WorldWideScience

Sample records for southern san andreas

  1. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system.

    Science.gov (United States)

    Fialko, Yuri

    2006-06-22

    The San Andreas fault in California is a mature continental transform fault that accommodates a significant fraction of motion between the North American and Pacific plates. The two most recent great earthquakes on this fault ruptured its northern and central sections in 1906 and 1857, respectively. The southern section of the fault, however, has not produced a great earthquake in historic times (for at least 250 years). Assuming the average slip rate of a few centimetres per year, typical of the rest of the San Andreas fault, the minimum amount of slip deficit accrued on the southern section is of the order of 7-10 metres, comparable to the maximum co-seismic offset ever documented on the fault. Here I present high-resolution measurements of interseismic deformation across the southern San Andreas fault system using a well-populated catalogue of space-borne synthetic aperture radar data. The data reveal a nearly equal partitioning of deformation between the southern San Andreas and San Jacinto faults, with a pronounced asymmetry in strain accumulation with respect to the geologically mapped fault traces. The observed strain rates confirm that the southern section of the San Andreas fault may be approaching the end of the interseismic phase of the earthquake cycle.

  2. Frictional strength and heat flow of southern San Andreas Fault

    Science.gov (United States)

    Zhu, P. P.

    2016-01-01

    Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault

  3. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault

    Science.gov (United States)

    Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.

    2016-01-01

    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  4. Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California

    Science.gov (United States)

    Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas; Kendrick, Katherine J.; Salin, Aaron

    2015-01-01

    Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/−2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/−1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/−0.9 mm/yr (median, 95% CI). This rate represents only 25–35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.

  5. Impact of a Large San Andreas Fault Earthquake on Tall Buildings in Southern California

    Science.gov (United States)

    Krishnan, S.; Ji, C.; Komatitsch, D.; Tromp, J.

    2004-12-01

    In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing in a southeasterly direction for more than 300~km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake would have had a significant long-period content (2--8~s). If such motions were to happen today, they could have a serious impact on tall buildings in Southern California. In order to study the effects of large San Andreas fault earthquakes on tall buildings in Southern California, we use the finite source of the magnitude 7.9 2001 Denali fault earthquake in Alaska and map it onto the San Andreas fault with the rupture originating at Parkfield and proceeding southward over a distance of 290~km. Using the SPECFEM3D spectral element seismic wave propagation code, we simulate a Denali-like earthquake on the San Andreas fault and compute ground motions at sites located on a grid with a 2.5--5.0~km spacing in the greater Southern California region. We subsequently analyze 3D structural models of an existing tall steel building designed in 1984 as well as one designed according to the current building code (Uniform Building Code, 1997) subjected to the computed ground motion. We use a sophisticated nonlinear building analysis program, FRAME3D, that has the ability to simulate damage in buildings due to three-component ground motion. We summarize the performance of these structural models on contour maps of carefully selected structural performance indices. This study could benefit the city in laying out emergency response strategies in the event of an earthquake on the San Andreas fault, in undertaking appropriate retrofit measures for tall buildings, and in formulating zoning regulations for new construction. In addition, the study would provide risk data associated with existing and new construction to insurance companies, real estate developers, and

  6. Change in failure stress on the southern san andreas fault system caused by the 1992 magnitude = 7.4 landers earthquake.

    Science.gov (United States)

    Stein, R S; King, G C; Lin, J

    1992-11-20

    The 28 June Landers earthquake brought the San Andreas fault significantly closer to failure near San Bernardino, a site that has not sustained a large shock since 1812. Stress also increased on the San Jacinto fault near San Bernardino and on the San Andreas fault southeast of Palm Springs. Unless creep or moderate earthquakes relieve these stress changes, the next great earthquake on the southern San Andreas fault is likely to be advanced by one to two decades. In contrast, stress on the San Andreas north of Los Angeles dropped, potentially delaying the next great earthquake there by 2 to 10 years.

  7. Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault

    Science.gov (United States)

    Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J.; Fumal, Tom E.

    2010-01-01

    It has been 153 yr since the last large earthquake on the southern San Andreas fault (California, United States), but the average interseismic interval is only ~100 yr. If the recurrence of large earthquakes is periodic, rather than random or clustered, the length of this period is notable and would generally increase the risk estimated in probabilistic seismic hazard analyses. Unfortunately, robust characterization of a distribution describing earthquake recurrence on a single fault is limited by the brevity of most earthquake records. Here we use statistical tests on a 3000 yr combined record of 29 ground-rupturing earthquakes from Wrightwood, California. We show that earthquake recurrence there is more regular than expected from a Poisson distribution and is not clustered, leading us to conclude that recurrence is quasi-periodic. The observation of unimodal time dependence is persistent across an observationally based sensitivity analysis that critically examines alternative interpretations of the geologic record. The results support formal forecast efforts that use renewal models to estimate probabilities of future earthquakes on the southern San Andreas fault. Only four intervals (15%) from the record are longer than the present open interval, highlighting the current hazard posed by this fault.

  8. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California

    Science.gov (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.

    1986-08-01

    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike

  9. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking

    Science.gov (United States)

    Lyons, Suzanne; Sandwell, David

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  10. Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977.

    Science.gov (United States)

    McNally, K C; Kanamori, H; Pechmann, J C; Fuis, G

    1978-09-01

    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude foreshock sequences, such as tight clustering of hypocenters and time-dependent rotations of stress axes inferred from focal mechanisms. However, because of our present lack of understanding of the processes that precede earthquake faulting, the implications of the swarm for future large earthquakes on the San Andreas fault are unknown.

  11. Southern San Andreas Fault seismicity is consistent with the Gutenberg-Richter magnitude-frequency distribution

    Science.gov (United States)

    Page, Morgan T.; Felzer, Karen

    2015-01-01

    The magnitudes of any collection of earthquakes nucleating in a region are generally observed to follow the Gutenberg-Richter (G-R) distribution. On some major faults, however, paleoseismic rates are higher than a G-R extrapolation from the modern rate of small earthquakes would predict. This, along with other observations, led to formulation of the characteristic earthquake hypothesis, which holds that the rate of small to moderate earthquakes is permanently low on large faults relative to the large-earthquake rate (Wesnousky et al., 1983; Schwartz and Coppersmith, 1984). We examine the rate difference between recent small to moderate earthquakes on the southern San Andreas fault (SSAF) and the paleoseismic record, hypothesizing that the discrepancy can be explained as a rate change in time rather than a deviation from G-R statistics. We find that with reasonable assumptions, the rate changes necessary to bring the small and large earthquake rates into alignment agree with the size of rate changes seen in epidemic-type aftershock sequence (ETAS) modeling, where aftershock triggering of large earthquakes drives strong fluctuations in the seismicity rates for earthquakes of all magnitudes. The necessary rate changes are also comparable to rate changes observed for other faults worldwide. These results are consistent with paleoseismic observations of temporally clustered bursts of large earthquakes on the SSAF and the absence of M greater than or equal to 7 earthquakes on the SSAF since 1857.

  12. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    Science.gov (United States)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern San Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the San Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the San Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern San Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible on the southern San Andreas Fault and likely

  13. Width and dip of the southern San Andreas Fault at Salt Creek from modeling of geophysical data

    Science.gov (United States)

    Langenheim, Victoria; Athens, Noah D.; Scheirer, Daniel S.; Fuis, Gary S.; Rymer, Michael J.; Goldman, Mark R.; Reynolds, Robert E.

    2014-01-01

    We investigate the geometry and width of the southernmost stretch of the San Andreas Fault zone using new gravity and magnetic data along line 7 of the Salton Seismic Imaging Project. In the Salt Creek area of Durmid Hill, the San Andreas Fault coincides with a complex magnetic signature, with high-amplitude, short-wavelength magnetic anomalies superposed on a broader magnetic anomaly that is at least 5 km wide centered 2–3 km northeast of the fault. Marine magnetic data show that high-frequency magnetic anomalies extend more than 1 km west of the mapped trace of the San Andreas Fault. Modeling of magnetic data is consistent with a moderate to steep (> 50 degrees) northeast dip of the San Andreas Fault, but also suggests that the sedimentary sequence is folded west of the fault, causing the short wavelength of the anomalies west of the fault. Gravity anomalies are consistent with the previously modeled seismic velocity structure across the San Andreas Fault. Modeling of gravity data indicates a steep dip for the San Andreas Fault, but does not resolve unequivocally the direction of dip. Gravity data define a deeper basin, bounded by the Powerline and Hot Springs Faults, than imaged by the seismic experiment. This basin extends southeast of Line 7 for nearly 20 km, with linear margins parallel to the San Andreas Fault. These data suggest that the San Andreas Fault zone is wider than indicated by its mapped surface trace.

  14. Sawtooth segmentation and deformation processes on the southern San Andreas fault, California

    Science.gov (United States)

    Bilham, R.; Williams, P.

    1985-01-01

    Five contiguous 12-13 km fault segments form a sawtooth geometry on the southernmost San Andreas fault. The kinematic and morphologic properties of each segment depend on fault strike, despite differences of strike between segments of as little as 3 degrees. Oblique slip (transpression) of fault segments within the Indio Hills, Mecca Hills and Durmid Hill results from an inferred 8:1 ratio of dextral slip to convergence across the fault zone. Triggered slip and creep are confined almost entirely to transpressive segments of the fault. Durmid Hill has been formed in the last 28 + or - 6 ka by uplift at an average rate of 3 + or - 1 mm/a.

  15. A rheologically layered three-dimensional model of the San Andreas fault in central and southern California

    Science.gov (United States)

    Williams, Charles A.; Richardson, Randall M.

    1991-01-01

    The effects of rheological parameters and the fault slip distribution on the horizontal and vertical deformation in the vicinity of the fault are investigated using 3D kinematic finite element models of the San Andreas fault in central and southern California. It is shown that fault models with different rheological stratification schemes and slip distributions predict characteristic deformation patterns. Models that do not include aseismic slip below the fault locking depth predict deformation patterns that are strongly dependent on time since the last earthquake, while models that incorporate the aseismic slip below the locking depth depend on time to a significantly lesser degree.

  16. Update: San Andreas Fault experiment

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.

    1984-01-01

    Satellite laser ranging techniques are used to monitor the broad motion of the tectonic plates comprising the San Andreas Fault System. The San Andreas Fault Experiment, (SAFE), has progressed through the upgrades made to laser system hardware and an improvement in the modeling capabilities of the spaceborne laser targets. Of special note is the launch of the Laser Geodynamic Satellite, LAGEOS spacecraft, NASA's only completely dedicated laser satellite in 1976. The results of plate motion projected into this 896 km measured line over the past eleven years are summarized and intercompared.

  17. Interaction of the san jacinto and san andreas fault zones, southern california: triggered earthquake migration and coupled recurrence intervals.

    Science.gov (United States)

    Sanders, C O

    1993-05-14

    Two lines of evidence suggest that large earthquakes that occur on either the San Jacinto fault zone (SJFZ) or the San Andreas fault zone (SAFZ) may be triggered by large earthquakes that occur on the other. First, the great 1857 Fort Tejon earthquake in the SAFZ seems to have triggered a progressive sequence of earthquakes in the SJFZ. These earthquakes occurred at times and locations that are consistent with triggering by a strain pulse that propagated southeastward at a rate of 1.7 kilometers per year along the SJFZ after the 1857 earthquake. Second, the similarity in average recurrence intervals in the SJFZ (about 150 years) and in the Mojave segment of the SAFZ (132 years) suggests that large earthquakes in the northern SJFZ may stimulate the relatively frequent major earthquakes on the Mojave segment. Analysis of historic earthquake occurrence in the SJFZ suggests little likelihood of extended quiescence between earthquake sequences.

  18. San Andreas Fault, Southern California , Radar Image, Wrapped Color as Height

    Science.gov (United States)

    2000-01-01

    This topographic radar image vividly displays California's famous San Andreas Fault along the southwestern edge of the Mojave Desert, 75 kilometers (46 miles) north of downtown Los Angeles. The entire segment of the fault shown in this image last ruptured during the Fort Tejon earthquake of 1857. This was one of the greatest earthquakes ever recorded in the U.S., and it left an amazing surface rupture scar over 350 kilometers in length along the San Andreas. Were the Fort Tejon shock to happen today, the damage would run into billions of dollars, and the loss of life would likely be substantial, as the communities of Wrightwood, Palmdale, and Lancaster (among others) all lie upon or near the 1857 rupture area. The Lancaster/Palmdale area appears as bright patches just below the center of the image and the San Gabriel Mountains fill the lower left half of the image. At the extreme lower left is Pasadena. High resolution topographic data such as these are used by geologists to study the role of active tectonics in shaping the landscape, and to produce earthquake hazard maps.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters, or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 2400 meters (8000 feet) of total relief.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an

  19. Re-evaluating fault zone evolution, geometry, and slip rate along the restraining bend of the southern San Andreas Fault Zone

    Science.gov (United States)

    Blisniuk, K.; Fosdick, J. C.; Balco, G.; Stone, J. O.

    2017-12-01

    This study presents new multi-proxy data to provide an alternative interpretation of the late -to-mid Quaternary evolution, geometry, and slip rate of the southern San Andreas fault zone, comprising of the Garnet Hill, Banning, and Mission Creek fault strands, along its restraining bend near the San Bernardino Mountains and San Gorgonio Pass. Present geologic and geomorphic studies in the region indicate that as the Mission Creek and Banning faults diverge from one another in the southern Indio Hills, the Banning Fault Strand accommodates the majority of lateral displacement across the San Andreas Fault Zone. In this currently favored kinematic model of the southern San Andreas Fault Zone, slip along the Mission Creek Fault Strand decreases significantly northwestward toward the San Gorgonio Pass. Along this restraining bend, the Mission Creek Fault Strand is considered to be inactive since the late -to-mid Quaternary ( 500-150 kya) due to the transfer of plate boundary strain westward to the Banning and Garnet Hills Fault Strands, the Jacinto Fault Zone, and northeastward, to the Eastern California Shear Zone. Here, we present a revised geomorphic interpretation of fault displacement, initial 36Cl/10Be burial ages, sediment provenance data, and detrital geochronology from modern catchments and displaced Quaternary deposits that improve across-fault correlations. We hypothesize that continuous large-scale translation of this structure has occurred throughout its history into the present. Accordingly, the Mission Creek Fault Strand is active and likely a primary plate boundary fault at this latitude.

  20. San Andreas Fault, Southern California, Shaded relief, wrapped color as height

    Science.gov (United States)

    2000-01-01

    This topographic image vividly displays California's famous San Andreas Fault along the southwestern edge of the Mojave Desert, 75 kilometers (46 miles) north of downtown Los Angeles. The entire segment of the fault shown in this image last ruptured during the Fort Tejon earthquake of 1857. This was one of the greatest earthquakes ever recorded in the U.S., and it left an amazing surface rupture scar over 350 kilometers in length along the San Andreas. Were the Fort Tejon shock to happen today, the damage would run into billions of dollars, and the loss of life would likely be substantial, as the communities of Wrightwood, Palmdale, and Lancaster (among others) all lie upon or near the 1857 rupture area. The San Gabriel Mountains fill the lower left half of the image. At the extreme lower left is Pasadena. High resolution topographic data such as these are used by geologists to study the role of active tectonics in shaping the landscape, and to produce earthquake hazard maps.This image was generated using topographic data from the Shuttle Radar Topography Mission. Colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters, or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 2400 meters (8000 feet) of total relief. For the shading, a computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three

  1. Stress near geometrically complex strike-slip faults - Application to the San Andreas fault at Cajon Pass, southern California

    Science.gov (United States)

    Saucier, Francois; Humphreys, Eugene; Weldon, Ray, II

    1992-01-01

    A model is presented to rationalize the state of stress near a geometrically complex major strike-slip fault. Slip on such a fault creates residual stresses that, with the occurrence of several slip events, can dominate the stress field near the fault. The model is applied to the San Andreas fault near Cajon Pass. The results are consistent with the geological features, seismicity, the existence of left-lateral stress on the Cleghorn fault, and the in situ stress orientation in the scientific well, found to be sinistral when resolved on a plane parallel to the San Andreas fault. It is suggested that the creation of residual stresses caused by slip on a wiggle San Andreas fault is the dominating process there.

  2. Understanding strain transfer and basin evolution complexities in the Salton pull-apart basin near the Southern San Andreas Fault

    Science.gov (United States)

    Kell, A. M.; Sahakian, V. J.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Baskin, R. L.; Barth, M.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2015-12-01

    Active source seismic data in the Salton Sea provide insight into the complexity of the pull-apart system development. Seismic reflection data combined with tomographic cross sections give constraints on the timing of basin development and strain partitioning between the two dominant dextral faults in the region; the Imperial fault to the southwest and the Southern San Andreas fault (SSAF) to the northeast. Deformation associated with this step-over appears young, having formed in the last 20-40 k.a. The complexity seen in the Salton Sea is similar to that seen in pull-apart basins worldwide. In the southern basin of the Salton Sea, a zone of transpression is noted near the southern termination of the San Andreas fault, though this stress regime quickly transitions to a region of transtension in the northern reaches of the sea. The evolution seen in the basin architecture is likely related to a transition of the SSAF dying to the north, and giving way to youthful segments of the Brawley seismic zone and Imperial fault. Stratigraphic signatures seen in seismic cross-sections also reveal a long-term component of slip to the southwest on a fault 1-2 km west of the northeastern Salton Sea shoreline. Numerous lines of evidence, including seismic reflection data, high-resolution bathymetry within the Salton Sea, and folding patterns in the Borrego Formation to the east of the sea support an assertion of a previously unmapped fault, the Salton Trough fault (STF), parallel to the SAF and just offshore within the Salton Sea. Seismic observations are seen consistently within two datasets of varying vertical resolutions, up to depths of 4-5 km, suggesting that this fault strand is much longer-lived than the evolution seen in the southern sub-basin. The existence of the STF unifies discrepancies between the onshore seismic studies and data collected within the sea. The STF likely serves as the current bounding fault to the active pull-apart system, as it aligns with the "rung

  3. A new perspective on the geometry of the San Andreas Fault in southern California and its relationship to lithospheric structure

    Science.gov (United States)

    Fuis, Gary S.; Scheirer, Daniel S.; Langenheim, Victoria; Kohler, Monica D.

    2012-01-01

    The widely held perception that the San Andreas fault (SAF) is vertical or steeply dipping in most places in southern California may not be correct. From studies of potential‐field data, active‐source imaging, and seismicity, the dip of the SAF is significantly nonvertical in many locations. The direction of dip appears to change in a systematic way through the Transverse Ranges: moderately southwest (55°–75°) in the western bend of the SAF in the Transverse Ranges (Big Bend); vertical to steep in the Mojave Desert; and moderately northeast (37°–65°) in a region extending from San Bernardino to the Salton Sea, spanning the eastern bend of the SAF in the Transverse Ranges. The shape of the modeled SAF is crudely that of a propeller. If confirmed by further studies, the geometry of the modeled SAF would have important implications for tectonics and strong ground motions from SAF earthquakes. The SAF can be traced or projected through the crust to the north side of a well documented high‐velocity body (HVB) in the upper mantle beneath the Transverse Ranges. The north side of this HVB may be an extension of the plate boundary into the mantle, and the HVB would appear to be part of the Pacific plate.

  4. Southern San Andreas Fault Slip History Refined Using Pliocene Colorado River Deposits in the Western Salton Trough

    Science.gov (United States)

    Dorsey, R. J.; Bennett, S. E. K.; Housen, B. A.

    2016-12-01

    Tectonic reconstructions of Pacific-North America plate motion in the Salton Trough region (Bennett et al., 2016) are constrained by: (1) late Miocene volcanic rocks that record 255 +/-10 km of transform offset across the northern Gulf of California since 6 Ma (average 42 mm/yr; Oskin and Stock, 2003); and (2) GPS data that show modern rates of 50-52 mm/yr between Pacific and North America plates, and 46-48 mm/yr between Baja California (BC) and North America (NAM) (Plattner et al., 2007). New data from Pliocene Colorado River deposits in the Salton Trough provide an important additional constraint on the geologic history of slip on the southern San Andreas Fault (SAF). The Arroyo Diablo Formation (ADF) in the San Felipe Hills SW of the Salton Sea contains abundant cross-bedded channel sandstones deformed in the dextral Clark fault zone. The ADF ranges in age from 4.3 to 2.8 Ma in the Fish Creek-Vallecito basin, and in the Borrego Badlands its upper contact with the Borrego Formation is 2.9 Ma based on our new magnetostratigraphy. ADF paleocurrent data from a 20-km wide, NW-oriented belt near Salton City record overall transport to the SW (corrected for bedding dip, N=165), with directions ranging from NW to SE. Spatial domain analysis reveals radial divergence of paleoflow to the: W and NW in the NW domain; SW in the central domain; and S in the SE domain. Data near Borrego Sink, which restores to south of Salton City after removing offset on the San Jacinto fault zone, show overall transport to the SE. Pliocene patterns of radial paleoflow divergence strongly resemble downstream bifurcation of fluvial distributary channels on the modern Colorado River delta SW of Yuma, and indicate that Salton City has translated 120-130 km NW along the SAF since 3 Ma. We propose a model in which post-6 Ma BC-NAM relative motion gradually accelerated to 50 mm/yr by 4 Ma, continued at 50 mm/yr from 4-1 Ma, and decreased to 46 mm/yr from 1-0 Ma (split equally between the SAF and

  5. Geomorphic and geologic evidence for slip along the San Bernardino strand of the San Andreas Fault System through the San Gorgonio Pass structural knot, southern California

    Science.gov (United States)

    Kendrick, K. J.; Matti, J. C.

    2017-12-01

    The San Gorgonio Pass (SGP) region of southern California represents an extraordinarily complex section of the San Andreas Fault (SAF) zone, often referred to as a structural knot. Complexity is expressed both structurally and geomorphically, and arises because multiple strands of the SAF have evolved here in Quaternary time. Our integration of geologic and geomorphic analyses led to recognition of multiple fault-bounded blocks characterized by crystalline rocks that have similar physical properties. Hence, any morphometric differences in hypsometric analysis, slope, slope distribution, texture, and stream-power measurements and discontinuities reflect landscape response to tectonic processes rather than differences in lithology. We propose that the differing morphometry of the two blocks on either side of the San Bernardino strand (SBS) of the SAF, the high-standing Kitching Peak block to the east and the lower, more subdued Pisgah Peak block to the west, strongly suggests that the blocks experienced different uplift histories. This difference in uplift histories, in turn suggests that dextral slip occurred over a long time interval on the SBS—despite long-lived controversy raised by the fact that, at the surface, a throughgoing trace of the SBS is not present at this location. A different tectonic history between the two blocks is consistent with the gravity data which indicate that low-density rocks underthrusting the Kitching Peak block are absent below the Pisgah Peak block (Langenheim et al., 2015). Throughgoing slip on the SBS implied by geomorphic differences between the two blocks is also consistent with displaced geologic and geomorphic features. We find compelling evidence for discrete offsets of between 0.6 and 6 km of dextral slip on the SBS, including offset of fluvial and landslide deposits, and beheaded drainages. Although we lack numerical age control for the offset features, the degree of soil development associated with displaced landforms

  6. The ShakeOut scenario: A hypothetical Mw7.8 earthquake on the Southern San Andreas Fault

    Science.gov (United States)

    Porter, K.; Jones, L.; Cox, D.; Goltz, J.; Hudnut, K.; Mileti, D.; Perry, S.; Ponti, D.; Reichle, M.; Rose, A.Z.; Scawthorn, C.R.; Seligson, H.A.; Shoaf, K.I.; Treiman, J.; Wein, A.

    2011-01-01

    In 2008, an earthquake-planning scenario document was released by the U.S. Geological Survey (USGS) and California Geological Survey that hypothesizes the occurrence and effects of a Mw7.8 earthquake on the southern San Andreas Fault. It was created by more than 300 scientists and engineers. Fault offsets reach 13 m and up to 8 m at lifeline crossings. Physics-based modeling was used to generate maps of shaking intensity, with peak ground velocities of 3 m/sec near the fault and exceeding 0.5 m/sec over 10,000 km2. A custom HAZUS??MH analysis and 18 special studies were performed to characterize the effects of the earthquake on the built environment. The scenario posits 1,800 deaths and 53,000 injuries requiring emergency room care. Approximately 1,600 fires are ignited, resulting in the destruction of 200 million square feet of the building stock, the equivalent of 133,000 single-family homes. Fire contributes $87 billion in property and business interruption loss, out of the total $191 billion in economic loss, with most of the rest coming from shakerelated building and content damage ($46 billion) and business interruption loss from water outages ($24 billion). Emergency response activities are depicted in detail, in an innovative grid showing activities versus time, a new format introduced in this study. ?? 2011, Earthquake Engineering Research Institute.

  7. Changes in state of stress on the southern san andreas fault resulting from the california earthquake sequence of april to june 1992.

    Science.gov (United States)

    Jaumé, S C; Sykes, L R

    1992-11-20

    The April to June 1992 Landers earthquake sequence in southern California modified the state of stress along nearby segments of the San Andreas fault, causing a 50-kilometer segment of the fault to move significantly closer to failure where it passes through a compressional bend near San Gorgonio Pass. The decrease in compressive normal stress may also have reduced fluid pressures along that fault segment. As pressures are reequilibrated by diffusion, that fault segment should move closer to failure with time. That fault segment and another to the southeast probably have not ruptured in a great earthquake in about 300 years.

  8. A case for historic joint rupture of the San Andreas and San Jacinto faults

    OpenAIRE

    Lozos, Julian C.

    2016-01-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data...

  9. Southern San Andreas Fault evaluation field activity: approaches to measuring small geomorphic offsets--challenges and recommendations for active fault studies

    Science.gov (United States)

    Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.

    2014-01-01

    In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the field activity will be provided separately; this paper discusses the complications presented by such offset measurements using two channels from the San Andreas fault as illustrative cases. We conclude with best approaches for future data collection efforts based on input from the Fieldshop.

  10. Radon emanation on San Andreas Fault

    International Nuclear Information System (INIS)

    King, C.-Y.

    1978-01-01

    It is stated that subsurface radon emanation monitored in shallow dry holes along an active segment of the San Andreas fault in central California shows spatially coherent large temporal variations that seem to be correlated with local seismicity. (author)

  11. Petrogenesis of cataclastic rocks within the San Andreas fault zone of Southern California U.S.A.

    Science.gov (United States)

    Lawford Anderson, J.; Osborne, Robert H.; Palmer, Donald F.

    1980-08-01

    This paper petrologically characterizes cataclastic rocks derived from four sites within the San Andreas fault zone of southern California. In this area, the fault traverses an extensive plutonic and metamorphic terrane and the principal cataclastic rock formed at these upper crustal levels is unindurated gouge derived from a range of crystalline rocks including diorite, tonalite, granite, aplite, and pegmatite. The mineralogical nature of this gouge is decidedly different from the "clay gouge" reported by Wu (1975) for central California and is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote and oxide mineralogy representing the milled-down equivalent of the original rock. Clay development is minor (less than 4 wt. %) to nonexistent and is exclusively kaolinite. Alterations involve hematitic oxidation, chlorite alteration on biotite and amphibole, and local introduction of calcite. Electron microprobe analysis showed that in general the major minerals were not reequilibrated with the pressure—temperature regime imposed during cataclasis. Petrochemically, the form of cataclasis that we have investigated is largely an isochemical process. Some hydration occurs but the maximum amount is less than 2.2% added H 2O. Study of a 375 m deep core from a tonalite pluton adjacent to the fault showed that for Si, Al, Ti, Fe, Mg, Mn, K, Na, Li, Rb, and Ba, no leaching and/or enrichment occurred. Several samples experienced a depletion in Sr during cataclasis while lesser number had an enrichment of Ca (result of calcite veining). Texturally, the fault gouge is not dominated by clay-size material but consists largely of silt and fine sand-sized particles. An intriguing aspect of our work on the drill core is a general decrease in particulate size with depth (and confining pressure) with the predominate shifting sequentially from fine sand to silt-size material. The original fabric of these rocks is commonly not disrupted during the

  12. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California

    Science.gov (United States)

    Janecke, S. U.; Markowski, D.

    2015-12-01

    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella

  13. Perspective View, San Andreas Fault

    Science.gov (United States)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour

  14. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 5–24, San Andreas Fault Zone, southern California (2010–2012)

    Science.gov (United States)

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.

    2015-08-24

    The Frazier Mountain paleoseismic site is located within the northern Big Bend of the southern San Andreas Fault (lat 34.8122° N., lon 118.9034° W.), in a small structural basin formed by the fault (fig. 1). The site has been the focus of over a decade of paleoseismic study due to high stratigraphic resolution and abundant dateable material. Trench 1 (T1) was initially excavated as a 50-m long, fault-perpendicular trench crossing the northern half of the basin (Lindvall and others, 2002; Scharer and others, 2014a). Owing to the importance of a high-resolution trench site at this location on a 200-km length of the fault with no other long paleoseismic records, later work progressively lengthened and deepened T1 in a series of excavations, or cuts, that enlarged the original excavation. Scharer and others (2014a) provide the photomosaics and event evidence for the first four cuts, which largely show the upper section of the site, represented by alluvial deposits that date from about A.D. 1500 to present. Scharer and others (2014b) discuss the earthquake evidence and dating at the site within the context of prehistoric rupture lengths and magnitudes on the southern San Andreas Fault. Here we present the photomosaics and event evidence for a series of cuts from the lower section, covering sediments that were deposited from about A.D. 500 to 1500 (fig. 2).

  15. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    Science.gov (United States)

    Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon

    2014-01-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  16. New evidence on the state of stress of the san andreas fault system.

    Science.gov (United States)

    Zoback, M D; Zoback, M L; Mount, V S; Suppe, J; Eaton, J P; Healy, J H; Oppenheimer, D; Reasenberg, P; Jones, L; Raleigh, C B; Wong, I G; Scotti, O; Wentworth, C

    1987-11-20

    Contemporary in situ tectonic stress indicators along the San Andreas fault system in central California show northeast-directed horizontal compression that is nearly perpendicular to the strike of the fault. Such compression explains recent uplift of the Coast Ranges and the numerous active reverse faults and folds that trend nearly parallel to the San Andreas and that are otherwise unexplainable in terms of strike-slip deformation. Fault-normal crustal compression in central California is proposed to result from the extremely low shear strength of the San Andreas and the slightly convergent relative motion between the Pacific and North American plates. Preliminary in situ stress data from the Cajon Pass scientific drill hole (located 3.6 kilometers northeast of the San Andreas in southern California near San Bernardino, California) are also consistent with a weak fault, as they show no right-lateral shear stress at approximately 2-kilometer depth on planes parallel to the San Andreas fault.

  17. Expression of San Andreas fault on Seasat radar image

    Science.gov (United States)

    Sabins, F. F., Jr.; Blom, R.; Elachi, C.

    1980-01-01

    A Seasat image (23.5 cm wavelength) of the Durmid Hills in southern California, the San Andreas Fault was analyzed. It is shown that a prominent southeast trending tonal lineament exists that is bright on the southwest side and dark on the northeast side. The cause of the contrasting signatures on opposite sides of the lineament was determined and the geologic signficance of the lineament was evaluated.

  18. Structure of the San Andreas Fault Zone in the Salton Trough Region of Southern California: A Comparison with San Andreas Fault Structure in the Loma Prieta Area of Central California

    Science.gov (United States)

    Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.

    2016-12-01

    The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active

  19. SAFOD Penetrates the San Andreas Fault

    Directory of Open Access Journals (Sweden)

    Mark D. Zoback

    2006-03-01

    Full Text Available SAFOD, the San Andreas Fault Observatory at Depth (Fig. 1, completed an important milestone in July 2005 by drilling through the San Andreas Fault at seismogenic depth. SAFOD is one of three major components of EarthScope, a U.S. National Science Foundation (NSF initiative being conducted in collaboration with the U.S. Geological Survey (USGS. The International Continental Scientific DrillingProgram (ICDP provides engineering and technical support for the project as well as online access to project data and information (http://www.icdp-online.de/sites/sanandreas/news/news1.html. In 2002, the ICDP, the NSF, and the USGS provided funding for a pilot hole project at the SAFOD site. Twenty scientifi c papers summarizing the results of the pilot hole project as well as pre-SAFOD site characterization studies were published in Geophysical Research Letters (Vol.31, Nos. 12 and 15, 2004.

  20. 100 Years of Accumulated Deformation at Depth Observed in the Elizabeth Lake Tunnel, Southern San Andreas Fault

    Science.gov (United States)

    Telling, J. W.; Tayyebi, A.; Hudnut, K. W.; Davis, C. A.; Glennie, C. L.

    2017-12-01

    The Elizabeth Lake Tunnel was completed in 1911 to convey water from the Owens Valley to Los Angeles, CA. The tunnel is approximately 8-km long and crosses the San Andreas Fault (SAF) at a depth of 90 m below the surface, measured near the tunnel mid-point. If present, a tectonic signal recorded by warping or offset of this tunnel could provide an opportunity to examine the deformation at depth in this location during the 100 years since the tunnel was constructed. A temporary closure of the tunnel for inspection and repair allowed the entire 8-km length to be surveyed using terrestrial laser scanning, providing a complete high-resolution 3D model of the tunnel. Since a high-resolution survey of the tunnel after its construction is not available for comparison, we assume that the tunnel was originally straight; this assumption is substantiated by records that indicate that the two halves of the tunnel, dug from opposite ends, met within 2.9 cm in the XY-plane and 1.6 cm in the Z-direction, at an off-fault location. Our results show 20 cm of right-lateral horizontal deformation near the estimated location of the tunnel's intersection with SAF, which agrees with the SAF sense of motion. The zone of deviation is approximately 300 m south of the SAF surface trace, and is about 350 m south of where the two tunneling crews met. This observed offset is consistent with either steady-state creep of about 2 mm/yr or possibly residual afterslip following the 1857 earthquake (that may be negligible at present). The full tectonic strain accumulation at this location would be five to ten times higher than observed, so clearly the observed deformation is only part of the expected full tectonic signal. In addition to the 20 cm short-wavelength deflection, we are examining for possible subtle longer wavelength deformation of the tunnel. The lidar model also shows significantly higher density of apparent cracking in the tunnel walls near this intercept point.

  1. Stratigraphic record of Pliocene-Pleistocene basin evolution and deformation within the Southern San Andreas Fault Zone, Mecca Hills, California

    Science.gov (United States)

    McNabb, James C.; Dorsey, Rebecca J.; Housen, Bernard A.; Dimitroff, Cassidy W.; Messé, Graham T.

    2017-11-01

    A thick section of Pliocene-Pleistocene nonmarine sedimentary rocks exposed in the Mecca Hills, California, provides a record of fault-zone evolution along the Coachella Valley segment of the San Andreas fault (SAF). Geologic mapping, measured sections, detailed sedimentology, and paleomagnetic data document a 3-5 Myr history of deformation and sedimentation in this area. SW-side down offset on the Painted Canyon fault (PCF) starting 3.7 Ma resulted in deposition of the Mecca Conglomerate southwest of the fault. The lower member of the Palm Spring Formation accumulated across the PCF from 3.0 to 2.6 Ma during regional subsidence. SW-side up slip on the PCF and related transpressive deformation from 2.6 to 2.3 Ma created a time-transgressive angular unconformity between the lower and upper members of the Palm Spring Formation. The upper member accumulated in discrete fault-bounded depocenters until initiation of modern deformation, uplift, and basin inversion starting at 0.7 Ma. Some spatially restricted deposits can be attributed to the evolution of fault-zone geometric complexities. However, the deformation events at ca. 2.6 Ma and 0.7 Ma are recorded regionally along 80 km of the SAF through Coachella Valley, covering an area much larger than mapped fault-zone irregularities, and thus require regional explanations. We therefore conclude that late Cenozoic deformation and sedimentation along the SAF in Coachella Valley has been controlled by a combination of regional tectonic drivers and local deformation due to dextral slip through fault-zone complexities. We further propose a kinematic link between the 2.6-2.3 Ma angular unconformity and a previously documented but poorly dated reorganization of plate-boundary faults in the northern Gulf of California at 3.3-2.0 Ma. This analysis highlights the potential for high-precision chronologies in deformed terrestrial deposits to provide improved understanding of local- to regional-scale structural controls on basin

  2. A case for historic joint rupture of the San Andreas and San Jacinto faults

    Science.gov (United States)

    Lozos, Julian C.

    2016-01-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior. PMID:27034977

  3. A case for historic joint rupture of the San Andreas and San Jacinto faults.

    Science.gov (United States)

    Lozos, Julian C

    2016-03-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior.

  4. Investigating Strain Transfer Along the Southern San Andreas Fault: A Geomorphic and Geodetic Study of Block Rotation in the Eastern Transverse Ranges, Joshua Tree National Park, CA

    Science.gov (United States)

    Guns, K. A.; Bennett, R. A.; Blisniuk, K.

    2017-12-01

    To better evaluate the distribution and transfer of strain and slip along the Southern San Andreas Fault (SSAF) zone in the northern Coachella valley in southern California, we integrate geological and geodetic observations to test whether strain is being transferred away from the SSAF system towards the Eastern California Shear Zone through microblock rotation of the Eastern Transverse Ranges (ETR). The faults of the ETR consist of five east-west trending left lateral strike slip faults that have measured cumulative offsets of up to 20 km and as low as 1 km. Present kinematic and block models present a variety of slip rate estimates, from as low as zero to as high as 7 mm/yr, suggesting a gap in our understanding of what role these faults play in the larger system. To determine whether present-day block rotation along these faults is contributing to strain transfer in the region, we are applying 10Be surface exposure dating methods to observed offset channel and alluvial fan deposits in order to estimate fault slip rates along two faults in the ETR. We present observations of offset geomorphic landforms using field mapping and LiDAR data at three sites along the Blue Cut Fault and one site along the Smoke Tree Wash Fault in Joshua Tree National Park which indicate recent Quaternary fault activity. Initial results of site mapping and clast count analyses reveal at least three stages of offset, including potential Holocene offsets, for one site along the Blue Cut Fault, while preliminary 10Be geochronology is in progress. This geologic slip rate data, combined with our new geodetic surface velocity field derived from updated campaign-based GPS measurements within Joshua Tree National Park will allow us to construct a suite of elastic fault block models to elucidate rates of strain transfer away from the SSAF and how that strain transfer may be affecting the length of the interseismic period along the SSAF.

  5. Synthetic seismicity for the San Andreas fault

    Directory of Open Access Journals (Sweden)

    S. N. Ward

    1994-06-01

    Full Text Available Because historical catalogs generally span only a few repetition intervals of major earthquakes, they do not provide much constraint on how regularly earthquakes recur. In order to obtain better recurrence statistics and long-term probability estimates for events M ? 6 on the San Andreas fault, we apply a seismicity model to this fault. The model is based on the concept of fault segmentation and the physics of static dislocations which allow for stress transfer between segments. Constraints are provided by geological and seismological observations of segment lengths, characteristic magnitudes and long-term slip rates. Segment parameters slightly modified from the Working Group on California Earthquake Probabilities allow us to reproduce observed seismicity over four orders of magnitude. The model yields quite irregular earthquake recurrence patterns. Only the largest events (M ? 7.5 are quasi-periodic; small events cluster. Both the average recurrence time and the aperiodicity are also a function of position along the fault. The model results are consistent with paleoseismic data for the San Andreas fault as well as a global set of historical and paleoseismic recurrence data. Thus irregular earthquake recurrence resulting from segment interaction is consistent with a large range of observations.

  6. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California

    Science.gov (United States)

    Darin, M. H.; Dorsey, R. J.

    2012-12-01

    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC

  7. Subsurface geometry of the San Andreas fault in southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations

    Science.gov (United States)

    Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.

    2017-01-01

    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km">∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (TTfault.

  8. Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System

    Science.gov (United States)

    Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.

    2017-12-01

    Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe; n = 29 samples) and thermal history modeling of samples from the Santa Rosa Mountains (SRM) reveal that initial exhumation along the WSDF began at circa 8 Ma, exhuming footwall material from depths of >2 to 3 km. An uplifted fossil (Miocene) helium partial retention zone is present in the eastern SRM, while a deeper crustal section has been exhumed along the Pleistocene high-angle Santa Rosa Fault (SFR) to much higher elevations in the southwest SRM. Detachment-related vertical exhumation rates in the SRM were 0.15-0.36 km/Myr, with maximum fault slip rates of 1.2-3.0 km/Myr. Miocene AHe isochrons across the SRM are consistent with northeast crustal tilting of the SRM block and suggest that the post-WSDF vertical exhumation rate along the SRF was 1.3 km/Myr. The timing of extension initiation in the Salton Trough suggests that clockwise rotation of relative plate motions that began at 8 Ma is associated with initiation of the southern San Andreas system. Pleistocene regional tectonic reorganization was contemporaneous with an abrupt transition from low- to high-angle faulting and indicates that local fault geometry may at times exert a fundamental control on rock uplift rates along strike-slip fault systems.

  9. San Andreas Fault in the Carrizo Plain

    Science.gov (United States)

    2000-01-01

    The 1,200-kilometer (800-mile)San Andreas is the longest fault in California and one of the longest in North America. This perspective view of a portion of the fault was generated using data from the Shuttle Radar Topography Mission (SRTM), which flew on NASA's Space Shuttle last February, and an enhanced, true-color Landsat satellite image. The view shown looks southeast along the San Andreas where it cuts along the base of the mountains in the Temblor Range near Bakersfield. The fault is the distinctively linear feature to the right of the mountains. To the left of the range is a portion of the agriculturally rich San Joaquin Valley. In the background is the snow-capped peak of Mt. Pinos at an elevation of 2,692 meters (8,831 feet). The complex topography in the area is some of the most spectacular along the course of the fault. To the right of the fault is the famous Carrizo Plain. Dry conditions on the plain have helped preserve the surface trace of the fault, which is scrutinized by both amateur and professional geologists. In 1857, one of the largest earthquakes ever recorded in the United States occurred just north of the Carrizo Plain. With an estimated magnitude of 8.0, the quake severely shook buildings in Los Angeles, caused significant surface rupture along a 350-kilometer (220-mile) segment of the fault, and was felt as far away as Las Vegas, Nev. This portion of the San Andreas is an important area of study for seismologists. For visualization purposes, topographic heights displayed in this image are exaggerated two times.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60

  10. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    Science.gov (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  11. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 1–4, San Andreas Fault Zone, southern California (2007–2009)

    Science.gov (United States)

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.

    2014-01-01

    The Frazier Mountain paleoseismic site is located at the northwest end of the Mojave section of the San Andreas Fault, in a small, closed depression at the base of Frazier Mountain near Tejon Pass, California (lat 34.8122° N., long 118.9034° W.). The site was known to contain a good record of earthquakes due to previous excavations by Lindvall and others (2002). This report provides data resulting from four nested excavations, or cuts, along trench 1 (T1) in 2007 and 2009 at the Frazier Mountain site. The four cuts were excavated progressively deeper and wider in an orientation perpendicular to the San Andreas Fault, exposing distal fan and marsh sediments deposited since ca. A.D. 1200. The results of the trenching show that earthquakes that ruptured the site have repeatedly produced a small depression or sag on the surface, which is subsequently infilled with sand and silt deposits. This report provides high-resolution photomosaics and logs for the T1 cuts, a detailed stratigraphic column for the deposits, and a table summarizing all of the evidence for ground rupturing paleoearthquakes logged in the trenches.

  12. Subsurface geometry of the San Andreas fault in southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations

    Science.gov (United States)

    Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.

    2017-01-01

    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km">∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (TT<1  s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault.

  13. Neotectonics of the San Andreas Fault system, basin and range province juncture

    Science.gov (United States)

    Estes, J. E.; Crowell, J. C.

    1982-01-01

    The development, active processes, and tectonic interplay of the southern San Andreas fault system and the basin and range province were studied. The study consist of data acquisition and evaluation, technique development, and image interpretation and mapping. Potentially significant geologic findings are discussed.

  14. San Andreas tremor cascades define deep fault zone complexity

    Science.gov (United States)

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  15. Low strength of deep San Andreas fault gouge from SAFOD core.

    Science.gov (United States)

    Lockner, David A; Morrow, Carolyn; Moore, Diane; Hickman, Stephen

    2011-04-07

    The San Andreas fault accommodates 28-34 mm yr(-1) of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms. The combination of these measurements of fault core strength with borehole observations yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust. ©2011 Macmillan Publishers Limited. All rights reserved

  16. Stress diffusion along the san andreas fault at parkfield, california.

    Science.gov (United States)

    Malin, P E; Alvarez, M G

    1992-05-15

    Beginning in January 1990, the epicenters of microearthquakes associated with a 12-month increase in seismicity near Parkfield, California, moved northwest to southeast along the San Andreas fault. During this sequence of events, the locally variable rate of cumulative seismic moment increased. This increase implies a local increase in fault slip. These data suggest that a southeastwardly diffusing stress front propagated along the San Andreas fault at a speed of 30 to 50 kilometers per year. Evidently, this front did not load the Parkfield asperities fast enough to produce a moderate earthquake; however, a future front might do so.

  17. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    Science.gov (United States)

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This

  18. Constraints on Shallow Crustal Structure across the San Andreas Fault Zone, Coachella Valley, Southern California: Results from the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Hernandez, A.; Persaud, P.; Bauer, K.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.

    2015-12-01

    The strong influence of basin structure and crustal heterogeneities on seismic wave propagation suggests that these factors should be included in calculations of strong ground shaking. Knowledge of the shallow subsurface is thus essential for an accurate seismic hazard estimate for the densely populated Coachella Valley, the region north of the potential M7.8 rupture near the Salton Sea. Using SSIP data, we analyzed first arrivals from nine 65-911 kg explosive shots recorded along a profile in the Coachella Valley in order to evaluate the interpretation of our 2D tomographic results and give added details on the structural complexity of the shallow crust. The line extends 37 km from the Peninsular Ranges to the Little San Bernardino Mountains crossing the major strands of the San Andreas Fault Zone. We fit traveltime curves to our picks with forward modeling ray tracing, and determined 1D P-wave velocity models for traveltime arrivals east and west of each shot, and a 2D model for the line. We also inferred the geometry of near-vertical faults from the pre-stack line migration method of Bauer et al. (2013). In general, the 1D models east of individual shots have deeper basement contacts and lower apparent velocities, ~5 km/s at 4 km depth, whereas the models west of individual shots have shallower basement and velocities up to 6 km/s at 2 km depth. Mismatches in basement depths (assuming 5-6 km/s) between individual 1D models indicate a shallowly dipping basement, deepening eastward towards the Banning Fault and shoaling abruptly farther east. An east-dipping structure in the 2D model also gives a better fit than horizontal layers. Based on high velocity zones derived from traveltimes at 9-20 km from the western end of the line, we included an offset from ~2 km to 4 km depth near the middle of the line, which significantly improved the 2D model fit. If fault-related, this offset could represent the Garnet Hill Fault if it continues southward in the subsurface.

  19. Coulomb Stress Accumulation along the San Andreas Fault System

    Science.gov (United States)

    Smith, Bridget; Sandwell, David

    2003-01-01

    Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

  20. San andreas fault zone head waves near parkfield, california.

    Science.gov (United States)

    Ben-Zion, Y; Malin, P

    1991-03-29

    Microearthquake seismograms from the borehole seismic network on the San Andreas fault near Parkfield, California, provide three lines of evidence that first P arrivals are "head" waves refracted along the cross-fault material contrast. First, the travel time difference between these arrivals and secondary phases identified as direct P waves scales linearly with the source-receiver distance. Second, these arrivals have the emergent wave character associated in theory and practice with refracted head waves instead of the sharp first breaks associated with direct P arrivals. Third, the first motion polarities of the emergent arrivals are reversed from those of the direct P waves as predicted by the theory of fault zone head waves for slip on the San Andreas fault. The presence of fault zone head waves in local seismic network data may help account for scatter in earthquake locations and source mechanisms. The fault zone head waves indicate that the velocity contrast across the San Andreas fault near Parkfield is approximately 4 percent. Further studies of these waves may provide a way of assessing changes in the physical state of the fault system.

  1. Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching

    Science.gov (United States)

    Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon

    2015-01-01

    The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.

  2. Conductivity Structure of the San Andreas Fault, Parkfield, Revisited

    Science.gov (United States)

    Park, S. K.; Roberts, J. J.

    2003-12-01

    Laboratory measurements of samples of sedimentary rocks from the Parkfield syncline reveal resistivities as low as 1 ohm m when saturated with fluids comparable to those found in nearby wells. The syncline lies on the North American side of the San Andreas fault at Parkfield and plunges northwestward into the fault zone. A previous interpretation of a high resolution magnetotelluric profile across the San Andreas fault at Parkfield identified an anomalously conductive (1-3 ohm m) region just west of the fault and extending to depths of 3 km. These low resistivity rocks were inferred to be crushed rock in the fault zone that was saturated with brines. As an alternative to this interpretation, we suggest that this anomalous region is actually the Parkfield syncline and that the current trace of the San Andreas fault at Middle Mountain does not form the boundary between the Salinian block and the North American plate. Instead, that boundary is approximately 1 km west and collocated with current seismicity. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract W-7405-ENG-48 and supported specifically by the Office of Basic Energy Science. Additional support was provided by the U.S. Geological Survey (USGS), Department of the Interior, under USGS Award number 03HQGR0041. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.

  3. Nonvolcanic tremors deep beneath the San Andreas Fault.

    Science.gov (United States)

    Nadeau, Robert M; Dolenc, David

    2005-01-21

    We have discovered nonvolcanic tremor activity (i.e., long-duration seismic signals with no clear P or S waves) within a transform plate boundary zone along the San Andreas Fault near Cholame, California, the inferred epicentral region of the 1857 Fort Tejon earthquake (moment magnitude approximately 7.8). The tremors occur between 20 to 40 kilometers' depth, below the seismogenic zone (the upper approximately 15 kilometers of Earth's crust where earthquakes occur), and their activity rates may correlate with variations in local earthquake activity.

  4. Periodic pulsing of characteristic microearthquakes on the San Andreas fault.

    Science.gov (United States)

    Nadeau, Robert M; McEvilly, Thomas V

    2004-01-09

    Deep fault slip information from characteristically repeating microearthquakes reveals previously unrecognized patterns of extensive, large-amplitude, long-duration, quasiperiodic repetition of aseismic events along much of a 175-kilometer segment of the central San Andreas fault. Pulsing occurs both in conjunction with and independent of transient slip from larger earthquakes. It extends to depths of approximately 10 to 11 kilometers but may be deeper, and it may be related to similar phenomena occurring in subduction zones. Over much of the study area, pulse onset periods also show a higher probability of larger earthquakes, which may provide useful information for earthquake forecasting.

  5. Zemětřesná aktivita na zlomu San Andreas

    OpenAIRE

    Voroňáková, Jana

    2011-01-01

    SUMMARY: This work deals with the San Andreas fault as a tectonically active area. It includes basic information about the fracture, its origins and history. The work shows, as scientists are now trying to combat the risk of impending earthquakes. Project of San Andreas Fault Observatory at Depth and individual predictions of the next earthquake rupture are described.

  6. Deep permeability of the San Andreas Fault from San Andreas Fault Observatory at Depth (SAFOD) core samples

    Science.gov (United States)

    Morrow, Carolyn A.; Lockner, David A.; Moore, Diane E.; Hickman, Stephen H.

