groups: 3 fed with a diet containing casein and 3 containing soybeans, as protein source. Within each protein group, one was given tap water (control) and the other two tap water containing 15 and 100 ppm of Cd{sup 2+}, respectively, for two months. In rats fed with casein diet, 15 ppm of Cd induced an increase of thiobarbituric acid-reactive substances (TBARS), and of the catalase (CAT) and glutathione peroxidase (GPx) activities, which were even higher with 100 ppm of Cd{sup 2+}, in aorta. Also, 100 ppm Cd{sup 2+} exposure increased superoxide dismutase (CuZnSOD) activity; CAT, GPX, SOD, Nrf2 and metallothioneine II mRNA expressions and CAT, GPx and NOX-2 protein levels, compared with control. Aorta endothelial and cytoplasmic alterations were observed. However, with the soybeans diet, 15 and 100 ppm of Cd{sup 2+} did not modify TBARS levels; CAT, GPX and Nrf2 mRNA expressions; CAT, GPx and NOX-2 protein; and the aorta morphology, compared with control. The soybean diet attenuates the redox changes and protects against morphological alterations induced, in a dose-dependent way, by Cd in aorta. - Highlights: • Under casein diet, 100 ppm Cd{sup 2+} in drinking water induces oxidative stress in aorta. • Under casein diet, 100 ppm Cd{sup 2+} increases Nrf2, MT II and NOX2 expressions in aorta. • Under casein diet, 100 ppm Cd{sup 2+} induces morphological changes in rat aorta. • The soybean diet attenuates the redox changes induced by Cd in rat aorta. • The soybean diet attenuates morphological alterations induced by Cd in rat aorta.

  7. Protective effect of soybeans as protein source in the diet against cadmium-aorta redox and morphological alteration

    International Nuclear Information System (INIS)

    Pérez Díaz, Matías F.F.; Acosta, Mariano; Mohamed, Fabián H.; Ferramola, Mariana L.; Oliveros, Liliana B.; Gimenez, María S.

    2013-01-01

    We investigated the effects of cadmium exposition on thoracic aorta redox status and morphology, and the putative protective effect of soybeans in the diet. Male Wistar rats were separated into 6 groups: 3 fed with a diet containing casein and 3 containing soybeans, as protein source. Within each protein group, one was given tap water (control) and the other two tap water containing 15 and 100 ppm of Cd 2+ , respectively, for two months. In rats fed with casein diet, 15 ppm of Cd induced an increase of thiobarbituric acid-reactive substances (TBARS), and of the catalase (CAT) and glutathione peroxidase (GPx) activities, which were even higher with 100 ppm of Cd 2+ , in aorta. Also, 100 ppm Cd 2+ exposure increased superoxide dismutase (CuZnSOD) activity; CAT, GPX, SOD, Nrf2 and metallothioneine II mRNA expressions and CAT, GPx and NOX-2 protein levels, compared with control. Aorta endothelial and cytoplasmic alterations were observed. However, with the soybeans diet, 15 and 100 ppm of Cd 2+ did not modify TBARS levels; CAT, GPX and Nrf2 mRNA expressions; CAT, GPx and NOX-2 protein; and the aorta morphology, compared with control. The soybean diet attenuates the redox changes and protects against morphological alterations induced, in a dose-dependent way, by Cd in aorta. - Highlights: • Under casein diet, 100 ppm Cd 2+ in drinking water induces oxidative stress in aorta. • Under casein diet, 100 ppm Cd 2+ increases Nrf2, MT II and NOX2 expressions in aorta. • Under casein diet, 100 ppm Cd 2+ induces morphological changes in rat aorta. • The soybean diet attenuates the redox changes induced by Cd in rat aorta. • The soybean diet attenuates morphological alterations induced by Cd in rat aorta

  8. Chloroform-assisted phenol extraction improving proteome profiling of maize embryos through selective depletion of high-abundance storage proteins.

    Directory of Open Access Journals (Sweden)

    Erhui Xiong

    Full Text Available The presence of abundant storage proteins in plant embryos greatly impedes seed proteomics analysis. Vicilin (or globulin-1 is the most abundant storage protein in maize embryo. There is a need to deplete the vicilins from maize embryo extracts for enhanced proteomics analysis. We here reported a chloroform-assisted phenol extraction (CAPE method for vicilin depletion. By CAPE, maize embryo proteins were first extracted in an aqueous buffer, denatured by chloroform and then subjected to phenol extraction. We found that CAPE can effectively deplete the vicilins from maize embryo extract, allowing the detection of low-abundance proteins that were masked by vicilins in 2-DE gel. The novelty of CAPE is that it selectively depletes abundant storage proteins from embryo extracts of both monocot (maize and dicot (soybean and pea seeds, whereas other embryo proteins were not depleted. CAPE can significantly improve proteome profiling of embryos and extends the application of chloroform and phenol extraction in plant proteomics. In addition, the rationale behind CAPE depletion of abundant storage proteins was explored.

  9. Influence of soybean and corn gluten proteins as substitutes for milk protein in milk replacers on growth, liver and thyroid functions in buffalo calves

    International Nuclear Information System (INIS)

    Abdelaal, A.E.; EL-Ashry, M.A.; Ibrahim, I.I.; Fekry, A.E.; Elwan, K.M.

    1991-01-01

    Twenty suckling buffalo calves (3 weeks old) were allotted to four nutritional groups: Control group, fed 100% skim milk based replacer (Group a); and in the other three groups 50% of milk protein was substituted by american soybean flour (Group B) Egyptian soybean meal (Group C) and corn gluten (Group D). Fat was added to all replacers at the rate of 20% on dry basis. Calf starter and hay were offered ad libitum with the liquid diets from the fourth week. Body weight was recorded weekly. Serum proteins, cholesterol, T 4, T 3, and the enzymic activities of GOT, GPT and alkaline phosphatase were determined at 6, 9 and 12 weeks of age. The use of american soybean and corn gluten proteins resulted, approximately, in the same body weight gain as in skim milk fed group (A), indicating that whole milk can be reserved from human consumption and the calves can be reared on milk replacers containing plant proteins. Substitution of milk protein with soybean and corn gluten protein resulted in a significant increase in each of serum globulins, A/G ratio and cholesterol, significant decrease in serum total proteins and GPT activity, and no change in growth rate and thyroid function

  10. Composite films from pectin and fish skin gelatin or soybean flour protein.

    Science.gov (United States)

    Liu, LinShu; Liu, Cheng-Kung; Fishman, Marshall L; Hicks, Kevin B

    2007-03-21

    Composite films were prepared from pectin and fish skin gelatin (FSG) or pectin and soybean flour protein (SFP). The inclusion of protein promoted molecular interactions, resulting in a well-organized homogeneous structure, as revealed by scanning electron microscopy and fracture-acoustic emission analysis. The resultant composite films showed an increase in stiffness and strength and a decrease in water solubility and water vapor transmission rate, in comparison with films cast from pectin alone. The composite films inherited the elastic nature of proteins, thus being more flexible than the pure pectin films. Treating the composite films with glutaraldehyde/methanol induced chemical cross-linking with the proteins and reduced the interstitial spaces among the macromolecules and, consequently, improved their mechanical properties and water resistance. Treating the protein-free pectin films with glutaraldehyde/methanol also improved the Young's modulus and tensile strength, but showed little effect on the water resistance, because the treatment caused only dehydration of the pectin films and the dehydration is reversible. The composite films were biodegradable and possessed moderate mechanical properties and a low water vapor transmission rate. Therefore, the films are considered to have potential applications as packaging or coating materials for food or drug industries.

  11. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding.

    Science.gov (United States)

    Liu, Guobao; Liu, Ke; Gao, Yang; Zheng, Yizhi

    2017-06-01

    Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Effect of Water Deficit-Induced at Vegetative and Reproductive Stages on Protein and Oil Content in Soybean Grains

    Directory of Open Access Journals (Sweden)

    Liliane M. Mertz-Henning

    2017-12-01

    Full Text Available Soybean is one of the most common grain crops worldwide, representing an important protein and oil source. Although genetic variability in the chemical composition of grains is seen in soybean, the mean levels of proteins have remained stagnant or, in some cases, have decreased over time, arousing concern in the agricultural industry. Furthermore, environmental conditions influence the chemical composition of grains. Thus, the present study evaluated the effect of water deficit (WD induced at the vegetative period (vegetative stress (VS and reproductive period (reproductive stress (RS on the protein and oil contents of grains in different soybean genotypes. Yield and its components were evaluated to evaluate the interrelation of these traits. The experiment was completed over three crop seasons under field conditions in Londrina, Paraná (PR, Brazil. WD was induced using rainout shelters and then stress treatments with irrigated and non-irrigated conditions were compared. WD negatively affected yield and its components. All evaluated genotypes showed similar responses for oil and protein contents under different water conditions. Higher protein content and lower oil content were observed in grains under RS. Such a relationship was not equally established under VS. Additionally, negative relationships between protein and oil content and between protein content and yield were confirmed.

  13. Influence of planting date on seed protein oil sugars minerals and nitrogen metabolism in soybean under irrigated and non-irrigated enviroments

    Science.gov (United States)

    Information on the effect of planting date and irrigation on soybean [Glycine max (L.) Merr.] seed composition in the Early Soybean Production System is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, o...

  14. Isolation of Protein Storage Vacuoles and Their Membranes.

    Science.gov (United States)

    Shimada, Tomoo; Hara-Nishimura, Ikuko

    2017-01-01

    Protein-storage vacuoles (PSVs) are specialized vacuoles that sequester large amounts of storage proteins. During seed development, PSVs are formed de novo and/or from preexisting lytic vacuoles. Seed PSVs can be subdivided into four distinct compartments: membrane, globoid, matrix, and crystalloid. In this chapter, we introduce easy methods for isolation of PSVs and their membranes from pumpkin seeds. These methods facilitate the identification and characterization of PSV components.

  15. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques.

    Science.gov (United States)

    Yin, Xiaojian; Sakata, Katsumi; Nanjo, Yohei; Komatsu, Setsuko

    2014-06-25

    Flooding has a severe negative effect on soybean cultivation in the early stages of growth. To obtain a better understanding of the response mechanisms of soybean to flooding stress, initial changes in root tip proteins under flooding were analyzed using two proteomic techniques. Two-day-old soybeans were treated with flooding for 3, 6, 12, and 24h. The weight of soybeans increased during the first 3h of flooding, but root elongation was not observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed by a hierarchical clustering method based on induction levels during the flooding, and the proteins were divided into 5 clusters. Additional interaction analysis of the proteins revealed that ten proteins belonging to cluster I formed the center of a protein interaction network. mRNA expression analysis of these ten proteins showed that citrate lyase and heat shock protein 70 were down-regulated, whereas calreticulin was up-regulated in initial phase of flooding. These results suggest that flooding stress to soybean induces calcium-related signal transduction, which might play important roles in the early responses to flooding. Flooding has a severe negative effect on soybean cultivation, particularly in the early stages of growth. To better understand the response mechanisms of soybean to the early stages of flooding stress, two proteomic techniques were used. Two-day-old soybeans were treated without or with flooding for 3, 6, 12, and 24h. The fresh weight of soybeans increased during the first 3h of flooding stress, but the growth then slowed and no root elongation was observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed

  16. A Novel Peptide from Soybean Protein Isolate Significantly Enhances Resistance of the Organism under Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Heran Ma

    Full Text Available Recent studies have indicated that protein hydrolysates have broad biological effects. In the current study we describe a novel antioxidative peptide, FDPAL, from soybean protein isolate (SPI. The aim of this study was to purify and characterize an antioxidative peptide from SPI and determine its antioxidative mechanism. LC-MS/MS was used to isolate and identify the peptide from SPI. The sequence of the peptide was determined to be Phe-Asp-Pro-Ala-Leu (FDPAL, 561 Da. FDPAL can cause significant enhancement of resistance to oxidative stress both in cells as well as simple organisms. In Caenorhabditis elegans (C. elegans, FDPAL can up-regulate the expression of certain genes associated with resistance. The antioxidant activity of this peptide can be attributed to the presence of a specific amino acid sequence. Results from our work suggest that FDPAL can facilitate potential applications of proteins carrying this sequence in the nutraceutical, bioactive material and clinical medicine areas, as well as in cosmetics and health care products.

  17. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed.

    Science.gov (United States)

    Van, Kyujung; McHale, Leah K

    2017-06-01

    Soybean [ Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.

  18. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  19. Influence of Pea Protein Aggregates on the Structure and Stability of Pea Protein/Soybean Polysaccharide Complex Emulsions

    Directory of Open Access Journals (Sweden)

    Baoru Yin

    2015-03-01

    Full Text Available The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS, and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  20. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    Science.gov (United States)

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  1. Soybean hull induced production of carbohydrases and protease among Aspergillus and their effectiveness in soy flour carbohydrate and protein separation.

    Science.gov (United States)

    Li, Qian; Loman, Abdullah Al; Coffman, Anthony M; Ju, Lu-Kwang

    2017-04-20

    Soybean hull consists mainly of three major plant carbohydrates, i.e., cellulose, hemicellulose and pectin. It is inexpensive and a good potential substrate for carbohydrase production because it is capable of inducing a complete spectrum of activities to hydrolyze complex biomass. Aspergillus is known for carbohydrase production but no studies have evaluated and compared, among Aspergillus species and strains, the soybean hull induced production of various carbohydrases. In this study, A. aculeatus, A. cinnamomeus, A. foetidus, A. phoenicis and 11 A. niger strains were examined together with T. reesei Rut C30, another known carbohydrase producer. The carbohydrases evaluated included pectinase, polygalacturonase, xylanase, cellulase, α-galactosidase and sucrase. Growth morphology and pH profiles were also followed. Among Aspergillus strains, morphology was found to correlate with both carbohydrase production and pH decrease profile. Filamentous strains gave higher carbohydrase production while causing slower pH decrease. The enzyme broths produced were also tested for separation of soy flour carbohydrate and protein. Defatted soy flour contains about 53% protein and 32% carbohydrate. The enzymatic treatment can increase protein content and remove indigestible oligo-/poly-saccharides, and improve use of soy flour in feed and food. Protease production by different strains was therefore also compared for minimizing protein degradation. A. niger NRRL 322 and A. foetidus NRRL 341 were found to be the most potent strains that produced maximal carbohydrases and minimal protease under soybean hull induction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress.

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2015-05-01

    To understand the mechanism of biophoton emission, ROS and mitochondrial proteins were analyzed in soybean plants under flooding stress. Enzyme activity and biophoton emission were increased in the flooding stress samples when assayed in reaction mixes specific for antioxidant enzymes and reactive oxygen species; although the level of the hydroxyl radicals was increased at day 4 (2 days of flooding) compared to nonflooding at day 4, the emission of biophotons did not change. Mitochondria were isolated and purified from the roots of soybean plants grown under flooding stress by using a Percoll gradient, and proteins were analyzed by a gel-free proteomic technique. Out of the 98 mitochondrial proteins that significantly changed abundance under flooding stress, 47 increased and 51 decreased at day 4. The mitochondrial enzymes fumarase, glutathione-S-transferase, and aldehyde dehydrogenase increased at day 4 in protein abundance and enzyme activity. Enzyme activity and biophoton emission decreased at day 4 by the assay of lipoxygenase under stress. Aconitase, acyl CoA oxidase, succinate dehydrogenase, and NADH ubiquinone dehydrogenase were up-regulated at the transcription level. These results indicate that oxidation and peroxide scavenging might lead to biophoton emission and oxidative damage in the roots of soybean plants under flooding stress.

  3. Irradiation and germination effects on phytate, protein and amino acids of soybean

    International Nuclear Information System (INIS)

    Sattar, A.; Neelofar; Akhtar, M.A.

    1990-01-01

    Influence of irradiation (0.05–0.20 kGy) and germination (24–120 hours) in distilled and tap water on phytate, protein and amino acids of soybean, was studied. Phytate values significantly decreased with increasing germination period and irradiation dose (P<0.01). Irradiation independently decreased the original phytate (212.0 mg/100 g) to a range value of 205.0–190.0 mg/100 g depending upon dose level. Germination of unirradiated seeds for 120 hours in distilled and tap water lowered the phytate to 55.0 and 94.9 mg/100 g (74.1 and 55.2% reduction) respectively. Maximum destruction of phytate to levels of 20.5 and 50.9 mg/100 g (90.3 and 76.0% reduction) occurred during germination of 0.20 kGy samples for 120 hours in distilled and tap water respectively. Total protein content significantly increased during germination (P<0.05) and the increase was more in tap than distilled water. Germination for 120 hours of untreated seeds in tap water increased the essential and decreased non-essential amino acids while in the 0.10 kGy sample, increases in both cases were observed

  4. Rebalance between 7S and 11S globulins in soybean seeds of differing protein content and 11SA4.

    Science.gov (United States)

    Yang, A; Yu, X; Zheng, A; James, A T

    2016-11-01

    Protein content and globulin subunit composition of soybean seeds affect the quality of soy foods. In this proteomic study, the protein profile of soybean seeds with high (∼45.5%) or low (∼38.6%) protein content and with or without the glycinin (11S) subunit 11SA4 was examined. 44 unique proteins and their homologues were identified and showed that both protein content and 11SA4 influenced the abundance of a number of proteins. The absence of 11SA4 exerted a greater impact than the protein content, and led to a decreased abundance of glycinin G2/A2B1 and G5/A5A4B3 subunits, which resulted in lower total 11S with a concomitant higher total β-conglycinin (7S). Low protein content was associated with higher glycinin G3/A1aB1b and lower glycinin G4/A5A4B3. Using the proteomic approach, it was demonstrated that 11SA4 deficiency induced compensatory accumulation of 7S globulins and led to a similar total abundance for 7S+11S irrespective of protein content or 11SA4. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  6. Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production.

    Science.gov (United States)

    Meng, Shi; Chang, Sam; Gillen, Anne M; Zhang, Yan

    2016-12-15

    Food-grade soybeans with large seed size, uniformity, clear hilum and a high 11S/7S ratio are favoured by the food industry for making tofu. In order to search for soybean lines with desirable characteristics for making foods, 22 soybean lines were selected from the USDA-Soybean Germplasm Collection, were grown in Stoneville, MS for biochemical analysis and tofu texture and sensory quality tests. Eight lines were identified, from 22 lines harvested in 2014, to be suitable for tofu making, as judged by chemical composition and sensory quality of pressed tofu. In the filled tofu making and texture analysis study, the correlation between A3 subunit content and filled tofu firmness was significant (N=22, r=0.77, Pquality information for the selection of soybean genotypes for improving food quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  8. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  9. Correlation between seed size, protein and oil contents, and fatty acid composition in soybean genotypes

    Directory of Open Access Journals (Sweden)

    Maestri, Damián M.

    1998-12-01

    Full Text Available Eighteen soybean genotypes (Glycine max (L. Merrill with maturity groups IV, V, VI or VII were grown in 1995/96 at the Estación Experimental Agropecuaria (EEA-INTA of Manfredi and Marcos Juárez, Argentina. The aim of this research was to determine possible associations between seed size, protein and oil contents, and fatty composition. Seed size varied between 13.9-21.0 g/100 seeds. Protein and oil contents ranged from 331 to 448 and from 198 to 267 g kg-1, respectively, and showed no significant correlation with seed size. There were significant correlations between seed size and individual fatty adds: positive with stearic and oleic and negative with linoleic. The results obtained suggest that seed size and its relationship with individual fatty acids must be considered in soybean breeding programs.

    Se analizaron 18 genotipos de soja (Glycine max (L. Merrill con grupos de madurez IV, V, VI o VIl, cultivados en 1995/96 en la Estación Experimental Agropecuaria (EEA-INTA de Manfredi y Marcos Juárez, Argentina. El propósito de la investigación fue determinar posibles asociaciones entre el tamaño del grano, los contenidos de proteínas y aceite y la composición de ácidos grasos del mismo. El tamaño del grano varió entre 13.9-21.0 g/100 granos. Los porcentajes de proteínas y aceite estuvieron comprendidos entre 331-448 y entre 198-267 g kg-1 respectivamente, y no mostraron correlaciones significativas con el tamaño del grano. Se observaron correlaciones significativas entre el tamaño del grano y determinados ácidos grasos: positivas con esteárico y oleico y negativa con linoleico. Las asociaciones encontradas podrían ser de utilidad en programas de mejoramiento de soja.

  10. A genome-wide association study of seed protein and oil content in soybean.

    Science.gov (United States)

    Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B

    2014-01-02

    Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise

  11. Extruded pea (Pisum sativum as alternative to soybean protein for dairy cows feeding in organic Alpine farms

    Directory of Open Access Journals (Sweden)

    Flaviana Gottardo

    2010-04-01

    Full Text Available The study evaluated the use of extruded pea as an alternative to soybean in the protein feeding of dairy cattle raised in organic Alpine farms. The research was carried out in a commercial organic dairy farm located in the Province of Trento (Northern Italy and it considered two separate periods of cows’ lactation: early and late lactation. According to the traditional management practice of alpine dairy herds with the seasonal calving of the cows in early winter, the former period was carried out during the cold season when cows were housed indoors, while the latter period started after the transfer of the entire herd to an alpine pasture for the summer grazing. In both periods, 16 cows of Rendena breed were equally assigned to 2 experimental groups. The dietary forage (meadow hay in early lactation or pasture in late lactation was supplemented to one group of cows with a Control concentrate in which soybean expeller, sunflower expeller and wheat bran were the main protein feeds. Soybean proteins were replaced by extruded peas in the Soy-free concentrate given to the other group of cows. The daily amount of concentrate was adjusted to the individual milk yield on a weekly basis adopting ratios of 0.360 and 0.125 kg of DM per kg of milk in early and late lactation periods, respectively. Cows receiving Soy-free concentrate showed a higher milk yield than the Control cows in both lactation periods (18.7 vs 17.5 kg/d in early lactation and 9.3 vs 8.6 kg/d on pasture, respectively. Milk fat and protein were not affected by the diet at any stage of lactation, while a higher concentration of milk urea was observed in milk samples taken from Soy-free cows in both periods of the study. This result could have been promoted by the higher soluble fraction of extruded pea proteins in comparison to that of soybean expeller. Cows feeding behaviour was monitored only in the early lactation period and despite of the different amount of concentrate consumed by

  12. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions.

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2016-02-01

    To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.

  13. Estimation of Relationship Between In Situ and In Vitro Rumen Protein Degradability of Extruded Full Fat Soybean

    Directory of Open Access Journals (Sweden)

    Arzu Erol Tunç

    2017-10-01

    Full Text Available The objectives of this study were to estimate the protein degradability of extruded full fat soybean (ESB by in situ (nylon bag and in vitro enzymatic method and to develop an equation in order predict in situ degradability from in vitro values. In the study enzymatic technique; hydrolysis after 1 h (INV1 and after 24 h (INV24 by a purified protease extracted from Streptomyces griseus in a borate-phosphate buffer at pH 8 was used as in vitro method. Relationship between in situ effective protein degradability (INSE and in vitro degradability after 1 and 24 hours incubations (INV1 and INV24 were determined. In situ protein degradability was measured at 0, 2, 4, 8, 16, 24, and 48 and at 72 h incubations in the rumen of 3 Holstein cows. In the study INSE, INV1 and INV24 were determined as 58.05, 20.24 and 41.46% respectively. Despite there were differences between in situ and in vitro protein degradability values, correlation coefficients between in situ and in vitro protein degradability of ESB were high and regression equations for estimation of in situ from in vitro were found significant. As conclusion in vitro enzymatic protein degradability (INV1 and INV24 can be used for estimation of in situ effective protein degradability of extruded full fat soybean.

  14. Changes in Protein Content and Urease Activity Due to Soaking Treatment of gamma irradiated Soybean Seeds

    International Nuclear Information System (INIS)

    Kamel, H.A.; Aly, M.A.S.; Afifi, M.L.

    2003-01-01

    The total protein measurement revealed that both soaking time and radiation affected protein content of soybean seeds. Amount of protein content increased gradually with time up to 6 h. The amount recorded 388, 396 and 465 mg/g.d.wt in control, 10, 25, 50 Gy, respectively. Then the amount decreased at and 24 h whereas, protein content of cotyledonary leaves (120 h) increased by 25 and 50 Gy reaching 7305 and 80.6 mg/g.d.wt as compared to 68.5 mg/g.d wt in case on control. On comparison with control samples, 10 Gy appeared to have no effect on protein content while 25 and 50 Gy increased protein in a dose dependant matter. Maximum increase in urease activity was recorded at 6 h of soaking (1110, 1162 and 1200 unit/g f.wt in control, 10, 25 and 50 Gy respectively) Moreover, the 25 and 50 Gy increased urease activity at all time intervals. After sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE) was applied, bands could be segregated into high molecular weight bands they are represented from band No 1 with 200 KDa to band No 8 with 100 kDa. On the other hand low molecular weight are presented from band No 9 with 75 kDa to band No 14 with 10 kDa. Characteristic bands No 4 and 10 were common in all samples and several other bands were characteristic to the time or gamma-radiation applied. Calculated similarity index (SI) showed similarity between control and 25 Gy treated samples (except at 6 h). In contrast, the similarity index between control and 50 Gy decreased from zero up to 6 h then increased to 1 at 120 h (the same trend was also observed between 25 and 50 Gy). From similarity index study it could be concluded that at cotyledonary stage(120 h) there were no differences between different samples, thus indicating a recovery from the effect of gamma irradiation

  15. Effect of loading rate variation on soybean protein wastewater treatment by UASB reactor

    Science.gov (United States)

    Sun, Yi; Li, Yongfeng; Guo, Zi-rui; Jiao, An-ying; Han, Wei; Yang, Chuan-ping

    2010-11-01

    In order to improve the efficiency and evaluate the feasibility of anaerobic digestion for treatment of soybean protein wastewater. The stability and performance of the Up-Flow Anaerobic Sludge Blanket (UASB) process was investigated at different organic loading rates (OLRS) and hydraulic retention times over 200 days. When chemical oxygen demand (COD) reached maximum, the loading rate was adjusted in a small way and indicators such as VFA, pH and COD in effluent as well as gas production are observed. These experimental results clearly showed that, the most proper corresponding organic loading rate (OLR) and hydraulic retention time were 6 kg/ (m3ṡd) (COD = 6000 mg/L) and 24 h respectively. Up to 85% of COD was removed and the CH4 production rate of 3.2 m3/(m3ṡd) was obtained. The produced biogas contained 72% of CH4. In the mean time, anaerobic sludge multiplies more faster and exiguous particles appeared. Granules with diameter 1-3 mm.

  16. Early-maturing soybean cropping system. III. Protein and oil contents and oil composition

    International Nuclear Information System (INIS)

    Kane, M.V.; Steele, C.C.; Grabau, L.J.; MacKown, C.T.; Hildebrand, D.F.

    1997-01-01

    Expanding production of early-maturing soybean [Glycine max (L.) Merrill] cultivars in the southeastern USA has exposed such cultivars to a wide range of environmental conditions during seed-fill. Temperatures during this growth stage influence levels of specific fatty acids, particularly of the unsaturated fatty acids. Our objective was to evaluate the grain quality responses of early-maturing cultivars to the wide range of planting dates in the southeastern USA. Protein and oil contents along with fatty acid profiles were assessed for cultivars from Maturity Group (MG) 00 through IV using late April mid-May early June, and late June planting dates on a well-drained Maury silt loam (fine, mixed, mesic Typic Paleudalf) in 1990 through 1993. Across years and cultivars. delayed planting increased protein content and linolenic acid levels and reduced oil content and oleic acid levels but had little or no influence on palmitic stearic or linoleic acid levels. The higher seed-fill temperatures associated with early planting were strongly correlated with increased oil content and oleic acid levels and reduced linolenic acid levels. Increasing seed-fill temperatures were closely associated with reduced linolenic acid levels for all six cultivars. However, the oleic acid response to seed-temperatures strongly depended on cultivar maturity. Oleic acid levels of early-maturing cultivars were much more sensitive to seed-fill temperatures than were those of later maturing cultivars. While other effects of environment on grain quality characteristics may be relatively small perhaps the quality of new low linolenic acid cultivars could be amplified through culture under the warmer conditions the southeastern USA

  17. Whey protein concentrate storage at elevated temperature and humidity

    Science.gov (United States)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  18. An evaluation of heat on protein oxidation of soy protein isolate or soy protein isolate mixed with soybean oil and its consequences on redox status of broilers at early age

    Directory of Open Access Journals (Sweden)

    Xianglun Zhang

    2017-08-01

    Full Text Available Objective The objective of this study was to evaluate effects of heat treatment and soybean oil inclusion on protein oxidation of soy protein isolate (SPI and of oxidized protein on redox status of broilers at an early age. Methods SPI mixed with soybean oil (SPIO heated at 100°C for 8 h was used to evaluate protein oxidation of SPI. A total of two hundred and sixteen 1-day-old Arbor Acres chicks were divided into 3 groups with 6 replicates of 12 birds, receiving basal diet (CON, heat-oxidized SPI diet (HSPI or mixture of SPI and 2% soybean oil diet (HSPIO for 21 d, respectively. Results Increased protein carbonyl, decreased protein sulfhydryl of SPI were observed as heating time increased in all treatments (p<0.05. Addition of 2% soybean oil increased protein carbonyl of SPI at 8 h heating (p<0.05. Dietary HSPI and HSPIO decreased the average daily gain of broilers as compared with the CON (p<0.05. Broilers fed HSPI and HSPIO exhibited decreased glutathione (GSH in serum, catalase activity and total sulfhydryl in liver and increased malondialdehyde (MDA and protein carbonyl in serum, advanced oxidation protein products (AOPPs in liver and protein carbonyl in jejunal mucosa as compared with that of the CON (p<0.05. Additionally, broilers receiving HSPIO showed decreased glutathione peroxidase activity (GSH-Px in serum, GSH and hydroxyl radical scavenging capacity in liver, GSH-Px activity in duodenal mucosa, GSH-Px activity and superoxide anion radical scavenging capacity in jejunal mucosa and increased AOPPs in serum, MDA and protein carbonyl in liver, MDA and AOPPs in jejunal mucosa (p<0.05. Conclusion Protein oxidation of SPI can be induced by heat and soybean oil and oxidized protein resulted in redox imbalance in broilers at an early age.

  19. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  20. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  1. Analyzing the Effects of Climate Factors on Soybean Protein, Oil Contents, and Composition by Extensive and High-Density Sampling in China.

    Science.gov (United States)

    Song, Wenwen; Yang, Ruping; Wu, Tingting; Wu, Cunxiang; Sun, Shi; Zhang, Shouwei; Jiang, Bingjun; Tian, Shiyan; Liu, Xiaobing; Han, Tianfu

    2016-05-25

    From 2010 to 2013, 763 soybean samples were collected from an extensive area of China. The correlations between seed compositions and climate data were analyzed. The contents of crude protein and water-soluble protein, total amount of protein plus oil, and most of the amino acids were positively correlated with an accumulated temperature ≥15 °C (AT15) and the mean daily temperature (MDT) but were negatively correlated with hours of sunshine (HS) and diurnal temperature range (DTR). The correlations of crude oil and most fatty acids with climate factors were opposite to those of crude protein. Crude oil content had a quadratic regression relationship with MDT, and a positive correlation between oil content and MDT was found when the daily temperature was soybean protein and oil contents. The study illustrated the effects of climate factors on soybean protein and oil contents and proposed agronomic practices for improving soybean quality in different regions of China. The results provide a foundation for the regionalization of high-quality soybean production in China and similar regions in the world.

  2. Relationships among oil content, protein content and seed size in soybeans

    Directory of Open Access Journals (Sweden)

    Mario Marega Filho

    2001-03-01

    Full Text Available During 1995/96 and 1996/97, experiments were carried out at Londrina State University, aiming at quantifying the oil and protein contents in two groups of soybean genotypes; estimating the phenotypic, genotypic and environmental correlations existent among oil, protein content and seed size, and identifying genotypes for direct human consumption with high protein content. The evaluated characters were Weight of a Hundred Seeds (WHS, expressed in grams/100 seeds, Oil Content (OC and Protein Content (PC, expressed in %. In the experiment carried out in the field, OC ranged from 12 to 20.37 % and PC from 35.66 to 41.75% while in the experiment carried out in the greenhouse OC ranged from 12.26 to 21.79 % and PC from 32.95 to 41.56 % . The correlations between oil and protein were negative and significant. The relationship among WHS with OC and PC was low and higly affected by the time effect. Due to their high protein content and stability to oil and protein contents, there were distinction among the treatments carried out in the field (GA23 and GA20, and those carried out in the greenhouse (PI408251, Waseda, B6F4 (L-3 less, PI423909 and Tambagura.Durante 1995/96 e 1996/97, foram conduzidos experimentos na Universidade Estadual de Londrina, visando: quantificar os teores de óleo e proteína em dois grupos de genótipos de soja tipo alimento; estimar as correlações fenotípicas e genotípicas existentes entre os teores de óleo, proteína e tamanho das sementes; e, identificar genótipos para consumo humano de forma direta, com elevado teor de proteína. Foram avaliados os caracteres Peso de Cem Sementes (PCS, expresso em gramas / 100 sementes, Teor de Óleo (TO, e Teor de Proteína (TP, expressos em %. Na população conduzida a campo, a característica TO variou de 12 a 20,4 %, e TP de 35,7 a 41,8 %. A população conduzida em casa de vegetação apresentou uma variação de 12,3 a 21,8 % para TO, e de 33 a 41,6 % para TP. As correla

  3. No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae

    Directory of Open Access Journals (Sweden)

    Gabriela Vieira Silva

    2014-09-01

    Full Text Available No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae. Biological traits of the stink bug Euschistus heros and its main biological control agent Telenomus podisi were evaluated under controlled environmental conditions (25 ± 2ºC; 60 ± 10% RH; and 14/10 h photoperiod by placing first instar nymphs into Petri dishes with pods originating from two soybean isolines (Bt-soybean MON 87701 × MON 89788, which expresses the Cry1Ac protein, and its near non-Bt isoline A5547 where they remained until the adult stage. Due to gregarious behavior exhibited by first instar nymphs, they were individualized only when at the second instar. Adults were separated by sex and weighed, and pronotum width of each individual was subsequently measured. They were placed into plastic boxes containing soybean grains of the same soybean isoline as food source. Egg viability and female fecundity were assessed in adult individuals. Adult females of T. podisi (up to 24h old were placed with eggs of E. heros from mothers reared on both soybean isolines. Nymphal development time, insect weight, pronotum width, sex ratio, female fecundity, and egg viability (% emergence of Euschistus heros did not differ between treatments. Eggto-adult development time, female longevity, sex ratio, and percentage of parasitized eggs were not impacted by the Bt-soybean (expressing Cry1Ac protein. Results indicate that the Bt-soybean, MON 87701 × MON 89788, has no direct significant impact on the two studied species.

  4. Roles of Soybean Plasma Membrane Intrinsic Protein GmPIP2;9 in Drought Tolerance and Seed Development

    Directory of Open Access Journals (Sweden)

    Linghong Lu

    2018-04-01

    Full Text Available Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9-overexpressing transgenic plants were less stressed than wild-type (WT plants. Furthermore, field experiments showed that GmPIP2;9-overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9-overexpressing plants in drought stress tolerance and seed development.

  5. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping.

    Science.gov (United States)

    Patil, Gunvant; Vuong, Tri D; Kale, Sandip; Valliyodan, Babu; Deshmukh, Rupesh; Zhu, Chengsong; Wu, Xiaolei; Bai, Yonghe; Yungbluth, Dennis; Lu, Fang; Kumpatla, Siva; Grover Shannon, J; Varshney, Rajeev K; Nguyen, Henry T

    2018-04-04

    The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil and high sucrose. In this study, an inter-specific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3x depth. Based on 91,342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4,070 bins). In addition to bin mapping, QTL analysis for protein, oil and sucrose was performed using 3,343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next generation sequencing technology enhanced mapping resolution (from 1325 Kb to 50 Kb). A total of 5, 9 and 4 QTLs were identified for protein, oil and sucrose content, respectively and some of the QTLs coincided with soybean domestication related genomic loci. The major QTL for protein and oil was mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL was identified on Chr. 8 (qSuc_08) and harbors putative genes involved in sugar transport. In addition, genome-wide association (GWAS) using 91,342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL based haplotype using whole genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Plant storage proteins – the main nourisching products – from biosynthesis to cellular storage depots

    Directory of Open Access Journals (Sweden)

    Agnieszka Chmielnicka

    2017-06-01

    Full Text Available Storage proteins of legumes are one of the main components of the human and animal diet. The substances collected in their seeds have the pro-health values, supporting the prevention of many civilization diseases. However, there are still many uncertainties about the mechanisms leading to the production of nutritious seeds. It is also difficult to identify which of their constituents and in what final form are responsible for the observed protective effects in vivo. In this work, on the background of different types of storage proteins, these deposited mainly in legumes were in the focus of interest. They were characterized on the example of pea (Pisum sativum proteins. Mechanisms associated with their biosynthesis and transport to specific cellular compartments was presented. Ways of their post-translational processing, segregation and storage in the specific vacuoles were also discussed. Therefore, the paper presents the state-of-the-art knowledge concerning the processes making the accumulated protein deposits ready to use by plants, animals and humans.

  7. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahim, E A; Abdel-Fatah, O M [Dept. of Biochem., Faculty of Agric., Cairo University. (Egypt); El-Adawy, M; Badea, M Y [Food Technol. Dept., National Center for Research and Radiation Technol., Atomic Energy Authority (Egypt)

    2000-07-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone.

  8. The Effect of Gamma radiation, microwave radiation, their interaction and storage on chemical composition, antinutritional factors and the activities of trypsin inhibitor and lipoxygenase of soybean seeds

    International Nuclear Information System (INIS)

    Abdel-Rahim, E.A.; Abdel-Fatah, O.M.; El-Adawy, M.; Badea, M.Y.

    2000-01-01

    The effect of gamma radiation, microwave radiation, interaction between them; and storage of radiated soybean seeds were investigated to find out the best treatment which had to the maximum reduction of antinutrional factors (Trypsin inhibitor and lipoxygenase activities) without significant effect on the chemical constituents. The gamma rays was used at three doses of 2.5, 5.0 and 8.0 kGy, microwave radiation was at 70 level power for 2 and 4 min; and the storage of seeds was at temperature, R.H. 50-55% for six months. The data revealed that, effects of interaction treatments were more effective than the treatment with microwave or gamma radiation alone

  9. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    Science.gov (United States)

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  10. Soybean plant growth study conducted using purified protein hydrolysate-based fertilizer made from chrome-tanned leather waste.

    Science.gov (United States)

    Pati, Anupama; Chaudhary, Rubina

    2015-12-01

    Leather processing discharges enormous amount of chrome containing leather solid waste which creates a major disposal problem. Chrome-tanned leather solid waste is a complex of collagen and chromium. The presence of chromium limits protein application in fertilizer industry. The purified protein hydrolysate with zero chromium could be used as a nitrogen source for fertilizer formulation. In this study, an attempt has been made to employ purified protein hydrolysate derived from chrome-tanned leather shavings (CTLS) in formulation of fertilizer. The formulated fertilizer (1–3 t ha(-1)) is employed as nitrogen source in production of soybean. Plant growth study demonstrates that formulated fertilizer dosage 3 t ha(-1) produced similar effects of commercial fertilizer-treated plants. Application of formulated fertilizer yielded higher seed in plant than commercial fertilizer.

  11. Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis

    Science.gov (United States)

    Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transfe...

  12. Carbon Storage and Carbon Dioxide Emission as Influenced by Long-term Conservation Tillage and Nitrogen Fertilization in Corn-Soybean Rotation

    Directory of Open Access Journals (Sweden)

    Rahmat Saleh

    2012-01-01

    Full Text Available Although agriculture is a victim of environmental risk due to global warming, but ironically it also contributes toglobal greenhouse gas (GHG emission. The objective of this experiment was to determine the influence of long-termconservation tillage and N fertilization on soil carbon storage and CO2 emission in corn-soybean rotation system. Afactorial experiment was arranged in a randomized completely block design with four replications. The first factorwas tillage systems namely intensive tillage (IT, minimum tillage (MT and no-tillage (NT. While the second factorwas N fertilization with rate of 0, 100 and 200 kg N ha-1 applied for corn, and 0, 25, and 50 kg N ha-1 for soybeanproduction. Samples of soil organic carbon (SOC after 23 year of cropping were taken at depths of 0-5 cm, 5-10cm and 10-20 cm, while CO2 emission measurements were taken in corn season (2009 and soybean season (2010.Analysis of variance and means test (HSD 0.05 were analyzed using the Statistical Analysis System package. At 0-5 cm depth, SOC under NT combined with 200 kg N ha-1 fertilization was 46.1% higher than that of NT with no Nfertilization, while at depth of 5-10 cm SOC under MT was 26.2% higher than NT and 13.9% higher than IT.Throughout the corn and soybean seasons, CO2-C emissions from IT were higher than those of MT and NT, whileCO2-C emissions from 200 kg N ha-1 rate were higher than those of 0 kg N ha-1 and 100 kg N ha-1 rates. With any Nrate treatments, MT and NT could reduce CO2-C emission to 65.2 %-67.6% and to 75.4%-87.6% as much of IT,respectively. While in soybean season, MT and NT could reduce CO2-C emission to 17.6%-46.7% and 42.0%-74.3% as much of IT, respectively. Prior to generative soybean growth, N fertilization with rate of 50 kg N ha-1could reduce CO2-C emission to 32.2%-37.2% as much of 0 and 25 kg N ha-1 rates.

  13. Structural Insights into Triglyceride Storage Mediated by Fat Storage-Inducing Transmembrane (FIT) Protein 2

    Science.gov (United States)

    Gross, David A.; Snapp, Erik L.; Silver, David L.

    2010-01-01

    Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2) belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9)AAA) in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9)AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation. PMID:20520733

  14. Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT protein 2.

    Directory of Open Access Journals (Sweden)

    David A Gross

    2010-05-01

    Full Text Available Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2 belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9AAA in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation.

  15. Tratamento fungicida e peliculização de sementes de soja submetidas ao armazenamento Fungicide treatment and film coating of soybean seeds submitted to storage

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Pereira

    2011-02-01

    Full Text Available O tratamento de sementes de soja com fungicidas vem sendo utilizado como importante ferramenta no controle de patógenos. Nesse trabalho, objetivou-se estudar o desempenho de sementes de soja tratadas com fungicidas e peliculizadas, antes e após o armazenamento. Foram utilizados cinco lotes de sementes, cultivar Monsoy 6101, submetidos aos tratamentos: thiabendazole+thiram sem polímero, carbendazin+thiram sem polímero, sem fungicida (testemunha sem polímero, além desses tratamentos realizados via peliculização (com polímero. A qualidade fisiológica e sanitária das sementes foi avaliada inicialmente e após seis meses de armazenamento em condições ambientais, pelas seguintes determinações: teor de água, teste de germinação, emergência em bandeja, teste de frio e de sanidade. Conclui-se que a peliculização, em associação com fungicidas, não afeta a qualidade fisiológica das sementes de soja e o tratamento de lotes de sementes de soja com os fungicidas thiabendazole+thiram e carbendazin+thiram melhora seu desempenho e qualidade sanitária.The treatment of soybean seeds by fungicides has been used as an important tool in pathogen control. The objective of this work was to verify the performance of soybean seeds treated with fungicide and film coating, prior and after storage. Five seed lots, cultivar Monsoy 6101, were treated with thiabendazole+thiram without polymer, carbendazin+thiram without polymer, without fungicide (control, without polymer, and treatments by film coating (with polymer. The physiological and sanitary quality of the seeds was evaluated initially and after six months storage, under environmental conditions, according to the following characteristics: water content, test of germination and emergence on tray, blotter test and cold test. The film coating associated with fungicides does not affect the physiological quality of soybean seeds and the soybean seed treatment with the fungicides thiabendazole

  16. Partial replacement of protein in soybean meal by moringa seed cake (Moringa oleifera in bocourti’s catfish (Pangasius bocourti

    Directory of Open Access Journals (Sweden)

    Bundit Yuangsoi

    2014-04-01

    Full Text Available The present study was undertaken in order to determine the effect of a dietary of moringa seed cake on digestibility, growth performance, blood chemistry and histopathologic of bocourti’s catfish. Fish were fed with diets formulated by 0, 250, 500, 750, and 1000 g kg-1 of moringa seed cake to replace protein in soybean meal. Fish with mean wet weights of 21.50± 0.25 g per fish were fed experimental diets for 8 weeks. Significant differences (p<0.05 in weight gain, average daily gain and specific growth rate were detected between bocourti’s catfish given the experimental diets. All fish grew normally and no significant difference was observed for survival rate and feed conversion ratio among fish fed tested diets. The highest FCR was generally observed that as moringa seed cake inclusion increased in the diets that were noted to exhibit slightly poor growth performance, feed utilization and pepsin digestibility tested. Blood chemistry and hepatosomatic index did not differ significantly for any of the diet treatments. No histopathological changes were found in distal intestines and liver. The study indicated that the dietary moringa seed cake contains ingredients that could be used for bocourti’s catfish diets possibly not over up to for 500 g kg-1 soybean protein replacement without negative effect on growth, digestibility and histology.

  17. Characterization of seed storage protein patterns of Heliotropium digynum

    Directory of Open Access Journals (Sweden)

    Mona Soliman Alwhibi

    2017-09-01

    Full Text Available Heliotropium digynum, is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8 software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir’iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  18. Characterization of seed storage protein patterns of Heliotropium digynum.

    Science.gov (United States)

    Alwhibi, Mona Soliman

    2017-09-01

    Heliotropium digynum , is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8) software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir'iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  19. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    Science.gov (United States)

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  20. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.).

    Science.gov (United States)

    Onishi, M; Tachi, H; Kojima, T; Shiraiwa, M; Takahara, H

    2006-10-01

    We identified a novel salt-inducible soybean gene encoding an acidic-isoform of pathogenesis-related protein group 5 (PR-5 protein). The soybean PR-5-homologous gene, designated as Glycine max osmotin-like protein, acidic isoform (GmOLPa)), encodes a putative polypeptide having an N-terminal signal peptide. The mature GmOLPa protein without the signal peptide has a calculated molecular mass of 21.5 kDa and a pI value of 4.4, and was distinguishable from a known PR-5-homologous gene of soybean (namely P21 protein) through examination of the structural features. A comparison with two intracellular salt-inducible PR-5 proteins, tobacco osmotin and tomato NP24, revealed that GmOLPa did not have a C-terminal extension sequence functioning as a vacuole-targeting motif. The GmOLPa gene was transcribed constitutively in the soybean root and was induced almost exclusively in the root during 24 h of high-salt stress (300 mM NaCl). Interestingly, GmOLPa gene expression in the stem and leaf, not observed until 24 h, was markedly induced at 48 and 72 h after commencement of the high-salt stress. Abscisic acid (ABA) and dehydration also induced expression of the GmOLPa gene in the root; additionally, dehydration slightly induced expression in the stem and leaf. In fact, the 5'-upstream sequence of the GmOLPa gene contained several putative cis-elements known to be involved in responsiveness to ABA and dehydration, e.g. ABA-responsive element (ABRE), MYB/MYC, and low temperature-responsive element (LTRE). These results suggested that GmOLPa may function as a protective PR-5 protein in the extracellular space of the soybean root in response to high-salt stress and dehydration.

  1. Soybean adaptation in Chernobyl area (what happen to soybean if something happen)

    International Nuclear Information System (INIS)

    Hajduch, M.

    2013-01-01

    In this presentation author deals with transfer of cesium-137 and strontium-90 by the soybeans into the seeds and analysis of production of proteins on the contaminated sites of Chernobyl and Fukushima areas. The results indicate that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the Krebs tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  2. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.

    1986-01-01

    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  3. GmGBP1, a homolog of human ski interacting protein in soybean, regulates flowering and stress tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Zhang Yanwei

    2013-02-01

    Full Text Available Abstract Background SKIP is a transcription cofactor in many eukaryotes. It can regulate plant stress tolerance in rice and Arabidopsis. But the homolog of SKIP protein in soybean has been not reported up to now. Results In this study, the expression patterns of soybean GAMYB binding protein gene (GmGBP1 encoding a homolog of SKIP protein were analyzed in soybean under abiotic stresses and different day lengths. The expression of GmGBP1 was induced by polyethyleneglycol 6000, NaCl, gibberellin, abscisic acid and heat stress. GmGBP1 had transcriptional activity in C-terminal. GmGBP1 could interact with R2R3 domain of GmGAMYB1 in SKIP domain to take part in gibberellin flowering pathway. In long-day (16 h-light condition, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 exhibited earlier flowering and less number of rosette leaves; Suppression of AtSKIP in Arabidopsis resulted in growth arrest, flowering delay and down-regulation of many flowering-related genes (CONSTANS, FLOWERING LOCUS T, LEAFY; Arabidopsis myb33 mutant plants with ectopic overexpression of GmGBP1 showed the same flowering phenotype with wild type. In short-day (8 h-light condition, transgenic Arabidopsis plants with GmGBP1 flowered later and showed a higher level of FLOWERING LOCUS C compared with wild type. When treated with abiotic stresses, transgenic Arabidopsis with the ectopic overexpression of GmGBP1 enhanced the tolerances to heat and drought stresses but reduced the tolerance to high salinity, and affected the expressions of several stress-related genes. Conclusions In Arabidopsis, GmGBP1 might positively regulate the flowering time by affecting CONSTANS, FLOWERING LOCUS T, LEAFY and GAMYB directly or indirectly in photoperiodic and gibberellin pathways in LDs, but GmGBP1 might represse flowering by affecting FLOWERING LOCUS C and SHORT VEGETATIVE PHASE in autonomous pathway in SDs. GmGBP1 might regulate the activity of ROS-eliminating to improve the

  4. PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Delong Li

    Full Text Available Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.

  5. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery.

    Science.gov (United States)

    Stepiński, Dariusz

    2009-03-01

    The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.

  6. Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue.

    Science.gov (United States)

    Miranda, Diego A; Kim, Ji-Hyun; Nguyen, Long N; Cheng, Wang; Tan, Bryan C; Goh, Vera J; Tan, Jolene S Y; Yaligar, Jadegoud; Kn, Bhanu Prakash; Velan, S Sendhil; Wang, Hongyan; Silver, David L

    2014-04-04

    Triglycerides within the cytosol of cells are stored in a phylogenetically conserved organelle called the lipid droplet (LD). LDs can be formed at the endoplasmic reticulum, but mechanisms that regulate the formation of LDs are incompletely understood. Adipose tissue has a high capacity to form lipid droplets and store triglycerides. Fat storage-inducing transmembrane protein 2 (FITM2/FIT2) is highly expressed in adipocytes, and data indicate that FIT2 has an important role in the formation of LDs in cells, but whether FIT2 has a physiological role in triglyceride storage in adipose tissue remains unproven. Here we show that adipose-specific deficiency of FIT2 (AF2KO) in mice results in progressive lipodystrophy of white adipose depots and metabolic dysfunction. In contrast, interscapular brown adipose tissue of AF2KO mice accumulated few but large LDs without changes in cellular triglyceride levels. High fat feeding of AF2KO mice or AF2KO mice on the genetically obese ob/ob background accelerated the onset of lipodystrophy. At the cellular level, primary adipocyte precursors of white and brown adipose tissue differentiated in vitro produced fewer but larger LDs without changes in total cellular triglyceride or triglyceride biosynthesis. These data support the conclusion that FIT2 plays an essential, physiological role in fat storage in vivo.

  7. Using an enzymatic galactose assay to detect lactose glycation extents of two proteins caseinate and soybean protein isolate via the Maillard reaction.

    Science.gov (United States)

    Wang, Xiao-Peng; Zhao, Xin-Huai

    2017-06-01

    Glycation of food proteins via the Maillard reaction has been widely studied in the recent years; however, the amount of saccharide connected to proteins is usually not determined. An enzymatic galactose assay was proposed firstly in this study to detect lactose glycation extents of caseinate and soybean protein isolate (SPI) during the Maillard reaction at two temperatures and different times. The separated glycated proteins were hydrolysed to release galactose necessary for the enzymatic assay and glycation calculation. Caseinate and SPI both obtained the highest lactose glycation extents at 100 °C or 121 °C by a reaction time of 180 or 20 min. Short- and long-time reaction resulted in lower glycation extents. During the reaction, three chemical indices (absorbences at 294/490 nm and fluorescence intensities) of reaction mixtures increased continually, but another index reactable NH 2 of glycated proteins showed the opposite trend. In general, changing profiles of the four indices were inconsistent with those profiles of lactose glycation extents of glycated proteins, implying practical limitation of the four indices in studies. This proposed enzymatic assay could directly detect lactose glycation of the two proteins, and thus was more useful than the four chemical indices to monitor glycation of the two proteins. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. 不同环境条件下大豆籽粒蛋白质和油分含量与指数的遗传效应分析%Analysis of Genetic Effects on Contents and Indexed of Protein and Oil in Soybean Seeds in Different Environments

    Institute of Scientific and Technical Information of China (English)

    宁海龙; 李文霞; 李文滨; 王继安

    2005-01-01

    Protein and oil are two of the important quantitative traits closely related to the nutrient quality in soybean(Glycine max [L. ] Merry). The content and yield of protein and oil have become one of the main goals in soybean breeding. For soybean breeding programs, understanding the inheritance is of importance. Genetic analyses of protein and oil content in soybean seed have been reported. Most of the studies showed that protein and oil content are quantitatively inherited. Genetic effects, heritability and correlation of protein and oil content in soybean seeds have been estimated.

  9. Characterization of the aroma of a meatlike process flavoring from soybean-based enzyme-hydrolyzed vegetable protein.

    Science.gov (United States)

    Wu, Yi-Fang G; Cadwallader, Keith R

    2002-05-08

    Defatted soybean meal was converted into enzyme-hydrolyzed vegetable protein (E-HVP) using the proteolytic enzyme Flavorzyme. Total free amino acids increased by 40-fold after enzyme hydrolysis, with leucine being the most abundant, followed by phenylalanine, lysine, glutamine/glutamic acid, and alanine. Volatile components from a meatlike process flavoring made from E-HVP were isolated by direct solvent extraction (DSE)-high vacuum transfer (HVT), dynamic headspace sampling and static headspace sampling and analyzed by gas chromatography (GC)-mass spectrometry and GC-olfactometry. Aroma extract dilution analysis was used to establish a flavor dilution chromatogram of the DSE-HVT extract. Results of these complementary techniques indicated the importance of odorants of high (hydrogen sulfide and methanethiol), intermediate (2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-furanmethanethiol, and 3-(methylthiol)propanal) and low volatility (maltol and Furaneol) in the overall aroma of the meatlike process flavoring.

  10. Technology development of protein rich concentrates for nutrition in extreme conditions using soybean and meat by-products.

    Science.gov (United States)

    Kalenik, Tatiana K; Costa, Rui; Motkina, Elena V; Kosenko, Tamara A; Skripko, Olga V; Kadnikova, Irina A

    2017-01-01

    There is a need to develop new foods for participants of expeditions in extreme conditions, which must be self-sufficient. These foods should be light to carry, with a long shelf life, tasty and with  high nutrient density. Currently, protein sources are limited mainly to dried and canned meat. In this work, a protein-rich dried concentrate suitable for extreme expeditions was developed using soya, tomato, milk whey and meat by-products. Protein concentrates were developed using minced beef liver and heart, dehydrated and mixed with a soya protein-lycopene coagulate (SPLC) obtained from a solution prepared with germi- nated soybeans and mixed with tomato paste in milk whey, and finally dried. The technological parameters of pressing SPLC and of drying the protein concentrate were optimized using response surface methodology. The optimized technological parameters to prepare the protein concentrates were obtained, with 70:30 being the ideal ratio of minced meat to SPLC. The developed protein concentrates are characterized by a high calorific value of 376 kcal/100 g of dry product, with a water content of 98 g·kg-1, and 641-644 g·kg-1 of proteins. The essential amino acid indices are 100, with minimum essential amino acid content constitut- ing 100-128% of the FAO standard, depending on the raw meat used. These concentrates are also rich in micronutrients such as β-carotene and vitamin C. Analysis of the nutrient content showed that these non-perishable concentrates present a high nutritional value and complement other widely available vegetable concentrates to prepare a two-course meal. The soups and porridges prepared with these concentrates can be classified as functional foods, and comply with army requirements applicable to food products for extreme conditions.

  11. Proteins in Soy Might Have a Higher Role in Cancer Prevention than Previously Expected: Soybean Protein Fractions Are More Effective MMP-9 Inhibitors Than Non-Protein Fractions, Even in Cooked Seeds

    Directory of Open Access Journals (Sweden)

    Ana Lima

    2017-02-01

    Full Text Available The search for anticancer MMP-9 inhibitors (MMPIs in food products has become a major goal for research. MMPIs in soy have been related only to saponins and isoflavones, but recently, low specific protein fractions in soybeans were shown to reduce MMP-9 activity as well. The present work aimed at comparing the MMPI potential of protein fractions (P and non-protein fractions (NP isolated from soybean seeds, before and after soaking and cooking, mimicking dietary exposures. Reverse and substrate zymography, as well as a fluoregenic DQ gelatin assay were used to evaluate MMP-9 activities. Colon cancer cell migration and proliferation was also tested in HT29 cells. Regarding MMP-9 inhibition, proteins in soy presented IC50 values 100 times lower than non-protein extracts, and remained active after cooking, suggesting that proteins may be more effective MMP-9 inhibitors than non-protein compounds. Using the determined IC50 concentrations, NP fractions were able to induce higher inhibitions of HT29 cell migration and proliferation, but not through MMP-9 inhibition, whilst protein fractions were shown to specifically inhibit MMP-9 activity. Overall, our results show that protein fractions in soybeans might have a higher role in soy-related cancer prevention as MMPIs than previously expected. Being nontoxic and active at lower concentrations, the discovery of these heat-resistant specific MMPI proteins in soy can be of significant importance for cancer preventive diets, particularly considering the increasing use of soy proteins in food products and the controversy around isoflavones amongst consumers.

  12. Development and Validation of a Multiplexed Protein Quantitation Assay for the Determination of Three Recombinant Proteins in Soybean Tissues by Liquid Chromatography with Tandem Mass Spectrometry.

    Science.gov (United States)

    Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia

    2015-08-26

    Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.

  13. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L.) Merr.] Seed Protein and Oil QTLs.

    Science.gov (United States)

    Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L; Song, Qijian; Cregan, Perry B; Graef, George L; Specht, James E

    2016-06-01

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg(-1) and R(2) values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. Copyright © 2016 Phansak et al.

  14. Canola and hydrogenated soybean oils accelerate ectopic bone formation induced by implantation of bone morphogenetic protein in mice

    Directory of Open Access Journals (Sweden)

    Yoko Hashimoto

    2014-01-01

    Full Text Available Canola oil (Can and hydrogenated soybean oil (H2-Soy are commonly used edible oils. However, in contrast to soybean oil (Soy, they shorten the survival of stroke-prone spontaneously hypertensive (SHRSP rats. It has been proposed that the adverse effects of these oils on the kidney and testis are caused at least in part by dihydro-vitamin K (VK 1 in H2-Soy and unidentified component(s in Can. Increased intake of dihydro-VK1 is associated with decreased tissue VK2 levels and bone mineral density in rats and humans, respectively. The aim of the present study was to determine the effects of these oils on bone morphogenetic protein (BMP-induced ectopic bone formation, which is promoted by VK2 deficiency, in relation to the role of VK in the γ-carboxylation of osteocalcin and matrix Gla protein. A crude extract of BMPs was implanted into a gap in the fascia of the femoral muscle in 5-week-old mice maintained on a Soy, Can, or H2-Soy diet. Newly formed bone volume, assessed by three-dimensional X-ray micro-computed tomography and three-dimensional reconstruction imaging for bone, was 4-fold greater in the Can and H2-Soy groups than in the Soy group. The plasma carboxylated osteocalcin (Gla-OC and total OC (Gla-OC plus undercarboxylated osteocalcin [Glu-OC] levels were significantly lower in the Can group than in the Soy group (p < 0.05. However, these levels did not significantly differ between the H2-Soy and Soy groups. The plasma Gla-OC/Glu-OC ratio in the Can and H2-Soy groups was significantly lower (in Can; p = 0.044 or was almost significantly lower (in H2-Soy; p = 0.053 than that in the Soy group. In conclusion, Can and H2-Soy accelerated BMP-induced bone formation in mice to a greater extent than Soy. Further research is required to evaluate whether the difference in accelerated ectopic bone formation is associated with altered levels of VK2 and VK-dependent protein(s among the three dietary groups.

  15. FERMENTED SOYBEAN CAKE AND ALBUMIN FORMULA AS NUTRITIONAL SUPPORT PREVENTS PROTEIN ENERGY MALNUTRITION AND AKI IN STROKE PATIENTS

    Directory of Open Access Journals (Sweden)

    Nanny Djaya

    2012-06-01

    Full Text Available Stroke is the leading cause of death in every hospital in Indonesia. The death rate of newly formed or recurrent stroke is estimated around 750.000 case every year nation wide, 200.000 of which are recurrent stroke. Stroke patients have higher risk to develop another stroke attack. In 5 years time, the recurrence of stroke attack is estimated around 30–43%. In many cases, elderly stroke patients who were admitted to the hospital with recurrent stroke attack also suffer from anorexia which leads to hypoalbuminemia, hyponatremia, hypokalemia and impaired renal function marked by a rise in ureum level with or without elevation in blood creatinin levels. This study uses pre and post nutrition intervention method. Hospital’s fermented soybean cake and albumin blend formula was given through nasogastric tube. The amount of calorie was adjusted according to basal needs x 1,3 and consisted of carbohydrate, protein 1 gram/kg BB (albumin : fermented soybean cake=3:1 and 25% fat. This formula was given to 11 stroke patients who had been admitted to Atma Jaya Hospital for at least 10 days and met the inclusion & exclusion criteria, such as did not receive parenteral blood and albumin transfusion without history of renal failure. All the patients’ intake and fluid balance were monitored. The average albumin level of these patients was ±3,1 mg/dL(pre intervention. After receiving nutrition (NGT and fluid (parenteral nutrition intervention, the result is as follows: There was an average of±5 mg increase in Natrium level during day 3–5 of hospital stay. There was an average of±0,3 mg increase in Kalium level during day 2–3 of hospital stay. There was an average of ±15 mg reduction of Ureum level during day 5–7 of hospital stay When there was inadequate calorie intake, protein from muscle might be broken down marked by a rise in blood ureum level with or without an increase in creatinin level. In this condition, electrolyte level, such as

  16. Soil water storage, yield, water productivity and transpiration efficiency of soybeans (Glyxine max L.Merr as affected by soil surface management in Ile-Ife, Nigeria

    Directory of Open Access Journals (Sweden)

    Omotayo B. Adeboye

    2017-06-01

    Full Text Available Rainfed agriculture has a high yield potential if rainfall and land resources are effectively used. In this study, conventional (NC and six in-situ water conservation practices were used to cultivate Soybean in 2011 and 2012 in Ile-Ife, Nigeria. The conservation practices are: Tied ridge (TR, Soil bund (BD, Mulch (ML, Mulch plus Soil bund (MLBD, Tied ridge plus Mulch (TRML, Tied ridge plus Soil bund (TRBD. The practices were arranged in Randomised Complete Block Design with four replicates. Seasonal rainfall was 539 and 761 mm in 2011 and 2012, respectively. Seasonal soil water storage (SWS ranged from 485 mm for NC to 517 mm for TRML in the two seasons. ML increased the SWS in the upper 30 cm of the soil by 17% while TR increased the soil water content in the lower 30–60 cm by 22% compared with NC. ML reduced soil temperature in the upper 30 cm between 2.2 and 2.9 oC compared with NC, TR and TRML. Seasonal crop evapotranspiration ranged between 432 mm for NC and 481 mm for BD in the seasons. Grain yield increased by 41.7% and 44.3% for BD and MLBD, respectively compared with NC. Water conservation practices increased water productivity for grain yield by 14.0–41.8% compared with NC. Similarly, it increased average seasonal transpiration efficiency by 15.3–32.5% compared with NC. These findings demonstrate that when there are fluctuations in rainfall, in-situ water conservation practices improve SWS, land, and water productivity and transpiration efficiency of Soybeans.

  17. Comparative studies focusing on transgenic through cp4EPSPS gene and non-transgenic soybean plants: an analysis of protein species and enzymes.

    Science.gov (United States)

    Arruda, Sandra C C; Barbosa, Herbert S; Azevedo, Ricardo A; Arruda, Marco A Z

    2013-11-20

    This work evaluates the activity of a few key enzymes involved in combating reactive oxygen species (ROS), such as ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), glutathione reductase (EC 1.6.4.2), and superoxide dismutase (EC 1.15.1.1), as well as the concentration of malondialdehyde and hydrogen peroxide in transgenic and non-transgenic soybean leaves. Additionally, differential protein species from leaves of both genotypes were evaluated by applying a regulation factor of ≥1.8 to further corroborate the hypothesis that genetic modification itself can be a stress factor for these plants. For this task, transgenic soybean plants were obtained from seeds modified with the cp4EPSPS gene. The results revealed higher activities of all evaluated enzymes in transgenic than in non-transgenic soybean leaves (ranging from 13.8 to 70.1%), as well as higher concentrations of malondialdehyde and hydrogen peroxide in transgenic soybean leaves, clearly indicating a condition of oxidative stress established in the transgenic genotype. Additionally, 47 proteins were differentially abundant when comparing the leaves of both plants, with 26 species accurately identified, including the protein involved in the genetic modification (CP4EPSPS). From these results, it is possible to conclude that the plant is searching for a new equilibrium to maintain its metabolism because the stress condition is being maintained within levels that can be tolerated by the plant. The present paper is the first one in the literature where are shown translational aspects involving plant stress and the genetic modification for soybean involving the cp4 EPSPS gene. The main biological importance of this work is to make possible the demystification of the genetic modification, allowing answers for some questions that still remain unknown, and enlarge our knowledge about genetically modified organisms. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright

  18. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows.

    Science.gov (United States)

    Amanlou, H; Maheri-Sis, N; Bassiri, S; Mirza-Aghazadeh, A; Salamatdust, R; Moosavi, A; Karimi, V

    2012-01-01

    Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight) were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (Pfat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; PMilk fat yield and percentage of cows fed fat-supplemented diets were significantly (Pfat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (Pfat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein) sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  19. Carrageenan type effect on soybean oil/soy protein isolate emulsion employed as fat replacer in panela-type cheese

    Directory of Open Access Journals (Sweden)

    Rojas-Nery, E.

    2015-12-01

    Full Text Available In order to modify the fatty acid profile of panela-type cheese (a Mexican fresh cheese, emulsified soybean oil with soy protein isolate and different carrageenan (iota, kappa or lambda was employed as fat replacer. The replacement of milk fat in panela-type cheese resulted in higher cheese yield values and moisture content, besides a concomitant lower fat phase and higher protein content, due to a soy protein isolate in emulsified soybean oil. Fat replacement resulted in a harder but less cohesive, spring and resilient texture, where differences in texture could be attributed to the specific carrageenan-casein interactions within the rennet coagulated cheese matrix. The FTIR analysis showed that the milk fat replacement changed the fatty acid profile, also in function of the type of carrageenan employed. Lambda carrageenan containing emulsions improved moisture retention and maintained the textural properties of panela-type cheese.Para modificar el perfil de ácidos grasos de los quesos tipo panela (queso fresco popular en México, se utilizó aceite de soja emulsionado con aislado de proteína de soja y diferentes carrageninas (iota, kappa o lambda como sustituto de la grasa. Reemplazar la grasa de la leche en el queso tipo panela resultó en mayor rendimiento quesero y mayor contenido de humedad, además de una concomitante menor fase grasa y mayor contenido de proteína, debido al aislado de proteína de soja en el aceite de soja emulsionado. La sustitución de la grasa dio como resultado una textura más dura, pero menos cohesiva, elástica y resiliente, donde estas diferencias podrían ser atribuidas a la interacción especifica entre carrageninas-caseinas en la matriz coagulada del queso. El análisis de FTIR muestra que reemplazar la grasa de la leche cambia el perfil de ácidos grasos, también en función del tipo de carragenina empleado. Las emulsiones con lambda carrageninas mejoraron la retención de humedad y mantuvieron las

  20. Diets based on soybean protein for Mediterranean fruit fly Dietas baseadas em proteína de soja para moscas do Mediterrâneo

    Directory of Open Access Journals (Sweden)

    Raimundo Braga Sobrinho

    2006-04-01

    Full Text Available The objective of this work was to develop suitable and economic diets for mass rearing Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae. Diets containing sugar beet bagase, wheat bran, brewer yeast, and others with wheat bran and palletized soybean protein from Brazil were tested. Diets based on soybean protein have shown promising results regarding pupal recovery, pupal weight and adult emergence. Soybean bagase in the form of pellets with 60% of protein can be a very important substitute for other expensive sources of protein.O objetivo deste trabalho foi desenvolver dietas adequadas e econômicas para a criação massal de moscas de frutas do Mediterrâneo, Ceratitis capitata (Diptera: Tephritidae. Foram testados dietas com bagaço de beterraba açucareira, farelo de trigo, levedura de cerveja e outras dietas de farelo de trigo e proteína de soja prensada brasileira. Dietas compostas por proteína de soja apresentaram resultados positivos de recuperação de pupas, pesos de pupa e emergência de adultos. O bagaço de soja, na forma de pellet com 60% de proteína, pode ser um importante substituto de outras fontes de proteína.

  1. A novel water-based process produces eco-friendly bio-adhesive made from green cross-linked soybean soluble polysaccharide and soy protein.

    Science.gov (United States)

    Yuan, Cheng; Chen, Mingsong; Luo, Jing; Li, Xiaona; Gao, Qiang; Li, Jianzhang

    2017-08-01

    In this study, an eco-friendly soy protein adhesive was developed that utilized two components from soybean meal without addition of any toxic material. A plant-based, water-soluble and inexpensive soybean soluble polysaccharide was used as the novel renewable material to combine with soy protein to produce a soy protein adhesive. Three-plywood was fabricated with the resulting adhesive, and its wet shear strength was measured. The results showed the wet shear strength of plywood bonded by the adhesive reached 0.99MPa, meeting the water resistance requirement for interior use panels. This improvement was attributed to the following reasons: (1) Combination of cross-linked soybean soluble polysaccharide and soy protein formed an interpenetrating network structure, improving the thermal stability and water resistance of the cured adhesive. (2) Adding CL-SSPS decreased the adhesive viscosity to 15.14Pas, which increased the amount of the adhesive that penetrate the wood's surface and formed more interlocks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    Science.gov (United States)

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  3. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    Science.gov (United States)

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  4. Influence of soybean storage conditions on crude oil quality Influência das condições de armazenagem da soja na qualidade do óleo bruto

    Directory of Open Access Journals (Sweden)

    Ernandes R. de Alencar

    2010-03-01

    Full Text Available This study was done to evaluate the quality of crude oil from soybeans stored under different conditions. The grains were harvested at 18% (w.b. moisture content (m.c., and after drying to 11.2, 12.8 and 14.8% they were stored at 20, 30 or 40 ºC. Changes in free fatty acid (FFA content, peroxide, iodine and photometric color index of the extracted oil were determined at 45-day intervals for 180-day storage. In general, oil FFA content increased in all the samples, except in grains at 11.2% m.c. and stored at 20 ºC. The peroxide and photometric color index increased significantly, independently of storage conditions; however, the increase was more accentuated in oil extracted of stored grains at high m.c. and temperature. It was concluded that crude oil quality is not affected during 6-month storage of soybeans up to 15.0% m.c. (w.b. at 20 ºC, and for storage at 30 ºC, the grain moisture up to 13% maintains oil quality within the Brazilian market standards.Propôs-se, neste trabalho, avaliar a qualidade do óleo bruto extraído dos grãos de soja armazenados em diferentes condições. Grãos de soja foram colhidos com aproximadamente 18,0% de teor de água (b.u. e, após secados até 11,2, 12,8 e 14,8% b.u., armazenados a 20, 30 e 40 ºC. A cada 45 dias até 180 dias de armazenamento, foram determinados o teor de ácidos graxos livres, o índice de peróxido, o índice de iodo e o índice fotométrico de cor do óleo bruto. Em geral, o percentual de ácidos graxos livres aumentou, exceto no óleo extraído dos grãos armazenados com 11,2% a 20 ºC. O índice de peróxido e o índice fotométrico de cor do óleo aumentaram significativamente em todas as condições de armazenagem; entretanto, este comportamento foi mais acentuado no óleo extraído dos grãos armazenados com maior teor de água e temperatura mais elevada. Pode-se concluir, com base nos resultados, que é possível armazenar grãos de soja com teor de água de até 15,0% (b

  5. Irradiating of Bulk Soybeans: Influence on Their Functional and Sensory Properties for Soyfood Processing

    Science.gov (United States)

    Chia, Chiew-Ling; Wilson, Lester A.; Boylston, Terri; Perchonok, Michele; French, Stephen

    2006-01-01

    Soybeans were chosen for lunar and planetary missions, where soybeans will be supplied in bulk or grown locally, due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to consumption. Radiation that soybeans would be exposed to during bulk storage prior to and during a Mars mission may influence their germination and functional properties. The influence of radiation includes the affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (HACCP, CCP), and the affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants free radical formation, and oxidation-induced changes in the soybean will influence the nutritional value, texture, color, and aroma of soyfoods. The objective of this study was to determine the influence of pasteurization and sterilization surface radiation on whole soybeans using gamma and electron beam radiation. The influence of 0, 1, 5, 10, and 30kGy on microbial load, germination rate, ease of processing, and quality of soymilk and tofu were determined. Surface radiation of whole dry soybeans using electron beam or gamma rays from 1-30kGy did provide microbial safety for the astronauts. However, the lower dose levels had surviving yeasts and molds. These doses caused oxidative changes that resulted in soymilk and tofu with rancid aromas. GC-MS of the aroma compounds using SPME Headspace confirmed the presence of lipid oxidation compounds. Soybean germination ability was reduced as radiation dosage increased. While lower doses may reduce these problems, the ability to insure microbial safety of bulk soybeans will be lost. Counter measures could include vacuum packaging, nitrogen flushing, added antioxidants, and radiating under freezing conditions. Doses below 1kGy need to be investigated further to determine the influence of the radiation encountered

  6. Synthesis of antimicrobial Nisin-phosphorylated soybean protein isolate/poly(L-lactic acid)/ZrO2 membranes.

    Science.gov (United States)

    Jiang, Suwei; Wang, Hualin; Chu, Chenjiang; Ma, Xingkong; Sun, Min; Jiang, Shaotong

    2015-01-01

    Electrospinning technique was used to fabricate the model drug Nisin loaded phosphorylated soybean protein isolate/poly(l-lactic acid)/zirconium dioxide (Nisin-PSPI/PLLA/ZrO2) nanofibrous membranes. The average diameter of drug carrier PSPI/PLLA/ZrO2 nanofibers increased with the increase of content PSPI and some spindle-shape beads appeared when PSPI content reached 25 wt%. The loading dosage of Nisin caused no significant changes in the size and morphology of nanofibers when Nisin content was below 9 wt%. There existed hydrogen and Zr-O-C bonds among PSPI, PLLA and ZrO2 units, and the crystalline of PLLA matrix decreased owning to the introducing of PSPI and ZrO2 units. Moreover, the water absorption capability and degradation rate of PSPI/PLLA/ZrO2 nanofibrous membranes increased with increasing PSPI content. The antimicrobial activity and release experimental results showed that Nisin-PSPI/PLLA/ZrO2 nanofibrous membranes displayed well controlled release and better antimicrobial activity against Staphylococcus aureus (S. aureus), and the Nisin release from the medicated nanofibers could be described by Fickian diffusion model. The Nisin-PSPI/PLLA/ZrO2 nanofibrous membranes may have potential as a new nanofibrous membrane in drug delivery, food active packaging and wound dressing. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Synergy of licorice extract and pea protein hydrolysate for oxidative stability of soybean oil-in-water emulsions.

    Science.gov (United States)

    Zhang, Xin; Xiong, Youling L; Chen, Jie; Zhou, Lirong

    2014-08-13

    Previously developed radical-scavenging pea protein hydrolysates (PPHs) prepared with Flavourzyme (Fla-PPH) and Protamex (Pro-PPH) were used as cosurfactants with Tween 20 to produce soybean oil-in-water (O/W) emulsions, and the suppression of lipid oxidation was investigated. Both PPHs significantly retarded oxidation (P < 0.05) of the emulsions when stored at 37 °C for 14 days. Electron microscopy revealed an interfacial peptidyl membrane around oil droplets, which afforded steric restrictions to oxidation initiators. When licorice extract (LE) was also used in emulsion preparation, a remarkable synergistic oxidation inhibition was observed with both PPHs. LE adsorbed onto oil droplets either directly or through associating with PPH to produce a thick and compact interfacial membrane enabling the defense against oxygen species. Liquiritin apioside, neolicuroside, glabrene, and 18β-glycyrrhetic acid were the predominant phenolic derivatives partitioning at the interface and most likely the major contributors to the notable synergistic antioxidant activity when coupled with PPHs.

  8. Replacement of Soybean Meal with Animal Origin Protein Meals Improved Ramoplanin A2 Production by Actinoplanes sp. ATCC 33076.

    Science.gov (United States)

    Erkan, Deniz; Kayali, Hulya Ayar

    2016-09-01

    Ramoplanin A2 is the last resort antibiotic for treatment of many high morbidity- and mortality-rated hospital infections, and it is expected to be marketed in the forthcoming years. Therefore, high-yield production of ramoplanin A2 gains importance. In this study, meat-bone meal, poultry meal, and fish meal were used instead of soybean meal for ramoplanin A2 production by Actinoplanes sp. ATCC 33076. All animal origin nitrogen sources stimulated specific productivity. Ramoplanin A2 levels were determined as 406.805 mg L(-1) in fish meal medium and 374.218 mg L(-1) in poultry meal medium. These levels were 4.25- and 4.09-fold of basal medium, respectively. However, the total yield of poultry meal was higher than that of fish meal, which is also low-priced. In addition, the variations in pH levels, protein levels, reducing sugar levels, extracellular protease, amylase and lipase activities, and intracellular free amino acid levels were monitored during the incubation period. The correlations between ramoplanin production and these variables with respect to the incubation period were determined. The intracellular levels of L-Phe, D-Orn, and L-Leu were found critical for ramoplanin A2 production. The strategy of using animal origin nitrogen sources can be applied for large-scale ramoplanin A2 production.

  9. Is Peripheral Benzodiazepine Receptor (PBR) Gene Expression Involved in Breast Cancer Suppression by Dietary Soybean Protein?

    National Research Council Canada - National Science Library

    Das, Salil

    2006-01-01

    .... It has been established that women in Asian countries consume more soy protein than women in the United States and that the incidence of breast cancer in women in Asian countries is generally lower...

  10. Systematic study on the preparation of a food grade soybean protein

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, L.; Labrecque, R.; Toupin, R. [Institut de Recherche d`Hydro-Quebec, Varennes, PQ (Canada); Boulet, M.; Ippersiel, D.; Lamarche, F. [Food Research and Development Centre, St. Hyacinthe, PQ (Canada)

    1996-05-01

    A new application of electrodialysis for the precipitation and separation of soy proteins, called electro-acidification, was evaluated. The compositional properties of electro-acidified proteins were compared to those of commercial standards. Since protein solutions have physico-chemical properties that make their behaviour difficult to predict, the limiting current, and the factors which influence them, were determined. These factors included KCl concentration, protein concentration, the recirculation rate in the stack, the concentration of added salt and the temperature of the protein solution. Three approaches to electro-acidification were developed, i. e., bipolar-membrane (most rapid with the lowest energy consumption), alternating anionic and cationic membranes (most time-consuming), and anodic proton generation (intermediate between the other two). The compositional quality of electro-acidified samples was shown to be superior or equal to that of commercial standards as confirmed by the solubility profile of the products. It was therefore concluded that using electrodialysis to produce protein isolates was technologically feasible and energy efficient. 76 refs., 4 tabs., 33 figs.

  11. Effects of Long-Term Storage Time and Original Sampling Month on Biobank Plasma Protein Concentrations

    Directory of Open Access Journals (Sweden)

    Stefan Enroth

    2016-10-01

    Full Text Available The quality of clinical biobank samples is crucial to their value for life sciences research. A number of factors related to the collection and storage of samples may affect the biomolecular composition. We have studied the effect of long-time freezer storage, chronological age at sampling, season and month of the year and on the abundance levels of 108 proteins in 380 plasma samples collected from 106 Swedish women. Storage time affected 18 proteins and explained 4.8–34.9% of the observed variance. Chronological age at sample collection after adjustment for storage-time affected 70 proteins and explained 1.1–33.5% of the variance. Seasonal variation had an effect on 15 proteins and month (number of sun hours affected 36 proteins and explained up to 4.5% of the variance after adjustment for storage-time and age. The results show that freezer storage time and collection date (month and season exerted similar effect sizes as age on the protein abundance levels. This implies that information on the sample handling history, in particular storage time, should be regarded as equally prominent covariates as age or gender and need to be included in epidemiological studies involving protein levels.

  12. Nitrogen balance and milk composition of dairy cows fed urea and soybean meal and two protein levels using sugar cane based diets

    OpenAIRE

    Luís Henrique Andreucci Conti; Elmeson Ferreira de Jesus; Angélica Simone Cravo Pereira; Marcos André Arcari; Kleber da Cunha Peixoto Junior; Francisco Palma Rennó; Marcos Veiga dos Santos

    2014-01-01

    The aim of the study was to evaluate the effect of feeding two levels of crude protein (CP) (low: 142 g CP/kg DM; and high: 156 g CP/kg DM) and two nitrogen sources (soybean meal and urea) to dairy cows using sugar cane as forage on microbial protein synthesis, the composition of the milk nitrogen fraction, nitrogen (N) balance and blood parameters. Twelve Holstein cows with an average milk yield of 22.0 ± 2.3 kg/day, and with 235 ± 40 days in milk were included in this study. The animals wer...

  13. Constitutive expression of feedback-insensitive cystathionine γ-synthase increases methionine levels in soybean leaves and seeds

    Institute of Scientific and Technical Information of China (English)

    YU Yang; HOU Wen-sheng; YaeI Hacham; SUN Shi; WU Cun-xiang; Ifat Matityahu; SONG Shikui; RacheI Amir; HAN Tian-fu

    2018-01-01

    Soybean (Glycine max (L.) Merr.) is a major crop that provides plant-origin protein and oil for humans and livestock. Although the soybean vegetative tissues and seeds provide a major source of high-quality protein, they suffer from low concentration of an essential sulfur-containing amino acid, methionine, which significantly limits their nutritional quality. The level of methionine is mainly controlled by the first unique enzyme of methionine synthesis, cystathione γ-synthase (CGS). Aiming to elevate methionine level in vegetative tissues and seeds, we constitutively over-expressed a feedback-insensitive Arabidopsis CGS (AtD-CGS) in soybean cultivars, Zigongdongdou (ZD) and Jilinxiaoli 1 (JX). The levels of soluble methionine increased remarkably in leaves of transgenic soybeans compared to wild-type plants (6.6- and 7.3-fold in two transgenic ZD lines, and 3.7-fold in one transgenic JX line). Furthermore, the total methionine contents were significantly increased in seeds of the transgenic ZD lines (1.5- to 4.8-fold increase) and the transgenic JX lines (1.3- to 2.3-fold increase) than in the wild type. The protein contents of the transgenic soybean seeds were significantly elevated compared to the wild type, suggesting that the scarcity of methionine in soybeans may limit protein accumulation in soybean seeds. The increased protein content did not alter the profile of major storage proteins in the seeds. Generally, this study provides a promising strategy to increase the levels of methionine and protein in soybean through the breeding programs.

  14. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals.