    2014-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific borehole near Parkfield, California crosses two actively creeping shear zones at a depth of 2.7 km. Core samples retrieved from these active strands consist of a foliated, Mg-clay-rich gouge containing porphyroclasts of serpentinite and sedimentary rock. The adjacent damage zone and country rocks are comprised of variably deformed, fine-grained sandstones, siltstones, and mudstones. We conducted laboratory tests to measure the permeability of representative samples from each structural unit at effective confining pressures, Pe up to the maximum estimated in situ Pe of 120 MPa. Permeability values of intact samples adjacent to the creeping strands ranged from 10−18 to 10−21 m2 at Pe = 10 MPa and decreased with applied confining pressure to 10−20–10−22 m2 at 120 MPa. Values for intact foliated gouge samples (10−21–6 × 10−23 m2 over the same pressure range) were distinctly lower than those for the surrounding rocks due to their fine-grained, clay-rich character. Permeability of both intact and crushed-and-sieved foliated gouge measured during shearing at Pe ≥ 70 MPa ranged from 2 to 4 × 10−22 m2 in the direction perpendicular to shearing and was largely insensitive to shear displacement out to a maximum displacement of 10 mm. The weak, actively-deforming foliated gouge zones have ultra-low permeability, making the active strands of the San Andreas Fault effective barriers to cross-fault fluid flow. The low matrix permeability of the San Andreas Fault creeping zones and adjacent rock combined with observations of abundant fractures in the core over a range of scales suggests that fluid flow outside of the actively-deforming gouge zones is probably fracture dominated.

  7. Monitoring microearthquakes with the San Andreas fault observatory at depth

    Science.gov (United States)

    Oye, V.; Ellsworth, W.L.

    2007-01-01

    In 2005, the San Andreas Fault Observatory at Depth (SAFOD) was drilled through the San Andreas Fault zone at a depth of about 3.1 km. The borehole has subsequently been instrumented with high-frequency geophones in order to better constrain locations and source processes of nearby microearthquakes that will be targeted in the upcoming phase of SAFOD. The microseismic monitoring software MIMO, developed by NORSAR, has been installed at SAFOD to provide near-real time locations and magnitude estimates using the high sampling rate (4000 Hz) waveform data. To improve the detection and location accuracy, we incorporate data from the nearby, shallow borehole (???250 m) seismometers of the High Resolution Seismic Network (HRSN). The event association algorithm of the MIMO software incorporates HRSN detections provided by the USGS real time earthworm software. The concept of the new event association is based on the generalized beam forming, primarily used in array seismology. The method requires the pre-computation of theoretical travel times in a 3D grid of potential microearthquake locations to the seismometers of the current station network. By minimizing the differences between theoretical and observed detection times an event is associated and the location accuracy is significantly improved.

  8. A simulation of the San Andreas fault experiment

    Science.gov (United States)

    Agreen, R. W.; Smith, D. E.

    1974-01-01

    The San Andreas fault experiment (Safe), which employs two laser tracking systems for measuring the relative motion of two points on opposite sides of the fault, has been simulated for an 8-yr observation period. The two tracking stations are located near San Diego on the western side of the fault and near Quincy on the eastern side; they are roughly 900 km apart. Both will simultaneously track laser reflector equipped satellites as they pass near the stations. Tracking of the Beacon Explorer C spacecraft has been simulated for these two stations during August and September for 8 consecutive years. An error analysis of the recovery of the relative location of Quincy from the data has been made, allowing for model errors in the mass of the earth, the gravity field, solar radiation pressure, atmospheric drag, errors in the position of the San Diego site, and biases and noise in the laser systems. The results of this simulation indicate that the distance of Quincy from San Diego will be determined each year with a precision of about 10 cm. Projected improvements in these model parameters and in the laser systems over the next few years will bring the precision to about 1-2 cm by 1980.

  9. Tilt Precursors before Earthquakes on the San Andreas Fault, California.

    Science.gov (United States)

    Johnston, M J; Mortensen, C E

    1974-12-13

    An array of 14 biaxial shallow-borehole tiltmeters (at 1O(-7) radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (> 10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.

  10. Electromagnetic Imaging of Fluids in the San Andreas Fault; FINAL

    International Nuclear Information System (INIS)

    Martyn Unsworth

    2002-01-01

    OAK 270 - Magnetotelluric data were collected on six profiles across the san Andreas Fault at Cholame,Parkfield, and Hollister in Central California. On each profile, high electrical resistivities were imaged west of the fault, and are due to granitic rocks of the Salinian block. East of the fault, lower electrical resistivities are associated with rocks of the Fanciscan formation. On the seismically active Parkfield and Hollister segments, a region of low resistivity was found in the fault zone that extends to a depth of several kilometers. This is due to a zone of fracturing (the damaged zone) that has been infiltrated by saline ground water. The shallowest micro-earthquakers occur at a depth that is coincident with the base of the low resistivity wedge. This strongly suggests that above this depth, the fault rocks are too weak to accumulate sufficient stress for earthquake rupture to occur and fault motion is accommodated through aseismic creep

  11. The San Andreas fault experiment. [gross tectonic plates relative velocity

    Science.gov (United States)

    Smith, D. E.; Vonbun, F. O.

    1973-01-01

    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  12. A look inside the San Andreas Fault at Parkfield through vertical seismic profiling.

    Science.gov (United States)

    Chavarria, J Andres; Malin, Peter; Catchings, Rufus D; Shalev, Eylon

    2003-12-05

    The San Andreas Fault Observatory at Depth pilot hole is located on the southwestern side of the Parkfield San Andreas fault. This observatory includes a vertical seismic profiling (VSP) array. VSP seismograms from nearby microearthquakes contain signals between the P and S waves. These signals may be P and S waves scattered by the local geologic structure. The collected scattering points form planar surfaces that we interpret as the San Andreas fault and four other secondary faults. The scattering process includes conversions between P and S waves, the strengths of which suggest large contrasts in material properties, possibly indicating the presence of cracks or fluids.

  13. Resurvey of site stability quadrilaterals, Otay Mountain and Quincy, California. [San Andreas fault experiment

    Science.gov (United States)

    Scholz, C. H.

    1977-01-01

    Trilateration quadrilaterals established across two faults near the San Andreas Fault Experiment laser/satellite ranging sites were resurveyed after four years. No evidence of significant tectonic motion was found.

  14. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  15. San Andreas-sized Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay. In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements. [figure removed for brevity, see original site] The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart. Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension opens the fault and

  16. Irregular recurrence of large earthquakes along the san andreas fault: evidence from trees.

    Science.gov (United States)

    Jacoby, G C; Sheppard, P R; Sieh, K E

    1988-07-08

    Old trees growing along the San Andreas fault near Wrightwood, California, record in their annual ring-width patterns the effects of a major earthquake in the fall or winter of 1812 to 1813. Paleoseismic data and historical information indicate that this event was the "San Juan Capistrano" earthquake of 8 December 1812, with a magnitude of 7.5. The discovery that at least 12 kilometers of the Mojave segment of the San Andreas fault ruptured in 1812, only 44 years before the great January 1857 rupture, demonstrates that intervals between large earthquakes on this part of the fault are highly variable. This variability increases the uncertainty of forecasting destructive earthquakes on the basis of past behavior and accentuates the need for a more fundamental knowledge of San Andreas fault dynamics.

  17. Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations.

    Science.gov (United States)

    Brenguier, F; Campillo, M; Hadziioannou, C; Shapiro, N M; Nadeau, R M; Larose, E

    2008-09-12

    Seismic velocity changes and nonvolcanic tremor activity in the Parkfield area in California reveal that large earthquakes induce long-term perturbations of crustal properties in the San Andreas fault zone. The 2003 San Simeon and 2004 Parkfield earthquakes both reduced seismic velocities that were measured from correlations of the ambient seismic noise and induced an increased nonvolcanic tremor activity along the San Andreas fault. After the Parkfield earthquake, velocity reduction and nonvolcanic tremor activity remained elevated for more than 3 years and decayed over time, similarly to afterslip derived from GPS (Global Positioning System) measurements. These observations suggest that the seismic velocity changes are related to co-seismic damage in the shallow layers and to deep co-seismic stress change and postseismic stress relaxation within the San Andreas fault zone.

  18. Vibroseis Monitoring of San Andreas Fault in California

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri; Nadeau, Robert

    2004-06-11

    A unique data set of seismograms for 720 source-receiver paths has been collected as part of a controlled source Vibroseis experiment San Andreas Fault (SAF) at Parkfield. In the experiment, seismic waves repeatedly illuminated the epicentral region of the expected M6 event at Parkfield from June 1987 until November 1996. For this effort, a large shear-wave vibrator was interfaced with the 3-component (3-C) borehole High-Resolution Seismic Network (HRSN), providing precisely timed collection of data for detailed studies of changes in wave propagation associated with stress and strain accumulation in the fault zone (FZ). Data collected by the borehole network were examined for evidence of changes associated with the nucleation process of the anticipated M6 earthquake at Parkfield. These investigations reported significant traveltime changes in the S coda for paths crossing the fault zone southeast of the epicenter and above the rupture zone of the 1966 M6 earthquake. Analysis and modeling of these data and comparison with observed changes in creep, water level, microseismicity, slip-at-depth and propagation from characteristic repeating microearthquakes showed temporal variations in a variety of wave propagation attributes that were synchronous with changes in deformation and local seismicity patterns. Numerical modeling suggests 200 meters as an effective thickness of SAF. The observed variations can be explained by velocity 6 percent velocity variation within SAF core. Numerical modeling studies and a growing number of observations have argued for the propagation of fault-zone guided waves (FZGW) within a SAF zone that is 100 to 200 m wide at seismogenic depths and with 20 to 40 percent lower shear-wave velocity than the adjacent unfaulted rock. Guided wave amplitude tomographic inversion for SAF using microearthquakes, shows clearly that FZGW are significantly less attenuated in a well-defined region of the FZ. This region plunges to the northwest along the

  19. Chemical and Physical Characteristics of Pulverized Granitic Rock Adjacent to the San Andreas, Garlock and San Jacinto Faults: Implications for Earthquake Physics

    Science.gov (United States)

    Rockwell, T. K.; Sisk, M.; Stillings, M.; Girty, G.; Dor, O.; Wechsler, N.; Ben-Zion, Y.

    2008-12-01

    We present new detailed analyses of pulverized granitic rocks from sections adjacent to the San Andreas, Garlock and San Jacinto faults in southern California. Along the San Andreas and Garlock faults, the Tejon Lookout Granite is pulverized in all exposures within about 100 m of both faults. Along the Clark strand of the San Jacinto fault in Horse Canyon, the pulverization of granitic rocks is highly asymmetric, with a much broader zone of pulverization along the southwest side of the Clark fault. In areas where the granite is injected as dyke rock into schist, only the granitic rock shows pulverization, demonstrating the control of rock type on the pulverization process. Chemical analyses indicate little or no weathering in the bulk of the rock, although XRD analysis shows the presence of smectite, illite, and minor kaolinite in the clay-sized fraction. Weathering products may dominate in the less than 1 micron fraction. The average grain size in all samples of pulverized granitic rock range between about 20 and 200 microns (silt to fine sand), with the size distribution in part a function of proximity to the primary slip zone. The San Andreas fault samples are generally finer than those collected from along the Garlock or San Jacinto faults. The particle size distribution for all samples is non-fractal, with a distinct slope break in the 60-100 micron range, which suggests that pulverization is not a consequence of direct shear. This average particle size is quite coarser than previous reports, which we attribute to possible measurement errors in the prior work. Our data and observations suggest that dynamic fracturing in the wall rock of these three major faults only accounts for 1% or less of the earthquake energy budget.

  20. Local geomagnetic events associated with displacements on the san andreas fault.

    Science.gov (United States)

    Breiner, S; Kovach, R L

    1967-10-06

    The piezomagnetic properties of rock suggest that a change in subsurface stress will manifest itself as a change in the magnetic susceptibility and remanent magnetization and hence the local geomagnetic field. A differential array of magnetometers has been operating since late 1965 on the San Andreas fault in the search for piezomagnetic signals under conditions involving active fault stress. Local changes in the geomagnetic field have been observed near Hollister, California, some tens of hours preceding the onset of abrupt creep displacement on the San Andreas fault.

  1. Perspective view, Landsat overlay San Andreas Fault, Palmdale, California

    Science.gov (United States)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is the San Andreas Fault. This segment of the fault lies near the city of Palmdale, California (the flat area in the right half of the image) about 60 kilometers (37 miles) north of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. The Lake Palmdale Reservoir, approximately 1.5 kilometers (0.9 miles) across, sits in the topographic depression created by past movement along the fault. Highway 14 is the prominent linear feature starting at the lower left edge of the image and continuing along the far side of the reservoir. The patterns of residential and agricultural development around Palmdale are seen in the Landsat imagery in the right half of the image. SRTM topographic data will be used by geologists studying fault dynamics and landforms resulting from active tectonics.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  2. Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD)

    Science.gov (United States)

    Moore, Diane E.; Rymer, Michael J.

    2012-05-01

    Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.

  3. Talc-bearing serpentinite and the creeping section of the San Andreas fault.

    Science.gov (United States)

    Moore, Diane E; Rymer, Michael J

    2007-08-16

    The section of the San Andreas fault located between Cholame Valley and San Juan Bautista in central California creeps at a rate as high as 28 mm yr(-1) (ref. 1), and it is also the segment that yields the best evidence for being a weak fault embedded in a strong crust. Serpentinized ultramafic rocks have been associated with creeping faults in central and northern California, and serpentinite is commonly invoked as the cause of the creep and the low strength of this section of the San Andreas fault. However, the frictional strengths of serpentine minerals are too high to satisfy the limitations on fault strength, and these minerals also have the potential for unstable slip under some conditions. Here we report the discovery of talc in cuttings of serpentinite collected from the probable active trace of the San Andreas fault that was intersected during drilling of the San Andreas Fault Observatory at Depth (SAFOD) main hole in 2005. We infer that the talc is forming as a result of the reaction of serpentine minerals with silica-saturated hydrothermal fluids that migrate up the fault zone, and the talc commonly occurs in sheared serpentinite. This discovery is significant, as the frictional strength of talc at elevated temperatures is sufficiently low to meet the constraints on the shear strength of the fault, and its inherently stable sliding behaviour is consistent with fault creep. Talc may therefore provide the connection between serpentinite and creep in the San Andreas fault, if shear at depth can become localized along a talc-rich principal-slip surface within serpentinite entrained in the fault zone.

  4. Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks

    NARCIS (Netherlands)

    Chatzaras, V.; Tikoff, B.; Newman, J.; Withers, A.C.; Drury, M.R.

    2015-01-01

    In lithospheric-scale strike-slip fault zones, upper crustal strength is well constrained from borehole observations and fault rock deformation experiments, but mantle strength is less well known. Using peridotite xenoliths, we show that the upper mantle below the San Andreas fault system

  5. 1855 and 1991 Surveys of the San Andreas Fault: Implications for Fault Machanics

    Science.gov (United States)

    Grant, Lisa B.; Donnellan, Andrea

    1993-01-01

    Two monuments from an 1855 survey that spans the San Andreas fault in the Carrizo Plain have been displaced 11.0+/-2.5m right-laterally by the 1857 Fort Tejon earthquake and associated seismicity and afterslip by the 1857 Fort Tejon earthquake and associated seismicity and afterslip.

  6. Habitat information in the region on the underwater San Andreas Fault - Topic: Exploring the Undersea San Andreas Fault: Revealing the Past, Present, and Future at the Centennial of the Great 1906 Earthquake

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During this exploration, the first comprehensive high-resolution multi-beam sonar and seismic reflection survey of the Northern San Andreas Fault (NSAF) was...

  7. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault.

    Science.gov (United States)

    Zielke, Olaf; Arrowsmith, J Ramón; Grant Ludwig, Lisa; Akçiz, Sinan O

    2010-02-26

    The moment magnitude (Mw) 7.9 Fort Tejon earthquake of 1857, with a approximately 350-kilometer-long surface rupture, was the most recent major earthquake along the south-central San Andreas Fault, California. Based on previous measurements of its surface slip distribution, rupture along the approximately 60-kilometer-long Carrizo segment was thought to control the recurrence of 1857-like earthquakes. New high-resolution topographic data show that the average slip along the Carrizo segment during the 1857 event was 5.3 +/- 1.4 meters, eliminating the core assumption for a linkage between Carrizo segment rupture and recurrence of major earthquakes along the south-central San Andreas Fault. Earthquake slip along the Carrizo segment may recur in earthquake clusters with cumulative slip of approximately 5 meters.

  8. Strain on the san andreas fault near palmdale, california: rapid, aseismic change.

    Science.gov (United States)

    Savage, J C; Prescott, W H; Lisowski, M; King, N E

    1981-01-02

    Frequently repeated strain measurements near Palmdale, California, during the period from 1971 through 1980 indicate that, in addition to a uniform accumulation of right-lateral shear strain (engineering shear, 0.35 microradian per year) across the San Andreas fault, a 1-microstrain contraction perpendicular to the fault that accumulated gradually during the interval 1974 through 1978 was aseismically released between February and November 1979. Subsequently (November 1979 to March 1980), about half of the contraction was recovered. This sequence of strain changes can be explained in terms of south-southwestward migration of a slip event consisting of the south-southwestward movement of the upper crust on a horizontal detachment surface at a depth of 10 to 30 kilometers. The large strain change in 1979 corresponds to the passage of the slip event beneath the San Andreas fault.

  9. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    Science.gov (United States)

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  10. The morphology of strike-slip faults - Examples from the San Andreas Fault, California

    Science.gov (United States)

    Bilham, Roger; King, Geoffrey

    1989-01-01

    The dilatational strains associated with vertical faults embedded in a horizontal plate are examined in the framework of fault kinematics and simple displacement boundary conditions. Using boundary element methods, a sequence of examples of dilatational strain fields associated with commonly occurring strike-slip fault zone features (bends, offsets, finite rupture lengths, and nonuniform slip distributions) is derived. The combinations of these strain fields are then used to examine the Parkfield region of the San Andreas fault system in central California.

  11. Electrical resistivity variations associated with earthquakes on the san andreas fault.

    Science.gov (United States)

    Mazzella, A; Morrison, H F

    1974-09-06

    A 24 percent precursory change in apparent electrical resistivity was observed before a magnitude 3.9 earthquake of strike-slip nature on the San Andreas fault in central California. The experimental configuration and numerical calculations suggest that the change is associated with a volume at depth rather than some near-surface phenomenon. The character and duration of the precursor period agree well with those of other earthquake studies and support a dilatant earthquake mechanism model.

  12. Correlation of data on strain accumulation adjacent to the San Andreas Fault with available models

    Science.gov (United States)

    Turcotte, Donald L.

    1986-01-01

    Theoretical and numerical studies of deformation on strike slip faults were performed and the results applied to geodetic observations performed in the vicinity of the San Andreas Fault in California. The initial efforts were devoted to an extensive series of finite element calculations of the deformation associated with cyclic displacements on a strike-slip fault. Measurements of strain accumulation adjacent to the San Andreas Fault indicate that the zone of strain accumulation extends only a few tens of kilometers away from the fault. There is a concern about the tendency to make geodetic observations along the line to the source. This technique has serious problems for strike slip faults since the vector velocity is also along the fault. Use of a series of stations lying perpendicular to the fault whose positions are measured relative to a reference station are suggested to correct the problem. The complexity of faulting adjacent to the San Andreas Fault indicated that the homogeneous elastic and viscoelastic approach to deformation had serious limitations. These limitation led to the proposal of an approach that assumes a fault is composed of a distribution of asperities and barriers on all scales. Thus, an earthquake on a fault is treated as a failure of a fractal tree. Work continued on the development of a fractal based model for deformation in the western United States. In order to better understand the distribution of seismicity on the San Andreas Fault system a fractal analog was developed. The fractal concept also provides a means of testing whether clustering in time or space is a scale-invariant process.

  13. Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault.

    Science.gov (United States)

    Shelly, David R

    2010-02-04

    The San Andreas fault is one of the most extensively studied faults in the world, yet its physical character and deformation mode beneath the relatively shallow earthquake-generating portion remain largely unconstrained. Tectonic 'non-volcanic' tremor, a recently discovered seismic signal probably generated by shear slip on the deep extension of some major faults, can provide new insight into the deep fate of such faults, including that of the San Andreas fault near Parkfield, California. Here I examine continuous seismic data from mid-2001 to 2008, identifying tremor and decomposing the signal into different families of activity based on the shape and timing of the waveforms at multiple stations. This approach allows differentiation between activities from nearby patches of the deep fault and begins to unveil rich and complex patterns of tremor occurrence. I find that tremor exhibits nearly continuous migration, with the most extensive episodes propagating more than 20 kilometres along fault strike at rates of 15-80 kilometres per hour. This suggests that the San Andreas fault remains a localized through-going structure, at least to the base of the crust, in this area. Tremor rates and recurrence behaviour changed markedly in the wake of the 2004 magnitude-6.0 Parkfield earthquake, but these changes were far from uniform within the tremor zone, probably reflecting heterogeneous fault properties and static and dynamic stresses decaying away from the rupture. The systematic recurrence of tremor demonstrated here suggests the potential to monitor detailed time-varying deformation on this portion of the deep San Andreas fault, deformation which unsteadily loads the shallower zone that last ruptured in the 1857 magnitude-7.9 Fort Tejon earthquake.

  14. The accommodation of relative motion at depth on the San Andreas fault system in California

    Science.gov (United States)

    Prescott, W. H.; Nur, A.

    1981-01-01

    Plate motion below the seismogenic layer along the San Andreas fault system in California is assumed to form by aseismic slip along a deeper extension of the fault or may result from lateral distribution of deformation below the seismogenic layer. The shallow depth of California earthquakes, the depth of the coseismic slip during the 1906 San Francisco earthquake, and the presence of widely separated parallel faults indicate that relative motion is distributed below the seismogenic zone, occurring by inelastic flow rather than by aseismic slip on discrete fault planes.

  15. The Ash of Ohlson Ranch: A well-dated Stratigraphic Marker for Constraining Deformation Across the Northern San Andreas Fault

    Science.gov (United States)

    McLaughlin, R. J.; Vazquez, J. A.; Fleck, R. J.; DeLong, S.; Sarna-Wojcicki, A.; Wan, E.; Powell, C., II; Prentice, C. S.

    2012-12-01

    The marine to non-marine transgressional - regressional Ohlson Ranch Formation of northern California was deposited mainly east of the San Andreas Fault and the Gualala structural block during Pliocene sea level high stands. The formation transitions eastward from marine to fluvial deposits and the marine strata are deposited on a mildly warped, pholad-bored erosional surface cut near Pliocene sea level (probably above storm wave-base), on rocks of the Coastal and Central belts of the Franciscan Complex. West of the San Andreas fault near Point Arena, a right-laterally displaced remnant of the wave-cut surface occurs at ca. 100m above modern sea level. East of the fault this surface varies in elevation from ca. 200-350m and a 12-15 cm thick light gray silicic tephra, the ash of Ohlson Ranch (AOR) locally occurs ~10m above the base of the marine section. The AOR consists of very fine-grained glass shards with conspicuous brown biotite in the upper 2 cm and rare co-magmatic clinopyroxene, hornblende and euhedral, weakly zoned zircons. The zircons are relatively uniform in size and little abraded, suggesting they are primary and not re-worked. The fine-grained nature of the AOR deposit suggests it is water lain and chemical analysis of the volcanic glass indicates that the eruptive source was in the southern Cascade Range. We analyzed both polished section mounts of zircon crystals and unpolished rims by ion microprobe (SHRIMP-RG) and LA-ICPMS in order to establish a precise U-Pb age for the AOR. Ages were adjusted for initial 230Th deficiency in the U-Pb chain using Th/U measured in zircon and host glass shards. Thirty-two zircon grains measured by LA-ICPMS at the University of Arizona LaserChron Center yield a mean U-Pb age of 4.58 ± 0.30 Ma (2σ , MSWD=0.53, n=23). SHRIMP analyses of zircon interiors exposed in polished epoxy-mounts yield a mean U-Pb age of 4.36 ± 0.11 Ma (2σ, MSWD 0.72, n=19). To further refine the likely eruption age of the AOR, the SHRIMP was

  16. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California

    Science.gov (United States)

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.

    2017-06-01

    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should

  17. Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault

    Science.gov (United States)

    Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.

    2013-01-01

    Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.

  18. Correlation between deep fluids, tremor and creep along the central San Andreas fault.

    Science.gov (United States)

    Becken, Michael; Ritter, Oliver; Bedrosian, Paul A; Weckmann, Ute

    2011-11-30

    The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.

  19. Impulsive radon emanation on a creeping segment of the San Andreas fault, California

    International Nuclear Information System (INIS)

    King, C.-Y.

    1984-01-01

    Radon emanation was continuously monitored for several months at two locations along a creeping segment of the San Andreas fault in central California. The recorded emanations showed several impulsive increases that lasted as much as five hours with amplitudes considerably larger than meteorologically induced diurnal variations. Some of the radon increases were accompanied or followed by earthquakes or fault-creep events. They were possibly the result of some sudden outbursts of relatively radon-rich ground gas, sometimes triggered by crustal deformation or vibration. (Auth.)

  20. Cradle of the Earthquake: Exploring the Underwater San Andreas Fault on the R/V Pacific Storm and the SRV Derek M. Baylis between 20100910 and 20101003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over one hundred years after the devastating Great 1906 Earthquake that nearly destroyed San Francisco, this expedition explored the Northern San Andreas Fault, the...

  1. Evolution of the northern santa cruz mountains by advection of crust past a san andreas fault bend.

    Science.gov (United States)

    Anderson, R S

    1990-07-27

    The late Quaternary marine terraces near Santa Cruz, California, reflect uplift associated with the nearby restraining bend on the San Andreas fault. Excellent correspondence of the coseismic vertical displacement field caused by the 17 October 1989 magnitude 7.1 Loma Prieta earthquake and the present elevations of these terraces allows calculation of maximum long-term uplift rates 1 to 2 kilometers west of the San Andreas fault of 0.8 millimeters per year. Over several million years, this uplift, in concert with the right lateral translation of the resulting topography, and with continual attack by geomorphic processes, can account for the general topography of the northern Santa Cruz Mountains.

  2. Crustal Deformation along San Andreas Fault System revealed by GPS and Sentinel-1 InSAR

    Science.gov (United States)

    Xu, X.; Sandwell, D. T.

    2017-12-01

    We present a crustal deformation velocity map along the San Andreas Fault System by combining measurements from Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) velocity models (CGM V1). We assembled 5 tracks of descending Sentinel-1 InSAR data spanning 2014.11-2017.02, and produced 545 interferograms, each of which covers roughly 250km x 420km area ( 60 bursts). These interferograms are unwrapped using SNAPHU [Chen & Zebker, 2002], with the 2Npi unwrapping ambiguity corrected with a sparse recovery method. We used coherence-based small baseline subset (SBAS) method [Tong & Schmidt, 2016] together with atmospheric correction by common-point stacking [Tymofyeyeva and Fialko, 2015] to construct deformation time series [Xu et. al., 2017]. Then we project the horizontal GPS model and vertical GPS data into satellite line-of-sight directions separately. We first remove the horizontal GPS model from InSAR measurements and perform elevation-dependent atmospheric phase correction. Then we compute the discrepancy between the remaining InSAR measurements and vertical GPS data. We interpolate this discrepancy and remove it from the residual InSAR measurements. Finally, we restore the horizontal GPS model. Preliminary results show that fault creep over the San Jacinto fault, the Elsinore fault, and the San Andreas creeping section is clearly resolved. During the period of drought, the Central Valley of California was subsiding at a high rate (up to 40 cm/yr), while the city of San Jose is uplifting due to recharge, with a quaternary fault acting as a ground water barrier. These findings will be reported during the meeting.

  3. Tremor-tide correlations and near-lithostatic pore pressure on the deep San Andreas fault.

    Science.gov (United States)

    Thomas, Amanda M; Nadeau, Robert M; Bürgmann, Roland

    2009-12-24

    Since its initial discovery nearly a decade ago, non-volcanic tremor has provided information about a region of the Earth that was previously thought incapable of generating seismic radiation. A thorough explanation of the geologic process responsible for tremor generation has, however, yet to be determined. Owing to their location at the plate interface, temporal correlation with geodetically measured slow-slip events and dominant shear wave energy, tremor observations in southwest Japan have been interpreted as a superposition of many low-frequency earthquakes that represent slip on a fault surface. Fluids may also be fundamental to the failure process in subduction zone environments, as teleseismic and tidal modulation of tremor in Cascadia and Japan and high Poisson ratios in both source regions are indicative of pressurized pore fluids. Here we identify a robust correlation between extremely small, tidally induced shear stress parallel to the San Andreas fault and non-volcanic tremor activity near Parkfield, California. We suggest that this tremor represents shear failure on a critically stressed fault in the presence of near-lithostatic pore pressure. There are a number of similarities between tremor in subduction zone environments, such as Cascadia and Japan, and tremor on the deep San Andreas transform, suggesting that the results presented here may also be applicable in other tectonic settings.

  4. Crustal Density Variation Along the San Andreas Fault Controls Its Secondary Faults Distribution and Dip Direction

    Science.gov (United States)

    Yang, H.; Moresi, L. N.

    2017-12-01

    The San Andreas fault forms a dominant component of the transform boundary between the Pacific and the North American plate. The density and strength of the complex accretionary margin is very heterogeneous. Based on the density structure of the lithosphere in the SW United States, we utilize the 3D finite element thermomechanical, viscoplastic model (Underworld2) to simulate deformation in the San Andreas Fault system. The purpose of the model is to examine the role of a big bend in the existing geometry. In particular, the big bend of the fault is an initial condition of in our model. We first test the strength of the fault by comparing the surface principle stresses from our numerical model with the in situ tectonic stress. The best fit model indicates the model with extremely weak fault (friction coefficient 200 kg/m3) than surrounding blocks. In contrast, the Mojave block is detected to find that it has lost its mafic lower crust by other geophysical surveys. Our model indicates strong strain localization at the jointer boundary between two blocks, which is an analogue for the Garlock fault. High density lower crust material of the Great Valley tends to under-thrust beneath the Transverse Range near the big bend. This motion is likely to rotate the fault plane from the initial vertical direction to dip to the southwest. For the straight section, north to the big bend, the fault is nearly vertical. The geometry of the fault plane is consistent with field observations.

  5. Structural features of the San Andreas fault at Tejon Pass, California

    Science.gov (United States)

    Dewers, T. A.; Reches, Z.; Brune, J. N.

    2002-12-01

    We mapped a 2 km belt along the San Andreas fault (SAF) in the Tejon Pass area where road cuts provide fresh exposures of the fault zone and surrounding rocks. Our 1:2,000 structural mapping is focused on analysis of faulting processes and is complementary to regional mapping at 1:12,000 scale by Ramirez (M.Sc., UC Santa Barbara, 1984). The dominant rock units are the Hungry Valley Formation of Pliocene age (clastic sediments) exposed south of the SAF, and the Tejon Lookout granite (Cretaceous) and Neenach Volcanic Formation exposed north of it. Ramirez (1983) deduced ~220 km of post-Miocene lateral slip. The local trend of the SAF is about N60W and it includes at least three main, subparallel segments that form a 200 m wide zone. The traces of the segments are quasi-linear, discontinuous, and they are stepped with respect to each other, forming at least five small pull-aparts and sag ponds in the mapping area. The three segments were not active semi-contemporaneously and the southern segment is apparently the oldest. The largest pull-apart, 60-70 m wide, displays young (Quaternary?) silt and shale layers. We found two rock bodies that are suspected as fault-rocks. One is a 1-2 m thick sheet-like body that separates the Tejon Lookout granite from young (Recent?) clastic rocks. In the field, it appears as a gouge zone composed of poorly cemented, dark clay size grains; however, the microstructure of this rock does not reveal clear shear features. The second body is the 80-120 m wide zone of Tejon Lookout granite that extends for less than 1 km along the SAF in the mapped area. It is characterized by three structural features: (1) pulverization into friable, granular material by multitude of grain-crossing fractures; (2) abundance of dip-slip small faults that are gently dipping toward and away from the SAF; and (3) striking lack of evidence for shear parallel to the SAF. The relationships between these features and the large right-lateral shear along the SAF are

  6. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    Science.gov (United States)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    The San Gabriel fault, a deeply eroded late Oligocene to middle Pliocene precursor to the San Andreas, was chosen for petrologic study to provide information regarding intrafault material representative of deeper crustal levels. Cataclastic rocks exposed along the present trace of the San Andreas in this area are exclusively a variety of fault gouge that is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote, and Fe-Ti oxide mineralogy representing the milled-down equivalent of the original rock (Anderson and Osborne, 1979; Anderson et al., 1980). Likewise, fault gouge and associated breccia are common along the San Gabriel fault, but only where the zone of cataclasis is several tens of meters wide. At several localities, the zone is extremely narrow (several centimeters), and the cataclastic rock type is cataclasite, a dark, aphanitic, and highly comminuted and indurated rock. The cataclastic rocks along the San Gabriel fault exhibit more comminution than that observed for gouge along the San Andreas. The average grain diameter for the San Andreas gouge ranges from 0.01 to 0.06 mm. For the San Gabriel cataclastic rocks, it ranges from 0.0001 to 0.007 mm. Whereas the San Andreas gouge remains particulate to the smallest grain-size, the ultra-fine grain matrix of the San Gabriel cataclasite is composed of a mosaic of equidimensional, interlocking grains. The cataclastic rocks along the San Gabriel fault also show more mineralogiec changes compared to gouge from the San Andreas fault. At the expense of biotite, amphibole, and feldspar, there is some growth of new albite, chlorite, sericite, laumontite, analcime, mordenite (?), and calcite. The highest grade of metamorphism is laumontite-chlorite zone (zeolite facies). Mineral assemblages and constrained uplift rates allow temperature and depth estimates of 200 ± 30° C and 2-5 km, thus suggesting an approximate geothermal gradient of ~50°C/km. Such elevated temperatures imply a

  7. Geomorphic evidence of active tectonics in the San Gorgonio Pass region of the San Andreas Fault system: an example of discovery-based research in undergraduate teaching

    Science.gov (United States)

    Reinen, L. A.; Yule, J. D.

    2014-12-01

    Student-conducted research in courses during the first two undergraduate years can increase learning and improve student self-confidence in scientific study, and is recommended for engaging and retaining students in STEM fields (PCAST, 2012). At Pomona College, incorporating student research throughout the geology curriculum tripled the number of students conducting research prior to their senior year that culminated in a professional conference presentation (Reinen et al., 2006). Here we present an example of discovery-based research in Neotectonics, a second-tier course predominantly enrolling first-and second-year students; describe the steps involved in the four week project; and discuss early outcomes of student confidence, engagement and retention. In the San Gorgonio Pass region (SGPR) in southern California, the San Andreas fault undergoes a transition from predominantly strike-slip to a complex system of faults with significant dip-slip, resulting in diffuse deformation and raising the question of whether a large earthquake on the San Andreas could propagate through the region (Yule, 2009). In spring 2014, seven students in the Neotectonics course conducted original research investigating quantifiable geomorphic evidence of tectonic activity in the SGPR. Students addressed questions of [1] unequal uplift in the San Bernardino Mountains, [2] fault activity indicated by stream knick points, [3] the role of fault style on mountain front sinuosity, and [4] characteristic earthquake slip determined via fault scarp degradation models. Students developed and revised individual projects, collaborated with each other on methods, and presented results in a public forum. A final class day was spent reviewing the projects and planning future research directions. Pre- and post-course surveys show increases in students' self-confidence in the design, implementation, and presentation of original scientific inquiries. 5 of 6 eligible students participated in research the

  8. A critical evaluation of crustal dehydration as the cause of an overpressured and weak San Andreas Fault

    Science.gov (United States)

    Fulton, P.M.; Saffer, D.M.; Bekins, B.A.

    2009-01-01

    Many plate boundary faults, including the San Andreas Fault, appear to slip at unexpectedly low shear stress. One long-standing explanation for a "weak" San Andreas Fault is that fluid release by dehydration reactions during regional metamorphism generates elevated fluid pressures that are localized within the fault, reducing the effective normal stress. We evaluate this hypothesis by calculating realistic fluid production rates for the San Andreas Fault system, and incorporating them into 2-D fluid flow models. Our results show that for a wide range of permeability distributions, fluid sources from crustal dehydration are too small and short-lived to generate, sustain, or localize fluid pressures in the fault sufficient to explain its apparent mechanical weakness. This suggests that alternative mechanisms, possibly acting locally within the fault zone, such as shear compaction or thermal pressurization, may be necessary to explain a weak San Andreas Fault. More generally, our results demonstrate the difficulty of localizing large fluid pressures generated by regional processes within near-vertical fault zones. ?? 2009 Elsevier B.V.

  9. Fault rocks from the SAFOD core samples : implications for weakening at shallow depths along the San Andreas Fault, California

    NARCIS (Netherlands)

    Holdsworth, R.E.; van Diggelen, E.W.E.; Spiers, C.J.; Bresser, J.H.P. de; Walker, R.J.; Bown, L.

    2011-01-01

    The drilling of a deep borehole across the actively creeping Parkfield segment of the San Andreas Fault Zone (SAFZ), California, and collection of core materials permit direct geological study of fault zone processes at 2–3 km depth. The three drill cores sample both host and fault rocks and pass

  10. Geophysical Characterization of Groundwater-Fault Dynamics at San Andreas Oasis

    Science.gov (United States)

    Faherty, D.; Polet, J.; Osborn, S. G.

    2017-12-01

    The San Andreas Oasis has historically provided a reliable source of fresh water near the northeast margin of the Salton Sea, although since the recent completion of the Coachella Canal Lining Project and persistent drought in California, surface water at the site has begun to disappear. This may be an effect of the canal lining, however, the controls on groundwater are complicated by the presence of the Hidden Springs Fault (HSF), a northeast dipping normal fault that trends near the San Andreas Oasis. Its surface expression is apparent as a lineation against which all plant growth terminates, suggesting that it may form a partial barrier to subsurface groundwater flow. Numerous environmental studies have detailed the chemical evolution of waters resources at San Andreas Spring, although there remains a knowledge gap on the HSF and its relation to groundwater at the site. To better constrain flow paths and characterize groundwater-fault interactions, we have employed resistivity surveys near the surface trace of the HSF to generate profiles of lateral and depth-dependent variations in resistivity. The survey design is comprised of lines installed in Wenner Arrays, using an IRIS Syscal Kid, with 24 electrodes, at a maximum electrode spacing of 5 meters. In addition, we have gathered constraints on the geometry of the HSF using a combination of ground-based magnetic and gravity profiles, conducted with a GEM walking Proton Precession magnetometer and a Lacoste & Romberg gravimeter. Seventeen gravity measurements were acquired across the surface trace of the fault. Preliminary resistivity results depict a shallow conductor localized at the oasis and discontinuous across the HSF. Magnetic data reveal a large contrast in subsurface magnetic susceptibility that appears coincident with the surface trace and trend of the HSF, while gravity data suggests a shallow, relatively high density anomaly centered near the oasis. These data also hint at a second, previously

  11. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault

    International Nuclear Information System (INIS)

    Delorey, Andrew A.; Elst, Nicholas J. van der; Johnson, Paul Allan

    2016-01-01

    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Lastly, our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.

  12. Precise tremor source locations and amplitude variations along the lower-crustal central San Andreas Fault

    Science.gov (United States)

    Shelly, David R.; Hardebeck, Jeanne L.

    2010-01-01

    We precisely locate 88 tremor families along the central San Andreas Fault using a 3D velocity model and numerous P and S wave arrival times estimated from seismogram stacks of up to 400 events per tremor family. Maximum tremor amplitudes vary along the fault by at least a factor of 7, with by far the strongest sources along a 25 km section of the fault southeast of Parkfield. We also identify many weaker tremor families, which have largely escaped prior detection. Together, these sources extend 150 km along the fault, beneath creeping, transitional, and locked sections of the upper crustal fault. Depths are mostly between 18 and 28 km, in the lower crust. Epicenters are concentrated within 3 km of the surface trace, implying a nearly vertical fault. A prominent gap in detectible activity is located directly beneath the region of maximum slip in the 2004 magnitude 6.0 Parkfield earthquake.

  13. Tidal triggering of earthquakes suggests poroelastic behavior on the San Andreas Fault

    Science.gov (United States)

    Delorey, Andrew; Van Der Elst, Nicholas; Johnson, Paul

    2017-01-01

    Tidal triggering of earthquakes is hypothesized to provide quantitative information regarding the fault's stress state, poroelastic properties, and may be significant for our understanding of seismic hazard. To date, studies of regional or global earthquake catalogs have had only modest successes in identifying tidal triggering. We posit that the smallest events that may provide additional evidence of triggering go unidentified and thus we developed a technique to improve the identification of very small magnitude events. We identify events applying a method known as inter-station seismic coherence where we prioritize detection and discrimination over characterization. Here we show tidal triggering of earthquakes on the San Andreas Fault. We find the complex interaction of semi-diurnal and fortnightly tidal periods exposes both stress threshold and critical state behavior. Our findings reveal earthquake nucleation processes and pore pressure conditions – properties of faults that are difficult to measure, yet extremely important for characterizing earthquake physics and seismic hazards.

  14. Evidence for chaotic fault interactions in the seismicity of the San Andreas fault and Nankai trough

    Science.gov (United States)

    Huang, Jie; Turcotte, D. L.

    1990-01-01

    The dynamical behavior introduced by fault interactions is examined here using a simple spring-loaded, slider-block model with velocity-weakening friction. The model consists of two slider blocks coupled to each other and to a constant-velocity driver by elastic springs. For an asymmetric system in which the frictional forces on the two blocks are not equal, the solutions exhibit chaotic behavior. The system's behavior over a range of parameter values seems to be generally analogous to that of weakly coupled segments of an active fault. Similarities between the model simulations and observed patterns of seismicity on the south central San Andreas fault in California and in the Nankai trough along the coast of southwestern Japan.

  15. Steep-dip seismic imaging of the shallow San Andreas fault near Parkfield.

    Science.gov (United States)

    Hole, J A; Catchings, R D; St Clair, K C; Rymer, M J; Okaya, D A; Carney, B J

    2001-11-16

    Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70 degrees to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.

  16. A 100-year average recurrence interval for the san andreas fault at wrightwood, california.

    Science.gov (United States)

    Fumal, T E; Schwartz, D P; Pezzopane, S K; Weldon, R J

    1993-01-08

    Evidence for five large earthquakes during the past five centuries along the San Andreas fault zone 70 kilometers northeast of Los Angeles, California, indicates that the average recurrence interval and the temporal variability are significantly smaller than previously thought. Rapid sedimentation during the past 5000 years in a 150-meter-wide structural depression has produced a greater than 21-meter-thick sequence of debris flow and stream deposits interbedded with more than 50 datable peat layers. Fault scarps, colluvial wedges, fissure infills, upward termination of ruptures, and tilted and folded deposits above listric faults provide evidence for large earthquakes that occurred in A.D. 1857, 1812, and about 1700, 1610, and 1470.

  17. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas fault.

    Science.gov (United States)

    Shelly, David R

    2010-06-11

    Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between approximately 3 and approximately 6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.

  18. Clustering and periodic recurrence of microearthquakes on the san andreas fault at parkfield, california.

    Science.gov (United States)

    Nadeau, R M; Foxall, W; McEvilly, T V

    1995-01-27

    The San Andreas fault at Parkfield, California, apparently late in an interval between repeating magnitude 6 earthquakes, is yielding to tectonic loading partly by seismic slip concentrated in a relatively sparse distribution of small clusters (<20-meter radius) of microearthquakes. Within these clusters, which account for 63% of the earthquakes in a 1987-92 study interval, virtually identical small earthquakes occurred with a regularity that can be described by the statistical model used previously in forecasting large characteristic earthquakes. Sympathetic occurrence of microearthquakes in nearby clusters was observed within a range of about 200 meters at communication speeds of 10 to 100 centimeters per second. The rate of earthquake occurrence, particularly at depth, increased significantly during the study period, but the fraction of earthquakes that were cluster members decreased.

  19. Variations in strength and slip rate along the san andreas fault system.

    Science.gov (United States)

    Jones, C H; Wesnousky, S G

    1992-04-03

    Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.

  20. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system

    Science.gov (United States)

    Shebalin, P.; Narteau, C.; Vorobieva, I.

    2017-12-01

    Crustal faults accommodate slip either by a succession of earthquakes or continuous slip, andin most instances, both these seismic and aseismic processes coexist. Recorded seismicity and geodeticmeasurements are therefore two complementary data sets that together document ongoing deformationalong active tectonic structures. Here we study the influence of stable sliding on earthquake statistics.We show that creep along the San Andreas Fault is responsible for a break of slope in the earthquake sizedistribution. This slope increases with an increasing creep rate for larger magnitude ranges, whereas itshows no systematic dependence on creep rate for smaller magnitude ranges. This is interpreted as a deficitof large events under conditions of faster creep where seismic ruptures are less likely to propagate. Theseresults suggest that the earthquake size distribution does not only depend on the level of stress but also onthe type of deformation.

  1. Geodetic measurement of deformation east of the San Andreas Fault in Central California

    Science.gov (United States)

    Sauber, Jeanne; Solomon, Sean C.; Lisowski, Michael

    1988-01-01

    The shear strain rates in the Diablo Range of California have been calculated, and the slip rate along the Calaveras and Paicines faults in Central California have been estimated, on the basis of triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas Fault. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E, leading to an average shear strain value that corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. It is inferred that the measured strain is due to compression across the fold of this area. The hypothesized uniform, fault-normal compression within the Coast Ranges is not supported by these results.

  2. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas Fault

    Science.gov (United States)

    Shelly, David R.

    2010-01-01

    Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between ~3 and ~6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.

  3. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    Science.gov (United States)

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  4. Paleoearthquakes at Frazier Mountain, California delimit extent and frequency of past San Andreas Fault ruptures along 1857 trace

    Science.gov (United States)

    Scharer, Katherine M.; Weldon, Ray; Streig, Ashley; Fumal, Thomas

    2014-01-01

    Large earthquakes are infrequent along a single fault, and therefore historic, well-characterized earthquakes exert a strong influence on fault behavior models. This is true of the 1857 Fort Tejon earthquake (estimated M7.7–7.9) on the southern San Andreas Fault (SSAF), but an outstanding question is whether the 330 km long rupture was typical. New paleoseismic data for six to seven ground-rupturing earthquakes on the Big Bend of the SSAF restrict the pattern of possible ruptures on the 1857 stretch of the fault. In conjunction with existing sites, we show that over the last ~650 years, at least 75% of the surface ruptures are shorter than the 1857 earthquake, with estimated rupture lengths of 100 to <300 km. These results suggest that the 1857 rupture was unusual, perhaps leading to the long open interval, and that a return to pre-1857 behavior would increase the rate of M7.3–M7.7 earthquakes.

  5. Searching for geodetic transient slip signals along the Parkfield segment of the San Andreas Fault

    Science.gov (United States)

    Rousset, B.; Burgmann, R.

    2017-12-01

    The Parkfield section of the San Andreas fault is at the transition between a segment locked since the 1857 Mw 7.9 Fort Tejon earthquake to its south and a creeping segment to the north. It is particularly well instrumented since it is the many previous studies have focused on studying the coseismic and postseismic phases of the two most recent earthquake cycles, the interseismic phase is exhibiting interesting dynamics at the down-dip edge of the seismogenic zone, characterized by a very large number of low frequency earthquakes (LFE) with different behaviors depending on location. Interseismic fault creep rates appear to vary over a wide range of spatial and temporal scales, from the Earth's surface to the base of crust. In this study, we take advantage of the dense Global Positioning System (GPS) network, with 77 continuous stations located within a circle of radius 80 km centered on Parkfield. We correct these time series for the co- and postseismic signals of the 2003 Mw 6.3 San Simeon and 2004 Mw 6.0 Parkfield earthquakes. We then cross-correlate the residual time series with synthetic slow-slip templates following the approach of Rousset et al. (2017). Synthetic tests with transient events contained in GPS time series with realistic noise show the limit of detection of the method. In the application with real GPS time series, the highest correlation amplitudes are compared with micro-seismicity rates, as well as tremor and LFE observations.

  6. Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2

    Science.gov (United States)

    Tembe, S.; Lockner, D.; Wong, T.-F.

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (?? 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature-and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (?????0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress. Copyright 2009 by the American Geophysical Union.

  7. A nonlinear least-squares inverse analysis of strike-slip faulting with application to the San Andreas fault

    Science.gov (United States)

    Williams, Charles A.; Richardson, Randall M.

    1988-01-01

    A nonlinear weighted least-squares analysis was performed for a synthetic elastic layer over a viscoelastic half-space model of strike-slip faulting. Also, an inversion of strain rate data was attempted for the locked portions of the San Andreas fault in California. Based on an eigenvector analysis of synthetic data, it is found that the only parameter which can be resolved is the average shear modulus of the elastic layer and viscoelastic half-space. The other parameters were obtained by performing a suite of inversions for the fault. The inversions on data from the northern San Andreas resulted in predicted parameter ranges similar to those produced by inversions on data from the whole fault.

  8. Climate-modulated channel incision and rupture history of the San Andreas Fault in the Carrizo Plain.

    Science.gov (United States)

    Grant Ludwig, Lisa; Akçiz, Sinan O; Noriega, Gabriela R; Zielke, Olaf; Arrowsmith, J Ramón

    2010-02-26

    The spatial and temporal distribution of fault slip is a critical parameter in earthquake source models. Previous geomorphic and geologic studies of channel offset along the Carrizo section of the south central San Andreas Fault assumed that channels form more frequently than earthquakes occur and suggested that repeated large-slip earthquakes similar to the 1857 Fort Tejon earthquake illustrate typical fault behavior. We found that offset channels in the Carrizo Plain incised less frequently than they were offset by earthquakes. Channels have been offset by successive earthquakes with variable slip since ~1400. This nonuniform slip history reveals a more complex rupture history than previously assumed for the structurally simplest section of the San Andreas Fault.

  9. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California

    Science.gov (United States)

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.

    2016-07-08

    High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at

  10. The San Andreas Fault and a Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may

  11. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  12. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California

    Science.gov (United States)

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.

    2007-01-01

    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  13. Detection of aseismic creep along the San Andreas fault near Parkfield, California with ERS-1 radar interferometry

    Science.gov (United States)

    Werner, Charles L.; Rosen, Paul; Hensley, Scott; Fielding, Eric; Buckley, Sean

    1997-01-01

    The differential interferometric analysis of ERS data from Parkfield (CA) observations revealed the wide area distribution of creep along the moving fault segment of the San Andreas fault over a 15 month interval. The removal of the interferometric phase related to the surface topography was carried out. The fault was clearly visible in the differential interferogram. The magnitude of the tropospheric water vapor phase distortions is greater than the signal and hinders quantitative analysis beyond order of magnitude calculations.

  14. Scientific Drilling Into the San Andreas Fault Zone —An Overview of SAFOD’s First Five Years

    Directory of Open Access Journals (Sweden)

    Stephen Hickman

    2011-03-01

    Full Text Available The San Andreas Fault Observatory at Depth (SAFODwas drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the SanAndreas Fault Zone to be relatively broad (~200 m, containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensivelytested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  15. Magnitude of shear stress on the san andreas fault: implications of a stress measurement profile at shallow depth.

    Science.gov (United States)

    Zoback, M D; Roller, J C

    1979-10-26

    A profile of measurements of shear stress perpendicular to the San Andreas fault near Palmdale, California, shows a marked increase in stress with distance from the fault. The pattern suggests that shear stress on the fault increases slowly with depth and reaches a value on the order of the average stress released during earthquakes. This result has important implications for both long- and shortterm prediction of large earthquakes.

  16. A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California

    Science.gov (United States)

    Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.

    2008-01-01

    Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block

  17. Modeling of periodic great earthquakes on the San Andreas fault: Effects of nonlinear crustal rheology

    Science.gov (United States)

    Reches, Ze'ev; Schubert, Gerald; Anderson, Charles

    1994-01-01

    We analyze the cycle of great earthquakes along the San Andreas fault with a finite element numerical model of deformation in a crust with a nonlinear viscoelastic rheology. The viscous component of deformation has an effective viscosity that depends exponentially on the inverse absolute temperature and nonlinearity on the shear stress; the elastic deformation is linear. Crustal thickness and temperature are constrained by seismic and heat flow data for California. The models are for anti plane strain in a 25-km-thick crustal layer having a very long, vertical strike-slip fault; the crustal block extends 250 km to either side of the fault. During the earthquake cycle that lasts 160 years, a constant plate velocity v(sub p)/2 = 17.5 mm yr is applied to the base of the crust and to the vertical end of the crustal block 250 km away from the fault. The upper half of the fault is locked during the interseismic period, while its lower half slips at the constant plate velocity. The locked part of the fault is moved abruptly 2.8 m every 160 years to simulate great earthquakes. The results are sensitive to crustal rheology. Models with quartzite-like rheology display profound transient stages in the velocity, displacement, and stress fields. The predicted transient zone extends about 3-4 times the crustal thickness on each side of the fault, significantly wider than the zone of deformation in elastic models. Models with diabase-like rheology behave similarly to elastic models and exhibit no transient stages. The model predictions are compared with geodetic observations of fault-parallel velocities in northern and central California and local rates of shear strain along the San Andreas fault. The observations are best fit by models which are 10-100 times less viscous than a quartzite-like rheology. Since the lower crust in California is composed of intermediate to mafic rocks, the present result suggests that the in situ viscosity of the crustal rock is orders of magnitude

  18. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    Science.gov (United States)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  19. Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, central California

    Science.gov (United States)

    Sato, Motoaki; Sutton, A. J.; McGee, K. A.

    1984-03-01

    We began continuous monitoring of H2 concentration in soil along the San Andreas and Calaveras faults in central California in December 1980, using small H2/O2 fuel-cell sensors. Ten monitoring stations deployed to date have shown that anomalous H2 emissions take place occasionally in addition to diurnal changes. Among the ten sites, the Cienega Winery site has produced data that are characterized by very small diurnal changes, a stable baseline, and remarkably distinct spike-like H2 anomalies since its installation in July 1982. A major peak appeared on 1 10 November 1982, and another on 3 April 1983, and a medium peak on 1 November 1983. The occurrences of these peaks coincided with periods of very low seismicity within a radius of 50 km from the site. In order to methodically assess how these peaks are related to earthquakes, three H2 degassing models were examined. A plausible correlational pattern was obtained by using a model that (1) adopts a hemicircular spreading pattern of H2 along an incipient fracture plane from the hypocenter of an earthquake, (2) relies on the FeO-H2O reaction for H2 generation, and (3) relates the accumulated amount of H2 to the mass of serpentinization of underlying ophiolitic rocks; the mass was tentatively assumed to be proportional to the seismic energy of the earthquake.

  20. Analysis of regional deformation and strain accumulation data adjacent to the San Andreas fault

    Science.gov (United States)

    Turcotte, Donald L.

    1991-01-01

    A new approach to the understanding of crustal deformation was developed under this grant. This approach combined aspects of fractals, chaos, and self-organized criticality to provide a comprehensive theory for deformation on distributed faults. It is hypothesized that crustal deformation is an example of comminution: Deformation takes place on a fractal distribution of faults resulting in a fractal distribution of seismicity. Our primary effort under this grant was devoted to developing an understanding of distributed deformation in the continental crust. An initial effort was carried out on the fractal clustering of earthquakes in time. It was shown that earthquakes do not obey random Poisson statistics, but can be approximated in many cases by coupled, scale-invariant fractal statistics. We applied our approach to the statistics of earthquakes in the New Hebrides region of the southwest Pacific because of the very high level of seismicity there. This work was written up and published in the Bulletin of the Seismological Society of America. This approach was also applied to the statistics of the seismicity on the San Andreas fault system.

  1. Relating seismicity to the velocity structure of the San Andreas Fault near Parkfield, CA

    Science.gov (United States)

    Lippoldt, Rachel; Porritt, Robert W.; Sammis, Charles G.

    2017-06-01

    The central section of the San Andreas Fault (SAF) displays a range of seismic phenomena including normal earthquakes, low-frequency earthquakes (LFE), repeating microearthquakes (REQ) and aseismic creep. Although many lines of evidence suggest that LFEs are tied to the presence of fluids, their geological setting is still poorly understood. Here, we map the seismic velocity structures associated with LFEs beneath the central SAF using surface wave tomography from ambient seismic noise to provide constraints on the physical conditions that control LFE occurrence. Fault perpendicular sections show that the SAF, as revealed by lateral contrasts in relative velocities, is contiguous to depths of 50 km and appears to be relatively localized at depths between about 15 and 30 km. This is consistent with the hypothesis that LFEs are shear-slip events on a deep extension of the SAF. We find that along strike variations in seismic behaviour correspond to changes in the seismic structure, which support proposed connections between fluids and seismicity. LFEs and REQs occur within low-velocity structures, suggesting that the presence of fluids, weaker minerals, or hydrous phase minerals may play an important role in the generation of slow-slip phenomena.

  2. Seismic trapped modes in the oroville and san andreas fault zones.

    Science.gov (United States)

    Li, Y G; Leary, P; Aki, K; Malin, P

    1990-08-17

    Three-component borehole seismic profiling of the recently active Oroville, California, normal fault and microearthquake event recording with a near-fault three-component borehole seismometer on the San Andreas fault at Parkfield, California, have shown numerous instances of pronounced dispersive wave trains following the shear wave arrivals. These wave trains are interpreted as fault zone-trapped seismic modes. Parkfield earthquakes exciting trapped modes have been located as deep as 10 kilometers, as shallow as 4 kilometers, and extend 12 kilometers along the fault on either side of the recording station. Selected Oroville and Parkfield wave forms are modeled as the fundamental and first higher trapped SH modes of a narrow low-velocity layer at the fault. Modeling results suggest that the Oroville fault zone is 18 meters wide at depth and has a shear wave velocity of 1 kilometer per second, whereas at Parkfield, the fault gouge is 100 to 150 meters wide and has a shear wave velocity of 1.1 to 1.8 kilometers per second. These low-velocity layers are probably the rupture planes on which earthquakes occur.

  3. Does paleoseismology forecast the historic rates of large earthquakes on the San Andreas fault system?

    Science.gov (United States)

    Biasi, Glenn; Scharer, Katherine M.; Weldon, Ray; Dawson, Timothy E.

    2016-01-01

    The 98-year open interval since the most recent ground-rupturing earthquake in the greater San Andreas boundary fault system would not be predicted by the quasi-periodic recurrence statistics from paleoseismic data. We examine whether the current hiatus could be explained by uncertainties in earthquake dating. Using seven independent paleoseismic records, 100 year intervals may have occurred circa 1150, 1400, and 1700 AD, but they occur in a third or less of sample records drawn at random. A second method sampling from dates conditioned on the existence of a gap of varying length suggests century-long gaps occur 3-10% of the time. A combined record with more sites would lead to lower probabilities. Systematic data over-interpretation is considered an unlikely explanation. Instead some form of non-stationary behaviour seems required, perhaps through long-range fault interaction. Earthquake occurrence since 1000 AD is not inconsistent with long-term cyclicity suggested from long runs of earthquake simulators.

  4. Data Files for Ground-Motion Simulations of the 1906 San Francisco Earthquake and Scenario Earthquakes on the Northern San Andreas Fault

    Science.gov (United States)

    Aagaard, Brad T.; Barall, Michael; Brocher, Thomas M.; Dolenc, David; Dreger, Douglas; Graves, Robert W.; Harmsen, Stephen; Hartzell, Stephen; Larsen, Shawn; McCandless, Kathleen; Nilsson, Stefan; Petersson, N. Anders; Rodgers, Arthur; Sjogreen, Bjorn; Zoback, Mary Lou

    2009-01-01

    This data set contains results from ground-motion simulations of the 1906 San Francisco earthquake, seven hypothetical earthquakes on the northern San Andreas Fault, and the 1989 Loma Prieta earthquake. The bulk of the data consists of synthetic velocity time-histories. Peak ground velocity on a 1/60th degree grid and geodetic displacements from the simulations are also included. Details of the ground-motion simulations and analysis of the results are discussed in Aagaard and others (2008a,b).

  5. A reevaluation of the Pallett Creek earthquake chronology based on new AMS radiocarbon dates, San Andreas fault, California

    Science.gov (United States)

    Scharer, K.M.; Biasi, G.P.; Weldon, R.J.

    2011-01-01

    The Pallett Creek paleoseismic record occupies a keystone position in most attempts to develop rupture histories for the southern San Andreas fault. Previous estimates of earthquake ages at Pallett Creek were determined by decay counting radiocarbon methods. That method requires large samples which can lead to unaccounted sources of uncertainty in radiocarbon ages because of the heterogeneous composition of organic layers. In contrast, accelerator mass spectrometry (AMS) radiocarbon dates may be obtained from small samples that have known carbon sources and also allow for a more complete sampling of the section. We present 65 new AMS radiocarbon dates that span nine ground-rupturing earthquakes at Pallett Creek. Overall, the AMS dates are similar to and reveal no dramatic bias in the conventional dates. For many layers, however, individual charcoal samples were younger than the conventional dates, leading to earthquake ages that are overall slightly younger than previously reported. New earthquake ages are determined by Bayesian refinement of the layer ages based on stratigraphic ordering and sedimentological constraints. The new chronology is more regular than previously published records in large part due to new samples constraining the age of event R. The closed interval from event C to 1857 has a mean recurrence of 135years (?? = 83.2 years) and a quasiperiodic coefficient of variation (COV) of 0.61. We show that the new dates and resultant earthquake chronology have a stronger effect on COV than the specific membership of this long series and dating precision improvements from sedimentation rates. Copyright 2011 by the American Geophysical Union.

  6. Ground-rupturing earthquakes on the northern Big Bend of the San Andreas Fault, California, 800 A.D. to Present

    Science.gov (United States)

    Scharer, Katherine M.; Weldon, Ray; Biasi, Glenn; Streig, Ashley; Fumal, Thomas E.

    2017-01-01

    Paleoseismic data on the timing of ground-rupturing earthquakes constrain the recurrence behavior of active faults and can provide insight on the rupture history of a fault if earthquakes dated at neighboring sites overlap in age and are considered correlative. This study presents the evidence and ages for 11 earthquakes that occurred along the Big Bend section of the southern San Andreas Fault at the Frazier Mountain paleoseismic site. The most recent earthquake to rupture the site was the Mw7.7–7.9 Fort Tejon earthquake of 1857. We use over 30 trench excavations to document the structural and sedimentological evolution of a small pull-apart basin that has been repeatedly faulted and folded by ground-rupturing earthquakes. A sedimentation rate of 0.4 cm/yr and abundant organic material for radiocarbon dating contribute to a record that is considered complete since 800 A.D. and includes 10 paleoearthquakes. Earthquakes have ruptured this location on average every ~100 years over the last 1200 years, but individual intervals range from ~22 to 186 years. The coefficient of variation of the length of time between earthquakes (0.7) indicates quasiperiodic behavior, similar to other sites along the southern San Andreas Fault. Comparison with the earthquake chronology at neighboring sites along the fault indicates that only one other 1857-size earthquake could have occurred since 1350 A.D., and since 800 A.D., the Big Bend and Mojave sections have ruptured together at most 50% of the time in Mw ≥ 7.3 earthquakes.

  7. Deformation mechanisms in the San Andreas Fault zone - a comparison between natural and experimentally deformed microstructures

    Science.gov (United States)

    van Diggelen, Esther; Holdsworth, Robert; de Bresser, Hans; Spiers, Chris

    2010-05-01

    The San Andreas Fault (SAF) in California marks the boundary between the Pacific plate and the North American plate. The San Andreas Fault Observatory at Depth (SAFOD) is located 9 km northwest of the town of Parkfield, CA and provide an extensive set of samples through the SAF. The SAFOD drill hole encountered different lithologies, including arkosic sediments from the Salinian block (Pacific plate) and claystones and siltstones from the Great Valley block (North American plate). Fault deformation in the area is mainly by a combination of micro-earthquakes and fault creep. Deformation of the borehole casing indicated that the SAFOD drill hole cross cuts two actively deforming strands of the SAF. In order to determine the deformation mechanisms in the actively creeping fault segments, we have studied thin sections obtained from SAFOD phase 3 core material using optical and electron microscopy, and we have compared these natural SAFOD microstructures with microstructures developed in simulated fault gouges deformed in laboratory shear experiments. The phase 3 core material is divided in three different core intervals consisting of different lithologies. Core interval 1 consists of mildly deformed Salinian rocks that show evidence of cataclasis, pressure solution and reaction of feldspar to form phyllosilicates, all common processes in upper crustal rocks. Most of Core interval 3 (Great Valley) is also only mildly deformed and very similar to Core interval 1. Bedding and some sedimentary features are still visible, together with limited evidence for cataclasis and pressure solution, and reaction of feldspar to form phyllosilicates. However, in between the relatively undeformed rocks, Core interval 3 encountered a zone of foliated fault gouge, consisting mostly of phyllosilicates. This zone is correlated with one of the zones of localized deformation of the borehole casing, i.e. with an actively deforming strand of the SAF. The fault gouge zone shows a strong, chaotic

  8. Using Low-Frequency Earthquake Families on the San Andreas Fault as Deep Creepmeters

    Science.gov (United States)

    Thomas, A. M.; Beeler, N. M.; Bletery, Q.; Burgmann, R.; Shelly, D. R.

    2018-01-01

    The central section of the San Andreas Fault hosts tectonic tremor and low-frequency earthquakes (LFEs) similar to subduction zone environments. LFEs are often interpreted as persistent regions that repeatedly fail during the aseismic shear of the surrounding fault allowing them to be used as creepmeters. We test this idea by using the recurrence intervals of individual LFEs within LFE families to estimate the timing, duration, recurrence interval, slip, and slip rate associated with inferred slow slip events. We formalize the definition of a creepmeter and determine whether this definition is consistent with our observations. We find that episodic families reflect surrounding creep over the interevent time, while the continuous families and the short time scale bursts that occur as part of the episodic families do not. However, when these families are evaluated on time scales longer than the interevent time these events can also be used to meter slip. A straightforward interpretation of episodic families is that they define sections of the fault where slip is distinctly episodic in well-defined slow slip events that slip 16 times the long-term rate. In contrast, the frequent short-term bursts of the continuous and short time scale episodic families likely do not represent individual creep events but rather are persistent asperities that are driven to failure by quasi-continuous creep on the surrounding fault. Finally, we find that the moment-duration scaling of our inferred creep events are inconsistent with the proposed linear moment-duration scaling. However, caution must be exercised when attempting to determine scaling with incomplete knowledge of scale.

  9. Magnetic profiling of the San Andreas Fault using a dual magnetometer UAV aerial survey system.

    Science.gov (United States)

    Abbate, J. A.; Angelopoulos, V.; Masongsong, E. V.; Yang, J.; Medina, H. R.; Moon, S.; Davis, P. M.

    2017-12-01

    Aeromagnetic survey methods using planes are more time-effective than hand-held methods, but can be far more expensive per unit area unless large areas are covered. The availability of low cost UAVs and low cost, lightweight fluxgate magnetometers (FGMs) allows, with proper offset determination and stray fields correction, for low-cost magnetic surveys. Towards that end, we have developed a custom multicopter UAV for magnetic mapping using a dual 3-axis fluxgate magnetometer system: the GEOphysical Drone Enhanced Survey Instrument (GEODESI). A high precision sensor measures the UAV's position and attitude (roll, pitch, and yaw) and is recorded using a custom Arduino data processing system. The two FGMs (in-board and out-board) are placed on two ends of a vertical 1m boom attached to the base of the UAV. The in-board FGM is most sensitive to stray fields from the UAV and its signal is used, after scaling, to clean the signal of the out-board FGM from the vehicle noise. The FGMs record three orthogonal components of the magnetic field in the UAV body coordinates which are then transformed into a north-east-down coordinate system using a rotation matrix determined from the roll-pitch-yaw attitude data. This ensures knowledge of the direction of all three field components enabling us to perform inverse modeling of magnetic anomalies with greater accuracy than total or vertical field measurements used in the past. Field tests were performed at Dragon's Back Pressure Ridge in the Carrizo Plain of California, where there is a known crossing of the San Andreas Fault. Our data and models were compared to previously acquired LiDAR and hand-held magnetometer measurements. Further tests will be carried out to solidify our results and streamline our processing for educational use in the classroom and student field training.

  10. Shallow soil CO2 flow along the San Andreas and Calaveras Faults, California

    Science.gov (United States)

    Lewicki, J.L.; Evans, William C.; Hilley, G.E.; Sorey, M.L.; Rogie, J.D.; Brantley, S.L.

    2003-01-01

    We evaluate a comprehensive soil CO2 survey along the San Andreas fault (SAF) in Parkfield, and the Calaveras fault (CF) in Hollister, California, in the context of spatial and temporal variability, origin, and transport of CO2 in fractured terrain. CO2 efflux was measured within grids with portable instrumentation and continously with meteorological parameters at a fixed station, in both faulted and unfaulted areas. Spatial and temporal variability of surface CO2 effluxes was observed to be higher at faulted SAF and CF sites, relative to comparable background areas. However, ??13C (-23.3 to - 16.4???) and ??14C (75.5 to 94.4???) values of soil CO2 in both faulted and unfaulted areas are indicative of biogenic CO2, even though CO2 effluxes in faulted areas reached values as high as 428 g m-2 d-1. Profiles of soil CO2 concentration as a function of depth were measured at multiple sites within SAF and CF grids and repeatedly at two locations at the SAF grid. Many of these profiles suggest a surprisingly high component of advective CO2 flow. Spectral and correlation analysis of SAF CO2 efflux and meteorological parameter time series indicates that effects of wind speed variations on atmospheric air flow though fractures modulate surface efflux of biogenic CO2. The resulting areal patterns in CO2 effluxes could be erroneously attributed to a deep gas source in the absence of isotopic data, a problem that must be addressed in fault zone soil gas studies.

  11. Remote triggering of fault-strength changes on the San Andreas fault at Parkfield.

    Science.gov (United States)

    Taira, Taka'aki; Silver, Paul G; Niu, Fenglin; Nadeau, Robert M

    2009-10-01

    Fault strength is a fundamental property of seismogenic zones, and its temporal changes can increase or decrease the likelihood of failure and the ultimate triggering of seismic events. Although changes in fault strength have been suggested to explain various phenomena, such as the remote triggering of seismicity, there has been no means of actually monitoring this important property in situ. Here we argue that approximately 20 years of observation (1987-2008) of the Parkfield area at the San Andreas fault have revealed a means of monitoring fault strength. We have identified two occasions where long-term changes in fault strength have been most probably induced remotely by large seismic events, namely the 2004 magnitude (M) 9.1 Sumatra-Andaman earthquake and the earlier 1992 M = 7.3 Landers earthquake. In both cases, the change possessed two manifestations: temporal variations in the properties of seismic scatterers-probably reflecting the stress-induced migration of fluids-and systematic temporal variations in the characteristics of repeating-earthquake sequences that are most consistent with changes in fault strength. In the case of the 1992 Landers earthquake, a period of reduced strength probably triggered the 1993 Parkfield aseismic transient as well as the accompanying cluster of four M > 4 earthquakes at Parkfield. The fault-strength changes produced by the distant 2004 Sumatra-Andaman earthquake are especially important, as they suggest that the very largest earthquakes may have a global influence on the strength of the Earth's fault systems. As such a perturbation would bring many fault zones closer to failure, it should lead to temporal clustering of global seismicity. This hypothesis seems to be supported by the unusually high number of M >or= 8 earthquakes occurring in the few years following the 2004 Sumatra-Andaman earthquake.

  12. Constraints on the source parameters of low-frequency earthquakes on the San Andreas Fault

    Science.gov (United States)

    Thomas, Amanda M.; Beroza, Gregory C.; Shelly, David R.

    2016-01-01

    Low-frequency earthquakes (LFEs) are small repeating earthquakes that occur in conjunction with deep slow slip. Like typical earthquakes, LFEs are thought to represent shear slip on crustal faults, but when compared to earthquakes of the same magnitude, LFEs are depleted in high-frequency content and have lower corner frequencies, implying longer duration. Here we exploit this difference to estimate the duration of LFEs on the deep San Andreas Fault (SAF). We find that the M ~ 1 LFEs have typical durations of ~0.2 s. Using the annual slip rate of the deep SAF and the average number of LFEs per year, we estimate average LFE slip rates of ~0.24 mm/s. When combined with the LFE magnitude, this number implies a stress drop of ~104 Pa, 2 to 3 orders of magnitude lower than ordinary earthquakes, and a rupture velocity of 0.7 km/s, 20% of the shear wave speed. Typical earthquakes are thought to have rupture velocities of ~80–90% of the shear wave speed. Together, the slow rupture velocity, low stress drops, and slow slip velocity explain why LFEs are depleted in high-frequency content relative to ordinary earthquakes and suggest that LFE sources represent areas capable of relatively higher slip speed in deep fault zones. Additionally, changes in rheology may not be required to explain both LFEs and slow slip; the same process that governs the slip speed during slow earthquakes may also limit the rupture velocity of LFEs.

  13. Locating Very-Low-Frequency Earthquakes in the San Andreas Fault.

    Science.gov (United States)

    Peña-Castro, A. F.; Harrington, R. M.; Cochran, E. S.

    2016-12-01

    The portion of tectonic fault where rheological properties transtition from brittle to ductile hosts a variety of seismic signals suggesting a range of slip velocities. In subduction zones, the two dominantly observed seismic signals include very-low frequency earthquakes ( VLFEs), and low-frequency earthquakes (LFEs) or tectonic tremor. Tremor and LFE are also commonly observed in transform faults, however, VLFEs have been reported dominantly in subduction zone environments. Here we show some of the first known observations of VLFEs occurring on a plate boundary transform fault, the San Andreas Fault (SAF) between the Cholame-Parkfield segment in California. We detect VLFEs using both permanent and temporary stations in 2010-2011 within approximately 70 km of Cholame, California. We search continous waveforms filtered from 0.02-0.05 Hz, and remove time windows containing teleseismic events and local earthquakes, as identified in the global Centroid Moment Tensor (CMT) and the Northern California Seismic Network (NCSN) catalog. We estimate the VLFE locations by converting the signal into envelopes, and cross-correlating them for phase-picking, similar to procedures used for locating tectonic tremor. We first perform epicentral location using a grid search method and estimate a hypocenter location using Hypoinverse and a shear-wave velocity model when the epicenter is located close to the SAF trace. We account for the velocity contrast across the fault using separate 1D velocity models for stations on each side. Estimated hypocentral VLFE depths are similar to tremor catalog depths ( 15-30 km). Only a few VLFEs produced robust hypocentral locations, presumably due to the difficulty in picking accurate phase arrivals with such a low-frequency signal. However, for events for which no location could be obtained, the moveout of phase arrivals across the stations were similar in character, suggesting that other observed VLFEs occurred in close proximity.

  14. Observations of strain accumulation across the san andreas fault near palmdale, california, with a two-color geodimeter.

    Science.gov (United States)

    Langbein, J O; Linker, M F; McGarr, A; Slater, L E

    1982-12-17

    Two-color laser ranging measurements during a 15-month period over a geodetic network spanning the San Andreas fault near Palmdale, California, indicate that the crust expands and contracts aseismically in episodes as short as 2 weeks. Shear strain parallel to the fault has accumulated monotonically since November 1980, but at a variable rate. Improvements in measurement precision and temporal resolution over those of previous geodetic studies near Palmdale have resulted in the definition of a time history of crustal deformation that is much more complex than formerly realized.

  15. Evaluation of hypotheses for right-lateral displacement of Neogene strata along the San Andreas Fault between Parkfield and Maricopa, California

    Science.gov (United States)

    Stanley, Richard G.; Barron, John A.; Powell, Charles L.

    2017-12-22

    We used geological field studies and diatom biostratigraphy to test a published hypothesis that Neogene marine siliceous strata in the Maricopa and Parkfield areas, located on opposite sides of the San Andreas Fault, were formerly contiguous and then were displaced by about 80–130 kilometers (km) of right-lateral slip along the fault. In the Maricopa area on the northeast side of the San Andreas Fault, the upper Miocene Bitterwater Creek Shale consists of hard, siliceous shale with dolomitic concretions and turbidite sandstone interbeds. Diatom assemblages indicate that the Bitterwater Creek Shale was deposited about 8.0–6.7 million years before present (Ma) at the same time as the uppermost part of the Monterey Formation in parts of coastal California. In the Parkfield area on the southwest side of the San Andreas Fault, the upper Miocene Pancho Rico Formation consists of soft to indurated mudstone and siltstone and fossiliferous, bioturbated sandstone. Diatom assemblages from the Pancho Rico indicate deposition about 6.7–5.7 Ma (latest Miocene), younger than the Bitterwater Creek Shale and at about the same time as parts of the Sisquoc Formation and Purisima Formation in coastal California. Our results show that the Bitterwater Creek Shale and Pancho Rico Formation are lithologically unlike and of different ages and therefore do not constitute a cross-fault tie that can be used to estimate rightlateral displacement along the San Andreas Fault.In the Maricopa area northeast of the San Andreas Fault, the Bitterwater Creek Shale overlies conglomeratic fan-delta deposits of the upper Miocene Santa Margarita Formation, which in turn overlie siliceous shale of the Miocene Monterey Formation from which we obtained a diatom assemblage dated at about 10.0–9.3 Ma. Previous investigations noted that the Santa Margarita Formation in the Maricopa area contains granitic and metamorphic clasts derived from sources in the northern Gabilan Range, on the opposite side of

  16. Using low-frequency earthquake families on the San Andreas fault as deep creepmeters

    Science.gov (United States)

    Thomas, A.; Beeler, N. M.; Bletery, Q.; Burgmann, R.; Shelly, D. R.

    2017-12-01

    The San Andreas fault hosts tectonic tremor and low-frequency earthquakes (LFEs) similar to those in subduction zone environments. These LFEs are grouped into families based on waveform similarity and locate between 16 and 29 km depth along a 150-km-long section of the fault centered on Parkfield, CA. ­Within individual LFE families event occurrence is not steady. In some families, bursts of a few events recur on timescales of days while in other families there are nearly quiescent periods that often last for months followed by episodes where hundreds of events occur over the course of a few days. These two different styles of LFE occurrence are called continuous and episodic respectively. LFEs are often assumed to reflect persistent regions that periodically fail during the aseismic shear of the surrounding fault allowing them to be used as creepmeters. We test this idea by formalizing the definition of a creepmeter (the LFE occurrence rate is proportional to the local fault slip rate), determining whether this definition is consistent with the observations, and over what timescale. We use the recurrence intervals of LFEs within individual families to create a catalog of LFE bursts. For the episodic families, we consider both longer duration (multiday) inferred creep episodes (dubbed long-timescale episodic) as well as the frequent short-term bursts of events that occur many times during inferred creep episodes (dubbed short-timescale episodic). We then use the recurrence intervals of LFE bursts to estimate the timing, duration, recurrence interval, slip, and slip rate associated with inferred slow slip events. We find that continuous families and the short-timescale episodic families appear to be inconsistent with our definition of a creepmeter (defined on the recurrence interval timescale) because their estimated durations are not physically meaningful. A straight-forward interpretation of the frequent short-term bursts of the continuous and short

  17. Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics

    Science.gov (United States)

    Zamudio, K. D.; Bedrosian, P.; Ball, L. B.

    2017-12-01

    Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault

  18. Inferring fault rheology from low-frequency earthquakes on the San Andreas

    Science.gov (United States)

    Beeler, Nicholas M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David R.

    2013-01-01

    Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor (NVT) on the San Andreas fault in central California show strong sensitivity to shear stress induced by the daily tidal cycle. LFEs occur at all levels of the tidal shear stress and are in phase with the very small, ~400 Pa, stress amplitude. To quantitatively explain the correlation, we use a model from the existing literature that assumes the LFE sources are small, persistent regions that repeatedly fail during shear of a much larger scale, otherwise aseismically creeping fault zone. The LFE source patches see tectonic loading, creep of the surrounding fault which may be modulated by the tidal stress, and direct tidal loading. If the patches are small relative to the surrounding creeping fault then the stressing is dominated by fault creep, and if patch failure occurs at a threshold stress, then the resulting seismicity rate is proportional to the fault creep rate or fault zone strain rate. Using the seismicity rate as a proxy for strain rate and the tidal shear stress, we fit the data with possible fault rheologies that produce creep in laboratory experiments at temperatures of 400 to 600°C appropriate for the LFE source depth. The rheological properties of rock-forming minerals for dislocation creep and dislocation glide are not consistent with the observed fault creep because strong correlation between small stress perturbations and strain rate requires perturbation on the order of the ambient stress. The observed tidal modulation restricts ambient stress to be at most a few kilopascal, much lower than rock strength. A purely rate dependent friction is consistent with the observations only if the product of the friction rate dependence and effective normal stress is ~ 0.5 kPa. Extrapolating the friction rate strengthening dependence of phyllosilicates (talc) to depth would require the effective normal stress to be ~50 kPa, implying pore pressure is lithostatic. If the LFE

  19. Tidal Sensitivity of Declustered Low Frequency Earthquake Families and Inferred Creep Episodes on the San Andreas Fault

    Science.gov (United States)

    Babb, A.; Thomas, A.; Bletery, Q.

    2017-12-01

    Low frequency earthquakes (LFEs) are detected at depths of 16-30 km on a 150 km section of the San Andreas Fault centered at Parkfield, CA. The LFEs are divided into 88 families based on waveform similarity. Each family is thought to represent a brittle asperity on the fault surface that repeatedly slips during aseismic slip of the surrounding fault. LFE occurrence is irregular which allows families to be divided into continuous and episodic. In continuous families a burst of a few LFE events recurs every few days while episodic families experience essentially quiescent periods often lasting months followed by bursts of hundreds of events over a few days. The occurrence of LFEs has also been shown to be sensitive to extremely small ( 1kPa) tidal stress perturbations. However, the clustered nature of LFE occurrence could potentially bias estimates of tidal sensitivity. Here we re-evaluate the tidal sensitivity of LFE families on the deep San Andreas using a declustered catalog. In this catalog LFE bursts are isolated based on the recurrence intervals between individual LFE events for each family. Preliminary analysis suggests that declustered LFE families are still highly sensitive to tidal stress perturbations, primarily right-lateral shear stress (RLSS) and to a lesser extent fault normal stress (FNS). We also find inferred creep episodes initiate preferentially during times of positive RLSS.

  20. Evaluating the Possibility of a joint San Andreas-Imperial Fault Rupture in the Salton Trough Region

    Science.gov (United States)

    Kyriakopoulos, C.; Oglesby, D. D.; Meltzner, A. J.; Rockwell, T. K.

    2016-12-01

    A geodynamic investigation of possible earthquakes in a given region requires both field data and numerical simulations. In particular, the investigation of past earthquakes is also a fundamental part of understanding the earthquake potential of the Salton Trough region. Geological records from paleoseismic trenches inform us of past ruptures (length, magnitude, timing), while dynamic rupture models allow us to evaluate numerically the mechanics of such earthquakes. The two most recent events (Mw 6.4 1940 and Mw 6.9 1979) on the Imperial fault (IF) both ruptured up to the northern end of the mapped fault, giving the impression that rupture doesn't propagate further north. This result is supported by small displacements, 20 cm, measured at the Dogwood site near the end of the mapped rupture in each event. However, 3D paleoseismic data from the same site corresponding to the most recent pre-1940 event (1710 CE) and 5th (1635 CE) and 6th events back revealed up to 1.5 m of slip in those events. Since we expect the surface displacement to decrease toward the termination of a rupture, we postulate that in these earlier cases the rupture propagated further north than in 1940 or 1979. Furthermore, paleoseismic data from the Coachella site (Philibosian et al., 2011) on the San Andreas fault (SAF) indicates slip events ca. 1710 CE and 1588-1662 CE. In other words, the timing of two large paleoseismic displacements on the IF cannot be distinguished from the timing of the two most recent events on the southern SAF, leaving a question: is it possible to have through-going rupture in the Salton Trough? We investigate this question through 3D dynamic finite element rupture modeling. In our work, we considered two scenarios: rupture initiated on the IF propagating northward, and rupture initiated on the SAF propagating southward. Initial results show that, in the first case, rupture propagates north of the mapped northern terminus of the IF only under certain pre

  1. Overview of SAFOD Phases 1 and 2: Drilling, Sampling and Measurements in the San Andreas Fault Zone at Seismogenic Depth

    Science.gov (United States)

    Zoback, M. D.; Hickman, S.; Ellsworth, W.

    2005-12-01

    In this talk we provide an overview of on-site drilling, sampling and downhole measurement activities associated with the first two Phases of the San Andreas Fault Observatory at Depth. SAFOD is located at the transition between the creeping and locked sections of the fault, 9 km NW of Parkfield, CA. A 2.1 km deep vertical pilot hole was drilled at the site in 2002. The SAFOD main borehole was drilled vertically to a depth of 1.5 km and then deviated at an average angle of 55° to vertical, passing beneath the surface trace of the San Andreas fault, 1.8 km to the NW at a depth of 3.2 km. Repeating microearthquakes on the San Andreas define the main active fault trace at depth, as well as a secondary active fault about 250 m to the SW (i.e., closer to SAFOD). The hole was rotary drilled, comprehensive cuttings were obtained and a real-time analysis of gases in the drilling mud was carried out. Spot cores were obtained at three depths (at casing set points) in the shallow granite and deeper sedimentary rocks penetrated by the hole, augmented by over fifty side-wall cores. Continuous coring of the San Andreas Fault Zone will be carried out in Phase 3 of the project in the summer of 2007. In addition to sampling mud gas, discrete fluid and gas samples were obtained at several depths for geochemical analysis. Real-time geophysical measurements were made while drilling through most of the San Andreas Fault Zone. A suite of "open hole" geophysical measurements were also made over essentially the entire depth of the hole. Construction of the multi-component SAFOD observatory is well underway, with a seismometer and tiltmeter operating at 1 km depth in the pilot hole and a fiber-optic laser strainmeter cemented behind casing in the main hole. A seismometer deployed at depth in the hole between Phases 1 and 2 detected one of the target earthquakes. A number of surface-to-borehole seismic experiments have been carried out to characterize seismic velocities and structures at

  2. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite

    Science.gov (United States)

    Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.

    2014-01-01

    While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.

  3. Constraints on the stress state of the San Andreas fault with analysis based on core and cuttings from SAFOD drilling phases I and II

    Science.gov (United States)

    Lockner, David A.; Tembe, Cheryl; Wong, Teng-fong

    2009-01-01

    Analysis of field data has led different investigators to conclude that the San Andreas Fault (SAF) has either anomalously low frictional sliding strength (m 0.6). Arguments for the apparent weakness of the SAF generally hinge on conceptual models involving intrinsically weak gouge or elevated pore pressure within the fault zone. Some models assert that weak gouge and/or high pore pressure exist under static conditions while others consider strength loss or fluid pressure increase due to rapid coseismic fault slip. The present paper is composed of three parts. First, we develop generalized equations, based on and consistent with the Rice (1992) fault zone model to relate stress orientation and magnitude to depth-dependent coefficient of friction and pore pressure. Second, we present temperature- and pressure-dependent friction measurements from wet illite-rich fault gouge extracted from San Andreas Fault Observatory at Depth (SAFOD) phase 1 core samples and from weak minerals associated with the San Andreas Fault. Third, we reevaluate the state of stress on the San Andreas Fault in light of new constraints imposed by SAFOD borehole data. Pure talc (m0.1) had the lowest strength considered and was sufficiently weak to satisfy weak fault heat flow and stress orientation constraints with hydrostatic pore pressure. Other fault gouges showed a systematic increase in strength with increasing temperature and pressure. In this case, heat flow and stress orientation constraints would require elevated pore pressure and, in some cases, fault zone pore pressure in excess of vertical stress.

  4. Characterization of the San Andreas Fault near Parkfield, California by fault-zone trapped waves

    Science.gov (United States)

    Li, Y.; Vidale, J.; Cochran, E.

    2003-04-01

    In October, 2002, coordinated by the Pre-EarthScope/SAFOD, we conducted an extensive seismic experiment at the San Andreas fault (SAF), Parkfield to record fault-zone trapped waves generated by explosions and microearthquakes using dense linear seismic arrays of 52 PASSCAL 3-channel REFTEKs deployed across and along the fault zone. We detonated 3 explosions within and out of the fault zone during the experiment, and also recorded other 13 shots of PASO experiment of UWM/RPI (Thurber and Roecker) detonated around the SAFOD drilling site at the same time. We observed prominent fault-zone trapped waves with large amplitudes and long duration following S waves at stations close to the main fault trace for sources located within and close to the fault zone. Dominant frequencies of trapped waves are 2-3 Hz for near-surface explosions and 4-5 Hz for microearthquakes. Fault-zone trapped waves are relatively weak on the north strand of SAF for same sources. In contrast, seismograms registered for both the stations and shots far away from the fault zone show a brief S wave and lack of trapped waves. These observations are consistent with previous findings of fault-zone trapped waves at the SAF [Li et al., 1990; 1997], indicating the existence of a well-developed low-velocity waveguide along the main fault strand (principal slip plan) of the SAF. The data from denser arrays and 3-D finite-difference simulations of fault-zone trapped waves allowed us to delineate the internal structure, segmentation and physical properties of the SAF with higher resolution. The trapped-wave inferred waveguide on the SAF Parkfield segment is ~150 m wide at surface and tapers to ~100 m at seismogenic depth, in which Q is 20-50 and S velocities are reduced by 30-40% from wall-rock velocities, with the greater velocity reduction at the shallow depth and to southeast of the 1966 M6 epicenter. We interpret this low-velocity waveguide on the SAF main strand as being the remnant of damage zone caused

  5. Deep-water turbidites as Holocene earthquake proxies: the Cascadia subduction zone and Northern San Andreas Fault systems

    Directory of Open Access Journals (Sweden)

    J. E. Johnson

    2003-06-01

    Full Text Available New stratigraphic evidence from the Cascadia margin demonstrates that 13 earthquakes ruptured the margin from Vancouver Island to at least the California border following the catastrophic eruption of Mount Mazama. These 13 events have occurred with an average repeat time of ?? 600 years since the first post-Mazama event ?? 7500 years ago. The youngest event ?? 300 years ago probably coincides with widespread evidence of coastal subsidence and tsunami inundation in buried marshes along the Cascadia coast. We can extend the Holocene record to at least 9850 years, during which 18 events correlate along the same region. The pattern of repeat times is consistent with the pattern observed at most (but not all localities onshore, strengthening the contention that both were produced by plate-wide earthquakes. We also observe that the sequence of Holocene events in Cascadia may contain a repeating pattern, a tantalizing look at what may be the long-term behavior of a major fault system. Over the last ?? 7500 years, the pattern appears to have repeated at least three times, with the most recent A.D. 1700 event being the third of three events following a long interval of 845 years between events T4 and T5. This long interval is one that is also recognized in many of the coastal records, and may serve as an anchor point between the offshore and onshore records. Similar stratigraphic records are found in two piston cores and one box core from Noyo Channel, adjacent to the Northern San Andreas Fault, which show a cyclic record of turbidite beds, with thirty- one turbidite beds above a Holocene/.Pleistocene faunal «datum». Thus far, we have determined ages for 20 events including the uppermost 5 events from these cores. The uppermost event returns a «modern» age, which we interpret is likely the 1906 San Andreas earthquake. The penultimate event returns an intercept age of A.D. 1664 (2 ?? range 1505- 1822. The third event and fourth event

  6. Slip deficit on the san andreas fault at parkfield, california, as revealed by inversion of geodetic data.

    Science.gov (United States)

    Segall, P; Harris, R

    1986-09-26

    A network of geodetic lines spanning the San Andreas fault near the rupture zone of the 1966 Parkfield, California, earthquake (magnitude M = 6) has been repeatedly surveyed since 1959. In the study reported here the average rates of line-length change since 1966 were inverted to determine the distribution of interseismic slip rate on the fault. These results indicate that the Parkfield rupture surface has not slipped significantly since 1966. Comparison of the geodetically determined seismic moment of the 1966 earthquake with the interseismic slip-deficit rate suggests that the strain released by the latest shock will most likely be restored between 1984 and 1989, although this may not occur until 1995. These results lend independent support to the earlier forecast of an M = 6 earthquake near Parkfield within 5 years of 1988.

  7. Origin and spatial distribution of gas at seismogenic depths of the San Andreas Fault from drill-mud gas analysis

    International Nuclear Information System (INIS)

    Wiersberg, Thomas; Erzinger, Joerg

    2008-01-01

    Data are presented on the molecular composition of drill-mud gas from the lower sedimentary section (1800-3987 m) of the SAFOD (San Andreas Fault Observatory at Depth) Main Hole measured on-line during drilling, as well as C and H isotope data from off-line mud gas samples. Hydrocarbons, H 2 and CO 2 are the most abundant non-atmospheric gases in drill-mud when drilling seismogenic zones. Gas influx into the well at depth is related to the lithology and permeability of the drilled strata: larger formation gas influx was detected when drilling through organic-rich shales and permeable sandstones. The SAF (San Andreas Fault), encountered between approximately 3100 m and 3450 m borehole depth, is generally low in gas, but is encompassed by two gas-rich zones (2700-2900 m and below 3550 m) at the fault margins with enhanced 222 Rn activities and distinct gas compositions. Within the fault, two interstratified gas-rich lenses (3150-3200 m and 3310-3340 m) consist of CO 2 and hydrocarbons (upper zone), but almost exclusively of hydrocarbons (lower zone). The isotopic composition indicates an organic source of hydrocarbons and CO 2 in the entire sedimentary section of the well. Hydrocarbons in sedimentary strata are partly of microbial origin down to ∼2500 m borehole depth. The contribution of thermogenic gas increases between ∼2500 m and 3200 m. Below ∼3200 m, hydrocarbons fully derive from thermal degradation of organic matter. The lack of H 2 in the center of the fault and the high concentration of H 2 in the fractured zones at the fault margins are consistent with H 2 formation by interaction of water with fresh silica mineral surfaces generated by tectonic activities, however, this needs to be verified by laboratory experiments. Based on these studies, it is concluded that the fault zone margins consist of strata with enhanced permeability, separated by a low-permeability fault center

  8. A large mantle water source for the northern San Andreas Fault System: A ghost of subduction past

    Science.gov (United States)

    Kirby, Stephen H.; Wang, Kelin; Brocher, Thomas M.

    2014-01-01

    Recent research indicates that the shallow mantle of the Cascadia subduction margin under near-coastal Pacific Northwest U.S. is cold and partially serpentinized, storing large quantities of water in this wedge-shaped region. Such a wedge probably formed to the south in California during an earlier period of subduction. We show by numerical modeling that after subduction ceased with the creation of the San Andreas Fault System (SAFS), the mantle wedge warmed, slowly releasing its water over a period of more than 25 Ma by serpentine dehydration into the crust above. This deep, long-term water source could facilitate fault slip in San Andreas System at low shear stresses by raising pore pressures in a broad region above the wedge. Moreover, the location and breadth of the water release from this model gives insights into the position and breadth of the SAFS. Such a mantle source of water also likely plays a role in the occurrence of Non-Volcanic Tremor (NVT) that has been reported along the SAFS in central California. This process of water release from mantle depths could also mobilize mantle serpentinite from the wedge above the dehydration front, permitting upward emplacement of serpentinite bodies by faulting or by diapiric ascent. Specimens of serpentinite collected from tectonically emplaced serpentinite blocks along the SAFS show mineralogical and structural evidence of high fluid pressures during ascent from depth. Serpentinite dehydration may also lead to tectonic mobility along other plate boundaries that succeed subduction, such as other continental transforms, collision zones, or along present-day subduction zones where spreading centers are subducting.

  9. Rupture Propagation through the Big Bend of the San Andreas Fault: A Dynamic Modeling Case Study of the Great Earthquake of 1857

    Science.gov (United States)

    Lozos, J.

    2017-12-01

    The great San Andreas Fault (SAF) earthquake of 9 January 1857, estimated at M7.9, was one of California's largest historic earthquakes. Its 360 km rupture trace follows the Carrizo and Mojave segments of the SAF, including the 30° compressional Big Bend in the fault. If 1857 were a characteristic rupture, the hazard implications for southern California would be dire, especially given the inferred 150 year recurrence interval for this section of the fault. However, recent paleoseismic studies in this region suggest that 1857-type events occur less frequently than single-segment Carrizo or Mojave ruptures, and that the hinge of the Big Bend is a barrier to through-going rupture. Here, I use 3D dynamic rupture modeling to attempt to reproduce the rupture length and surface slip distribution of the 1857 earthquake, to determine which physical conditions allow rupture to negotiate the Big Bend of the SAF. These models incorporate the nonplanar geometry of the SAF, an observation-based heterogeneous regional velocity structure (SCEC CVM), and a regional stress field from seismicity literature. Under regional stress conditions, I am unable to produce model events that both match the observed surface slip on the Carrizo and Mojave segments of the SAF and include rupture through the hinge of the Big Bend. I suggest that accumulated stresses at the bend hinge from multiple smaller Carrizo or Mojave ruptures may be required to allow rupture through the bend — a concept consistent with paleoseismic observations. This study may contribute to understanding the cyclicity of hazard associated with the southern-central SAF.

  10. Geomorphology, denudation rates, and stream channel profiles reveal patterns of mountain building adjacent to the San Andreas fault in northern California, USA

    Science.gov (United States)

    DeLong, Stephen B.; Hilley, George E.; Prentice, Carol S.; Crosby, Christopher J.; Yokelson, Intan N.

    2017-01-01

    Relative horizontal motion along strike-slip faults can build mountains when motion is oblique to the trend of the strike-slip boundary. The resulting contraction and uplift pose off-fault seismic hazards, which are often difficult to detect because of the poor vertical resolution of satellite geodesy and difficulty of locating offset datable landforms in active mountain ranges. Sparse geomorphic markers, topographic analyses, and measurement of denudation allow us to map spatiotemporal patterns of uplift along the northern San Andreas fault. Between Jenner and Mendocino, California, emergent marine terraces found southwest of the San Andreas fault record late Pleistocene uplift rates between 0.20 and 0.45 mm yr–1 along much of the coast. However, on the northeast side of the San Andreas fault, a zone of rapid uplift (0.6–1.0 mm yr–1) exists adjacent to the San Andreas fault, but rates decay northeastward as the coast becomes more distant from the San Andreas fault. A newly dated 4.5 Ma shallow-marine deposit located at ∼500 m above sea level (masl) adjacent to the San Andreas fault is warped down to just 150 masl 15 km northeast of the San Andreas fault, and it is exposed at just 60–110 masl to the west of the fault. Landscape denudation rates calculated from abundance of cosmogenic radionuclides in fluvial sediment northeast of, and adjacent to, the San Andreas fault are 0.16–0.29 mm yr–1, but they are only 0.03–0.07 mm yr–1 west of the fault. Basin-average channel steepness and the denudation rates can be used to infer the erosive properties of the underlying bedrock. Calibrated erosion rates can then be estimated across the entire landscape using the spatial distribution of channel steepness with these erosive properties. The lower-elevation areas of this landscape that show high channel steepness (and hence calibrated erosion rate) are distinct from higher-elevation areas with systematically lower channel steepness and denudation rates

  11. (U-Th)/He thermochronometry reveals Pleistocene punctuated deformation and synkinematic hematite mineralization in the Mecca Hills, southernmost San Andreas Fault zone

    Science.gov (United States)

    Moser, Amy C.; Evans, James P.; Ault, Alexis K.; Janecke, Susanne U.; Bradbury, Kelly K.

    2017-10-01

    The timing, tempo, and processes of punctuated deformation in strike-slip fault systems are challenging to resolve in the rock record. Faults in the Mecca Hills, adjacent to the southernmost San Andreas Fault, California, accommodate active deformation and exhumation in the Plio-Pleistocene sedimentary rocks and underlying crystalline basement. We document the spatiotemporal patterns of San Andreas Fault-related deformation as recorded in crystalline basement rocks of the Mecca Hills using fault microstructural observations, geochemical data, and hematite (n = 24) and apatite (n = 44) (U-Th)/He (hematite He, apatite He) thermochronometry data. Reproducible mean hematite He dates from minor hematite-coated fault surfaces in the Painted Canyon Fault damage zone range from ∼0.7-0.4 Ma and are younger than ∼1.2 Ma apatite He dates from adjacent crystalline basement host rock. These data reveal concomitant Pleistocene pulses of fault slip, fluid flow, and synkinematic hematite mineralization. Hematite textures, crystal morphology, and hematite He data patterns imply some damage zone deformation occurred via cyclic crack-seal and creep processes. Apatite He data from crystalline basement define distinct date-eU patterns and indicate cooling across discrete fault blocks in the Mecca Hills. Uniform ∼1.2 Ma apatite He dates regardless of eU are located exclusively between the Painted Canyon and Platform faults. Outside of this fault block, samples yield individual apatite He dates from ∼30-1 Ma that define a positive apatite He date-eU correlation. These patterns reveal focused exhumation away from the main trace of the San Andreas Fault at ∼1.2 Ma. Low-temperature thermochronometry of fault-related rocks provides an unprecedented window into the 105-106-yr record of San Andreas Fault-related deformation in the Mecca Hills and documents hematite deformation mechanisms that may be operative in other strike-slip faults world-wide.

  12. Correlation of clayey gouge in a surface exposure of the San Andreas fault with gouge at depth from SAFOD: Implications for the role of serpentinite in fault mechanics

    Science.gov (United States)

    Moore, Diane E.; Rymer, Michael J.

    2012-01-01

    Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.

  13. Heterogeneous slip and rupture models of the San Andreas fault zone based upon three-dimensional earthquake tomography

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, William [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    Crystal fault zones exhibit spatially heterogeneous slip behavior at all scales, slip being partitioned between stable frictional sliding, or fault creep, and unstable earthquake rupture. An understanding the mechanisms underlying slip segmentation is fundamental to research into fault dynamics and the physics of earthquake generation. This thesis investigates the influence that large-scale along-strike heterogeneity in fault zone lithology has on slip segmentation. Large-scale transitions from the stable block sliding of the Central 4D Creeping Section of the San Andreas, fault to the locked 1906 and 1857 earthquake segments takes place along the Loma Prieta and Parkfield sections of the fault, respectively, the transitions being accomplished in part by the generation of earthquakes in the magnitude range 6 (Parkfield) to 7 (Loma Prieta). Information on sub-surface lithology interpreted from the Loma Prieta and Parkfield three-dimensional crustal velocity models computed by Michelini (1991) is integrated with information on slip behavior provided by the distributions of earthquakes located using, the three-dimensional models and by surface creep data to study the relationships between large-scale lithological heterogeneity and slip segmentation along these two sections of the fault zone.

  14. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    Science.gov (United States)

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  15. Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault

    Science.gov (United States)

    Moore, Diane E.; Lockner, David A.; Hickman, Stephen H.

    2016-01-01

    We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.

  16. Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zoback, M.D.

    1998-08-30

    The fundamental scientific issue addressed in this proposal, obtaining an improved understanding of the physical and chemical processes responsible for earthquakes along major fault zones, is clearly of global scientific interest. By sampling the San Andreas fault zone and making direct measurements of fault zone properties to 4.0 km at Parkfield they will be studying an active plate-boundary fault at a depth where aseismic creep and small earthquakes occur and where a number of the scientific questions associated with deeper fault zone drilling can begin to be addressed. Also, the technological challenges associated with drilling, coring, downhole measurements and borehole instrumentation that may eventually have to be faced in deeper drilling can first be addressed at moderate depth and temperature in the Parkfield hole. Throughout the planning process leading to the development of this proposal they have invited participation by scientists from around the world. As a result, the workshops and meetings they have held for this project have involved about 350 scientists and engineers from about a dozen countries.