    Science.gov (United States)

    Hong, Kee-Jong; Lee, Chan-Ho; Kim, Sung Woo

    2004-01-01

    This study evaluated the effect of fermentation on the nutritional quality of food-grade soybeans and feed-grade soybean meals. Soybeans and soybean meals were fermented by Aspergillus oryzae GB-107 in a bed-packed solid fermentor for 48 hours. After fermentation, their nutrient contents as well as trypsin inhibitor were measured and compared with those of raw soybeans and soybean meals. Proteins were extracted from fermented and non-fermented soybeans and soybean meals, and the peptide characteristics were evaluated after electrophoresis. Fermented soybeans and fermented soybean meals contained 10% more (P 60 kDa) (P 60 kDa), whereas 22.1% of peptides in soybean meal were large-size (>60 kDa). Collectively, fermentation increased protein content, eliminated trypsin inhibitors, and reduced peptide size in soybeans and soybean meals. These effects of fermentation might make soy foods more useful in human diets as a functional food and benefit livestock as a novel feed ingredient.

  15. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...

  16. Seed storage protein polymorphism in ten elite rice (Oryza sativa L ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... for several economical traits by conserving landrace genotypes and ... plasm, seed storage protein analysis represents a valid alternative ... of each variety was taken and ground into fine powder using pestle and mortal and ...

  17. Factors Affecting Isoflavone Content in Soybean Seeds Grown in Thailand

    OpenAIRE

    Teekachunhatean, Supanimit; Hanprasertpong, Nutthiya; Teekachunhatean, Thawatchai

    2013-01-01

    Soybeans are the most common source of isoflavones in human foods. The objectives of this study were to determine the effects of Thai soybean variety, planting date, physical seed quality, storage condition, planting location, and crop year on isoflavone content, as well as to analyze the relationship between seed viability and isoflavone content in soybean seeds grown in Thailand. Isoflavone content in Thai soybeans varied considerably depending on such factors as variety, physical seed qual...

  18. Changes in RNA Splicing in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Delasa Aghamirzaie

    2013-11-01

    Full Text Available Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.

  19. Nitrogen balance and milk composition of dairy cows fed urea and soybean meal and two protein levels using sugar cane based diets

    Directory of Open Access Journals (Sweden)

    Luís Henrique Andreucci Conti

    2014-12-01

    Full Text Available The aim of the study was to evaluate the effect of feeding two levels of crude protein (CP (low: 142 g CP/kg DM; and high: 156 g CP/kg DM and two nitrogen sources (soybean meal and urea to dairy cows using sugar cane as forage on microbial protein synthesis, the composition of the milk nitrogen fraction, nitrogen (N balance and blood parameters. Twelve Holstein cows with an average milk yield of 22.0 ± 2.3 kg/day, and with 235 ± 40 days in milk were included in this study. The animals were grouped into three balanced and contemporary 4x4 Latin squares for an experimental period of 21 days. On the 15th day of each period, milk and urine samples were collected for microbial protein synthesis determination. Total excretion of urine (L/day, milk urea nitrogen (MUN and blood urea were higher for the diets with high CP, regardless of the nitrogen source. Nitrogen efficiency was higher for cows fed diets with low CP. Cows in the final third of lactation can be fed diets with reduced CP levels, regardless of the nitrogen source, soybean meal or urea, without influencing the synthesis of microbial protein or the composition of the nitrogen fraction of milk.

  20. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Singh

    2016-01-01

    Full Text Available Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE across a broad range 3.0–10.0 immobilized pH gradient (IPG strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana.

  1. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    OpenAIRE

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S.

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected ...

  2. Laura: Soybean variety lacking Kunitz trypsin inhibitor

    Directory of Open Access Journals (Sweden)

    Srebrić Mirjana

    2010-01-01

    Full Text Available Grain of conventional soybean varieties requires heat processing to break down trypsin inhibitor's activity before using as food or animal feed. At the same time, protein denaturation and other qualitative changes occur in soybean grain, especially if the temperature of heating is not controlled. Two types of trypsin inhibitor were found in soybean grain the Kunitz trypsin inhibitor and the Bowman-Birk inhibitor. Mature grain of soybean Laura is lacking Kunitz trypsin inhibitor. Grain yield of variety Laura is equal to high yielding varieties from the maturity group I, where it belongs. Lacking of Kunitz-trypsin inhibitor makes soybean grain suitable for direct feeding in adult non ruminant animals without previous thermal processing. Grain of variety Laura can be processed for a shorter period of time than conventional soybeans. This way we save energy, and preserve valuable nutritional composition of soybean grain, which is of interest in industrial processing.

  3. Proteomic comparison by iTRAQ combined with mass spectrometry of egg white proteins in laying hens (Gallus gallus) fed with soybean meal and cottonseed meal

    Science.gov (United States)

    He, Tao; Zhang, Haijun; Wang, Jing; Wu, Shugeng; Yue, Hongyuan; Qi, Guanghai

    2017-01-01

    Cottonseed meal (CSM) is commonly used in hens’ diets to replace soybean meal (SBM). However, the molecular consequences of this substitution remains unclear. To investigate the impact of this substitution at the molecular level, iTRAQ combined with biochemical analysis was performed in Hy-Line W-36 hens supplemented with a mixed diet of CSM and SBM. Egg weight, albumen height, and Haugh unit were significantly reduced in the CSM100 group (100% crude protein of SBM replaced by CSM) compared with the SBM group (Phen diet. PMID:28813468

  4. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows

    Directory of Open Access Journals (Sweden)

    A. Moosavi

    2012-09-01

    Full Text Available Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (P<0.05 high NEL intakes when compared to control with no fat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; P<0.01 and FCM production (1.05-2.79; P<0.01. Milk fat yield and percentage of cows fed fat-supplemented diets were significantly (P<0.01 and P<0.05 respectively higher than control. Between fat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (P<0.01 higher than control. Body weight, body weight change and BCS (body condition score of cows, as well as energy balance and energy efficiency were similar between treatments. In conclusion, while there was no significant effect of fat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  5. Effect of substituting soybean meal and canola cake with dried distillers grains with solubles at 2 dietary crude protein levels on feed intake, milk production, and milk quality in dairy cows

    DEFF Research Database (Denmark)

    Gaillard, Charlotte; Sørensen, Martin Tang; Vestergaard, Mogens

    2017-01-01

    Dried distillers grain with solubles (DDGS) is an alternative source of feed protein for dairy cows. Previous studies found that DDGS, based on grains other than corn, can substitute for soybean meal and canola cake as a dietary protein source without reducing milk production or quality....... As societal concerns exist, and in many areas strict regulation, regarding nitrogen excretion from dairy cows, the dairy industry has focused on reducing dietary protein level and nitrogen excretion. In the present study, we investigated the use of DDGS as a protein source, at a marginally low dietary crude...... protein (CP) levels, in a grass-clover and corn silage-based ration. The experiment involved 24 Holstein cows and 2 protein sources (DDGS or soybean-canola mixture) fed at 2 levels of CP (14 or 16%) in a 4 × 4 Latin square design. The aim of this study was to evaluate the effect of both protein source...

  6. Dynamic changes in proteins during apple (Malus x domestica) fruit ripening and storage

    OpenAIRE

    Shi, Yun; Jiang, Li; Zhang, Li; Kang, Ruoyi; Yu, Zhifang

    2014-01-01

    A proteomic study, using two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight, was conducted in apple fruit (cv. ‘Golden Delicious’) starting at 10 days prior to harvest through 50 days in storage. Total protein was extracted using a phenol/sodium dodecyl sulfate protocol. More than 400 protein spots were detected in each gel and 55 differentially expressed proteins (p

  7. Physicochemical properties of gamma-irradiated soybeans

    International Nuclear Information System (INIS)

    Lee, H.J.; Kim, J.O.; Yook, H.S.; Byun, M.W.

    1996-01-01

    Some physicochemical properties of gamma-irradiated soybeans (0-20 kCy) were investigated. Proximate components, fatty acid compositions and minerals of the soybeans irradiated at 2.5 - 20 kGy shrived no difference from the nonirradiated control. Irradiation doses above 10 kGy and long term storage caused decrease in extractable phenols and phytate content, whereas increases in acid value and organic acid content. The total amino acids content of the soybeans irradiated up to 10 kGy was not changed as compared with the nonirradiated control. Sulfur-containing amino acids, however, were changed by 10 and 20 kGy irradiaton. Gamma irradiation and long term storage caused minor changes in the color attributes of soybeans. Hunter's 'L' (lightness) and 'b' (yellowness) values were decreased whereas 'a' (redness) value was increased with increasing dose levels and the elapse of the storage period

  8. Conservation of polypyrimidine tract binding proteins and their putative target RNAs in several storage root crops.

    Science.gov (United States)

    Kondhare, Kirtikumar R; Kumar, Amit; Hannapel, David J; Banerjee, Anjan K

    2018-02-07

    Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development. Potato PTBs, designated as StPTB1 and StPTB6, function in a long-distance transport system by binding to specific mRNAs (StBEL5 and POTH1) to stabilize them and facilitate their movement from leaf to stolon, the site of tuber induction, where they activate tuber and root growth. Storage tubers and root crops are important sustenance food crops grown throughout the world. Despite the availability of genome sequence for sweet potato, cassava, carrot and sugar beet, the molecular mechanism of root-derived storage organ development remains completely unexplored. Considering the pivotal role of PTBs and their target RNAs in potato storage organ development, we propose that a similar mechanism may be prevalent in storage root crops as well. Through a bioinformatics survey utilizing available genome databases, we identify the orthologues of potato PTB proteins and two phloem-mobile RNAs, StBEL5 and POTH1, in five storage root crops - sweet potato, cassava, carrot, radish and sugar beet. Like potato, PTB1/6 type proteins from these storage root crops contain four conserved RNA Recognition Motifs (characteristic of RNA-binding PTBs) in their protein sequences. Further, 3´ UTR (untranslated region) analysis of BEL5 and POTH1 orthologues revealed the presence of several cytosine/uracil motifs, similar to those present in potato StBEL5 and POTH1 RNAs. Using RT-qPCR assays, we verified the presence of these related transcripts in leaf and root tissues of these five storage root crops. Similar to potato, BEL5-, PTB1/6- and POTH1-like orthologue RNAs from the aforementioned storage root

  9. Genotypic variability and mutant identification in cicer arietinum L. by seed storage protein profiling

    International Nuclear Information System (INIS)

    Hameed, A.; Iqbal, N.; Shah, T.M.

    2012-01-01

    A collection of thirty-four chickpea genotypes, including five kabuli and twenty-nine desi, were analyzed by SDS-PAGE for seed storage protein profiling. Total soluble seed proteins were resolved on 12% gels. A low level of variability was observed in desi as compared to kabuli genotypes. Dendrogram based on electrophoretic data clustered the thirty-four genotypes in four major groups. As large number of desi genotypes illustrated identical profiles, therefore could not be differentiated on the basis of seed storage protein profiles. One kabuli genotype ILC-195 found to be the most divergent showing 86% similarity with all other genotypes. ILC-195 can be distinguished from its mutant i.e., CM-2000 and other kabuli genotypes on the basis of three peptides i.e. SSP-66, SSP-43 and SSP-39. Some proteins peptides were found to be genotype specific like SSP-26 for ICCV-92311. Uniprot and NCBI protein databases were searched for already reported and characterized seed storage proteins in chickpea. Among 33 observed peptides, only six seed storages proteins from chickpea source were available in databases. On the basis of molecular weight similarity, identified peptides were SSP-64 as Serine/Threonine dehydratase, SSP-56 as Alpha-amylase inhibitor, SSP-50 as Provicillin, SSP-39 as seed imbibition protein, SSP-35 as Isoflavane reductase and SSP-19 as lipid transport protein. Highest variability was observed in vicillin subunits and beta subunits of legumins and its polymorphic forms. In conclusion, seed storage profiling can be economically used to asses the genetic variation, phylogenetic relationship and as markers to differentiate mutants from their parents. (author)

  10. Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice

    NARCIS (Netherlands)

    Chen, Y.; Sun, A.; Wang, M.; Zhu, Z.; Ouwerkerk, P.B.F.

    2014-01-01

    Glutelins are the most abundant storage proteins in rice grain and can make up to 80 % of total protein content. The promoter region of GluB-1, one of the glutelin genes in rice, has been intensively used as a model to understand regulation of seed-storage protein accumulation. In this study, we

  11. 大豆籽粒蛋白质含量相关QTL定位研究进展%Quantitative Trait Locus Mapping of Seed Protein Content in Soybean: Progress

    Institute of Scientific and Technical Information of China (English)

    齐波; 杨加银

    2017-01-01

    籽粒蛋白质含量是大豆品质性状改良的主要目标之一.笔者介绍了大豆遗传图谱的构建与基因组测序发展历程,从基于分离群体的连锁分析和基于自然群体的关联分析两方面阐述了大豆籽粒蛋白质含量QTL定位研究进展,进而讨论了大豆蛋白质含量MAS育种存在的问题,最后展望了大豆蛋白质含量分子遗传改良的研究趋势.以期为大豆高蛋白育种提供参考.%Seed protein content is one of the main objectives of soybean quality improvement.In this paper,the authors summarized the development of soybean genetic map construction and genome sequencing,and clarified the progress of QTL mapping of soybean seed protein content from linkage analysis based on the segregating population and association analysis based on the natural population.Furthermore,the authors discussed the existing problem of marker-assisted selection (MAS) breeding for seed protein content in soybean.Finally,the future research trend of molecular genetic improvement of seed protein content in soybean was discussed.It is expected that this paper will provide a reference for the selection of new soybean varieties with high protein content.

  12. Avaliação da casca proteinada de soja em dietas para ovinos = Evaluation of soybean protein hulls in diets for sheep

    Directory of Open Access Journals (Sweden)

    Vanessa Peripolli

    2011-04-01

    Full Text Available Foi avaliada a utilização de cinco níveis de casca proteinada de soja (0, 4, 8, 12 e 16% em substituição ao farelo de soja em dietas para ovinos em confinamento. Foram avaliados o desempenho, o consumo, a digestibilidade dos nutrientes e os balanços energético e nitrogenado em função da dieta. Vinte cordeiros da raça Texel, com peso vivo médio inicial de 28 kg, foram distribuídos em delineamento inteiramente casualizado com cinco tratamentos e quatro repetições. A dieta foi composta de 30% de volumoso e 70% de concentrado. O farelo de soja dos concentrados foi gradativamente substituído pela cascaproteinada de soja (CPS. O consumo de nutrientes, a conversão alimentar e o ganho de peso não foram influenciados pelo aumento do nível de inclusão da CPS na dieta. Os níveis de CPS também não influenciaram as digestibilidades da MS, MO, N (PB, FDN e EB e osbalanços energético e nitrogenado. The aim was to evaluate the use of five levels of soybean protein hulls (0, 4, 8, 12 and 16% in place of soybean meal in diets for sheep in confinement. We evaluated the performance, intake, nutrient digestibility and, energy and nitrogen balance in terms of diet. Twenty Texel lambs with an average weight of 28 kg were distributed in a completely randomized design with four replications. The diet consisted of 30% roughage and 70% concentrate. The soybean meal in the concentrates was gradually replaced by soybean protein hulls (SPH. Nutrient intake, feed-to-gain ratio and weight gain were not affected by increasing the inclusion level of SPH en the diet. SPH levels also did not influence the digestibility of DM, OM, N (CP,NDF and GE and the energy and nitrogen balance.

  13. Soybeans Grown in the Chernobyl Area Produce Fertile Seeds that Have Increased Heavy Metal Resistance and Modified Carbon Metabolism

    Science.gov (United States)

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V.; Uvackova, Lubica; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis. PMID:23110204

  14. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    Directory of Open Access Journals (Sweden)

    Katarína Klubicová

    Full Text Available Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  15. Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius

    Directory of Open Access Journals (Sweden)

    Goggin Danica E

    2011-04-01

    Full Text Available Abstract Background In legumes, seed storage proteins are important for the developing seedling and are an important source of protein for humans and animals. Lupinus angustifolius (L., also known as narrow-leaf lupin (NLL is a grain legume crop that is gaining recognition as a potential human health food as the grain is high in protein and dietary fibre, gluten-free and low in fat and starch. Results Genes encoding the seed storage proteins of NLL were characterised by sequencing cDNA clones derived from developing seeds. Four families of seed storage proteins were identified and comprised three unique α, seven β, two γ and four δ conglutins. This study added eleven new expressed storage protein genes for the species. A comparison of the deduced amino acid sequences of NLL conglutins with those available for the storage proteins of Lupinus albus (L., Pisum sativum (L., Medicago truncatula (L., Arachis hypogaea (L. and Glycine max (L. permitted the analysis of a phylogenetic relationships between proteins and demonstrated, in general, that the strongest conservation occurred within species. In the case of 7S globulin (β conglutins and 2S sulphur-rich albumin (δ conglutins, the analysis suggests that gene duplication occurred after legume speciation. This contrasted with 11S globulin (α conglutin and basic 7S (γ conglutin sequences where some of these sequences appear to have diverged prior to speciation. The most abundant NLL conglutin family was β (56%, followed by α (24%, δ (15% and γ (6% and the transcript levels of these genes increased 103 to 106 fold during seed development. We used the 16 NLL conglutin sequences identified here to determine that for individuals specifically allergic to lupin, all seven members of the β conglutin family were potential allergens. Conclusion This study has characterised 16 seed storage protein genes in NLL including 11 newly-identified members. It has helped lay the foundation for efforts to use

  16. The effects of frozen tissue storage conditions on the integrity of RNA and protein.

    Science.gov (United States)

    Auer, H; Mobley, J A; Ayers, L W; Bowen, J; Chuaqui, R F; Johnson, L A; Livolsi, V A; Lubensky, I A; McGarvey, D; Monovich, L C; Moskaluk, C A; Rumpel, C A; Sexton, K C; Washington, M K; Wiles, K R; Grizzle, W E; Ramirez, N C

    2014-10-01

    Unfixed tissue specimens most frequently are stored for long term research uses at either -80° C or in vapor phase liquid nitrogen (VPLN). There is little information concerning the effects such long term storage on tissue RNA or protein available for extraction. Aliquots of 49 specimens were stored for 5-12 years at -80° C or in VPLN. Twelve additional paired specimens were stored for 1 year under identical conditions. RNA was isolated from all tissues and assessed for RNA yield, total RNA integrity and mRNA integrity. Protein stability was analyzed by surface-enhanced or matrix-assisted laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS, MALDI-TOF-MS) and nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). RNA yield and total RNA integrity showed significantly better results for -80° C storage compared to VPLN storage; the transcripts that were preferentially degraded during VPLN storage were these involved in antigen presentation and processing. No consistent differences were found in the SELDI-TOF-MS, MALDI-TOF-MS or nLC-ESI-MS/MS analyses of specimens stored for more than 8 years at -80° C compared to those stored in VPLN. Long term storage of human research tissues at -80° C provides at least the same quality of RNA and protein as storage in VPLN.

  17. Purification and Initial Functions of Sex-Specific Storage Protein 2 in Bombyx mori.

    Science.gov (United States)

    Chen, Jianqing; Shu, Tejun; Chen, Jian; Ye, Man; Lv, Zhengbing; Nie, Zuoming; Gai, Qijing; Yu, Wei; Zhang, Yaozhou

    2015-08-01

    In this study, we identified a heat-resistant protein from the chrysalis stage of the silkworm which we named sex-specific storage protein 2 (SSP2). This protein was stable even at 80 °C, and has an amino acid sequence that is 90.65 % homologous to SP2. We utilized the heat-resistant characteristics of SSP2 to purify the protein and maintain its biological activity. In addition, using flow cytometry and the MTT assay, we found that SSP2 had anti-apoptotic effects on BmN cells, and that SSP2 could also inhibit cell apoptosis induced by chemical factors. These results suggest that SSP2 has a cell-protective function, and provides a basis for future work on the function of storage proteins in silkworm.

  18. A role for seed storage proteins in Arabidopsis seed longevity

    NARCIS (Netherlands)

    Nguyen, Thu-Phuong|info:eu-repo/dai/nl/328228818; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie|info:eu-repo/dai/nl/241338735

    2015-01-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana

  19. Application of soybean meal, soy protein concentrate and isolate differing in α-galactosides content to low- and high-fibre diets in growing turkeys.

    Science.gov (United States)

    Zduńczyk, Z; Jankowski, J; Juśkiewicz, J; Lecewicz, A; Slominski, B

    2010-10-01

    The aim of this experiment was to investigate the physiological and growth response of young turkeys (up to 8 weeks of age) to dietary replacement of soybean meal (SBM) by soy protein concentrate (PC) or protein isolate (PI). This replacement resulted in a differentiated dietary concentration of α-galactosides of over 2.5% in the SBM diet, approximately 2% with a mixture SBM and PC, 1% with a PC diet and 0.1% with a PI diet. Each treatment was applied in two ways: with lower (3.5%) or higher (5.3%) dietary crude fibre content, made by supplementation with soybean hulls. The highest and lowest body weight of turkeys was recorded both after the first and second 4-week half of the study in the PC and PI-type diets respectively. A gradual withdrawal of α-galactosides from a diet was accompanied by a decline in ileal tissue mass, ileal viscosity and activity of endogenous maltase (the latter was found to be significant at 4 weeks of age). At the same time, two-way anova revealed that an elevated level of crude fibre (HF treatment) caused an increase in ileal tissue mass (p diet, in contrast to dietary crude fibre level, significantly affected the caecal metabolism. The rate of bacterial production of short-chain fatty acids in the caeca was distinctly diminished by dietary withdrawal of α-galactosides. In conclusion, the soy protein concentrate, in contrast to the protein isolate preparation, exerted positive effects on the turkeys' growth and gastrointestinal tract physiology and should be considered as an effective SBM substitute. © 2009 The Authors. Journal of Animal Physiology and Animal Nutrition © 2009 Blackwell Verlag GmbH.

  20. optimizing soybean flour., whey powder. and colostrum ratios for ...

    African Journals Online (AJOL)

    l4 days. If preserved colostrum could be supplemented with reconstituted soybean flour and whey powder, the period of colostrum feeding could be extended to 4 weeks. Various researchers reported the successful inclusion of soybean flour and/or soybean protein concentrate in milk replacers (Schmutz, Cravens, Soldner ...

  1. Different responses of soybean cyst nematode resistance between ...

    Indian Academy of Sciences (India)

    YONGCHUN LI

    95, xx–xx]. Introduction. Soybean is one of the most important crops worldwide accounting for about 30% of the vegetable oil and 60% of the vegetable protein in world production. However, the sustain- ability of soybean production has been challenged by inten- sified pest problems (Skorupska et al. 1994). Soybean cyst.

  2. Fat-specific protein 27 regulates storage of triacylglycerol

    DEFF Research Database (Denmark)

    Keller, P.; Petrie, J.T.; Rose, P. De

    2008-01-01

    FSP27 (fat-specific protein 27) is a member of the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family. Although Cidea and Cideb were initially characterized as activators of apoptosis, recent studies have demonstrated important metabolic roles for these proteins...... in several cell types without induction of adipocyte genes. Increased triacylglycerol is likely due to decreased beta-oxidation of nonesterified fatty acids. Altered flux of fatty acids into triacylglycerol may be a direct effect of FSP27 function, which is localized to lipid droplets in 293T cells and 3T3-L...... decreases with total fat mass but is not associated with measures of insulin resistance (e.g. homeostasis model assessment). Together, these data indicate that FSP27 binds to lipid droplets and regulates their enlargement Udgivelsesdato: 2008/5/23...

  3. Soybean production in eastern and southern Africa and threat of yield loss due to soybean rust caused by Phakopsora pachyrhizi

    NARCIS (Netherlands)

    Murithi, H.M.; Beed, F.; Tukamuhabwa, P.; Thomma, B.P.H.J.; Joosten, M.H.A.J.

    2016-01-01

    Soybean is a major source of oil and proteins worldwide. The demand for soybean has increased in Africa, driven by the growing feed industry for poultry, aquaculture and home consumption in the form of processed milk, baked beans and for blending with maize and wheat flour. Soybean, in addition

  4. Radiation processing and functional properties of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Pednekar, Mrinal; Das, Amit K.; Rajalakshmi, V; Sharma, Arun

    2010-01-01

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  5. Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during refrigerated storage.

    Science.gov (United States)

    Turgut, Sebahattin Serhat; Soyer, Ayla; Işıkçı, Fatma

    2016-06-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation was investigated in meatballs during refrigerated storage at 4±1°C. Concentrated lyophilised water extract of pomegranate peel was incorporated into freshly minced beef meat at 0.5% and 1% concentrations and compared with 0.01% butylated hydroxytoluene (BHT) as a reference and control (without any antioxidant). PE showed high phenolic content and antioxidant activity. In PE added samples, thiobarbituric acid reactive substances (TBARS) value, peroxide formation, loss of sulfhydryl groups and formation of protein carbonyls were lower than control (Pmeatballs prolonged the refrigerated storage up to 8 days. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A High-Protein Soybean Cultivar Contains Lower Isoflavones and Saponins but Higher Minerals and Bioactive Peptides than a Low-Protein Cultivar

    Science.gov (United States)

    Consumption of soybean products has increased considerably in the last few years, possibly due to the functional properties and the presence of bioactive compounds which bring health benefits to consumers. The process of germination has been shown to increase the concentration of a number of these ...

  7. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    Science.gov (United States)

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  8. QTL that underlie seed protein, oil, fatty and amino acids content in the ‘Hamilton’ by ‘Spencer’ recombinant inbred line population of soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    Improving seed composition and quality, including protein, oil, fatty acids, and amino acids content is an important goal of soybean farmers and breeders. Our previous research identified novel QTLs associated with seed isoflavones. The aim of this study was to use the ‘Hamilton’ by ‘Spencer’ recomb...

  9. Storage stability of cauliflower soup powder: The effect of lipid oxidation and protein degradation reactions.

    Science.gov (United States)

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-09-15

    Soups based on cauliflower soup powders, prepared by dry mixing of ingredients and rapeseed oil, showed a decrease in quality, as evaluated by a sensory panel, during the storage of the soup powder in the dark for up to 12weeks under mildly accelerated conditions of 40°C and 75% relative humidity. Antioxidant, shown to be effective in protecting the rapeseed bulk oil, used for the powder preparation, had no effect on storage stability of the soup powder. The freshly prepared soup powder had a relatively high concentration of free radicals, as measured by electron spin resonance spectroscopy, which decreased during storage, and most remarkably during the first two weeks of storage, with only marginal increase in lipid hydroperoxides as primary lipid oxidation products, and without any increase in secondary lipid oxidation products. Analyses of volatiles by SPME-GC-MS revealed a significant increase in concentrations of 2-methyl- and 3-methyl butanals, related to Maillard reactions, together with an increase in 2-acetylpyrrole concentration. The soup powders became more brown during storage, as indicated by a decreasing Hunter L-value, in accord with non-enzymatic browning reactions. A significant increase in the concentrations of dimethyl disulfide in soup powder headspace indicated free radical-initiated protein oxidation. Protein degradation, including Maillard reactions and protein oxidation, is concluded to be more important than lipid oxidation in determining the shelf-life of dry cauliflower soup powder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Soybean-Enriched Snacks Based on African Rice

    Directory of Open Access Journals (Sweden)

    Mauro Marengo

    2016-05-01

    Full Text Available Snacks were produced by extruding blends of partially-defatted soybean flour with flours from milled or parboiled African-grown rice. The interplay between composition and processing in producing snacks with a satisfactory sensory profile was addressed by e-sensing, and by molecular and rheological approaches. Soybean proteins play a main role in defining the properties of the protein network in the products. At the same content in soybean flour, use of parboiled rice flour increases the snack’s hardness. Electronic nose and electronic tongue discriminated samples containing a higher amount of soybean flour from those with a lower soybean flour content.

  11. Soybean-Enriched Snacks Based on African Rice

    Science.gov (United States)

    Marengo, Mauro; Akoto, Hannah F.; Zanoletti, Miriam; Carpen, Aristodemo; Buratti, Simona; Benedetti, Simona; Barbiroli, Alberto; Johnson, Paa-Nii T.; Sakyi-Dawson, Esther O.; Saalia, Firibu K.; Bonomi, Francesco; Pagani, Maria Ambrogina; Manful, John; Iametti, Stefania

    2016-01-01

    Snacks were produced by extruding blends of partially-defatted soybean flour with flours from milled or parboiled African-grown rice. The interplay between composition and processing in producing snacks with a satisfactory sensory profile was addressed by e-sensing, and by molecular and rheological approaches. Soybean proteins play a main role in defining the properties of the protein network in the products. At the same content in soybean flour, use of parboiled rice flour increases the snack’s hardness. Electronic nose and electronic tongue discriminated samples containing a higher amount of soybean flour from those with a lower soybean flour content. PMID:28231133

  12. Physiological quality of vegetable soybean seeds produced with different fertilization and storage for twelve months = Potencial fisiológico de sementes de soja-hortaliça produzidas com diferentes adubações e armazenadas por doze meses

    Directory of Open Access Journals (Sweden)

    Juliana Maria Espíndola Lima

    2013-04-01

    Full Text Available Abstract - The vegetable soybean (Glycine max (L. Merrill has characteristics that permit utilization in food as a vegetablewhen the seeds are still immature (stage R6 and occupy 80-90% of the cavity filling the pod. The objective of this study was to evaluate the physiological potential of seeds of two vegetable soybean genotypes produced with different fertilization and stored for 12 months. In seed production field was used in the experimental design of randomized blocks with 5x2 factorial, five fertilization (conventional, intermediate, alternative, manipueira and rice hulls and two periods of evaluation (at 12 months of storage. Evaluations conducted under laboratory conditions included mass of a hundred seeds, vigor and physiological quality considering germination, germination first count, electrical conductivity, potassium leaching, sand emergence and emergence rate of seedlings. The seeds of both vegetable soybean genotype were stored in polyethylene terephthalate bottles for 12 months, as to assess physical and physiological quality under storage. Seeds of BR9452273 produced with carbonized ricehusk showed better quality at harvest and presented greater reduced of vigour after 12 months of storage. BRS 258 cultivar conventional fertilization showed seeds of less physiological quality and higher reduced the vigour after 12 months of storage. The two vegetable soybean cultivars have quality reduced during storage of seed of twelve months in bottles of polyethylene terephthalate. = Resumo – A soja-hortaliça (Glycine max (L. Merrill apresenta características que permitem utilização na alimentação humana como hortaliça, quando as sementes estão ainda imaturas (estádio R6 e ocupam 80 a 90% do preenchimento da cavidade da vagem. Objetivou-se com este trabalho avaliar o potencial fisiológico das sementes de dois genótipos de soja-hortaliça produzidas com diferentes adubações e armazenadas por 12 meses. O delineamento

  13. Induced mutation for soybean quality

    International Nuclear Information System (INIS)

    Wang Peiying; Xu Dechun; Guo Yuhong; Meng Lifen; Zhao Xiaonan

    2000-01-01

    Gamma rays of acute and chronic radiation, thermal neutrons as well as ethyl methane sulphonate (EMS), sodium azide (NaN 3 ) of chemical mutagens were used to improve the quality of soybean seed. Some mutants of better quality were selected. 'Heinong No.41' With protein and oil content of 45.23% and 18.80% respectively was tolerant to akali-saline and had a higher yield potential; 90-3527 with earlier mature (110 days of growth period) and high protein content (47.53%) had a resistance to soybean mosaic virus (SMV) and frog-eye lief spot of soybean. The mutants with higher linoleic acid content (more than 60%) and lower linolenic acid content (less than 3.5%) were developed

  14. Nutritional value and digestion rate of rhea meat proteins in association with storage and cooking processes.

    Science.gov (United States)

    Filgueras, Renata S; Gatellier, Philippe; Ferreira, Claude; Zambiazi, Rui C; Santé-Lhoutellier, Véronique

    2011-09-01

    The nutritional value of proteins was investigated after the storage and cooking of rhea M. Gastrocnemius pars interna. Oxidation of basic and aromatic amino acids, surface hydrophobicity and aggregation state of proteins, were determined in raw and cooked meat. In addition, myofibrillar proteins were exposed in vitro to proteases of the digestive tract. Cooking markedly affected the protein surface hydrophobicity. The BBP bound content was three times greater in cooked than in fresh rhea meat. A small increment in tryptophan content after cooking was observed. Storage influenced Schiff bases formation indicating the presence of protein-aldehyde adducts after cooking. High content of Schiff bases was found after cooking of samples stored for 5 days, demonstrating a probable implication of free amino groups, most likely from lysine. Cooking decreased the myofibrillar protein susceptibility to pepsin activity. After cooking, the proteolysis rate by pancreatic enzymes increased. Our findings support the importance of protein aggregation in the nutritional value of meat proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation.

    Science.gov (United States)

    Bennett, John O; Yu, Oliver; Heatherly, Larry G; Krishnan, Hari B

    2004-12-15

    To circumvent drought conditions persisting during seed fill in the mid-south U.S. soybean production region, researchers have developed the early soybean (Glycine max [L.] Merr.) production system (ESPS), which entails early planting of short-season varieties. Because soybean supplies a preponderance of the world's protein and oil and consumption of soy-based foods has been associated with multiple health benefits, the effects of this agronomic practice on seed quality traits such as protein, oil, and isoflavones should be investigated. Four cultivars of soybean, two from maturity group IV and two from maturity group V, were planted in April (ESPS) and May (traditional) in a two-year study at Stoneville, MS. Near-infrared analysis of soybean seed was utilized to determine the percentages of protein and oil. Dependent upon variety, the oil content of the early-planted crop was increased by 3-8%, whereas protein was not significantly changed. Visualization of protein extracts fractionated by sodium dodecyl sulfate-polyacrylamide electrophoresis and fluorescence two-dimensional difference gel electrophoresis revealed that early planting did not affect the relative accumulation of the major seed-storage proteins; thus, protein composition was equal to that of traditionally cultivated soybeans. Maturity group IV cultivars contained a higher percentage of oil and a lower percentage of protein than did the maturity group V cultivars, regardless of planting date. Gas chromatographic separation of fatty acids revealed that the percentages of saturated and unsaturated fatty acids were not significantly altered by planting date. Methanol extracts of seed harvested from different planting dates when analyzed by high-performance liquid chromatography showed striking differences in isoflavone content. Dependent upon the variety, total isoflavone content was increased as much as 1.3-fold in early-planted soybeans. Irrigation enhanced the isoflavone content of both early- and

  16. Caracterização bioquímica de linhagens de soja com alto teor de proteína Biochemical characterization of high protein soybean lines

    Directory of Open Access Journals (Sweden)

    Rita Maria Alves de Moraes

    2006-05-01

    Full Text Available O objetivo deste trabalho foi caracterizar bioquimicamente duas isolinhas de soja com alto teor de proteína. O aumento do teor de proteína nas isolinhas foi acompanhado por redução no teor de óleo e de carboidratos totais. Em relação à composição aminoacídica, o aumento do teor de proteína promoveu acréscimo em todos os aminoácidos, exceto glicina, alanina, metionina, cisteína e tirosina, mantendo a relação enxofre/nitrogênio. A quantificação dos polipeptídios mostrou que o aumento do teor de proteína manteve inalterado o teor das proteínas 7S, promoveu aumento no teor das proteínas 11S e, conseqüentemente, da relação 11S/7S. Pode haver melhoria na qualidade do farelo de soja das isolinhas, uma vez que as proteínas 11S têm melhor qualidade nutricional do que as proteínas 7S.The objective of this work was to characterize high protein soybean near isogenic lines. The increasing of protein was followed by reducing of oil and carbohydrate. In respect to aminoacid composition, increasing of protein promoted a rising in all aminoacids, except for glycine, alanine, methionine, cysteine and tyrosine, although the ratio S/N has been kept. The measure of polypeptides showed that the increasing of protein did not alter the quantity of 7S proteins, provided increasing of 11S proteins and 11S/7S ratio. An improvement of meal quality in these lines can occur once the 11S proteins have a better nutritional quality than 7S proteins.

  17. Polymorphism of Phosphoenolpyruvate Carboxylase Gene in Soybean Cultivars from Northeastern China and Japan%中国东北大豆与日本大豆品种PEPCase基因的多态性

    Institute of Scientific and Technical Information of China (English)

    杨振宇; 马晓萍; 山中直树

    2005-01-01

    @@ Soybeans in Northeast of China are one of the most important genetic resources in the world.In order to use them effectively in soybean breeding, it is necessary to evaluate the main characteristics,especially the quality characteristics such as seed protein content.It is reported that the PEPCase activity in soybean seeds is positively correlated with the seed protein content and negatively correlated with the lipid content[1].PEPCase is also present in seeds of different species[2~4],and may play an important role in auino acid biosynthesis.PEPCase was detected in the protein bodies of developing wheat grains,possibly contributing to storage-protein biosynthesis[5]. A strong correlation between PEPCase activity and protein concentration in seeds of 13 soybean cultivars[1]indicates a possible rate-limiting role of the enzyme in seed storage-protein accumulation.In soybean,PEPCase is encoded by a small family of at least four highly homologous genes[6]and PEPCase catalyzes the carboxylation of phosphonenopyruvate to oxalacetic acid,which increases the number of carbon skeletons of amino acids.

  18. Comparison of Maize Silage-based Diets for Dairy Cows Containing Extruded Rapeseed Cake or Extruded Full-fat Soybean as Major Protein Sources

    Directory of Open Access Journals (Sweden)

    Jiří Třináctý

    2016-01-01

    Full Text Available The trial was carried out on four Holstein cows with initial milk yield of 27.3 ± 1.7 kg.day−1. Cows were divided into two groups – the first was fed a diet based on extruded rapeseed cake (D-ERC, the second one was fed a diet based on extruded full-fat soybean (D-EFFS, both diets contained maize silage and meadow hay. The experiment was divided into 4 periods of 42 days. Intake of dry matter, crude protein and NEL was not affected by the treatment (P > 0.05 while the intake of PDIA, PDIN and PDIE was lower in D-ERC than in D-EFFS (P < 0.05. Milk yield in D-ERC (22.6 kg.d−1 was lower than in D-EFFS (24.7 kg.d−1, P < 0.001 while concentration of milk fat and protein were reverse (P < 0.05. Smaller portion of essential AADI in crude protein intake (CPI in D-ERC resulted in lower efficiency of CPI utilization for milk protein synthesis in comparison to D-EFFS being 313 and 327 g.kg−1, respectively (P < 0.01. Concentration of AA in blood plasma was not affected by the type of diet except of His and Ile that were higher in D-EFFS (P < 0.01.

  19. Biochemical characterization of amandin, the major storage protein in almond (Prunus dulcis L.).

    Science.gov (United States)

    Sathe, Shridhar K; Wolf, Walter J; Roux, Kenneth H; Teuber, Suzanne S; Venkatachalam, Mahesh; Sze-Tao, Kar Wai Clara

    2002-07-17

    The almond major storage protein, amandin, was prepared by column chromatography (amandin-1), cryoprecipitation (amandin-2), and isoelectric precipitation (amandin-3) methods. Amandin is a legumin type protein characterized by a sedimentation value of 14S. Amandin is composed of two major types of polypeptides with estimated molecular weights of 42-46 and 20-22 kDa linked via disulfide bonds. Several additional minor polypeptides were also present in amandin. Amandin is a storage protein with an estimated molecular weight of 427,300 +/- 47,600 Da (n = 7) and a Stokes radius of 65.88 +/- 3.21 A (n = 7). Amandin is not a glycoprotein. Amandin-1, amandin-2, and amandin-3 are antigenically related and have similar biochemical properties. Amandin-3 is more negatively charged than either amandin-1 or amandin-2. Methionine is the first essential limiting amino acid in amandin followed by lysine and threonine.

  20. Effects of storage conditions on results for quantitative and qualitative evaluation of proteins in canine urine.

    Science.gov (United States)

    Théron, Marie-Laure; Piane, Laetitia; Lucarelli, Laetitia; Henrion, Rémi; Layssol-Lamour, Catherine; Palanché, Florence; Concordet, Didier; Braun, Jean-Pierre D; Trumel, Catherine; Lavoué, Rachel

    2017-08-01

    OBJECTIVE To investigate effects of storage conditions on the canine urine protein-to-creatinine ratio (UPC) and on SDS-agarose gel electrophoresis (AGE) of urinary proteins. SAMPLE Urine specimens from 20 proteinuric (UPC > 0.5) and 20 nonproteinuric (UPC ≤ 0.2) dogs. PROCEDURES UPC and SDS-AGE were performed on urine specimens stored at room temperature (20°C) and 4°C for up to 5 days and at -20° and -80°C for up to 360 days; some specimens were subjected to 3 freeze-thaw cycles. Results were compared with those obtained for fresh urine specimens. RESULTS UPC was not affected by storage at room temperature or by freezing. A decrease in UPC was observed for specimens from nonproteinuric dogs after 5 days at 4°C (10%) and from both groups after 90 days at -20° and -80°C (≤ 20% and ≤ 15%, respectively). The SDS-AGE profiles revealed no visual changes regardless of duration of storage for specimens stored at room temperature, 4°C, and -80°C, except for 1 profile after 360 days at -80°C. Repeated freeze-thaw cycles did not affect SDS-AGE profiles. Appearance or strengthening of high-molecular-weight bands that could alter interpretation was evident in SDS-AGE profiles after storage at -20°C for ≥ 15 days (31/40 dogs). CONCLUSIONS AND CLINICAL RELEVANCE Storage of urine at -20° or -80°C for up to 1 year influenced the UPC without affecting clinical interpretation. Storage of urine specimens at -20°C impaired visual analysis of SDS-AGE. When SDS-AGE cannot be performed on fresh or recently refrigerated urine specimens, storage at -80°C is recommended.

  1. Irradiation and Post-Irradiation Storage of Chicken: Effects on Fat and Proteins

    International Nuclear Information System (INIS)

    Abou-Tarboush, H.M.; Al-Kahtani, H.A.; Abou-Arab, A.A.; Atia, M.; Bajaber, A.S.; Ahmed, M.A.; El-Mojaddidi, M.A.

    1997-01-01

    Chicken were subjected to gamma irradiation doses of 2.5, 5.0, 7.5 and 10.0 KGy and post-irradiation storage of 21 days at 4±2º. The effects on fat and protein of chicken were studied. Rate of formation of total volatile basic-nitrogen was less in irradiated samples particularly in samples treated with 5.0KGy during the entire storage. Fatty acid profiles of chicken lipids were not significantly (P≤ 0.05) affected by irradiation especially at doses of 5.0 KGy. However, irradiation caused a large increase in thiobarbituric acid (TBA) values which continued gradually during storage. Changes in amino acids were minimal. Irradiated and unirradiated samples showed the appearance of protein subunits with molecular weights in the range of 10.0 to 88.0 and 10.0 to 67.0 KD, respectively. No changes were observed in the sarcoplasmic protein but the intensity of bands in all irradiated samples decreased after 21 days of storage

  2. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-10-23

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro.

  3. An inhibition of p38 mitogen activated protein kinase delays the platelet storage lesion.

    Directory of Open Access Journals (Sweden)

    Andrey Skripchenko

    Full Text Available BACKGROUND AND OBJECTIVES: Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK. Another MAPK, extracellular signal-related kinase (ERK, is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors. MATERIALS AND METHODS: A single Trima apheresis platelet unit (n = 12 was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20-24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters. RESULTS: Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties. CONCLUSION: Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage.

  4. Influence of dietary lipid and protein sources on the sensory quality of organic rainbow trout (Oncorhynchus mykiss) after ice storage

    DEFF Research Database (Denmark)

    Green-Petersen, Ditte; Hyldig, Grethe; Jacobsen, Charlotte

    2014-01-01

    The influence of dietary protein and lipid sources on the quality of organic rainbow trout (Oncorhynchus mykiss) was studied. The protein and oil sources were fishmeal, fish oil, and organic vegetable protein and oils. Sensory profiling was performed during 3 to 14 days of ice storage along...... with lipid analyses of the fillet. Overall, the results showed that the sensory characteristics of the trout were affected in different ways during ice storage. The source of lipid seemed to affect the sensory quality at the beginning of the storage period, while the protein source seemed to have a more...

  5. Cold Storage Stability of Blend Oil from Soybean Oil and Palm Oil with Different Melting Points%大豆油调和不同熔点棕榈液油的冷藏试验

    Institute of Scientific and Technical Information of China (English)

    吴苏喜; 刘立萍; 李慧; Ooi Cheng KEAT

    2012-01-01

    In order to provide references for preparing blend oil from soybean oil and palm oil with different melting points, the effects of different types and amounts of anti-crystallization agent and soybean oil-to-palm oil ratio on the cold storage stability of blend oil were studied. The best anti-crystallization agent was hydroxyl stearin at a dose of 0.025%. The blend oil A composed of 70% soybean oil, 30% palm olein with melting point of 10 ℃ and 0.025% hydroxy stearin could be kept transparent for more than 16 hours at 0 ℃ and more than 72 h at 5℃. The blend oil B composed of 70% soybean oil, 30% palm olein with melting point of 18 ℃ and 0.025% hydroxy stearin could be kept transparent for more than 30 h at 10℃. The blend oil C composed of 60% soybean oil, 40% palm olein with melting point of 18 ℃ and 0.025% hydroxy stearin could be kept transparent for more than 20 h at 15℃. The blend oil D composed of 60% soybean oil, 40% μm olein with melting point of 24℃ and 0.025% hydroxy stearin could be kept transparent for more than 10 h.%为了制备适应不同储存温度的豆油.棕榈液油调和油,以大豆油与不同熔点棕榈液油为原料,采用冷藏试验方法优化抑晶剂种类、用量和调和油配方。结果表明,羟基硬脂精是效果最佳的抑晶剂,其最佳添加量为0.025%;调和油1(豆油70%+10℃棕榈油30%+羟基硬脂精0.025%)在0℃环境下储存可保持16h以上澄清透亮,在5℃条件可保持72h以上澄清透亮;调和油2(豆油70%+18℃棕榈油30%+羟基硬脂精0.025%)在10℃环境下可保持30h以上澄清透亮;调和油3(豆油60%+18℃棕榈油40%+羟基硬脂精0.025%)在15℃环境下可保持20h以上澄清透亮;调和油4(豆油60%+24℃棕榈油40%+羟基硬脂精0.025%)在20℃环境下可保持10h以上澄清透亮。

  6. Effect of pasteurization on the protein composition and oxidative stability of beer during storage.

    Science.gov (United States)

    Lund, Marianne N; Hoff, Signe; Berner, Torben S; Lametsch, René; Andersen, Mogens L

    2012-12-19

    The impacts of pasteurization of a lager beer on protein composition and the oxidative stability were studied during storage at 22 °C for 426 days in the dark. Pasteurization clearly improved the oxidative stability of beer determined by ESR spectroscopy, whereas it had a minor negative effect on the volatile profile by increasing volatile compounds that is generally associated with heat treatment and a loss of fruity ester aroma. A faster rate of radical formation in unpasteurized beer was consistent with a faster consumption of sulfite. Beer proteins in the unpasteurized beer were more degraded, most likely due to proteolytic enzyme activity of yeast remnants and more precipitation of proteins was also observed. The differences in soluble protein content and composition are suggested to result in differences in the contents of prooxidative metals as a consequence of the proteins ability to bind metals. This also contributes to the differences in oxidative stabilities of the beers.

  7. Baking quality parameters of wheat in relation to endosperm storage proteins

    Directory of Open Access Journals (Sweden)

    Daniela Horvat

    2012-01-01

    Full Text Available Wheat storage proteins of twelve winter wheat cultivars grown at the experimental field of the Agricultural Institute Osijek in 2009 were studied for their contribution to the baking quality. Composition of high molecular weight glutenin subunits (HMW-GS was analyzed by SDS-PAGE method, while the proportions of endosperm storage proteins were determined by RP-HPLC method. Regarding the proportion of storage proteins, results of the linear correlation (p<0.05 showed that protein (P and wet gluten (WG content were highly negatively correlated with albumins and globulins (AG and positively with α- gliadins (GLI. A strong negative correlation between AG and water absorption (WA capacity of flour was found, while α- GLI had positive influence on this property. Dough development time (DDT was positively significantly correlated with HMW-GS and negatively with AG. Degree of dough softening (DS was strongly positively affected by γ- GLI and gliadins to glutenins ratio (GLI/GLU and negatively by total GLU and HMW-GS. Dough energy (E and maximum resistance (RMAX were significantly positively affected by Glu-1 score and negatively by GLI/GLU ratio. Resistance to extensibility ratio (R/EXT was significantly negatively correlated with total GLI. Bread volume was significantly negatively influenced by AG.

  8. Characteristic of sausages as influenced by partial replacement of pork back-fat using pre-emulsified soybean oil stabilized by fish proteins isolate

    Directory of Open Access Journals (Sweden)

    Nopparat Cheetangdee

    2017-08-01

    Full Text Available Substitution of animal fat with oils rich in n-3 is a feasible way to improve the nutritive value of comminuted meat product. The effect on the characteristics of sausages was investigated of partial replacement of porcine fat with soybean oil (SBO using a pre-emulsification technique. Fish protein isolate (FPI produced from yellow stripe trevally (Selaroides leptolepis was used as an emulsifier to prepare pre-emulsified SBO (preSBO, and its concentration effect (1%, 2% and 3%, w/v was observed in comparison with soy protein isolate (SPI. Substitution of porcine fat using preSBO enhanced the product stability. SPI exhibited better emulsifying ability than FPI. However, FPI was more effective at reinforcing the protein matrix of the sausages than SPI, as suggested by a lowered cooking loss and the restored textural attributes of the sausages formulated with FPI stabilized preSBO. The effective concentration of FPI to improve the product stability was 2%. This work suggested that FPI was promising in the preparation of emulsified meat products.

  9. Qualidade das sementes de soja após a colheita com dois tipos de colhedora e dois períodos de armazenamento Soybean seed quality after harvesting with two types of harvester and two storage times

    Directory of Open Access Journals (Sweden)

    João Paulo Arantes Rodrigues da Cunha

    2009-08-01

    Full Text Available A colheita mecanizada de soja pode acarretar perdas qualitativas nas sementes. O presente trabalho teve como objetivo avaliar a qualidade de sementes de soja colhidas mecanicamente por sistemas axial e tangencial de trilha, em diferentes velocidades de avanço da colhedora, antes e após o período de armazenamento de seis meses. Utilizou-se o delineamento experimental de blocos casualizados, em esquema de parcela subdividida no tempo, com quatro repetições. Nas parcelas, foram avaliados os procedimentos de colheita e, nas subparcelas, as épocas de avaliação da qualidade da semente. Os procedimentos de colheita foram: colhedora com sistema de trilha axial, deslocando-se a 6, 8 e 10km h-1, colhedora com sistema de trilha tangencial (convencional, deslocando-se a 4 e 6km h-1, e colheita manual. Foram analisadas as seguintes variáveis: germinação, porcentagem de plântulas fortes, índice de velocidade de emergência (IVE, emergência em areia e injúria mecânica. Pôde-se concluir que o emprego das colhedoras com sistemas de trilha tangencial e axial não provocou diferenças no índice de velocidade de emergência, no vigor e na germinação das sementes de soja. No entanto, com relação à injúria mecânica, a colhedora axial mostrou-se superior à convencional. O incremento da velocidade de deslocamento, dentro dos parâmetros recomendados pelo fabricante, não alterou a qualidade das sementes. O armazenamento reduziu o vigor das sementes colhidas.Soybean mechanical harvest may bring qualitative losses to seeds. This study aimed to evaluate the quality of soybean seeds mechanically harvested by axial and conventional threshing systems, at different displacement speeds of the harvesters, before and after the storage period of six months. A randomized complete block design in a split-plot arrangement with four replications was used. The main plots were the harvest systems and the split-plots were the storage times. The harvest systems

  10. 不同类型大豆品种籽粒蛋白质含量的积累规律研究%Accumulation Regulation of Protein Content during Seed Developing of Different Soybeans

    Institute of Scientific and Technical Information of China (English)

    赵明珠; 刘迎雪; 李文华; 尹春佳; 张春宵; 刘丽; 邢华铭

    2009-01-01

    选用在黑龙江省种植面积较大的12个大豆品种为材料,从鼓粒期开始,每隔7 d取一次样,研究不同类型大豆品种籽粒蛋白质含量的积累动态规律.结果表明:不同类型大豆品种籽粒蛋白质的积累动态规律不同.高蛋白品种呈双峰曲线变化,高油品种和中间型品种呈单峰曲线变化,但峰值出现的时间不同.在籽粒形成的中后期,不同类型大豆品种平均籽粒蛋白质含量的变化趋于平稳,高蛋白品种蛋白质含量最高,高油品种最低,中间型品种介于两者之间.不同类型大豆品种在各取样时期的平均籽粒蛋白质含量的差异达到显著或极显著水平,且蛋白质的合成以籽粒形成的中后期为主.%Soybean is a very important grain and oil crop,and the protein content is one of main indicators of soybean quality , so study the dynamic accumulation of protein content in soybean seeds is important for quality improvement. This experiment chose twelve popular soybean varieties in Heilongjiang province, including four high- protein, four high- oil and four general varieties, as material, and the dynamic accumulation of protein content among different soybean seeds was investigated. The results showed that the accumulation dynamics of seed protein varied with varieties, the high- protein variety showed a double-peak curve trend,and the peak value appeared 14 days and 28 days after seed filling;the high-oil variety and general variety showed a single- peak curve, and the peak appeared 28 days after seed filling for high- oil variety. The average protein content of different soybean varieties changed obviously in former period of seeds formation, and remain stable in later period. During the later seed formation, high- protein variety had the highest protein content, while high- oil variety had the lowest protein content. The final protein content of different soybean was mainly determined by middle or later period of the seeds formation

  11. Food type soybean cooking time: a review

    Directory of Open Access Journals (Sweden)

    Deonisio Destro

    2013-01-01

    Full Text Available Soybean is an extensive crop that produces more protein per hectare and, compared to other sources, has the lowest proteincost. This turns soybean into one of the basic foods with the potential to fight malnutrition and hunger in the planet. Even though itrepresents the fourth crop in grain production in the world (261 million tons year-1, most of its production is used as animal fodder.Currently, one of the greatest research challenges is to improve soybean production for human consumption. Cooking time is one theseveral characteristics that need improvement so that soybean can be used more extensively in our everyday diet. The objective of thiswork is to carry out a bibliographic review on the topic, to sensitize researchers in the area of soybean breeding about its importance.

  12. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Ruth Grene

    2013-05-01

    Full Text Available Soybean (Glycine max seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

  13. Influence of yogurt fermentation and refrigerated storage on the stability of protein toxin contaminants.

    Science.gov (United States)

    Jackson, Lauren S; Triplett, Odbert A; Tolleson, William H

    2015-06-01

    Dairy products sold in a ready-to-eat form present the risk that adulterants persisting through manufacturing, storage, and distribution would reach consumers. Pathogenic microbes, including shigatoxigenic strains of Escherichia coli and the toxins they produce, are common food safety hazards associated with dairy products. Ricin and abrin are plant-derived ribosome-inactivating protein toxins related to the shiga-like toxins produced by E. coli. Limited information exists on the effects of manufacturing processes on the stabilities of these heat-resistant ribosome-inactivating proteins in the presence of foods. The goal of this study was to determine how typical yogurt manufacturing and storage processes influence ribosome-inactivating protein toxins. Ricin and abrin were added to skim or whole milk and batch pasteurized. Complete inactivation of both toxins was observed after 30 minutes at 85 °C. If the toxins were added after pasteurization, the levels of ricin and abrin in yogurt and their cytotoxic activities did not change significantly during fermentation or refrigerated storage for 4 weeks. The activities of ricin and abrin were inhibited by skim milk, nonfat yogurt, whole milk, and whole milk yogurt. The results showed minimal effects of the toxins on yogurt pH and %titratable acidity but inhibitory effects of yogurt on toxin activity. Published by Elsevier Ltd.

  14. Recombinant expression of homodimeric 660 kDa human thyroglobulin in soybean seeds: an alternative source of human thyroglobulin.

    Science.gov (United States)

    Powell, Rebecca; Hudson, Laura C; Lambirth, Kevin C; Luth, Diane; Wang, Kan; Bost, Kenneth L; Piller, Kenneth J

    2011-07-01

    Soybean seeds possess many qualities that make them ideal targets for the production of recombinant proteins. However, one quality often overlooked is their ability to stockpile large amounts of complex storage proteins. Because of this characteristic, we hypothesized that soybean seeds would support recombinant expression of large and complex proteins that are currently difficult or impossible to express using traditional plant and non-plant-based host systems. To test this hypothesis, we transformed soybeans with a synthetic gene encoding human thyroglobulin (hTG)-a 660 kDa homodimeric protein that is widely used in the diagnostic industry for screening and detection of thyroid disease. In the absence of a recombinant system that can produce recombinant hTG, research and diagnostic grade hTG continues to be purified from cadaver and surgically removed thyroid tissue. These less-than-ideal tissue sources lack uniform glycosylation and iodination and therefore introduce variability when purified hTG is used in sensitive ELISA screens. In this study, we report the successful expression of recombinant hTG in soybean seeds. Authenticity of the soy-derived protein was demonstrated using commercial ELISA kits developed specifically for the detection of hTG in patient sera. Western analyses and gel filtration chromatography demonstrated that recombinant hTG and thyroid-purified hTG are biologically similar with respect to size, mass, charge and subunit interaction. The recombinant protein was stable over three generations and accumulated to ~1.5% of total soluble seed protein. These results support our hypothesis that soybeans represent a practical alternative to traditional host systems for the expression of large and complex proteins.

  15. Protein mobilities and P-selectin storage in Weibel-Palade bodies.

    Science.gov (United States)

    Kiskin, Nikolai I; Hellen, Nicola; Babich, Victor; Hewlett, Lindsay; Knipe, Laura; Hannah, Matthew J; Carter, Tom

    2010-09-01

    Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel-Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P-selectin became immobilised, whereas small proteins (ssEGFP, eotaxin-3) became less mobile. WPB maturation led to further decreases in mobility of small proteins and CD63. Acute alkalinisation of mature WPBs selectively increased the mobilities of small soluble proteins without affecting larger molecules and the membrane proteins. Disruption of the Proregion-VWF paracrystalline core by prolonged incubation with NH(4)Cl rendered P-selectin mobile while VWF remained immobile. FRAP of P-selectin mutants revealed that immobilisation most probably involves steric entrapment of the P-selectin extracellular domain by the Proregion-VWF paracrystal. Significantly, immobilisation contributed to the enrichment of P-selectin in WPBs; a mutation of P-selectin preventing immobilisation led to a failure of enrichment. Together these data shed new light on the transitions that occur for soluble and membrane proteins following their entry and storage into post-Golgi-regulated secretory organelles.

  16. Protein changes in the albedo of citrus fruits on postharvesting storage.

    Science.gov (United States)

    Lliso, Ignacio; Tadeo, Francisco R; Phinney, Brett S; Wilkerson, Curtis G; Talón, Manuel

    2007-10-31

    In this work, major protein changes in the albedo of the fruit peel of Murcott tangor (tangerine x sweet orange) during postharvest ageing were studied through 2D PAGE. Protein content in matured on-tree fruits and in fruits stored in nonstressing [99% relative humidity (RH) and 25 degrees C], cold (99% RH and 4 degrees C), and drought (60% RH and 25 degrees C) conditions was initially determined. Protein identification through MS/MS determinations revealed in all samples analyzed the occurrence of manganese superoxide dismutase (Mn SOD), actin, ATP synthase beta subunit (ATPase), citrus salt-stress associated protein (CitSap), ascorbate peroxidase (APX), translationally controlled tumor protein (TCTP), and a cysteine proteinase (CP) of the papain family. The latter protein was identified in two different gel spots, with different molecular mass, suggesting the simultaneous presence of the proteinase precursor and its active form. While Mn SOD, actin, ATPase, and CitSap were unchanged in the assayed conditions, TCTP and APX were downregulated during the postharvest ageing process. Ageing-induced APX repression was also reversed by drought. CP contents in albedo, which were similar in on- and off-tree fruits, were strongly dependent upon cold storage. The active/total CP protein ratio significantly increased after cold exposure. This proteomic survey indicates that major changes in protein content in the albedo of the peel of postharvest stored citrus fruits are apparently related to the activation of programmed cell death (PCD).

  17. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.

    Science.gov (United States)

    Creelman, R A; Tierney, M L; Mullet, J E

    1992-06-01

    Jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are plant lipid derivatives that resemble mammalian eicosanoids in structure and biosynthesis. These compounds are proposed to play a role in plant wound and pathogen responses. Here we report the quantitative determination of JA/MeJA in planta by a procedure based on the use of [13C,2H3]MeJA as an internal standard. Wounded soybean (Glycine max [L] Merr. cv. Williams) stems rapidly accumulated MeJA and JA. Addition of MeJA to soybean suspension cultures also increased mRNA levels for three wound-responsive genes (chalcone synthase, vegetative storage protein, and proline-rich cell wall protein) suggesting a role for MeJA/JA in the mediation of several changes in gene expression associated with the plants' response to wounding.

  18. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  19. Varying response of the concentration and content of soybean seed mineral elements, carbohydrates, organic acids, amino acids, protein, and oil to phosphorus starvation and CO2 enrichment

    Science.gov (United States)

    A detailed investigation of the concentration (g-1 seed weight) and content (g plant-1) of seed mineral elements and metabolic profile under phosphorus (P) starvation at ambient (aCO2) and elevated carbon dioxide (eCO2) in soybean is limited. Soybean plants were grown in a controlled environment at ...

  20. Effects of storage structures and moisture contents on seed quality attributes of quality protein maize

    Directory of Open Access Journals (Sweden)

    Gopal Bhandari

    2017-12-01

    Full Text Available The study was aimed to examine the effects of various storage structures and moisture contents on seed quality attributes of quality protein maize seed. The quality protein maize (QPM-1 seed was tested in conventional seed storage containers (Fertilizer sack and earthen pot and the improved hermetic ones (Metal bin, Super grain bag, and Purdue Improved Crop Storage (PICS bag at Seed Science and Technology Division, Khumaltar, Nepal during February, 2015 to January 2016. Ten treatments comprising 5 storage devices in two moisture regimes (11% and 9% replicated thrice and laid out in Completely Randomized Design (CRD. Data on temperature, relative humidity (RH, germination, electrical conductivity (EC, seed moisture content (MC were collected bimonthly. The conventional containers were found liable to the external environmental condition whereas the hermetic structures observed with controlled RH level below 40% in all combinations. Electrical conductivity (EC for seed vigor showed that hermetic containers provide higher seed vigor than the conventional ones. Up to 4 months all treatments were found statistically at par for germination. A significant difference was observed in each treatment after 4 months where PICS bag & Super grain bag showed best germination followed by metal bin while fertilizer bag & earthen-pot showed poorer and poorest germination respectively till one year. Almost all treatments with lower MC showed better results than the treatments with higher MC. A negative correlation (R2=69.7% was found between EC and Germination. All six figures from 2 to 12 months on MC showed statistically different where hermetic plastic bags were found maintaining MC as initial whereas MC of fertilizer bags and earthen pot was spiked than the basal figure. The finding evidenced that the hermetic containers and low MC are the seed storage approaches for retaining the quality of seed even in an ambient environmental condition for more than a year.

  1. Genistein, a Phytoestrogen in Soybean, Induces the Expression of Acetylcholinesterase via G Protein-Coupled Receptor 30 in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Etta Y. L. Liu

    2018-02-01

    Full Text Available Genistein, 4′,5,7-trihydroxyisoflavone, is a major isoflavone in soybean, which is known as phytestrogen having known benefit to brain functions. Being a common phytestrogen, the possible role of genistein in the brain protection needs to be further explored. In cultured PC12 cells, application of genistein significantly induced the expression of neurofilaments (NFs, markers for neuronal differentiation. In parallel, the expression of tetrameric form of proline-rich membrane anchor (PRiMA-linked acetyl-cholinesterase (G4 AChE, a key enzyme to hydrolyze acetylcholine in cholinergic synapses, was induced in a dose-dependent manner: this induction included the associated protein PRiMA. The genistein-induced AChE expression was fully blocked by the pre-treatment of H89 (an inhibitor of protein kinase A, PKA and G15 (a selective G protein-coupled receptor 30 (GPR30 antagonist, which suggested a direct involvement of a membrane-bound estrogen receptor (ER, named as GPR30 in the cultures. In parallel, the estrogen-induced activation of GPR30 induced AChE expression in a dose-dependent manner. The genistein/estrogen-induced AChE expression was triggered by a cyclic AMP responding element (CRE located on the ACHE gene promoter. The binding of this CRE site by cAMP response element-binding protein (CREB induced ACHE gene transcription. In parallel, increased expression levels of miR132 and miR212 were found when cultured PC12 cells were treated with genistein or G1. Thus, a balance between production and destruction of AChE by the activation of GPR30 was reported here. We have shown for the first time that the activation of GPR30 could be one way for estrogen or flavonoids, possessing estrogenic properties, to enhance cholinergic functions in the brain, which could be a good candidate for possible treatment of neurodegenerative diseases.

  2. Evaluation of cassava leaf meal protein in fish and soybean meal-based diets for young pigs

    Directory of Open Access Journals (Sweden)

    Siaka Seriba Diarra

    2017-04-01

    Full Text Available The unavailability and high cost of traditional ingredients calls for more research into alternative sources for pig feeding in the South Pacific region. The effect of replacing feed protein with cassava leaf meal (CLM protein in weaner and growing pigs’ diets was investigated in two experiments. In experiment 1, three diets in which CLM protein replaced 0, 15 and 30% of feed protein were fed each to five replicate pens of weaner pigs. Feed intake (FI, body weight gain (BWG and feed conversion ratio (FCR were improved and feed cost of gain reduced (P<0.05 on 30% while dressing percentage was maximized (P<0.05 on 15% protein replacement diets. In experiment 2, three diets containing 0, 30 and 45% CLM protein as replacement for feed protein were fed as in experiment 1 to grower pigs. FI and BWG were reduced while FCR and feed cost of gain were increased (P<0.05 above 30% protein replacement. Dressing percentage assumed the highest value (P<0.05 on 30% replacement. It was concluded that replacing 30% of feed protein with sun-dried CLM protein will maintain growth and reduce cost of pork production. Efficient use of CLM in the diet will be an alternative way of value addition to this by-product.

  3. Convergent evolution of plant and animal embryo defences by hyperstable non-digestible storage proteins.

    Science.gov (United States)

    Pasquevich, María Yanina; Dreon, Marcos Sebastián; Qiu, Jian-Wen; Mu, Huawei; Heras, Horacio

    2017-11-20

    Plants have evolved sophisticated embryo defences by kinetically-stable non-digestible storage proteins that lower the nutritional value of seeds, a strategy that have not been reported in animals. To further understand antinutritive defences in animals, we analysed PmPV1, massively accumulated in the eggs of the gastropod Pomacea maculata, focusing on how its structure and structural stability features affected its capacity to withstand passage through predator guts. The native protein withstands >50 min boiling and resists the denaturing detergent sodium dodecyl sulphate (SDS), indicating an unusually high structural stability (i.e., kinetic stability). PmPV1 is highly resistant to in vitro proteinase digestion and displays structural stability between pH 2.0-12.0 and 25-85 °C. Furthermore, PmPV1 withstands in vitro and mice digestion and is recovered unchanged in faeces, supporting an antinutritive defensive function. Subunit sequence similarities suggest a common origin and tolerance to mutations. This is the first known animal genus that, like plant seeds, lowers the nutritional value of eggs by kinetically-stable non-digestible storage proteins that survive the gut of predators unaffected. The selective pressure of the harsh gastrointestinal environment would have favoured their appearance, extending by convergent evolution the presence of plant-like hyperstable antinutritive proteins to unattended reproductive stages in animals.

  4. Effect of fertilization and soil treatment on the soybean nodulation

    International Nuclear Information System (INIS)

    Abdel aziz, H.A.

    1993-01-01

    Soybean (Glycine max L. ) is one of the most important leguminosae crops all over the world. It is considered one of the most important protein sources for human and animals. During the last 20 years, soybean was introduced to Egypt, however the nodulation of soybean under field conditions remains a problem because the egyptian soils were void of soybean rhizobia. Since soybean is a leguminosae crop, symbiosis with root - nodule R hizobium might play a significant role in the management of its production . Nevertheless, soybean suffers from poor nodulation in egypt, hence nitrogenase fertilization for legume is a logical practice. Soybean can utilize both soil -N or applied N and symbiotically fixed atmospheric nitrogen under normal field condition. The fixation of atmospheric N by the legume/Rhizobium symbiosis is an integrated process in which the host plant ( macrosymbiont) supplies the bacterium (microsymbiont) with energy and the bacterium supplies the plant with reduced N. figs.,172 refs

  5. Genetically modified soybeans and food allergies.

    Science.gov (United States)

    Herman, Eliot M

    2003-05-01

    Allergenic reactions to proteins expressed in GM crops has been one of the prominent concerns among biotechnology critics and a concern of regulatory agencies. Soybeans like many plants have intrinsic allergens that present problems for sensitive people. Current GM crops, including soybean, have not been shown to add any additional allergenic risk beyond the intrinsic risks already present. Biotechnology can be used to characterize and eliminate allergens naturally present in crops. Biotechnology has been used to remove a major allergen in soybean demonstrating that genetic modification can be used to reduce allergenicity of food and feed. This provides a model for further use of GM approaches to eliminate allergens.

  6. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Bowra, S; Schmidt, Daiana

    2016-01-01

    family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C......C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi...... silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7 % reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS...

  7. Effects of gamma radiation on antinutritional factors of soybean

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Tais C.F. de; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia]. E-mail: tcftoled@cena.usp.br; arthur@cena.usp.br; Brazaca, Solange G.C. [Universidade de Sao Paulo (USP), Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Agroindustria, Alimentos e Nutricao]. E-maik: sgcbraza@esalq.usp.br; Piedade, Sonia M. de S. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Ciencias Exatas]. E-mail: piedade@esalq.usp.br

    2007-07-01

    The soybean is one of the most important legume cultivated in the world. Some leguminous, particularly soybeans, contain significant amounts of bioactive compounds that may change the utilization of nutrients by the organism, when consumed. The main protein responsible for the low nutritional value of raw soybean grains and the trypsin and lectin inhibitors. Some methods can be used to minimize lost during storage, and the ionizing radiation with Cobalto-60 constitutes a safe and efficient method for the increase in the time of useful life of foods. The sum of observations exposed in previous chapters leads to the proposal of determining the possible alterations promoted by the use of gamma radiation (with doses of 2, 4 and 8 kGy) in the alteration of antinutrients (total phenolic, trypsin inhibitor and tannins) in soybean (cultivars BRS 212, BRS 213, BRS 214, BRS 231 and EMBRAPA 48). Total phenolic ranged from 2.46 to 10.83 mg/g, and the dose of 8 kGy promoted an increase on the content of total phenolic compounds in all raw samples and in cooked samples from some cultivars. The trypsin inhibited ranged from 18.19 to 71.64 UTI/g, and all cultivars presented the same behavior in relation to radiation for inhibited trypsin units both for raw and cooked samples, with significant differences (p{<=}0.05) between all doses used. For tannins, ranged from 0.01 to 0.39 mg/g, and the gamma radiation promoted reduction on the tannin contents as the radiation dose increased until a limited dose. All the antinutrients studied underwent reduction with increases on the doses. (author)

  8. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    Soybean is rich in protein/vegetable oil and contains several phytochemicals such as isoflavones and phenolic compounds. Because of the predominated nutritional values, soybean is considered as traditional health benefit food. Soybean is a widely cultivated crop; however, its growth and yield are markedly affected by adverse environmental conditions. Proteomic techniques make it feasible to map protein profiles both during soybean growth and under unfavorable conditions. The stress-responsive mechanisms during soybean growth have been uncovered with the help of proteomic studies. In this review, the history of soybean as food and the morphology/physiology of soybean are described. The utilization of proteomics during soybean germination and development is summarized. In addition, the stress-responsive mechanisms explored using proteomic techniques are reviewed in soybean. © 2017 Elsevier Inc. All rights reserved.

  9. Processing quality of NS soybean varieties

    Directory of Open Access Journals (Sweden)

    Đorđević Vuk

    2012-01-01

    Full Text Available Current NS soybean varieties are of satisfactory technological quality, and also significant technological diversity. Varieties Triumf and Venera possess higher oil content. Variety Sava has a balanced oil and protein content, and can be used for obtaining different soy products. Variety Rubin has the highest protein content and is suitable for new high protein products. Estimated processing value is a good parameter to describe the processing quality of soybeans. Based on several years and spatial analysis, it is possible to separate the geographic regions with prevailing favourable conditions for obtaining higher protein or oil content.

  10. Relationships between storage protein composition, protein content, growing season and flour quaility of bread wheat

    DEFF Research Database (Denmark)

    Faergestad, E.M.; Flaete, N.E.S.; Magnus, E.M.

    2004-01-01

    ;f alleles appear similar on one-dimensional gels, two-dimensional separation of selected samples may suggest that the f components in these alleles are different proteins. Cross-validated partial least squares regression combined with empirical uncertainty estimates (jack-knifing) of the parameters...

  11. Biomarkers in the diagnosis of lysosomal storage disorders: proteins, lipids, and inhibodies.

    Science.gov (United States)

    Aerts, Johannes M F G; Kallemeijn, Wouter W; Wegdam, Wouter; Joao Ferraz, Maria; van Breemen, Marielle J; Dekker, Nick; Kramer, Gertjan; Poorthuis, Ben J; Groener, Johanna E M; Cox-Brinkman, Josanne; Rombach, Saskia M; Hollak, Carla E M; Linthorst, Gabor E; Witte, Martin D; Gold, Henrik; van der Marel, Gijs A; Overkleeft, Herman S; Boot, Rolf G

    2011-06-01

    A biomarker is an analyte indicating the presence of a biological process linked to the clinical manifestations and outcome of a particular disease. In the case of lysosomal storage disorders (LSDs), primary and secondary accumulating metabolites or proteins specifically secreted by storage cells are good candidates for biomarkers. Clinical applications of biomarkers are found in improved diagnosis, monitoring disease progression, and assessing therapeutic correction. These are illustrated by reviewing the discovery and use of biomarkers for Gaucher disease and Fabry disease. In addition, recently developed chemical tools allowing specific visualization of enzymatically active lysosomal glucocerebrosidase are described. Such probes, coined inhibodies, offer entirely new possibilities for more sophisticated molecular diagnosis, enzyme replacement therapy monitoring, and fundamental research.

  12. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    Science.gov (United States)

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.

  13. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean.

    Science.gov (United States)

    Kulkarni, Krishnanand P; Patil, Gunvant; Valliyodan, Babu; Vuong, Tri D; Shannon, J Grover; Nguyen, Henry T; Lee, Jeong-Dong

    2018-03-01

    The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.

  14. Assessment of protein quality of soybean meal and 00-rapeseed meal toasted in the presence of lignosulfonate by amino acid digestibility in growing pigs and Maillard reaction products.

    Science.gov (United States)

    Hulshof, T G; Bikker, P; van der Poel, A F B; Hendriks, W H

    2016-03-01

    An experiment was conducted to determine protein quality in processed protein sources using the content of AA, -methylisourea (OMIU)-reactive Lys, Maillard reaction products (MRP), and cross-link products; the standardized ileal digestibility (SID) of CP and AA; and growth performance in growing pigs as criteria. Differences in protein quality were created by secondary toasting (at 95°C for 30 min) of soybean meal (SBM) and rapeseed meal (RSM) in the presence of lignosulfonate resulting in processed SBM (pSBM) and processed RSM (pRSM). The processing treatment was used as a model for overprocessed protein sources. Ten growing pigs were each fed 1 of the 4 diets containing SBM, pSBM, RSM, or pRSM in each of 3 periods. Ileal chyme was collected at the end of each period and analyzed for CP, AA, and OMIU-reactive Lys. Diets were analyzed for furosine and carboxymethyllysine (CML) as an indicator for MRP and lysinoalanine (LAL), which is a cross-link product. The SBM and RSM diets contained furosine, CML, and LAL, indicating that the Maillard reaction and cross-linking had taken place in SBM and RSM, presumably during the oil extraction/desolventizing process. The amounts of furosine, CML, and LAL were elevated in pSBM and pRSM due to further processing. Processing resulted in a reduction in total and OMIU-reactive Lys contents and a decrease in G:F from 0.52 to 0.42 for SBM and 0.46 to 0.39 for RSM ( = 0.006), SID of CP from 83.9 to 71.6% for SBM and 74.9 to 64.6% for RSM ( < 0.001), and SID of AA ( < 0.001), with the largest effects for total and OMIU-reactive Lys. The effects of processing could be substantial and should be taken into account when using processed protein sources in diets for growing pigs. The extent of protein damage may be assessed by additional analyses of MRP and cross-link products.

  15. Mapeamento de QTL para conteúdos de proteína e óleo em soja Mapping QTL for protein and oil content in soybean

    Directory of Open Access Journals (Sweden)

    Josiane Isabela da Silva Rodrigues

    2010-05-01

    Full Text Available O objetivo deste trabalho foi detectar e mapear locos de caracteres quantitativos (QTL que afetam os conteúdos de proteína e óleo em soja (Glycine max L. Merr.. Plantas F2, derivadas do cruzamento entre a linhagem CS3032PTA276 e a variedade UFVS2012, foram cultivadas em casa de vegetação e forneceram as folhas para extração e análise de DNA. Quarenta e oito marcadores microssatélites (SSR polimórficos foram avaliados na população F2. A avaliação dos fenótipos foi realizada em 207 famílias das progênies F2:3, em um delineamento em blocos ao acaso, com três repetições, conduzido em Viçosa, MG, em 2006. Foram detectados quatro QTL associados ao conteúdo de proteína, nos grupos de ligação D1a, G, A1, e I, e três QTL associados ao conteúdo de óleo, nos grupos A1, I e O. A variação fenotípica explicada pelos QTL variou de 6,24 a 18,94% e 17,26 a 25,93%, respectivamente, para os conteúdos de proteína e óleo. Foram detectados novos QTL associados aos conteúdos de proteína e óleo, além dos previamente relatados em outros estudos. Regiões distintas das atualmente conhecidas podem estar envolvidas no controle genético do teor de proteína e óleo na soja.The objective of this study was to detect and map quantitative trait loci (QTL affecting soybean (Glycine max L. Merr. protein and oil contents. F2 plants, derived from the cross between the CS3032PTA276 line and the variety UFVS2012, were grown in a greenhouse and provided the leaves for DNA extraction and analysis. Forty-eight polymorphic microsatelite markers (SSR were evaluated in the F2 population. Evaluation of the phenotype was performed in 207 families from F2:3 progenies, in a complete block design with three replicates, carried out in Viçosa, MG, Brazil, in 2006. Four QTL associated with protein content, in linkage groups D1a, G, A1, and I, and three QTL for oil content in groups A1, I and O were identified. Phenotypic variation for protein and oil

  16. The trafficking pathway of a wheat storage protein in transgenic rice endosperm.

    Science.gov (United States)

    Oszvald, Maria; Tamas, Laszlo; Shewry, Peter R; Tosi, Paola

    2014-04-01

    The trafficking of proteins in the endoplasmic reticulum (ER) of plant cells is a topic of considerable interest since this organelle serves as an entry point for proteins destined for other organelles, as well as for the ER itself. In the current work, transgenic rice was used to study the pattern and pathway of deposition of the wheat high molecular weight (HMW) glutenin sub-unit (GS) 1Dx5 within the rice endosperm using specific antibodies to determine whether it is deposited in the same or different protein bodies from the rice storage proteins, and whether it is located in the same or separate phases within these. The protein distribution and the expression pattern of HMW sub-unit 1Dx5 in transgenic rice endosperm at different stages of development were determined using light and electron microscopy after labelling with antibodies. The use of HMW-GS-specific antibodies showed that sub-unit 1Dx5 was expressed mainly in the sub-aleurone cells of the endosperm and that it was deposited in both types of protein body present in the rice endosperm: derived from the ER and containing prolamins, and derived from the vacuole and containing glutelins. In addition, new types of protein bodies were also formed within the endosperm cells. The results suggest that the HMW 1Dx5 protein could be trafficked by either the ER or vacuolar pathway, possibly depending on the stage of development, and that its accumulation in the rice endosperm could compromise the structural integrity of protein bodies and their segregation into two distinct populations in the mature endosperm.

  17. COMPARATIVE DYNAMICS OF PROTEIN DESTRUCTION IN CANNED FOODS IN SAUCE AT DIFFERENT THERMAL TREATMENT REGIMES AND SUBSEQUENT STORAGE

    OpenAIRE

    V. B. Krylova; T. V. Gustova

    2017-01-01

    In the course of investigations, the structural changes in proteins were established, which were associated with the preliminary treatment of meat ingredients, a pH level of the system and parameters of thermal treatment.The pasteurization regimes allowed retaining a protein nitrogen proportion up to 94% by the end of canned food storage duration. Upon sterilization, the losses in protein nitrogen were two times higher. A negative effect of more acidic sauce on preservation of the protein nitr...

  18. Current development and application of soybean genomics

    Institute of Scientific and Technical Information of China (English)

    Lingli HE; Jing ZHAO; Man ZHAO; Chaoying HE

    2011-01-01

    Soybean (Glycine max),an important domesticated species originated in China,constitutes a major source of edible oils and high-quality plant proteins worldwide.In spite of its complex genome as a consequence of an ancient tetraploidilization,platforms for map-based genomics,sequence-based genomics,comparative genomics and functional genomics have been well developed in the last decade,thus rich repertoires of genomic tools and resources are available,which have been influencing the soybean genetic improvement.Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding,and raise the major biological questions needing to be addressed.Genetic maps,physical maps,QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine.Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes,which are instrumental to comparative genomics and functional genomics.Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process.Microarrays resources,mutagenesis and efficient transformation systems become essential components of soybean functional genomics.Furthermore,phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development,in response to abiotic stresses,functioning in plant-pathogenic microbe interactions,and controlling the oil and protein content of seed.These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

  19. In Vitro assessment of the nutritive value of expanded soybean meal for dairy cattle

    Directory of Open Access Journals (Sweden)

    Elwakeel Eman A

    2012-03-01

    Full Text Available Abstract Little information is available about the nutritive value of expanded soybean meal, which is produced by expansion of soybeans prior to solvent extraction of the oil. During processing, expanded soybean meal is subjected to additional heat, which might increase the concentration of ruminally undegraded protein. Processing of soybeans with heat during oil extraction could affect lysine availability by increasing ruminally undegraded protein or by impairing intestinal digestion. Our objective was to compare solvent and expanded soybeans with regard to chemical composition and nutritive value for dairy cattle. Samples of expanded soybean meal (n = 14 and solvent-extracted soybean meal (n = 5 were obtained from People's Republic of China to study effects of the expansion process on nutritive value for dairy cattle. Solvent-extracted soybean meal (n = 2 and mechanically extracted (heated soybean meal (n = 2 from the United States served as references for comparison. Samples were analyzed for crude fat, long-chain fatty acids, crude protein, amino acids, chemically available lysine, in situ ruminal protein degradation, and in vitro intestinal digestibility. No differences were found between solvent-extracted soybean meals from China and expanded soybean meals from China for crude fat, crude protein, amino acids, or chemically available lysine. In situ disappearance of nitrogen, ruminally undegraded protein content, and in vitro intestinal digestion of the ruminally undegraded protein were generally similar between solvent-extracted soybean meals made in China and expanded soybean meals made in China; variation among soybean meals was small. Results indicate that the additional heat from the expansion process was not great enough to affect the nutritive value of soybean meal protein for ruminants. Although expansion may improve the oil extraction process, the impact on the resulting soybean meal is minimal and does not require consideration

  20. Soybean and sunflower oil-induced insulin resistance correlates with impaired GLUT4 protein expression and translocation specifically in white adipose tissue.