  17. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    Science.gov (United States)

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  18. Neotectonics of the San Andreas fault system: Basin and range province juncture

    Science.gov (United States)

    Estes, J. E.; Crowell, J. C.

    1986-01-01

    Several new details regarding the surficial patterns of neotectonic activity of the Eastern Transverse Ranges and vicinity were discovered. Additionally a number of data display and analysis techniques were developed. These findings will be useful both in the continued development of neotectonic models for southern California and for the future application of remote sensing methodologies elsewhere.

  19. The Elizabeth Lake paleoseismic site: Rupture pattern constraints for the past ~800 years for the Mojave section of the south-central San Andreas Fault

    Science.gov (United States)

    Bemis, Sean; Scharer, Katherine M.; Dolan, James F.; Rhodes, Ed

    2016-01-01

    The southern San Andreas Fault in California has hosted two historic surface-rupturing earthquakes, the ~M7 1812 Wrightwood earthquake and the ~M7.9 1857 Fort Tejon earthquake (e.g., Sieh, 1978; Jacoby et al., 1988). Numerous paleoseismic studies have established chronologies of historic and prehistoric earthquakes at sites along the full length of the 1857 rupture (e.g., Sieh, 1978; Scharer et al., 2014). These studies provide an unparalleled opportunity to examine patterns of recent ruptures; however, at least two significant spatial gaps in high-quality paleoseismic sites remain. At ~100 km long each, these gaps contribute up to 100 km of uncertainty to paleo-rupture lengths and could also permit a surface rupture from an earthquake up to ~M7.2 to go undetected [using scaling relationships of Wells and Coppersmith (1994)]. Given the known occurrence of an ~M7 earthquake on this portion of the SAF (1812), it is critical to fill these gaps in order to better constrain paleo-rupture lengths and to increase the probability of capturing the full spatial record of surface rupturing earthquakes.   In this study, we target a new site within the 100 km long stretch of the San Andreas Fault between the Frazier Mountain and Pallett Creek paleoseismic sites (Figure 1), near Elizabeth Lake, California. Prior excavations at the site during 1998-1999 encountered promising stratigraphy but these studies were hindered by shallow groundwater throughout the site. We began our current phase of investigations in 2012, targeting the northwestern end of a 40 x 350 m fault-parallel depression that defines the site (Figure 2). Subsequent investigations in 2013 and 2014 focused on the southeastern end of the depression where the fault trace is constrained between topographic highs and is proximal to an active drainage. In total, our paleoseismic investigations consist of 10 fault-perpendicular trenches that cross the depression (Figure 2) and expose a >2000 year depositional record

  20. Constraints on Friction, Dilatancy, Diffusivity, and Effective Stress From Low-Frequency Earthquake Rates on the Deep San Andreas Fault

    Science.gov (United States)

    Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David

    2018-01-01

    Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.

  1. Three-Dimensional Investigation of a 5 m Deflected Swale along the San Andreas Fault in the Carrizo Plain

    KAUST Repository

    Akciz, S. O.; Ludwig, L. G.; Zielke, Olaf; Arrowsmith, J. R.

    2014-01-01

    Topographic maps produced from Light Detection and Ranging (LiDAR) data are useful for paleoseismic and neotectonic research because they provide submeter representation of faulting-related surface features. Offset measurements of geomorphic features, made in the field or on a remotely sensed imagery, commonly assume a straight or smooth (i.e., undeflected) pre-earthquake geometry. Here, we present results from investigation of an ∼20 cm deep and >5 m wide swale with a sharp bend along the San Andreas fault (SAF) at the Bidart fan site in the Carrizo Plain, California. From analysis of LiDAR topography images and field measurements, the swale was initially interpreted as a channel tectonically offset ∼4:7 m. Our observations from exposures in four backhoe excavations and 25 hand-dug trenchettes show that even though a sharp bend in the swale coincides with the trace of the A.D. 1857 fault rupture, the swale formed after the 1857 earthquake and was not tectonically offset. Subtle fractures observed within a surficial gravel unit overlying the 1857 rupture trace are similar to fractures previously documented at the Phelan fan and LY4 paleoseismic sites 3 and 35 km northwest of Bidart fan, respectively. Collectively, the fractures suggest that a post-1857 moderate-magnitude earthquake caused ground cracking in the Carrizo and Cholame stretches of the SAF. Our observations emphasize the importance of excavation at key locations to validate remote and ground-based measurements, and we advocate more geomorphic characterization for each site if excavation is not possible.

  2. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California

    Science.gov (United States)

    Tietze, Kristina; Ritter, Oliver

    2013-10-01

    3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency

  3. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    Science.gov (United States)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching

  4. Fault zone structure and kinematics from lidar, radar, and imagery: revealing new details along the creeping San Andreas Fault

    Science.gov (United States)

    DeLong, S.; Donnellan, A.; Pickering, A.

    2017-12-01

    Aseismic fault creep, coseismic fault displacement, distributed deformation, and the relative contribution of each have important bearing on infrastructure resilience, risk reduction, and the study of earthquake physics. Furthermore, the impact of interseismic fault creep in rupture propagation scenarios, and its impact and consequently on fault segmentation and maximum earthquake magnitudes, is poorly resolved in current rupture forecast models. The creeping section of the San Andreas Fault (SAF) in Central California is an outstanding area for establishing methodology for future scientific response to damaging earthquakes and for characterizing the fine details of crustal deformation. Here, we describe how data from airborne and terrestrial laser scanning, airborne interferometric radar (UAVSAR), and optical data from satellites and UAVs can be used to characterize rates and map patterns of deformation within fault zones of varying complexity and geomorphic expression. We are evaluating laser point cloud processing, photogrammetric structure from motion, radar interferometry, sub-pixel correlation, and other techniques to characterize the relative ability of each to measure crustal deformation in two and three dimensions through time. We are collecting new and synthesizing existing data from the zone of highest interseismic creep rates along the SAF where a transition from a single main fault trace to a 1-km wide extensional stepover occurs. In the stepover region, creep measurements from alignment arrays 100 meters long across the main fault trace reveal lower rates than those in adjacent, geomorphically simpler parts of the fault. This indicates that deformation is distributed across the en echelon subsidiary faults, by creep and/or stick-slip behavior. Our objectives are to better understand how deformation is partitioned across a fault damage zone, how it is accommodated in the shallow subsurface, and to better characterize the relative amounts of fault creep

  5. Helium measurements of pore fluids obtained from the San Andreas Fault Observatory at Depth (SAFOD, USA) drill cores

    Science.gov (United States)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B. M.

    2011-02-01

    4He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk 4He diffusion coefficient of 3.5 ± 1.3 × 10-8 cm2 s-1 at 21°C, compared to previously published diffusion coefficients of 1.2 × 10-18 cm2 s-1 (21°C) to 3.0 × 10-15 cm2 s-1 (150°C) in the sands and clays. Correcting the diffusion coefficient of 4Hewater for matrix porosity (˜3%) and tortuosity (˜6-13) produces effective diffusion coefficients of 1 × 10-8 cm2 s-1 (21°C) and 1 × 10-7 (120°C), effectively isolating pore fluid 4He from the 4He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 ± 0.4% (SD, n = 4) and mudstones 3.1 ± 0.8% (SD, n = 4).

  6. Three-Dimensional Investigation of a 5 m Deflected Swale along the San Andreas Fault in the Carrizo Plain

    KAUST Repository

    Akciz, S. O.

    2014-10-21

    Topographic maps produced from Light Detection and Ranging (LiDAR) data are useful for paleoseismic and neotectonic research because they provide submeter representation of faulting-related surface features. Offset measurements of geomorphic features, made in the field or on a remotely sensed imagery, commonly assume a straight or smooth (i.e., undeflected) pre-earthquake geometry. Here, we present results from investigation of an ∼20 cm deep and >5 m wide swale with a sharp bend along the San Andreas fault (SAF) at the Bidart fan site in the Carrizo Plain, California. From analysis of LiDAR topography images and field measurements, the swale was initially interpreted as a channel tectonically offset ∼4:7 m. Our observations from exposures in four backhoe excavations and 25 hand-dug trenchettes show that even though a sharp bend in the swale coincides with the trace of the A.D. 1857 fault rupture, the swale formed after the 1857 earthquake and was not tectonically offset. Subtle fractures observed within a surficial gravel unit overlying the 1857 rupture trace are similar to fractures previously documented at the Phelan fan and LY4 paleoseismic sites 3 and 35 km northwest of Bidart fan, respectively. Collectively, the fractures suggest that a post-1857 moderate-magnitude earthquake caused ground cracking in the Carrizo and Cholame stretches of the SAF. Our observations emphasize the importance of excavation at key locations to validate remote and ground-based measurements, and we advocate more geomorphic characterization for each site if excavation is not possible.

  7. Velocity Gradient Across the San Andreas Fault and Changes in Slip Behavior as Outlined by Full non Linear Tomography

    Science.gov (United States)

    Chiarabba, C.; Giacomuzzi, G.; Piana Agostinetti, N.

    2017-12-01

    The San Andreas Fault (SAF) near Parkfield is the best known fault section which exhibit a clear transition in slip behavior from stable to unstable. Intensive monitoring and decades of studies permit to identify details of these processes with a good definition of fault structure and subsurface models. Tomographic models computed so far revealed the existence of large velocity contrasts, yielding physical insight on fault rheology. In this study, we applied a recently developed full non-linear tomography method to compute Vp and Vs models which focus on the section of the fault that exhibit fault slip transition. The new tomographic code allows not to impose a vertical seismic discontinuity at the fault position, as routinely done in linearized codes. Any lateral velocity contrast found is directly dictated by the data themselves and not imposed by subjective choices. The use of the same dataset of previous tomographic studies allows a proper comparison of results. We use a total of 861 earthquakes, 72 blasts and 82 shots and the overall arrival time dataset consists of 43948 P- and 29158 S-wave arrival times, accurately selected to take care of seismic anisotropy. Computed Vp and Vp/Vs models, which by-pass the main problems related to linarized LET algorithms, excellently match independent available constraints and show crustal heterogeneities with a high resolution. The high resolution obtained in the fault surroundings permits to infer lateral changes of Vp and Vp/Vs across the fault (velocity gradient). We observe that stable and unstable sliding sections of the SAF have different velocity gradients, small and negligible in the stable slip segment, but larger than 15 % in the unstable slip segment. Our results suggest that Vp and Vp/Vs gradients across the fault control fault rheology and the attitude of fault slip behavior.

  8. Creep avalanches on San Andreas Fault and their underlying mechanism from 19 years of InSAR and seismicity

    Science.gov (United States)

    Khoshmanesh, M.; Shirzaei, M.

    2017-12-01

    Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb

  9. Transpressional deformation style and AMS fabrics adjacent to the southernmost segment of the San Andreas fault, Durmid Hill, CA

    Science.gov (United States)

    French, M.; Wojtal, S. F.; Housen, B.

    2006-12-01

    In the Salton Trough, the trace of the San Andreas Fault (SAF) ends where it intersects the NNW-trending Brawley seismic zone at Durmid Hill (DH). The topographic relief of DH is a product of faulting and folding of Pleistocene Borrego Formation strata (Babcock, 1974). Burgmann's (1991) detailed mapping and analysis of the western part of DH showed that the folds and faults accommodate transpression. Key to Burgmann's work was the recognition that the ~2m thick Bishop Ash, a prominent marker horizon, has been elongated parallel to the hinges of folds and boudinaged. We are mapping in detail the eastern portion of DH, nearer to the trace of the SAF. Folds in the eastern part of DH are tighter and thrust faulting is more prominent, consistent with greater shortening magnitude oblique to the SAF. Boudinage of the ash layer again indicates elongation parallel to fold hinges and subparallel to the SAF. The Bishop Ash locally is limbs in eastern DH, suggesting that significant continuous deformation accompanied the development of map-scale features. We measured anisotropy of magnetic susceptibility (AMS) fabrics in the Bishop Ash in order to assess continuous deformation in the Ash at DH. Because the Bishop Ash at DH is altered, consisting mainly of silica glass and clay minerals, samples from DH have significantly lower magnetic susceptibilities than Bishop Ash samples from elsewhere in the Salton Trough. With such low susceptibilities, there is significant scatter in the orientation of magnetic foliation and lineation in our samples. Still, in some Bishop samples within 1 km of the SAF, magnetic foliation is consistent with fold-related flattening. Magnetic lineation in these samples is consistently sub-parallel to fold hinges, parallel to the elongation direction inferred from boudinage. Even close to the trace of the SAF, this correlation breaks down in map-scale zones where fold hinge lines change attitude, fold shapes change, and the distribution and orientations

  10. A 15 year catalog of more than 1 million low-frequency earthquakes: Tracking tremor and slip along the deep San Andreas Fault

    Science.gov (United States)

    Shelly, David R.

    2017-05-01

    Low-frequency earthquakes (LFEs) are small, rapidly recurring slip events that occur on the deep extensions of some major faults. Their collective activation is often observed as a semicontinuous signal known as tectonic (or nonvolcanic) tremor. This manuscript presents a catalog of more than 1 million LFEs detected along the central San Andreas Fault from 2001 to 2016. These events have been detected via a multichannel matched-filter search, cross-correlating waveform templates representing 88 different LFE families with continuous seismic data. Together, these source locations span nearly 150 km along the central San Andreas Fault, ranging in depth from 16 to 30 km. This accumulating catalog has been the source for numerous studies examining the behavior of these LFE sources and the inferred slip behavior of the deep fault. The relatively high temporal and spatial resolutions of the catalog have provided new insights into properties such as tremor migration, recurrence, and triggering by static and dynamic stress perturbations. Collectively, these characteristics are inferred to reflect a very weak fault likely under near-lithostatic fluid pressure, yet the physical processes controlling the stuttering rupture observed as tremor and LFE signals remain poorly understood. This paper aims to document the LFE catalog assembly process and associated caveats, while also updating earlier observations and inferred physical constraints. The catalog itself accompanies this manuscript as part of the electronic supplement, with the goal of providing a useful resource for continued future investigations.

  11. Shallow deformation of the San Andreas fault 5 years following the 2004 Parkfield earthquake (Mw6) combining ERS2 and Envisat InSAR.

    Science.gov (United States)

    Bacques, Guillaume; de Michele, Marcello; Raucoules, Daniel; Aochi, Hideo; Rolandone, Frédérique

    2018-04-16

    This study focuses on the shallow deformation that occurred during the 5 years following the Parkfield earthquake (28/09/2004, Mw 6, San Andreas Fault, California). We use Synthetic Aperture Radar interferometry (InSAR) to provide precise measurements of transient deformations after the Parkfield earthquake between 2005 and 2010. We propose a method to combine both ERS2 and ENVISAT interferograms to increase the temporal data sampling. Firstly, we combine 5 years of available Synthetic Aperture Radar (SAR) acquisitions including both ERS-2 and Envisat. Secondly, we stack selected interferograms (both from ERS2 and Envisat) for measuring the temporal evolution of the ground velocities at given time intervals. Thanks to its high spatial resolution, InSAR could provide new insights on the surface fault motion behavior over the 5 years following the Parkfield earthquake. As a complement to previous studies in this area, our results suggest that shallow transient deformations affected the Creeping-Parkfield-Cholame sections of the San Andreas Fault after the 2004 Mw6 Parkfield earthquake.

  12. Crustal strain near the Big Bend of the San Andreas Fault: Analysis of the Los Padres-Tehachapi Trilateration Networks, California

    Science.gov (United States)

    Eberhart-Phillips, Donna; Lisowski, Michael; Zoback, Mark D.

    1990-02-01

    In the region of the Los Padres-Tehachapi geodetic network, the San Andreas fault (SAF) changes its orientation by over 30° from N40°W, close to that predicted by plate motion for a transform boundary, to N73°W. The strain orientation near the SAF is consistent with right-lateral shear along the fault, with maximum shear rate of 0.38±0.01 μrad/yr at N63°W. In contrast, away from the SAF the strain orientations on both sides of the fault are consistent with the plate motion direction, with maximum shear rate of 0.19±0.01 μrad/yr at N44°W. The strain rate does not drop off rapidly away from the fault, and thus the area is fit by either a broad shear zone below the SAF or a single fault with a relatively deep locking depth. The fit to the line length data is poor for locking depth d less than 25 km. For d of 25 km a buried slip rate of 30 ± 6 mm/yr is estimated. We also estimated buried slip for models that included the Garlock and Big Pine faults, in addition to the SAF. Slip rates on other faults are poorly constrained by the Los Padres-Tehachapi network. The best fitting Garlock fault model had computed left-lateral slip rate of 11±2 mm/yr below 10 km. Buried left-lateral slip of 15±6 mm/yr on the Big Pine fault, within the Western Transverse Ranges, provides significant reduction in line length residuals; however, deformation there may be more complicated than a single vertical fault. A subhorizontal detachment on the southern side of the SAF cannot be well constrained by these data. We investigated the location of the SAF and found that a vertical fault below the surface trace fits the data much better than either a dipping fault or a fault zone located south of the surface trace.

  13. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth

    Science.gov (United States)

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris

    2017-01-01

    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  14. Analysis of nonvolcanic tremor on the San Andreas fault near Parkfield, CA using U. S. Geological Survey Parkfield Seismic Array

    Science.gov (United States)

    Fletcher, Jon B.; Baker, Lawrence M.

    2010-10-01

    Reports by Nadeau and Dolenc (2005) that tremor had been detected near Cholame Valley spawned an effort to use UPSAR (U. S. Geological Survey Parkfield Seismic Array) to study characteristics of tremor. UPSAR was modified to record three channels of velocity at 40-50 sps continuously in January 2005 and ran for about 1 month, during which time we recorded numerous episodes of tremor. One tremor, on 21 January at 0728, was recorded with particularly high signal levels as well as another episode 3 days later. Both events were very emergent, had a frequency content between 2 and 8 Hz, and had numerous high-amplitude, short-duration arrivals within the tremor signal. Here using the first episode as an example, we discuss an analysis procedure, which yields azimuth and apparent velocity of the tremor at UPSAR. We then provide locations for both tremor episodes. The emphasis here is how the tremor episode evolves. Twelve stations were operating at the time of recording. Slowness of arrivals was determined using cross correlation of pairs of stations; the same method used in analyzing the main shock data from 28 September 2004. A feature of this analysis is that 20 s of the time series were used at a time to calculate correlation; the longer windows resulted in more consistent estimates of slowness, but lower peak correlations. These values of correlation (peaks of about 0.25), however, are similar to that obtained for the S wave of a microearthquake. Observed peaks in slowness were traced back to source locations assumed to lie on the San Andreas fault. Our inferred locations for the two tremor events cluster near the locations of previously observed tremor, south of the Cholame Valley. Tremor source depths are in the 14-24 km range, which is below the seismogenic brittle zone, but above the Moho. Estimates of error do not preclude locations below the Moho, however. The tremor signal is very emergent but contains packets that are several times larger than the background

  15. Timber resource statistics for the San Joaquin and southern resource areas of California.

    Science.gov (United States)

    Karen L. Waddell; Patricia M. Bassett

    1997-01-01

    This report is a summary of timber resource statistics for the San Joaquin and Southern Resource Areas of California, which include Alpine, Amador, Calaveras, Fresno, Imperial, Inyo, Kern, Kings, Los Angeles, Madera, Mariposa, Merced, Mono, Orange, Riverside, San Bernardino, San Diego, San Joaquin, Stanislaus, Tulare, and Tuolumne Counties. Data were collected as part...

  16. Tremor reveals stress shadowing, deep postseismic creep, and depth-dependent slip recurrence on the lower-crustal San Andreas fault near Parkfield

    Science.gov (United States)

    Shelly, David R.; Johnson, Kaj M.

    2011-01-01

    The 2003 magnitude 6.5 San Simeon and the 2004 magnitude 6.0 Parkfield earthquakes induced small, but significant, static stress changes in the lower crust on the central San Andreas fault, where recently detected tectonic tremor sources provide new constraints on deep fault creep processes. We find that these earthquakes affect tremor rates very differently, consistent with their differing transferred static shear stresses. The San Simeon event appears to have cast a "stress shadow" north of Parkfield, where tremor activity was stifled for 3-6 weeks. In contrast, the 2004 Parkfield earthquake dramatically increased tremor activity rates both north and south of Parkfield, allowing us to track deep postseismic slip. Following this event, rates initially increased by up to two orders of magnitude for the relatively shallow tremor sources closest to the rupture, with activity in some sources persisting above background rates for more than a year. We also observe strong depth dependence in tremor recurrence patterns, with shallower sources generally exhibiting larger, less-frequent bursts, possibly signaling a transition toward steady creep with increasing temperature and depth. Copyright 2011 by the American Geophysical Union.

  17. Monitoring of crustal movements in the San Andreas fault zone by a satellite-borne ranging system. Ph.D. Thesis

    Science.gov (United States)

    Kumar, M.

    1976-01-01

    The Close Grid Geodynamic Measurement System is conceived as an orbiting ranging device with a ground base grid of reflectors or transponders (spacing 1.0 to 30 km), which are projected to be of low cost (maintenance free and unattended), and which will permit the saturation of a local area to obtain data useful to monitor crustal movements in the San Andreas fault zone. The system includes a station network of 75 stations covering an area between 36 deg N and 38 deg N latitudes, and 237 deg E and 239 deg E longitudes, with roughly half of the stations on either side of the faults. In addition, the simulation of crustal movements through the introduction of changes in the relative positions between grid stations, weather effect for intervisibility between satellite and station and loss of observations thereof, and comparative evaluation of various observational scheme-patterns have been critically studied.

  18. Implications of Microstructural Studies of the SAFOD Gouge for the Strength and Deformation Mechanisms in the Creeping Segment of the San Andreas Fault

    Science.gov (United States)

    Hadizadeh, J.; Gratier, J. L.; Mittempergher, S.; Renard, F.; Richard, J.; di Toro, G.; Babaie, H. A.

    2010-12-01

    The San Andreas Fault zone (SAF) in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD)in central California is characterized by an average 21 mm/year aseismic creep and strain release through repeating Mmicroscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The microstructural and analytical data suggest that deformation is by a coupling of cataclastic flow and pressure solution accompanied by widespread alteration of feldspar to clay minerals and other neomineralizations. The clay contents of the gouge and streaks of serpentinite are not uniformly distributed, but weakness of the creeping segment is likely to be due to intrinsically low frictional strength of the fault material. This conclusion, which is based on the overall ratio of clay/non-clay constituents and the presence of talc in the actively deforming zones, is consistent with the 0.3-0.45 coefficient of friction for the drill cuttings tested by others. We also considered weakening by diffusion-accommodated grain boundary sliding. There are two main trends in the microstructural data that provide a basis for explaining the creep rate and seismic activity: 1. Clay content of the gouge including serpentinite and talc increases toward the 1-3m wide borehole casing deformation zones, which are expected to be deforming at above the average creep rate 2. Evidence of pressure solution creep and fracture sealing is more abundant in the siltstone cataclasites than in the shale. Such rocks could act as rigid inclusions that are repeatedly loaded to seismic failure by creep of the surrounding clay gouge. Regular cycles of fracture and restrengthening by fracture sealing in and around the inclusions are thus expected. The inclusions may be viewed as asperity patches (or cluster of patches) that predominantly deform by pressure solution at below the average creep rate.

  19. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    Science.gov (United States)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  20. Slip rates and spatially variable creep on faults of the northern San Andreas system inferred through Bayesian inversion of Global Positioning System data

    Science.gov (United States)

    Murray, Jessica R.; Minson, Sarah E.; Svarc, Jerry L.

    2014-01-01

    Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.

  1. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data

    Science.gov (United States)

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John

    2014-01-01

    Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.

  2. Age and paleoenvironment of the imperial formation near San Gorgonio Pass, Southern California

    Science.gov (United States)

    McDougall, K.; Poore, R.Z.; Matti, J.

    1999-01-01

    Microfossiliferous marine sediments of the Imperial Formation exposed in the Whitewater and Cabazon areas, near San Gorgonio Pass, southern California, are late Miocene in age and were deposited at intertidal to outer neritic depths, and possibly upper bathyal depths. A late Miocene age of 7.4 to >6.04 Ma is based on the ranges of age-diagnostic benthic foraminifers (Cassidulina delicata and Uvigerina peregrina), planktic foraminifers (Globigerinoides obliquus, G. extremus, and Globigerina nepenthes; zones N17-N19), and calcareous nannoplankton (Discoaster brouweri, D. aff. D. surculus, Reticulofenestra pseudoumbilicata, Sphenolithus abies, and S. neoabies; zones CN9a-CN11) coupled with published K/Ar dates from the underlying Coachella Formation (10.1 ?? 1.2 Ma; Peterson, 1975) and overlying Painted Hill Formation (6.04 ?? 0.18 and 5.94 ?? 0.18 Ma; J. L. Morton in Matti and others, 1985 and Matti and Morton, 1993). Paleoecologic considerations (sea-level fluctuations and paleotemperature) restrict the age of the Imperial Formation to 6.5 through 6.3 Ma. Benthic foraminiferal assemblages indicate that the Imperial Formation in the Whitewater and Cabazon sections accumulated at inner neritic to outer neritic (0-152 m) and possibly upper bathyal (152-244 m) depths. Shallowing to inner neritic depths occurred as the upper part of the section was deposited. This sea-level fluctuation corresponds to a global highstand at 6.3 Ma (Haq and others, 1987). Planktic foraminifers suggest an increase in surface-water temperatures upsection. A similar increase in paleotemperatures is interpreted for the North Pacific from 6.5 to 6.3 Ma (warm interval W10 of Barron and Keller, 1983). Environmental contrasts between the Whitewater and Cabazon sections of the Imperial Formation provide evidence for right-lateral displacements on the Banning fault, a late Miocene strand of the San Andreas fault system. The Cabazon section lies south of the Banning fault, and has been displaced west

  3. On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5-3 km vertical depth (SAFOD drillhole at Parkfield, California)

    Science.gov (United States)

    Schleicher, A. M.; Warr, L. N.; van der Pluijm, B. A.

    2009-02-01

    A detailed mineralogical study is presented of the matrix of mudrocks sampled from spot coring at three key locations along the San Andreas Fault Observatory at depth (SAFOD) drill hole. The characteristics of authigenic illite-smectite (I-S) and chlorite-smectite (C-S) mixed-layer mineral clays indicate a deep diagenetic origin. A randomly ordered I-S mineral with ca. 20-25% smectite layers is one of the dominant authigenic clay species across the San Andreas Fault zone (sampled at 3,066 and 3,436 m measured depths/MD), whereas an authigenic illite with ca. 2-5% smectite layers is the dominant phase beneath the fault (sampled at 3,992 m MD). The most smectite-rich mixed-layered assemblage with the highest water content occurs in the actively deforming creep zone at ca. 3,300-3,353 m (true vertical depth of ca. 2.7 km), with I-S (70:30) and C-S (50:50). The matrix of all mudrock samples show extensive quartz and feldspar (both plagioclase and K-feldspar) dissolution associated with the crystallization of pore-filling clay minerals. However, the effect of rock deformation in the matrix appears only minor, with weak flattening fabrics defined largely by kinked and fractured mica grains. Adopting available kinetic models for the crystallization of I-S in burial sedimentary environments and the current borehole depths and thermal structure, the conditions and timing of I-S growth can be evaluated. Assuming a typical K+ concentration of 100-200 ppm for sedimentary brines, a present-day geothermal gradient of 35°C/km and a borehole temperature of ca. 112°C for the sampled depths, most of the I-S minerals can be predicted to have formed over the last 4-11 Ma and are probably still in equilibrium with circulating fluids. The exception to this simple burial pattern is the occurrence of the mixed layered phases with higher smectite content than predicted by the burial model. These minerals, which characterize the actively creeping section of the fault and local thin film

  4. Looking for Off-Fault Deformation and Measuring Strain Accumulation During the Past 70 years on a Portion of the Locked San Andreas Fault

    Science.gov (United States)

    Vadman, M.; Bemis, S. P.

    2017-12-01

    Even at high tectonic rates, detection of possible off-fault plastic/aseismic deformation and variability in far-field strain accumulation requires high spatial resolution data and likely decades of measurements. Due to the influence that variability in interseismic deformation could have on the timing, size, and location of future earthquakes and the calculation of modern geodetic estimates of strain, we attempt to use historical aerial photographs to constrain deformation through time across a locked fault. Modern photo-based 3D reconstruction techniques facilitate the creation of dense point clouds from historical aerial photograph collections. We use these tools to generate a time series of high-resolution point clouds that span 10-20 km across the Carrizo Plain segment of the San Andreas fault. We chose this location due to the high tectonic rates along the San Andreas fault and lack of vegetation, which may obscure tectonic signals. We use ground control points collected with differential GPS to establish scale and georeference the aerial photograph-derived point clouds. With a locked fault assumption, point clouds can be co-registered (to one another and/or the 1.7 km wide B4 airborne lidar dataset) along the fault trace to calculate relative displacements away from the fault. We use CloudCompare to compute 3D surface displacements, which reflect the interseismic strain accumulation that occurred in the time interval between photo collections. As expected, we do not observe clear surface displacements along the primary fault trace in our comparisons of the B4 lidar data against the aerial photograph-derived point clouds. However, there may be small scale variations within the lidar swath area that represent near-fault plastic deformation. With large-scale historical photographs available for the Carrizo Plain extending back to at least the 1940s, we can potentially sample nearly half the interseismic period since the last major earthquake on this portion of

  5. Characterizing the Relationship Between Lithospheric Deformation and Seismic Anisotropy in the Basin and Range Province and San Andreas Fault System using Ps Receiver Function Analysis

    Science.gov (United States)

    Ford, H. A.; Schnorr, E.

    2017-12-01

    The presence of complex and spatially variable anisotropy in many parts of the western U.S. has been tied to regional tectonic and dynamic processes that go beyond the (frequently) assumed plate motion oriented shear. In the Basin and Range, a well-imaged "swirl" of shear wave splitting observations has been explained via a number of different dynamic processes, including a lithospheric drip and toroidal flow. In central California, rapid variations in splitting direction across the plate boundary have been attributed to a relatively narrow, well-defined shear zone. Ambient noise tomography has further complicated the picture, indicating that some of the observed complexity can be explained by incorporating multiple layers of anisotropy. The goal of this study is to place firm constraints on vertical variations in anisotropy over two tectonically distinct, yet related, regions- the Basin and Range province and the San Andreas fault system, in order to better understand how deformation of the lithosphere is accommodated. To do this, radial and transverse component Ps receiver functions have been calculated for 14 stations within the two regions. Within both study areas, variability exists between most stations at crust and lithospheric mantle depths. This is particularly true for stations located near the San Andreas Fault system. These differences may be attributed to variations in the provenance of the lithospheric "packages" in some areas, however several stations are located near or within the plate boundary system and may be sampling multiple regions with varying deformation fabrics. To account for this, future work will include binning as a function of piercing point. One notable exception to the generally observed variability is along the western margin of the Basin and Range, where several stations show similarities in back azimuthal variations at lower crust and uppermost mantle depths. Preliminary forwarding modeling of two of these stations indicates that

  6. Precise Relative Location of San Andreas Fault Tremors Near Cholame, CA, Using Seismometer Clusters: Slip on the Deep Extension of the Fault?

    Science.gov (United States)

    Shelly, D. R.; Ellsworth, W. L.; Ryberg, T.; Haberland, C.; Fuis, G.; Murphy, J.; Nadeau, R.; Bürgmann, R.

    2008-12-01

    Non-volcanic tremor, similar in character to that generated at some subduction zones, was recently identified beneath the strike-slip San Andreas Fault (SAF) in central California (Nadeau and Dolenc, 2005). Using a matched filter method, we closely examine a 24-hour period of active SAF tremor and show that, like tremor in the Nankai Trough subduction zone, this tremor is composed of repeated similar events. We take advantage of this similarity to locate detected similar events relative to several chosen events. While low signal-to-noise makes location challenging, we compensate for this by estimating event-pair differential times at 'clusters' of nearby temporary and permanent stations rather than at single stations. We find that the relative locations consistently form a near-linear structure in map view, striking parallel to the surface trace of the SAF. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, similar to the situation for subduction zone tremor. Also notable is the small depth range (a few hundred meters or less) of many of the located tremors, a feature possibly analogous to earthquake streaks observed on the shallower portion of the fault. The close alignment of the tremor with the SAF slip orientation suggests a shear slip mechanism, as has been argued for subduction tremor. At times, we observe a clear migration of the tremor source along the fault, at rates of 15-40 km/hr.

  7. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California

    Science.gov (United States)

    Li, Zefeng; Peng, Zhigang

    2016-06-01

    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  8. Fractal properties and simulation of micro-seismicity for seismic hazard analysis: a comparison of North Anatolian and San Andreas Fault Zones

    Directory of Open Access Journals (Sweden)

    Naside Ozer

    2012-02-01

    Full Text Available We analyzed statistical properties of earthquakes in western Anatolia as well as the North Anatolian Fault Zone (NAFZ in terms of spatio-temporal variations of fractal dimensions, p- and b-values. During statistically homogeneous periods characterized by closer fractal dimension values, we propose that occurrence of relatively larger shocks (M >= 5.0 is unlikely. Decreases in seismic activity in such intervals result in spatial b-value distributions that are primarily stable. Fractal dimensions decrease with time in proportion to increasing seismicity. Conversely, no spatiotemporal patterns were observed for p-value changes. In order to evaluate failure probabilities and simulate earthquake occurrence in the western NAFZ, we applied a modified version of the renormalization group method. Assuming an increase in small earthquakes is indicative of larger shocks, we apply the mentioned model to micro-seismic (M<= 3.0 activity, and test our results using San Andreas Fault Zone (SAFZ data. We propose that fractal dimension is a direct indicator of material heterogeneity and strength. Results from a model suggest simulated and observed earthquake occurrences are coherent, and may be used for seismic hazard estimation on creeping strike-slip fault zones.

  9. Along-strike variations in fault frictional properties along the San Andreas Fault near Cholame, California from joint earthquake and low-frequency earthquake relocations

    Science.gov (United States)

    Harrington, Rebecca M.; Cochran, Elizabeth S.; Griffiths, Emily M.; Zeng, Xiangfang; Thurber, Clifford H.

    2016-01-01

    Recent observations of low‐frequency earthquakes (LFEs) and tectonic tremor along the Parkfield–Cholame segment of the San Andreas fault suggest slow‐slip earthquakes occur in a transition zone between the shallow fault, which accommodates slip by a combination of aseismic creep and earthquakes (fault, which accommodates slip by stable sliding (>35  km depth). However, the spatial relationship between shallow earthquakes and LFEs remains unclear. Here, we present precise relocations of 34 earthquakes and 34 LFEs recorded during a temporary deployment of 13 broadband seismic stations from May 2010 to July 2011. We use the temporary array waveform data, along with data from permanent seismic stations and a new high‐resolution 3D velocity model, to illuminate the fine‐scale details of the seismicity distribution near Cholame and the relation to the distribution of LFEs. The depth of the boundary between earthquakes and LFE hypocenters changes along strike and roughly follows the 350°C isotherm, suggesting frictional behavior may be, in part, thermally controlled. We observe no overlap in the depth of earthquakes and LFEs, with an ∼5  km separation between the deepest earthquakes and shallowest LFEs. In addition, clustering in the relocated seismicity near the 2004 Mw 6.0 Parkfield earthquake hypocenter and near the northern boundary of the 1857 Mw 7.8 Fort Tejon rupture may highlight areas of frictional heterogeneities on the fault where earthquakes tend to nucleate.

  10. Delayed dynamic triggering of deep tremor along the Parkfield-Cholame section of the San Andreas Fault following the 2014 M6.0 South Napa earthquake

    Science.gov (United States)

    Peng, Zhigang; Shelly, David R.; Ellsworth, William L.

    2015-01-01

    Large, distant earthquakes are known to trigger deep tectonic tremor along the San Andreas Fault and in subduction zones. However, there are relatively few observations of triggering from regional distance earthquakes. Here we show that a small tremor episode about 12–18 km NW of Parkfield was triggered during and immediately following the passage of surface waves from the 2014 Mw 6.0 South Napa main shock. More notably, a major tremor episode followed, beginning about 12 h later, and centered SE of Parkfield near Cholame. This major episode is one of the largest seen over the past several years, containing intense activity for ~3 days and taking more than 3 weeks to return to background levels. This episode showed systematic along-strike migration at ~5 km/d, suggesting that it was driven by a slow-slip event. Our results suggest that moderate-size earthquakes are capable of triggering major tremor and deep slow slip at regional distances.

  11. Zoogeography of the San Andreas Fault system: Great Pacific Fracture Zones correspond with spatially concordant phylogeographic boundaries in western North America.

    Science.gov (United States)

    Gottscho, Andrew D

    2016-02-01

    The purpose of this article is to provide an ultimate tectonic explanation for several well-studied zoogeographic boundaries along the west coast of North America, specifically, along the boundary of the North American and Pacific plates (the San Andreas Fault system). By reviewing 177 references from the plate tectonics and zoogeography literature, I demonstrate that four Great Pacific Fracture Zones (GPFZs) in the Pacific plate correspond with distributional limits and spatially concordant phylogeographic breaks for a wide variety of marine and terrestrial animals, including invertebrates, fish, amphibians, reptiles, birds, and mammals. These boundaries are: (1) Cape Mendocino and the North Coast Divide, (2) Point Conception and the Transverse Ranges, (3) Punta Eugenia and the Vizcaíno Desert, and (4) Cabo Corrientes and the Sierra Transvolcanica. However, discussion of the GPFZs is mostly absent from the zoogeography and phylogeography literature likely due to a disconnect between biologists and geologists. I argue that the four zoogeographic boundaries reviewed here ultimately originated via the same geological process (triple junction evolution). Finally, I suggest how a comparative phylogeographic approach can be used to test the hypothesis presented here. © 2014 Cambridge Philosophical Society.

  12. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    Science.gov (United States)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  13. Imaging the Fine-Scale Structure of the San Andreas Fault in the Northern Gabilan Range with Explosion and Earthquake Sources

    Science.gov (United States)

    Xin, H.; Thurber, C. H.; Zhang, H.; Wang, F.

    2014-12-01

    A number of geophysical studies have been carried out along the San Andreas Fault (SAF) in the Northern Gabilan Range (NGR) with the purpose of characterizing in detail the fault zone structure. Previous seismic research has revealed the complex structure of the crustal volume in the NGR region in two-dimensions (Thurber et al., 1996, 1997), and there has been some work on the three-dimensional (3D) structure at a coarser scale (Lin and Roecker, 1997). In our study we use earthquake body-wave arrival times and differential times (P and S) and explosion arrival times (only P) to image the 3D P- and S-wave velocity structure of the upper crust along the SAF in the NGR using double-difference (DD) tomography. The earthquake and explosion data types have complementary strengths - the earthquake data have good resolution at depth and resolve both Vp and Vs structure, although only where there are sufficient seismic rays between hypocenter and stations, whereas the explosions contribute very good near-surface resolution but for P waves only. The original dataset analyzed by Thurber et al. (1996, 1997) included data from 77 local earthquakes and 8 explosions. We enlarge the dataset with 114 more earthquakes that occurred in the study area, obtain improved S-wave picks using an automated picker, and include absolute and cross-correlation differential times. The inversion code we use is the algorithm tomoDD (Zhang and Thurber, 2003). We assess how the P and S velocity models and earthquake locations vary as we alter the inversion parameters and the inversion grid. The new inversion results show clearly the fine-scale structure of the SAF at depth in 3D, sharpening the image of the velocity contrast from the southwest side to the northeast side.

  14. Imaging Stress Transients and Fault Zone Processes with Crosswell Continuous Active-Source Seismic Monitoring at the San Andreas Fault Observatory at Depth

    Science.gov (United States)

    Niu, F.; Taira, T.; Daley, T. M.; Marchesini, P.; Robertson, M.; Wood, T.

    2017-12-01

    Recent field and laboratory experiments identify seismic velocity changes preceding microearthquakes and rock failure (Niu et al., 2008, Nature; Scuderi et al., 2016, NatureGeo), which indicates that a continuous monitoring of seismic velocity might provide a mean of understanding of the earthquake nucleation process. Crosswell Continuous Active-Source Seismic Monitoring (CASSM) using borehole sources and sensors has proven to be an effective tool for measurements of seismic velocity and its temporal variation at seismogenic depth (Silver, et al, 2007, BSSA; Daley, et al, 2007, Geophysics). To expand current efforts on the CASSM development, in June 2017 we have begun to conduct a year-long CASSM field experiment at the San Andreas Fault Observatory at Depth (SAFOD) in which the preceding field experiment detected the two sudden velocity reductions approximately 10 and 2 hours before microearthquakes (Niu et al., 2008, Nature). We installed a piezoelectric source and a three-component accelerometer at the SAFOD pilot and main holes ( 1 km depth) respectively. A seismic pulse was fired from the piezoelectric source four times per second. Each waveform was recorded 150-ms-long data with a sampling rate of 48 kHz. During this one-year experiment, we expect to have 10-15 microearthquakes (magnitude 1-3) occurring near the SAFOD site, and the data collected from the new experiment would allow us to further explore a relation between velocity changes and the Parkfield seismicity. Additionally, the year-long data provide a unique opportunity to study long-term velocity changes that might be related to seasonal stress variations at Parkfield (Johnson et al., 2017, Science). We will report on initial results of the SAFOD CASSM experiment and operational experiences of the CASSM development.

  15. "3D_Fault_Offsets," a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults

    Science.gov (United States)

    Stewart, N.; Gaudemer, Y.; Manighetti, I.; Serreau, L.; Vincendeau, A.; Dominguez, S.; Mattéo, L.; Malavieille, J.

    2018-01-01

    Measuring fault offsets preserved at the ground surface is of primary importance to recover earthquake and long-term slip distributions and understand fault mechanics. The recent explosion of high-resolution topographic data, such as Lidar and photogrammetric digital elevation models, offers an unprecedented opportunity to measure dense collections of fault offsets. We have developed a new Matlab code, 3D_Fault_Offsets, to automate these measurements. In topographic data, 3D_Fault_Offsets mathematically identifies and represents nine of the most prominent geometric characteristics of common sublinear markers along faults (especially strike slip) in 3-D, such as the streambed (minimum elevation), top, free face and base of channel banks or scarps (minimum Laplacian, maximum gradient, and maximum Laplacian), and ridges (maximum elevation). By calculating best fit lines through the nine point clouds on either side of the fault, the code computes the lateral and vertical offsets between the piercing points of these lines onto the fault plane, providing nine lateral and nine vertical offset measures per marker. Through a Monte Carlo approach, the code calculates the total uncertainty on each offset. It then provides tools to statistically analyze the dense collection of measures and to reconstruct the prefaulted marker geometry in the horizontal and vertical planes. We applied 3D_Fault_Offsets to remeasure previously published offsets across 88 markers on the San Andreas, Owens Valley, and Hope faults. We obtained 5,454 lateral and vertical offset measures. These automatic measures compare well to prior ones, field and remote, while their rich record provides new insights on the preservation of fault displacements in the morphology.

  16. 4D stress evolution models of the San Andreas Fault System: Investigating time- and depth-dependent stress thresholds over multiple earthquake cycles

    Science.gov (United States)

    Burkhard, L. M.; Smith-Konter, B. R.

    2017-12-01

    4D simulations of stress evolution provide a rare insight into earthquake cycle crustal stress variations at seismogenic depths where earthquake ruptures nucleate. Paleoseismic estimates of earthquake offset and chronology, spanning multiple earthquakes cycles, are available for many well-studied segments of the San Andreas Fault System (SAFS). Here we construct new 4D earthquake cycle time-series simulations to further study the temporally and spatially varying stress threshold conditions of the SAFS throughout the paleoseismic record. Interseismic strain accumulation, co-seismic stress drop, and postseismic viscoelastic relaxation processes are evaluated as a function of variable slip and locking depths along 42 major fault segments. Paleoseismic earthquake rupture histories provide a slip chronology dating back over 1000 years. Using GAGE Facility GPS and new Sentinel-1A InSAR data, we tune model locking depths and slip rates to compute the 4D stress accumulation within the seismogenic crust. Revised estimates of stress accumulation rate are most significant along the Imperial (2.8 MPa/100yr) and Coachella (1.2 MPa/100yr) faults, with a maximum change in stress rate along some segments of 11-17% in comparison with our previous estimates. Revised estimates of earthquake cycle stress accumulation are most significant along the Imperial (2.25 MPa), Coachella (2.9 MPa), and Carrizo (3.2 MPa) segments, with a 15-29% decrease in stress due to locking depth and slip rate updates, and also postseismic relaxation from the El Mayor-Cucapah earthquake. Because stress drops of major strike-slip earthquakes rarely exceed 10 MPa, these models may provide a lower bound on estimates of stress evolution throughout the historical era, and perhaps an upper bound on the expected recurrence interval of a particular fault segment. Furthermore, time-series stress models reveal temporally varying stress concentrations at 5-10 km depths, due to the interaction of neighboring fault

  17. New constraints on slip rates and locking depths of the San Andreas Fault System from Sentinel-1A InSAR and GAGE GPS observations

    Science.gov (United States)

    Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.

    2017-12-01

    After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central

  18. Chemical controls on fault behavior: weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system

    Science.gov (United States)

    Moore, Diane E.; Lockner, David A.

    2013-01-01

    The serpentinized ultramafic rocks found in many plate-tectonic settings commonly are juxtaposed against crustal rocks along faults, and the chemical contrast between the rock types potentially could influence the mechanical behavior of such faults. To investigate this possibility, we conducted triaxial experiments under hydrothermal conditions (200-350°C), shearing serpentinite gouge between forcing blocks of granite or quartzite. In an ultramafic chemical environment, the coefficient of friction, µ, of lizardite and antigorite serpentinite is 0.5-0.6, and µ increases with increasing temperature over the tested range. However, when either lizardite or antigorite serpentinite is sheared against granite or quartzite, strength is reduced to µ ~ 0.3, with the greatest strength reductions at the highest temperatures (temperature weakening) and slowest shearing rates (velocity strengthening). The weakening is attributed to a solution-transfer process that is promoted by the enhanced solubility of serpentine in pore fluids whose chemistry has been modified by interaction with the quartzose wall rocks. The operation of this process will promote aseismic slip (creep) along serpentinite-bearing crustal faults at otherwise seismogenic depths. During short-term experiments serpentine minerals reprecipitate in low-stress areas, whereas in longer experiments new Mg-rich phyllosilicates crystallize in response to metasomatic exchanges across the serpentinite-crustal rock contact. Long-term shear of serpentinite against crustal rocks will cause the metasomatic mineral assemblages, which may include extremely weak minerals such as saponite or talc, to play an increasingly important role in the mechanical behavior of the fault. Our results may explain the distribution of creep on faults in the San Andreas system.

  19. Using a modified time-reverse imaging technique to locate low-frequency earthquakes on the San Andreas Fault near Cholame, California

    Science.gov (United States)

    Horstmann, Tobias; Harrington, Rebecca M.; Cochran, Elizabeth S.

    2015-01-01

    We present a new method to locate low-frequency earthquakes (LFEs) within tectonic tremor episodes based on time-reverse imaging techniques. The modified time-reverse imaging technique presented here is the first method that locates individual LFEs within tremor episodes within 5 km uncertainty without relying on high-amplitude P-wave arrivals and that produces similar hypocentral locations to methods that locate events by stacking hundreds of LFEs without having to assume event co-location. In contrast to classic time-reverse imaging algorithms, we implement a modification to the method that searches for phase coherence over a short time period rather than identifying the maximum amplitude of a superpositioned wavefield. The method is independent of amplitude and can help constrain event origin time. The method uses individual LFE origin times, but does not rely on a priori information on LFE templates and families.We apply the method to locate 34 individual LFEs within tremor episodes that occur between 2010 and 2011 on the San Andreas Fault, near Cholame, California. Individual LFE location accuracies range from 2.6 to 5 km horizontally and 4.8 km vertically. Other methods that have been able to locate individual LFEs with accuracy of less than 5 km have mainly used large-amplitude events where a P-phase arrival can be identified. The method described here has the potential to locate a larger number of individual low-amplitude events with only the S-phase arrival. Location accuracy is controlled by the velocity model resolution and the wavelength of the dominant energy of the signal. Location results are also dependent on the number of stations used and are negligibly correlated with other factors such as the maximum gap in azimuthal coverage, source–station distance and signal-to-noise ratio.

  20. S-wave triggering of tremor beneath the Parkfield, California, section of the San Andreas fault by the 2011 Tohoku, Japan earthquake: observations and theory

    Science.gov (United States)

    Hill, David P.; Peng, Zhigang; Shelly, David R.; Aiken, Chastity

    2013-01-01

    The dynamic stresses that are associated with the energetic seismic waves generated by the Mw 9.0 Tohoku earthquake off the northeast coast of Japan triggered bursts of tectonic tremor beneath the Parkfield section of the San Andreas fault (SAF) at an epicentral distance of ∼8200  km. The onset of tremor begins midway through the ∼100‐s‐period S‐wave arrival, with a minor burst coinciding with the SHSH arrival, as recorded on the nearby broadband seismic station PKD. A more pronounced burst coincides with the Love arrival, followed by a series of impulsive tremor bursts apparently modulated by the 20‐ to 30‐s‐period Rayleigh wave. The triggered tremor was located at depths between 20 and 30 km beneath the surface trace of the fault, with the burst coincident with the S wave centered beneath the fault 30 km northwest of Parkfield. Most of the subsequent activity, including the tremor coincident with the SHSH arrival, was concentrated beneath a stretch of the fault extending from 10 to 40 km southeast of Parkfield. The seismic waves from the Tohoku epicenter form a horizontal incidence angle of ∼14°, with respect to the local strike of the SAF. Computed peak dynamic Coulomb stresses on the fault at tremor depths are in the 0.7–10 kPa range. The apparent modulation of tremor bursts by the small, strike‐parallel Rayleigh‐wave stresses (∼0.7  kPa) is likely enabled by pore pressure variations driven by the Rayleigh‐wave dilatational stress. These results are consistent with the strike‐parallel dynamic stresses (δτs) associated with the S, SHSH, and surface‐wave phases triggering small increments of dextral slip on the fault with a low friction (μ∼0.2). The vertical dynamic stresses δτd do not trigger tremor with vertical or oblique slip under this simple Coulomb failure model.

  1. Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault System

    Energy Technology Data Exchange (ETDEWEB)

    Pili, E.; Kennedy, B.M.; Conrad, M.E.; Gratier, J.-P.