    Science.gov (United States)

    Poletto, Ana Cláudia; Anhê, Gabriel Forato; Eichler, Paula; Takahashi, Hilton Kenji; Furuya, Daniela Tomie; Okamoto, Maristela Mitiko; Curi, Rui; Machado, Ubiratan Fabres

    2010-03-01

    Free fatty acids are known for playing a crucial role in the development of insulin resistance. High fat intake is known for impairing insulin sensitivity; however, the effect of vegetable-oil injections have never been investigated. The present study investigated the effects of daily subcutaneous injections (100 microL) of soybean (SB) and sunflower (SF) oils, during 7 days. Both treated groups developed insulin resistance as assessed by insulin tolerance test. The mechanism underlying the SB- and SF-induced insulin resistance was shown to involve GLUT4. In SB- and SF-treated animals, the GLUT4 protein expression was reduced approximately 20% and 10 min after an acute in vivo stimulus with insulin, the plasma membrane GLUT4 content was approximately 60% lower in white adipose tissue (WAT). No effects were observed in skeletal muscle. Additionally, both oil treatments increased mainly the content of palmitic acid ( approximately 150%) in WAT, which can contribute to explain the GLUT4 regulations. Altogether, the present study collects evidence that those oil treatments might generate insulin resistance by targeting GLUT4 expression and translocation specifically in WAT. These alterations are likely to be caused due to the specific local increase in saturated fatty acids that occurred as a consequence of oil daily injections. 2010 John Wiley & Sons, Ltd.

  1. Identification of quantitative trait loci underlying seed protein content of soybean including main, epistatic, and QTL × environment effects in different regions of Northeast China.

    Science.gov (United States)

    Teng, Weili; Li, Wen; Zhang, Qi; Wu, Depeng; Zhao, Xue; Li, Haiyan; Han, Yingpeng; Li, Wenbin

    2017-08-01

    The objective here was to identify QTL underlying soybean protein content (PC), and to evaluate the additive and epistatic effects of the QTLs. A mapping population, consisting of 129 recombinant inbred lines (RILs), was created by crossing 'Dongnong 46' and 'L-100'. Phenotypic data of the parents and RILs were collected for 4 years in three locations of Heilongjiang Province of China. A total of 213 SSR markers were used to construct a genetic linkage map. Eight QTLs, located on seven chromosomes (Chr), were identified to be associated with PC among the 10 tested environments. Of the seven QTLs, five QTLs, qPR-2 (Satt710, on Chr9), qPR-3 (Sat_122, on Chr12), qPR-5 (Satt543, on Chr17), qPR-7 (Satt163, on Chr18), and qPR-8 (Satt614, on Chr20), were detected in six, seven, seven, six, and seven environments, respectively, implying relatively stable QTLs. qPR-3 could explain 3.33%-11.26% of the phenotypic variation across eight tested environments. qPR-5 and qPR-8 explained 3.64%-10.1% and 11.86%-18.40% of the phenotypic variation, respectively, across seven tested environments. Eight QTLs associated with PC exhibited additive and (or) additive × environment interaction effects. The results showed that environment-independent QTLs often had higher additive effects. Moreover, five epistatic pairwise QTLs were identified in the 10 environments.

  2. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  3. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  4. Utilizing soybean milk to culture soybean pathogens

    Science.gov (United States)

    Liquid and semi-solid culture media are used to maintain and proliferate bacteria, fungi, and Oomycetes for research in microbiology and plant pathology. In this study, a comparison was made between soybean milk medium, also referred to as soymilk, and media traditionally used for culturing soybean ...

  5. Intestinal digestibility of amino acids in rumen undegradable protein estimated using a precision-fed cecectomized rooster bioassay: I. Soybean meal and SoyPlus.

    Science.gov (United States)

    Boucher, S E; Calsamiglia, S; Parsons, C M; Stein, H H; Stern, M D; Erickson, P S; Utterback, P L; Schwab, C G

    2009-09-01

    The objectives of this experiment were to measure intestinal digestibility of AA in rumen undegradable protein (RUP-AA) in soybean meal (SBM) and expeller SBM (SoyPlus, West Central, Ralston, IA; SP) and to determine if these feeds contain a constant protein fraction that is undegradable in the rumen and indigestible in the small intestine, as assumed in the French Institut National de la Recherche Agronomique (Paris, France) and Scandinavian AAT-PBV (AAT = AA absorbed from small intestine; PBV = protein balance in the rumen) models. Three samples of SBM and 3 samples of SP were obtained from the Feed Analysis Consortium Inc. (Savoy, IL). To obtain the RUP fraction, samples were ruminally incubated in situ for 16 h in 4 lactating cows, and the collected rumen undegraded residues (RUR) were pooled by sample. Subsamples of the intact feeds and RUR were crop intubated to 4 cecectomized roosters, and total excreta were collected for 48 h. Intact feeds, RUR, and excreta were analyzed for AA. Basal endogenous AA loss estimates were obtained from fasted birds and were used to calculate standardized digestibility of AA in the intact feeds and RUP-AA. Indigestibility coefficients of the intact feeds were calculated as (100 - % standardized AA digestibility), and indigestibility of the RUR was calculated as [(100 - % ruminal degradation of AA) x [(100 - % standardized RUP-AA digestibility)]/100]. Results indicated that standardized digestibility of feed-AA was similar to standardized digestibility of RUP-AA for SBM and SP samples and that standardized digestibility of individual AA differed within samples. Standardized feed-AA and RUP-AA digestibility values were lowest for Lys and Cys and highest for Trp and Met. Results also indicated that SBM and SP did not contain a constant protein fraction that was both undegradable in the rumen and indigestible in the small intestine. Indigestibility values of RUR were lower than in intact feeds, suggesting that SBM and SP contain a

  6. Prolonging hypothermic storage (4 C) of bovine embryos with fish antifreeze protein.

    Science.gov (United States)

    Ideta, Atsushi; Aoyagi, Yoshito; Tsuchiya, Kanami; Nakamura, Yuuki; Hayama, Kou; Shirasawa, Atsushi; Sakaguchi, Kenichiro; Tominaga, Naomi; Nishimiya, Yoshiyuki; Tsuda, Sakae

    2015-01-01

    Embryos obtained via superovulation are necessary for mammalian artificial reproduction, and viability is a key determinant of success. Nonfreezing storage at 4 C is possible, but currently used storage solutions can maintain embryo viability for only 24-48 h. Here we found that 10 mg/ml antifreeze protein (AFP) dissolved in culture medium 199 with 20% (v/v) fetal bovine serum and 25 mM HEPES could keep bovine embryos alive for 10 days at 4 C. We used a recombinant AFP isolated from the notched-fin eelpout (Zoarces elongatus Kner). Photomicroscopy indicated that the AFP-embryo interaction was enhanced at 37 C. Embryos pre-warmed with the AFP solution at 37 C for 60 min maintained high viability, whereas those that were not pre-warmed could live no longer than 7 days. Thus, short-term storage of bovine embryos was achieved by a combination of AFP-containing medium and controlled pre-warming.

  7. Amino acid and protein changes in tilapia and spanish mackerel after irradiation and storage

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kahtani, Hassan A.; Abu-Tarboush, Hamza M.; Atia, Mohamed; Bajaber, Adnan S.; Ahmed, Mohamed A.; El-Mojaddidi, Mohamed A

    1998-01-01

    Some amino acids in tilapia decreased while some others increased when subjected to doses up to 10.0 kGy. However, 10 kGy contributed to a significant reduction in all amino acids of Spanish mackerel. Variations in amino acid contents continued during post-irradiation storage with no consistent trend of increase or decrease. SDS-PAGE of protein from both fish showed 27 bands of subunits with MW < 14.0-94.0 KD. Isoelectric focusing patterns of sarcoplasmic protein of unirradiated and irradiated fish showed no charge in the number of bands, while some changes were observed in the intensities of the anodic and cathodic bands depending on isoelectric points (pIs)

  8. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhou, Jiaxing; Liu, Dongmiao; Deng, Xiong; Zhen, Shoumin; Wang, Zhimin; Yan, Yueming

    2018-03-12

    Water deficiency affects grain proteome dynamics and storage protein compositions, resulting in changes in gluten viscoelasticity. In this study, the effects of field water deficit on wheat breadmaking quality and grain storage proteins were investigated. Water deficiency produced a shorter grain-filling period, a decrease in grain number, grain weight and grain yield, a reduced starch granule size and increased protein content and glutenin macropolymer contents, resulting in superior dough properties and breadmaking quality. Reverse phase ultra-performance liquid chromatography analysis showed that the total gliadin and glutenin content and the accumulation of individual components were significantly increased by water deficiency. Two-dimensional gel electrophoresis detected 144 individual storage protein spots with significant accumulation changes in developing grains under water deficit. Comparative proteomic analysis revealed that water deficiency resulted in significant upregulation of 12 gliadins, 12 high-molecular-weight glutenin subunits and 46 low-molecular-weight glutenin subunits. Quantitative real-time polymerase chain reaction analysis revealed that the expression of storage protein biosynthesis-related transcription factors Dof and Spa was upregulated by water deficiency. The present results illustrated that water deficiency leads to increased accumulation of storage protein components and upregulated expression of Dof and Spa, resulting in an improvement in glutenin strength and breadmaking quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Zinc in soybeans. Chemical nature and bioavilability

    International Nuclear Information System (INIS)

    Khan, A.

    1987-01-01

    Soybeans were grown hydroponically and intrinsically labeled with 65 Zn through root absorption, stem injection and foliar application. Stem injection resulted in the greatest accumulation of 65 Zn. Regardless of the labeling technique, approximately 40-45% of the seed 65 Zn was associated with the subcellular organelles. The pattern of 65 Zn incorporation into soybeans did not change appreciably as a result of the labelling technique. The major portion of the soluble 65 Zn was either free or associated with very low molecular weight proteins, peptides, or their complexes with phytic acid rather than the major proteins of soybeans. Zinc in soybeans is ionically bound to proteins, peptides and phytic acid. Autoclaving did not affect the chemical association of zinc with soy proteins. Solubility of protein, zinc and phytic acid was studied over the pH range of 3.5-12.0. Bioavailability of zinc to rats from soybeans was lower than from casein and rats adapted to a casein basal diet absorbed more 65 Zn from both casein and soy than rats adapted to a soy basal diet

  10. Integrated transcriptomics and proteomics analysis of storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa; Dionisio, Giuseppe; Renaut, Jenny

    2012-01-01

    The aim of the study was to understand the molecular and biochemical mechanisms underpinning the effect of nitrogen (N) on barley (Hordeum vulgare) storage protein production (hordeins) during grain filling. Using a combination of advanced biochemistry methods, we could comprehensively describe......-regimes caused significant differences in both quantity and quality of the storage proteins transcripts. Principal Component Analysis of the amino acid (AA) profiles also indicated dissimilarity in individual AA percentages, correlated to hordein content. The abundance values of proteins of interest confirmed...

  11. Suppression or activation of immune responses by predicted secreted proteins of the soybean rust pathogen Phakopsora pachyrhizi

    Science.gov (United States)

    Rust fungi, such as Phakopsora pachyrhizi, are major threats to crop production. They form specialized haustoria that are intimately associated with plant cells. These haustoria have roles in acquiring nutrients and secreting effector proteins that manipulate host immune systems. Functional characte...

  12. Metabolic and productive response to ruminal protein degradability in early lactation cows fed untreated or xylose-treated soybean meal-based diets.

    Science.gov (United States)

    Jahani-Moghadam, M; Amanlou, H; Nikkhah, A

    2009-12-01

    Effects of different dietary rumen undegradable (RUP) to degradable (RDP) protein ratios on ruminal nutrient degradation, feed intake, blood metabolites and milk production were determined in early lactation cows. Four multiparous (43 ± 5 days in milk) and four primiparous (40 ± 6 days in milk) tie-stall-housed Holstein cows were used in a duplicated 4 × 4 Latin square design with four 21-day periods. Each period had 14-day of adaptation and 7-day of sampling. Diets contained on a dry matter (DM) basis, 23.3% alfalfa hay, 20% corn silage and 56.7% concentrate. Cows were first offered alfalfa hay at 7:00, 15:00 and 23:00 hours, and 30 min after each alfalfa hay delivery were offered a mixture of corn silage and concentrate. Treatments were diets with RUP:RDP ratios of (i) 5.2:11.6 (control), (ii) 6.1:10.6, (iii) 7.1:9.5 and (iv) 8.1:8.5, on a dietary DM% basis. Different RUP:RDP ratios were obtained by partial and total replacement of untreated soybean meal (SBM) with xylose-treated SBM (XSBM). In situ study using three rumen-cannulated non-lactating cows showed that DM and crude protein (CP) of SBM had greater rapidly degradable fractions. The potentially degradable fractions were degraded more slowly in XSBM. Treatment cows produced greater milk, protein, lactose, solids-non-fat and total solids than control cows. Increasing RUP:RDP reduced blood urea linearly. Feed costs dropped at RUP:RDP ratios of 6.1:10.6 and 7.1:9.5, but not at 8.1:8.5, compared with the 5.2:11.6 ratio. Intake of DM and CP, rumen pH, blood glucose, albumin and total protein, faecal and urine pH, changes in body weight and body condition score, and milk lactose and solids-non-fat percentages did not differ among treatments. Results provide evidence that increasing dietary RUP:RDP ratio from 5.2:11.6 to 7.1:9.5 optimizes nitrogen metabolism and milk production and reduces feed costs in early lactation cows. Reduced blood urea suggests reprodutive benefits.

  13. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    Science.gov (United States)

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-09-15

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron.

  14. REDOX POTENTIAL AND DYNAMICS OF PROTEIN AND FAT DESTRUCTION DURING STORAGE OF CANNED MEAT IN PIECES

    Directory of Open Access Journals (Sweden)

    V. B. Krylova

    2016-01-01

    Full Text Available The studies on the dynamics of the redox potential of systems and its relationship with the processes of protein and fat destruction in canned foods during their storage are fragmented and not systemized, which highlight their topicality. The aim of the research was to obtain the experimental data on the Eh values and physico-chemical indicators of canned food quality during storage in order to establish their possible correlation. It was shown that the dynamics of Eh, the content of free amino acids and fatty acid fractions in the canned products from beef and pork was different during storage. For example, a decrease in the Eh value and free amino acid content in the canned products from beef had a smooth character, while in the canned products from pork several periods were observed, which differed in the character of the change in the quality indicators.A linear character of the changes in the proportion of fatty acid fractions during storage of the canned products from beef and pork was noticed. With that, both canned food items had an increase in the saturated fatty acid content at the concomitant decrease in the sum of mono- and polyunsaturated fatty acids. The value of an increase in the proportion of saturated fatty acids associated with the process of reduction of mono- and polyunsaturated fatty acids did not depend on the kind of meat in the canned foods and was on average 6%. A decrease in the proportion of mono- and polyunsaturated fatty acids in the canned products from pork was about 4 times more intensive compared to the canned products from beef.

  15. The induction of proteinases in corn and soybean by anoxia

    International Nuclear Information System (INIS)

    VanToai, T.; Hwang, Shihying

    1989-01-01

    This study characterized the anaerobic changes in proteinase activities in corn and soybean roots and to investigate the possibility that these changes might contribute to the differential anaerobiosis tolerance of the two species. After 24 h of anoxia, crude protein extracts from H60 corn and Keller soybean root tips (10cm) were assayed for proteinase activities at pH range from 4.5 to 9.5. Turnover of aberrant proteins was studied in seedlings labelled with 3 H-leucine for 12 h under: (a) puromycin (0.64 mM) in air, (b) ethanol (1%) in air, (c) nitrogen and (d) air. After the treatment, the labelled proteins remaining in roots were determined every 2 h for 6 h. In both corn and soybean, activities of alkali proteinases increased, and activities of acid proteinases declined under anoxia. Neutral proteinases increase in anoxic corn roots, but decline in anoxic soybean roots. The protein turnover rate in corn treated with puromycin, ethanol and nitrogen was much higher than in control roots. The protein turnover rate in soybean roots treated with puromycin, ethanol was similar to the rate of the control. The results indicated that: (a) anoxic corn can degrade aberrant proteins, but anoxic soybean cannot, (b) the degradation of aberrant proteins in anoxic corn is accomplished by neutral proteinases, and (c) the accumulation of aberrant proteins in soybean might contribute to the susceptibility of this species to anoxia

  16. Salvage and storage of infectious disease protein targets in the SSGCID high-throughput crystallization pathway using microfluidics

    International Nuclear Information System (INIS)

    Christensen, Jeff; Gerdts, Cory J.; Clifton, Mathew C.; Stewart, Lance

    2011-01-01

    SSGCID protein crystals were salvaged and stored using the MPCS Plug Maker and CrystalCards when high-throughput traditional sitting-drop vapor diffusion initially failed. The MPCS Plug Maker is a microcapillary-based protein-crystallization system for generating diffraction-ready crystals from nanovolumes of protein. Crystallization screening using the Plug Maker was used as a salvage pathway for proteins that failed to crystallize during the initial observation period using the traditional sitting-drop vapor-diffusion method. Furthermore, the CrystalCards used to store the crystallization experiments set up by the Plug Maker are shown be a viable container for long-term storage of protein crystals without a discernable loss of diffraction quality with time. Use of the Plug Maker with SSGCID proteins is demonstrated to be an effective crystal-salvage and storage method

  17. Fabrication of Flexible, Fully Organic, Degradable Energy Storage Devices Using Silk Proteins.

    Science.gov (United States)

    Pal, Ramendra K; Kundu, Subhas C; Yadavalli, Vamsi K

    2018-03-21

    Flexible and thin-film devices are of great interest in epidermal and implantable bioelectronics. The integration of energy storage and delivery devices such as supercapacitors (SCs) with properties such as flexibility, miniaturization, biocompatibility, and degradability are sought for such systems. Reducing e-waste and using sustainable materials and processes are additional desirable qualities. Herein, a silk protein-based biocompatible and degradable thin-film microSC (μSC) is reported. A protein carrier with the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and reduced graphene oxide dopant is used as a photopatternable biocomposite ink. Active electrodes are fabricated using photolithography under benign conditions, using only water as the solvent. These electrodes are printed on flexible protein sheets to form degradable, organic devices with a benign agarose-NaCl gel electrolyte. High capacitance, power density, cycling stability over 500 cycles, and the ability to power a light-emitting diode are shown. The device is flexible, can sustain cyclic mechanical stresses over 450 cycles, and retain capacitive properties over several days in liquid. Significantly, the μSCs are cytocompatible and completely degraded over the period of ∼1 month. By precise control of the device configuration, these silk protein-based, all-polymer organic devices can be designed to be tunably transient and provide viable alternatives for powering flexible and implantable bioelectronics.

  18. CHARACTERIZATION OF SEED STORAGE PROTEINS IN SOME IRANIAN DATE PALM CULTIVARS USING SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Sayed Mohammad Reza Khoshroo

    2013-08-01

    Full Text Available The date palm (Phoenix dactylifera L. is most adapted tree to grow in desert areas. It has always been looked on as a key source of stability, survival and evolution of the oasis agro-system since it constitutes the basic features of the ecological pyramid in desert regions. Determining genetic variability and cultivars identification in date palm are two major important factors in breeding programs, characterization of germplasm, and conservation purposes. The genetic variation of seed proteins was assayed by SDS-PAGE for 9 cultivars in Shahdad region in Iran. A total of 16 alternative protein bands with different mobility rates were identified within a molecular weight range of 11 KDa to 350 KDa. Then, electrophorogram for each cultivar was scored, and Jaccard‘s Similarity Index was calculated. Relying on UPGMA and NJ methods, genetic diversity of cultivars was evaluated by constructing the dendrogram for protein bands. Moreover, genetic distance was calculated for all of the cultivars.  It is concluded that seed storage protein profiles could be useful markers in genetic diversity studies and classification of cultivars. The cultivars from Shahdad were well separated from each other. This might have been done due to their unique genetic build-up. The cluster analysis displayed five major classes. In order to precise this assumption, data were computed to perform a PCA. Cluster analysis and PCA demonstrated their validity in establishing genetic diversity. When PCA was studied, the previously described results about Jaccard Similarity Coefficient dendrogram were also visualized.

  19. Effect of ionizing electron beam radiation on properties of edible biopolymers based on isolated soybean protein and cassava starch

    International Nuclear Information System (INIS)

    Uehara, Vanessa Bernardo

    2017-01-01

    In recent decades, there has been a substantial increase in the amount of research focusing on the development and characterization of biodegradable materials, particularly edible films. The use of polymers from renewable sources, prepared from plant products, has gained importance in this approach. Soy protein concentrate and cassava starch may be considered an alternative to petrochemical polymers. Processing by ionizing radiation can be used for the modification of polymers and macromolecules, resulting in new materials with great prospects of industrial use. The food industry, one of the traditionally most innovative industries, requires the constant development of new products. The widely known ability of film forming proteins and polysaccharides is a starting point for the development of new materials that meet the varying requirements of this pungent industry. In this work, films based on manioc starch and isolated soy protein were prepared in two different proportions and later irradiated and analyzed for their mechanical properties, color, water absorption, water vapor permeability, TGA and DSC thermal analysis between others. The films became apparently more soluble and less resistant to drilling with the increased radiation dose applied. Regarding the thermal properties, it was observed that the films with greater protein orientation are more resistant. Properties such as water vapor permeability and water absorption, the films were less permeable at the 40 kGy dose. With regard to water absorption, it was reduced as a function of the radiation dose. Films with good resistance to water vapor and with low absorption are considered efficient for food packaging. Radiation has proven to be a convenient tool in the modification of polymeric materials mainly for the production of soluble films where it is a new trend for bioactive packaging. (author)

  20. Iron induction of ferritin synthesis in soybean cell suspensions.

    Science.gov (United States)

    Proudhon, D; Briat, J F; Lescure, A M

    1989-06-01

    In animal cells specialized for iron storage, iron-induced accumulation of ferritin is known to result from a shift of stored mRNA from the ribonucleoprotein fraction to polysomes. Previous reports with bean leaves suggested that in plants iron induction of ferritin synthesis would result from a regulation at the transcriptional level (F van der Mark, F Bienfait, H van der Ende [1983] Biochem Biophys Res Commun 115:463-469). Soybean (Glycine max, cv Mandarin) cell suspension cultures have been used here to support these findings. Ferritin induction is obtained by addition of Fe-citrate to the culture medium. A good correlation is found between cellular iron content and the amount of ferritin accumulation. This protein accumulation corresponds to an increase of in vitro translatable ferritin mRNA. Addition of 4 micrograms actinomycin D per milliliter to the cultures inhibits completely in vivo RNA synthesis, whereas protein synthesis was poorly affected, at least for 24 hours. During the same time, this concentration of actinomycin D strongly inhibits the iron-induced synthesis of ferritin. These results show that in soybean cell cultures, the mechanism of regulation of ferritin synthesis in response to iron does not result from recruitment of preexisting mRNA. They confirm that in plant systems, ferritin synthesis results from increased transcription of the corresponding genes.

  1. Identification of the chemical forms of selenium in soy protein

    International Nuclear Information System (INIS)

    Rodibaugh, R.

    1989-01-01

    Soybeans (Glycine max. L. Merr., Century) were grown hydroponically and intrinsically radiolabeled with 75 Se, an isotope of selenium (Se). The isotope was provided as 75 Se-Na 2 SeO 3 during the reproductive stage of growth until onset of senescence. Harvested seeds were processed into defatted soy meal. Soluble proteins were extracted in 20mM Tris-HCl buffer and fractionated into 11S, 7S, and 2S protein fractions by isoelectric precipitation. The 11S and 7S globulins, containing the glycinin and conglycinin storage proteins respectively, constitute the majority of extractable soy proteins. These storage proteins are the predominant proteins in soy protein isolate frequently used in food for human consumption. Approximately 24% of the defatted meal was soluble protein and accounted for 65% of the radioactivity associated with the soybean meal. The 11S fraction contained approximately 31% of the extracted protein and 27% of the extracted radioactivity. The 7S fraction contained approximately 32% and 35% of the extractable protein and radioactivity, respectively. The 2S fraction, containing the sulfur (S)-rich trypsin inhibitors, accounted for 17% of the protein and 27% of the radioactivity extracted from the defatted soy meal. Purification of the storage proteins by gel filtration and affinity chromatography showed higher levels of radioactivity associated with glycinin than conglycinin. Purified 11S proteins contained 1.09 ng Se per mg protein while 7S proteins contained 0.36 ng Se per mg protein

  2. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    Directory of Open Access Journals (Sweden)

    Katrina Brudzynski

    Full Text Available Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002 with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a high molecular weight complexes (230-180 kDa enriched in proteins but possessing a limited reducing activity toward the NBT and (b lower molecular size complexes (110-85 kDa enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the

  3. Digestibility and nutrient utilisation of soybean bran-based diets in Nile tilapia Oreochromis niloticus

    OpenAIRE

    Sadiku, S.O.E.; Alao, I.A.; Tiamiyu, L.O.

    2003-01-01

    The digestibility and utilisation of two soybean bran-based diets and two fishmeal-based diets serving as control, at optimal (30%) and suboptimal (20%) protein levels were evaluated in Oreochromis niloticus. These were Diet I (Control)-fishmeal based diet at 30% crude protein, Diet II (Control) - fishmeal based diet at 20% crude protein, Diet III - hydrolysed Soybean Bran based diet at 30% crude protein, Diet IV - hydrolysed Soybean Bran based diet at 20%. Dry matter digestibility differed i...

  4. CARACTERÍSTICAS DE LAS BEBIDAS CON PROTEÍNA DE SOYA CHARACTERISTICS OF THE DRINKS WITH SOYBEAN PROTEIN

    Directory of Open Access Journals (Sweden)

    Luz Stella Vanegas Pérez

    2009-12-01

    Full Text Available Se describe la soya desde el punto de vista bromatológico, nutricional y funcional, igualmente se desarrollan los aspectos asociados a los beneficios para la salud que han obtenido diversos autores mediante estudios clínicos, identificando los componentes responsables de esta acción. Posteriormente se desarrollan las características de funcionalidad fisicoquímica de la proteína de soya y su incidencia en los atributos sensoriales de las bebidas con soya, incluyendo las deficiencias que ésta presenta, para finalmente señalar los aspectos que logran mitigar este tipo de defectos mediante el uso de ingredientes complementarios.Soy is described since its bromatologic, nutritional and functional aspects, as well as, developed associated matters to nutritional benefits carried by means of clinical studies from different authors, for the identification of the responsible components. Subsequently, physical and chemical soy protein functionality characteristics, and their impact on soy beverages sensorial are evaluated; soy protein deficiencies, are also discussed. Finally, aspects that get mitigate the soy limitations, are pointed out with a through analysis of complementary ingredients use.

  5. Biochemical changes during aging of soybean seed

    Directory of Open Access Journals (Sweden)

    Balešević-Tubić Svetlana

    2009-01-01

    Full Text Available Biochemical changes that occur in the seed as a result of ageing are very significant for seed quality and longevity. Because of its characteristic composition, processes occurring in the seed of oil crops during storage will be typical as well. Six soybean varieties developed in Institute of field and vegetable crops Novi Sad, submitted to accelerated and natural aging, under controlled and conventional storage conditions were used in these trials. The content of malondialdehyde, superoxide dismutase and peroxidase activities were studied. The biochemical processes i.e. lipid peroxidation, as well as the decrease in supeoxide dismutase and peroxidase activities (especially pronounced by applied accelerated aging were caused by both type of aging. The degree of seed damage and the ability of seed to resist the negative consequences of aging were influenced, beside duration of aging period, by type of storage and characteristics of soybean varieties. .

  6. Degradation and removal of soybean allergen in Japanese soy sauce.

    Science.gov (United States)

    Magishi, Norihiro; Yuikawa, Naoya; Kobayashi, Makio; Taniuchi, Shoichiro

    2017-08-01

    Soy sauce is a traditional fermented seasoning of Japan and is available throughout the world. The two main raw ingredients of soy sauce are soybean and wheat, both of which are established food allergens. The present study examined the degradation and removal of soybean allergens in soy sauce by immunoblotting with anti‑soybean protein antibody from rabbit and sera from two children with soybean allergy. It was demonstrated that soybean allergens were gradually degraded during the fermentation process, but were not completely degraded in raw soy sauce. During the processes of heat‑treatment and filtration, the soluble soybean allergens in raw soy sauce were denatured to insoluble allergens by heat‑treatment and subsequently completely removed from soy sauce by filtration. Therefore, to reduce the allergenicity of soy sauce, heat‑treatment and filtration are very important processes in addition to the enzymatic degradation during the fermentation of soy sauce.

  7. Feasibility of wood pulping black liquor for treatment of soybean ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... This study was carried out to determine the effects of neutral black liquor and moisture heating treatments ... The most commonly used methods of protecting protein include ..... Induced non-enzymatic browning of soybean meal for enhancing efficiency of ... ammonia relase of soluble soybean meal proterin.

  8. Influence of prolonged storage process, pasteurization, and heat treatment on biologically-active human milk proteins.

    Science.gov (United States)

    Chang, Jih-Chin; Chen, Chao-Huei; Fang, Li-Jung; Tsai, Chi-Ren; Chang, Yu-Chuan; Wang, Teh-Ming

    2013-12-01

    The bioactive proteins in human milk may be influenced by prolonged storage process, pasteurization, and heat treatment. This study was conducted to evaluate the effects of these procedures. Three forms of human milk - freshly expressed, frozen at -20°C for a prolonged duration, and pasteurized milk - were collected from 14 healthy lactating mothers and a milk bank. The concentrations of major bioactive proteins (secretory immunoglobulin A, lactoferrin, lysozyme, and leptin) were quantified using enzyme-linked immunosorbent assay kits. Changes in these proteins by heat treatment at 40°C or 60°C for 30 minutes were further evaluated. The mean concentrations of lactoferrin and secretory immunoglobulin A were significantly reduced by 66% and 25.9%, respectively, in pasteurized milk compared with those in freshly-expressed milk. Heat treatment at 40°C or 60°C did not cause significant changes in lactoferrin and secretory immunoglobulin A, but there was an apparent increase in lysozyme (p = 0.016). There were no significant differences in leptin level among these three forms of milk prior to (p = 0.153) or after heat treatment (p = 0.053). Various freezing/heating/pasteurization processes applied to human milk prior to delivery to neonates could affect the concentration of immunomodulatory proteins, especially lactoferrin, secretory immunoglobulin A, and lysozyme. Leptin was unaffected by the various handling processes tested. Fresh milk was found to be the best food for neonates. Further studies are warranted to evaluate the functional activity of these proteins and their effects on infants' immunological status. Copyright © 2013. Published by Elsevier B.V.

  9. Isolation of three B-box zinc finger proteins that interact with STF1 and COP1 defines a HY5/COP1 interaction network involved in light control of development in soybean

    International Nuclear Information System (INIS)

    Shin, Su Young; Kim, Seong Hee; Kim, Hye Jin; Jeon, Su Jeong; Sim, Soon Ae; Ryu, Gyeong Ryul; Yoo, Cheol Min; Cheong, Yong Hwa; Hong, Jong Chan

    2016-01-01

    LONG HYPOCOTYL5 (HY5) and STF1 (Soybean TGACG-motif binding Factor 1) are two related bZIP transcription factors that play a positive role in photomorphogenesis and hormonal signaling. In this study, we compared full length STF1 and truncated STF1 overexpression lines and found that the C-terminal 133 amino acids (194–306) possess all the HY5-like function in Arabidopsis. The STF1-DC1 mutant (1–306), with a 20 amino acid deletion at the carboxy terminus, failed to complement the hy5 mutant phenotype, which suggests an intact C-terminus is required for STF1 function. To understand the role of the C-terminal domain in photomorphogenesis we used a yeast two-hybrid screen to isolate proteins that bind to the STF1 C-terminus. We isolated three soybean cDNAs encoding the zinc-finger proteins GmSTO, GmSTH, and GmSTH2, which interact with STF1. These proteins belong to a family of B-box zinc finger proteins that include Arabidopsis SALT TOLERANCE (STO) and STO HOMOLOG (STH) and STH2, which play a role in light-dependent development and gene expression. The C-terminal 63 amino acids of STF1, containing a leucine zipper and the two N-terminal B-boxes, contains the domain involved in interactions between STF1 and GmSTO. In addition, we identified an interaction between soybean COP1 (GmCOP1) and GmSTO and GmSTH, as well as STF1, which strongly suggests the presence of a similar regulatory circuit for light signaling in soybean as in Arabidopsis. This study shows that photomorphogenic control requires complex molecular interactions among several different classes of transcription factors such as bZIP, B-box factors, and COP1, a ubiquitin ligase. - Highlights: • STF1 interact with GmSTO, GmSTH and GmSTH2. • The bZIP transcription factor STF1 requires an intact C-terminal domain for STF1 function. • STF1 and GmSTO are nuclear proteins.

  10. Arabidopsis Intracellular NHX-Type Sodium-Proton Antiporters are Required for Seed Storage Protein Processing.

    Science.gov (United States)

    Ashnest, Joanne R; Huynh, Dung L; Dragwidge, Jonathan M; Ford, Brett A; Gendall, Anthony R

    2015-11-01

    The Arabidopsis intracellular sodium-proton exchanger (NHX) proteins AtNHX5 and AtNHX6 have a well-documented role in plant development, and have been used to improve salt tolerance in a variety of species. Despite evidence that intracellular NHX proteins are important in vacuolar trafficking, the mechanism of this role is poorly understood. Here we show that NHX5 and NHX6 are necessary for processing of the predominant seed storage proteins, and also influence the processing and activity of a vacuolar processing enzyme. Furthermore, we show by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) technology that the C-terminal tail of NHX6 interacts with a component of Retromer, another component of the cell sorting machinery, and that this tail is critical for NHX6 activity. These findings demonstrate that NHX5 and NHX6 are important in processing and activity of vacuolar cargo, and suggest a mechanism by which NHX intracellular (IC)-II antiporters may be involved in subcellular trafficking. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Analysis of gene expression profiles for cell wall modifying proteins and ACC synthases in soybean cyst nematode colonized roots, adventitious rooting hypocotyls, root tips, flooded roots, and IBA and ACC treatment roots

    Science.gov (United States)

    We hypothesized that soybean cyst nematode (SCN) co-opts a part or all of one or more innate developmental process in soybean to establish its feeding structure, syncytium, in soybean roots. The syncytium in soybean roots is formed in a predominantly lateral direction within the vascular bundle by ...

  12. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.

    Science.gov (United States)

    Tetlak, Alicia G; Burnett, Jacob B; Hahn, Daniel A; Hatle, John D

    2015-12-01

    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction.

  13. Influence of Hydroponically Grown Hoyt Soybeans and Radiation Encountered on Mars Missions on the Yield and Quality of Soymilk and Tofu

    Science.gov (United States)

    Wilson, Lester A.

    2005-01-01

    Soybeans were chosen for hmar and planetary missions due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to crew consumption. Wilson et al. (2003) raised questions about (1) the influence of radiation (on germination and functional properties) that the soybeans would be exposed to during bulk storage for a Mars mission, and (2) the impact of using hydroponically grown versus field grown soybeans on the yield and quality of soyfoods. The influence of radiation can be broken down into two components: (A) affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (a Hazard Analysis Critical Control Point), and (B) affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants and free radical formation and oxidation induced changes in the soybean (lipid, protein, etc.) will influence the nutritional value, texture, quality, and safety of soyfoods made from them. The objectives of this project are to (1) evaluate the influence of gamma and electron beam radiation on bulk soybeans (HACCP, CCP) on the microbial load, germination, ease of processing, and quality of soymilk and tofu; (2) provide scale up and mass balance data for Advanced Life Support subsystems including Biomass, Solid Waste Processing, and Water Recovery Systems; and (3) to compare Hoyt field grown to hydroponically grown Hoyt soybeans for soymilk and tofu production. The soybean cultivar Hoyt, a small standing, high protein cultivar that could grow hydroponically in the AIMS facility on Mars) was evaluated for the production of soymilk and tofu. The quality and yield of the soymilk and tofu from hydroponic Hoyt, was compared to Vinton 81 (a soyfood industry standard), field Hoyt, IA 2032LS (lipoxygenase-free), and Proto (high protein and antioxidant potential). Soymilk and tofu were produced using the Japanese

  14. Soybean improvement: Achievements and challenges

    Directory of Open Access Journals (Sweden)

    Burton Joseph W.

    2013-01-01

    Full Text Available Soybean is a major source of vegetable protein and oil in the world. Worldwide demand continues to be high and production has more than doubled in the past 20 years to a total of 264.2 million metric tons in 2011 (National Agricultural Statistics Service 2012. Much of this increase has been due to increased planting in Argentina and Brazil. But, there have been genetic gains as well. We now have powerful genetic tools and these will be useful in gene discovery and in developing selectable markers for those genes. But for traits that are quantitative and multigenic, marker assisted selection may not be practical. We are facing unprecedented changes in our climate which will require resourceful use of the new genetic tools along with standard plant breeding methodology to maintain soybean productivity and quality.

  15. Quality and storability of chicken nuggets formulated with green banana and soybean hulls flours.

    Science.gov (United States)

    Kumar, Vinay; Biswas, Ashim Kumar; Sahoo, Jhari; Chatli, Manish Kumar; Sivakumar, S

    2013-12-01

    The present study was envisaged to investigate the effect of green banana (GBF) and soybean hulls flours (SHF) on the physicochemical characteristics, colour, texture and storage stability of chicken meat nuggets. The addition of GBF and SHF in the nugget formulations was effective in sustaining desired cooking yield and emulsion stability besides nutritional benefits. Protein and fat contents were decreased (p > 0.05), but fibers and ash contents was increased (p  0.05%) than control and treatments. Lipid oxidation products, however, unaffected (p > 0.05) but increased in all samples over storage time. Flour treatments showed a positive impact in respect to microbiological quality, however, sensory evaluation indicated comparable scores for all attributes at all times. So, incorporation of GBF and SHF in the formulation could improve the quality and storage stability of chicken nuggets.

  16. Processing of soybean meal and 00-rapeseed meal reduces protein digestibility and pig growth performance but does not affect nitrogen solubilization along the small intestine.

    Science.gov (United States)

    Hulshof, T G; van der Poel, A F B; Hendriks, W H; Bikker, P

    2016-06-01

    An experiment was conducted to determine the effects of processing of soybean meal (SBM) and 00-rapeseed meal (RSM) on N solubilization in chyme, CP digestibility along the small intestine, metabolic load as determined by organ weight, body composition, and growth performance in growing pigs. The SBM and RSM were processed by secondary toasting (at 95°C for 30 min) in the presence of lignosulfonate, resulting in processed SBM (pSBM) and processed RSM (pRSM) as a model for overprocessed protein sources. Fifty-four growing pigs were each fed 1 of the 6 experimental diets. Four of the diets contained SBM, pSBM, RSM, or pRSM as the sole protein source. The remaining 2 experimental diets contained pSBM or pRSM and were supplemented with crystalline AA to the same standardized ileal digestible AA levels as the SBM or RSM diet. Pigs were slaughtered at 40 kg, and organ weights were recorded. The organs plus blood and empty carcass were analyzed for CP content. The small intestine was divided into 3 segments, and chyme samples were taken from the last meter of each segment. Chyme of the SBM, pSBM, RSM, and pRSM diets was centrifuged to separate the soluble and insoluble fractions, and N content was determined in the latter. The amount of insoluble N as a fraction of N in chyme at each small intestinal segment was not affected by processing. Diet type, comprising effects of processing and supplementing crystalline AA, affected ( < 0.05) the G:F and standardized ileal digestibility (SID) of CP. Processing reduced G:F from 0.56 to 0.38 for SBM and 0.49 to 0.40 for RSM, whereas supplementing crystalline AA increased G:F to the level of the SBM and RSM diets. Processing reduced the SID of CP from 87.2% to 69.2% for SBM and 71.0% to 52.2% for RSM. Diet type affected ( < 0.05) the CP content in the empty body, with processing reducing this content from 170 to 144 g/kg empty BW for SBM and 157 to 149 g/kg empty BW for RSM and supplementing crystalline AA restoring this content

  17. Soybean diseases in Poland

    Directory of Open Access Journals (Sweden)

    J. Marcinkowska

    2013-12-01

    Full Text Available Field observations on the occurrence of soybean diseases were undertaken in the southern and central regions of Poland in the period 1976-1980. Most prevalent were foliage diseases caused by Peronospora manshurica, Pseudomonas syrinqae pv. glycinea and soybean mosaic virus (SMV. Sclerotinia sclerotiorum and Ascochyta sojaecola were reported as pathogens of local importance. The following pathogenic fungi: Botrytis cinerea, Fusarium culmorum, F. oxysporum and Rhizoctonia solani were also isolated from soybean.

  18. Lack of Population Structure in Coriander Populations Based on SDS (Seed Storage Protein Page Analysis

    Directory of Open Access Journals (Sweden)

    Gülsüm Yaldiz

    2016-08-01

    Full Text Available Genetic variation is prerequisite for plant breeding. Nothing information existed in the literature for available diversity of Coriander accession in Turkey. Plant breeding activities are negligible in Turkey. So in order to start effective plant breeding program in Turkey, information on the available genetic diversity is viable. Therefore we planned to study the genetic variation and population structure of 29 Coriander accessions by seed storage protein (SDS. SDS analysis elaborated the lack of population structure and genetic bottleneck in the Coriander accessions in Turkey. Based on the results of this study, it was clear that sampling strategy was not appropriate and plant introduction should be made from different sources and diverse genotypes should be used as parents to initialize the effective Turkish Coriander breeding program.

  19. Transcriptome study of storage protein genes of field-grown barley in response to inorganic nitrogen fertilizers

    DEFF Research Database (Denmark)

    Hansen, Michael; Bowra, Steve; Lange, Mette

    2010-01-01

    The storage proteins of barley, in terms of both amino acid profile and quantity, are traits strongly influenced by the amount of nitrogen applied. Given this, we performed a developmental expression analysis of the genes from barley grains grown under field conditions to further our understanding...... profile under different N regimes. Reviewing the expression of the storage protein homologues within the families revealed markedly different temporal profiles; for example, some alleles were expressed very early in development. Furthermore, the differential temporal expression of the homologues suggested...

  20. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  1. Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber.