    2010-12-15

    To characterize the origin of the fluids involved in the San Andreas Fault (SAF) system, we carried out an isotope study of exhumed faulted rocks from deformation zones, vein fillings and their hosts and the fluid inclusions associated with these materials. Samples were collected from segments along the SAF system selected to provide a depth profile from upper to lower crust. In all, 75 samples from various structures and lithologies from 13 localities were analyzed for noble gas, carbon, and oxygen isotope compositions. Fluid inclusions exhibit helium isotope ratios ({sup 3}He/{sup 4}He) of 0.1-2.5 times the ratio in air, indicating that past fluids percolating through the SAF system contained mantle helium contributions of at least 35%, similar to what has been measured in present-day ground waters associated with the fault (Kennedy et al., 1997). Calcite is the predominant vein mineral and is a common accessory mineral in deformation zones. A systematic variation of C- and O-isotope compositions of carbonates from veins, deformation zones and their hosts suggests percolation by external fluids of similar compositions and origin with the amount of fluid infiltration increasing from host rocks to vein to deformation zones. The isotopic trend observed for carbonates in veins and deformation zones follows that shown by carbonates in host limestones, marbles, and other host rocks, increasing with increasing contribution of deep metamorphic crustal volatiles. At each crustal level, the composition of the infiltrating fluids is thus buffered by deeper metamorphic sources. A negative correlation between calcite {delta}{sup 13}C and fluid inclusion {sup 3}He/{sup 4}He is consistent with a mantle origin for a fraction of the infiltrating CO{sub 2}. Noble gas and stable isotope systematics show consistent evidence for the involvement of mantle-derived fluids combined with infiltration of deep metamorphic H{sub 2}O and CO{sub 2} in faulting, supporting the involvement of

  2. Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: observations in groundwaters along the San Andreas Fault

    Science.gov (United States)

    Deeds, Daniel A.; Kulongoski, Justin T.; Muhle, Jens; Weiss, Ray F.

    2015-01-01

    Tetrafluoromethane (CF4) concentrations were measured in 14 groundwater samples from the Cuyama Valley, Mil Potrero and Cuddy Valley aquifers along the Big Bend section of the San Andreas Fault System (SAFS) in California to assess whether tectonic activity in this region is a significant source of crustal CF4 to the atmosphere. Dissolved CF4 concentrations in all groundwater samples but one were elevated with respect to estimated recharge concentrations including entrainment of excess air during recharge (CreCre; ∼30 fmol kg−1 H2O), indicating subsurface addition of CF4 to these groundwaters. Groundwaters in the Cuyama Valley contain small CF4 excesses (0.1–9 times CreCre), which may be attributed to an in situ release from weathering and a minor addition of deep crustal CF4 introduced to the shallow groundwater through nearby faults. CF4 excesses in groundwaters within 200 m of the SAFS are larger (10–980 times CreCre) and indicate the presence of a deep crustal flux of CF4 that is likely associated with the physical alteration of silicate minerals in the shear zone of the SAFS. Extrapolating CF4 flux rates observed in this study to the full extent of the SAFS (1300 km × 20–100 km) suggests that the SAFS potentially emits (0.3–1)×10−1 kg(0.3–1)×10−1 kg CF4 yr−1 to the Earth's surface. For comparison, the chemical weathering of ∼7.5×104 km2∼7.5×104 km2 of granitic rock in California is estimated to release (0.019–3.2)×10−1 kg(0.019–3.2)×10−1 kg CF4 yr−1. Tectonic activity is likely an important, and potentially the dominant, driver of natural emissions of CF4 to the atmosphere. Variations in preindustrial atmospheric CF4 as observed in paleo-archives such as ice cores may therefore represent changes in both continental weathering and tectonic activity, including changes driven by variations in continental ice cover during glacial–interglacial transitions.

  3. Integration of Ground-based Magnetics and Vertical Deformation Measurements for the Characterization of the San Andreas Fault at the Durmid Hill Region, California

    Science.gov (United States)

    Alvarez, K.; Polet, J.

    2017-12-01

    The Durmid Hill region is located near the termination of the San Andreas Fault (SAF) at Bombay Beach. This section of the fault has not experienced any major earthquakes for at least the last three centuries. During a 6 year study, Sylvester et al. (1993) collected vertical deformation measurements at Durmid Hill from monuments they installed along a 2.37 km leveling line normal to the SAF. They concluded that interseismic processes account for most of the growth at Durmid Hill and estimated more than 9 mm of uplift within the leveling line, with uniform tilt at distances greater than 500 m from the fault. Langenheim et al. (2014) created a model based on ground-based magnetic data that they collected in the same area and found a complex magnetic structure with a broad band magnetic anomaly present on the northeast side of SAF and a prominent magnetic high along the main mapped trace of the SAF. A primary objective of our study is to reoccupy the leveling line from Sylvester et al. (1993), across the SAF at Durmid Hill. Additionally, we will utilize subsurface geophysical techniques to enhance our understanding of the fault geometry along the southernmost end of the SAF and its relationship to the aseismic deformation at Durmid Hill. Elevation profiles are measured using Nikon Nivo 5C total stations and magnetic field intensity measurements are made by a GSM-19TGW v7.0 walking magnetometer, with a VLF (Very Low requency) attachment. We will present preliminary results from data sets gathered in March and May of 2017, as well as additional surveys that will be carried out in October and November. The preliminary maps produced from the results of the first magnetic surveys show two significant and distinct magnetic anomalies consistent with earlier studies. Initial monument elevation comparisons could only be made for monuments located at the north-eastern end of the leveling line, at a distance of about 1.5 km behind Bat Cave Buttes. There appear to be sections of

  4. Deformed Fluvial Terraces of Little Rock Creek Capture Off-Fault Strain Adjacent to the Mojave Section of the San Andreas Fault

    Science.gov (United States)

    Moulin, A.; Scharer, K. M.; Cowgill, E.

    2017-12-01

    Examining discrepancies between geodetic and geomorphic slip-rates along major strike-slip faults is essential for understanding both fault behavior and seismic hazard. Recent work on major strike-slip faults has highlighted off-fault deformation and its potential impact on fault slip rates. However, the extent of off-fault deformation along the San Andreas Fault (SAF) remains largely uncharacterized. Along the Mojave section of the SAF, Little Rock Creek drains from south to north across the fault and has cut into alluvial terraces abandoned between 15 and 30 ka1. The surfaces offer a rare opportunity to both characterize how right-lateral slip has accumulated along the SAF over hundreds of seismic cycles, and investigate potential off-fault deformation along secondary structures, where strain accumulates at slower rates. Here we use both field observations and DEM analysis of B4 lidar data to map alluvial and tectonic features, including 9 terrace treads that stand up to 80 m above the modern channel. We interpret the abandonment and preservation of the fluvial terraces to result from episodic capture of Little Rock Creek through gaps in a shutter ridge north of the fault, followed by progressive right deflection of the river course during dextral slip along the SAF. Piercing lines defined by fluvial terrace risers suggest that the amount of right slip since riser formation ranges from 400m for the 15-ka-riser to 1200m for the 30-ka-riser. Where they are best-preserved NE of the SAF, terraces are also cut by NE-facing scarps that trend parallel to the SAF in a zone extending up to 2km from the main fault. Exposures indicate these are fault scarps, with both reverse and normal stratigraphic separation. Geomorphic mapping reveals deflections of both channel and terrace risers (up to 20m) along some of those faults suggesting they could have accommodated a component of right-lateral slip. We estimated the maximum total amount of strike-slip motion recorded by the

  5. Analysis of nonvolcanic tremor on the San Andreas Fault near Parkfield, CA using U.S. Geological Survey Parkfield Seismic Array

    Science.gov (United States)

    Fletcher, Jon B.; Baker, Lawrence M.

    2010-01-01

    Reports by Nadeau and Dolenc (2005) that tremor had been detected near Cholame Valley spawned an effort to use UPSAR (U. S. Geological Survey Parkfield Seismic Array) to study characteristics of tremor. UPSAR was modified to record three channels of velocity at 40–50 sps continuously in January 2005 and ran for about 1 month, during which time we recorded numerous episodes of tremor. One tremor, on 21 January at 0728, was recorded with particularly high signal levels as well as another episode 3 days later. Both events were very emergent, had a frequency content between 2 and 8 Hz, and had numerous high-amplitude, short-duration arrivals within the tremor signal. Here using the first episode as an example, we discuss an analysis procedure, which yields azimuth and apparent velocity of the tremor at UPSAR. We then provide locations for both tremor episodes. The emphasis here is how the tremor episode evolves. Twelve stations were operating at the time of recording. Slowness of arrivals was determined using cross correlation of pairs of stations; the same method used in analyzing the main shock data from 28 September 2004. A feature of this analysis is that 20 s of the time series were used at a time to calculate correlation; the longer windows resulted in more consistent estimates of slowness, but lower peak correlations. These values of correlation (peaks of about 0.25), however, are similar to that obtained for the S wave of a microearthquake. Observed peaks in slowness were traced back to source locations assumed to lie on the San Andreas fault. Our inferred locations for the two tremor events cluster near the locations of previously observed tremor, south of the Cholame Valley. Tremor source depths are in the 14–24 km range, which is below the seismogenic brittle zone, but above the Moho. Estimates of error do not preclude locations below the Moho, however. The tremor signal is very emergent but contains packets that are several times larger than the

  6. Blue oak plant communities of southern San Luis Obispo and northern Santa Barbara Counties, California

    Science.gov (United States)

    Mark I. Borchert; Nancy D. Cunha; Patricia C. Krosse; Marcee L. Lawrence

    1993-01-01

    An ecological classification system has been developed for the Pacific Southwest Region of the Forest Service. As part of that classification effort, blue oak (Quercus douglasii) woodlands and forests of southern San Luis Obispo and northern Santa Barbara Counties in Los Padres National Forest were classified into I3 plant communities using...

  7. Preliminary Geologic Map of the San Fernando 7.5' Quadrangle, Southern California: A Digital Database

    Science.gov (United States)

    Yerkes, R.F.

    1997-01-01

    The city of San Fernando sits atop a structurally complex, sedimentologically diverse, and tectonically evolving late Tertiary-Quaternary basin situated within the Transverse Ranges of southern California. The surrounding San Fernando Valley (SFV) contains the headwaters of the Los Angeles River and its tributaries. Prior to the advent of flood control, the valley floor was composed of active alluvial fans and floodplains. Seasonal streams emanating from Pacoima and Big Tujunga Canyons drain the complex western San Gabriel Mountains and deposit coarse, highly permeable alluvium that contains generally high-quality ground water. The more shallow western part derives mainly from Tertiary and pre-Tertiary sedimentary rocks, and is underlain by less permeable, fine-grained deposits containing persistent shallow ground water and poorer water quality. Home of the 1971 San Fernando and the 1994 Northridge earthquakes, the SFV experienced near-record levels of strong ground motion in 1994 that caused widespread damage from strong shaking and ground failure. A new map of late Quaternary deposits of the San Fernando area shows that the SFV is a structural trough that has been filled from the sides, with the major source of sediment being large drainages in the San Gabriel Mountains. Deposition on the major alluvial fan of Tujunga Wash and Pacoima Wash, which issues from the San Gabriel Mountains, and on smaller fans, has been influenced by ongoing compressional tectonics in the valley. Late Pleistocene deposits have been cut by active faults and warped over growing folds. Holocene alluvial fans are locally ponded behind active uplifts. The resulting complex pattern of deposits has a major effect on liquefaction hazards. Young sandy sediments generally are highly susceptible to liquefaction where they are saturated, but the distribution of young deposits, their grain size characteristics, and the level of ground water all are complexly dependent on the tectonics of the valley

  8. Crustal-scale tilting of the central Salton block, southern California

    Science.gov (United States)

    Dorsey, Rebecca; Langenheim, Victoria

    2015-01-01

    The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.

  9. Thermal history of rocks in southern San Joaquin Valley, California: evidence from fission-track analysis

    Science.gov (United States)

    Naeser, N.D.; Naeser, C.W.; McCulloh, T.H.

    1990-01-01

    Fission-track analysis has been used to study the thermal and depositional history of the subsurface Tertiary sedimentary rocks on both sides of the active White Wolf reverse fault in the southern San Joaquin Valley. The distinctly different thermal histories of the rocks in the two structural blocks are clearly reflected in the apatite fission-track data, which suggest that rocks in the rapidly subsiding basin northwest of the fault have been near their present temperature for only about 1 m.y. compared with about 10 m.y. for rocks southeast of the fault. These estimates of heating time agree with previous estimates for these rocks. Zircon fission-track data indicate that the Tertiary sediments were derived from parent rocks of more than one age. However, from at least the Eocene to late Miocene or Pliocene, the major sediment source was rocks related to the youngest Sierra Nevada Mesozoic intrusive complexes, which are presently exposed east and south of the southern San Joaquin Valley. -from Authors

  10. Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes

    Science.gov (United States)

    Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.

    2013-12-01

    Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.

  11. Effects of uranium development on erosion and associated sedimentation in southern San Juan Basin, New Mexico

    Science.gov (United States)

    Cooley, Maurice E.

    1979-01-01

    A reconnaissance was made of some of the effects of uranium development on erosion and associated sedimentation in the southern San Juan Basin, where uranium development is concentrated. In general, the effects of exploration on erosion are minor, although erosion may be accelerated by the building of access roads, by activities at the drilling sites, and by close concentration of drilling sites. Areas where the greatest effects on erosion and sedimentation from mining and milling operations have occurred are: (1) in the immediate vicinity of mines and mills, (2) near waste piles, and (3) in stream channels where modifications, such as changes in depth have been caused by discharge of excess mine and mill water. Collapse of tailings piles could result in localized but excessive erosion and sedimentation.

  12. Ozone distribution and phytotoxic potential in mixed conifer forests of the San Bernardino Mountains, southern California

    International Nuclear Information System (INIS)

    Bytnerowicz, Andrzej; Arbaugh, Michael; Schilling, Susan; Fraczek, Witold; Alexander, Diane

    2008-01-01

    In the San Bernardino Mountains of southern California, ozone (O 3 ) concentrations have been elevated since the 1950s with peaks reaching 600 ppb and summer seasonal averages >100 ppb in the 1970s. During that period increased mortality of ponderosa and Jeffrey pines occurred. Between the late 1970s and late1990s, O 3 concentrations decreased with peaks ∼180 ppb and ∼60 ppb seasonal averages. However, since the late 1990s concentrations have not changed. Monitoring during summers of 2002-2006 showed that O 3 concentrations (2-week averages) for individual years were much higher in western sites (58-69 ppb) than eastern sites (44-50 ppb). Potential O 3 phytotoxicity measured as various exposure indices was very high, reaching SUM00 - 173.5 ppm h, SUM60 - 112.7 ppm h, W126 - 98.3 ppm h, and AOT40 - 75 ppm h, representing the highest values reported for mountain areas in North America and Europe. - Although peak ozone concentrations have greatly decreased in the San Bernardino Mountains, very high ozone phytotoxic potential remains

  13. Teatrikunstnik Andrea Haamer: Olen alati unistanud Eestisse tagasi tulla / Andrea Haamer ; intervjueerinud Andreas Sepp, Anneli Sihvart

    Index Scriptorium Estoniae

    Haamer, Andrea

    2011-01-01

    Eesti juurtega lava- ja kostüümikunstnikust Andrea T. Haamerist, kes on Eestis kujundanud kolm balletti. 25. veebruaril avatavast neljandast Jõhvi balletifestivalist, kus avatakse Andrea Haameri näitus

  14. Discharge between San Antonio Bay and Aransas Bay, southern Gulf Coast, Texas, May-September 1999

    Science.gov (United States)

    East, Jeffery W.

    2001-01-01

    Along the Gulf Coast of Texas, many estuaries and bays are important habitat and nurseries for aquatic life. San Antonio Bay and Aransas Bay, located about 50 and 30 miles northeast, respectively, of Corpus Christi, are two important estuarine nurseries on the southern Gulf Coast of Texas (fig. 1). According to the Texas Parks and Wildlife Department, “Almost 80 percent of the seagrasses [along the Texas Gulf Coast] are located in the Laguna Madre, an estuary that begins just south of Corpus Christi Bay and runs southward 140 miles to South Padre Island. Most of the remaining seagrasses, about 45,000 acres, are located in the heavily traveled San Antonio, Aransas and Corpus Christi Bay areas” (Shook, 2000).Population growth has led to greater demands on water supplies in Texas. The Texas Water Development Board, the Texas Parks and Wildlife Department, and the Texas Natural Resource Conservation Commission have the cooperative task of determining inflows required to maintain the ecological health of the State’s streams, rivers, bays, and estuaries. To determine these inflow requirements, the three agencies collect data and conduct studies on the need for instream flows and freshwater/ saline water inflows to Texas estuaries.To assist in the determination of freshwater inflow requirements, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, conducted a hydrographic survey of discharge (flow) between San Antonio Bay and Aransas Bay during the period May–September 1999. Automated instrumentation and acoustic technology were used to maximize the amount and quality of data that were collected, while minimizing personnel requirements. This report documents the discharge measured at two sites between the bays during May–September 1999 and describes the influences of meteorologic (wind and tidal) and hydrologic (freshwater inflow) conditions on discharge between the two bays. The movement of water between the bays is

  15. Equatorial origin for Lower Jurassic radiolarian chert in the Franciscan Complex, San Rafael Mountains, southern California

    Science.gov (United States)

    Hagstrum, J.T.; Murchey, B.L.; Bogar, R.S.

    1996-01-01

    Lower Jurassic radiolarian chert sampled at two localities in the San Rafael Mountains of southern California (???20 km north of Santa Barbara) contains four components of remanent magnetization. Components A, B???, and B are inferred to represent uplift, Miocene volcanism, and subduction/accretion overprint magnetizations, respectively. The fourth component (C), isolated between 580?? and 680??C, shows a magnetic polarity stratigraphy and is interpreted as a primary magnetization acquired by the chert during, or soon after, deposition. Both sequences are late Pliensbachian to middle Toarcian in age, and an average paleolatitude calculated from all tilt-corrected C components is 1?? ?? 3?? north or south. This result is consistent with deposition of the cherts beneath the equatorial zone of high biologic productivity and is similar to initial paleolatitudes determined for chert blocks in northern California and Mexico. This result supports our model in which deep-water Franciscan-type cherts were deposited on the Farallon plate as it moved eastward beneath the equatorial productivity high, were accreted to the continental margin at low paleolatitudes, and were subsequently distributed northward by strike-slip faulting associated with movements of the Kula, Farallon, and Pacific plates. Upper Cretaceous turbidites of the Cachuma Formation were sampled at Agua Caliente Canyon to determine a constraining paleolatitude for accretion of the Jurassic chert sequences. These apparently unaltered rocks, however, were found to be completely overprinted by the A component of magnetization. Similar in situ directions and demagnetization behaviors observed in samples of other Upper Cretaceous turbidite sequences in southern and Baja California imply that these rocks might also give unreliable results.

  16. Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains

    Science.gov (United States)

    Fellows, A.; Goulden, M.

    2010-12-01

    An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.

  17. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    Science.gov (United States)

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  18. Lithofacies characterization related to the Raigon Formation located in the southern area of the San Jose Department

    International Nuclear Information System (INIS)

    Spoturno, J.; Morales, E.; Cazaux, S.; Aubet, N.; Loureiro, J.

    2004-01-01

    In this work the different lithofacies characterization related to the Raigon Formation, located in the southern area of the San Jose Department, is exposed supported by surface and subsurface data. Six stratigraphical sections were constructed considering lithological borehole descriptions to the aim of making a contribution on the spatial distribution, thickness, disposition, lithofaciological variations of this Formation and its stratigraphical relationships with other units [es

  19. Timber resource statistics for the San Joaquin and southern California resource areas.

    Science.gov (United States)

    Bruce Hiserote; Joel Moen; Charles L. Bolsinger

    1986-01-01

    This report is one of five that provide timber resource statistics for 57 of the 58 counties in California (San Francisco is excluded). This report presents statistics from a 1982-84 inventory of the timber resources of Alpine, Amador, Calaveras, Fresno, Imperial, Inyo, Kern, Kings, Los Angeles, Madera, Mariposa, Merced, Mono, Orange, Riverside, San Bernardino, San...

  20. Smog nitrogen and the rapid acidification of forest soil, San Bernardino Mountains, southern California.

    Science.gov (United States)

    Wood, Yvonne A; Fenn, Mark; Meixner, Thomas; Shouse, Peter J; Breiner, Joan; Allen, Edith; Wu, Laosheng

    2007-03-21

    We report the rapid acidification of forest soils in the San Bernardino Mountains of southern California. After 30 years, soil to a depth of 25 cm has decreased from a pH (measured in 0.01 M CaCl2) of 4.8 to 3.1. At the 50-cm depth, it has changed from a pH of 4.8 to 4.2. We attribute this rapid change in soil reactivity to very high rates of anthropogenic atmospheric nitrogen (N) added to the soil surface (72 kg ha(-1) year(-1)) from wet, dry, and fog deposition under a Mediterranean climate. Our research suggests that a soil textural discontinuity, related to a buried ancient landsurface, contributes to this rapid acidification by controlling the spatial and temporal movement of precipitation into the landsurface. As a result, the depth to which dissolved anthropogenic N as nitrate (NO3) is leached early in the winter wet season is limited to within the top approximately 130 cm of soil where it accumulates and increases soil acidity.

  1. Air Pollution Distribution Patterns in the San Bernardino Mountains of Southern California: a 40-Year Perspective

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2007-01-01

    Full Text Available Since the mid-1950s, native pines in the San Bernardino Mountains (SBM in southern California have shown symptoms of decline. Initial studies in 1963 showed that ozone (O3 generated in the upwind Los Angeles Basin was responsible for the injury and decline of sensitive trees. Ambient O3 decreased significantly by the mid-1990s, resulting in decreased O3 injury and improved tree growth. Increased growth of trees may also be attributed to elevated atmospheric nitrogen (N deposition. Since most of the N deposition to mixed conifer forest stands in the SBM results from dry deposition of nitric acid vapor (HNO3 and ammonia (NH3, characterization of spatial and temporal distribution of these two pollutants has become essential. Although maximum daytime O3 concentrations over last 40 years have significantly decreased (~3-fold, seasonal means have been reduced much less (~1.5-fold, with 2-week long means occasionally exceeding 100 ppb in the western part of the range. In the same area, significantly elevated concentrations of HNO3 and NH3, up to 17.5 and 18.5 μg/m3 as 2-week averages, respectively, have been determined. Elevated levels of O3 and increased N deposition together with long-term drought predispose the SBM forests to massive bark beetle attacks making them susceptible to catastrophic fires.

  2. 1995 Integrated Monitoring Study: Fog measurements in the Southern San Joaquin Valley - preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Collett, J. Jr.; Bator, A.; Sherman, D.E. [Colorado State Univ., Fort Collins, CO (United States)] [and others

    1996-12-31

    Fogs were sampled at three ground-based stations in the southern portion of California`s San Joaquin Valley as part of the winter component of the 1995 Integrated Monitoring Study (IMS95). The three sampling sites included two urban locations (Bakersfield and Fresno) and one rural location (near the Kern Wildlife Refuge). Both bulk and drop size-fractionated samples were collected at each site. Several fog events were sampled, with three periods of extensive fog coverage that included all three sampling sites. Results of preliminary data analysis are presented. Fog collected at the sites was generally quite basic. Most bulk fog samples had pH values above 6 reflecting strong inputs from ammonia. Occasional strong sulfur plumes at Bakersfield, however, tended to lower the fog pH. Aside from these periods, nitrate was generally present at much higher concentrations in the fog than sulfate. Decreases in fogwater loadings of major species over the course of one extended fog episode at Fresno suggest significant deposition was occurring to the surface, consistent with observations of substantial droplet fluxes to exposed surfaces during that period. 16 refs., 7 figs., 1 tab.

  3. Smog Nitrogen and the Rapid Acidification of Forest Soil, San Bernardino Mountains, Southern California

    Directory of Open Access Journals (Sweden)

    Yvonne A. Wood

    2007-01-01

    Full Text Available We report the rapid acidification of forest soils in the San Bernardino Mountains of southern California. After 30 years, soil to a depth of 25 cm has decreased from a pH (measured in 0.01 M CaCl2 of 4.8 to 3.1. At the 50-cm depth, it has changed from a pH of 4.8 to 4.2. We attribute this rapid change in soil reactivity to very high rates of anthropogenic atmospheric nitrogen (N added to the soil surface (72 kg ha–1 year–1 from wet, dry, and fog deposition under a Mediterranean climate. Our research suggests that a soil textural discontinuity, related to a buried ancient landsurface, contributes to this rapid acidification by controlling the spatial and temporal movement of precipitation into the landsurface. As a result, the depth to which dissolved anthropogenic N as nitrate (NO3 is leached early in the winter wet season is limited to within the top ~130 cm of soil where it accumulates and increases soil acidity.

  4. Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico

    Science.gov (United States)

    Ruleman, Chester A.; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.

    2016-01-01

    The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio

  5. Postcrystalline deformation of the Pelona Schist bordering Leona Valley, southern California

    Science.gov (United States)

    Evans, James George

    1978-01-01

    Detailed structural investigations in part of the Leona Valley segment of the San Andreas fault zone, 5-16 km west of Palm dale, focused on the postcrystalline deformation of the block of Mesozoic(?) Pelona Schist underlying Portal and Ritter Ridges. The early fabric of the schist is modified and in places obliterated by cataclasis along shear zones near the San Andreas fault and the Hitchbrook fault, a major west-striking branch of the San Andreas fault system. Anastomosing shear foliations, fabric elements of the postcrystalline deformation, intersect at small angles to one another and are generally vertical or steeply dipping to the north-northeast; they are subparallel to the Hitchbrook fault. Many of these shear foliations are nearly parallel to the compositional layering and schistosity, which commonly dip at moderately steep angles to the northwest. Folds in the shear foliation, commonly intrafolial, generally plunge at moderately steep angles to the north-northeast or are nearly vertical. Other folds, various in form, have axes parallel to the intersections of the early schistosity and the shear foliations and plunge in many other directions. Faults, roughly similar in orientation to the shear foliations, have orientations subparallel to large-scale structures and structural features in the Leona Valley area and in southern California: the San Andreas fault zone in Leona Valley, the Hitchbrook fault, the Garlock fault zone, steep northward-striking faults, the San Andreas fault zone north and south of the Transverse Ranges, and the generally northwest-dipping early compositional layering of the schist. Slickensides on some of the minor faults indicate that the latest movements on the steep faults are predominantly strike slip with indications of less common episodes of predominantly dip slip. The low-angle faults have oblique slip with a large dip component.

  6. Potential field studies of the central San Luis Basin and San Juan Mountains, Colorado and New Mexico, and southern and western Afghanistan

    Science.gov (United States)

    Drenth, Benjamin John

    This dissertation includes three separate chapters, each demonstrating the interpretive utility of potential field (gravity and magnetic) geophysical datasets at various scales and in various geologic environments. The locations of these studies are the central San Luis Basin of Colorado and New Mexico, the San Juan Mountains of southwestern Colorado, and southern and western Afghanistan. The San Luis Basin is the northernmost of the major basins that make up the Rio Grande rift, and interpretation of gravity and aeromagnetic data reveals patterns of rifting, rift-sediment thicknesses, distribution of pre-rift volcanic and sedimentary rocks, and distribution of syn-rift volcanic rocks. Syn-rift Santa Fe Group sediments have a maximum thickness of ˜2 km in the Sanchez graben near the eastern margin of the basin along the central Sangre de Cristo fault zone. Under the Costilla Plains, thickness of these sediments is estimated to reach ˜1.3 km. The Santa Fe Group sediments also reach a thickness of nearly 1 km within the Monte Vista graben near the western basin margin along the San Juan Mountains. A narrow, north-south-trending structural high beneath San Pedro Mesa separates the graben from the structural depression beneath the Costilla Plains. Aeromagnetic anomalies are interpreted to mainly reflect variations of remanent magnetic polarity and burial depth of the 5.3-3.7 Ma Servilleta basalt of the Taos Plateau volcanic field. Magnetic-source depth estimates indicate patterns of subsidence following eruption of the basalt and show that the Sanchez graben has been the site of maximum subsidence. One of the largest and most pronounced gravity lows in North America lies over the rugged San Juan Mountains in southwestern Colorado. A buried, low-density silicic batholith related to an Oligocene volcanic field coincident with the San Juan Mountains has been the accepted interpretation of the source of the gravity low since the 1970s. However, this interpretation was

  7. A stratigraphic model to support remediation of groundwater contamination in the southern San Francisco Bay area

    International Nuclear Information System (INIS)

    Steinpress, M.G.

    1993-01-01

    Some early regional studies in the southern San Francisco Bay Area applied the term 'older bay mud' to Wisconsin and older deposits thought to be estuarine in origin. This outdated interpretation has apparently contributed to an expectation of laterally-continuous aquifers and aquitards. In fact, heterogeneous alluvial deposits often create complex hydrogeologic settings that defy simple remedial approaches. A more useful stratigraphic model provides a foundation for conducting site investigations and assessing the feasibility of remediation. A synthesis of recent regional studies and drilling results at one site on the southwest margin of the Bay indicate that the upper quaternary stratigraphy consists of four primary units in the upper 200 feet of sediments (oldest to youngest): (1) Illinoian glacial-age alluvium (an important groundwater source); (2) Sangamon interglacial-age deposits, which include fine-grained alluvial deposits and estuarine deposits equivalent to the Yerba Buena Mud (a regional confining layer); (3) Wisconsin glacial-age alluvial fan and floodplain deposits; and (4) Holocene interglacial-age sediments, which include fine-grained alluvial and estuarine deposits equivalent to the 'younger bay mud'. Remedial investigations generally focus on groundwater contamination in the Wisconsin and Holocene alluvial deposits. Detailed drilling results indicate that narrow sand and gravel channels occur in anastomosing patterns within a Wisconsin to Holocene floodplain sequence dominated by interchannel silts and clays. The identification of these small-scale high-permeability conduits is critical to understanding and predicting contaminant transport on a local scale. Discontinuous site-specific aquitards do not provide competent separation where stacked channels occur and the correlation of aquitards over even small distance is often tenuous at best

  8. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    Science.gov (United States)

    Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.

    2007-01-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  9. Temporal and spatial trends in streamwater nitrate concentrations in the San Bernardino mountains, southern California

    Science.gov (United States)

    Mark E. Fenn; Mark A. Poth

    1999-01-01

    We report streamwater nitrate (NO,) concentrations for December 1995 to September 1998 from 19 sampling sites across a N deposition gradient in the San Bernardino Mountains. Streamwater NO3- concentrations in Devil Canyon (DC), a high-pollution area, and in previously reported data from the San Gabriel Mountains 40 km...

  10. A sediment budget for the southern reach in San Francisco Bay, CA: Implications for habitat restoration

    Science.gov (United States)

    Shellenbarger, Gregory; Wright, Scott A.; Schoellhamer, David H.

    2013-01-01

    The South Bay Salt Pond Restoration Project is overseeing the restoration of about 6000 ha of former commercial salt-evaporation ponds to tidal marsh and managed wetlands in the southern reach of San Francisco Bay (SFB). As a result of regional groundwater overdrafts prior to the 1970s, parts of the project area have subsided below sea-level and will require between 29 and 45 million m3 of sediment to raise the surface of the subsided areas to elevations appropriate for tidal marsh colonization and development. Therefore, a sufficient sediment supply to the far south SFB subembayment is a critical variable for achieving restoration goals. Although both major tributaries to far south SFB have been seasonally gaged for sediment since 2004, the sediment flux at the Dumbarton Narrows, the bayward boundary of far south SFB, has not been quantified until recently. Using daily suspended-sediment flux data from the gages on Guadalupe River and Coyote Creek, combined with continuous suspended-sediment flux data at Dumbarton Narrows, we computed a sediment budget for far south SFB during Water Years 2009–2011. A Monte Carlo approach was used to quantify the uncertainty of the flux estimates. The sediment flux past Dumbarton Narrows from the north dominates the input to the subembayment. However, environmental conditions in the spring can dramatically influence the direction of springtime flux, which appears to be a dominant influence on the net annual flux. It is estimated that up to several millennia may be required for natural tributary sediments to fill the accommodation space of the subsided former salt ponds, whereas supply from the rest of the bay could fill the space in several centuries. Uncertainty in the measurement of sediment flux is large, in part because small suspended-sediment concentration differences between flood and ebb tides can lead to large differences in total mass exchange. Using Monte Carlo simulations to estimate the random error associated with

  11. Mercury burdens in Chinese mitten crabs (Eriocheir sinensis) in three tributaries of southern San Francisco Bay, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Clifford A. [US Geological Survey, 7801 Folsom Blvd, Suite 101, Sacramento, CA 95826 (United States)]. E-mail: bioinvestigations@sbcglobal.net; Rudnick, Deborah [Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720 (United States); Williams, Erin [US Fish and Wildlife Service, 4001 N. Wilson Way, Stockton, CA 95205 (United States)

    2005-02-01

    Chinese mitten crabs (Eriocheir sinensis), endemic to Asia, were first reported in the San Francisco Bay in 1992. They are now established in nearly all San Francisco Bay tributaries. These crabs accumulate more metals, such as mercury, than crustaceans living in the water column. Because their predators include fish, birds, mammals and humans, their mercury burdens have an exceptional potential to impact the ecosystem and public health. We sought to elucidate the potential threat of mitten crab mercury burdens in three adjacent streams in southern San Francisco Bay, one of which is known to be contaminated with mercury. Mitten crabs had hepatopancreas concentrations of total mercury and methylmercury that did not differ among streams. The maximum burden we measured was below the action level of 1 ppm recommended by the USEPA. Hepatopancreas concentrations of methylmercury declined with increasing crab size, suggesting a mechanism for mercury excretion and that predators might reduce mercury exposure if they select larger crabs. Because mercury may be heterogeneously distributed among tissues, estimation of the impacts of crab mercury burdens on the environment requires more data on the feeding preferences of predators. - Hepatopancreas concentrations of mercury decline with crab size, which may have important consequences for bio-magnification in food webs.

  12. Mercury burdens in Chinese mitten crabs (Eriocheir sinensis) in three tributaries of southern San Francisco Bay, California, USA

    International Nuclear Information System (INIS)

    Hui, Clifford A.; Rudnick, Deborah; Williams, Erin

    2005-01-01

    Chinese mitten crabs (Eriocheir sinensis), endemic to Asia, were first reported in the San Francisco Bay in 1992. They are now established in nearly all San Francisco Bay tributaries. These crabs accumulate more metals, such as mercury, than crustaceans living in the water column. Because their predators include fish, birds, mammals and humans, their mercury burdens have an exceptional potential to impact the ecosystem and public health. We sought to elucidate the potential threat of mitten crab mercury burdens in three adjacent streams in southern San Francisco Bay, one of which is known to be contaminated with mercury. Mitten crabs had hepatopancreas concentrations of total mercury and methylmercury that did not differ among streams. The maximum burden we measured was below the action level of 1 ppm recommended by the USEPA. Hepatopancreas concentrations of methylmercury declined with increasing crab size, suggesting a mechanism for mercury excretion and that predators might reduce mercury exposure if they select larger crabs. Because mercury may be heterogeneously distributed among tissues, estimation of the impacts of crab mercury burdens on the environment requires more data on the feeding preferences of predators. - Hepatopancreas concentrations of mercury decline with crab size, which may have important consequences for bio-magnification in food webs

  13. Factors motivating Latino college students to pursue STEM degrees on CSU campuses in the southern San Joaquin Valley

    Science.gov (United States)

    Ramirez, Gabriel

    The purpose of this study was to determine what factors were motivating Latino/a students in the southern San Joaquin Valley to pursue STEM degrees and whether these factors were specific to the Latino/a culture. A 12-question survey was administered to STEM majors at California State University, Bakersfield and California State University, Fresno and interviews were conducted with those survey respondents who agreed to be part of the process. The results of the survey suggested that factors such as STEM subject matter, STEM career knowledge, the possibility of a high paying salary, high school STEM grades, and family influence were significant in motivating Latino/a students to pursue STEM degrees. The results of the Chi Square Test suggested the Latino/a students' responses about college STEM degree granting statistics, the possibility of a high salary, and the effects of setbacks were significantly different to those of their non-Latino/a counterparts.

  14. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  15. Local versus regional active stress field in 5900m San Gregorio Magno 1 well (southern Apennines, Italy).

    Science.gov (United States)

    Pierdominici, S.; Montone, P.; Mariucci, M. T.

    2009-04-01

    The aim of this work is to characterize the local stress field in a peculiar sector of the southern Apennines by analyzing borehole breakouts, fractures and logging data along the San Gregorio Magno 1 deep well, and to compare the achieved stress field with the regional one. The study area is characterized by diffuse low-Magnitude seismicity, although in historical times it has been repeatedly struck by moderate to large earthquakes. We have analyzed in detail the 5900m San Gregorio Magno 1 well drilled in 1996-97 by ENI S.p.A. and located very close (1.3 km away) to the Irpinia Fault. This fault was responsible of the strongest earthquake happened in this area, the 23rd November 1980 M6.9 earthquake that produced the first unequivocal historical surface faulting ever documented in Italy. The mainshock enucleated on a fault 38 km-long with a strike of 308° and 60-70° northeast-dipping, consistent with a NE-SW T-axis and a normal faulting tectonic regime. Borehole breakouts, active faults and focal mechanism solutions have allowed to define the present-day stress along and around the San Gregorio Magno 1 well and other analysis (logging data) to discriminate the presence of fracture zones and/or faults at depth. We have considered data from 1200m to the bottom of San Gregorio Magno 1 well. Our analysis of stress-induced wellbore breakouts shows an inhomogeneous direction of minimum horizontal stress (N359+-31°) orientation along the well. This direction is moderately consistent with the Shmin-trend determined from breakouts in other wells in this region and also with the regional active stress field inferred from active faults and earthquake focal plane solutions (N44 Shmin oriented). For this reason we have computed for each breakout zone the difference between the local trend and the regional one; comparing these breakout rotations with the spikes or changing trend of logs we have identified possible fractures or faults at different depths. We have correlated

  16. Andreas Struppleri intelligentsed rakendused / Andreas Struppler ; interv. Margit Aedla

    Index Scriptorium Estoniae

    Struppler, Andreas

    2008-01-01

    Disainer Andreas Struppler (sünd. 1964) enda ja oma meeskonna loodud e-mood'i sarja vannitoast, valgustusest vannitoas. Privaatala eraldamiseks ülejäänud vannitoast suunatakse värviline valgus keraamiliselt trükitud klaaspaneelile. E-sirm on ruumijagaja moodne tõlgendus

  17. Underground storage of imported water in the San Gorgonio Pass area, southern California

    Science.gov (United States)

    Bloyd, Richard M.

    1971-01-01

    The San Gorgonio Pass ground-water basin is divided into the Beaumont, Banning, Cabazon, San Timoteo, South Beaumont, Banning Bench, and Singleton storage units. The Beaumont storage unit, centrally located in the agency area, is the largest in volume of the storage units. Estimated long-term average annual precipitation in the San Gorgonio Pass Water Agency drainage area is 332,000 acre-feet, and estimated average annual recoverable water is 24,000 acre-feet, less than 10 percent of the total precipitation. Estimated average annual surface outflow is 1,700 acre-feet, and estimated average annual ground-water recharge is 22,000 acre-feet. Projecting tack to probable steady-state conditions, of the 22.000 acre-feet of recharge, 16,003 acre-feet per year became subsurface outflow into Coachella Valley, 6,000 acre-feet into the Redlands area, and 220 acre-feet into Potrero Canyon. After extensive development, estimated subsurface outflow from the area in 1967 was 6,000 acre-feet into the Redlands area, 220 acre-feet into Potrero Canyon, and 800 acre-feet into the fault systems south of the Banning storage unit, unwatered during construction of a tunnel. Subsurface outflow into Coachella Valley in 1967 is probably less than 50 percent of the steady-state flow. An anticipated 17,000 .acre-feet of water per year will be imported by 1980. Information developed in this study indicates it is technically feasible to store imported water in the eastern part of the Beaumont storage unit without causing waterlogging in the storage area and without losing any significant quantity of stored water.

  18. Pärnograafiline / Andreas Trossek

    Index Scriptorium Estoniae

    Trossek, Andreas, 1980-

    2007-01-01

    Priit Pärna näitus Kumu Kunstimuuseumis kuni 21. X. Kuraator Eha Komissarov. 11. V toimus Kumu auditooriumis Priit Pärna loomingule pühendatud rahvusvaheline seminar, peaesinejaks oli Edwin Carels Belgiast. Esitamisele tuli filmiprogramm Priit Pärna filmidest ning toimus ümarlaud, milles osalesid Andreas Trossek, Mari Laaniste ja Priit Pärn

  19. Polychlorinated biphenyls (PCBs) in recreational marina sediments of San Diego Bay, southern California.

    Science.gov (United States)

    Neira, Carlos; Vales, Melissa; Mendoza, Guillermo; Hoh, Eunha; Levin, Lisa A

    2018-01-01

    Polychlorinated biphenyl (PCB) concentrations were determined in surface sediments from three recreational marinas in San Diego Bay, California. Total PCB concentrations ranged from 23 to 153, 31-294, and 151-1387ngg -1 for Shelter Island Yacht Basin (SIYB), Harbor Island West (HW) and Harbor Island East (HE), respectively. PCB concentrations were significantly higher in HE and PCB group composition differed relative to HW and SIYB, which were not significantly different from each other in concentration or group composition. In marina sediments there was a predominance (82-85%) of heavier molecular weight PCBs with homologous groups (6CL-7CL) comprising 59% of the total. In HE 75% of the sites exceeded the effect range median (ERM), and toxicity equivalence (TEQ dioxin-like PCBs) values were higher relative to those of HW and SIYB, suggesting a potential ecotoxicological risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mapping deep aquifer salinity trends in the southern San Joaquin Valley using borehole geophysical data constrained by chemical analyses

    Science.gov (United States)

    Gillespie, J.; Shimabukuro, D.; Stephens, M.; Chang, W. H.; Ball, L. B.; Everett, R.; Metzger, L.; Landon, M. K.

    2016-12-01

    The California State Water Resources Control Board and the California Division of Oil, Gas and Geothermal Resources are collaborating with the U.S. Geological Survey to map groundwater resources near oil fields and to assess potential interactions between oil and gas development and groundwater resources. Groundwater resources having salinity less than 10,000 mg/L total dissolved solids may be classified as Underground Sources of Drinking Water (USDW) and subject to protection under the federal Safe Drinking Water Act. In this study, we use information from oil well borehole geophysical logs, oilfield produced water and groundwater chemistry data, and three-dimensional geologic surfaces to map the spatial distribution of salinity in aquifers near oil fields. Salinity in the southern San Joaquin Valley is controlled primarily by depth and location. The base of protected waters occurs at very shallow depths, often 1,500 meters, in the eastern part of the San Joaquin Valley where higher runoff from the western slopes of the Sierra Nevada provide relatively abundant aquifer recharge. Stratigraphy acts as a secondary control on salinity within these broader areas. Formations deposited in non-marine environments are generally fresher than marine deposits. Layers isolated vertically between confining beds and cut off from recharge sources may be more saline than underlying aquifers that outcrop in upland areas on the edge of the valley with more direct connection to regional recharge areas. The role of faulting is more ambiguous. In some areas, abrupt changes in salinity may be fault controlled but, more commonly, the faults serve as traps separating oil-bearing strata that are exempt from USDW regulations, from water-bearing strata that are not exempt.

  1. Incorporating genetic sampling in long-term monitoring and adaptive management in the San Diego County Management Strategic Plan Area, Southern California

    Science.gov (United States)

    Vandergast, Amy G.

    2017-06-02

    Habitat and species conservation plans usually rely on monitoring to assess progress towards conservation goals. Southern California, USA, is a hotspot of biodiversity and home to many federally endangered and threatened species. Here, several regional multi-species conservation plans have been implemented to balance development and conservation goals, including in San Diego County. In the San Diego County Management Strategic Plan Area (MSPA), a monitoring framework for the preserve system has been developed with a focus on species monitoring, vegetation monitoring, threats monitoring and abiotic monitoring. Genetic sampling over time (genetic monitoring) has proven useful in gathering species presence and abundance data and detecting population trends, particularly related to species and threats monitoring objectives. This report reviews genetic concepts and techniques of genetics that relate to monitoring goals and outlines components of a genetic monitoring scheme that could be applied in San Diego or in other monitoring frameworks throughout the Nation.

  2. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Witch Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Witch Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  3. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Poomacha Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Poomacha Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  4. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Rice Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Rice Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  5. Emergency assessment of debris-flow hazards from basins burned by the 2007 Harris Fire, San Diego County, southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    IntroductionThe objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Harris Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  6. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Ammo Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ammo Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  7. Shades of the Rainbow Serpent? A KhoeSan Animal between Myth and Landscape in Southern Africa—Ethnographic Contextualisations of Rock Art Representations

    Directory of Open Access Journals (Sweden)

    Sian Sullivan

    2014-06-01

    Full Text Available The snake is a potent entity in many cultures across the world, and is a noticeable global theme in rock art and inscribed landscapes. We mobilise our long-term ethnographic research with southern African KhoeSan peoples to situate and interpret the presence of snake motifs in the region’s rock art. We contextualise the snake as a transformative ontological mediator between everyday and “entranced” KhoeSan worlds (those associated with “altered states of consciousness”, to weave together both mythological and shamanistic interpretations of southern African rock art. Ethnographic explorations of experiences of snakes as both an aspect of natural history and the physical environment, and as embodiments of multiplicitous and mythical meaning by which to live and understand life, shed light on the presence of snakes and associated snake-themes in southern African rock art. By drawing on ethnographic material, and in conjunction with review of literature, we highlight a dynamic assemblage of extant associations between snakes, rain, water, fertility, blood, fat, transformation, dance and healing. We suggest that these extant associations have explanatory potential for understanding the meaning of these themes in the rock art created by the ancestors of contemporary KhoeSan peoples. Our paper contributes to a live debate regarding the interpretive relevance of ethnography for understanding rock art representations from the past.

  8. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  9. Multivariate patterns of biochemical responses of Pinus ponderosa trees at field plots in the San Bernardino Mountains, southern California.

    Science.gov (United States)

    Tausz, M; Bytnerowicz, A; Arbaugh, M J; Wonisch, A; Grill, D

    2001-03-01

    Most environmental stress conditions promote the production of potentially toxic active oxygen species in plant cells. Plants respond with changes in their antioxidant and photoprotective systems. Antioxidants and pigments have been widely used to measure these responses. Because trees are exposed to multiple man-made and natural stresses, their responses are not reflected by changes in single stress markers, but by complex biochemical changes. To evaluate such response patterns, explorative multivariate statistics have been used. In the present study, 12 biochemical variables (chloroplast pigments, state of the xanthophyll cycle, alpha-tocopherol, ascorbate and dehydroascorbate, glutathione and oxidized glutathione) were measured in previous-year needles of field-grown Pinus ponderosa Dougl. ex Laws. The trees were sampled in two consecutive years in the San Bernardino Mountains in southern California, where a pollution gradient is overlaid by gradients in natural stresses (drought, altitude). To explore irradiance effects, needle samples were taken directly in the field (sun exposed) and from detached, dark-adapted branches. A principal component analysis on this data set (n = 80) resulted in four components (Components 1-4) that explained 67% of the variance in the original data. Component 1 was positively loaded by concentrations of alpha-tocopherol, total ascorbate and xanthophyll cycle pools, as well as by the proportion of de-epoxides in the xanthophyll cycle. It was negatively loaded by the proportion of dehydroascorbate in the ascorbate pool. Component 2 was negatively loaded by chlorophyll concentrations, and positively loaded by the ratios of lutein and beta-carotene to chlorophyll and by the de-epoxidation state of the xanthophyll cycle. Component 3 was negatively loaded by GSH concentrations and positively loaded by the proportions of GSSG and tocopherol concentrations. Component 4 was positively loaded by neoxanthin and negatively loaded by beta

  10. Subduction in the Southern Caribbean

    Science.gov (United States)

    Levander, A.; Schmitz, M.; Bezada, M.; Masy, J.; Niu, F.; Pindell, J.

    2012-04-01

    The southern Caribbean is bounded at either end by subduction zones: In the east at the Lesser Antilles subduction zone the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west under the Southern Caribbean Deformed Belt accretionary prism, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system. A variety of seismic probes identify where the two plates tear as they begin to subduct (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Masy et al, 2009). The El Pilar system forms at the southeastern corner of the Antilles subduction zone by the Atlantic tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. In northwestern South America the Caribbean plate tears, its southernmost element subducting at shallow angles under northernmost Colombia and then rapidly descending to transition zone depths under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab produces the Merida Andes, the Perija, and the Santa Marta ranges. The southern edge of the nonsubducting Caribbean plate underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the underthrust Caribbean plate supports the coastal mountains, and controls continuing deformation.

  11. Ethnobotany of Indigenous Saraguros: Medicinal Plants Used by Community Healers “Hampiyachakkuna” in the San Lucas Parish, Southern Ecuador

    Directory of Open Access Journals (Sweden)

    José M. Andrade

    2017-01-01

    Full Text Available This paper reports the results of an ethnobotanical survey on the use of medicinal plants by community healers “Hampiyachakkuna” in the San Lucas Parish, province of Loja, Ecuador. A particular ethnic group, the indigenous Saraguros, inhabits this region. This study reports 183 plant species used in 75 different curative therapies by the Saraguro healers.

  12. Ethnobotany of Indigenous Saraguros: Medicinal Plants Used by Community Healers "Hampiyachakkuna" in the San Lucas Parish, Southern Ecuador.

    Science.gov (United States)

    Andrade, José M; Lucero Mosquera, Hernán; Armijos, Chabaco

    2017-01-01

    This paper reports the results of an ethnobotanical survey on the use of medicinal plants by community healers "Hampiyachakkuna" in the San Lucas Parish, province of Loja, Ecuador. A particular ethnic group, the indigenous Saraguros, inhabits this region. This study reports 183 plant species used in 75 different curative therapies by the Saraguro healers.

  13. Ethnobotany of Indigenous Saraguros: Medicinal Plants Used by Community Healers “Hampiyachakkuna” in the San Lucas Parish, Southern Ecuador

    Science.gov (United States)

    Lucero Mosquera, Hernán; Armijos, Chabaco

    2017-01-01

    This paper reports the results of an ethnobotanical survey on the use of medicinal plants by community healers “Hampiyachakkuna” in the San Lucas Parish, province of Loja, Ecuador. A particular ethnic group, the indigenous Saraguros, inhabits this region. This study reports 183 plant species used in 75 different curative therapies by the Saraguro healers. PMID:28744470

  14. New evidence for Oligocene to Recent slip along the San Juan fault, a terrane-bounding structure within the Cascadia forearc of southern British Columbia, Canada

    Science.gov (United States)

    Harrichhausen, N.; Morell, K. D.; Regalla, C.; Lynch, E. M.

    2017-12-01

    Active forearc deformation in the southern Cascadia subduction zone is partially accommodated by faults in the upper crust in both Washington state and Oregon, but until recently, these types of active forearc faults have not been documented in the northern part of the Cascadia forearc on Vancouver Island, British Columbia. Here we present new evidence for Quaternary slip on the San Juan fault that indicates that this terrane-bounding structure has been reactivated since its last documented slip in the Eocene. Field work targeted by newly acquired hi-resolution lidar topography reveals a deformed debris flow channel network developed within colluvium along the central portion of the San Juan fault, consistent with a surface-rupturing earthquake with 1-2 m of offset since deglaciation 13 ka. Near the western extent of the San Juan fault, marine sediments are in fault contact with mélange of the Pandora Peak Unit. These marine sediments are likely Oligocene or younger in age, given their similarity in facies and fossil assemblages to nearby outcrops of the Carmanah Group sediments, but new dating using strontium isotope stratigraphy will confirm this hypothesis. If these sediments are part of the Carmanah Group, they occur further east and at a higher elevation than previously documented. The presence of Oligocene or younger marine sediments, more than 400 meters above current sea level, requires a substantial amount of Neogene rock uplift that could have been accommodated by slip on the San Juan fault. A preliminary analysis of fault slickensides indicates a change in slip sense from left-lateral to normal along the strike of the fault. Until further mapping and analysis is completed, however, it remains unclear whether this kinematic change reflects spatial and/or temporal variability. These observations suggest that the San Juan fault is likely part of a network of active faults accommodating forearc strain on Vancouver Island. With the recent discovery of

  15. California State Waters Map Series: offshore of San Gregorio, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in

  16. Air pollution increases forest susceptibility to wildfires: a case study for the San Bernardino Mountains in southern California

    Science.gov (United States)

    N.E. Grulke; R.A. Minnich; T. Paine; P. Riggan

    2010-01-01

    Many factors increase susceptibility of forests to wildfire. Among them are increases in human population, changes in land use, fire suppression, and frequent droughts. These factors have been exacerbating forest susceptibility to wildfires over the last century in southern California. Here we report on the significant role that air pollution has on increasing forest...

  17. Composition, production and procurement of glass at San Vincenzo Al Volturno: an early Medieval monastic complex in Southern Italy.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available 136 glasses from the ninth-century monastery of San Vincenzo and its workshops have been analysed by electron microprobe in order to situate the assemblage within the first millennium CE glass making tradition. The majority of the glass compositions can be paralleled by Roman glass from the first to third centuries, with very few samples consistent with later compositional groups. Colours for trailed decoration on vessels, for vessel bodies and for sheet glass for windows were largely produced by melting the glass tesserae from old Roman mosaics. Some weakly-coloured transparent glass was obtained by re-melting Roman window glass, while some was produced by melting and mixing of tesserae, excluding the strongly coloured cobalt blues. Our data suggest that to feed the needs of the glass workshop, the bulk of the glass was removed as tesserae and windows from a large Roman building. This is consistent with a historical account according to which the granite columns of the monastic church were spolia from a Roman temple in the region. The purported shortage of natron from Egypt does not appear to explain the dependency of San Vincenzo on old Roman glass. Rather, the absence of contemporary primary glass may reflect the downturn in long-distance trade in the later first millennium C.E., and the role of patronage in the "ritual economy" founded upon donations and gift-giving of the time.

  18. Composition, production and procurement of glass at San Vincenzo Al Volturno: an early Medieval monastic complex in Southern Italy.

    Science.gov (United States)

    Schibille, Nadine; Freestone, Ian C

    2013-01-01

    136 glasses from the ninth-century monastery of San Vincenzo and its workshops have been analysed by electron microprobe in order to situate the assemblage within the first millennium CE glass making tradition. The majority of the glass compositions can be paralleled by Roman glass from the first to third centuries, with very few samples consistent with later compositional groups. Colours for trailed decoration on vessels, for vessel bodies and for sheet glass for windows were largely produced by melting the glass tesserae from old Roman mosaics. Some weakly-coloured transparent glass was obtained by re-melting Roman window glass, while some was produced by melting and mixing of tesserae, excluding the strongly coloured cobalt blues. Our data suggest that to feed the needs of the glass workshop, the bulk of the glass was removed as tesserae and windows from a large Roman building. This is consistent with a historical account according to which the granite columns of the monastic church were spolia from a Roman temple in the region. The purported shortage of natron from Egypt does not appear to explain the dependency of San Vincenzo on old Roman glass. Rather, the absence of contemporary primary glass may reflect the downturn in long-distance trade in the later first millennium C.E., and the role of patronage in the "ritual economy" founded upon donations and gift-giving of the time.

  19. Water quality, streamflow conditions, and annual flow-duration curves for streams of the San Juan–Chama Project, southern Colorado and northern New Mexico, 1935-2010

    Science.gov (United States)

    Falk, Sarah E.; Anderholm, Scott K.; Hafich, Katya A.

    2013-01-01

    The Albuquerque–Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with water diverted from the Rio Grande. Water diverted from the Rio Grande for municipal use is derived from the San Juan–Chama Project, which delivers water from streams in the southern San Juan Mountains in the Colorado River Basin in southern Colorado to the Rio Chama watershed and the Rio Grande Basin in northern New Mexico. The U.S. Geological Survey, in cooperation with Albuquerque–Bernalillo County Water Utility Authority, has compiled historical streamflow and water-quality data and collected new water-quality data to characterize the water quality and streamflow conditions and annual flow variability, as characterized by annual flow-duration curves, of streams of the San Juan–Chama Project. Nonparametric statistical methods were applied to calculate annual and monthly summary statistics of streamflow, trends in streamflow conditions were evaluated with the Mann–Kendall trend test, and annual variation in streamflow conditions was evaluated with annual flow-duration curves. The study area is located in northern New Mexico and southern Colorado and includes the Rio Blanco, Little Navajo River, and Navajo River, tributaries of the San Juan River in the Colorado River Basin located in the southern San Juan Mountains, and Willow Creek and Horse Lake Creek, tributaries of the Rio Chama in the Rio Grande Basin. The quality of water in the streams in the study area generally varied by watershed on the basis of the underlying geology and the volume and source of the streamflow. Water from the Rio Blanco and Little Navajo River watersheds, primarily underlain by volcanic deposits, volcaniclastic sediments and landslide deposits derived from these materials, was compositionally similar and had low specific-conductance values relative to the other streams in the study area. Water from the Navajo River

  20. On the innovative genius of Andreas Vesalius

    NARCIS (Netherlands)

    Brinkman, R.J.C.

    2017-01-01

    Andreas Vesalius (1515 - 1564) is generally considered to be the founding father of modern human anatomy. To commemorate his 500th birthday, some of the most striking anatomical and physiological aspects of Vesalius’ major work De Humani Corporis Fabrica Libri Septem (De Fabrica) are presented and

  1. A Response to Andrea R. Halpern's Commentary

    Directory of Open Access Journals (Sweden)

    Freya Bailes

    2007-05-01

    Full Text Available The author responds to points raised in Andrea Halpern’s commentary, which appeared in Vol. 2, No. 1 of Empirical Musicology Review. Discussion focuses on the apparent contradiction between self-reports of veridical mental imagery of musical timbre, and cognitive constraints on temporal memory for multidimensional sound.

  2. San Personal Ornaments from the Later Stone Age at Blombos Cave and Blomboschfontein, southern Cape, South Africa

    OpenAIRE

    Vibe, Ingrid M Østby

    2007-01-01

    A critical factor that distinguishes modern humans, Homo sapiens, from animals is the ability to communicate using symbols. One example is the use of personal ornaments. People in all cultures use personal ornaments to express something about themselves, and a wide range of functions and meanings can be applied to different ornamentation. The personal ornaments from three Later Stone Age sites in the Blomboschfontein Region, southern Cape, South Africa were analysed in order to determine vari...

  3. Relations between Rainfall and Postfire Debris-Flow- and Flood-Event Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California, USA

    Science.gov (United States)

    Cannon, Susan; Collins, Larry; Boldt, Eric; Staley, Dennis

    2010-05-01

    Following wildfires, emergency-response and public-safety agencies are often faced with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storm events themselves. We here provide information critical to this process for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 am and 4 pm, along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storm events from recently burned areas in southern California was used to develop a system for classifying the magnitude of postfire hydrologic events. The three-class system is based on differences between the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions that may lead to debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow- and flood-event magnitude information. The within-storm rainfall accumulations (A) and durations (D) below which Magnitude I events are expected, and above which Magnitude II events may occur, are defined by A=0.4D0.55. The function A=0.6D0.50 defines the within-storm rainfall accumulations and durations above which a Magnitude III event will occur in response to a regional-scale storm, and a Magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.1D0

  4. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.

    2010-01-01

    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which

  5. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Slide and Grass Valley Fires, San Bernardino County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  6. Fouling community dominated by Metridium senile (Cnidaria: Anthozoa: Actiniaria in Bahía San Julián (southern Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    Juan Pablo Martin

    2015-06-01

    Full Text Available The objective of this study is to provide information about a harbour-fouling community dominated by Metridium senile in southern Patagonia. Several steel tubes from the wharf of Puerto San Julián were extracted to perform repair tasks, allowing the attached benthic community to be studied. Sampling was conducted at three levels: lower intertidal, 3-4 m depth and 6-7 m depth. In the lower intertidal, M. senile had a relative abundance of 43%, the most abundant accompanying species being Perumytilus purpuratus, Mytilus edulis platensis and Aulacomya atra atra. At subtidal level, the anemone showed relative abundances of 64% and 65%, and was accompanied by Monocorophium insidiosum at 3-4 m depth and by polychaetes of families Sabellidae and Syllidae at 6-7 m at depth. In the lower intertidal, epibiosis was more frequent on P. purpuratus, A. atra atra and M. edulis platensis, while in the subtidal, the richness of substrate-organisms increased significantly and the anemone was fixed to A. atra atra, M. edulis platensis, Paramolgula gregaria, Crepipatella dilatata, Austromegabalanus psittacus, Hiatella arctica, Polyzoa opuntia, Pyura sp. and Sabellidae tubes. The ability of M. senile to settle on many different organisms, along with other strategies, makes it a colonizer able to displace other species that could compete with it for substratum. Given the cosmopolitan nature of M. senile, the fact that this species has not been previously reported in the coastal zone of the region, and the results of our study, we discuss the possibility that this sea anemone is an invasive alien species in southern Patagonia, or at least a cryptogenic species.

  7. A NEW EARLY SEMIONOTIDAE (SEMIONOTIFORMES, ACTINOPTERYGII FROM THE UPPER LADINIAN OF MONTE SAN GIORGIO AREA SOUTHERN SWITZERLAND AND NORTHERN ITALY

    Directory of Open Access Journals (Sweden)

    ANDREA TINTORI

    2007-11-01

    Full Text Available The early history of the Semionotiformes is still scarcely known as, apart from the Permian Acentrophorus, most of the Early and Middle Triassic taxa traditionally ascribed to this order are often poorly known and/or they actually belong to other groups. Sangiorgioichthys aldae gen. n. sp. n. is described from the Upper Ladinian Kalkschieferzone (Upper Meride Limestone of the Monte San Giorgio area on specimens coming from both Italy and Switzerland. The new genus is ascribed to the family Semionotidae as it shows several of the characters usually considered as diagnostic of the family itself, even if no real synapomorphies have been so far proposed for it. As a Semionotidae, Sangiorgioichthys gen. n. has an almost complete circumorbital series, large ascending process of the premaxilla, rostral and nasals almost tube-like, short maxilla, several suborbital bones posterior and ventral to the infraorbitals, long antero-dorsal process of the suboperculum, sensory canal system very rich in pores, mid dorsal ridge scales with an incipient spine. Peculiar characters of the new genus are dermal skull bones completely covered by ganoine, a very large ventral infraorbital almost attaining the anterior edge of the preoperculum, two ‘ventral’ suborbitals, very elongate anterior supraorbital bone,  dentition made of a number of tiny pencil-like teeth, anterior and posterior lateral line scales differentiated. 

  8. Stress- and Structure-Induced Anisotropy in Southern California From Two Decades of Shear Wave Splitting Measurements

    Science.gov (United States)

    Li, Zefeng; Peng, Zhigang

    2017-10-01

    We measure shear wave splitting (SWS) parameters (i.e., fast direction and delay time) using 330,000 local earthquakes recorded by more than 400 stations of the Southern California Seismic Network (1995-2014). The resulting 232,000 SWS measurements (90,000 high-quality ones) provide a uniform and comprehensive database of local SWS measurements in Southern California. The fast directions at many stations are consistent with regional maximum compressional stress σHmax. However, several regions show clear deviations from the σHmax directions. These include linear sections along the San Andreas Fault and the Santa Ynez Fault, geological blocks NW to the Los Angeles Basin, regions around the San Jacinto Fault, the Peninsular Ranges near San Diego, and the Coso volcanic field. These complex patterns show that regional stresses and active faults cannot adequately explain the upper crustal anisotropy in Southern California. Other types of local structures, such as local rock types or tectonic features, also play significant roles.

  9. Economic Risk Evaluation in Urban Flooding and Instability-Prone Areas: The Case Study of San Giovanni Rotondo (Southern Italy

    Directory of Open Access Journals (Sweden)

    Roberta Pellicani

    2018-03-01

    Full Text Available Estimating economic losses caused on buildings and other civil engineering works due to flooding events is often a difficult task. The accuracy of the estimate is affected by the availability of detailed data regarding the return period of the flooding event, vulnerability of exposed assets, and type of economy run in the affected area. This paper aims to provide a quantitative methodology for the assessment of economic losses associated with flood scenarios. The proposed methodology was performed for an urban area in Southern Italy prone to hydrogeological instabilities. At first, the main physical characteristics of the area such as rainfall, land use, permeability, roughness, and slopes of the area under investigation were estimated in order to obtain input for flooding simulations. Afterwards, the analysis focused on the spatial variability incidence of the rainfall parameters in flood events. The hydraulic modeling provided different flood hazard scenarios. The risk curve obtained by plotting economic consequences vs. the return period for each hazard scenario can be a useful tool for local authorities to identify adequate risk mitigation measures and therefore prioritize the economic resources necessary for the implementation of such mitigation measures.

  10. Isotopes and ages in the northern Peninsular Ranges batholith, southern California

    Science.gov (United States)

    Kistler, Ronald W.; Wooden, Joseph L.; Morton, Douglas M.

    2003-01-01

    Strontium, oxygen and lead isotopic and rubidium-strontium geochronologic studies have been completed on Cretaceous and Jurassic (?) granitic rock samples from the northern Peninsular Ranges batholith in southern California. Many of these samples were collected systematically and studied chemically by A. K. Baird and colleagues (Baird and others, 1979). The distribution of these granitic rocks is shown in the Santa Ana, Perris, and San Jacinto Blocks, bounded by the Malibu Coast-Cucamonga, Banning, and San Andreas fault zones, and the Pacific Ocean on the map of the Peninsular Ranges batholith and surrounding area, southern California. The granitic rock names are by Baird and Miesch (1984) who used a modal mineral classification that Bateman and others (1963) used for granitic rocks in the Sierra Nevada batholith. In this classification, granitic rocks have at least 10% quartz. Boundaries between rock types are in terms of the ratio of alkali-feldspar to total feldspar: quartz diorite, 0-10%; granodiorite, 10-35%; quartz monzonite 35-65%; granite >65%. Gabbros have 0-10% quartz. Data for samples investigated are giv in three tables: samples, longitude, latitude, specific gravity and rock type (Table 1); rubidium and strontium data for granitic rocks of the northern Peninsular Ranges batholith, southern California (Table 2); U, Th, Pb concentrations, Pb and Sr initial isotopic compositions, and δ18O permil values for granitic rocks of the northern Peninsular Ranges batholith (table 3).

  11. Ugala juurutab fantasy't / Andreas W ; interv. Margus Kasterpalu

    Index Scriptorium Estoniae

    Andreas W, pseud., 1969-

    1999-01-01

    "Meremaa võlur. Päeva kaldad", näidend Ursula K Le Guini "Meremaa võluri" teemadel,kirjutanud Andreas W ja lavastanud Andres Noormets, kunstnik Silver Vahtre, valguskunstnik Airi Eras, helikujundaja ja videograafik Andreas W. Esietendus Ugalas 29. apr.

  12. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  13. Debris-flow susceptibility assessment through cellular automata modeling: an example from 15–16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy

    Directory of Open Access Journals (Sweden)

    G. Iovine

    2003-01-01

    Full Text Available On 15–16 December 1999, heavy rainfall severely stroke Campania region (southern Italy, triggering numerous debris flows on the slopes of the San Martino Valle Caudina-Cervinara area. Soil slips originated within the weathered volcaniclastic mantle of soil cover overlying the carbonate skeleton of the massif. Debris slides turned into fast flowing mixtures of matrix and large blocks, downslope eroding the soil cover and increasing their original volume. At the base of the slopes, debris flows impacted on the urban areas, causing victims and severe destruction (Vittori et al., 2000. Starting from a recent study on landslide risk conditions in Campania, carried out by the Regional Authority (PAI –Hydrogeological setting plan, in press, an evaluation of the debris-flow susceptibility has been performed for selected areas of the above mentioned villages. According to that study, such zones would be in fact characterised by the highest risk levels within the administrative boundaries of the same villages ("HR-zones". Our susceptibility analysis has been performed by applying SCIDDICA S3–hex – a hexagonal Cellular Automata model (von Neumann, 1966, specifically developed for simulating the spatial evolution of debris flows (Iovine et al., 2002. In order to apply the model to a given study area, detailed topographic data and a map of the erodable soil cover overlying the bedrock of the massif must be provided (as input matrices; moreover, extent and location of landslide source must also be given. Real landslides, selected among those triggered on winter 1999, have first been utilised for calibrating SCIDDICA S3–hex and for defining "optimal" values for parameters. Calibration has been carried out with a GIS tool, by quantitatively comparing simulations with actual cases: optimal values correspond to best simulations. Through geological evaluations, source locations of new phenomena have then been hypothesised within the HR-zones. Initial

  14. Distribution and abundance of Least Bell’s Vireos (Vireo bellii pusillus) and Southwestern Willow Flycatchers (Empidonax traillii extimus) on the Middle San Luis Rey River, San Diego County, southern California—2017 data summary

    Science.gov (United States)

    Allen, Lisa D.; Howell, Scarlett L.; Kus, Barbara E.

    2018-04-20

    We surveyed for Least Bell’s Vireos (LBVI) (Vireo bellii pusillus) and Southwestern Willow Flycatchers (SWFL) (Empidonax traillii extimus) along the San Luis Rey River, between College Boulevard in Oceanside and Interstate 15 in Fallbrook, California (middle San Luis Rey River), in 2017. Surveys were conducted from April 13 to July 11 (LBVI) and from May 16 to July 28 (SWFL). We found 146 LBVI territories, at least 107 of which were occupied by pairs. Five additional transient LBVIs were detected. LBVIs used five different habitat types in the survey area: mixed willow, willow-cottonwood, willow-sycamore, riparian scrub, and upland scrub. Forty-four percent of the LBVIs occurred in habitat characterized as mixed willow and 89 percent of the LBVI territories occurred in areas with greater than 50 percent native plant cover. Of 16 banded LBVIs detected in the survey area, 8 had been given full color-band combinations prior to 2017. Four other LBVIs with single (natal) federal bands were recaptured and banded in 2017. Three LBVIs with single dark blue federal bands indicating that they were banded as nestlings on the lower San Luis Rey River and one LBVI with a single gold federal band indicating that it was banded as a nestling on Marine Corps Base Camp Pendleton (MCBCP) could not be recaptured for identification. One banded LBVI emigrated from the middle San Luis Rey River to the lower San Luis Rey River in 2017.One resident SWFL territory and one transient Willow Flycatcher of unknown subspecies (WIFL) were observed in the survey area in 2017. The resident SWFL territory, which was comprised of mixed willow habitat (5–50 percent native plant cover), was occupied by a single male from May 22 to June 21, 2017. No evidence of pairing or nesting activity was observed. The SWFL male was banded with a full color-combination indicating that he was originally banded as a nestling on the middle San Luis Rey River in 2014 and successfully bred in the survey area in 2016

  15. Telegraph Canyon Creek, City of Chula Vista, San Diego County, California. Detailed Report for Flood Control. Volume 1. Main Report.

    Science.gov (United States)

    1983-07-01

    SECURITY CLASS. (of chi* report) Los Angeles District, Corps of Engineers Ucasfe P.O. Box 2711, Los Angeles, CA 90053 15&. DEL SI F1CATION/OWNGRAOI...greater potential for the possible occurrence of a large earthquake include the Whittier-Elsinore, Agua Caliente, San Jacinto, and the San Andreas...about 900,000 motor vehicles used within the county. 2.20 Air contaminants monitored within the San Diego Bay air basin include carbon monoxide (CO

  16. Strategie paratestuali nella lirica di Andrea Zanzotto

    Directory of Open Access Journals (Sweden)

    Matteo Tarricone

    2016-07-01

      A special perspective on the lyrics of Andrea Zanzotto is the constant reasoning on the constitutive aspects of poetry: an essential meditation to Zanzotto’s writing itself. Obviously, several different fundamental elements cannot but interact with this topic, such as the idea of landscape or of the lyrical I; influences of postmodernity on poetry; state of language and dialect, amongst others. They persist in any case on the background, though the central position is occupied by meta-reflection, which goes through and often matches many of the prevailing elements of this unique versification. Zanzotto expresses those concerns even by means of strategies with which he builds his collections; firstly, the paratext of his books, especially titles and notes; secondly, the distinctive feature of the twentieth - century canzoniere and the criteria designed to underline the strategies founding the collected works. There is really no lack of chance for research. Now, the hunt is on for the scented panther.

  17. WARNA LOKAL MELAYU PADA NOVEL AYAH KARYA ANDREA HIRATA

    Directory of Open Access Journals (Sweden)

    maya dewi kurnia

    2017-05-01

    Full Text Available Novel Ayah karya Andrea Hirata yang diterbitkan tahun 2015 menarik untuk dibaca sekaligus dianalisis. Karya tersebut satu dari beberapa novel yang mengandung warna lokal. Ada pun warna lokal yang ditonjolkan adalah melayu. Melayu sebagai sebuah kelompok memiliki karakteristik. Melayu identik dengan islam, adat istiadat, dan bahasa tetapi juga lekat dengan kemiskinan yang menjadi bagian dari kehidupan masyarakat.  Untuk itulah penulis tertarik menelitinya. Berdasarkan hal itu penelitian ini bertujuan untuk: (1 mendeskripsikan gambaran warna lokal melayu pada novel Ayah karya Andrea Hirata; (2 mendeskripsikan kehidupan masyarakat melayu Belitung.  Dengan penelitian ini diharapkan masyarakat mengenal lebih dalam tentang melayu sekaligus memberi referensi penelitian sastra terkait warna lokal. Sumber data penelitian ini adalah novel Ayah karya Andrea Hirata yang diterbitkan oleh Bentang Pustaka pada tahun 2015. Metode penelitian yang digunakan adalah deskriptif-kualitatif dengan pendekatan teknik analisis isi. Data diperoleh dengan teknik membaca dan mencatat.   Kata Kunci: Ayah, Andrea Hirata, Melayu, Antropologi Sastra

  18. [Joonas Sildre ; Andreas Trossek. Narratiivsus piltides] / Sven Vabar

    Index Scriptorium Estoniae

    Vabar, Sven, 1977-

    2010-01-01

    Arvustus: Trossek, Andreas ; Sildre, Joonas. Narratiivsus piltides. Eesti '00 aastate autorikoomiks. Osa 2 = Narration in pictures. Estonian alternative comics from the '00s. Part 2. Tallinn : Haus Galerii, 2009

  19. Distribution and abundance of Least Bell’s Vireos (Vireo bellii pusillus) and Southwestern Willow Flycatchers (Empidonax traillii extimus) on the Middle San Luis Rey River, San Diego, southern California—2016 data summary

    Science.gov (United States)

    Allen, Lisa D.; Howell, Scarlett L.; Kus, Barbara E.

    2017-09-29

    Executive SummaryWe surveyed for Least Bell’s Vireos (LBVI) (Vireo bellii pusillus) and Southwestern Willow Flycatchers (SWFL) (Empidonax traillii extimus) along the San Luis Rey River, between College Boulevard in Oceanside and Interstate 15 in Fallbrook, California (middle San Luis Rey River), in 2016. Surveys were done from March 30 to July 11 (LBVI) and from May 18 to July 30 (SWFL). We found 142 LBVI territories, at least 106 of which were occupied by pairs. Six additional transient LBVIs were detected. Of 20 banded LBVIs detected in the survey area, 9 had been given full color-band combinations prior to 2016, although we were unable to determine the exact color combination of 1 female LBVI. Seven other LBVIs with single (natal) federal bands were recaptured and banded in 2016. Four vireos with single dark blue federal bands indicating that they were banded as nestlings on the lower San Luis Rey River could not be recaptured for identification.Three SFWL territories were observed in the survey area in 2016. Two territories were occupied by pairs and one by a male of unknown breeding status. Both pairs attempted to nest at least once, and both pairs were successful, fledging three young each. Nesting began in early June and continued into July. Brown-Headed Cowbird (Molothrus ater) eggs were not observed in either nest. An additional 12 transient Willow Flycatchers of unknown subspecies were detected in 2016.Two of the five resident SWFLs were originally banded as nestlings on Marine Corps Base Camp Pendleton. One male and one female were banded as nestlings on Camp Pendleton in 2009 and 2011, respectively. One natal male of unknown breeding status, originally banded as a nestling on the middle San Luis Rey River in 2015, was recaptured and given a unique color combination in 2016. This male was later detected on Marine Corps Base Camp Pendleton.

  20. Rayleigh wave group velocity and shear wave velocity structure in the San Francisco Bay region from ambient noise tomography

    Science.gov (United States)

    Li, Peng; Thurber, Clifford

    2018-06-01

    We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.

  1. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    Science.gov (United States)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  2. Throughfall and fog deposition of nitrogen and sulfur at an N-limited and N-saturated site in the San Bernardino Mountains, southern California

    Science.gov (United States)

    Mark E. Fenn; Mark A. Poth; Susan L. Schilling; David B. Grainger

    2000-01-01

    Inorganic nitrogen (N) and sulfur (S) deposition in bulk throughfall and fog were determined at two sites located at opposite ends (42 km apart) of a pollution gradient in the San Bernardino Mountains. Plot-level averages for total annual N and S deposition in throughfall in 1996 were 18.8 and 2.9 kg·ha–1, respectively, at Camp Paivika (CP) and 2...

  3. San Francisco District Laboratory (SAN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesFood Analysis SAN-DO Laboratory has an expert in elemental analysis who frequently performs field inspections of materials. A recently acquired...

  4. Crustal structure of the coastal and marine San Francisco Bay region, California

    Science.gov (United States)

    Parsons, Tom

    2002-01-01

    As of the time of this writing, the San Francisco Bay region is home to about 6.8 million people, ranking fifth among population centers in the United States. Most of these people live on the coastal lands along San Francisco Bay, the Sacramento River delta, and the Pacific coast. The region straddles the tectonic boundary between the Pacific and North American Plates and is crossed by several strands of the San Andreas Fault system. These faults, which are stressed by about 4 cm of relative plate motion each year, pose an obvious seismic hazard.

  5. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  6. Andreas Groll: fotografie pro moravskou šlechtu

    Czech Academy of Sciences Publication Activity Database

    Trnková, Petra

    -, č. 17 (2015), s. 109-117 ISSN 1214-5327 R&D Projects: GA MK(CZ) DF11P01OVV033 Keywords : Andreas Groll (1812-1872) * photography * history * 19th century * architecture * portrait Subject RIV: AL - Art, Architecture, Cultural Heritage

  7. Venemaa kaksipidine moslemipärand / Andreas Kappeler

    Index Scriptorium Estoniae

    Kappeler, Andreas, 1943-

    2002-01-01

    Viini ülikooli Ida-Euroopa ajaloo instituudi direktori Andreas Kappeleri sõnul on Tshethseenia sõda sobivam võrrelda teiste dekoloniseerimisajastu suurte sõdadega, kui näha seda tsivilisatsioonide kokkupõrkena või terrorismivastase sõjana

  8. Au tööle / Andreas Trossek, Margus Tamm

    Index Scriptorium Estoniae

    Trossek, Andreas, 1980-

    2009-01-01

    Vastuseks Mari Laanemetsa ja Indrek Sirkli artiklike "Elu on läinud paremaks, elu on läinud lõbusamaks ...?" (Sirp, 2009, 31. 07, lk. 18-19) Eesti kunsti ja visuaalkultuuri ajakirja "Kunst.ee" 2009. aasta nr. 1-2 sisu ja kujunduse kohta. Ajakirja uus toimetus: Andreas Trossek - peatoimetaja, Heie Treier, Ave Randviir, kujundaja Margus Tamm

  9. Ambient Noise Tomography at Regional and Local Scales in Southern California using Rayleigh Wave Phase Dispersion and Ellipticity

    Science.gov (United States)

    Berg, E.; Lin, F. C.; Qiu, H.; Wang, Y.; Allam, A. A.; Clayton, R. W.; Ben-Zion, Y.

    2017-12-01

    Rayleigh waves extracted from cross-correlations of ambient seismic noise have proven useful in imaging the shallow subsurface velocity structure. In contrast to phase velocities, which are sensitive to slightly deeper structure, Rayleigh wave ellipticity (H/V ratios) constrains the uppermost crust. We conduct Rayleigh wave ellipticity and phase dispersion measurements in Southern California between 6 and 18 second periods, computed from multi-component ambient noise cross-correlations using 315 stations across the region in 2015. Because of the complimentary sensitivity of phase velocity and H/V, this method enables simple and accurate resolution of near-surface geological features from the surface to 20km depth. We compare the observed H/V ratios and phase velocities to predictions generated from the current regional models (SCEC UCVM), finding strong correspondence where the near-surface structure is well-resolved by the models. This includes high H/V ratios in the LA Basin, Santa Barbara Basin and Salton Trough; and low ratios in the San Gabriel, San Jacinto and southern Sierra Nevada mountains. Disagreements in regions such as the Western Transverse Ranges, Salton Trough, San Jacinto and Elsinore fault zones motivate further work to improve the community models. A new updated 3D isotropic model of the area is derived via a joint inversion of Rayleigh phase dispersions and H/V ratios. Additionally, we examine azimuthal dependence of the H/V ratio to ascertain anisotropy patterns for each station. Clear 180º periodicity is observed for many stations suggesting strong shallow anisotropy across the region including up to 20% along the San Andreas fault, 15% along the San Jacinto Fault and 25% in the LA Basin. To better resolve basin structures, we apply similar techniques to three dense linear geophone arrays in the San Gabriel and San Bernardino basins. The three arrays are composed by 50-125 three-component 5Hz geophones deployed for one month each with 15-25km

  10. San Marino.

    Science.gov (United States)

    1985-02-01

    San Marino, an independent republic located in north central Italy, in 1983 had a population of 22,206 growing at an annual rate of .9%. The literacy rate is 97% and the infant mortality rate is 9.6/1000. The terrain is mountainous and the climate is moderate. According to local tradition, San Marino was founded by a Christian stonecutter in the 4th century A.D. as a refuge against religious persecution. Its recorded history began in the 9th century, and it has survived assaults on its independence by the papacy, the Malatesta lords of Rimini, Cesare Borgia, Napoleon, and Mussolini. An 1862 treaty with the newly formed Kingdom of Italy has been periodically renewed and amended. The present government is an alliance between the socialists and communists. San Marino has had its own statutes and governmental institutions since the 11th century. Legislative authority at present is vested in a 60-member unicameral parliament. Executive authority is exercised by the 11-member Congress of State, the members of which head the various administrative departments of the goverment. The posts are divided among the parties which form the coalition government. Judicial authority is partly exercised by Italian magistrates in civil and criminal cases. San Marino's policies are tied to Italy's and political organizations and labor unions active in Italy are also active in San Marino. Since World War II, there has been intense rivalry between 2 political coalitions, the Popular Alliance composed of the Christian Democratic Party and the Independent Social Democratic Party, and the Liberty Committee, coalition of the Communist Party and the Socialist Party. San Marino's gross domestic product was $137 million and its per capita income was $6290 in 1980. The principal economic activities are farming and livestock raising, along with some light manufacturing. Foreign transactions are dominated by tourism. The government derives most of its revenue from the sale of postage stamps to

  11. Southern Sierra Nevada Continental Dynamics Project: 1993 field observations of the NPE

    Energy Technology Data Exchange (ETDEWEB)

    Keller, G.R. [Univ. of Texas, El Paso, TX (United States); Malin, P.E. [Duke Univ., Durham, NC (United States); Ruppert, S.D. [LLNL, Livermore, CA (United States)

    1994-12-31

    The Southern Sierra Nevada Continental Dynamics Project is a multidisciplinary, multi-institutional investigation of the cause of the uplift of the Sierra Nevada and its relationship to extension in the adjacent Basin and Range. A broad range of geologic and geophysical data have been collected as part of this project. These data include both passive and active seismic measurements, as well as gravity and magnetotelluric observations. Three seismic refraction/wide-angle reflection profiles were recorded: (1) a 325-km-long, north-south profile extending from just east of Mono Lake south across the Garlock fault, (2) a 400-km-long, east-west profile extending from Death Valley west across the Sierra Nevada to near the San Andreas fault, and (3) a 480-km-long, east-west profile deployed for the NPE. This profile extended from Beatty, Nevada, west across the Sierra Nevada along the previously recorded east-west profile and continued nearly to the Pacific Ocean. Up to 675 seismic recorders were deployed for each profile. These data are allowing us to develop refined models of the crustal and upper mantle structure of the southern Sierra Nevada and to evaluate alternative hypotheses for its uplift and for Basin and Range extension. They also provide insight into the propagation of regional phases across complex structures.

  12. Eikonal Tomography of the Southern California Plate Boundary Region

    Science.gov (United States)

    Qiu, H.; Ben-Zion, Y.; Zigone, D.; Lin, F. C.

    2016-12-01

    We use eikonal tomography to derive directionally-dependent phase velocities of surface waves for the plate boundary region in southern CA sensitive to the approximate depth range 1-20 km. Seismic noise data recorded by 346 stations in the area provide a spatial coverage with 5-25 km typical station spacing and period range of 1-20 s. Noise cross-correlations are calculated for vertical component data recorded in year 2014. Rayleigh wave group and phase travel times between 2 and 13 sec period are derived for each station pair using frequency-time analysis. For each common station, all available phase travel time measurements with sufficient signal to noise ratio and envelope peak amplitude are used to construct a travel time map for a virtual source at the common station location. By solving the eikonal equation, both phase velocity and propagation direction are evaluated at each location for each virtual source. Isotropic phase velocities and 2-psi azimuthal anisotropy and their uncertainties are determined statistically using measurements from different virtual sources. Following the method of Barmin et al. (2001), group velocities are also inverted using all the group travel times that pass quality criteria. The obtained group and phase dispersions of Rayleigh waves are then inverted on a 6 x 6 km2 grid for local 1D piecewise shear wave velocity structures using the procedure of Herrmann (2013). The results agree well with previous observations of Zigone et al. (2015) in the overlapping area. Clear velocity contrasts and low velocity zones are seen for the San Andreas, San Jacinto, Elsinore and Garlock faults. We also find 2-psi azimuthal anisotropy with fast directions parallel to geometrically-simple fault sections. Details and updated results will be presented in the meeting.

  13. Newport-Inglewood-Carlsbad-Coronado Bank Fault System Nearshore Southern California: Testing models for Quaternary deformation

    Science.gov (United States)

    Bennett, J. T.; Sorlien, C. C.; Cormier, M.; Bauer, R. L.

    2011-12-01

    The San Andreas fault system is distributed across hundreds of kilometers in southern California. This transform system includes offshore faults along the shelf, slope and basin- comprising part of the Inner California Continental Borderland. Previously, offshore faults have been interpreted as being discontinuous and striking parallel to the coast between Long Beach and San Diego. Our recent work, based on several thousand kilometers of deep-penetration industry multi-channel seismic reflection data (MCS) as well as high resolution U.S. Geological Survey MCS, indicates that many of the offshore faults are more geometrically continuous than previously reported. Stratigraphic interpretations of MCS profiles included the ca. 1.8 Ma Top Lower Pico, which was correlated from wells located offshore Long Beach (Sorlien et. al. 2010). Based on this age constraint, four younger (Late) Quaternary unconformities are interpreted through the slope and basin. The right-lateral Newport-Inglewood fault continues offshore near Newport Beach. We map a single fault for 25 kilometers that continues to the southeast along the base of the slope. There, the Newport-Inglewood fault splits into the San Mateo-Carlsbad fault, which is mapped for 55 kilometers along the base of the slope to a sharp bend. This bend is the northern end of a right step-over of 10 kilometers to the Descanso fault and about 17 km to the Coronado Bank fault. We map these faults for 50 kilometers as they continue over the Mexican border. Both the San Mateo - Carlsbad with the Newport-Inglewood fault and the Coronado Bank with the Descanso fault are paired faults that form flower structures (positive and negative, respectively) in cross section. Preliminary kinematic models indicate ~1km of right-lateral slip since ~1.8 Ma at the north end of the step-over. We are modeling the slip on the southern segment to test our hypothesis for a kinematically continuous right-lateral fault system. We are correlating four

  14. EFFECTS OF THE 1983 COALINGA, CALIFORNIA, EARTHQUAKE ONCREEP ALONG THE SAN ADREAS FAULT.

    Science.gov (United States)

    Mavko, Gerald M.; Schulz, Sandra; Brown, Beth D.

    1985-01-01

    The M//L approximately equals 6. 5 earthquake that occurred near Coalinga, California, on May 2, 1983 induced changes in near-surface fault slip along the San Andreas fault. Coseismic steps were observed by creepmeters along a 200-km section of the San Andreas. some of the larger aftershocks induced additional steps, both right-lateral and left-lateral, and in general the sequence disrupted observed creep at several sites from preseismic long-term patterns. Static dislocation models can approximately explain the magnitudes and distribution of the larger coseismic steps on May 2. The smaller, more distant steps appear to be the abrupt release of accumulated slip, triggered by the coseismic strain changes, but independent of the strain change amplitudes.

  15. Fault zone architecture, San Jacinto fault zone, southern California: evidence for focused fluid flow and heat transfer in the shallow crust

    Science.gov (United States)

    Morton, N.; Girty, G. H.; Rockwell, T. K.

    2011-12-01

    We report results of a new study of the San Jacinto fault zone architecture in Horse Canyon, SW of Anza, California, where stream incision has exposed a near-continuous outcrop of the fault zone at ~0.4 km depth. The fault zone at this location consists of a fault core, transition zone, damage zone, and lithologically similar wall rocks. We collected and analyzed samples for their bulk and grain density, geochemical data, clay mineralogy, and textural and modal mineralogy. Progressive deformation within the fault zone is characterized by mode I cracking, subsequent shearing of already fractured rock, and cataclastic flow. Grain comminution advances towards the strongly indurated cataclasite fault core. Damage progression towards the core is accompanied by a decrease in bulk and grain density, and an increase in porosity and dilational volumetric strain. Palygorskite and mixed-layer illite/smectite clay minerals are present in the damage and transition zones and are the result of hydrolysis reactions. The estimated percentage of illite in illite/smectite increases towards the fault core where the illite/smectite to illite conversion is complete, suggesting elevated temperatures that may have reached 150°C. Chemical alteration and elemental mass changes are observed throughout the fault zone and are most pronounced in the fault core. We conclude that the observed chemical and mineralogical changes can only be produced by the interaction of fractured wall rocks and chemically active fluids that are mobilized through the fault zone by thermo-pressurization during and after seismic events. Based on the high element mobility and absence of illite/smectite in the fault core, we expect that greatest water/rock ratios occur within the fault core. These results indicate that hot pore fluids circulate upwards through the fractured fault core and into the surrounding damage zone. Though difficult to constrain, the site studied during this investigation may represent the top

  16. The disappearing San of southeastern Africa and their genetic affinities.

    Science.gov (United States)

    Schlebusch, Carina M; Prins, Frans; Lombard, Marlize; Jakobsson, Mattias; Soodyall, Himla

    2016-12-01

    Southern Africa was likely exclusively inhabited by San hunter-gatherers before ~2000 years ago. Around that time, East African groups assimilated with local San groups and gave rise to the Khoekhoe herders. Subsequently, Bantu-speaking farmers, arriving from the north (~1800 years ago), assimilated and displaced San and Khoekhoe groups, a process that intensified with the arrival of European colonists ~350 years ago. In contrast to the western parts of southern Africa, where several Khoe-San groups still live today, the eastern parts are largely populated by Bantu speakers and individuals of non-African descent. Only a few scattered groups with oral traditions of Khoe-San ancestry remain. Advances in genetic research open up new ways to understand the population history of southeastern Africa. We investigate the genomic variation of the remaining individuals from two South African groups with oral histories connecting them to eastern San groups, i.e., the San from Lake Chrissie and the Duma San of the uKhahlamba-Drakensberg. Using ~2.2 million genetic markers, combined with comparative published data sets, we show that the Lake Chrissie San have genetic ancestry from both Khoe-San (likely the ||Xegwi San) and Bantu speakers. Specifically, we found that the Lake Chrissie San are closely related to the current southern San groups (i.e., the Karretjie people). Duma San individuals, on the other hand, were genetically similar to southeastern Bantu speakers from South Africa. This study illustrates how genetic tools can be used to assess hypotheses about the ancestry of people who seemingly lost their historic roots, only recalling a vague oral tradition of their origin.

  17. The Fateful Rift: The San Andreas Fault in the Modern Mind.

    Science.gov (United States)

    Percy, Walker

    1990-01-01

    Claims that modern science is radically incoherent and that this incoherence lies within the practice of science. Details the work of the scientist and philosopher Charles Sanders Pierce, expounding on the difference between Rene Descartes' dualistic philosophy and Pierce's triadic view. Concludes with a brief description of the human existence.…

  18. Fortnightly modulation of San Andreas tremor and low-frequency earthquakes

    Science.gov (United States)

    Van Der Elst, Nicholas; Delorey, Andrew; Shelly, David R.; Johnson, Paul

    2016-01-01

    Earth tides modulate tremor and low-frequency earthquakes (LFEs) on faults in the vicinity of the brittle−ductile (seismic−aseismic) transition. The response to the tidal stress carries otherwise inaccessible information about fault strength and rheology. Here, we analyze the LFE response to the fortnightly tide, which modulates the amplitude of the daily tidal stress over a 14-d cycle. LFE rate is highest during the waxing fortnightly tide, with LFEs most strongly promoted when the daily stress exceeds the previous peak stress by the widest margin. This pattern implies a threshold failure process, with slip initiated when stress exceeds the local fault strength. Variations in sensitivity to the fortnightly modulation may reflect the degree of stress concentration on LFE-producing brittle asperities embedded within an otherwise aseismic fault.

  19. Toward Expanding Tremor Observations in the Northern San Andreas Fault System in the 1990s

    Science.gov (United States)

    Damiao, L. G.; Dreger, D. S.; Nadeau, R. M.; Taira, T.; Guilhem, A.; Luna, B.; Zhang, H.

    2015-12-01

    The connection between tremor activity and active fault processes continues to expand our understanding of deep fault zone properties and deformation, the tectonic process, and the relationship of tremor to the occurrence of larger earthquakes. Compared to tremors in subduction zones, known tremor signals in California are ~5 to ~10 smaller in amplitude and duration. These characteristics, in addition to scarce geographic coverage, lack of continuous data (e.g., before mid-2001 at Parkfield), and absence of instrumentation sensitive enough to monitor these events have stifled tremor detection. The continuous monitoring of these events over a relatively short time period in limited locations may lead to a parochial view of the tremor phenomena and its relationship to fault, tectonic, and earthquake processes. To help overcome this, we have embarked on a project to expand the geographic and temporal scope of tremor observation along the Northern SAF system using available continuous seismic recordings from a broad array of 100s of surface seismic stations from multiple seismic networks. Available data for most of these stations also extends back into the mid-1990s. Processing and analysis of tremor signal from this large and low signal-to-noise dataset requires a heavily automated, data-science type approach and specialized techniques for identifying and extracting reliable data. We report here on the automated, envelope based methodology we have developed. We finally compare our catalog results with pre-existing tremor catalogs in the Parkfield area.

  20. Evaluation of nine-frame enhanced multiband photography San Andreas fault zone, Carrizo Plain, California

    Science.gov (United States)

    Wallace, R. E.

    1969-01-01

    Nine-frame multiband aerial photography of a sample area 4500 feet on a side was processed to enhance spectral contrasts. The area concerned is in the Carrizo Plain, 45 miles west of Bakersfield, California, in sec. 29, T 31 S., R. 21 E., as shown on the Panorama Hills quadrangle topographic map published by the U. S. Geological Survey. The accompany illustrations include an index map showing the location of the Carrizo Plain area; a geologic map of the area based on field studies and examination of black and white aerial photographs; an enhanced multiband aerial photograph; an Aero Ektachrome photograph; black and white aerial photographs; and infrared image in the 8-13 micron band.

  1. Model heat flow and magnetotellurics for the San Andreas and oceanic transform faults

    International Nuclear Information System (INIS)

    Ricard, Y.; Froidevaux, C.; Hermance, J.F.

    1983-01-01

    Two-dimensional temperature structures are computed for a lithospheric shear zone in order to predict the geometry of the hot anomalous region caused by shear heating. The results are compatible with earlier one-dimensional models. The comparison with the heat flow data from California is quite satisfactory. It requires to take into account the geometrical constraints corresponding to the migration of the Mendocino triple point. This is obtained by solving the time dependent heat equation. The possibility to probe the existence of a sub-Moho hot window by magnetotelluric sounding is then examined. A drop in apparent resistivity by a factor 2 to 4 is predicted. However, the presence of conductive sedimentary basins at the surface may hide this effect in California. In this respect the ocean floor transform faults might offer a somewhat simpler site for field observations

  2. THE GREAT SOUTHERN CALIFORNIA SHAKEOUT: Earthquake Science for 22 Million People

    Science.gov (United States)

    Jones, L.; Cox, D.; Perry, S.; Hudnut, K.; Benthien, M.; Bwarie, J.; Vinci, M.; Buchanan, M.; Long, K.; Sinha, S.; Collins, L.

    2008-12-01

    Earthquake science is being communicated to and used by the 22 million residents of southern California to improve resiliency to future earthquakes through the Great Southern California ShakeOut. The ShakeOut began when the USGS partnered with the California Geological Survey, Southern California Earthquake Center and many other organizations to bring 300 scientists and engineers together to formulate a comprehensive description of a plausible major earthquake, released in May 2008, as the ShakeOut Scenario, a description of the impacts and consequences of a M7.8 earthquake on the Southern San Andreas Fault (USGS OFR2008-1150). The Great Southern California ShakeOut was a week of special events featuring the largest earthquake drill in United States history. The ShakeOut drill occurred in houses, businesses, and public spaces throughout southern California at 10AM on November 13, 2008, when southern Californians were asked to pretend that the M7.8 scenario earthquake had occurred and to practice actions that could reduce the impact on their lives. Residents, organizations, schools and businesses registered to participate in the drill through www.shakeout.org where they could get accessible information about the scenario earthquake and share ideas for better reparation. As of September 8, 2008, over 2.7 million confirmed participants had been registered. The primary message of the ShakeOut is that what we do now, before a big earthquake, will determine what our lives will be like after. The goal of the ShakeOut has been to change the culture of earthquake preparedness in southern California, making earthquakes a reality that are regularly discussed. This implements the sociological finding that 'milling,' discussing a problem with loved ones, is a prerequisite to taking action. ShakeOut milling is taking place at all levels from individuals and families, to corporations and governments. Actions taken as a result of the ShakeOut include the adoption of earthquake

  3. Potential Effects of a Scenario Earthquake on the Economy of Southern California: Baseline County-Level Migration Characteristics and Trends 1995-2000 and 2001-2010

    Science.gov (United States)

    Sherrouse, Benson C.; Hester, David J.

    2008-01-01

    The Multi-Hazards Demonstration Project (MHDP) is a collaboration between the U.S. Geological Survey (USGS) and various partners from the public and private sectors and academia, meant to improve Southern California's resiliency to natural hazards. In support of the MHDP objectives, the ShakeOut Scenario was developed. It describes a magnitude 7.8 earthquake along the southernmost 300 kilometers (200 miles) of the San Andreas Fault, identified by geoscientists as a plausible event that will cause moderate to strong shaking over much of the eight-county (Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura) Southern California region. This report uses historical, estimated, and projected population data from several Federal and State data sources to estimate baseline characteristics and trends of the region's population migration (that is, changes in a person's place of residence over time). The analysis characterizes migration by various demographic, economic, family, and household variables for the period 1995-2000. It also uses existing estimates (beginning in 2001) of the three components of population change - births, deaths, and migration - to extrapolate near-term projections of county-level migration trends through 2010. The 2010 date was chosen to provide baseline projections corresponding to a two-year recovery period following the November 2008 date that was selected for the occurrence of the ShakeOut Scenario earthquake. The baseline characteristics and projections shall assist with evaluating the effects of inflow and outflow migration trends for alternative futures in which the simulated M7.8 earthquake either does or does not occur and the impact of the event on housing and jobs, as well as community composition and regional economy changes based on dispersion of intellectual, physical, economic, and cultural capital.

  4. Andreas Vesalius 500 years - A Renaissance that revolutionized cardiovascular knowledge

    Directory of Open Access Journals (Sweden)

    Evandro Tinoco Mesquita

    2015-04-01

    Full Text Available AbstractThe history of medicine and cardiology is marked by some geniuses who dared in thinking, research, teaching and transmitting scientific knowledge, and the Italian Andreas Vesalius one of these brilliant masters. His main scientific work "De Humani Corporis Fabrica" is not only a landmark study of human anatomy but also an artistic work of high aesthetic quality published in 1543. In the year 2014 we celebrated 500 years since the birth of the brilliant professor of Padua University, who with his courage and sense of observation changed the understanding of cardiovascular anatomy and founded a school to date in innovative education and research of anatomy. By identifying "the anatomical errors" present in Galen's book and speech, he challenged the dogmas of the Catholic Church, the academic world and the doctors of his time. However, the accuracy of his findings and his innovative way to disseminate them among his students and colleagues was essential so that his contributions are considered by many the landmark of modern medicine. His death is still surrounded by mysteries having different hypotheses, but a certainty, suffered sanctions of the Catholic Church for the spread of their ideas. The cardiologists, cardiovascular surgeons, interventional cardiologists, electrophysiologists and cardiovascular imaginologists must know the legacy of genius Andreas Vesalius that changed the paradigm of human anatomy.

  5. Andreas Vesalius 500 years - A Renaissance that revolutionized cardiovascular knowledge

    Science.gov (United States)

    Mesquita, Evandro Tinoco; de Souza Júnior, Celso Vale; Ferreira, Thiago Reigado

    2015-01-01

    The history of medicine and cardiology is marked by some geniuses who dared in thinking, research, teaching and transmitting scientific knowledge, and the Italian Andreas Vesalius one of these brilliant masters. His main scientific work "De Humani Corporis Fabrica" is not only a landmark study of human anatomy but also an artistic work of high aesthetic quality published in 1543. In the year 2014 we celebrated 500 years since the birth of the brilliant professor of Padua University, who with his courage and sense of observation changed the understanding of cardiovascular anatomy and founded a school to date in innovative education and research of anatomy. By identifying "the anatomical errors" present in Galen's book and speech, he challenged the dogmas of the Catholic Church, the academic world and the doctors of his time. However, the accuracy of his findings and his innovative way to disseminate them among his students and colleagues was essential so that his contributions are considered by many the landmark of modern medicine. His death is still surrounded by mysteries having different hypotheses, but a certainty, suffered sanctions of the Catholic Church for the spread of their ideas. The cardiologists, cardiovascular surgeons, interventional cardiologists, electrophysiologists and cardiovascular imaginologists must know the legacy of genius Andreas Vesalius that changed the paradigm of human anatomy. PMID:26107459

  6. Refining Southern California Geotherms Using Seismologic, Geologic, and Petrologic Constraints

    Science.gov (United States)

    Thatcher, W. R.; Chapman, D. S.; Allam, A. A.; Williams, C. F.