    Science.gov (United States)

    Hou, W C; Lee, M H; Chen, H J; Liang, W L; Han, C H; Liu, Y W; Lin, Y H

    2001-10-01

    Dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber (which is different from dioscorine found in tubers of Dioscorea hirsuta), was purified to homogeneity after DE-52 ion exchange column according to the methods of Hou et al. (J. Agric. Food Chem. 1999, 47, 2168-2172). A single band of 32 kDa dioscorin was obtained on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel with 2-mercaptoethanol treatment. This purified dioscorin was shown by spectrophotometric method to have scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in a pH-dependent manner. There is a positive correlation between scavenging effects against DPPH (8-46%) and amounts of 32 kDa dioscorin (5.97-47.80 nmol) added in Tris-HCl buffer (pH 7.9), which are comparable to those of glutathione at the same concentrations. Using electron paramagnetic resonance (EPR) spectrometry for DPPH radical detection, it was found that the intensities of the EPR signal were decreased by 28.6 and 57 nmol of 32 kDa dioscorin in Tris-HCl buffer (pH 7.9) more than in distilled water compared to controls. EPR spectrometry was also used for hydroxyl radical detection. It was found that 32 kDa dioscorin could capture hydroxyl radical, and the intensities of the EPR signal were significantly decreased dose-dependently by 1.79-14.32 nmol of 32 kDa dioscorin (r = 0.975) compared to the control. It is suggested that 32 kDa dioscorin, the storage protein of yam tuber, may play a role as antioxidant in tubers and may be beneficial for health when people take it as a food additive or consume yam tubers.

  2. Physicochemical and functional properties, microstructure, and storage stability of whey protein/polyvinylpyrrolidone based glue sticks

    Directory of Open Access Journals (Sweden)

    Guorong Wang

    2012-11-01

    Full Text Available A glue stick is comprised of solidified adhesive mounted in a lipstick-like push-up tube. Whey is a byproduct of cheese making. Direct disposal of whey can cause environmental pollution. The objective of this study was to use whey protein isolate (WPI as a natural polymer along with polyvinylpyrrolidone (PVP to develop safe glue sticks. Pre-dissolved WPI solution, PVP, sucrose, 1,2-propanediol (PG, sodium stearate, defoamer, and preservative were mixed and dissolved in water at 90 oC and then molded in push-up tubes. Chemical composition, functional properties (bonding strength, glue setting time, gel hardness, extension/retraction, and spreading properties, microstructure, and storage stability of the prototypes were evaluated in comparison with a commercial control. Results showed that all WPI/PVP prototypes had desirable bonding strength and exhibited faster setting than PVP prototypes and control. WPI could reduce gel hardness and form less compact and rougher structures than that of PVP, but there was no difference in bonding strength. PVP and sucrose could increase the hygroscopicity of glue sticks, thus increasing storage stability. Finally, the optimized prototype GS3 (major components: WPI 8.0%, PVP 12.0%, 1,2-propanediol 10.0%, sucrose 10.0%, and stearic sodium 7.0% had a comparable functionality to the commercial control. Results indicated that whey protein could be used as an adhesive polymer for glue stick formulations, which could be used to bond fiber or cellulose derived substrates such as paper.

  3. Soybean seed viability and changes of fatty acids content as ...

    African Journals Online (AJOL)

    The characteristics of soybean seed chemical composition are related to specific processes occurring in seed during storage. These changes lead to seed aging during storage and affect seed vigour and content of fatty acids. In order to reveal severity of their influence, the following vigour tests were applied: Standard ...

  4. Effects of sterilization, packaging, and storage on vitamin C degradation, protein denaturation, and glycation in fortified milks.

    Science.gov (United States)

    Gliguem, H; Birlouez-Aragon, I

    2005-03-01

    Monitoring the nutritional quality of dietetic milk throughout its shelf life is particularly important due to the high susceptibility of some vitamins to oxidation, and the continuous development of the Maillard reaction during storage. The objective of this paper was to evaluate the vitamin C content and protein modification by denaturation and glycation on fortified milk samples (growth milks) destined for 1- to 3-yr-old children. The influences of the sterilization process, formulation, packaging, and storage duration at ambient temperature in the dark were studied. Vitamin C degradation was particularly influenced by type of packaging. The use of a 3-layered opaque bottle was associated with complete oxidation of vitamin C after 1 mo of storage, whereas in the 6-layered opaque bottle, which has an oxygen barrier, the vitamin C content slowly decreased to reach 25% of the initial concentration after 4 mo of storage. However, no significant effect of vitamin C degradation during storage could be observed in terms of Maillard reaction, despite the fact that a probable impact occurred during sterilization. Furosine content and the FAST (fluorescence of advanced Maillard products and soluble tryptophan) index-indicators of the early and advanced Maillard reaction, respectively-were significantly higher in the in-bottle sterilized milk samples compared with UHT samples, and in fortified milk samples compared with cow milk. However, after 1 mo, the impact of storage was predominant, increasing the furosine level and the FAST index at similar levels for the differently processed samples. The early Maillard reaction developed continuously throughout the storage period.In conclusion, only packaging comprising an oxygen and light barrier is compatible with vitamin C fortification of milk. Furthermore, short storage time or low storage temperature is needed to retard vitamin C degradation, protein denaturation, and development of the Maillard reaction.

  5. The purification and characterization of a third storage protein (convicilin) from the seeds of pea (Pisum sativum L.).

    OpenAIRE

    Croy, R R; Gatehouse, J A; Tyler, M; Boulter, D

    1980-01-01

    A third storage protein, distinct from legumin and vicilin, has been purified from the seeds of pea (Pisum sativum L.). This protein has been named 'convicilin' and is present in protein bodies isolated from pea seeds. Convicilin has a subunit mol.wt. of 71 000 and a mol.wt. in its native form of 290 000. Convicilin is antigenically dissimilar to legumin, but gives a reaction of identity with vicilin when tested against antibodies raised against both proteins. However, convicilin contains no ...

  6. Factors Affecting Isoflavone Content in Soybean Seeds Grown in Thailand

    Directory of Open Access Journals (Sweden)

    Supanimit Teekachunhatean

    2013-01-01

    Full Text Available Soybeans are the most common source of isoflavones in human foods. The objectives of this study were to determine the effects of Thai soybean variety, planting date, physical seed quality, storage condition, planting location, and crop year on isoflavone content, as well as to analyze the relationship between seed viability and isoflavone content in soybean seeds grown in Thailand. Isoflavone content in Thai soybeans varied considerably depending on such factors as variety, physical seed quality, crop year, planting date (even in the same crop year, and planting location. Most varieties (except for Nakhon Sawan 1 and Sukhothai 1 had significantly higher isoflavone content when planted in early rather than in late dry season. Additionally, seed viability as well as long-term storage at 10∘C or at ambient condition seemed unlikely to affect isoflavone content in Thai soybean varieties. Isoflavone content in soybean seeds grown in Thailand depends on multiple genetic and environmental factors. Some varieties (Nakhon Sawan 1 and Sukhothai 1 exhibited moderately high isoflavone content regardless of sowing date. Soybeans with decreased seed viability still retained their isoflavone content.

  7. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems.

    Science.gov (United States)

    Paula, E M; Monteiro, H F; Silva, L G; Benedeti, P D B; Daniel, J L P; Shenkoru, T; Broderick, G A; Faciola, A P

    2017-07-01

    Previous research indicated that there were significant differences in rumen-undegradable protein (RUP) among canola meals (CM), which could influence the nutritional value of CM. The objectives of this study were to (1) evaluate the effects of feeding CM with different RUP contents on ruminal fermentation, nutrient digestion, and microbial growth using a dual-flow continuous culture system (experiment 1) and (2) evaluate ruminal gas production kinetics, in vitro organic matter (OM) digestibility, and methane (CH 4 ) production of soybean meal (SBM) and CM with low or high RUP in the diet or as a sole ingredient using a gas production system (experiments 2 and 3). In experiment 1, diets were randomly assigned to 6 fermentors in a replicated 3 × 3 Latin square. The only ingredient that differed among diets was the protein supplement. The treatments were (1) solvent-extracted SBM, (2) low-RUP solvent-extracted CM (38% RUP as a percentage of crude protein), and (3) high-RUP solvent-extracted CM (50% RUP). Diets were prepared as 3 concentrate mixtures that were combined with 25% orchardgrass hay and 15% wheat straw (dry matter basis). Experiments 2 and 3 had the same design with 24 bottles incubated 3 times for 48 h each. During the 48-h incubation, the cumulative pressure was recorded to determine gas production kinetics, in vitro OM digestibility, and CH 4 production. In experiment 1, N flow (g/d), efficiency of N use, efficiency of bacterial N synthesis, total volatile fatty acids (mM), and molar proportion of acetate, propionate, and isobutyrate were not affected by treatments. There were tendencies for a decrease in ruminal NH 3 -N and an increase in molar proportion of butyrate for the SBM diet compared with both CM diets. The molar proportion of valerate was greater in both CM diets, whereas the molar proportion of isovalerate and total branched-chain volatile fatty acids was lower for the CM diets compared with the SBM diet. In experiments 2 and 3, the SBM

  8. Recombinant dioscorins of the yam storage protein expressed in Escherichia coli exhibit antioxidant and immunomodulatory activities.

    Science.gov (United States)

    Jheng, Yi-Jyun; Tsai, Wei-Yi; Chen, Kuo-Hsuan; Lin, Kuo-Wei; Chyan, Chia-Lin; Yang, Ching-Chi; Lin, Kuo-Chih

    2012-09-01

    Dioscorins, the major storage proteins in yam tubers, exhibit biochemical and immunomodulatroy activities. To investigate the potential application of dioscorins in biomedical research, we expressed the dioscorin genes Dj-dioA3 and Dp-dioA2 from Dioscorea japonica and Dioscorea pseudojaponica, respectively, in E. coli and routinely obtained approximately 15 mg proteins per liter Escherichia coli culture (mg/L) to 30 mg/L of rDj-dioscorinA3 and 4 to 8 mg/L of rDp-dioscorinA2. Western blot analyses revealed that both recombinant dioscorins contained epitopes with similar antigenicities to those of the native dioscorins. Results from dithiothreitol (DTT) treatment followed by monobromobimane (mBBr) staining showed that both recombinant dioscorins, like the native dioscorins, contain an intramolecular disulfide bond between Cys(28) and Cys(187) residues. Circular dichroism spectroscopy findings indicated that the secondary structural contents of the recombinant dioscorins showed high similarity to those of their corresponding native dioscorins. Both recombinant dioscorins, like the native dioscorins, exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and Toll-like receptor 4 signaling activities, and stimulated the phagocytosis of E. coli by macrophage. Overall, our results indicated that substantial amounts of recombinant dioscorins can be purified easily from E. coli and that these recombinant dioscorins are appropriate for application in future investigations of the biomedical functions of dioscorins. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Manipulation of saponin biosynthesis by RNA interference-mediated silencing of β-amyrin synthase gene expression in soybean.

    Science.gov (United States)

    Takagi, Kyoko; Nishizawa, Keito; Hirose, Aya; Kita, Akiko; Ishimoto, Masao

    2011-10-01

    Soybean seeds contain substantial amount of diverse triterpenoid saponins that influence the seed quality, although little is known about the physiologic functions of saponins in plants. We now describe the modification of saponin biosynthesis by RNA interference (RNAi)-mediated gene silencing targeted to β-amyrin synthase, a key enzyme in the synthesis of a common aglycon of soybean saponins. We identified two putative β-amyrin synthase genes in soybean that manifested distinct expression patterns with regard to developmental stage and tissue specificity. Given that one of these genes, GmBAS1, was expressed at a much higher level than the other (GmBAS2) in various tissues including the developing seeds, we constructed two RNAi vectors that encode self-complementary hairpin RNAs corresponding to the distinct regions of GmBAS1 under the control of a seed-specific promoter derived from the soybean gene for the α' subunit of the seed storage protein β-conglycinin. These vectors were introduced independently into soybean. Six independent transgenic lines exhibited a stable reduction in seed saponin content, with the extent of saponin deficiency correlating with the β-amyrin synthase mRNA depletion. Although some transgenic lines produced seeds almost devoid of saponins, no abnormality in their growth was apparent and the antioxidant activity of their seeds was similar to that of control seeds. These results suggest that saponins are not required for seed development and survival, and that soybean seeds may therefore be amenable to the modification of triterpenoid saponin content and composition through molecular biologic approaches.

  10. Integrated transcriptomics and proteomics analysis of storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa; Dionisio, Giuseppe; Renaut, Jenny

    2012-01-01

    The aim of the study was to understand the molecular and biochemical mechanisms underpinning the effect of nitrogen (N) on barley (Hordeum vulgare) storage protein production (hordeins) during grain filling. Using a combination of advanced biochemistry methods, we could comprehensively describe c...

  11. Genome Sequence of the Palaeopolyploid soybean

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakura, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A.

    2009-08-03

    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70percent more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78percent of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75percent of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

  12. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  13. Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis1[W

    Science.gov (United States)

    Weichert, Nicola; Saalbach, Isolde; Weichert, Heiko; Kohl, Stefan; Erban, Alexander; Kopka, Joachim; Hause, Bettina; Varshney, Alok; Sreenivasulu, Nese; Strickert, Marc; Kumlehn, Jochen; Weschke, Winfriede; Weber, Hans

    2010-01-01

    Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations. PMID:20018590

  14. EVALUATION OF CASSAVA/SOYBEAN INTERCROPPING SYSTEM ...

    African Journals Online (AJOL)

    Soybean plants were taller when intercropped with NR 8212 or with TMS 30572 than in sole soybean, which had similar height with soybean in soybean/TMS 91934 mixture. The soybean canopy diameter, number of leaves per plant and LAI were higher with sole soybean. Within the soybean intercrops, canopy diameter, ...

  15. Ocatin. A novel tuber storage protein from the andean tuber crop oca with antibacterial and antifungal activities.

    Science.gov (United States)

    Flores, Teresita; Alape-Girón, Alberto; Flores-Díaz, Marietta; Flores, Hector E

    2002-04-01

    The most abundant soluble tuber protein from the Andean crop oca (Oxalis tuberosa Mol.), named ocatin, has been purified and characterized. Ocatin accounts for 40% to 60% of the total soluble oca tuber proteins, has an apparent molecular mass of 18 kD and an isoelectric point of 4.8. This protein appears to be found only in tubers and is accumulated only within the cells of the pith and peridermis layers (peel) of the tuber as it develops. Ocatin inhibits the growth of several phytopathogenic bacteria (Agrobacterium tumefaciens, Agrobacterium radiobacter, Serratia marcescens, and Pseudomonas aureofaciens) and fungi (Phytophthora cinnamomi, Fusarium oxysporum, Rhizoctonia solani, and Nectria hematococcus). Ocatin displays substantial amino acid sequence similarity with a widely distributed group of intracellular pathogenesis-related proteins with a hitherto unknown biological function. Our results showed that ocatin serves as a storage protein, has antimicrobial properties, and belongs to the Betv 1/PR-10/MLP protein family. Our findings suggest that an ancient scaffolding protein was recruited in the oca tuber to serve a storage function and that proteins from the Betv 1/PR-10/MLP family might play a role in natural resistance to pathogens.

  16. Ocatin. A Novel Tuber Storage Protein from the Andean Tuber Crop Oca with Antibacterial and Antifungal Activities1

    Science.gov (United States)

    Flores, Teresita; Alape-Girón, Alberto; Flores-Díaz, Marietta; Flores, Hector E.

    2002-01-01

    The most abundant soluble tuber protein from the Andean crop oca (Oxalis tuberosa Mol.), named ocatin, has been purified and characterized. Ocatin accounts for 40% to 60% of the total soluble oca tuber proteins, has an apparent molecular mass of 18 kD and an isoelectric point of 4.8. This protein appears to be found only in tubers and is accumulated only within the cells of the pith and peridermis layers (peel) of the tuber as it develops. Ocatin inhibits the growth of several phytopathogenic bacteria (Agrobacterium tumefaciens, Agrobacterium radiobacter, Serratia marcescens, and Pseudomonas aureofaciens) and fungi (Phytophthora cinnamomi, Fusarium oxysporum, Rhizoctonia solani, and Nectria hematococcus). Ocatin displays substantial amino acid sequence similarity with a widely distributed group of intracellular pathogenesis-related proteins with a hitherto unknown biological function. Our results showed that ocatin serves as a storage protein, has antimicrobial properties, and belongs to the Betv 1/PR-10/MLP protein family. Our findings suggest that an ancient scaffolding protein was recruited in the oca tuber to serve a storage function and that proteins from the Betv 1/PR-10/MLP family might play a role in natural resistance to pathogens. PMID:11950978

  17. Proteome analysis of soybean roots under waterlogging stress at an ...

    Indian Academy of Sciences (India)

    Prakash

    To gain better insight into how soybean roots respond to waterlogging stress, ... death- and signal transduction-related proteins suggest that they have a role to play during stress. ...... work cooperatively to establish a new homeostasis under.

  18. Effects of Storage and Granary Weevil Infestation on Gel Electrophoresis and Protein Solubility Properties of Hard and Soft Wheat Flours.

    Science.gov (United States)

    Keskin, Sule; Yalçin, Erkan; Özkaya, Hazim

    2018-02-24

    The objective of this study was to investigate the effects of storage and granary weevil, Sitophilus granarius (L.; Coleoptera: Curculionidae), infestation on pH, protein solubility (PS) and gel electrophoresis properties of meal and roller-milled flours of hard (Ceyhan-99 cv.) and soft (Eser cv.) wheat cultivars, respectively, after 6 mo of storage. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) technique was applied for studying the electrophoretic properties. Hard and soft wheats were infested with non-sexed S. granarius at a rate of two adults/ kg, and stored for 6 mo at 30 ± 1°C and 70 ± 5% RH. The pest-free wheat samples were used as control. The infested and its control samples were collected monthly, and after cleaning the granary weevils, they were hammer-milled or roller-milled in order to get meal flours and roller-milled flours, respectively. The effect of infestation on the storage proteins was more obvious in meal flours than that of the roller-milled flours. Granary weevil feeding resulted secreting of hydrolyzing enzymes and increased the acidity of flours; subsequently the breaking and releasing of some storage proteins generally caused a decrease in pH and an increase in PS values of the meal flours of wheat cultivars. SDS-PAGE results generally indicated that towards the end of storage, the insect population, that greatly increased, caused minor protein depletions resulting decreasing protein band intensities between 113 and 58 kDa of hard wheat meal flour and 101 and 40 kDa of soft wheat roller-milled flour. Consequently, the potential effect of changes probably occurred in high molecular weight glutenin subunits of both wheat cultivars.

  19. Effect of substituting soybean meal and canola cake with grain-based dried distillers grains with solubles as a protein source on feed intake, milk production, and milk quality in dairy cows

    DEFF Research Database (Denmark)

    Gaillard, Charlotte; Sørensen, Martin Tang; Vestergaard, Mogens

    2017-01-01

    corn) appear to be relevant sources of feed and protein for dairy cows. To date, most of the studies investigating DDGS have been performed with corn-based DDGS. The objectives of this study were to determine the effects of the proportion of gDDGS in the diet on feed intake, milk production, and milk...... of soybean meal, canola cake, and beet pulp. Dry matter intake and energy-corrected milk yield were not affected by the proportion of gDDGS in the diet. Daily milk yield decreased with the H diet compared with the L and M diets. The percentage of fat in milk was higher when cows were fed the H diet compared...... by the proportion of gDDGS in the diet or when milk was stored for 7 d. Linoleic acid and conjugated linoleic acid cis-9,trans-11 in milk increased with increasing proportion of gDDGS. To conclude, gDDGS can replace soybean meal and canola cake as a protein source in the diet of dairy cows. Up to 13.5% of the diet...

  20. Individual electrical conductivity test for the assessment of soybean seed germination.

    OpenAIRE

    MATTIONI, N. M.; MERTZ, L. M.; BARBIERI, A. P. P.; HAESBAERT, F. M.; GIORDANI, W.; LOPES, S. J.

    2015-01-01

    Soybean seed quality is affected by many factors, which may occur during the production, processing, and storage phases. To ensure the quality of seeds, the adoption of fast and efficient methods to estimate seed viability in quality control programs is important. This study aimed to determine a partition point of the individual electrical conductivity test to predict soybean seed germination. Three lots each of five different soybean cultivars (Fundacep 57 RR, BMX Potência RR, BMX Força RR, ...

  1. Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare.

    Science.gov (United States)

    Cabello-Hurtado, Francisco; Keller, Jean; Ley, José; Sanchez-Lucas, Rosa; Jorrín-Novo, Jesús V; Aïnouche, Abdelkader

    2016-06-30

    Lupins have a variety of both traditional and modern uses. In the last decade, reports assessing the benefits of lupin seed proteins have proliferated and, nowadays, the pharmaceutical industry is interested in lupin proteins for human health. Modern genomics and proteomics have hugely contributed to describing the diversity of lupin storage genes and, above all, proteins. Most of these studies have been centered on few edible lupin species. However, Lupinus genus comprises hundreds of species spread throughout the Old and New Worlds, and these resources have been scarcely explored and exploited. We present here a detailed review of the literature on the potential of lupin seed proteins as nutraceuticals, and the use of -omic tools to analyze seed storage polypeptides in main edible lupins and their diversity at the Lupinus inter- and intra-species level. In this sense, proteomics, more than any other, has been a key approach. Proteomics has shown that lupin seed protein diversity, where post-translational modifications yield a large number of peptide variants with a potential concern in bioactivity, goes far beyond gene diversity. The future extended use of second and third generation proteomics should definitely help to go deeper into coverage and characterization of lupin seed proteome. Some important topics concerning storage proteins from lupin seeds are presented and analyzed in an integrated way in this review. Proteomic approaches have been essential in characterizing lupin seed protein diversity, which goes far beyond gene diversity since the protein level adds to the latter differential proteolytic cleavage of conglutin pro-proteins and a diverse array of glycosylation forms and sites. Proteomics has also proved helpful for screening and studying Lupinus germplasm with the future aim of exploiting and improving food production, quality, and nutritional values. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage.

    Science.gov (United States)

    Turgut, Sebahattin Serhat; Işıkçı, Fatma; Soyer, Ayla

    2017-07-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation in beef meatballs was investigated during frozen storage at -18±1°C. Concentrated and freeze dried aqueous extract of pomegranate peel was incorporated into freshly prepared meatball mix at 0.5% and 1.0% concentrations, and compared with 0.01% butylated hydroxytoluene (BHT) and control (without any antioxidant). In PE treated samples, particularly in high PE concentration, peroxide, malondialdehyde and carbonyl formation, loss of total protein solubility and sulfhydryl groups were significantly lower than control after 6months of storage. A diminution of both myofibrillar (MP) and sarcoplasmic (SP) proteins of high molecular weight was detected after 6months of the storage according to gel electrophoresis patterns. The 1.0% PE led to maintain colour intensity (C) and hue (h°) value. The results from sensory analyses revealed that PE addition to meatballs was effective on preventing rancid odour formation. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.

    Science.gov (United States)

    Milkovska-Stamenova, Sanja; Hoffmann, Ralf

    2017-04-15

    Thermal treatment preserves the microbiological safety of milk, but also induces Maillard reactions modifying for example proteins. The purpose of this study was evaluating the influence of consumer behaviors (storage and heating) on protein glycation degrees in bovine milk products. Lactosylation and hexosylation sites were identified in ultra-high temperature (UHT), lactose-free pasteurized, and lactose-free UHT milk (ULF) and infant formula (IF) using tandem mass spectrometry (electron transfer dissociation). Overall, 303 lactosylated and 199 hexosylated peptides were identified corresponding to 170 lactosylation (31 proteins) and 117 hexosylation sites (25 proteins). In quantitative terms, storage increased lactosylation up to fourfold in UHT and IF and hexosylation up to elevenfold in ULF and threefold in IF. These levels increased additionally twofold when the stored samples were heated (40°C). In conclusion, storage and heating appear to influence protein glycation levels in milk at similar or even higher degrees than industrial processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. (RR) soybean cultivars estimated by phenotypic characteristics

    African Journals Online (AJOL)

    SAM

    2014-06-25

    Jun 25, 2014 ... phenotypic characteristics and microsatellite molecular markers (SSR). ... discriminatory analysis, principal components, coordinate and cluster analysis .... were employed with 10.000 simulations to attribute significance values to ...... association analysis of protein and oil content in food-grade soybeans ...

  5. Changes of microbial spoilage, lipid-protein oxidation and physicochemical properties during post mortem refrigerated storage of goat meat.

    Science.gov (United States)

    Sabow, Azad Behnan; Sazili, Awis Qurni; Aghwan, Zeiad Amjad; Zulkifli, Idrus; Goh, Yong Meng; Ab Kadir, Mohd Zainal Abidin; Nakyinsige, Khadijah; Kaka, Ubedullah; Adeyemi, Kazeem Dauda

    2016-06-01

    Examined was the effect of post mortem refrigerated storage on microbial spoilage, lipid-protein oxidation and physicochemical traits of goat meat. Seven Boer bucks were slaughtered, eviscerated and aged for 24 h. The Longissimus lumborum (LL) and Semitendinosus (ST) muscles were excised and subjected to 13 days post mortem refrigerated storage. The pH, lipid and protein oxidation, tenderness, color and drip loss were determined in LL while microbiological analysis was performed on ST. Bacterial counts generally increased with increasing aging time and the limit for fresh meat was reached at day 14 post mortem. Significant differences were observed in malondialdehyde (MDA) content at day 7 of storage. The thiol concentration significantly reduced as aging time increased. The band intensities of myosin heavy chain (MHC) and troponin-T significantly decreased as storage progressed, while actin remained relatively stable. After 14 days of aging, tenderness showed significant improvement while muscle pH and drip loss reduced with increase in storage time. Samples aged for 14 days had higher lightness (P goat meat. © 2016 Japanese Society of Animal Science.

  6. Characterization of the yam tuber storage proteins from Dioscorea batatas exhibiting unique lectin activities.

    Science.gov (United States)

    Gaidamashvili, Mariam; Ohizumi, Yuki; Iijima, Shinichiro; Takayama, Tomo; Ogawa, Tomohisa; Muramoto, Koji

    2004-06-18

    Four major proteins designated DB1, DB2, DB3, and DB4 were isolated and characterized from the yam tuber Dioscorea batatas. The ratios of their yields were 20:50:20:10. DB1 was a mannose-binding lectin (20 kDa) consisting of 10-kDa subunits and was classified as the monocot mannose-binding lectin family. DB2, accounting for 50% of the total protein, was the storage protein, commonly called dioscorins consisting of a 31-kDa subunit. On the basis of amino acid sequence, DB2 was classified to be dioscorin A. DB3 was a maltose-binding lectin, having an apparent molecular mass of 120 kDa and composed of a 66-kDa subunit and two 31-kDa subunits (DB3S). The 66-kDa subunit was further composed of two 31-kDa subunits (DB3L) cross-linked by disulfide bonds. DB3L and DB3S (242 and 241 amino acid residues, respectively) were homologous with each other with 72% sequence identity. They showed a sequence homology to dioscorin B and dioscorin A from Dioscorea alata, with 90 and 93% identity, respectively, and to carbonic anhydrase from Arabidopsis thaliana with about 45% identity. DB3S had one intrachain disulfide bond located at Cys(28)-Cys(187), whereas DB3L had one interchain disulfide bond (Cys(40)-Cys(40)') in addition to the intrachain disulfide bond (Cys(28)-Cys(188)) to form a 66-kDa subunit. DB1 and DB3 agglutinated rabbit erythrocytes at 2.7 and 3.9 microg/ml, respectively. Despite the structural homology between DB2 and DB3, DB2 had no lectin activity. The 66-kDa subunit itself revealed the full hemagglutinating activity of DB3, indicating that DB3L but not DB3S was responsible for the activity. The hemagglutinating activity of DB3 required Ca(2+) ions and was exclusively inhibited by maltose and oligomaltoses (e.g. maltopentaose and maltohexaose) but not by d-glucose. DB3 could not be classified into any known plant lectin family. DB4 was a chitinase, homologous to an acidic chitinase from Dioscorea japonica. DB1, DB2, and DB3 did not show any activity of carbonic

  7. Vigor of sunflower and soybean aging seed

    OpenAIRE

    Tatić M.; Balešević-Tubić S.; Ðorđević V.; Miklič V.; Vujaković M.; Ðukić V.

    2012-01-01

    Seed aging and deterioration affect seed vigor and viability. The characteristics of the chemical composition of oil crops seed are related to specific processes occurring in the seed during storage. This study was performed to examine the changes in seed vigor of different sunflower and soybean genotypes under controlled and conventional (uncontrolled) conditions of natural aging for six and twelve months. Obtained results show that the degree of seed dama...

  8. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation.

    Science.gov (United States)

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2017-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the

  9. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus Fruit Peel in Response to Pre-storage Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2018-01-01

    Full Text Available Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs right after PsCA treatment and 23 after the following cold storage (PsCA+CS. These proteins are mainly related to stress response and defense (SRD, energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter

  10. Solubilidade de nitrogênio, dispersibilidade de proteína e propriedades emulsificantes dos extratos hidrossolúveis desidratados de arroz e soja Nitrogen solubility, protein dispersibility and emulsifying properties of dehydrated aqueous extracts of rice-soybean

    Directory of Open Access Journals (Sweden)

    Sin H. WANG

    2000-04-01

    Full Text Available Com o objetivo de verificar a possibilidade do uso dos extratos hidrossolúveis desidratados elaborados com arroz e soja em diferentes proporções (100:0, 90:10, 80:20, 70:30, 60:40 e 50:50% em produtos alimentícios, foram estudadas solubilidade e propriedades emulsificantes das misturas. Os processos utilizados para a obtenção foram: maceração do arroz e da soja, desintegração, centrifugação, adição de ácido cítrico, fervura e secagem por atomização. Através das análises, foi verificado que o aumento das proporções de soja (0 a 50% resultou, num aumento do nitrogênio solúvel em água, da atividade emulsificante e da estabilidade de emulsão, bem como numa diminuição do índice de solubilidade de nitrogênio e do índice de dispersibilidade de proteína. Contudo, a proteína dispersível em água aumentou até um máximo na proporção de 10% de soja, além do qual, diminuiu com o aumento das proporções de soja (10 a 50%. Portanto, os extratos hidrossolúveis desidratados das misturas de arroz e soja com 10, 20 e 30% de soja, são recomendados para o uso em produtos cárneos, de confeitaria e de chocolataria, sopas, molhos, cremes e bebidas, enquanto que aqueles com 40 e 50% de soja, são considerados mais adequados para uso como extensores de carne, queijos processados e maioneses.Dehydrated aqueous extracts of rice-soybean at different proportions (100:0, 90:10, 80:20, 70:30, 60:40 and 50:50% were assessed for nitrogen solubility index (NSI, protein dispersibility index (PDI, emulsifying activity (EA and emulsion stability (ES in order to verify their potential use as food ingredients. Dehydrated aqueous extracts was manufactured by soaking, disintegration, centrifugation, addition of citric acid, boiling and spray-drying. The results indicated that increasing soybean proportion from 0 to 50% showed an increase in the soluble nitrogen in water, EA and ES, and a decrease in the NSI and PDI. However, the dispersible

  11. Thua nao: Thai fermented soybean

    Directory of Open Access Journals (Sweden)

    Ekachai Chukeatirote

    2015-09-01

    Full Text Available Thua nao is a traditionally fermented food in Thailand. It is manufactured by fermenting cooked soybeans with naturally occurring microbes. There are also similar products including natto in Japan, kinema in India, and chongkukjang in Korea. In Thailand, thua nao is widely consumed, especially by people in the northern part. The product is generally regarded as a protein supplement and widely used as a condiment. Two major types of thua nao can be distinguished; fresh and dried forms. To date, scientific information on thua nao is scarce and thus this article aims to document the updated knowledge of Thai thua nao.

  12. Effect of irradiation and soaking in BHT and sodium pyrophosphate on meat proteins and lipids during cold storage

    International Nuclear Information System (INIS)

    Hassan, I.M.; Emam, O.A.

    1988-01-01

    The effect of irradiation treatments up to 10 KGy, soaking in a solution containing 0.5% Na-pyrophosphate and 250 ppm butylated hydroxy toluene (BHT) and a combination of both treatments on the nitrogen content and solubility, protein fractions and lipids stability in beef steaks during cold storage at 4 ± 1°C was followed until the samples were rejected by sensory evaluation. The least effective radiation doses for soluble protein nitrogen (SPN), total soluble nitrogen (TSN) and total nitrogen (TN) were 2, 5 and 10 KGy, respectively. Such effects were proportionally related to the applied dose. The loss in nitrogen compounds and/or their solubility which occurred upon irradiation appeared to be retarded by soaking treatment. Irradiation treatments induced additional protein fraction which seems to be originated from the sarcoplasmic proteins. After the resolution of rigor mortis, the incremental rate of nitrogen extractability was inversely related to the irradiation dose. Another protein fraction was detected only in the 10 KGy irradiated samples after 14 days of cold storage which might be originating from fibrillar proteins as a result of its interaction with some lipid oxidation products. However, soaking treatment itself caused extensive changes in protein fractions, in contrast, protection from radiation and radiation after-effects were observed

  13. Yam storage protein dioscorins from Dioscorea alata and Dioscorea japonica exhibit distinct immunomodulatory activities in mice.

    Science.gov (United States)

    Lin, Pei-Lan; Lin, Kuo-Wei; Weng, Ching-Feng; Lin, Kuo-Chih

    2009-06-10

    The aim of this study was to elucidate the effect of the major storage protein dioscorin isolated from two different yam species, Tainong No. 1 (TN1-dioscorins) and Japanese yam (Dj-dioscorins), on the immune activities of mice. Dj-dioscorins, like TN1-dioscorins, could induce expression of the pro-inflammatory cytokines and stimulate phagocytosis of RAW 264.7. Intraperitoneal injection of the TN1-dioscorins into mice stimulated phagocytosis of bone marrow, spleen, and thymic cells. In contrast, the T and B cells in bone marrow, spleen, and thymus isolated from mice injected with Dj-dioscorins had higher proliferative responses to mitogens. Furthermore, Dj-dioscorins enhanced proliferation of CD4(+), CD8(+), and Tim3(+) (Th1) cells in spleen and CD19(+) cells in both spleen and thymus. Supplement of Dj-dioscorins in the lymphoid cells isolated from Dj-dioscorins primed mice induced cell proliferation of both spleen and thymic cells. These findings indicated that TN1-dioscorins have a higher ability to stimulate the phagocytic activity of the lymphoid cells than Dj-dioscorins, whereas Dj-dioscorins possess more abilities than TN1-dioscorins to enhance the proliferation of the lymphoid cells.

  14. Genetic diversity in radish germplasm for morphological traits and seed storage proteins

    International Nuclear Information System (INIS)

    Jatoi, S.A.; Siddiqui, S.U.; Masood, M.S.; Javaid, A.; Iqbal, M.; Sayal, O.U.

    2011-01-01

    Genetic variation of forty-nine local and exotic radish genotypes including two checks was studied for morphological traits and seed storage protein electrophoresis using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) markers. A high variation in germplasm for root shape, root length, root colour (internal and external), flesh texture and root type was observed. Among these genotypes, the genetic variation was apparent for most of the characters like plant biomass, root weight, leaf length, root length and root diameter that indicated the potential for crop improvement in these traits through simple selection. Exotic germplasm exhibited higher variation for plant biomass, root weight and root length which could be utilized through breeding programme. Cluster analysis on the basis of genetic diversity for seven quantitative traits resulted into four clusters. No clustering was found on the basis of origin. Low level of variance was observed for SDS-PAGE electrophoresis that suggested acquisition of more germplasm. On the basis of high yield and crispy root texture some genotypes (10076, 10362, 10429, 10658, 10662 and 10667) were identified for further testing under wide range of agro-ecological conditions. (author)

  15. Sink limitation induces the expression of multiple soybean vegetative lipoxygenase mRNAs while the endogenous jasmonic acid level remains low.

    Science.gov (United States)

    Bunker, T W; Koetje, D S; Stephenson, L C; Creelman, R A; Mullet, J E; Grimes, H D

    1995-08-01

    The response of individual members of the lipoxygenase multigene family in soybeans to sink deprivation was analyzed. RNase protection assays indicated that a novel vegetative lipoxygenase gene, vlxC, and three other vegetative lipoxygenase mRNAs accumulated in mature leaves in response to a variety of sink limitations. These data suggest that several members of the lipoxygenase multigene family are involved in assimilate partitioning. The possible involvement of jasmonic acid as a signaling molecule regulating assimilate partitioning into the vegetative storage proteins and lipoxygenases was directly assessed by determining the endogenous level of jasmonic acid in leaves from plants with their pods removed. There was no rise in the level of endogenous jasmonic acid coincident with the strong increase in both vlxC and vegetative storage protein VspB transcripts in response to sink limitation. Thus, expression of the vegetative lipoxygenases and vegetative storage proteins is not regulated by jasmonic acid in sink-limited leaves.

  16. Survival of salmonella transformed to express green fluorescent protein on Italian parsley as affected by processing and storage.

    Science.gov (United States)

    Duffy, E A; Cisneros-Zevallos, L; Castillo, A; Pillai, S D; Ricke, S C; Acuff, G R

    2005-04-01

    To study the effect of processing and storage parameters on the survival of Salmonella on fresh Italian parsley, parsley bunches were dipped for 3 or 15 min in suspensions that were preequilibrated to 5, 25, or 35 degrees C and inoculated with Salmonella transformed to express enhanced green fluorescent protein. Loosely attached and/or associated, strongly attached and/or associated, and internalized and/or entrapped Salmonella cells were enumerated over 0, 1, and 7 days of storage at 25 degrees C and over 0, 1, 7, 14, and 30 days of storage at 4 degrees C using surface-plating procedures. Leaf sections obtained from samples after 0, 1, and 7 days of storage were examined using confocal scanning laser microscopy. Temperature of the dip suspension had little effect on the attachment and survival of Salmonella cells on parsley. Regardless of the temperature or duration of dip, Salmonella was internalized. Immersion for longer times resulted in higher numbers of attached and internalized cells. Microscopic observations supported these results and revealed Salmonella cells near the stomata and within cracks in the cuticle. Storage temperature had the greatest impact on the survival of Salmonella cells on parsley. When stored at 25 degrees C, parsley had a shelf life of 7 days, and Salmonella populations significantly increased over the 7 days of storage. For parsley stored at 4 degrees C, numbers of Salmonella cells decreased over days 0, 1, and 7. After 7 days of storage, there were no viable internalized Salmonella cells detected. Storage temperature represents an important control point for the safety of fresh parsley.

  17. Compositional differences in soybeans on the market: glyphosate accumulates in Roundup Ready GM soybeans.

    Science.gov (United States)

    Bøhn, T; Cuhra, M; Traavik, T; Sanden, M; Fagan, J; Primicerio, R

    2014-06-15

    This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional "chemical" cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating "substantial non-equivalence" in compositional characteristics for 'ready-to-market' soybeans. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Expression of a complete soybean leghemoglobin gene in root nodules of transgenic Lotus corniculatus

    DEFF Research Database (Denmark)

    Stougaard, J; Petersen, T E; Marcker, K A

    1987-01-01

    The complete soybean leghemoglobin lbc(3) gene was transferred into the legume Lotus corniculatus using an Agrobacterium rhizogenes vector system. Organ-specific expression of the soybean gene was observed in root nodules formed on regenerated transgenic plants after infection with Rhizobium loti....... The primary transcript was processed in the same way as in soybean nodules and the resulting mRNA was translated into Lbc(3) protein. Quantitative determination of the Lbc(3) protein in nodules of transgenic plants indicated that the steady-state level of the soybean protein is comparable...

  19. Variation of several agronomic and biochemical traits in γ-ray induced mutant soybeans

    International Nuclear Information System (INIS)

    Shim, Kyo Moon; Kim, Sun Hyung; Kim, Nam Soo; Son, Hi Sup; Rhee, Hae Ik

    1996-01-01

    Two soybean cultivars(Paldalkong and Bangsakong) were irradiated with gamma-ray to reduce seed size, which is an important trait for soybean sprout and the derived mutant soybeans were analyzed in several agronomic and biochemical traits. There were high levels of variations in quantitative traits among the mutants. Several mutant lines showed higher yield and smaller seed than their parents. Qualitative traits such as seed coat color or pubescent color were also changed in a few lines. Biochemical variations were also observed among the mutants. In seed storage protein analysis, many mutant lines showed reduced intensities in β-subunits in 7S globulin than their parents and an additional band in the acidic subunit at 31KDa. Two mutant lines derived from Paldalkong showed an additional band and a shifted band of protease inhibitor by electrophoretic analysis. Variations in isozymes and RAPD were also observed among the mutants. Six isozymes(Adh, Est, Gdh, Idh, Mdh and Pgm) among eleven isozymes showed some variations and six out of ten primers showed polymorphic amplified DNA fragments among the mutants. (author)

  20. Comparative study of the effect of dry and wet ginger (Zingiber officinale Roscoe spice on the proximate and microbial safety of soybean beverage

    Directory of Open Access Journals (Sweden)

    Adegbola Oladele Dauda

    2017-01-01

    Full Text Available Soybean beverage, most common nutritious local beverage in Nigeria and in the world, is a high protein beverage used as a dairy milk substitute with the limited utilization due to natural or ambient conditions that serve as growth medium for microorganisms. Hence, it has a short shelf life. This study examines the shelf life of soybean beverage preserved with the ginger spice (dried at 70 ˚C, 80 ˚C, 90 ˚C and 100 ˚C, and 2 g and 4 g of fresh/wet ginger respectively over 7-week period. The samples were (A: plain soybean beverage; B: 200 ml soybean beverage + 2 g of ginger dried at 100 ˚C; C: 200 ml soybean beverage + 2 g ginger dried at 90 ˚C; D: 200 ml soybean beverage + 2 g ginger dried at 80 ˚C; E: 200 ml soybean beverage + 2 g ginger dried at 70 ˚C; F: 200 ml soybean beverage + 2 g fresh ginger; and G: 200 ml soybean beverage + 4 g fresh ginger respectively. The proximate, pH, microbial and sensory analyses of samples ranged as follows: 87.35% - 90.83% for the moisture content; 0.58% - 0.65% ash content; 4.65% - 4.96% protein; 0.10%-0.26% fibre content; 2.06% - 2.98% crude fat and 1.68% - 4.17% carbohydrate, and pH values ranged from 6.2 - 6.5. Microbiological analysis over storage period showed that the control sample ranged from 0.4×106 -8.3×106 cfu/ml, and treated samples from 0.4×106 to 2.4×106 cfu/ml. Low values of the samples treated with dry ginger spice were preserved better than others, probably due to preservative and anti-microbial properties of the spice. Sensory evaluation, carried out by twenty-eight persons, showed that the sample E: (200 ml soymilk+ 2 g ginger dried at 70 ˚C was most preferred (with respect to taste, aroma and overall acceptability, while there was a significant difference in the appearance of the samples.