    2017-12-01

    Lithospheric deformation in tectonically active regions depends on the 3D distribution of rheology, which is in turn critically controlled by temperature. Under the auspices of the Southern California Earthquake Center (SCEC) we are developing a 3D Community Thermal Model (CTM) to constrain rheology and so better understand deformation processes within this complex but densely monitored and relatively well-understood region. The San Andreas transform system has sliced southern California into distinct blocks, each with characteristic lithologies, seismic velocities and thermal structures. Guided by the geometry of these blocks we use more than 250 surface heat-flow measurements to define 13 geographically distinct heat flow regions (HFRs). Model geotherms within each HFR are constrained by averages and variances of surface heat flow q0 and the 1D depth distribution of thermal conductivity (k) and radiogenic heat production (A), which are strongly dependent on rock type. Crustal lithologies are not always well known and we turn to seismic imaging for help. We interrogate the SCEC Community Velocity Model (CVM) to determine averages and variances of Vp, Vs and Vp/Vs versus depth within each HFR. We bound (A, k) versus depth by relying on empirical relations between seismic wave speed and rock type and laboratory and modeling methods relating (A, k) to rock type. Many 1D conductive geotherms for each HFR are allowed by the variances in surface heat flow and subsurface (A, k). An additional constraint on the lithosphere temperature field is provided by comparing lithosphere-asthenosphere boundary (LAB) depths identified seismologically with those defined thermally as the depth of onset of partial melting. Receiver function studies in Southern California indicate LAB depths that range from 40 km to 90 km. Shallow LAB depths are correlated with high surface heat flow and deep LAB with low heat flow. The much-restricted families of geotherms that intersect peridotite

  7. The ShakeOut Earthquake Scenario - A Story That Southern Californians Are Writing

    Science.gov (United States)

    Perry, Suzanne; Cox, Dale; Jones, Lucile; Bernknopf, Richard; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne

    2008-01-01

    The question is not if but when southern California will be hit by a major earthquake - one so damaging that it will permanently change lives and livelihoods in the region. How severe the changes will be depends on the actions that individuals, schools, businesses, organizations, communities, and governments take to get ready. To help prepare for this event, scientists of the U.S. Geological Survey (USGS) have changed the way that earthquake scenarios are done, uniting a multidisciplinary team that spans an unprecedented number of specialties. The team includes the California Geological Survey, Southern California Earthquake Center, and nearly 200 other partners in government, academia, emergency response, and industry, working to understand the long-term impacts of an enormous earthquake on the complicated social and economic interactions that sustain southern California society. This project, the ShakeOut Scenario, has applied the best current scientific understanding to identify what can be done now to avoid an earthquake catastrophe. More information on the science behind this project will be available in The ShakeOut Scenario (USGS Open-File Report 2008-1150; http://pubs.usgs.gov/of/2008/1150/). The 'what if?' earthquake modeled in the ShakeOut Scenario is a magnitude 7.8 on the southern San Andreas Fault. Geologists selected the details of this hypothetical earthquake by considering the amount of stored strain on that part of the fault with the greatest risk of imminent rupture. From this, seismologists and computer scientists modeled the ground shaking that would occur in this earthquake. Engineers and other professionals used the shaking to produce a realistic picture of this earthquake's damage to buildings, roads, pipelines, and other infrastructure. From these damages, social scientists projected casualties, emergency response, and the impact of the scenario earthquake on southern California's economy and society. The earthquake, its damages, and

  8. Dynamic Models of Earthquake Rupture along branch faults of the Eastern San Gorgonio Pass Region in CA using Complex Fault Structure

    Science.gov (United States)

    Douilly, R.; Oglesby, D. D.; Cooke, M. L.; Beyer, J. L.

    2017-12-01

    Compilation of geomorphic and paleoseismic data have illustrated that the right-lateral Coachella segment of the southern San Andreas Fault is past its average recurrence time period. On its western edge, this fault segment is split into two branches: the Mission Creek strand, and the Banning fault strand, of the San Andreas. Depending on how rupture propagates through this region, there is the possibility of a through-going rupture that could lead to the channeling of damaging seismic energy into the Los Angeles Basin. The fault structures and rupture scenarios on these two strands are potentially very different, so it is important to determine which strand is a more likely rupture path, and under which circumstances rupture will take either one. In this study, we focus on the effect of different assumptions about fault geometry and stress pattern on the rupture process to test those scenarios and thus investigate the most likely path of a rupture that starts on the Coachella segment. We consider two types of fault geometry based on the SCEC Community Fault Model and create a 3D finite element mesh. These two meshes are then incorporated into the finite element method code FaultMod to compute a physical model for the rupture dynamics. We use the slip-weakening friction law, and we consider different assumptions of background stress such as constant tractions, regional stress regimes of different orientations, heterogeneous off-fault stresses and the results of long-term stressing rates from quasi-static crustal deformation models that consider time since last event on each fault segment. Both the constant and regional stress distribution show that it is more likely for the rupture to branch from the Coachella segment to the Mission Creek compared to the Banning fault segment. For the regional stress distribution, we encounter cases of super-shear rupture for one type of fault geometry and sub-shear rupture for the other one. The fault connectivity at this branch

  9. Assistant professor Andrea Wittenborn, research team conduct clinical trial to treat couples' depression, marital problems

    OpenAIRE

    Micale, Barbara L.

    2010-01-01

    Andrea Wittenborn, assistant professor, human development, is heading a research team conducting the Strengthening Bonds Couples Therapy Study to treat depression and marital problems (dyadic distress) in married/committed couple relationships.

  10. Uudised : Juuksur - uus live-muusika lokaal. Madonna tögas Bushi. Andrea Bocelli Helsingis

    Index Scriptorium Estoniae

    2006-01-01

    Kontserdil 19. mail Tallinnas (Vaimu 1) õhtulokaali "Juuksur" avamisel esineb jazzrokki viljelev ansambel Wrupk Urei ja 26. mail Allan Vainola sooloprojektiga. Ameerika poplauljast Madonnast. Itaalia tenori Andrea Bocelli kontserdist 19. nov. Hartwall Arenal Helsingis

  11. The Hidden Face of Hospital Economy. The Hospital of Sant’Andrea of Vercelli in 14th and 15th century

    Directory of Open Access Journals (Sweden)

    Antonio Olivieri

    2016-05-01

    Full Text Available The study of four fourteenth- and fifteenth-century registers of hospital of San Andrea of Vercelli allows to shine a light on some aspects of property management and hospital economy. On one hand, it is possible to see a technical evolution of the recordings of rents payment; on the other hand one can understand the nature of economic connection between the hospital and his tenants. It changed depending on the location of property together with the origin of the tenants, urban (above all craftsmen or rural. The careful accounting of the actual payment of rents ‒ with accounts of delays, of debts accumulation charging on tenants, of replacements of kind or money rents with manufactured goods or (in the case of peasants labour services ‒ enlightens the specific features of the hospital economy, aimed to product wealth in view of the nurture of the hospital life in its whole.

  12. Triumphing over the Enemy. References to the Turks as Part of Andrea, Giannettino and Giovanni Andrea Doria’s Artistic Patronage and Public Image

    Directory of Open Access Journals (Sweden)

    Laura Stagno

    2017-12-01

    Andrea Doria (1466-1560 e in seguito il suo erede, Giovanni Andrea I (1550-1606, quali “generali del mare” per la corona spagnola, ebbero un ruolo cruciale nella strategia a lungo termine di lotta contro il nemico turco e di contenimento del suo potere. Ariosto, nel suo Orlando Furioso, celebrò Andrea come nuovo e più glorioso Pompeo, in grado di liberare il mare dai corsari ottomani, e numerosi altri testi coevi ne esaltarono le gesta contro il Turco. Scopo dell’articolo è quello di indagare in che modo tale ruolo si sia tradotto in termini di rappresentazione figurativa, in riferimento al  grande ammiraglio, ma anche al suo luogotente ed erede designato, Giannettino (ucciso nel corso della congiura dei Fieschi, nel 1547 e del  figlio di questi, Giovanni Andrea, che appunto in ragione della morte prematura del padre succedette al grande ammiraglio. Tra le commissioni artistiche dei Doria si riscontrano riferimenti al nemico turco in statue e placchette, nell’articolata serie di arazzi dedicati alla battaglia di Lepanto, ma anche nella complessa raffigurazione allegorica del passaggio del potere dal vecchio principe al giovane erede. Il tipo di approccio al tema risulta però diverso: mediato da riferimenti classici e simbolici nel caso di Andrea, più diretto in quello del successore. In parallelo al patronage dei due Doria ha un ruolo di grande importanza la committenza della Repubblica genovese,  alla quale si lega la prima iconografia che, nella statua colossale “all’antica” eseguita da Montorsoli (1539, presenta in modo esplicito il trionfo di Andrea sugli Ottomani, secondo un’iconografia.

  13. Multiwavelength EDM measurements in southern California

    Science.gov (United States)

    Slater, L.E.; McGarr, A.; Langbein, J.O.; Linker, M.F.

    1983-01-01

    We installed a precise geodetic network along the San Andreas fault near Pearblossom, California in November, 1980. The network is within the region frequently referred to as the "Palmdale Uplift" and consists of 13 lines radiating from a central benchmark. The lines range in length from 3.2 to 8.1 km are generally measured several times each week. The multiwavelength distance measuring (MWDM) instrument is located at the central benchmark and is housed in a small protective shelter. The MWDM instrument has demonstrated a capability to make measurements to a precision of 1 part in 10 million. Using a coordinate system whose x-axis is parallel to the local trace of the San Andreas fault the following strain rates were observed during the first 10 months of this effort: {greater-than with dot}exx = -0.180 ?? 0.025 ??str/yr{greater-than with dot}eyy = -0.031 ?? 0.029 ??str/yr{greater-than with dot}exy = +0.077 ?? 0.024 ??str/yr?? = -0.213 ?? 0.039 ??str/yr. The observed strain rates do not appear to be constant in time, much of the deformation occurs in fairly well defined episodes. These changes in strain rate are particularly obvious in the \\ ??.geyy component. ?? 1983.

  14. Facing the great disaster : How the men and women of the U.S. Geological Survey responded to the 1906 "San Francisco Earthquake"

    Science.gov (United States)

    Colvard, Elizabeth M.; Rogers, James

    2006-01-01

    It was the most devastating earthquake in California’s history. At 5:12 a.m. on April 18, 1906, the ground under the San Francisco Bay Area shook violently for more than 40 seconds. The magnitude 7.8 earthquake created a rupture along nearly 300 miles of the San Andreas Fault and was felt from southern Oregon to Los Angeles. Because the earthquake’s epicenter was just offshore from San Francisco, the impact on that city was catastrophic. Fragments of broken houses and buildings tumbled into the streets. The pipeline carrying water into the city was severed; fires triggered by broken gas mains raged out of control for 3 days. An area of almost 5 square miles in the heart of the city was destroyed by shaking and fire, and earthquake damage was widespread elsewhere. At least 3,000 people were killed, and 225,000 were left homeless. Drinking water, food, and supplies quickly became scarce.In 1906, the only permanent U.S. Geological Survey (USGS) office in California was the Pacific Division topographic mapping office in Sacramento, 70 miles up the Sacramento River from San Francisco Bay. The office had been established just 3 years earlier and was the only USGS office ever created for the sole function of topographic mapping. At the time of the earthquake, many USGS topographers were in Sacramento preparing for a summer of field work.Although moderate shaking was felt in Sacramento, then a town of about 30,000 people, detailed information about the earthquake was slow to reach the residents there. USGS topographic engineer George R. Davis, not knowing the full extent of the damage, was fearful that his 62-year-old father Edward Davis in San Francisco was caught up in the devastation. George therefore left Sacramento on the first train bound for the San Francisco Bay area. “He was very worried. The phones were down and he wasn’t sure whether or not the hotel his father was living in was damaged,” said George Davis’s daughter Anna (Davis) Rogers, then an

  15. Triggered surface slips in southern California associated with the 2010 El Mayor-Cucapah, Baja California, Mexico, earthquake

    Science.gov (United States)

    Rymer, Michael J.; Treiman, Jerome A.; Kendrick, Katherine J.; Lienkaemper, James J.; Weldon, Ray J.; Bilham, Roger; Wei, Meng; Fielding, Eric J.; Hernandez, Janis L.; Olson, Brian P.E.; Irvine, Pamela J.; Knepprath, Nichole; Sickler, Robert R.; Tong, Xiaopeng; Siem, Martin E.

    2011-01-01

    The April 4, 2010 (Mw7.2), El Mayor-Cucapah, Baja California, Mexico, earthquake is the strongest earthquake to shake the Salton Trough area since the 1992 (Mw7.3) Landers earthquake. Similar to the Landers event, ground-surface fracturing occurred on multiple faults in the trough. However, the 2010 event triggered surface slip on more faults in the central Salton Trough than previous earthquakes, including multiple faults in the Yuha Desert area, the southwestern section of the Salton Trough. In the central Salton Trough, surface fracturing occurred along the southern San Andreas, Coyote Creek, Superstition Hills, Wienert, Kalin, and Imperial Faults and along the Brawley Fault Zone, all of which are known to have slipped in historical time, either in primary (tectonic) slip and/or in triggered slip. Surface slip in association with the El Mayor-Cucapah earthquake is at least the eighth time in the past 42 years that a local or regional earthquake has triggered slip along faults in the central Salton Trough. In the southwestern part of the Salton Trough, surface fractures (triggered slip) occurred in a broad area of the Yuha Desert. This is the first time that triggered slip has been observed in the southwestern Salton Trough.

  16. Preparing a population for an earthquake like Chi-Chi: The Great Southern California ShakeOut

    Science.gov (United States)

    Jones, Lucile M.; ,

    2009-01-01

    The Great Southern California ShakeOut was a week of special events featuring the largest earthquake drill in United States history. On November 13, 2008, over 5 million southern Californians pretended that a magnitude-7.8 earthquake had occurred and practiced actions that could reduce its impact on their lives. The primary message of the ShakeOut is that what we do now, before a big earthquake, will determine what our lives will be like after. The drill was based on a scenario of the impacts and consequences of such an earthquake on the Southern San Andreas Fault, developed by over 300 experts led by the U.S. Geological Survey in partnership with the California Geological Survey, the Southern California Earthquake Center, Earthquake Engineering Research Institute, lifeline operators, emergency services and many other organizations. The ShakeOut campaign was designed and implemented by earthquake scientists, emergency managers, sociologists, art designers and community participants. The means of communication were developed using results from sociological research on what encouraged people to take action. This was structured around four objectives: 1) consistent messages – people are more inclined to believe something when they hear the same thing from multiple sources; 2) visual reinforcement – people are more inclined to do something they see other people doing; 3) encourage “milling” or discussing contemplated action – people need to discuss an action with others they care about before committing to undertaking it; and 4) focus on concrete actions – people are more likely to prepare for a set of concrete consequences of a particular hazard than for an abstract concept of risk. The goals of the ShakeOut were established in Spring 2008 and were: 1) to register 5 million people to participate in the drill; 2) to change the culture of earthquake preparedness in southern California; and 3) to reduce earthquake losses in southern California. All of these

  17. Subduction and Plate Edge Tectonics in the Southern Caribbean

    Science.gov (United States)

    Levander, A.; Schmitz, M.; Niu, F.; Bezada, M. J.; Miller, M. S.; Masy, J.; Ave Lallemant, H. G.; Pindell, J. L.; Bolivar Working Group

    2013-05-01

    The southern Caribbean plate boundary consists of a subduction zone at at either end of a complex strike-slip fault system: In the east at the Lesser Antilles subduction zone, the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west in the Colombia basin, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean plates subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system that has been cut off at the Bocono fault, the southeastern boundary fault of the Maracaibo block. A variety of seismic probes identify subduction features at either end of the system (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Growdon et al., 2009; Huang et al., 2010; Masy et al, 2011). The El Pilar system forms at the southeastern corner of the Antilles subduction zone with the Atlantic plate tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. Tearing the Atlantic plate from the rest of South America appears to cause further lithospheric instability continentward. In northwestern South America the Caribbean plate very likely also tears, as its southernmost element subducts at shallow angles under northernmost Colombia but then rapidly descends to the transition zone under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab controls the tectonics of the Neogene Merida Andes, Perija, and Santa Marta ranges. The nonsubducting part of the Caribbean plate also underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the edge of the underthrust

  18. Ground motion modeling of the 1906 San Francisco earthquake II: Ground motion estimates for the 1906 earthquake and scenario events

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, B; Brocher, T; Dreger, D; Frankel, A; Graves, R; Harmsen, S; Hartzell, S; Larsen, S; McCandless, K; Nilsson, S; Petersson, N A; Rodgers, A; Sjogreen, B; Tkalcic, H; Zoback, M L

    2007-02-09

    We estimate the ground motions produced by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  19. Kunagi nii popp idabloki kadunud filmikunst / Eva Näripea, Andreas Trossek ; intervjueerinud Ave Randviir

    Index Scriptorium Estoniae

    Näripea, Eva

    2009-01-01

    2007. a. oktoobris toimunud konverentsi "Via Transversa : Lost Cinema of the Former Eastern Bloc" ettekannetel põhinevast kogumikust: Via Transversa : Lost Cinema of the Former Eastern Bloc / editors Eva Näripea, Andreas Trossek. Tallinn : Eesti Kunstiakadeemia, 2008. (Koht ja paik ; 7)

  20. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1991-01-01

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  1. A microstructural study of SAFOD gouge from actively creeping San Andreas Fault zone; Implications for shear localization models

    Science.gov (United States)

    Blackburn, E. D.; Hadizadeh, J.; Babaie, H. A.

    2009-12-01

    The prevailing models of shear localization in fault gouges are mainly based on experimental aggregates that necessarily neglect the effects of chemical and mechanical maturation with time. The SAFOD cores have provided a chance to test whether cataclasis as a deformation mechanism and factors such as porosity and particle size, critical in some existing shear localization models continue to be critical in mature gouges. We studied a core sample from 3194m MD in the SAFOD phase 3, which consists of intensely foliated shale-siltstone cataclasites in contact with less deformed shale. Microstructures were studied in 3 perpendicular planes with reference to foliation using high resolution scanning electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The cataclastic foliation, recognizable at length scales >100 μm, is primarily defined by bands of clay gouge with distinct microstructure, clay content, and porosity. Variations in elemental composition and porosity of the clay gouge were measured continuously across the foliation. Prominent features within the foliation bands include lens-shaped clusters of highly brecciated and veined siltstone fragments, pyrite smears, and pyrite-cemented cataclasites. The microstructural relations and chemical data provide clear evidence of multiple episodes of veining and deformation with some possibility of relative age determination for the episodes. There is evidence of syn-deformation hydrothermal changes including growth and brittle shear of pyrite, alteration of host shale clays to illite-smectite clays and Fe-rich smectite. Evidence of grain-boundary corrosion of non-clay mineral fragments suggests pressure solution creep. The gouge porosity estimates varied from 0-18% (about 3% in less deformed shale) with the highest value in the bands with abundant siltstone fragments. The banding is mechanically significant since it pervasively segregates the gouge into regions of low clay content, high-porosity and regions of low-porosity, high clay content. It appears from our data that shear localization in the gouge involves pressure solution as well as cataclastic flow assisted by alteration-softening. While the porous bands are potential conduits for fluid flow and could be sites for pressure solution creep, the clay-rich bands could serve as sites of shear localization due to their lower dilatancy rate. A better understanding of interaction between the two deformation mechanisms might shed light on the nature of microearthquake activity in the creeping segment of the SAF.

  2. Analysis and Modeling of Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth

    Science.gov (United States)

    2011-09-01

    No. BAA09-69 ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km...NNSA). 14. ABSTRACT Using multiple deployments of an 80-element, three-component borehole seismic array stretching from the surface to 2.3 km depth...generated using the direct Green’s function (DGF) method of Friederich and Dalkolmo (1995). This method synthesizes the seismic wavefield for a spherically

  3. ANALYSIS OF DEFORMATION PROCESSES IN THE LITHOSPHERE FROM GEODETIC MEASUREMENTS BASED ON THE EXAMPLE OF THE SAN ANDREAS FAULT

    Directory of Open Access Journals (Sweden)

    Yury V. Gabsatarov

    2012-01-01

    Full Text Available Analysis of data from permanent GPS observation stations located in tectonically active regions provides for direct observation of deformation processes of the earth's surface which result from elastic interaction of the lithospheric plates and also occur when accumulated stresses are released by seismic events and postseismic processes.This article describes the methodology of applying the regression analysis of time series of data from GPS-stations for identification of individual components of the stations’ displacements caused by the influence of various deformation processes. Modelling of the stations’ displacements caused only by deformations of the marginal zone, wherein the lithospheric plates interact, allows us to study variations of the steady-state deformation in the marginal zone.he proposed methodology is applied to studies of variations of fields of cumulative surface displacements, surface displacement velocity and maximum shear strain velocity which are determined from the GPS data recorded prior to the Parkfield earthquake of 28 September 2004 (Mw=6.0.Combined analysis of the variations of the above-mentioned fields shows that measurable anomalies of the elastic deformation of the transform fault’s edge took place prior to the seismic event of 28 September 2004, and such anomalies were coincident in space and time with the focal area of the future seismic event.

  4. Seismotectonic Implications Of Clustered Regional GPS Velocities In The San Francisco Bay Region, California

    Science.gov (United States)

    Graymer, R. W.; Simpson, R.

    2012-12-01

    We have used a hierarchical agglomerative clustering algorithm with Euclidean distance and centroid linkage, applied to continuous GPS observations for the Bay region available from the U.S. Geological Survey website. This analysis reveals 4 robust, spatially coherent clusters that coincide with 4 first-order structural blocks separated by 3 major fault systems: San Andreas (SA), Southern/Central Calaveras-Hayward-Rodgers Creek-Maacama (HAY), and Northern Calaveras-Concord-Green Valley-Berryessa-Bartlett Springs (NCAL). Because observations seaward of the San Gregorio (SG) fault are few in number, the cluster to the west of SA may actually contain 2 major structural blocks not adequately resolved: the Pacific plate to the west of the northern SA and a Peninsula block between the Peninsula SA and the SG fault. The average inter-block velocities are 11, 10, and 9 mm/yr across SA, HAY, and NCAL respectively. There appears to be a significant component of fault-normal compression across NCAL, whereas SA and HAY faults appear to be, on regional average, purely strike-slip. The velocities for the Sierra Nevada - Great Valley (SNGV) block to the west of NCAL are impressive in their similarity. The cluster of these velocities in a velocity plot forms a tighter grouping compared with the groupings for the other cluster blocks, suggesting a more rigid behavior for this block than the others. We note that for 4 clusters, none of the 3 cluster boundaries illuminate geologic structures other than north-northwest trending dominantly strike-slip faults, so plate motion is not accommodated by large-scale fault-parallel compression or extension in the region or by significant plastic deformation , at least over the time span of the GPS observations. Complexities of interseismic deformation of the upper crust do not allow simple application of inter-block velocities as long-term slip rates on bounding faults. However, 2D dislocation models using inter-block velocities and typical

  5. Potential Effects of a Scenario Earthquake on the Economy of Southern California: Labor Market Exposure and Sensitivity Analysis to a Magnitude 7.8 Earthquake

    Science.gov (United States)

    Sherrouse, Benson C.; Hester, David J.; Wein, Anne M.

    2008-01-01

    The Multi-Hazards Demonstration Project (MHDP) is a collaboration between the U.S. Geological Survey (USGS) and various partners from the public and private sectors and academia, meant to improve Southern California's resiliency to natural hazards (Jones and others, 2007). In support of the MHDP objectives, the ShakeOut Scenario was developed. It describes a magnitude 7.8 (M7.8) earthquake along the southernmost 300 kilometers (200 miles) of the San Andreas Fault, identified by geoscientists as a plausible event that will cause moderate to strong shaking over much of the eight-county (Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura) Southern California region. This report contains an exposure and sensitivity analysis of economic Super Sectors in terms of labor and employment statistics. Exposure is measured as the absolute counts of labor market variables anticipated to experience each level of Instrumental Intensity (a proxy measure of damage). Sensitivity is the percentage of the exposure of each Super Sector to each Instrumental Intensity level. The analysis concerns the direct effect of the scenario earthquake on economic sectors and provides a baseline for the indirect and interactive analysis of an input-output model of the regional economy. The analysis is inspired by the Bureau of Labor Statistics (BLS) report that analyzed the labor market losses (exposure) of a M6.9 earthquake on the Hayward fault by overlaying geocoded labor market data on Instrumental Intensity values. The method used here is influenced by the ZIP-code-level data provided by the California Employment Development Department (CA EDD), which requires the assignment of Instrumental Intensities to ZIP codes. The ZIP-code-level labor market data includes the number of business establishments, employees, and quarterly payroll categorized by the North American Industry Classification System. According to the analysis results, nearly 225,000 business

  6. Off-fault seismicity suggests creep below 10 km on the northern San Jacinto Fault

    Science.gov (United States)

    Cooke, M. L.; Beyer, J. L.

    2017-12-01

    Within the San Bernardino basin, CA, south of the juncture of the San Jacinto (SJF) and San Andreas faults (SAF), focal mechanisms show normal slip events that are inconsistent with the interseismic strike-slip loading of the region. High-quality (nodal plane uncertainty faults [Anderson et al., 2004]. However, the loading of these normal slip events remains enigmatic because the region is expected to have dextral loading between large earthquake events. These enigmatic normal slip events may be loaded by deep (> 10 km depth) spatially creep along the northern SJF. Steady state models show that over many earthquake cycles, the dextral slip rate on the northern SJF increases southward, placing the San Bernardino basin in extension. In the absence of recent large seismic events that could produce off-fault normal focal mechanisms in the San Bernardino basin, non-uniform deep aseismic slip on the SJF could account for this seismicity. We develop interseismic models that incorporate spatially non-uniform creep below 10 km on the SJF based on steady-state slip distribution. These model results match the pattern of deep normal slip events within the San Bernardino basin. Such deep creep on the SJF may not be detectable from the geodetic signal due to the close proximity of the SAF, whose lack of seismicity suggests that it is locked to 20 km. Interseismic models with 15 km locking depth on both faults are indistinguishable from models with 10 km locking depth on the SJF and 20 km locking depth on the SAF. This analysis suggests that the microseismicity in our multi-decadal catalog may record both the interseismic dextral loading of the region as well as off-fault deformation associated with deep aseismic creep on the northern SJF. If the enigmatic normal slip events of the San Bernardino basin are included in stress inversions from the seismic catalog used to assess seismic hazard, the results may provide inaccurate information about fault loading in this region.

  7. Butterfly fauna in Mount Gariwang-san, Korea

    Directory of Open Access Journals (Sweden)

    Cheol Min Lee

    2016-06-01

    Full Text Available The aim of this study is to elucidate butterfly fauna in Mt. Gariwang-san, Korea. A field survey was conducted from 2010 to 2015 using the line transect method. A literature survey was also conducted. A total of 2,037 butterflies belonging to 105 species were recorded. In the estimation of species richness of butterfly, 116 species were estimated to live in Mt. Gariwang-san. In butterfly fauna in Mt. Gariwang-san, the percentage of northern species was very high and the percentage of grassland species was relatively higher than that of forest edge species and forest interior species. Sixteen red list species were found. In particular, Mimathyma nycteis was only recorded in Mt. Gariwang-san. When comparing the percentage of northern species and southern species including those recorded in previous studies, the percentage of northern species was found to have decreased significantly whereas that of southern species increased. We suggest that the butterfly community, which is distributed at relatively high altitudes on Mt. Gariwang-san, will gradually change in response to climate change.

  8. Ground-motion modeling of the 1906 San Francisco Earthquake, part II: Ground-motion estimates for the 1906 earthquake and scenario events

    Science.gov (United States)

    Aagaard, Brad T.; Brocher, T.M.; Dolenc, D.; Dreger, D.; Graves, R.W.; Harmsen, S.; Hartzell, S.; Larsen, S.; McCandless, K.; Nilsson, S.; Petersson, N.A.; Rodgers, A.; Sjogreen, B.; Zoback, M.L.

    2008-01-01

    We estimate the ground motions produce by the 1906 San Francisco earthquake making use of the recently developed Song et al. (2008) source model that combines the available geodetic and seismic observations and recently constructed 3D geologic and seismic velocity models. Our estimates of the ground motions for the 1906 earthquake are consistent across five ground-motion modeling groups employing different wave propagation codes and simulation domains. The simulations successfully reproduce the main features of the Boatwright and Bundock (2005) ShakeMap, but tend to over predict the intensity of shaking by 0.1-0.5 modified Mercalli intensity (MMI) units. Velocity waveforms at sites throughout the San Francisco Bay Area exhibit characteristics consistent with rupture directivity, local geologic conditions (e.g., sedimentary basins), and the large size of the event (e.g., durations of strong shaking lasting tens of seconds). We also compute ground motions for seven hypothetical scenarios rupturing the same extent of the northern San Andreas fault, considering three additional hypocenters and an additional, random distribution of slip. Rupture directivity exerts the strongest influence on the variations in shaking, although sedimentary basins do consistently contribute to the response in some locations, such as Santa Rosa, Livermore, and San Jose. These scenarios suggest that future large earthquakes on the northern San Andreas fault may subject the current San Francisco Bay urban area to stronger shaking than a repeat of the 1906 earthquake. Ruptures propagating southward towards San Francisco appear to expose more of the urban area to a given intensity level than do ruptures propagating northward.

  9. Climate change and other stressors change modeled population size and hybridization potential for San Joaquin kit fox

    Science.gov (United States)

    The San Joaquin kit fox was once widely distributed across the southern San Joaquin Valley, but agriculture and development have replaced much of the endangered subspecies’ habitat. We modeled impacts of climate change, land-use change, and rodenticide exposure on kit fox p...

  10. Geology and fuel resources of the southern part of the San Juan Basin, New Mexico. Part 1, The coal field from Gallup eastward toward Mount Taylor, with a measured section of pre-Dakota(?) rocks near Navajo Church

    Science.gov (United States)

    Sears, Julian D.

    1934-01-01

    The report describes the geology and coal deposits of the southwestern part of the San Juan Basin, N.Mex. The field lies northeast of the town of Gallup, on the Atchison, Topeka & Santa Fe Railway, and is an irregular tract of about 630 square miles in central and west-central McKinley County; it includes the southeast corner of the Navajo Indian Reservation. Settlement is confined to the white families at a few trading posts and the Indian agency at Crown Point and to scattered Navajo Indians. The land forms, drainage, vegetation, and climate are those typical of the highland in the semiarid Southwest.The investigation disclosed complicated relations of the Mancos shale and the Mesaverde formation, of Upper Cretaceous age, and a marked variation in the stratigraphic boundary between them. At the western edge of the field, as in the adjoining Gallup coal district, the Mancos consists of about 725 feet of marine shale almost wholly of Benton (lower Colorado) age. It is overlain by about 1,800 feet of chiefly estuarine and fluviatile deposits that represent the lower part of the Mesaverde formation. In ascending order the Mesaverde here consists of the Gallup sandstone member (which includes local lenses of valuable coal), the Dilco coal member, the Bartlett barren member, the Gibson coal member, and the Allison barren member. Eastward through the field the outcrops extend obliquely across the trend of old shore lines out into the ancient basin of marine deposition, and some of the beds consequently show a progressive lateral change into rocks of littoral and marine types. The Gallup sandstone member is in part replaced by marine shale of the Mancos. The upper part of the Dilco coal member is replaced by the Dalton sandstone member, and still farther east the bottom of the Dalton and the top of the remaining Dilco are replaced by the Mulatto tongue of the Mancos shale. The Bartlett barren member becomes coal-bearing and thus merges with the Gibson. The Gibson coal

  11. Impact of the 2015 El Niño-Southern Oscillation on the Abundance and Foraging Habits of Guadalupe Fur Seals and California Sea Lions from the San Benito Archipelago, Mexico.

    Directory of Open Access Journals (Sweden)

    Fernando R Elorriaga-Verplancken

    Full Text Available The abundance of California sea lions (Zalophus californianus (CSLs and Guadalupe fur seals (Arctocephalus philippii townsendi (GFSs from the San Benito Archipelago (SBA was determined through nine monthly surveys in 2014-2015. Assessment of their foraging habits was examined based on the isotopic analysis of pups (maternal indicators (SIAR/SIBER-R. Environmental variability between 2014 and 2015 was also analyzed, in terms of sea surface temperature (SST and chlorophyll (Chl-a concentration. Both otariids reached their highest abundance in July of both years; however, relative to 2014, the 2015 survey showed a 59.7% decline in the total GFS abundance and a 42.9% decrease of GFS pups, while total CSL abundance decreased 52.0% and CSL pup presence decreased in 61.7%. All monthly surveys for both otariids showed a similar trend (>50% decrease in 2015. Compared to 2014, the 2015 GFSs isotopic niche was three times larger (2.0 in 2015, 0.6 in 2014 and the δ13C was significantly lower. CSLs also showed significantly lower δ13C and higher δ15N in 2015. Interannual segregation was greater for CSLs, and their pup body mass was also significantly lower during the 2015 breeding season (mean = 8.7 kg than in the same season of 2014 (mean = 9.9 kg. The decrease in δ13C for both otariids reflected a more oceanic foraging; most likely associated with the decline in primary productivity in surrounding areas to the SBA, related to a higher SST caused by the 2015 ENSO, with a subsequent increase in foraging effort. These would explain the fewer observed individuals on land, especially pups, which showed diminished body condition (CSLs. This study highlights the importance of marine mammals as sentinel species that respond dynamically to changes in environment, providing valuable information on the effect of ENSO on pinnipeds in Mexican waters.

  12. SANS studies of polymers

    International Nuclear Information System (INIS)

    Wignall, G.D.

    1984-10-01

    Before small-angle neutron scattering (SANS), chain conformation studies were limited to light and small angle x-ray scattering techniques, usually in dilute solution. SANS from blends of normal and labeled molecules could give direct information on chain conformation in bulk polymers. Water-soluble polymers may be examined in H 2 O/D 2 O mixtures using contrast variation methods to provide further information on polymer structure. This paper reviews some of the information provided by this technique using examples of experiments performed at the National Center for Small-Angle Scattering Research (NCSASR)

  13. ["... here I am entirely among patients now..": the psychoanalytical practice of Lou Andreas-Salomé].

    Science.gov (United States)

    Klemann, Manfred

    2005-01-01

    The aim of this article is to disprove the widespread prejudice depicting Andreas-Salomé merely as a femme fatale, or companion of a few famous contemporaries (Nietzsche, Rilke, and Freud), while suppressing her original intellectual and clinical-practical achievement as a psychoanalyst. An evaluation of both published and hitherto unpublished sources clearly confirms the broad and thorough foundations of her psychoanalytical training in theory as well as in practice. Between 1913 and 1933 Andreas-Salomé conducted a relatively large number of analyses, discussed some of them with Freud in a kind of "supervision" by correspondence and published several articles on central psychoanalytical issues. So far, however, many psychoanalysts seem to have been unaware of her status as a former accomplished colleague.

  14. 11th June 2009-Cyprus-Minister of Education and Culture H. E. Prof. Andreas Demetriou

    CERN Multimedia

    Maximilien Brice

    2009-01-01

    Tirage 1 :CERN Director-General, R. Heuer and Minister of Education and Culture, H. E. Prof. Andreas Demetriou; Tirage 2:Council President,T. Åkesson, Ecole Normale Supérieure,K. Kounnas, Chairman of the Cyprus CERN Committee,C. N. Papanicolas, R. Heuer,A. Demetriou, Permanent Representative of the Republic of Cyprus in Geneva,A. Hadjichrysanthou, Directorate Office,E. Tsesmelis

  15. Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: A model for focused post-seismic fluid flow and heat transfer in the shallow crust

    Science.gov (United States)

    Morton, Nissa; Girty, Gary H.; Rockwell, Thomas K.

    2012-05-01

    We report results of a new study of the architecture of the San Jacinto fault zone in Horse Canyon, California, where stream incision has exposed a nearly continuous outcrop of the fault zone at ~ 0.4 km depth. The fault zone at this location consists of a fault core, transition zone, damage zone, and tonalitic wall rocks. We collected and analyzed samples for their bulk and grain density, geochemical data, clay mineralogy, and textural and modal mineralogy. Progressive deformation within the fault zone is characterized by mode I cracking, subsequent shearing of already fractured rock, and cataclastic flow. Grain comminution advances towards the strongly indurated cataclasite fault core. Damage progression towards the core is accompanied by a decrease in bulk and grain density, and an increase in porosity and dilational volumetric strain. Palygorskite and mixed-layer illite/smectite clay minerals are present in the damage and transition zones and are the result of hydrolysis reactions. The estimated percentage of illite in illite/smectite increases towards the fault core where the illite/smectite to illite conversion is complete, suggesting elevated temperatures that may have reached 150 °C. Chemical alteration and elemental mass changes are observed throughout the fault zone and are most pronounced in the fault core. We conclude that the observed chemical and mineralogical changes can only be produced by the interaction of fractured wall rocks and chemically active fluids that are mobilized through the fault zone by thermo-pressurization during and after seismic events. Based on the high element mobility and absence of illite/smectite in the fault core, we expect that the greatest water/rock ratios occur within the fault core. These results indicate that hot pore fluids circulate upwards through the fractured fault core and into the surrounding damage zone. Though difficult to constrain, we speculate that the site studied during this investigation may represent

  16. Remembering San Diego

    International Nuclear Information System (INIS)

    Chuyanov, V.

    1999-01-01

    After 6 years of existence the ITER EDA project in San Diego, USA, was terminated by desition of the US Congress. This article describes how nice it was for everybody as long as it lasted and how sad it is now

  17. Vertical crustal movements in Southern California, 1974 to 1978

    Science.gov (United States)

    Burford, R.O.; Gilmore, Thomas D.

    1984-01-01

    An extensive resurvey of most of the first-order leveling network in southern California, known as the Southern California Releveling Program (SCRP), was carried out during the first 5 months of 1978. The primary scientific purpose of these measurements was to rapidly update the vertical control record throughout a recently uplifted region of southern California in order to more thoroughly document the vertical component of tectonic movement and to provide a reliable base for comparison with future levelings. Analyses of historic first-order leveling results have clearly demonstrated that a broad crustal upwarping, largely contained within a region consisting of the Transverse Ranges province and an area along the intervening section of the San Andreas fault system, had developed between about 1959 and 1974. Unfortunately, there is strong evidence that parts of the 1978 SCRP data are contaminated by the effects of intrasurvey tectonic deformation, limited surficial failures, and, less certainly, magnetically induced systematic error associated with the use of automatic levels. However, any distortions in leveling results caused by these or other factors are not so serious as to render the SCRP data useless. In fact, the bulk of these data can be accepted at face value, and most of the remaining data can be incorporated with some caution to augment the more reliable parts of the network. The evaluation of the 1978 leveling is based on a combination of circuit-misclosures, local timing of the field observations, analysis of profiles of apparent height changes derived from comparisons with previous levelings, and an analysis of the position and orientation of the various routes in relation to the regional structural grain and the gradients of differential vertical motion established by previous investigations. Comparisons of the 1978 SCRP results with the latest of the previous surveys along each route retained in the analysis show that all but about one-third of the

  18. Data from theodolite measurements of creep rates on San Francisco Bay region faults, California, 1979-2012

    Science.gov (United States)

    McFarland, Forrest S.; Lienkaemper, James J.; Caskey, S. John

    2009-01-01

    Our purpose is to annually update our creep-data archive on San Francisco Bay region active faults for use by the scientific research community. Earlier data (1979-2001) were reported in Galehouse (2002) and were analyzed and described in detail in a summary report (Galehouse and Lienkaemper, 2003). A complete analysis of our earlier results obtained on the Hayward Fault was presented in Lienkaemper, Galehouse and Simpson (2001) and updated in Lienkaemper and others (2012). Lienkaemper and others (2014a) provide a new overview and analysis of fault creep along all sections of the northern San Andreas Fault system, from which they estimate by how much fault creep reduces the seismic hazard for each fault section.

  19. Cuticular hydrocarbons and soldier defense secretions of Reticulitermes in southern California: a critical analysis of the taxonomy of the genus in North America

    Science.gov (United States)

    Lori J. Nelson; Laurence G. Cool; Christopher W. Solek; Michael I. Haverty

    2008-01-01

    Cuticular hydrocarbons (CHC) and soldier defense secretions (SDS) were characterized for collections of Reticulitermes from six counties (Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Santa Barbara) in southern California. Collection sites included the type locality for R. hesperus, Lake Arrowhead (formerly known as Little Bear Lake) in the San...

  20. Imaging of Upper-Mantle Upwelling Beneath the Salton Trough, Southern California, by Joint Inversion of Ambient Noise Dispersion Curves and Receiver Functions

    Science.gov (United States)

    Klemperer, S. L.; Barak, S.

    2016-12-01

    We present a new 2D shear-wave velocity model of the crust and upper-mantle across the Salton Trough, southern California, obtained by jointly inverting our new dataset of receiver functions and our previously published Rayleigh-wave group-velocity model (Barak et al., G-cubed, 2015), obtained from ambient-noise tomography. Our results show an upper-mantle low-velocity zone (LVZ) with Vs ≤4.2 km/s extending from the Elsinore Fault to the Sand Hills Fault, that together bracket the full width of major San Andreas dextral motion since its inception 6 Ma b.p., and underlying the full width of low topography of the Imperial Valley and Salton Trough. The lateral extent of the LVZ is coincident with the lateral extent of an upper-mantle anisotropic region interpreted as a zone of SAF-parallel melt pockets (Barak & Klemperer, Geology, 2016). The shallowest part of the LVZ is 40 km depth, coincident with S-receiver function images. The western part of the LVZ, between the Elsinore and San Jacinto faults (the region of greatest modern dextral slip), appears to continue to significantly greater depth; but a puzzling feature of our preliminary models is that the eastern part of the LVZ, from the San Jacinto Fault to the Sand Hills Fault, appears to be underlain by more-normalvelocity upper mantle (Vs ≥ 4.5 km/s) below 75 km depth. We compare our model to the current SCEC community models CVM-H and CVM-S, and to P-wave velocity models obtained by the active-source Salton Sea Imaging Project (SSIP). The hypothesized lower-crustal low-velocity zone beneath the Salton Trough in our previous model (Barak et al., G-cubed, 2015), there interpreted as a region of partial melt, is not supported by our new modeling. Melt may be largely absent from the lower crust of the Salton trough; but appears required in the upper mantle at depths as shallow as 40 km.

  1. Geologic Map of the San Luis Quadrangle, Costilla County, Colorado

    Science.gov (United States)

    Machette, Michael N.; Thompson, Ren A.; Drenth, Benjamin J.

    2008-01-01

    The map area includes San Luis and the primarily rural surrounding area. San Luis, the county seat of Costilla County, is the oldest surviving settlement in Colorado (1851). West of the town are San Pedro and San Luis mesas (basalt-covered tablelands), which are horsts with the San Luis fault zone to the east and the southern Sangre de Cristo fault zone to the west. The map also includes the Sanchez graben (part of the larger Culebra graben), a deep structural basin that lies between the San Luis fault zone (on the west) and the central Sangre de Cristo fault zone (on the east). The oldest rocks exposed in the map area are the Pliocene to upper Oligocene basin-fill sediments of the Santa Fe Group, and Pliocene Servilleta Basalt, a regional series of 3.7?4.8 Ma old flood basalts. Landslide deposits and colluvium that rest on sediments of the Santa Fe Group cover the steep margins of the mesas. Rare exposures of the sediment are comprised of siltstones, sandstones, and minor fluvial conglomerates. Most of the low ground surrounding the mesas and in the graben is covered by surficial deposits of Quaternary age. The alluvial deposits are subdivided into three Pleistocene-age units and three Holocene-age units. The oldest Pleistocene gravel (unit Qao) forms extensive coalesced alluvial fan and piedmont surfaces, the largest of which is known as the Costilla Plain. This surface extends west from San Pedro Mesa to the Rio Grande. The primary geologic hazards in the map area are from earthquakes, landslides, and localized flooding. There are three major fault zones in the area (as discussed above), and they all show evidence for late Pleistocene to possible Holocene movement. The landslides may have seismogenic origins; that is, they may be stimulated by strong ground shaking during large earthquakes. Machette and Thompson based this geologic map entirely on new mapping, whereas Drenth supplied geophysical data and interpretations.

  2. Clerics and courtly love in Andreas Capellanus' The Art of Courtly Love and Chaucer's Canterbury Tales

    OpenAIRE

    Williams, Andrew

    1990-01-01

    In both The Canterbury Tales and The Art of Courtly Love Geoffrey Chaucer and Andreas Capellanus deal with various aspects of courtly love. In particular, both of them focus to some degree on the question of clerical celibacy. The use of tale telling and imaginary dialogues result in a contemporary overview of the role of the cleric in courtly love, the church rules on the subject, and the opinions of the people on a subject that is ripe for exploration. My aim is to point out some of the ...

  3. The Renaissance and the universal surgeon: Giovanni Andrea Della Croce, a master of traumatology.

    Science.gov (United States)

    Di Matteo, Berardo; Tarabella, Vittorio; Filardo, Giuseppe; Viganò, Anna; Tomba, Patrizia; Marcacci, Maurilio

    2013-12-01

    All the medical knowledge of all time in one book, the universal and perfect manual for the Renaissance surgeon, and the man who wrote it. This paper depicts the life and works of Giovanni Andrea della Croce, a 16th Century physician and surgeon, who, endowed with true spirit of Renaissance humanism, wanted to teach and share all his medical knowledge through his opus magnum, titled "Universal Surgery Complete with All the Relevant Parts for the Optimum Surgeon". An extraordinary book which truly represents a defining moment and a founding stone for traumatology, written by a lesser known historical personality, but nonetheless the Renaissance Master of Traumatology.

  4. Peter Andreas Hansen und die astronomische Gemeinschaft - eine erste Auswertung des Hansen-Nachlasses.

    Science.gov (United States)

    Schwarz, O.; Strumpf, M.

    The literary assets of Peter Andreas Hansen are deposited in the Staatsarchiv Hamburg, the Forschungs- und Landesbibliothek Gotha and the Thüringer Staatsarchiv Gotha. They were never systematically investigated. The authors present here some results of a first evaluation. It was possible to reconstruct the historical events with regard to the maintenance of the Astronomische Nachrichten and the Altona observatory in 1854. Hansen was a successful teacher for many young astronomers. His way of stimulating the evolution of astronomy followed Zach's tradition.

  5. The green areas of San Juan, Puerto Rico

    Directory of Open Access Journals (Sweden)

    Olga M. Ramos-González

    2014-09-01

    Full Text Available Green areas, also known as green infrastructure or urban vegetation, are vital to urbanites for their critical roles in mitigating urban heat island effects and climate change and for their provision of multiple ecosystem services and aesthetics. Here, I provide a high spatial resolution snapshot of the green cover distribution of the city of San Juan, Puerto Rico, by incorporating the use of morphological spatial pattern analysis (MSPA as a tool to describe the spatial pattern and connectivity of the city's urban green areas. Analysis of a previously developed IKONOS 4-m spatial resolution classification of the city of San Juan from 2002 revealed a larger area of vegetation (green areas or green infrastructure than previously estimated by moderate spatial resolution imagery. The city as a whole had approximately 42% green cover and 55% impervious surfaces. Although the city appeared greener in its southern upland sector compared to the northern coastal section, where most built-up urban areas occurred (66% impervious surfaces, northern San Juan had 677 ha more green area cover dispersed across the city than the southern component. MSPA revealed that most forest cover occurred as edges and cores, and green areas were most commonly forest cores, with larger predominance in the southern sector of the municipality. In dense, built-up, urban land, most of the green areas occurred in private yards as islets. When compared to other cities across the United States, San Juan was most similar in green cover features to Boston, Massachusetts, and Miami, Florida. Per capita green space for San Juan (122.2 m²/inhabitant was also comparable to these two U.S. cities. This study explores the intra-urban vegetation variation in the city of San Juan, which is generally overlooked by moderate spatial resolution classifications in Puerto Rico. It serves as a starting point for green infrastructure mapping and landscape pattern analysis of the urban green spaces

  6. 75 FR 38412 - Safety Zone; San Diego POPS Fireworks, San Diego, CA

    Science.gov (United States)

    2010-07-02

    ...-AA00 Safety Zone; San Diego POPS Fireworks, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Temporary... waters of San Diego Bay in support of the San Diego POPS Fireworks. This safety zone is necessary to... San Diego POPS Fireworks, which will include fireworks presentations conducted from a barge in San...

  7. TTVs study in southern stars

    Science.gov (United States)

    Petrucci, Romina; Jofré, Emiliano; Schwartz, Martín; Buccino, Andrea; Mauas, Pablo

    2012-07-01

    In this contribution we present 4 complete planetary transits observed with the 40-cm telescope ``Horacio Ghielmetti'' located in San Juan(Argentina). These objects correspond to a continuous photometric monitoring program of Southern planet host-stars that we are carrying out since mid-2011. The goal of this project is to detect additional planetary mass objects around stars with known transiting-planets through Transit Timing Variations (TTVs). For all 4 transits the depth and duration are in good agreement with the values published in the discovery papers.

  8. Quaternary geology of Alameda County, and parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin counties, California: a digital database

    Science.gov (United States)

    Helley, E.J.; Graymer, R.W.

    1997-01-01

    Alameda County is located at the northern end of the Diablo Range of Central California. It is bounded on the north by the south flank of Mount Diablo, one of the highest peaks in the Bay Area, reaching an elevation of 1173 meters (3,849 ft). San Francisco Bay forms the western boundary, the San Joaquin Valley borders it on the east and an arbitrary line from the Bay into the Diablo Range forms the southern boundary. Alameda is one of the nine Bay Area counties tributary to San Francisco Bay. Most of the country is mountainous with steep rugged topography. Alameda County is covered by twenty-eight 7.5' topographic Quadrangles which are shown on the index map. The Quaternary deposits in Alameda County comprise three distinct depositional environments. One, forming a transgressive sequence of alluvial fan and fan-delta facies, is mapped in the western one-third of the county. The second, forming only alluvial fan facies, is mapped in the Livermore Valley and San Joaquin Valley in the eastern part of the county. The third, forming a combination of Eolian dune and estuarine facies, is restricted to the Alameda Island area in the northwestern corner of the county.

  9. Andrea’s disease (angiomegaly): a currently well-defined nosological entitys.

    Science.gov (United States)

    Taurone, S; Spoletini, M; Di Matteo, F M; Mele, R; Tromba, L; Grippaudo, F R; Minni, A; Artico, M

    2017-01-01

    In 1997 D’Andrea et al. described a new nosological entity the characteristics of which consisted of lengthening, dilation and tortuosity of blood vessels, arteries or veins, less prominent, but also less circumscribed than an aneurysm. This condition does not necessarily imply specific aneurysm formation although aneurysms at multiple sites are a frequent observation. The term used by authors for angiomegaly of the venous system was venomegaly and the analogous condition of the arterial system was termed arteriomegaly. Although tortuosity and dilation of arteries and veins have been widely reported, suggesting a systemic disorder which affects the structural integrity of all vessels, most papers dealing with this intriguing condition did not describe any alterations in the components of vessel walls. In the present paper, the authors describe a well-defined condition, D’Andrea’s Disease (or DD, in this article), analyzing its salient morphological and clinical features and clarifying this pathological condition as a distinct and now well-defined nosological entity.

  10. Andreas Vesalius 500 years--A Renaissance that revolutionized cardiovascular knowledge.

    Science.gov (United States)

    Mesquita, Evandro Tinoco; Souza Júnior, Celso Vale de; Ferreira, Thiago Reigado

    2015-01-01

    The history of medicine and cardiology is marked by some geniuses who dared in thinking, research, teaching and transmitting scientific knowledge, and the Italian Andreas Vesalius one of these brilliant masters. His main scientific work "De Humani Corporis Fabrica" is not only a landmark study of human anatomy but also an artistic work of high aesthetic quality published in 1543. In the year 2014 we celebrated 500 years since the birth of the brilliant professor of Padua University, who with his courage and sense of observation changed the understanding of cardiovascular anatomy and founded a school to date in innovative education and research of anatomy. By identifying "the anatomical errors" present in Galen's book and speech, he challenged the dogmas of the Catholic Church, the academic world and the doctors of his time. However, the accuracy of his findings and his innovative way to disseminate them among his students and colleagues was essential so that his contributions are considered by many the landmark of modern medicine. His death is still surrounded by mysteries having different hypotheses, but a certainty, suffered sanctions of the Catholic Church for the spread of their ideas. The cardiologists, cardiovascular surgeons, interventional cardiologists, electrophysiologists and cardiovascular imaginologists must know the legacy of genius Andreas Vesalius that changed the paradigm of human anatomy.