  1. N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway.

    Science.gov (United States)

    Zhang, Hongtao; Gannon, Lucy; Hassall, Kirsty L; Deery, Michael J; Gibbs, Daniel J; Holdsworth, Michael J; van der Hoorn, Renier A L; Lilley, Kathryn S; Theodoulou, Frederica L

    2018-05-01

    The N-end rule pathway of targeted protein degradation is an important regulator of diverse processes in plants but detailed knowledge regarding its influence on the proteome is lacking. To investigate the impact of the Arg/N-end rule pathway on the proteome of etiolated seedlings, we used terminal amine isotopic labelling of substrates with tandem mass tags (TMT-TAILS) for relative quantification of N-terminal peptides in prt6, an Arabidopsis thaliana N-end rule mutant lacking the E3 ligase PROTEOLYSIS6 (PRT6). TMT-TAILS identified over 4000 unique N-terminal peptides representing c. 2000 protein groups. Forty-five protein groups exhibited significantly increased N-terminal peptide abundance in prt6 seedlings, including cruciferins, major seed storage proteins, which were regulated by Group VII Ethylene Response Factor (ERFVII) transcription factors, known substrates of PRT6. Mobilisation of endosperm α-cruciferin was delayed in prt6 seedlings. N-termini of several proteases were downregulated in prt6, including RD21A. RD21A transcript, protein and activity levels were downregulated in a largely ERFVII-dependent manner. By contrast, cathepsin B3 protein and activity were upregulated by ERFVIIs independent of transcript. We propose that the PRT6 branch of the pathway regulates protease activities in a complex manner and optimises storage reserve mobilisation in the transition from seed to seedling via control of ERFVII action. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Influence of cooking methods and storage time on lipid and protein oxidation and heterocyclic aromatic amines production in bacon.

    Science.gov (United States)

    Soladoye, O P; Shand, P; Dugan, M E R; Gariépy, C; Aalhus, J L; Estévez, M; Juárez, M

    2017-09-01

    This study aimed to examine the influence of cooking methods and pre-determined refrigerated storage days on the production of lipid oxidation (TBARS), protein oxidation (PROTOX) and heterocyclic aromatic amines (HAA) in bacon. Forty-four pork bellies selected from pigs varying in breed, sex and diets to introduce variability in composition were processed as bacon. Sliced-bacon was stored at 4°C either for 2 or 28days and these storage groups were cooked either with microwave or frying pan. Microwave led to significantly higher PROTOX (P0.05) by the cooking methods and storage times. Similarly, the fatty acid composition of pork belly did not significantly influence the production of HAA, TBARS and PROTOX produced in bacon during cooking. Overall, microwave cooking had lesser impact on the production of carcinogenic compounds in bacon with only minor impact on sensory attributes. Copyright © 2017. Published by Elsevier Ltd.

  3. Evaluation of Broiler Performance when fed insect-protected, control, or commercial varieties of dehulled Soybean Meal1.

    NARCIS (Netherlands)

    Kan, C.A.; Hartnell, G.F.

    2004-01-01

    We evaluated the nutritional value of broiler diets containing approximately 35% soybean meal from insect-protected soybean containing Cry1Ac protein, or from a similar nontransgenic control, or from 7 reference commercial soybean varieties. The feeding trial lasted 41 d, and each treatment

  4. Development of rigorous fatty acid near-infrared spectroscopy quantitation methods in support of soybean oil improvement

    Science.gov (United States)

    The seed of soybean (Glycine max L. Merr) is a valuable source of high quality edible oil and protein. Despite dramatic breeding gains over the past 80 years, soybean seed oil continues to be oxidatively unstable. Until recently, the majority of soybean oil underwent partial chemical hydrogenation. ...

  5. Isoflavone content and antioxidant properties of soybean seeds

    Directory of Open Access Journals (Sweden)

    Edina Šertović

    2011-01-01

    Full Text Available The isoflavone content and antioxidant properties of five Croatian soybean seed cultivars from two locations were analysed. The content of total and individual isofavones was determined by high performance liquid chromatography. For determination of antioxidant properties scavenging capacity on DPPHֹ radicals has been applied. The total phenolic content, oil and protein content in soybean cultivars were also determined. Significant differences in the content of individual isoflavones were observed within the soybean cultivars. The total phenol content in soybean cultivars ranged from 87.2 to 216.3 mg GAE/100g of soybean. The total isoflavone content in soybean seeds ranged from 80.7 to 213.6 mg/100g of soybean. The most abundant isoflavone in soybean seeds was genistein. There was statistically significant difference (p < 0.05 among two locations in total and individual isoflavone contents. The highest contents of total isoflavones were found in cultivar “os55-95”. Conversely, cultivars poor in isoflavones also showed low levels of DPPH-radical scavenging activity.

  6. Efficacy of various protein-based coating on enhancing the shelf life of fresh eggs during storage.

    Science.gov (United States)

    Caner, Cengiz; Yüceer, Muhammed

    2015-07-01

    The effectiveness of various coatings (whey protein isolate [WPI], whey protein concentrate [WPC], zein, and shellac) on functional properties, interior quality, and eggshell breaking strength of fresh eggs were evaluated during storage at 24 °: C for 6 weeks. Coatings and storage time had significant effects on Haugh unit, yolk index, albumen pH, dry matter (DMA), relative whipping capacity (RWC), and albumen viscosity. Uncoated eggs had higher albumen pH (9.56) and weight loss, and lower albumen viscosity (5.73), Haugh unit (HU), and yolk index (YI) during storage. Among the coated eggs, the shellac and zein coated eggs had the highest value of albumen viscosity (27.26 to 26.90), HU (74.10 to 73.61), and YI (44.84 to 44.63) after storage. Shellac (1.44%) was more effective in preventing weight loss than WPC (4.59%), WPI (4.60%), and zein (2.13%) coatings. Uncoated eggs had the higest value (6.71%) of weight lost. All coatings increased shell strength (5.18 to 5.73 for top and 3.58 to 4.71 for bottom) significantly (P eggs (4.70 for top and 3.15 for bottom). The functional properties such as albumen DMA (14.50 to 16.66 and 18.97 for uncoated) and albumen RWC (841 to 891 and 475 for uncoated) of fresh eggs can be preserved during storage when they are coated. The shellac and zein coatings were more effective for maintaining the internal quality of fresh eggs during storage. Fourier transform near infrared (FT-NIR) in the 800 to 2500 nm reflection spectra were used to quantify the contents of the fresh eggs at the end of storage. Eggs coated with shellac or zein displayed a higher absorbance at 970 and 1,197 nm respectively (OH vibration of water) compared with those coated with WPI or WPC and the uncoated group at the end of storage. The coatings improved functional properties and also shell strength and could be a viable alternative technology for maintaining the internal quality of eggs during long-term storage. This study highlights the promising use of

  7. Seasonal soybean crop reflectance

    Science.gov (United States)

    Lemaster, E. W. (Principal Investigator); Chance, J. E.

    1983-01-01

    Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.

  8. Biophysical evaluation of aminoclay as an effective protectant for protein stabilization during freeze-drying and storage

    Directory of Open Access Journals (Sweden)

    Song JG

    2016-12-01

    Full Text Available Jae Geun Song, Sang Hoon Lee, Hyo-Kyung Han College of Pharmacy, Dongguk University, Goyang, South Korea Abstract: This study aimed to evaluate aminoclay (3-aminopropyl-functionalized magnesium phyllosilicate as an effective protectant for the stabilization of protein formulation in freeze-drying. Bovine serum albumin (BSA, as a model protein, was freeze-dried with aminoclay at various concentrations, and the effects of aminoclay on the structural stability of proteins were compared with those of the conventional stabilizers. The structural characteristics of the protein were determined by size exclusion chromatography (SEC, circular dichroism (CD, and Fourier transform infrared (FTIR spectroscopy. Furthermore, physicochemical and morphological characteristics were examined by X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and scanning electron microscopy (SEM. XRPD and DSC patterns indicated that the glass transition temperature (Tg of the amorphous formulation of aminoclay mixed with proteins was gradually elevated as the concentration of aminoclay increased. FTIR and CD spectral analysis suggested that the protein structure was well maintained with aminoclay during the freeze-drying process and 3 months of storage at 4°C and 40°C. Furthermore, aminoclay conferred the greatest protection against aggregation and retained the monomer content of BSA even at a high temperature. The morphological characteristics of lyophilized proteins were also well conserved during the storage with aminoclay. These results suggested that aminoclay may be useful as an alternative stabilizer for maintaining the structural stability of protein formulations. Keywords: aminoclay, cryoprotectant, lyoprotectant, freeze-drying, protein, stability

  9. A functional genomics approach to understand the control and regulation of storage protein biosynthesis in barley grain

    DEFF Research Database (Denmark)

    Vincze, É; Hansen, M; Bowra, S

    2008-01-01

    assembled in our laboratory. To identify coregulated genes, a distance matrix was constructed and we identified three clusters corresponding to the early, middle and late seed development. The gene expression pattern associated with the clusters was investigated using pathway specific analysis with specific......The aim of the study was to obtain an insight into amino acid and storage protein metabolism in the developing barley grain at the molecular level. Our strategy was to analyse the transcriptome of relevant pathways in developing grains of field grown barley using a grain specific microarray...... pathways in the barley grain. The study described here could provide a strong complement to existing knowledge assisting further  understanding of seed development and thereby provide a foundation for plant breeding towards storage protein with improved nutritional quality....

  10. A study of different indicators of Maillard reaction with whey proteins and different carbohydrates under adverse storage conditions.

    Science.gov (United States)

    Leiva, Graciela E; Naranjo, Gabriela B; Malec, Laura S

    2017-01-15

    This study examined different indicators of each stage of Maillard reaction under adverse storage conditions in a system with whey proteins and lactose or glucose. The analysis of lysine loss by the o-phthaldialdehyde method can be considered a good indicator of the early stage, showing considerable differences in reactivity when systems with mono and disaccharides were analyzed. Capillary electrophoresis proved to be a sensitive method for evaluating the extent of glycosylation of the native proteins, providing valuable information when the loss of lysine was not significant. The estimation of the Amadori compound from the determination of total 5-hydroxymethyl-2-furfuraldehyde would have correlate well with reactive lysine content if the advanced stages of the reaction had not been reached. For assessing the occurrence of the intermediate and final stages, the measurement of free 5-hydroxymethyl-2-furfuraldehyde and color, proved not to be suitable for storage conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Immunomodulatory activity of dioscorin, the storage protein of yam (Dioscorea alata cv. Tainong No. 1) tuber.

    Science.gov (United States)

    Liu, Yen-Wenn; Shang, Huey-Fang; Wang, Chung-Kwe; Hsu, Feng-Lin; Hou, Wen-Chi

    2007-11-01

    The purified dioscorin from yam (Dioscorea alata L. cv. Tainong 1) tuber was previously reported (Hsu et al., 2002. J. Agric. Food Chem., 50, 6109-6113). In this report, we evaluated its immunomodulatory ability in vitro in the presence of polymyxin B (50 microg/ml) to eliminate lipopolysaccharide (LPS) contamination. Dioscorin (5-100 microg/ml) was able to stimulate nitric oxide production (expressed as nitrite concentrations) in RAW264.7 cells. The stimulation index on the phagocytosis of RAW264.7 cells against E. coli and the oxidative burst (determined by the intensity of rhodamine fluorescence) of RAW264.7 cells were both enhanced by different concentrations of dioscorin (5-100 microg/ml). The cytokine production, including IL-6, TNF-alpha, and IL-1beta in dioscorin-treated RAW264.7 cells or human monocytes, was measured in the cultured medium. Dioscorin (5-100 microg/ml) was found able to induce IL-6, TNF-alpha, and IL-1beta production in RAW264.7 cells and human monocytes. To evaluate the effects of dioscorin on the proliferation of spleen cells from BALB/c mice, phytohemagglutinin (PHA, 2 microg/ml) alone or PHA mixed with different concentrations of dioscorin (10, 25, and 50 microg/ml) was used to treat spleen cells for 24h. The stimulated proliferation index of splenic cells ranged from 1.38- to 1.48-fold of PHA alone for PHA mixed with different concentrations of dioscorin (10, 25, and 50 microg/ml). We suggest that the tuber storage protein of yam dioscorin functions as an immunomodulatory substance.

  12. Genomic and proteomic analysis of soybean heritable variations induced by space flight

    Institute of Scientific and Technical Information of China (English)

    HE Jie; GAO Yong; SUN Ye-qing

    2009-01-01

    To analyze the biological effects of space environment, the diversity of genomic DNA between the space flight soybean 194(4126) with phenotype of good yield and good fruit quality induced by space flight and the soybean with ground control was studied by amplified fragment length polymorphism (AFLP) method, and the polymorphism of space flight soybean 194(4126) was 3.56%. The differences of protein expression of seeds and leaves between the two kinds of soybeans were analysed by two-dimensional electrophoresis, PDQuest software and MALDI-TOF mass spectrometry. Results show that the loss and decrease of protein expression in 194(4126) soybean are subjected to the space fight of seeds, and three special proteins including Dehydrin, MAT1 and ceQORH are identified. It is concluded that the space environment changes the phenotype and geno-type of soybeans due to the space flight of seeds.

  13. Soybean Proteome Database 2012: Update on the comprehensive data repository for soybean proteomics

    Directory of Open Access Journals (Sweden)

    Hajime eOhyanagi

    2012-05-01

    Full Text Available The Soybean Proteome Database (SPD was created to provide a data repository for functional analyses of soybean responses to flooding stress, thought to be a major constraint for establishment and production of this plant. Since the last publication of the SPD, we thoroughly enhanced the contents of database, particularly protein samples and their annotations from several organelles. The current release contains 23 reference maps of soybean (Glycine max cv. Enrei proteins collected from several organs, tissues and organelles including the maps for plasma membrane, cell wall, chloroplast and mitochondrion, which were electrophoresed on two-dimensional polyacrylamide gels. Furthermore, the proteins analyzed with gel-free proteomics technique have been added and available online. In addition to protein fluctuations under flooding, those of salt and drought stress have been included in the current release. An omics table also has been provided to reveal relationships among mRNAs, proteins and metabolites with a unified temporal-profile tag in order to facilitate retrieval of the data based on the temporal profiles. An intuitive user interface based on dynamic HTML enables users to browse the network as well as the profiles of multiple omes in an integrated fashion. The SPD is available at: http://proteome.dc.affrc.go.jp/Soybean/.

  14. Microbial population dynamics and Storage of Soybean ...

    African Journals Online (AJOL)

    The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

  15. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Anna Dąbrowska

    2017-11-01

    Full Text Available The effect of whey protein hydrolysate (WPH addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP, WPH-SMP (ratio 1:1, WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  16. Viability and growth promotion of starter and probiotic bacteria in yogurt supplemented with whey protein hydrolysate during refrigerated storage.

    Science.gov (United States)

    Dąbrowska, Anna; Babij, Konrad; Szołtysik, Marek; Chrzanowska, Józefa

    2017-11-22

    The effect of whey protein hydrolysate (WPH) addition on growth of standard yoghurt cultures and Bifidobacterium adolescentis during co-fermentation and its viability during storage at 4ºC in yoghurts has been evaluated. WPH was obtained with the use of serine protease from Y. lipolytica yeast. Stirred probiotic yoghurts were prepared by using whole milk standardized to 16% of dry matter with the addition of either whey protein concentrate, skim milk powder (SMP), WPH-SMP (ratio 1:1), WPH. The hydrolysate increased the yoghurt culture counts at the initial stage of fermentation and significantly inhibited the decrease in population viability throughout the storage at 4ºC in comparison to the control. The post-fermentation acidification was also retarded by the addition of WPH. The hydrolysate did not increase the Bifidobacterium adolescentis counts at the initial stage. However, the WPH significantly improved its viability. After 21 days of storage, in the yogurts supplemented with WPH, the population of these bacteria oscillated around 3.04 log10 CFU/g, while in samples where SMP or whey protein concentrate was used, the bacteria were no longer detected.

  17. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90 gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jinyan Xu

    Full Text Available Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1 in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  18. Substituição do farelo de soja pela farinha de glúten de milho na alimentação de cabras leiteiras Substitution of soybean meal protein by corn gluten meal protein in dairy goat feeding

    Directory of Open Access Journals (Sweden)

    Luiz Gonzaga Pego de Macedo

    2003-08-01

    the effect of substitution of soybean meal (SM protein by the protein from the corn gluten flour (CGF, in the milk production, milk composition, voluntary intake and plasmatic urea. The experimental design was the triple Latin square 4x4, with four periods of 21 days, being 14 days of adaptation to the diet and seven days for samples collection. The goats were fed and milked in the morning and afternoon. The substitution levels studied were: 0, 10, 30 and 50% of CGF (based in the crude protein. The substitution of the soybean meal by CGM did not affect the intake (kg/day and %BW of dry matter, crude protein and acid detergent fiber, but there was quadratic effect for neutral detergent fiber intake (kg/day and %BW. There was effect on the levels of plasmatic urea nitrogen (PUN, where the smallest values were in the intermediate levels of substitution, being the biggest values for the treatment with only SM. The milk production decreased lineally with the inclusion of CGM. The substitution levels resulted in lineal decrease in the fat production (kg/day, in the milk fat content (% and milk total solids content (%. There was quadratic effect for lactose production, being the smallest value for 31.6% of substitution level. It was no effect on in crude protein in the milk, which average was .083 kg/day. The crude protein content, lactose and total solids did not suffer effect of the substitution levels, being the average values of 2.98, 4.35 and 11.51%, respectively.

  19. Diel pattern of circadian clock and storage protein gene expression in leaves and during seed filling in cowpea (Vigna unguiculata).

    Science.gov (United States)

    Weiss, Julia; Terry, Marta I; Martos-Fuentes, Marina; Letourneux, Lisa; Ruiz-Hernández, Victoria; Fernández, Juan A; Egea-Cortines, Marcos

    2018-02-14

    Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to

  20. Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-10-01

    Transfer of soybean seedlings to low-water-potential vermiculite (psi w = -0.3 MPa) results in a reversible decrease in hypocotyl growth and modulation of several polysomal mRNAs (Plant Physiol 92: 205-214). We report here the isolation of two cDNA clones (pGE16 and pGE95) which correspond to genes whose mRNA levels are increased, and one cDNA clone (pGE23) which corresponds to a gene whose mRNA level is decreased in the hypocotyl zone of cell elongation by water deficit. In well-watered seedlings mRNAs hybridizing to pGE16 and pGE95 are most abundant in mature regions of the seedling, but in water-deficient seedlings mRNA levels are reduced in mature regions and enhanced in elongating regions. RNA corresponding to soybean proline-rich protein 1 (sbPRP1) shows a similar tissue distribution and response to water deficit. In contrast, in well-watered seedlings, the gene corresponding to pGE23 was highly expressed in the hypocotyl and root growing zones. Transfer of seedlings to low-water-potential vermiculite caused a rapid decrease in mRNA hybridizing to pGE23. Sequence analysis revealed that pGE23 has high homology with beta-tubulin. Water deficit also reduced the level of mRNA hybridizing to JCW1, an auxin-modulated gene, although with different kinetics. Furthermore, mRNA encoding actin, glycine-rich proteins (GRPs), and hydroxyproline-rich glycoproteins (HRGPs) were down-regulated in the hypocotyl zone of elongation of seedlings exposed to water deficit. No effect of water deficit was observed on the expression of chalcone synthase. Decreased expression of beta-tubulin, actin, JCW1, HRGP and GRP and increased expression of sbPRP1, pGE95 and pGE16 in the hypocotyl zone of cell elongation could participate in the reversible growth inhibition observed in water-deficient soybean seedlings.

  1. Use of soybean meal and papain to partially replace animal protein for culturing three marine fish species: Fish growth and water quality.

    Science.gov (United States)

    Mo, W Y; Lau, R S S; Kwok, A C K; Wong, M H

    2016-12-01

    The main aim of this study was to investigate the feasibility of using soybean meal added with papain to replace half of the fishmeal used in the moist pellets (49% fishmeal and 45% trash fish) developed by the Hong Kong Agriculture, Fisheries and Conservation Department (AFCD) for culturing marine fish. Gold-lined seabream (Rhabdosargus sarba), brown spotted grouper (Epinephelus bleekeri) and pompano (Trachinotus blochii) were farmed at one of the research stations (Kat-O) of AFCD, for a period of 340 days. Results indicated that diets containing papain resulted in better fish growth (reflected by relative weight gain and feed conversion ratio) than diets without papain. In general, wet weight gain of fish depends on the amount of papain added in diet rather than the diet composition. Soybean used in conjunction with papain also contributed to a more effective growth than fish fed with the moist pellets alone. A laboratory experiment (using tanks) was conducted to study the effects of the diets on concentrations of ammonia, nitrite and nitrate in the tank water. Results showed that concentrations of ammonia and nitrate were significantly lower (p marine fish and lower the adverse impact of trash fish and fishmeal on water quality of the mariculture zones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. SoyDB: a knowledge database of soybean transcription factors

    Directory of Open Access Journals (Sweden)

    Valliyodan Babu

    2010-01-01

    Full Text Available Abstract Background Transcription factors play the crucial rule of regulating gene expression and influence almost all biological processes. Systematically identifying and annotating transcription factors can greatly aid further understanding their functions and mechanisms. In this article, we present SoyDB, a user friendly database containing comprehensive knowledge of soybean transcription factors. Description The soybean genome was recently sequenced by the Department of Energy-Joint Genome Institute (DOE-JGI and is publicly available. Mining of this sequence identified 5,671 soybean genes as putative transcription factors. These genes were comprehensively annotated as an aid to the soybean research community. We developed SoyDB - a knowledge database for all the transcription factors in the soybean genome. The database contains protein sequences, predicted tertiary structures, putative DNA binding sites, domains, homologous templates in the Protein Data Bank (PDB, protein family classifications, multiple sequence alignments, consensus protein sequence motifs, web logo of each family, and web links to the soybean transcription factor database PlantTFDB, known EST sequences, and other general protein databases including Swiss-Prot, Gene Ontology, KEGG, EMBL, TAIR, InterPro, SMART, PROSITE, NCBI, and Pfam. The database can be accessed via an interactive and convenient web server, which supports full-text search, PSI-BLAST sequence search, database browsing by protein family, and automatic classification of a new protein sequence into one of 64 annotated transcription factor families by hidden Markov models. Conclusions A comprehensive soybean transcription factor database was constructed and made publicly accessible at http://casp.rnet.missouri.edu/soydb/.

  3. Studies on RBC lipid and protein phosphorylation during blood bank storage

    International Nuclear Information System (INIS)

    Dumaswala, U.J.; Bryan, D.J.; Greenwalt, T.J.

    1986-01-01

    Recent evidence has suggested that phosphoinositides play a significant role in maintaining membrane structure and function. Their importance during blood bank storage is not understood. They have performed preliminary studies of the phosphoinositide synthetic pathway enzymes of RBC during blood bank storage. At 0 and 35 days of storage leaky ghosts were prepared and incubated with [γ- 32 P]ATP for 5 minutes at 30 C. One aliquot was subjected to acidified solvent extraction and thin layer chromatography. The labeled phosphoinositide -4,5 biphosphate (PIP 2 ), phosphoinositide-4 phosphate (PIP) and phosphatidic acid (PA) spots were scraped and counted by liquid scintillation spectrometry. Another aliquot was used for SDS-PAGE and the radioactivity associated with the β-spectrin was measured. These experiments suggest a decrease in RBC phosphoinositol and PIP-Kinases and β-spectrin kinase activities during blood bank storage. Further studies are being done to evaluate significance of these observations

  4. Investigation of total seed storage proteins of pakistani and japanese maize (zea mays l.) through sds-page markers

    International Nuclear Information System (INIS)

    Shinwari, Z.K.

    2014-01-01

    The assessment of genetic diversity among the members of a species is of vital importance for successful breeding and adaptability. In the present study 83 genotypes of maize of Pakistani and Japanese origin were evaluated for the total seed storage proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) through vertical slab unit. The total protein subunits were separated on 12% polyacrylamide gel using standard protocols. A total of 18 protein subunits were noted out of which 7 (39%) were monomorphic and 11 (61%) were polymorphic, with molecular weight ranging from 10 to 122 kDa. Coefficients of similarity among the accessions ranged between 0.89 and 1.00. The dendrogram obtained through UPGMA clustering method showed two main clusters: 1 and 2. First cluster comprised of 9 genotypes including Sahiwal-2002, while second cluster contained 74 genotypes including Aaiti-2002 and Sadaf. Over all a low level of polymorphism was observed in total seed storage protein patterns of maize genotypes from Pakistan as well as Japan. It is inferred from the present study that more genotypes of maize could be brought under study and more advanced biochemical techniques with more reliable results could be followed to bring assessment of genetic diversity of maize for planning breeding programs. (author)

  5. Properties and regulation of biosynthesis of cottonseed storage proteins. Comprehensive progress report, December 1, 1976 to September 1, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dure, III, L S

    1979-01-01

    The regulation of gene expression in cotton seed embryogenesis was studied by attempting to define what gene products are likely to be highly regulated during this developmental progression. The flow of nitrogen into the free amino acids pools of the developing cotyledons, and into the principal nitrogen nutritional reserve of the seed, the storage proteins was measured. This was continued by following the flow of nitrogen from the storage proteins to the principal exported amino acid asparagine that occurs during the first several days of germination. In this fashion the rise and fall of certain enzymes of amino acid intermediary metabolism could be postulated, and in some cases, verified. The subsets of abundant mRNAs whose appearance and disappearance coincided with developmental events in cotyledon embryogenesis/germination with the short range goal of identifying proteins/enzyme activities were delineated as well as their mRNAs that represent specific developmental stages and the long range goal of using these representatives as probes for studying the mechanisms controlling the rise and fall of these mRNAs and their protein products.

  6. Replenishment of Cultivated Soybean Varietes Market (Glycine hispida Maxim, Moench..

    Directory of Open Access Journals (Sweden)

    О. І. Безручко

    2009-12-01

    Full Text Available There provided ways of using valuable protein crop, soybean, as well as its production worldwide growth rates during recent years, possibility and necessity of attaching to the crop a strategic importance in our State and the tasks and outlooks of soybeanrecourses generation. A complete description of new soybean varieties listed in the Register of Varieties Suitable for Dissemination in Ukraine has also been provided.

  7. Irradiation effects on the variability of yield characteristics of soybeans

    International Nuclear Information System (INIS)

    Pasztor, K.; Egri, K.; Toeroek, Z.; Bornemiszane, P.P.

    1983-01-01

    The seeds of soybean varieties 'Merit' and 'S-1346' were irradiated by fast neutrons with doses between 4 and 174 Gy. The doses in the range of 57-174 Gy proved to be lethal. After low dose irradiation, shorter breeding time and the stimulation of plant growth could be observed. The effects of irradiation on the oil and protein contents of soybeans were contradictory. (V.N.)

  8. Desempenho de bezerros da raça Holandesa alimentados com proteína de soja sólida ou líquida Performance of Holstein calves fed soybean meal protein in solid or liquid form

    Directory of Open Access Journals (Sweden)

    Carlos de Sousa Lucci

    2010-02-01

    Full Text Available Avaliaram-se os efeitos da substituição de metade do total de proteína da dieta na forma sólida (farelo de soja por proteína na forma líquida (leite de soja, com relações sólidos:líquidos de 100,0:0%; 87,5:12,5%; e 75,0:25,0%. Utilizaram-se 24 bezerros machos da raça Holandesa com 60 dias de idade, distribuídos em delineamento em blocos ao acaso, com três dietas à base de concentrado (80% e feno de capim coast-cross (Cynodon dactylon (20%, balanceadas para nitrogênio e energia. Nas dietas com partes líquidas, o intuito foi manter o reflexo de formação da goteira esofagiana no período experimental de 10 meses, no qual os animais foram mantidos em confinamento, sendo abatidos ao atingirem pesos corporais superiores a 400 kg. Em alguns dos animais, dotados de cânulas de rúmen, foi possível detectar neste órgão apenas pequenas quantidades do leite de soja ingerido, confirmando sucesso na formação da goteira esofagiana. Os ganhos de peso diários apresentaram redução linear (1,399; 1,341; e 1,191 kg à medida que foram fornecidas maiores quantidades de leite de soja. As conversões de matéria seca e proteína bruta em ganhos de peso, durante os últimos 60 dias experimentais, pioraram conforme aumentaram as quantidades de proteína na forma líquida. O fornecimento de proteína na forma líquida na dieta não altera os rendimentos de carcaça em bezerros holandeses.The effects were assessed of substituting half the total diet protein in solid form (soybean meal with liquid form (soybean milk at solid:liquid ratios of: 100.0:0% L; 87.5:12.5% L; 75.0:25.0% L. Twenty-four Holstein breed 60-d male calf steers were assigned to a randomized block design, with three concentrate (80% diets and 20% coast-cross (Cynodon dactylon hay, balanced for nitrogen and energy. In the diets with liquid parts, the intention was to keep the functional reflex of the esophageal groove throughout the 10 months of the experimental period, in which

  9. Evaluation of four improved soybean varieties under different ...

    African Journals Online (AJOL)

    SERVER

    2007-10-04

    Oct 4, 2007 ... emergence of soybean seeds in the field from year to year such that plant population densities cannot be met. (McGee et al., 1980). The causes of these problems include the use of poor quality seeds (Nangju et al.,. 1980), poor storage conditions (Delouche, 1981), increased incidence of seed-borne ...

  10. COMPARATIVE DYNAMICS OF PROTEIN DESTRUCTION IN CANNED FOODS IN SAUCE AT DIFFERENT THERMAL TREATMENT REGIMES AND SUBSEQUENT STORAGE

    Directory of Open Access Journals (Sweden)

    V. B. Krylova

    2017-01-01

    Full Text Available In the course of investigations, the structural changes in proteins were established, which were associated with the preliminary treatment of meat ingredients, a pH level of the system and parameters of thermal treatment.The pasteurization regimes allowed retaining a protein nitrogen proportion up to 94% by the end of canned food storage duration. Upon sterilization, the losses in protein nitrogen were two times higher. A negative effect of more acidic sauce on preservation of the protein nitrogen fraction in canned foods was established.An accumulation of the peptide nitrogen fraction in the canned foods in tomato sauce aſter pasteurization was two times more intensive. In the sterilized canned foods, the processes of accumulation of the low molecular weight nitrogenous compounds were more intensive, which suggests a depth of destruction of the protein and peptide nitrogen fraction. It was shown that an accumulation of amino-ammonia nitrogen during canned food storage was on average 12.4% irrespective of the pH value in the used sauces and the type of thermal treatment.A shiſt in the pH value of the canned foods toward the acid side upon pasteurization was noticed. With that, a degree of the shiſt in the canned foods in tomato sauce was 2.5 times higher than the pH value of the canned foods in sour cream sauce. When sterilizing canned foods, another dynamics of the pH values was observed: a pH value declined by 0.39 units in the canned foods in tomato sauce and grew by 0.22 units in the canned foods in sour cream sauce. During storage, the tendency of more intense pH decline was revealed for the canned foods in tomato sauce aſter pasteurization compared to the canned foods aſter sterilization. Another character of the pH value dynamics was found in the canned foods in sour cream sauce: an insignificant increase (by 0.7% of the pH value in the pasteurized canned foods and a significant decrease (by 8.4% in the sterilized canned foods

  11. Replacement of raw soybean with roasted soybean increased milk production in Holstein cows

    Directory of Open Access Journals (Sweden)

    Gilson Sebastião Dias Júnior

    Full Text Available ABSTRACT: The aim of this study was to evaluate the effect of total replacement of raw whole soybean (RAW for roastedwhole soybean (ROS on the production performance of Holstein cows. Two experiments were carried out usinga simple reversal design where RAW has been completely replaced by ROS. In experiment 1, 22 cows (175±60 days in milkwere used, and the dietary inclusion level of RAW or ROS was 3.7% of dry matter (DM. In experiment 2, 16 cows (130±50 days in milkwere used, and thedietary inclusion level of RAW or ROS was 11% of DM. In both experiments, ROS increased milk production by 1.1kgday-1 without changing fat and protein production. Dry matter intake or milk urea nitrogenwere not affected by dietary soy source. In experiment 2, plasma glucose concentration was decreased, and allantoin/creatinine ratio in urine tended to decreasein ROS. Experiment 2 also evaluated the nutrient digestibility and ruminal degradation kinetics of crude protein in two soybean sources. Roasting had no effect on the digestibility of DM, organic matter, and neutral detergent fiber. Roasted whole soybean hadgreater fraction B and lower protein degradation rate than did RAW; this showed that heat treatment was effective in increasing therumen undegradable amino acid flowto the animal, which suggesteda potential mechanism of action for improved performance observed in ROS.

  12. Chemical Characteristics of Pumpkin Seed Tempeh From Soybean and Pumpkin Seeds

    OpenAIRE

    Pujilestari, Shanti; Sandrasari, Diny A; Marida, Rimmaria

    2017-01-01

    The aim of this research was to find the effect of the combination of soybean and pumpkin seeds on the chemical characteristics of pumpkin seed tempeh. The pumpkin seed tempeh samples were analyzed for its water, ash, protein, fat, carbohydrate and crude fiber. Meanwhile, support data were isoflavone and zinc. Sensory hedonic was conducted by 25 untrained panelists for selecting the best formulation of soybean and pumpkin seeds in tempeh. The result shows the formulation of soybean and pumpki...

  13. Effect of gamma irradiation on physico-chemical charateristics of soybean

    International Nuclear Information System (INIS)

    Inayatullah; Hussain, B.; Zeb, A.; Ahmad, M.; Khan, I.

    1987-01-01

    Effect of gamma irradiation (0,25,50,100,250 and 500 Krad) on the physicochemical and cooking characteristics of Crawford, Dawson, Webber, Swat-84, S-76209 and Hobbit varieties of soybean was studied. Irradiation had no significant effect on proximate composition (water, protein, fat, ash, crude fiber, carbohydrate) and important mineral contents (calcium, phosphorous, iron) of soybean. Phytic acid content and cooking time were significantly decreased whereas peroxide value of soybean was significantly increased due to irradiation. (author)

  14. Dioscorin, the major tuber storage protein of yam (Dioscorea batatas decne) with carbonic anhydrase and trypsin inhibitor activities.

    Science.gov (United States)

    Hou, W C; Liu, J S; Chen, H J; Chen, T E; Chang, C F; Lin, Y H

    1999-05-01

    Dioscorin, the tuber storage protein of yam (Dioscorea batatas Decne), was purified successively by ammonium sulfate fractionation, DE-52 ion exchange chromatography, and Sephadex G-75 column. Two protein bands (82 and 28 kDa) were found under nonreducing conditions after SDS-PAGE; but only one band (32 kDa) was detected under reducing conditions. The first 21 amino acids in the N-terminal region of the 28 kDa form were VEDEFSYIEGNPNGPENWGNL, which was highly homologous to deductive sequence of dioscorin from cDNA of another yam species (Dioscoreacayenensis Lam) reported by Conlan et al. (Plant Mol. Biol. 1995, 28, 369-380). Hewett-Emmett and Tashian (Mol. Phylogenet. Evol. 1996, 5, 50 -77) mentioned that, according to DNA alignments, dioscorin from yam (D. cayenensis) was alpha-carbonic anhydrase (alpha-CA) related. In this report, we found that the purified dioscorin showed both CA dehydration activity using sodium bicarbonate as a substrate and CA activity staining after SDS-PAGE. A polyclonal antibody, which was raised against trypsin inhibitor (TI), a storage protein of sweet potato (Ipomoea batatas [L.] Lam var. Tainong 57), cross-reacted with dioscorin, which also showed TI activity determined by both activity staining after SDS-PAGE and trypsin inhibition determination.

  15. PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean.

    Science.gov (United States)

    Gao, Jian; Cao, Mingna; Ye, Wenwu; Li, Haiyang; Kong, Liang; Zheng, Xiaobo; Wang, Yuanchao

    2015-01-01

    The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  16. Effects of abscisic acid and high osmoticum on storage protein gene expression in microspore embryos of Brassica napus

    International Nuclear Information System (INIS)

    Wilen, R.W.; Mandel, R.M.; Pharis, R.P.; Moloney, M.M.; Holbrook, L.A.

    1990-01-01

    Storage protein gene expression, characteristic of mid- to late embryogenesis, was investigated in microspore embryos of rapeseed (Brassica napus). These embryos, derived from the immature male gametophyte, accumulate little or no detectable napin or cruciferin mRNA when cultured on hormone-free medium containing 13% sucrose. The addition of abscisic acid (ABA) to the medium results in an increase in detectable transcripts encoding both these polypeptides. Storage protein mRNA is induced at 1 micromolar ABA with maximum stimulation occurring between 5 and 50 micromolar. This hormone induction results in a level of storage protein mRNA that is comparable to that observed in zygotic embryos of an equivalent morphological stage. Effects similar to that of ABA are noted when 12.5% sorbitol is added to the microspore embryo medium (osmotic potential = 25.5 bars). Time course experiments, to study the induction of napin and cruciferin gene expression demonstrated that the ABA effect occurred much more rapidly than the high osmoticum effect, although after 48 hours, the levels of napin or cruciferin mRNA detected were similar in both treatments. This difference in the rates of induction is consistent with the idea that the osmotic effect may be mediated by ABA which is synthesized in response to the reduced water potential. Measurements of ABA (by gas chromatography-mass spectrometry using [ 2 H 6 ]ABA as an internal standard) present in microspore embryos during sorbitol treatment and in embryos treated with 10 micromolar ABA were performed to investigate this possibility. Within 2 hours of culture on high osmoticum the level of ABA increased substantially and significantly above control and reached a maximum concentration within 24 hours. This elevated concentration was maintained for 48 hours after culturing and represents a sixfold increase over control embryos

  17. Isolation and characterisation of cDNA clones representing the genes encoding the major tuber storage protein (dioscorin) of yam (Dioscorea cayenensis Lam.).

    Science.gov (United States)

    Conlan, R S; Griffiths, L A; Napier, J A; Shewry, P R; Mantell, S; Ainsworth, C

    1995-06-01

    cDNA clones encoding dioscorins, the major tuber storage proteins (M(r) 32,000) of yam (Dioscorea cayenesis) have been isolated. Two classes of clone (A and B, based on hybrid release translation product sizes and nucleotide sequence differences) which are 84.1% similar in their protein coding regions, were identified. The protein encoded by the open reading frame of the class A cDNA insert is of M(r) 30,015. The difference in observed and calculated molecular mass might be attributed to glycosylation. Nucleotide sequencing and in vitro transcription/translation suggest that the class A dioscorin proteins are synthesised with signal peptides of 18 amino acid residues which are cleaved from the mature peptide. The class A and class B proteins are 69.6% similar with respect to each other, but show no sequence identity with other plant proteins or with the major tuber storage proteins of potato (patatin) or sweet potato (sporamin). Storage protein gene expression was restricted to developing tubers and was not induced by growth conditions known to induce expression of tuber storage protein genes in other plant species. The codon usage of the dioscorin genes suggests that the Dioscoreaceae are more closely related to dicotyledonous than to monocotyledonous plants.

  18. A storage-protein marker associated with the suppressor of Pm8 for powdery mildew resistance in wheat.

    Science.gov (United States)

    Ren, S X; McIntosh, R A; Sharp, P J; The, T T

    1996-11-01

    A suppressor of resistance to powdery mildew conferred by Pm8 showed complete association with the presence of a storage-protein marker resolved by electrophoresis on SDS-PAGE gels. This marker was identified as the product of the gliadin allele Gli-A1a. The mildewresponse phenotypes of wheats possessing the 1BL.1RS translocation were completely predictable from electrophoretograms. The suppressor, designated SuPm8, was located on chromosome 1AS. It was specific in its suppression of Pm8, and did not affect the rye-derived resistance phenotypes of wheat lines with Pm17, also located in 1RS, or of lines with Pm7.

  19. Analysis of iron storage proteins in chicken liver and spleen tissues in comparison with human liver ferritin by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Oshtrakh, M.I.; Milder, O.B.; Semionkin, V.A.; Malakheeva, L.I.; Prokopenko, P.G.

    2006-01-01

    Characterization of iron storage proteins in liver and spleen from normal chicken and chicken with lymphoid leukemia in comparison with human liver ferritin were considered by Moessbauer spectroscopy (preliminary results). Small differences in Moessbauer hyperfine parameters for both normal and lymphoid leukemia chicken liver and spleen were observed. The value of quadrupole splitting for human liver ferritin was higher than those for chicken tissues. A decrease of iron content in lymphoid leukemia chicken tissues was also found, however, the reason of this fact (pathology or feeding) was not clear yet. (author)

  20. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  1. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    Science.gov (United States)

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P cooking. Gel-setting conditions had a greater (P cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  2. Soybean breeding through cross breeding combined with irradiation mutation

    International Nuclear Information System (INIS)

    Zhang Xiutian; Zheng Yanhai; Yang Xiufeng; Zhang Kunpu; Jia Aijun

    2005-01-01

    Using 'Heidou 2' which immune to the race 2 of Soybean Cyst Nematode (SCN) crossbreeded with 'Huangsha soybean' which has high yield characteristic. The authors obtained some better cultivars of soybean. Then, the authors used laser irradiation to these cultivars and selected a variety with high yield, good quality, resistance to the race 2 of SCN, called 'Dedou 99-16' which in black seed coat. In the year 2001 to 2003, the authors joined the variety comparison and regional test of Shandong province. Its yield hit 2739.0 kg/hm 2 , crude protein and crude oil content had reached the governmental standard of good quality soybean, and it had high resistance to the race 2 of SCN. It is suitable for planting in Huanghuaihai area. (authors)

  3. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.

    Science.gov (United States)

    Khan, Mudassar Nawaz; Sakata, Katsumi; Komatsu, Setsuko

    2015-05-21

    Soybean is a nutritionally important crop, but exhibits reduced growth and yields under flooding stress. To investigate soybean responses during post-flooding recovery, a gel-free proteomic technique was used to examine the protein profile in the hypocotyl. Two-day-old soybeans were flooded for 2 days and hypocotyl was collected under flooding and during the post-flooding recovery period. A total of 498 and 70 proteins were significantly changed in control and post-flooding recovering soybeans, respectively. Based on proteomic and clustering analyses, three proteins were selected for mRNA expression and enzyme activity assays. Pyruvate kinase was increased under flooding, but gradually decreased during post-flooding recovery period at protein abundance, mRNA, and enzyme activity levels. Nucleotidylyl transferase was decreased under flooding and increased during post-flooding recovery at both mRNA expression and enzyme activity levels. Beta-ketoacyl reductase 1 was increased under flooding and decreased during recovery at protein abundance and mRNA expression levels, but its enzyme activity gradually increased during the post-flooding recovery period. These results suggest that pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase play key roles in post-flooding recovery in soybean hypocotyl by promoting glycolysis for the generation of ATP and regulation of secondary metabolic pathways. This study analyzed post-flooding recovery response mechanisms in soybean hypocotyl, which is a model organ for studying secondary growth, using a gel-free proteomic technique. Mass spectrometry analysis of proteins extracted from soybean hypocotyls identified 20 common proteins between control and flooding-stressed soybeans that changed significantly in abundance over time. The hypocotyl proteins that changed during post-flooding recovery were assigned to protein, development, secondary metabolism, and glycolysis categories. The analysis revealed that three

  4. Protein mobilities and P-selectin storage in Weibel–Palade bodies

    OpenAIRE

    Kiskin, Nikolai I.; Hellen, Nicola; Babich, Victor; Hewlett, Lindsay; Knipe, Laura; Hannah, Matthew J.; Carter, Tom

    2010-01-01

    Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel–Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P...

  5. Performance of starter in yogurt supplemented with soy protein isolate and biotransformation of isoflavones during storage period.

    Science.gov (United States)

    Pham, T Thuy; Shah, Nagendra P

    2009-01-01

    In this study, soy protein isolate (SPI) (4%, v/w) was supplemented to the yogurt mix to increase the amount of biologically active isoflavone in yogurt (SY). The control yogurt was without any SPI supplementation (USY). The supplementation significantly (P yogurt starter including Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 (Lb 11842) and Streptococcus thermophilus ST 1342 (ST 1342) during the fermentation process by 4.7%. The starter produced more acetic acid and less lactic acid in SY than that in USY and altered the ratio of lactic and acetic acid during the entire storage period. The viability of both Lb 11842 and ST 1342 in SY was significantly (P < 0.05) lower than that in USY from 14 d of the storage period, however, their concentration still remained high (8.11 to 8.84 log CFU/g). The starter transformed 72.8% of total inactive isoflavone glycosides (IG) to active isoflavone aglycones (IA), increasing the IA content from 1.35 to 15.01 mg/100 g sample. During the storage period, IA concentration slowly rose from 15.02 to 15.51 mg/100 g sample.

  6. Broadening soybean genetic basis in the northeast of China

    Institute of Scientific and Technical Information of China (English)

    WangJinling

    1994-01-01

    The bottle neek of advancement of soybean breeding inthe Northeast of China is the lack of genetic diversity of the parents used in cross breeding.In order to overcome this constrained condition,under the sponsorship of China National Committe of Natural Science Fundation,a network project with the topic"Broadening and Improving of the Genetic Basis of the Northeast Soybeans" was established in 1990,and the Northeast agricultural University was apointed to take charge of the project.The project included the following four items:I.Breeding high yield and improved quality Northeast Soybeans,directed by Hcilongjiang Academy of Agricultural Sciencee .II.Development of new soybean gerplasms highly resistant to diseases epidemic in Northeast China directed by Northeast Agricultural University.Ⅲ.Exploitation of the potential of wild and semicultivated soybeans for broadening and improving the genetic basis of Northeast soybeans,directed by Jilin Academy of Agricultural Science.Ⅳ.Improving methods and technique for development of new soybean genetic resources.directed by Nanjing Agricultural University .Each item contained several research subjects conducted by research workers of different institutes of agricultural sicences.During the period 1991-1992.considerable promising new germplasms had been discovered or developed.The new germplasms not only possessed specific improved characters but also behaved with appropriate ecological types adapted to different conditions of Northeast.Among the numerous new germplasms developed.Gong Jio 8757-3 had a protein content of 49.41%,100 seed weight 16-17g,and acceptable agronomic characters,which was considered a very valuable new high protein content germplasm.Such developed new germplasma with enforced and imprved genetic basis will be used primarily as parents in soybean cross breeding.

  7. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    Science.gov (United States)

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  8. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    Science.gov (United States)

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species

  9. seed storage proteins arl2 and its variants from the apa locus of wild ...

    African Journals Online (AJOL)

    sion of arcelin and ARL2 tepary bean proteins. Furthermore, a reduction in size and weight of emerged adult insects to almost half was observed. This work demonstrates the superior resistance common bean backcross lines to A. obtectus conferred by the presence of the APA proteins introgressed from tepary bean.

  10. Effects of brown seaweed polyphenols, α-tocopherol, and ascorbic acid on protein oxidation and textural properties of fish mince (Pagrosomus major) during frozen storage.

    Science.gov (United States)

    Wang, Tiantian; Li, Zhenxing; Yuan, Fangzhou; Lin, Hong; Pavase, Tushar Ramesh

    2017-03-01

    Frozen storage of minced fish is currently one of the most important techniques to maintain its functional properties. However, some deterioration does occur during frozen storage and cause quality loss. The effects of brown seaweed polyphenols, α-tocopherol, and ascorbic acid on lipid and protein oxidation and textural properties of red sea bream (Pagrosomus major) during 90 days of frozen storage at -18 °C were investigated. All added antioxidants at 1 g kg -1 resulted in significantly lower thiobarbituric acid-reactive substances (TBARS) compared to the control during the 45 days of frozen storage. The antioxidants were also effective in retarding protein oxidation concerning to total sulfhydryl content and protein carbonyl content. Brown seaweed polyphenols and α-tocopherol significantly retarded the inactivation of Ca 2+ -ATPase activity during the first 45 days, whereas ascorbic acid had no such effect. The antioxidant activity showed either an invariable or decrease trend after 45 days storage. Adding antioxidants had a significant effect on the breaking force of the gels during the frozen storage period. These results indicate that brown seaweed polyphenols and α-tocopherol can be used to prevent oxidative reactions and thus maintain the structure of the gel formed by fish mince during frozen storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells

    Directory of Open Access Journals (Sweden)

    Verena Ibl

    2014-09-01

    Full Text Available The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  12. Desempenho de leitões submetidos a diferentes níveis de substituição da proteína do farelo de soja pela proteína do ovo desidratado = Performance of piglets submitted to different replacement levels of soybean meal protein by dehydrated egg protein

    Directory of Open Access Journals (Sweden)

    Janaína de Cássia Braga Arruda

    2008-10-01

    Full Text Available Objetivou-se determinar o ganho de peso, o consumo de ração e a conversão alimentar de suínos em fase inicial (15 a 30 kg de peso alimentados com quatro diferentes níveis de substituição (0, 3, 6 e 9% da proteína do farelo de soja pela proteína do ovo desidratado. Foram utilizados 32 suínos (16 machos castrados e 16 fêmeas em um delineamento em blocos casualizados, com quatro tratamentos e quatro repetições cada, em que a unidade experimental foi composta por um macho e uma fêmea. Os tratamentos foram 0, 3, 6 e 9% de proteína do ovo desidratado em substituição à proteína do farelo de soja. Os dados obtidos foram submetidos à regressão linear para os níveis de 3, 6 e 9% de ovo desidratado, e o tratamento-testemunha (0% foi comparado com os demais aplicando o teste Dunnet a 5% de probabilidade. Os níveis de substituição da proteína do farelo de sojapela proteína do ovo desidratado não influenciaram as variáveis de desempenho dos animais na fase inicial, até 9%. Entretanto, avaliando a relação custo-benefício, o tratamentocontrole foi o mais rentável.This study aimed to determine the average daily weight gain, daily feed intake and the feed conversion ratio of pigs in initialphase (15 to 30 kg of weight fed with four different levels of substitution (0, 3, 6 and 9% of soybean meal protein by dehydrated egg protein. Thirty-two pigs (16 castrated males and 16 females were used in a completely randomized blocks statistical design, with fourtreatments and four repetitions each; the experimental unit was composed by a male and a female. The treatments were 0, 3, 6 and 9% of dehydrated egg protein in replacement of soybean meal protein. The data obtained were subjected to linear regression for the levels 3,6 and 9% of dehydrated egg; the witness (0% was compared with the other treatments applying Dunnett’s test at 5% probability. The replacement levels of soybean meal protein by dehydrated egg protein did not influence

  13. [Nutrition and bone health. Soybean and soy foods, and bone health].

    Science.gov (United States)

    Kubota, Megumi; Shimizu, Hirotoshi

    2009-10-01

    Soybean and various types of soy products, such as natto, tofu, miso, and soy sauce, have long been consumed in Japan. Soybean, a rich source of plant proteins, contains a relatively high amount of calcium as well as being an important source of isoflavones, a group of substances whose chemical structure is similar to that of estrogen. Natto, fermented soybeans, contains vitamin K, which is involved in the activation of osteocalcin. For bone health and osteoporosis prevention in Japanese, it is thus beneficial to consume adequate amounts of soybean and soy products on a daily basis.

  14. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.

    Science.gov (United States)

    Guo, Xiaoli; Chronis, Demosthenis; De La Torre, Carola M; Smeda, John; Wang, Xiaohong; Mitchum, Melissa G

    2015-08-01

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant-parasitic cyst nematodes secrete CLE-like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode-induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock-down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Germination as a processing technique for soybeans in small-scale ...

    African Journals Online (AJOL)

    charlesk

    2013-06-15

    Jun 15, 2013 ... Germination and other traditional methods, namely soaking and dehulling, were evaluated as alternative processing methods for soybeans. The effect of the processing treatment on the level of different. ANFs, nutritional composition and in vitro protein digestibility (IVPD) of soybean seeds was determined.

  16. Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in seeds.

    Science.gov (United States)

    Kim, Won-Seok; Chronis, Demosthenis; Juergens, Matthew; Schroeder, Amy C; Hyun, Seung Won; Jez, Joseph M; Krishnan, Hari B

    2012-01-01

    Soybeans provide an excellent source of protein in animal feed. Soybean protein quality can be enhanced by increasing the concentration of sulfur-containing amino acids. Previous attempts to increase the concentration of sulfur-containing amino acids through the expression of heterologous proteins have met with limited success. Here, we report a successful strategy to increase the cysteine content of soybean seed through the overexpression of a key sulfur assimilatory enzyme. We have generated several transgenic soybean plants that overexpress a cytosolic isoform of O-acetylserine sulfhydrylase (OASS). These transgenic soybean plants exhibit a four- to tenfold increase in OASS activity when compared with non-transformed wild-type. The OASS activity in the transgenic soybeans was significantly higher at all the stages of seed development. Unlike the non-transformed soybean plants, there was no marked decrease in the OASS activity even at later stages of seed development. Overexpression of cytosolic OASS resulted in a 58-74% increase in protein-bound cysteine levels compared with non-transformed wild-type soybean seeds. A 22-32% increase in the free cysteine levels was also observed in transgenic soybeans overexpressing OASS. Furthermore, these transgenic soybean plants showed a marked increase in the accumulation of Bowman-Birk protease inhibitor, a cysteine-rich protein. The overall increase in soybean total cysteine content (both free and protein-bound) satisfies the recommended levels required for the optimal growth of monogastric animals.

  17. Protein aggregation in aqueous casein solution. Effect of irradiation, dose level, concentration, storage and additives (carbohydrate and lipid)

    Energy Technology Data Exchange (ETDEWEB)

    Yousri, R M

    1980-06-01

    From the vast amount of research efforts dealing with various aspects of radiation effects on foods and food components, it is apparent up to now that much remains to be studied in depth, much may have to be added or corrected about radiation-induced physico-chemical changes in foods. A great many reactions that take place when foodstuffs are subjected to ionizing radiation are still not fully understood. The better understanding of some of the radiation-induced changes in pure proteins as such or in mixture with other food constituents could yield much data which could be meaningfully extrapolated to intact foods and consequently could help to improve the assessment of the wholesomeness of irradiated foods. It was the purpose of our investigations to elucidate some of the changes in the chemical structure of a pure protein (casein), irradiated as such or with added carbohydrate and/or lipid. The effect of subsequent storage of the irradiated solutions has been also examined. The formation of protein aggregates was studied by gel filtration technique. The application of thin-layer gel filtration, its speed and adaptability to very small samples facilitated the measurements of the extent of aggregation which occurred in protein molecules after irradiation.

  18. Influence of sodium nitrite on protein oxidation and nitrosation of sausages subjected to processing and storage.

    Science.gov (United States)

    Feng, Xianchao; Li, Chenyi; Jia, Xu; Guo, Yan; Lei, Na; Hackman, Robert M; Chen, Lin; Zhou, Guanghong

    2016-06-01

    The influence of NaNO2 content on protein oxidation and nitrosation was investigated in cooked sausages at different concentrations (0, 50, 100, 200 and 400 mg NaNO2/kg). Dependent on concentration, NaNO2 had both anti- and pro-oxidant effects on protein oxidation. The antioxidant effects of NaNO2 on the protein oxidation were evidenced by significantly lower carbonyl contents, higher free amines and lower surface hydrophobicities. The pro-oxidant effects of NaNO2 on protein oxidation resulted in a decrease of sulfhydryls and an increase of disulfide bonds. NaNO2 also improved the protein nitrosation inducing the formation of 3-nitrotyrosine (3-NT). Moreover, 3-NT had significant correlations with parameters of protein oxidation, indicating that 3-NT may be a possible marker for protein oxidation. Results of this study contribute to an understanding of the impact of NaNO2 on food quality and help to identify optimal formulations of cured meat products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. PEMANFAATAN TEPUNG KOMPOSIT UBI JALAR PUTIH (Ipomea batatas L. KECAMBAH KEDELAI (Glycine max Merr DAN KECAMBAH KACANG HIJAU (Virginia radiata L SEBAGAI SUBSTITUEN PARSIAL TERIGU DALAM PRODUK PANGAN ALTERNATIF BISKUIT KAYA ENERGI PROTEIN [Utilization of Composite Flour from White Sweet Potatoes (Ipomoea batatas L, Germinated Soybeans (Glycine max Merr., and Germinated Mung Beans (Virginia radiata L as Wheat Flour Partial Substituent of Alternative Food, High Energy-Protein Biscuit

    Directory of Open Access Journals (Sweden)

    Ferry H Sunandar2

    2006-04-01

    Full Text Available An emergency food based biscuit product was formulated by utilizing composite flour from white sweet potatoes, germinated soybeans, and germinated mung beans. This product was designed to meet high protein and energy wich contain protein as minimum as 12% and 50% carbohydrate. Sweet potatoes, germinated soybeans, and germinated mung beans flour were obtained by using drum dryer. The flour characteristics determination showed that there were positive corelation between bulk density and wettability, and had negative corelation with stack angle. The bulk density number of sweet potatoes, germinated soybeans, and germinated mung beans flour were 0.56, 0.38, 0.45 g/m; compact density 0.63, 0.54, and 0.56 g/ml; whiteness degree 49.77, 29.82 and 34.41%; stack angle 30.56, 41.77 and 31.16 degree; wettability 1.104, 345, 20 second; and dispersibility 1.98, 1.06 and 0.70%. Wheat flour could be substituted by sweet potatoes flour as much as 80%. The range utilization of germinated soybeans and germinated mung beans flour were 12-28 % which combined with 25-44% sweet potatoes flour. The nutritional composition of high energy and protein biscuit were within average range of protein 12.34%, fat 24.56%, carbohydrate 60.65 %, and also total dietary fiber 15.01%. The result of organoleptic test showed that high energy and protein biscuit was accepted by consument, so that its very potential to ben as alternative food.

  20. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    Science.gov (United States)

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  1. SDS-Page Seed Storage Protein Profiles in Chili Peppers (Capsicum L.

    Directory of Open Access Journals (Sweden)

    Owk ANIEL KUMAR

    2010-09-01

    Full Text Available Seed protein banding patterns (SDS-PAGE were studied from eighteen genotypes of chili pepper (Capsicum L. A total of 21 protein polypeptide bands with molecular weight ranging from 18.6 to 72.0 kD were recorded. Among the genotypes CA18, CA21 and CA27 represented maximum number of protein bands (12. Band no. (11 and (5,12 are exclusive to C. annuum L. and C. frutescens L. genotypes respectively. Average percent similarity was highest (100% between CA2 and CA8 genotypes and the UPGMA dendrogram represented low genetic diversity. The study revealed that considerable intra and inter-specific differences were found in the genotypes. The variability of protein profiles in the genotypes suggested that these selected genotypes can be a good source for crop improvement through hybridization programs.

  2. Influence of Prolonged Storage Process, Pasteurization, and Heat Treatment on Biologically-active Human Milk Proteins

    Directory of Open Access Journals (Sweden)

    Jih-Chin Chang

    2013-12-01

    Conclusion: Various freezing/heating/pasteurization processes applied to human milk prior to delivery to neonates could affect the concentration of immunomodulatory proteins, especially lactoferrin, secretory immunoglobulin A, and lysozyme. Leptin was unaffected by the various handling processes tested. Fresh milk was found to be the best food for neonates. Further studies are warranted to evaluate the functional activity of these proteins and their effects on infants' immunological status.

  3. Stability studies on refined soybean oil stored in various conditions

    International Nuclear Information System (INIS)

    Arawande, J.O.; Amoo, I.A.

    2008-01-01

    The 12 months stability study of freshly produced refined soybean oil revealed that refined soybean oil stored in plastic containers in dark was more hydrolytically and oxidatively stable than that stored in other containers in light condition. There was no significant difference at P < 0.05 in free fatty acids and acid value of oil stored under light and dark conditions in tin and glass containers but there was significant difference at P < 0.05 in peroxide value of oil stored in light and dark conditions in all the storage containers. Light increased the degree of oxidative rancidity of refined soybean oil, the most in tin containers, followed by glass containers and the least in plastic containers. (author)

  4. INTERCROPPING OF BRAQUIARIA WITH SOYBEAN

    OpenAIRE

    Castagnara, Deise Dalazen; Bulegon, Lucas Guilherme; Zoz, Tiago [UNESP; Rossol, Charles Douglas; Berte, Luiz Neri; Rabello de Oliveira, Paulo Sergio; Neres, Marcela Abbado

    2014-01-01

    The objective of this work was to study the intercropping of Brachiaria brizantha. Marandu with soybeans. The experiment has been planted in a 3 year prevailing area with no-tillage, in eutrophic Oxisol at Maripa - PR. The experimental design was a randomized block with five replications. For the forage study, four treatments were performed which consisted of seeding times brachiaria [early ( seven days before planting soybeans) joint (same day of soybean planting) and after (at stages V-3 an...

  5. Mutation breeding in soybean

    International Nuclear Information System (INIS)

    Baradjanegara, A.A.

    1983-01-01

    In Indonesia, soybean is one of the important crop after rice. It is generally cultivated in the lowlands and rarely in the highlands. Seeds of soybean variety ORBA were treated with various doses of fast neutrons, gamma rays, EMS and NaN 3 with the aims of studying the mutagen effects in M-1 and M-2 generations and also to select mutants adapted to highland conditions. D-50 doses for gamma rays, fast neutrons and EMS were around 23 krad, 2,300 rad, 0.3%, respectively. Much higher chlorophyll mutation frequency was observed in EMS treatment of 0.3%. Seven mutants were shorter and four early mutants matured from 4 to 20 days earlier than the control plants. Two early mutants were quite adaptable in both the low and highlands and produced better yields than the parental material. (author)

  6. Lol p XI, a new major grass pollen allergen, is a member of a family of soybean trypsin inhibitor-related proteins.

    Science.gov (United States)

    van Ree, R; Hoffman, D R; van Dijk, W; Brodard, V; Mahieu, K; Koeleman, C A; Grande, M; van Leeuwen, W A; Aalberse, R C

    1995-05-01

    Monoclonal antibodies were obtained against an unknown allergen from Lolium perenne grass pollen. The allergen had an apparent molecular mass of 18 kd on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Earlier immunoblotting studies had shown that carbohydrate-specific IgG antibodies recognize an antigen of similar size. We sought to characterize the allergen biochemically and immunologically. The amino acid sequence of the allergen was determined by automated Edman degradation, and its monosaccharide composition was determined by gas chromatographic analysis. A panel of 270 grass pollen-positive sera was assessed in a RAST with the purified allergen. Protease digestion (proteinase K) and chemical deglycosylation (trifluoromethane sulfonic acid) were used to distinguish between carbohydrate and peptide epitopes for IgE antibodies. The allergen was shown to be a glycoprotein with a molecular mass of 16 kd, of which 8% is carbohydrate. Its amino acid sequence shares 32% homology with soybean trypsin inhibitor (Kunitz) but lacks its active site. No homology was found with known grass pollen allergens, hence it was designated Lol p XI. A high degree of homology (44%) was found with a tree pollen allergen, Ole e I, the major allergen of olive pollen. More than 65% of grass pollen-positive sera had IgE against Lol p XI. IgE reactivity was demonstrated both with the carbohydrate moiety and the peptide backbone. Lol p XI is a new major grass pollen allergen carrying an IgE-binding carbohydrate determinant. Lol p XI is structurally related to the major allergen from olive pollen.

  7. Drought stress responses in soybean roots and nodules

    Directory of Open Access Journals (Sweden)

    Karl Kunert

    2016-07-01

    Full Text Available Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean.

  8. Drought Stress Responses in Soybean Roots and Nodules.

    Science.gov (United States)

    Kunert, Karl J; Vorster, Barend J; Fenta, Berhanu A; Kibido, Tsholofelo; Dionisio, Giuseppe; Foyer, Christine H

    2016-01-01

    Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbiotic interaction between soybean and rhizobia facilitates atmospheric nitrogen fixation, a process that provides essential nitrogen to support plant growth and development. Symbiotic nitrogen fixation is important for sustainable agriculture, as it sustains plant growth on nitrogen-poor soils and limits fertilizer use for crop nitrogen nutrition. Recent developments have been made in our understanding of the drought impact on soybean root architecture and nodule traits, as well as underpinning transcriptome, proteome and also emerging metabolome information, with a view to improve the selection of more drought-tolerant soybean cultivars and rhizobia in the future. We conclude that the direct screening of root and nodule traits in the field as well as identification of genes, proteins and also metabolites involved in such traits will be essential in order to gain a better understanding of the regulation of root architecture, bacteroid development and lifespan in relation to drought tolerance in soybean.

  9. A new soybean variety ''Ichihime''

    International Nuclear Information System (INIS)

    Hajika, M.; Takahashi, M.; Igita, K.; Sakai, S.; Nakazawa, Y.

    2002-01-01

    Ichihime, a new soybean variety registered as ''Soybean Norin 103'', was developed at Kyushu National Agricultural Experiment Station in 1995. It was selected from the progeny induced by a cross between Kankei 2 and Kankei 1 using gamma-ray irradiation. ''Ichihime'' is a medium-early maturing variety with determinate growth. It has broad leaflets, and purple flowers. The color of its pubescence is light tawny and its pods are dark brown. The main stem length, number of main stem nodes, and seed size are medium. It has strong resistance to the soybean mosaic virus (SMV), medium resistance to the soybean cyst nematode, and medium resistance to purple seed stain. The yield of Ichihime is slightly lower than Suzuyutaka, but classified as medium. The protein components of its seeds are medium and the firmness of the tofu (soybean curd) is the same as that of Suzuyutaka. Ichihime lacks all seed lipoxygenase isozymes and is recommended for new type of soybean food processing materials. Ichihime is suitable for growth in the southern part of the Tohoku area and the northern part of the Kanto area

  10. The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules.

    NARCIS (Netherlands)

    Wiel, van de C.; Scheres, B.; Franssen, H.J.; Lierop, van M.J.; Lammeren, van A.; Kammen, van A.; Bisseling, T.

    1990-01-01

    A pea cDNA clone homologous to the soybean early nodulin clone pGmENOD2 that most probably encodes a cell wall protein was isolated. The derived amino acid sequence of the pea ENOD2 protein shows that it contains the same repeating pentapeptides, ProProHisGluLys and ProProGluTyrGln, as the soybean

  11. The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules

    NARCIS (Netherlands)

    Wiel, C. van de; Scheres, B.J.G.; Franssen, H.; Lierop, M.-J.; Lammeren, A. van; Kammen, A. van; Bisseling, T.

    1990-01-01

    A pea cDNA clone homologous to the soybean early nodulin clone pGmENOD2 that most probably encodes a cell wall protein was isolated. The derived amino acid sequence of the pea ENOD2 protein shows that it contains the same repeating pentapeptides, ProProHisGluLys and ProProGluTyrGln, as the soybean

  12. Beta-conglycinin and gut histology of sunshine bass fed diets with new varieties of non-GM soybeans

    Science.gov (United States)

    It is reported that the soybean protein (Beta-conglycinin) might cause inflammation of the distal intestine and stimulate endogenous cholecystokinin release that suppresses food intake in fish. We are studying the effects of meals made from new strains of non-GMO soybeans with high protein and redu...

  13. Processed soybean in diets for pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    Marcia Regina Stech

    2015-02-01

    Full Text Available Changes in development and in physiological parameters of fingerlings of the pacu (Piaractus mesopotamicus fed on diets with high levels of integral crude, extruded, toasted soybean and soybean meal were assessed. The products were evaluated in practical diets for pacu, initially weighing 70 ± 2.19 g, during 82 days. Nine treatments were studied in a 2 × 4 + 1 factorial scheme which corresponded to two fish meal protein replacement levels (50 and 100% and four soybean products, plus control (100% of fish meal - FM. Development, organosomatic indexes and physiological parameters were evaluated. No differences were reported with regard to weight gain, food intake, food conversion, protein efficiency ratio and specific growth rate. A significant interaction was registered for plasma protein between the evaluated ingredients and replacement percentage of fish meal protein. Results showed that the ingredients assessed did not affect the development of the pacu when compared to fish fed on control diet. Protein retention was favored when toasted soybean and when 50% of the diet’s protein fraction from fish meal were employed.

  14. Biological activities and applications of dioscorins, the major tuber storage proteins of yam.

    Science.gov (United States)

    Lu, Yeh-Lin; Chia, Cho-Yun; Liu, Yen-Wenn; Hou, Wen-Chi

    2012-01-01

    Yam tubers, a common tuber crop and an important traditional Chinese medicine in Taiwan, have many bioactive substances, including phenolic compounds, mucilage polysaccharides, steroidal saponins and proteins. Among the total soluble proteins, 80% of them are dioscorins. In the past two decades, many studies showed that dioscorins exhibited biological activities both in vitro and in vivo, including the enzymatic, antioxidant, antihypertensive, immunomodulatory, lectin activities and the protecting role on airway epithelial cells against allergens in vitro. Some of these activities are survived after chemical, heating process or enzymatic digestion. Despite of lacking the intact structural information and the detail action mechanisms in the cells, yam dioscorins are potential resources for developing as functional foods and interesting targets for food protein researchers.

  15. Biological Activities and Applications of Dioscorins, the Major Tuber Storage Proteins of Yam

    Directory of Open Access Journals (Sweden)

    Yeh-Lin Lu

    2012-01-01

    Full Text Available Yam tubers, a common tuber crop and an important traditional Chinese medicine in Taiwan, have many bioactive substances, including phenolic compounds, mucilage polysaccharides, steroidal saponins and proteins. Among the total soluble proteins, 80% of them are dioscorins. In the past two decades, many studies showed that dioscorins exhibited biological activities both in vitro and in vivo, including the enzymatic, antioxidant, antihypertensive, immunomodulatory, lectin activities and the protecting role on airway epithelial cells against allergens in vitro. Some of these activities are survived after chemical, heating process or enzymatic digestion. Despite of lacking the intact structural information and the detail action mechanisms in the cells, yam dioscorins are potential resources for developing as functional foods and interesting targets for food protein researchers.

  16. Effects of replacing soybean meal with xylose-treated soybean meal on performance of nursing Awassi ewes and fattening lambs

    Directory of Open Access Journals (Sweden)

    Mofleh S. Awawdeh

    2010-09-01

    Full Text Available Two experiments were conducted to evaluate the effect of replacing soybean meal with xylose-treated soybean meal (soypass meal; SPM on performance of nursing Awassi ewes and fattening lambs. In Experiment 1, lasting for eight weeks, 39 Awassi ewes and their lambs were randomly assigned to three diets. Diets were formulated by replacing soybean meal from the basal diet (CON-SBM; n=13 with 50% (50% SPM; n=13 and 100% (100% SPM; n=13 SPM. Initial and final weights of the ewes were not different (P>0.55 among diets. Total gain and average daily gain (ADG of lambs were similar (P=0.44 among diets. Ewes fed the CON-SBM diet tended (P0.38 in milk component percentages among diets were observed. In Experiment 2, lasting for 63 days, twenty weaned lambs were used to determine the effects of replacing soybean meal with SPM on growth performance. Diets were either soybean meal (SBM; n=10 or SPM (SPM; n=10. Nutrient intake and digestibility were not different between diets. However, rumen undegradable protein intake was greater (P0.05 between the diets. Results suggest that replacement of soybean meal with soypass meal is not likely to produce any production benefits in nursing Awassi ewes and fattening lambs except for the slight improvement of milk yield.

  17. Storage influence on the functional, sensory and keeping quality of quality protein maize flour.

    Science.gov (United States)

    Shobha, D; Kumar, H V Dileep; Sreeramasetty, T A; Puttaramanaik; Gowda, K T Pandurange; Shivakumar, G B

    2014-11-01

    Apart from nutritional values functional and sensory properties affect the behavior of food system and its acceptability for consumption during storage. Hence keeping quality of maize flour (HQPM-7) with and without lime treatment(control) was studied in terms of functional (bulk density, pH, swelling capacity, water and oil absorption capacity, least gelation concentration, peroxide value), sensory (appearance, color, taste, texture, mouth feel and overall acceptability) and rolling parameters (water absorption by flour, rolling quality, diameter after baking ) for a period of 6 months under room temperature (25 ± 5 °C) in two types of packages viz, LDPE cover (P) and plastic box (B). Physical parameters such as length, breadth and thickness (11.26-10.52 mm, 9.67-9.14 mm, & 4.72-3.95 mm) were reduced in lime treated grains compared to control. Significant increase (p ≤ 0.05) in ash content of lime treated flour (1.67 ± 0.01 g) was observed compared to control (1.5 ± 0.02 g). Calcium content of lime treated maize flour increased significantly (p ≤ 0.05) from 48 to 136 mg. There is a significant reduction in functional properties of flour after 3 and 2 months irrespective in polyethylene cover and plastic box. The properties like rolling quality, diameter after baking and water uptake by the flour were reduced significantly (p ≤ 0.05) after 4 months of storage in treated and after 1 month in control samples. Sensory scores of roti (dry pan cake) decreased significantly after 3 months of storage with an overall acceptability score of 4.0 and 3.4. In control samples mean taste (3.6), mouth feel (3.8) as well as OAA scores (3.8) decreased after second month. Hence lime treated maize flour with added nutritional benefits is suitable for making rotis of good palatability and can be stored in LDPE covers up to 3 months.

  18. The Use of Legume Seed for Expression and Storage of High Value Proteins

    Czech Academy of Sciences Publication Activity Database

    Moravec, Tomáš; Čeřovská, Noemi

    2014-01-01

    Roč. 50, č. 2 (2014), s. 69-76 ISSN 1212-1975 R&D Projects: GA ČR(CZ) GAP501/12/1761 Institutional support: RVO:61389030 Keywords : pea * pharming * protein bodies Subject RIV: EE - Microbiology, Virology Impact factor: 0.364, year: 2014 http://agriculturejournals.cz/publicFiles/124126.pdf

  19. Changes in microbial populations of WPC34 and WPC80 whey protein during long term storage

    Science.gov (United States)

    The use of whey protein (WPC34 and WPC80) as a food ingredient and as a base for making biodegradable products is increasing. The need to alleviate world hunger in arid and semi-arid regions demands that we investigate the behavior of native bacteria in these products, especially during long term st...

  20. Replacement of soybean meal by soybean in multiple supplements for beef heifers grazing Urochloa decumbens during the dry season

    Directory of Open Access Journals (Sweden)

    Daniel Mageste de Almeida

    2015-12-01

    Full Text Available This study aimed to evaluate the effect of replacing soybean meal with soybean in multiple supplements on nutritional parameters, microbial efficiency and productive and reproductive performance of heifers grazing in Urochloa decumbens during the drought period. Were used 39 crossbred heifers of initial age and initial weight of 21 months and 309.5±7 kg, respectively. The experimental design was completely randomized with four treatments with eight replicates, and a control treatment with seven replications. Two treatments had soybean meal as the protein source and two treatments had soybean as the protein source, containing 25% and 40% crude protein. The amount of supplement offered was 1.0 kg/animal/day. The animals of the control group received only mineral salt ad libitum. The supplemented animals had higher average daily gain (ADG than control animals (P<0.10, and there was no difference in ADG among the supplements (P>0.10. There was an effect of supplementation (P <0.10 on intake of dry matter (DM, organic matter (OM, crude protein (CP, ether extract (EE, non-fiber carbohydrates (NFC, total digestible nutrients (TDN and neutral detergent fiber corrected for ash and protein (NDF. There were no differences (P>0.10 on intake of OM and DM grazing between the supplemented and non-supplemented. Supplementation improved DM digestibility and all constituents of the diet (P<0.10. It was found that the provision of multiple supplements optimizes the performance of heifers grazing during the dry season, and that the substitution of soybean meal by soybean did not improve productive performance of animals.

  1. ANALYSIS IMPORT POLICY OF SOYBEAN ON ECONOMICS PERFORMANCE OF INDONESIAN SOYBEAN

    Directory of Open Access Journals (Sweden)

    Muthiah Abda Azizah

    2015-11-01

    Full Text Available Trade liberalization is closely related to the opening of market access for Indonesian products to the world and vice versa. Since the soybean trade out of BULOG control began in 1998, soybean imports increased very rapidly (Sudaryanto and Swastika, 2007. This research aims to determine the general picture of soybean economy, factors analyses that influence the economic performance of Indonesian soybean and findings the alternative of policies that can reduce soybean imports in Indonesia. Methods of data analysis are descriptive analysis, 2SLS simultaneous equations, and simulation of policy alternatives. Results of the analysis of the factors that affect the economic performance of Indonesian soybean, consists of 1 The area of soybean harvest is influenced significantly by the price of domestic soybean and domestic prices of corn, 2 Productivity soybean influenced significantly by the domestic prices of soybean and fertilizer prices, 3 soybean demand influenced significantly by population, domestic prices of soybean, 4 domestic prices of soybean significantly affected by world prices of soybean, exchange rates, and soybean supply, 5 Imports of soybean influenced significantly by the domestic demand of soybean and soybean production. Therefore, policy scenarios should be made to reduce soybean imports, including by carrying out the expansion of soybean harvest policy, the policy of increasing the productivity of soybean, the policy of subsidizing the price of fertilizer.

  2. Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes.

    Science.gov (United States)

    Nanjo, Yohei; Jang, Hee-Young; Kim, Hong-Sig; Hiraga, Susumu; Woo, Sun-Hee; Komatsu, Setsuko

    2014-10-01

    Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. SOYBEAN PRODUCTION AND ECONOMIC OF INDONESIA

    Directory of Open Access Journals (Sweden)

    Sulistiya

    2014-01-01

    Full Text Available Indonesian soybean production almost never moved, even tended to decrease. Indonesia does not have a specific area of land for planting soybeans. Soybean are generally just a byproduct of plant or land filling vacant after farmers grow rice. In addition soybean price fluctuations that affect tofu and tempe entrepreneurs, it turns soybean farmers are often losers. Policy biased to the consumer sector than soybean production, cause national soybean production declining. The decrease occurred primarily because of the narrowing of soybean plantation land owned by farmers, this happens because soy is less interesting than the business side so that the farmers based on rationality, farmers prefer the other commodities, especially rice. Increasing decline in domestic soybean production resulted in the growing dependence on imports which would deplete foreign exchange. Procurement policies of national soybean stocks through imports is easy to do but its adverse implications for the development of domestic agricultural production, especially soybeans, very bad.

  4. The Application of Modified Soybean Protein Isolate on the Microencapsulation of Black Pepper Oleoresin by Complex Coacervation%改性大豆分离蛋白在黑胡椒油树脂复凝聚微胶囊制备中的应用

    Institute of Scientific and Technical Information of China (English)

    孙欣; 黄国清; 肖军霞

    2017-01-01

    In this paper,soybean protein isolate (SPI) was mixed with xylose in different mass ratios and then allowed to react at 90 ℃ for 6 h to yield the Maillard reaction-modified SPI.The resultant Maillard reaction products were collected and used to microencapsulate black pepper oleoresin through coacervation with chitosan.The effects of SPI to xylose mass ratio in the Maillard reaction on the microencapsulation performance and thermal stability of the resultant microcapsules were studied.The results indicated that the SPI to xylose mass ratio of 2∶1 contributed to the highest microencapsulation efficiency,microencapsulation yield,and oleoresin retention against the 8 h-storage in 80 ℃,with values of up to 67.8%,72.07% and 75.06% respectively.Compared with native SPI,the modification greatly improved the thermal stability and microstructure compactness of the microcapsules according to thermogravimetric analysis and scanning electron microscope observation.Gas chromatographic-mass spectrometry showed that the microcapsules prepared with Modified SPI was more effective in retaining volatile compounds especially alkenes.This work provided a theory basis for extending the application of SPI and increasing the stability of black pepper oleoresin microcapsules.%将大豆分离蛋白(soybean protein isolate,SPI)与木糖按不同质量比混合,于90℃下反应6h,得到美拉德反应改性的SPI,再以改性SPI和壳聚糖为复合壁材,通过复凝聚法制备黑胡椒油树脂微胶囊,研究改性SPI对黑胡椒树脂微胶囊包埋效果、热稳定性等性质的影响.结果表明,当SPI/木糖质量比为2:1时,黑胡椒油树脂微胶囊的包埋效率、产率及80℃下加热8h后的保留率最高,分别为67.8%、72.07%和75.06%.热重分析表明,与天然SPI相比,改性SPI进一步提高了黑胡椒油树脂微胶囊的热稳定性,扫描电镜分析则表明改性SPI使微胶囊的微观结构更加致密;气相色谱-质谱分析表明

  5. The Circadian Clock-controlled Transcriptome of Developing Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2010-07-01

    Full Text Available A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables a plant to anticipate daily changes in the environment. Relatively little is known about circadian rhythms in developing seeds, which may be important for determining the extent and timing of nutrient storage in grain. Microarray expression profiling was used to identify genes expressed in developing soybean ( seeds that are controlled by the circadian clock. Genes with predicted functions in protein synthesis, fatty acid metabolism, and photosynthesis totaling 1.8% of the mRNAs detected in seed were found to be expressed in a circadian rhythm. Known circadian and light-controlled promoter elements were identified as over-represented in the promoters of clock-controlled seed genes, with the over-represented elements varying according to the phase of circadian expression. A subset of circadian-regulated genes were found to be expressed in different phases in developing seeds with respect to leaves from the same plants, many of which have roles in photosynthesis and carbon metabolism. These results help to characterize the genes and processes in seeds that may be regulated by the circadian clock, and provide some insight into organ-specific phasing of clock controlled gene expression.

  6. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.

    Science.gov (United States)

    Komatsu, Setsuko; Nanjo, Yohei; Nishimura, Minoru

    2013-02-21

    Flooding stress of soybean is a serious problem because it reduces growth; however, flooding-tolerant cultivars have not been identified. To analyze the flooding tolerance mechanism of soybean, the flooding-tolerant mutant was isolated and analyzed using a proteomic technique. Flooding-tolerance tests were repeated five times using gamma-ray irradiated soybeans, whose root growth (M6 stage) was not suppressed even under flooding stress. Two-day-old wild-type and mutant plants were subjected to flooding stress for 2days, and proteins were identified using a gel-based proteomic technique. In wild-type under flooding stress, levels of proteins related to development, protein synthesis/degradation, secondary metabolism, and the cell wall changed; however, these proteins did not markedly differ in the mutant. In contrast, an increased number of fermentation-related proteins were identified in the mutant under flooding stress. The root tips of mutant plants were not affected by flooding stress, even though the wild-type plants had damaged root. Alcohol dehydrogenase activity in the mutant increased at an early stage of flooding stress compared with that of the wild-type. Taken together, these results suggest that activation of the fermentation system in the early stages of flooding may be an important factor for the acquisition of flooding tolerance in soybean. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    Science.gov (United States)

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars

    Institute of Scientific and Technical Information of China (English)

    Hong Lin; Jun Rao; Jianxin Shi; Chaoyang Hu; Fang Cheng; Zoe AWilson; Dabing Zhang; Sheng Quan

    2014-01-01

    Soybean [Glycine max (L.) Merr.] is one of the world’s major crops, and soybean seeds are a rich and important resource for proteins and oils. While “omics”studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especial y in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetical y related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield.

  9. Dimers of G-Protein Coupled Receptors as Versatile Storage and Response Units

    Directory of Open Access Journals (Sweden)

    Michael S. Parker

    2014-03-01

    Full Text Available The status and use of transmembrane, extracellular and intracellular domains in oligomerization of heptahelical G-protein coupled receptors (GPCRs are reviewed and for transmembrane assemblies also supplemented by new experimental evidence. The transmembrane-linked GPCR oligomers typically have as the minimal unit an asymmetric ~180 kDa pentamer consisting of receptor homodimer or heterodimer and a G-protein αβγ subunit heterotrimer. With neuropeptide Y (NPY receptors, this assembly is converted to ~90 kDa receptor monomer-Gα complex by receptor and Gα agonists, and dimers/heteropentamers are depleted by ne