  11. San Francisco folio, California, Tamalpais, San Francisco, Concord, San Mateo, and Haywards quadrangles

    Science.gov (United States)

    Lawson, Andrew Cowper

    1914-01-01

    The five sheets of the San Francisco folio the Tamalpais, Ban Francisco, Concord, Ban Mateo, and Haywards sheets map a territory lying between latitude 37° 30' and 38° and longitude 122° and 122° 45'. Large parts of four of these sheets cover the waters of the Bay of San Francisco or of the adjacent Pacific Ocean. (See fig. 1.) Within the area mapped are the cities of San Francisco, Oakland, Berkeley, Alameda, Ban Rafael, and San Mateo, and many smaller towns and villages. These cities, which have a population aggregating about 750,000, together form the largest and most important center of commercial and industrial activity on the west coast of the United States. The natural advantages afforded by a great harbor, where the railways from the east meet the ships from all ports of the world, have determined the site of a flourishing cosmopolitan, commercial city on the shores of San Francisco Bay. The bay is encircled by hilly and mountainous country diversified by fertile valley lands and divides the territory mapped into two rather contrasted parts, the western part being again divided by the Golden Gate. It will therefore be convenient to sketch the geographic features under four headings (1) the area east of San Francisco Bay; (2) the San Francisco Peninsula; (3) the Marin Peninsula; (4) San Francisco Bay. (See fig. 2.)

  12. Estimating natural recharge in San Gorgonio Pass watersheds, California, 1913–2012

    Science.gov (United States)

    Hevesi, Joseph A.; Christensen, Allen H.

    2015-12-21

    A daily precipitation-runoff model was developed to estimate spatially and temporally distributed recharge for groundwater basins in the San Gorgonio Pass area, southern California. The recharge estimates are needed to define transient boundary conditions for a groundwater-flow model being developed to evaluate the effects of pumping and climate on the long-term availability of groundwater. The area defined for estimating recharge is referred to as the San Gorgonio Pass watershed model (SGPWM) and includes three watersheds: San Timoteo Creek, Potrero Creek, and San Gorgonio River. The SGPWM was developed by using the U.S. Geological Survey INFILtration version 3.0 (INFILv3) model code used in previous studies of recharge in the southern California region, including the San Gorgonio Pass area. The SGPWM uses a 150-meter gridded discretization of the area of interest in order to account for spatial variability in climate and watershed characteristics. The high degree of spatial variability in climate and watershed characteristics in the San Gorgonio Pass area is caused, in part, by the high relief and rugged topography of the area.

  13. 75 FR 6218 - New Melones Lake Area Resource Management Plan, Tuolumne and Calaveras Counties, CA

    Science.gov (United States)

    2010-02-08

    ..., CA 95222. Calaveras Planning Department, Calaveras County Government Center, 891 Mountain Ranch Road, San Andreas, CA 95249. San Andreas Central Library, 1299 Gold Hunter Road, San Andreas, CA 95249...

  14. 76 FR 1386 - Safety Zone; Centennial of Naval Aviation Kickoff, San Diego Bay, San Diego, CA

    Science.gov (United States)

    2011-01-10

    ...-AA00 Safety Zone; Centennial of Naval Aviation Kickoff, San Diego Bay, San Diego, CA AGENCY: Coast... zone on the navigable waters of San Diego Bay in San Diego, CA in support of the Centennial of Naval... February 12, 2010, the Centennial of Naval Aviation Kickoff will take place in San Diego Bay. In support of...

  15. Review Essay: Faltering Forms Go to School. Analysis of the Subject in Connection With Andreas Reckwitz

    Directory of Open Access Journals (Sweden)

    Johannes Twardella

    2009-03-01

    Full Text Available In his book "Subjectivity," Andreas RECKWITZ interprets the work of a series of structuralist and poststructuralist authors in relation to the analysis of subjectivity. In the following article I reconstruct this interpretation and attempt to critically analyze the empirical explanatory power of these authors. An excerpt from the school routine of a German class is used to show how these various "subject-theoretical analysis strategies" may lead to different, interesting, and insightful interpretations. It also becomes clear that the idea of subjectivity, and therefore of education and maturity, cannot be abandoned. Without this idea, the application of pedagogy would be cynical, and the ability to understand it impossible. URN: urn:nbn:de:0114-fqs090222

  16. ANDREA 2.2 and 2.3. Advances in modelling of VVER cores

    Energy Technology Data Exchange (ETDEWEB)

    Havluj, Frantisek; Hejzlar, Jonatan; Vocka, Radim; Vysoudil, Jiri [UJV Rez, Husinec-Rez (Czech Republic)

    2017-09-15

    In 2016 a new version of code ANDREA for core design and reload safety analysis of VVER reactors has been released. The new code version includes several major improvements. The first of them is a seamless incorporation of short time kinetics calculations (without temperature feedback) into the code. This new feature accompanied by the possibility of excore detector signal predictions enables precise interpretation of dynamic measurements of control assembly weight during the reactor startup. Second important enhancement resides in new flexible format of cross section libraries and in new fuel temperature model based on results of TRANSURANUS fuel performance code. The new code version has been thoroughly tested and validated for both VVER440 and VVER-1000 reactors. Furthermore for the new version 2.3 which is to be released shortly we have implemented the possibility of fluent control assemblies' motion and of non-equidistant axial nodalization schemes in VVER-440 calculations.

  17. Animals, Pictures, and Skeletons: Andreas Vesalius's Reinvention of the Public Anatomy Lesson.

    Science.gov (United States)

    Shotwell, R Allen

    2016-01-01

    In this paper, I examine the procedures used by Andreas Vesalius for conducting public dissections in the early sixteenth century. I point out that in order to overcome the limitations of public anatomical demonstration noted by his predecessors, Vesalius employed several innovative strategies, including the use of animals as dissection subjects, the preparation and display of articulated skeletons, and the use of printed and hand-drawn illustrations. I suggest that the examination of these three strategies for resolving the challenges of public anatomical demonstration helps us to reinterpret Vesalius's contributions to sixteenth-century anatomy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Andreas Papandreou’s Exile Politics: The First Phase (1968-1970

    Directory of Open Access Journals (Sweden)

    Stan Draenos

    2014-12-01

    Full Text Available Andreas Papandreou’s exile politics, following his December 1967 release from Averoff Prison, have stereotypically been seen as simply adopting the neo-Marxist ideologies associated with the Third World national liberation movements of the era. In narrating the initial evolution of his views on the “Greek Question” in exile, this study attempts to surface the underlying dynamics responsible for radicalizing his politics in that direction. Those dynamics reflect, on the one hand, the relentless will-to-action informing Papandreou’s political persona and, on the other, the political upheavals, headlined by the protest movement against the US war in Vietnam, in which his politics were enmeshed.

  19. Andreas Vesalius as a renaissance innovative neuroanatomist: his 5th centenary of birth

    Directory of Open Access Journals (Sweden)

    Marleide da Mota Gomes

    2015-02-01

    Full Text Available Andreas Vesalius (1514-1564 is considered the Father of Modern Anatomy, and an authentic representative of the Renaissance. His studies, founded on dissection of human bodies, differed from Galeno, who based his work on dissection of animals, constituted a notable scientific advance. Putting together science and art, Vesalius associated himself to artists of the Renaissance, and valued the images of the human body in his superb work De Humani Corporis Fabrica.This paper aims to honor this extraordinary European Renaissance physician and anatomist, who used aesthetic appeal to bind text and illustration, science and art. His achievements are highlighted, with an especial attention on neuroanatomy. Aspects about his personal life and career are also focused.

  20. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Natural Resource Agency — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  1. 78 FR 53243 - Safety Zone; TriRock San Diego, San Diego Bay, San Diego, CA

    Science.gov (United States)

    2013-08-29

    ... this rule because the logistical details of the San Diego Bay triathlon swim were not finalized nor... September 22, 2013. (c) Definitions. The following definition applies to this section: Designated...

  2. Increasing resiliency to natural hazards - A strategic plan for the Multi-Hazards Demonstration Project in Southern California

    Science.gov (United States)

    Jones, Lucy; Bernknopf, Richard; Cannon, Susan; Cox, Dale A.; Gaydos, Len; Keeley, Jon; Kohler, Monica; Lee, Homa; Ponti, Daniel; Ross, Stephanie L.; Schwarzbach, Steven; Shulters, Michael; Ward, A. Wesley; Wein, Anne

    2007-01-01

    sessions was to determine the external organizations’ needs for mitigation efforts before potential natural hazard events, and response efforts during and after the event. On the basis of input from workshop participants, four priority areas were identified for future research to address. They are (1) helping decision makers design planning scenarios, (2) improving upon the mapping of multiple hazards in urban areas, (3) providing real-time information from monitoring networks, and (4) integrating information in a risk and decision-making analysis. Towards this end, short-term and out-year goals have been outlined with the priorities in mind.First-year goals are (1) to engage the user community to establish the structures and processes for communications and interactions, (2) to develop a program to create scenarios of anticipated disasters, beginning in the first year with a scenario of a southern San Andreas earthquake that triggers secondary hazards, (3) to compile existing datasets of geospatial data, and (4) to target research efforts to support more complete and robust products in future years. Both the first-year and out-year goals have been formulated around a working-group structure that builds on existing research strengths within the USGS. The project is intended to demonstrate how developments in methodology and products can lead to improvement in our management of natural hazards in an urban environment for application across the Nation.

  3. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Science.gov (United States)

    Borcherdt, Roger D.; Gibbs, James F.

    1975-01-01

    The intensity data for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan Formation is: Intensity = 2.69 - 1.90 log (Distance) (km). For sites on other geologic units intensity increments, derived with respect to this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is: Intensity Increment = 0.27 +2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan Formation, 0.64 for the Great Valley Sequence, 0.82 for Santa Clara Formation, 1.34 for alluvium, 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hazard fault.

  4. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Energy Technology Data Exchange (ETDEWEB)

    Borcherdt, R.D.; Gibbs, J.F.

    1975-01-01

    The intensity data for the California earthquake of Apr 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan formation is intensity = 2.69 - 1.90 log (distance) (km). For sites on other geologic units, intensity increments, derived with respect to this empirical relation, correlate strongly with the average horizontal spectral amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is intensity increment = 0.27 + 2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan formation, 0.64 for the Great Valley sequence, 0.82 for Santa Clara formation, 1.34 for alluvium, and 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hayward fault.

  5. Peter Andreas Hansen and the astronomical community - a first investigation of the Hansen papers. (German Title: Peter Andreas Hansen und die astronomische Gemeinschaft - eine erste Auswertung des Hansen-Nachlasses. )

    Science.gov (United States)

    Schwarz, Oliver; Strumpf, Manfred

    The literary assets of Peter Andreas Hansen are deposited in the Staatsarchiv Hamburg, the Forschungs- und Landesbibliothek Gotha and the Thüringer Staatsarchiv Gotha. They were never systematically investigated. We present here some results of a first evaluation. It was possible to reconstruct the historical events with regard to the maintenance of the Astronomische Nachrichten and the Altona observatory in 1854. Hansen was a successful teacher for many young astronomers. His way of stimulating the evolution of astronomy followed Zach's tradition.

  6. Development and application of the San Onofre safety monitor

    International Nuclear Information System (INIS)

    Hook, Thomas G.; Lee, Roger J.; Morgan, Thomas A.

    2004-01-01

    Halliburton NUS Corporation (NUS) has developed a risk-based configuration management software tool for use at Southern California Edison's San Onofre Nuclear Generating Station. The software, called the Safety Monitor, calculates an estimate of current plant core damage risk based upon the plant's current operating configuration (e.g., equipment operability, system operating alignments). All data is entered and displayed in a format easily understood by plant personnel. The plant hopes to use this tool to ensure that risk is minimized during plant operations and to identify situations in which current Technical Specifications can be optimized. Plant configuration data and out-of-service time data is also automatically collected. (author)

  7. Superimposed extension and shortening in the southern Salinas Basin and La Panza Range, California: A guide to Neogene deformation in the Salinian block of the central California Coast Ranges

    Science.gov (United States)

    Colgan, Joseph P.; McPhee, Darcy K.; McDougall, Kristin; Hourigan, Jeremy K.

    2013-01-01

    We synthesized data from geologic maps, wells, seismic-reflection profiles, potential-field interpretations, and low-temperature thermochronology to refine our understanding of late Cenozoic extension and shortening in the Salinian block of the central California Coast Ranges. Data from the La Panza Range and southern Salinas Basin document early to middle Miocene extension, followed by Pliocene and younger shortening after a period of little deformation in the late Miocene. Extension took place on high-angle normal faults that accommodated ∼2% strain at the scale of the ∼50-km-wide Salinian block (oriented perpendicular to the San Andreas fault). Shortening was accommodated by new reverse faults, reactivation of older normal faults, and strike-slip faulting that resulted in a map-view change in the width of the Salinian block. The overall magnitude of shortening was ∼10% strain, roughly 4–5 times greater than the amount of extension. The timing and magnitude of deformation in our study area are comparable to that documented in other Salinian block basins, and we suggest that the entire block deformed in a similar manner over a similar time span. The timing and relative magnitude of extension and shortening may be understood in the context of central Coast Range tectonic boundary conditions linked to rotation of the western Transverse Ranges at the south end of the Salinian block. Older models for Coast Range shortening based on balanced fault-bend fold-style cross sections are a poor approximation of Salinian block deformation, and may lead to mechanically improbable fault geometries that overestimate the amount of shortening.

  8. Balloon Angioplasty - The Legacy of Andreas Grüntzig, M.D. (1939-1985).

    Science.gov (United States)

    Barton, Matthias; Grüntzig, Johannes; Husmann, Marc; Rösch, Josef

    2014-01-01

    In 1974, at the Medical Policlinic of the University of Zürich, German-born physician-scientist Andreas Grüntzig (1939-1985) for the first time applied a balloon-tipped catheter to re-open a severely stenosed femoral artery, a procedure, which he initially called "percutaneous transluminal dilatation". Balloon angioplasty as a therapy of atherosclerotic vascular disease, for which Grüntzig and Charles T. Dotter (1920-1985) received a nomination for the Nobel Prize in Physiology or Medicine in 1978, became one of the most successful examples of translational medicine in the twentieth century. Known today as percutaneous transluminal angioplasty (PTA) in peripheral arteries or percutaneous transluminal coronary angioplasty (PTCA) or percutaneous coronary intervention (PCI) in coronary arteries, balloon angioplasty has become the method of choice to treat patients with acute myocardial infarction or occluded leg arteries. On the occasion of the 40(th) anniversary of balloon angioplasty, we summarize Grüntzig's life and career in Germany, Switzerland, and the United States and also review the developments in vascular medicine from the 1890s to the 1980s, including Dotter's first accidental angioplasty in 1963. The work of pioneers of catheterization, including Pedro L. Fariñas in Cuba, André F. Cournand in France, Werner Forssmann, Werner Porstmann and Eberhard Zeitler in Germany, António Egas Moniz and Reynaldo dos Santos in Portugal, Sven-Ivar Seldinger in Sweden, and Barney Brooks, Thomas J. Fogarty, Melvin P. Judkins, Richard K. Myler, Dickinson W. Richards, and F. Mason Sones in the United States, is discussed. We also present quotes by Grüntzig and excerpts from his unfinished autobiography, statements of Grüntzig's former colleagues and contemporary witnesses, and have included hitherto unpublished historic photographs and links to archive recordings and historic materials. This year, on June 25, 2014, Andreas Grüntzig would have celebrated his 75(th

  9. Marketing San Juan Basin gas

    International Nuclear Information System (INIS)

    Posner, D.M.

    1988-01-01

    Marketing natural gas produced in the San Juan Basin of New Mexico and Colorado principally involves four gas pipeline companies with significant facilities in the basin. The system capacity, transportation rates, regulatory status, and market access of each of these companies is evaluated. Because of excess gas supplies available to these pipeline companies, producers can expect improved take levels and prices by selling gas directly to end users and utilities as opposed to selling gas to the pipelines for system supply. The complexities of transporting gas today suggest that the services of an independent gas marketing company may be beneficial to smaller producers with gas supplies in the San Juan Basin

  10. Vegetation - San Felipe Valley [ds172

    Data.gov (United States)

    California Natural Resource Agency — This Vegetation Map of the San Felipe Valley Wildlife Area in San Diego County, California is based on vegetation samples collected in the field in 2002 and 2005 and...

  11. San Francisco Bay Water Quality Improvement Fund

    Science.gov (United States)

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  12. The San Bernabe power substation; La subestacion San Bernabe

    Energy Technology Data Exchange (ETDEWEB)

    Chavez Sanudo, Andres D. [Luz y Fuerza del Centro, Mexico, D. F. (Mexico)

    1997-12-31

    The first planning studies that gave rise to the San Bernabe substation go back to year 1985. The main circumstance that supports this decision is the gradual restriction for electric power generation that has been suffering the Miguel Aleman Hydro System, until its complete disappearance, to give priority to the potable water supply through the Cutzamala pumping system, that feeds in an important way Mexico City and the State of Mexico. In this document the author describes the construction project of the San Bernabe Substation; mention is made of the technological experiences obtained during the construction and its geographical location is shown, as well as the one line diagram of the same [Espanol] Los primeros estudios de planeacion que dieron origen a la subestacion San Bernabe se remontan al ano de 1985. La circunstancia principal que soporta esta decision es la restriccion paulatina para generar energia que ha venido experimentando el Sistema Hidroelectrico Miguel Aleman, hasta su desaparicion total, para dar prioridad al suministro de agua potable por medio del sistema de bombeo Cutzamala, que alimenta en forma importante a la Ciudad de Mexico y al Estado de Mexico. En este documento el autor describe el proyecto de construccion de la subestacion San Bernabe; se mencionan las experiencias tecnologicas obtenidas durante su construccion y se ilustra su ubicacion geografica, asi como un diagrama unifilar de la misma

  13. 33 CFR 165.754 - Safety Zone: San Juan Harbor, San Juan, PR.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: San Juan Harbor, San Juan, PR. 165.754 Section 165.754 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Zone: San Juan Harbor, San Juan, PR. (a) Regulated area. A moving safety zone is established in the...

  14. 76 FR 45693 - Safety Zone; San Diego POPS Fireworks, San Diego, CA

    Science.gov (United States)

    2011-08-01

    ...-AA00 Safety Zone; San Diego POPS Fireworks, San Diego, CA AGENCY: Coast Guard, DHS. ACTION: Temporary... San Diego Bay in support of the San Diego POPS Fireworks. This safety zone is necessary to provide for... of the waterway during scheduled fireworks events. Persons and vessels will be prohibited from...

  15. Juan Valverde de Hamusco's unauthorized reproduction of a brain dissection by Andreas Vesalius.

    Science.gov (United States)

    Lanska, Douglas J; Lanska, John R

    2013-02-26

    The objective of the present work is to examine images of the brain dissection by Flemish-born anatomist Andreas Vesalius (1514-1564) as originally represented in the Fabrica (1543), and later copied without Vesalius' permission by Spanish anatomist Juan Valverde de Hamusco (c1525-c1587) in Historia de la composicion del cuerpo humano (1556). Illustrations of the brain dissection in the Fabrica were obtained in digital form, resized, and arranged in a comparable montage to that presented by Valverde. Computer manipulations were used to assess image correspondence. The Valverde illustrations are approximately half the size and are mirror images of those in the Fabrica, but otherwise show the same dissection stages, and identical transverse brain levels and structures. The Valverde illustrations lack shadowing and show minor variations in perspective and fine details (e.g., branching pattern of the middle meningeal artery) from those in the Fabrica. Craftsmen under the direction of Valverde copied the woodcut prints in the Fabrica in close but approximate form by freehand engraving onto copper plates. Differences in the sizes of the images, and in perspective and fine detail, preclude direct tracing of images as the means of copying. Because engravings are in effect "flipped over" to make further prints, subsequent prints made from Valverde's copperplate engravings are mirror images of the prints in Vesalius' Fabrica.

  16. Andreas Vesalius' 500th anniversary: the initiation of hand and forearm myology.

    Science.gov (United States)

    Brinkman, R J; Hage, J J

    2015-11-01

    Andreas Vesalius (1515-1564) was the first to market an illustrated text on the freshly dissected muscular anatomy of the human hand and forearm when he published his De Fabrica Corporis Humani Libri Septem, in 1543. To commemorate his 500th birthday, we searched the second of seven books composing De Fabrica, the annotated woodcut illustrations of De Fabrica, the Tabulae Sex, and Epitome, and an eyewitness report of a public dissection by Vesalius for references to the morphology and functions of these muscles. We found Vesalius to have recognized all currently distinguished muscles except the palmaris brevis and he noted occasional absence of some muscles. Generally, he limited the origin and insertion to bones, largely disregarding attachments to membranes and fascia. Functionally, he recorded the muscles as having a single vector and operating on only one joint. We conclude that Vesalius was nearly completely correct about the anatomy of the muscles of the forearm, but much less accurate about their function. 5. © The Author(s) 2015.

  17. [Lou Andreas-Salome (1861-1937)--psychoanalytical and feministic contribution to understanding her biography].

    Science.gov (United States)

    Bramness, J G

    2001-06-30

    Lou (Louise) Andreas-Salomé's life and work has preoccupied many biographers. The interest may have be sparked by her liaisons with many of the greatest men of her time. She had an intimate relationship with Friedrich Nietzsche in a period of great change for him. She was Rainer Marie Rilke's mistress for several years. And she pursued a close friendship and working relationship with Sigmund Freud in the latter part of her life. But her significance goes beyond these associations. She was a celebrated novelist and essayist in her own right, with ten novels and more than 50 essays, also on psychoanalytical subjects. She has been viewed as femme fatale, opportunist, feminist, radical, liberal, but also as a significant contributor to psychoanalytical thought. There have been two biographical approaches: a psychoanalytical approach focusing on her loss of father-figures and later difficult relationships with famous men, and a feministic approach accusing psychoanalysts of not contributing to insight, but belittling Salomé's legitimate position. A fuller understanding may be obtained by integrating these two views.

  18. Leonardo da Vinci and Andreas Vesalius; the shoulder girdle and the spine, a comparison.

    Science.gov (United States)

    Ganseman, Y; Broos, P

    2008-01-01

    Leonardo Da Vinci and Andreas Vesalius were two important renaissance persons; Vesalius was a surgeon-anatomist who delivered innovative work on the study of the human body, Leonardo da Vinci was an artist who delivered strikingly accurate and beautiful drawings on the human body. Below we compare both masters with regard to their knowledge of the working of the muscles, their method and system of dissection and their system and presentation of the drawings. The investigation consisted of a comparison between both anatomists, in particular concerning their study on the shoulder girdle and spine, by reviewing their original work as well as already existing literature on this subject. The investigation led to the conclusion that the drawings mentioned meant a change in history, and were of high quality, centuries ahead of their time. Both were anatomists, both were revolutionary, only one changed history at the moment itself, while the other changed history centuries later. Leonardo has made beautiful drawings that are at a match with the drawings of today or are even better. Vesalius set the start for medicine as a science as it is until this day. Their lives differed as strongly as their impact. In the light of their time, the achievement they made was extraordinary.

  19. Short-period strain (0.1-105 s): Near-source strain field for an earthquake (M L 3.2) near San Juan Bautista, California

    Science.gov (United States)

    Johnston, M. J. S.; Borcherdt, R. D.; Linde, A. T.

    1986-10-01

    Measurements of dilational earth strain in the frequency band 25-10-5 Hz have been made on a deep borehole strainmeter installed near the San Andreas fault. These data are used to determine seismic radiation fields during nuclear explosions, teleseisms, local earthquakes, and ground noise during seismically quiet times. Strains of less than 10-10 on these instruments can be clearly resolved at short periods (< 10 s) and are recorded with wide dynamic range digital recorders. This permits measurement of the static and dynamic strain variations in the near field of local earthquakes. Noise spectra for earth strain referenced to 1 (strain)2/Hz show that strain resolution decreases at about 10 dB per decade of frequency from -150 dB at 10-4 Hz to -223 dB at 10 Hz. Exact expressions are derived to relate the volumetric strain and displacement field for a homogeneous P wave in a general viscoelastic solid as observed on colocated dilatometers and seismometers. A rare near-field recording of strain and seismic velocity was obtained on May 26, 1984, from an earthquake (ML 3.2) at a hypocentral distance of 3.2 km near the San Andreas fault at San Juan Bautista, California. While the data indicate no precursory strain release at the 5 × 10-11 strain level, a coseismic strain release of 1.86 nanostrain was observed. This change in strain is consistent with that calculated from a simple dislocation model of the event. Ground displacement spectra, determined from the downhole strain data and instrument-corrected surface seismic data, suggest that source parameters estimated from surface recordings may be contaminated by amplification effects in near-surface low-velocity materials.

  20. Southern blotting.

    Science.gov (United States)

    Brown, T

    2001-05-01

    Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support (the properties and advantages of the different types of membrane, transfer buffer, and transfer method are discussed in detail), resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This appendix describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, using a high-salt transfer buffer to promote binding of DNA to the membrane. With the high-salt buffer, the DNA becomes bound to the membrane during transfer but not permanently immobilized. Immobilization is achieved by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. The advantage of this combination is that no post-transfer immobilization step is required, as the positively charged membrane binds DNA irreversibly under alkaline transfer conditions. The method can also be used with neutral nylon membranes but less DNA will be retained. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane described in the first basic and alternate protocols has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in

  1. ASTER Flyby of San Francisco

    Science.gov (United States)

    2002-01-01

    The Advanced Spaceborne Thermal Emission and Reflection radiometer, ASTER, is an international project: the instrument was supplied by Japan's Ministry of International Trade and Industry. A joint US/Japan science team developed algorithms for science data products, and is validating instrument performance. With its 14 spectral bands, extremely high spatial resolution, and 15 meter along-track stereo capability, ASTER is the zoom lens of the Terra satellite. The primary mission goals are to characterize the Earth's surface; and to monitor dynamic events and processes that influence habitability at human scales. ASTER's monitoring and mapping capabilities are illustrated by this series of images of the San Francisco area. The visible and near infrared image reveals suspended sediment in the bays, vegetation health, and details of the urban environment. Flying over San Francisco (3.2MB) (high-res (18.3MB)), we see the downtown, and shadows of the large buildings. Past the Golden Gate Bridge and Alcatraz Island, we cross San Pablo Bay and enter Suisun Bay. Turning south, we fly over the Berkeley and Oakland Hills. Large salt evaporation ponds come into view at the south end of San Francisco Bay. We turn northward, and approach San Francisco Airport. Rather than landing and ending our flight, we see this is as only the beginning of a 6 year mission to better understand the habitability of the world on which we live. For more information: ASTER images through Visible Earth ASTER Web Site Image courtesy of MITI, ERSDAC, JAROS, and the U.S./Japan ASTER Science Team

  2. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    Science.gov (United States)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  3. Coulomb stress interactions among M≥5.9 earthquakes in the Gorda deformation zone and on the Mendocino Fracture Zone, Cascadia megathrust, and northern San Andreas fault

    Science.gov (United States)

    Rollins, John C.; Stein, Ross S.

    2010-01-01

    The Gorda deformation zone, a 50,000 km2 area of diffuse shear and rotation offshore northernmost California, has been the site of 20 M ≥ 5.9 earthquakes on four different fault orientations since 1976, including four M ≥ 7 shocks. This is the highest rate of large earthquakes in the contiguous United States. We calculate that the source faults of six recent M ≥ 5.9 earthquakes had experienced ≥0.6 bar Coulomb stress increases imparted by earthquakes that struck less than 9 months beforehand. Control tests indicate that ≥0.6 bar Coulomb stress interactions between M ≥ 5.9 earthquakes separated by Mw = 7.3 Trinidad earthquake are consistent with the locations of M ≥ 5.9 earthquakes in the Gorda zone until at least 1995, as well as earthquakes on the Mendocino Fault Zone in 1994 and 2000. Coulomb stress changes imparted by the 1980 earthquake are also consistent with its distinct elbow-shaped aftershock pattern. From these observations, we derive generalized static stress interactions among right-lateral, left-lateral and thrust faults near triple junctions.

  4. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 1: Kinematics of Basin-Range intraplate extension

    Science.gov (United States)

    Eddington, P. K.; Smith, R. B.; Renggli, C.

    1986-01-01

    Strain rates assessed from brittle fracture and total brittle-ductile deformation measured from geodetic data were compared to estimates of paleo-strain from Quaternary geology for the intraplate Great Basin part of the Basin-Range, western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced from the past few million years to the present. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions for sub-regions of homogeneous strain. Contemporary deformation in the Great Basin occurs principally along the active seismic zones. The integrated opening rate across the entire Great Basin is accommodated by E-E extension at 8 to 10 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum lithospheric extension correspond to belts of thin crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through mechanism of extension such as a stress relaxation, allowing bouyant uplift and ascension of magmas.

  5. Satellite Geodetic Constraints On Earthquake Processes: Implications of the 1999 Turkish Earthquakes for Fault Mechanics and Seismic Hazards on the San Andreas Fault

    Science.gov (United States)

    Reilinger, Robert

    2005-01-01

    Our principal activities during the initial phase of this project include: 1) Continued monitoring of postseismic deformation for the 1999 Izmit and Duzce, Turkey earthquakes from repeated GPS survey measurements and expansion of the Marmara Continuous GPS Network (MAGNET), 2) Establishing three North Anatolian fault crossing profiles (10 sitedprofile) at locations that experienced major surface-fault earthquakes at different times in the past to examine strain accumulation as a function of time in the earthquake cycle (2004), 3) Repeat observations of selected sites in the fault-crossing profiles (2005), 4) Repeat surveys of the Marmara GPS network to continue to monitor postseismic deformation, 5) Refining block models for the Marmara Sea seismic gap area to better understand earthquake hazards in the Greater Istanbul area, 6) Continuing development of models for afterslip and distributed viscoelastic deformation for the earthquake cycle. We are keeping close contact with MIT colleagues (Brad Hager, and Eric Hetland) who are developing models for S. California and for the earthquake cycle in general (Hetland, 2006). In addition, our Turkish partners at the Marmara Research Center have undertaken repeat, micro-gravity measurements at the MAGNET sites and have provided us estimates of gravity change during the period 2003 - 2005.

  6. Increased site fertility and litter decomposition rate in high-pollution sites in the San Bernardino Mountains

    Science.gov (United States)

    Mark E. Fenn

    1991-01-01

    Some possible factors causing enhanced litter decomposition in high-pollution sites in the San Bernardino Mountains of southern California were investigated. Nitrogen concentration of soil, as well as foliage and litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were greater in...

  7. 78 FR 19103 - Safety Zone; Spanish Navy School Ship San Sebastian El Cano Escort; Bahia de San Juan; San Juan, PR

    Science.gov (United States)

    2013-03-29

    ...-AA00 Safety Zone; Spanish Navy School Ship San Sebastian El Cano Escort; Bahia de San Juan; San Juan... temporary moving safety zone on the waters of Bahia de San Juan during the transit of the Spanish Navy... Channel entrance, and to protect the high ranking officials on board the Spanish Navy School Ship San...

  8. Golden eagle (Aquila chrysaetos) habitat selection as a function of land use and terrain, San Diego County, California

    Science.gov (United States)

    Tracey, Jeff A.; Madden, Melanie C.; Bloom, Peter H.; Katzner, Todd E.; Fisher, Robert N.

    2018-04-16

    Beginning in 2014, the U.S. Geological Survey, in collaboration with Bloom Biological, Inc., began telemetry research on golden eagles (Aquila chrysaetos) captured in the San Diego, Orange, and western Riverside Counties of southern California. This work was supported by the San Diego Association of Governments, California Department of Fish and Wildlife, the U.S. Fish and Wildlife Service, the Bureau of Land Management, and the U.S. Geological Survey. Since 2014, we have tracked more than 40 eagles, although this report focuses only on San Diego County eagles.An important objective of this research is to develop habitat selection models for golden eagles. Here we provide predictions of population-level habitat selection for golden eagles in San Diego County based on environmental covariates related to land use and terrain.

  9. Rezension von: Andrea Büchler, Michelle Cottier: Legal Gender Studies. Rechtliche Geschlechterstudien. Baden-Baden: Nomos Verlag 2012.

    Directory of Open Access Journals (Sweden)

    Ulrike Lembke

    2014-07-01

    Full Text Available Die vorliegende Sammlung ist eine Pionierinnenarbeit. Zwar gibt es für den deutschsprachigen Raum einige Einführungen in die Legal Gender Studies resp. rechtlichen Geschlechterstudien, die sich teilweise auch auf dieselben Autor*innen oder Konzepte beziehen, doch fehlte es bisher an einer gemeinsamen Quellengrundlage. Andrea Büchler und Michelle Cottier haben ein in Qualität wie Quantität beeindruckendes Werk vorgelegt, durch welches der Stand rechtlicher Geschlechterstudien im deutschsprachigen Raum dokumentiert, notwendige rechtswissenschaftliche Beiträge zu den Geschlechterstudien geleistet und ein geschlechtertheoretisch inspirierter Zugang zu einer reflektierten und kommunikationsfähigen Rechtswissenschaft eröffnet werden.

  10. Centennial ties: Harvey Cushing (1869-1939) and William Osler (1849-1919) on Andreas Vesalius (1514-1564).

    Science.gov (United States)

    Toodayan, Nadeem

    2017-08-01

    Andreas Vesalius is often regarded as the founding father of modern anatomical study. The quincentennial anniversary of his birth - 31 December 2014 - has been very widely commemorated, and it is the purpose of this article to contrast these celebrations with what happened during the Vesalius quatercentenary year of 1914. More specifically, we look at how Vesalius was perceived a century ago by examining his influence on two of western medicine's most iconic gentlemen - Harvey Williams Cushing (1869-1939) and his larger than life mentor, Sir William Osler (1849-1919).

  11. Euroopas ei ole paremäärmuslus enam luuserite ideoloogia / Andrea Pető ; intervjueerinud Barbi Pilvre

    Index Scriptorium Estoniae

    Pető, Andrea

    2016-01-01

    Intervjuu Tallinnas Friedrich Eberti fondi kutsel viibinud Budapesti Kesk-Euroopa ülikooli professori Andrea Pető'ga, kes kaasautorina tähistas raamatu "Gender as Symbolic Glue. The Position and Role of Conservative and Far Right Parties In the Anti-Gender Mobilizations In Europe" eestikeelse tõlke "Sugu kui sümboolne liim" valmimist. Intervjuus avab ta soolise võrdõiguslikkuse, reproduktiivõiguste ja LGBTQ-vastaste liikumiste konservatiivset ja paremäärmuslikku tausta

  12. REMOTE SENSING OF THE SEDIMENTATION PLUME OF THE RIVER SAN JUAN

    OpenAIRE

    Ballestero, Daniel

    2004-01-01

    The River San Juan (RSJ), in the border between Nicaragua and Costa Rica, is one the major rivers in Central America and drains the largest basin in the region (38570 km²) in terms of volume. Extending from Lago Cicibolca to the Caribbean Sea, the RSJ is an important source of freshwater, sediments, nutrients and pollutants to the continental shelf. Ecosystems degradation, contamination of water bodies and overexploitation of natural resources, particularly deforestation in the southern part ...

  13. ["... I shall never forget the gift by which you established yourself as friend in my life!" The letters of Lou Andreas-Salomé to Max Eitingon (1911-1933)].

    Science.gov (United States)

    Weber, Inge

    2015-01-01

    The correspondence between Andreas-Salomé and the Eitingons draws attention to their long-standing relation. The letters contained among the Eitingon papers in Jerusalem (81 items) were complemented by the much smaller set (5 items) held by the Lou Andreas-Salomé Archives in Göttingen. The material highlights for the first time Eitingon's role in securing Andreas-Salomé's access to the Berlin psychoanalytic association and for her entering psychoanalytic practice. In the 20s the relation between Andreas-Salomé and Mirra Eitingon intensified, based on their common Russian background. Several aspects featured in the letters are discussed in appendixes: the role of Russian language and habits; Max Nachmansohn, an analysand of Andreas-Salomé; her literary gift to Freud's 70th birthday; the dealing with fees in psychoanalysis.

  14. Rheological properties of the lower crust and upper mantle beneath Baja California: a microstructural study of xenoliths from San Quintin

    Science.gov (United States)

    Van der Werf, Thomas F.; Chatzaras, Vasileios; Tikoff, Basil; Drury, Martyn R.

    2016-04-01

    Baja California is an active transtensional rift zone, which links the San Andreas Fault with the East Pacific Rise. The erupted basalts of the Holocene San Quintin volcanic field contain xenoliths, which sample the lower crust and upper mantle beneath Baja California. The aim of this research is to gain insight in the rheology of the lower crust and the upper mantle by investigating the xenolith microstructure. Microstructural observations have been used to determine the dominant deformation mechanisms. Differential stresses were estimated from recrystallized grain size piezometry of plagioclase and clinopyroxene for the lower crust and olivine for the upper mantle. The degree of deformation can be inferred from macroscopic foliations and the deformation microstructures. Preliminary results show that both the lower crust and the upper mantle have been affected by multiple stages of deformation and recrystallization. In addition the dominant deformation mechanism in both the lower crust and the upper mantle is dislocation creep based on the existence of strong crystallographic preferred orientations. The differential stress estimates for the lower crust are 10-29 MPa using plagioclase piezometry and 12-35 MPa using clinopyroxene piezometry. For the upper mantle, differential stress estimates are 10-20 MPa. These results indicate that the strength of the lower crust and the upper mantle are very similar. Our data do not fit with the general models of lithospheric strength and may have important implications for the rheological structure of the lithosphere in transtensional plate margins and for geodynamic models of the region.

  15. 77 FR 34988 - Notice of Inventory Completion: San Diego State University, San Diego, CA

    Science.gov (United States)

    2012-06-12

    .... ACTION: Notice. SUMMARY: San Diego State University Archeology Collections Management Program has... that believes itself to be culturally affiliated with the human remains and associated funerary objects may contact San Diego State University Archeology Collections Management Program. Repatriation of the...

  16. Educational Values of the Dream and Reality Psychoanalysis In “Sang Pemimpi” (the Dreamer, a Novel by Andrea Hirata

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir

    2015-02-01

    Full Text Available This article tries to look at psychoanalysis study of a novel concerning on the dream and reality in Sang Pemimpi (the Dreamer by Andrea Hirata. In general, his work portrays mostly about the condition and situational life of Belitung community. Here, Andrea shows his ability as the representative of Belitung's young generation succeeded in fulfilling his dream by explaining the real life of the people in his hometown and villages having bitter experience values in the rich environment. Besides, he tries to describe the difficult life faced by the villagers. The dream in this novel is not only his, but also all dreams of the Belitung community as the manifestation of their life condition comparing to other areas or provinces in the Indonesia. Further, through this novel (work, it is implied an important massage directed to both Indonesian authority and Belitung mayor in order to be able to increase the level of education of grass root community, especially for those who live in the remote area or a very isolated area, such as Belitung. This is the real dream of all participants in the island which remains unsolved.

  17. [Andreas Vesalius: his rich imagination and colorful detail account in his book: 'Research of the anatomical observations of Gabriel Falloppius'].

    Science.gov (United States)

    Gilias, Guy

    2015-03-01

    In a long letter, Andreas Vesalius reacts to the comments made by Gabriel Falloppius to his work 'De Humani Corporis Fabrica'. In this letter, he proves Falloppius wrong in a number of assertions and corrects him on more than one occasion. In doing so, Vesalius as a renaissance humanist uses a classic Latin language with long elegant sentences in the style of the old Roman orator Cicero. Remarkably interesting is the fact that this whole argumentation is spiced with comparisons and examples from daily life. To make it clear to the reader what a certain part of the skeleton looks like, he compares this part with an object everybody knows. All parts of the human body are depicted in such an almost graphic way that even an interested reader without any medical or anatomic education can picture them. And Vesalius is very creative in doing so, an artist as it were with a very rich imagination. Moreover, it's remarkable how the famous anatomist manages to put himself on the level of any ordinary person, using comparative images on that level. This last work of Vesalius, which he himself considers to be a supplement to his De Humani Corporis Fabrica, deserves special attention, not only because it illustrates the scientific evolution of the anatomist Vesalius, but also because it offers an insight in the psychology of that fascinating scientist Andreas Vesalius.

  18. Un artista cortesano en la Barcelona de Carlos III de Austria: apuntes prosopográficos sobre Andrea Vaccaro II

    Directory of Open Access Journals (Sweden)

    Quirós Rosado, Roberto

    2016-09-01

    Full Text Available At the beginning of the 18th century Barcelona was a principal entry point for the introduction of Italian courtly culture in Spain during the brief reign of Carlos III of Habsburg. This study analyzes the presence of the little-known Neapolitan painter Andrea Vaccaro II in Cataluña, and his connections with the Royal Chamber and the Spanish Habsburg ministry, as well as the concession of offices in Reame as payment for palace services.La diversidad de focos de introducción de la cultura de corte italiana en los inicios del siglo XVIII español obliga a indagar en la circulación de artistas napolitanos en la Barcelona de Carlos III de Austria. Bajo esta premisa, en el estudio se analiza la estancia catalana del desconocido pintor napolitano Andrea Vaccaro II, sus lazos con la Real Cámara y el ministerio español del monarca Habsburgo, así como la concesión de oficios en los tribunales de Nápoles como pago por servicios en palacio.

  19. Species - San Diego Co. [ds121

    Data.gov (United States)

    California Natural Resource Agency — This is the Biological Observation Database point layer representing baseline observations of sensitive species (as defined by the MSCP) throughout San Diego County....

  20. 75 FR 15611 - Safety Zone; United Portuguese SES Centennial Festa, San Diego Bay, San Diego, CA

    Science.gov (United States)

    2010-03-30

    ...-AA00 Safety Zone; United Portuguese SES Centennial Festa, San Diego Bay, San Diego, CA AGENCY: Coast... navigable waters of the San Diego Bay in support of the United Portuguese SES Centennial Festa. This... Centennial Festa, which will include a fireworks presentation originating from a tug and barge combination in...

  1. 78 FR 34123 - Notice of Inventory Completion: San Francisco State University NAGPRA Program, San Francisco, CA

    Science.gov (United States)

    2013-06-06

    ... completion of an inventory of human remains and associated funerary objects under the control of the San....R50000] Notice of Inventory Completion: San Francisco State University NAGPRA Program, San Francisco, CA... NAGPRA Program has completed an inventory of human remains and associated funerary objects, in...

  2. 78 FR 21403 - Notice of Inventory Completion: San Francisco State University NAGPRA Program, San Francisco, CA

    Science.gov (United States)

    2013-04-10

    ... completion of an inventory of human remains and associated funerary objects under the control of the San....R50000] Notice of Inventory Completion: San Francisco State University NAGPRA Program, San Francisco, CA... NAGPRA Program has completed an inventory of human remains and associated funerary objects, in...

  3. Cuartel San Carlos. Yacimiento veterano

    Directory of Open Access Journals (Sweden)

    Mariana Flores

    2007-01-01

    Full Text Available El Cuartel San Carlos es un monumento histórico nacional (1986 de finales del siglo XVIII (1785-1790, caracterizado por sufrir diversas adversidades en su construcción y soportar los terremotos de 1812 y 1900. En el año 2006, el organismo encargado de su custodia, el Instituto de Patrimonio Cultural del Ministerio de Cultura, ejecutó tres etapas de exploración arqueológica, que abarcaron las áreas Traspatio, Patio Central y las Naves Este y Oeste de la edificación. Este trabajo reseña el análisis de la documentación arqueológica obtenida en el sitio, a partir de la realización de dicho proyecto, denominado EACUSAC (Estudio Arqueológico del Cuartel San Carlos, que representa además, la tercera campaña realizada en el sitio. La importancia de este yacimiento histórico, radica en su participación en los acontecimientos que propiciaron conflictos de poder durante el surgimiento de la República y en los sucesos políticos del siglo XX. De igual manera, se encontró en el sitio una amplia muestra de materiales arqueológicos que reseñan un estilo de vida cotidiana militar, así como las dinámicas sociales internas ocurridas en el San Carlos, como lugar estratégico para la defensa de los diferentes regímenes que atravesó el país, desde la época del imperialismo español hasta nuestros días.

  4. SANS from interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Markotsis, M.G.; Burford, R.P.; Knott, R.B.; Australian Nuclear Science and Technology Organisation, Menai, NSW; Hanley, T.L.; CRC for Polymers,; Australian Nuclear Science and Technology Organisation, Menai, NSW; Papamanuel, N.

    2003-01-01

    Full text: Interpenetrating polymer networks (IPNs) have been formed by combining two polymeric systems in order to gain enhanced material properties. IPNs are a combination of two or more polymers in network form with one network polymerised and/or crosslinked in the immediate presence of the other(s).1 IPNs allow better blending of two or more crosslinked networks. In this study two sets of IPNs were produced and their microstructure studied using a variety of techniques including small angle neutron scattering (SANS). The first system combined a glassy polymer (polystyrene) with an elastomeric polymer (SBS) with the glassy polymer predominating, to give a high impact plastic. The second set of IPNs contained epichlorohydrin (CO) and nitrile rubber (NBR), and was formed in order to produce novel materials with enhanced chemical and gas barrier properties. In both cases if the phase mixing is optimised the probability of controlled morphologies and synergistic behaviour is increased. The PS/SBS IPNs were prepared using sequential polymerisation. The primary SBS network was thermally crosslinked, then the polystyrene network was polymerised and crosslinked using gamma irradiation to avoid possible thermal degradation of the butadiene segment of the SBS. Tough transparent systems were produced with no apparent thermal degradation of the polybutadiene segments. The epichlorohydrin/nitrile rubber IPNs were formed by simultaneous thermal crosslinking reactions. The epichlorohydrin network was formed using lead based crosslinker, while the nitrile rubber was crosslinked by peroxide methods. The use of two different crosslinking systems was employed in order to achieve independent crosslinking thus resulting in an IPN with minimal grafting between the component networks. SANS, Transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to examine the size and shape of the phase domains and investigate any variation with crosslinking level and

  5. Trouble Brewing in San Francisco. Policy Brief

    Science.gov (United States)

    Buck, Stuart

    2010-01-01

    The city of San Francisco will face enormous budgetary pressures from the growing deficits in public pensions, both at a state and local level. In this policy brief, the author estimates that San Francisco faces an aggregate $22.4 billion liability for pensions and retiree health benefits that are underfunded--including $14.1 billion for the city…

  6. San Diego's High School Dropout Crisis

    Science.gov (United States)

    Wilson, James C.

    2012-01-01

    This article highlights San Diego's dropout problem and how much it's costing the city and the state. Most San Diegans do not realize the enormous impact high school dropouts on their city. The California Dropout Research Project, located at the University of California at Santa Barbara, has estimated the lifetime cost of one class or cohort of…

  7. The art of Joseph Beuys and Vision Andreas Huyssen in Postmodernity A arte de Joseph Beuys e a visão de Andreas Huyssen na pós-modernidade

    Directory of Open Access Journals (Sweden)

    Lívia Garcez de Oliveira Padilha

    2012-04-01

    Full Text Available This article aims do present reflections on art in post-modernity, which encourages a reading of the ambivalence between the technique and aesthetics. We focus the environmentalist work of artist Joseph Beuys and the critical German essayist Andreas Huyssen and the paradoxical thinking of vanguard and mass culture. Is it possible to think like that in a dualist way? Or we can see a shift in sensitivity towards what touches us by affection? We believe, nevertheless, that exists a permanent state of artistic tension which stimulates a more relativistic than categorical culture in the XXI century.Este artigo tem como objetivo apresentar reflexões sobre a arte na pós-modernidade - que estimula uma leitura da ambivalência entre técnica e estética - por meio de duas obras “ambientalistas” do artista plástico Joseph Beuys e do olhar crítico, mas de cunho compreensivo, do ensaísta alemão Andreas Huyssen. O enfoque é o paradoxo entre a arte dita culta ou de vanguarda (? e a sua possível massificação (?. Estas duas expressões – vanguarda e massificação - ainda se sustentam na paisagem pós-moderna? Ou percebe-se um redirecionamento da sensibilidade em direção àquilo que nos toca pela afetividade? Consideramos, por meio da fenomenologia, que se enfrenta, em tempos pós-modernos, um permanente estado de tensionamento artístico, o que estimula uma visão mais relativista do que categórica da cultura no século XXI.

  8. Southern pine beetle infestation probability mapping using weights of evidence analysis

    Science.gov (United States)

    Jason B. Grogan; David L. Kulhavy; James C. Kroll

    2010-01-01

    Weights of Evidence (WofE) spatial analysis was used to predict probability of southern pine beetle (Dendroctonus frontalis) (SPB) infestation in Angelina, Nacogdoches, San Augustine and Shelby Co., TX. Thematic data derived from Landsat imagery (1974–2002 Landsat 1–7) were used. Data layers included: forest covertype, forest age, forest patch size...

  9. Faunal characteristics of the Southern Rocky Mountains of New Mexico: implications for biodiversity analysis and assessment

    Science.gov (United States)

    Rosamonde R. Cook; Curtis H. Flather; Kenneth R. Wilson

    2000-01-01

    To define the faunal context within which local and regional resource management decisions are made, conservation of biological diversity requires an understanding of regional species occurrence patterns. Our study focused on the Southern Rocky Mountains of New Mexico and included the San Juan, the Sangre de Cristo, and the Jemez Mountains. Across this region, we...

  10. 75 FR 54618 - CAlifornians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern...

    Science.gov (United States)

    2010-09-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-84-000] CAlifornians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern California Edison Company, San Diego Gas & Electric Company, California Public Utilities Commission; Notice of Complaint...

  11. 75 FR 66744 - Californians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern...

    Science.gov (United States)

    2010-10-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-84-001] Californians for Renewable Energy, Inc. (CARE) v. Pacific Gas and Electric Company, Southern California Edison Company, San Diego Gas & Electric Company, California Public Utilities Commission; Notice of Amended...

  12. Andrea Pasta (1706-1782), eclectic scholar of anatomy and clinical medicine, communication and the history of art.

    Science.gov (United States)

    Clerici, Carlo Alfredo; Veneroni, Laura; Patriarca, Carlo

    2014-11-01

    Andrea Pasta was an eclectic visionary light years ahead of his time. He made numerous contributions to the field of medicine, some recognized by his contemporaries and others so visionary that they are being applied only in modern times. His contributions spanned the disciplines of psychology, gynaecology, haematology, infectious diseases and the doctor-patient relationship. Well known among his contemporaries, he combined a passion for clinical medicine and a keen interest in history and art with a strict research methodology and an approach to caring for patients as human beings. By studying his life and works, we can better understand the magnitude and significance of his innovative method and its applicability in modern times and also the significance of his many contributions. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Population structure and infectious disease risk in southern Africa.

    Science.gov (United States)

    Uren, Caitlin; Möller, Marlo; van Helden, Paul D; Henn, Brenna M; Hoal, Eileen G

    2017-06-01

    The KhoeSan populations are the earliest known indigenous inhabitants of southern Africa. The relatively recent expansion of Bantu-speaking agropastoralists, as well as European colonial settlement along the south-west coast, dramatically changed patterns of genetic diversity in a region which had been largely isolated for thousands of years. Owing to this unique history, population structure in southern Africa reflects both the underlying KhoeSan genetic diversity as well as differential recent admixture. This population structure has a wide range of biomedical and sociocultural implications; such as changes in disease risk profiles. Here, we consolidate information from various population genetic studies that characterize admixture patterns in southern Africa with an aim to better understand differences in adverse disease phenotypes observed among groups. Our review confirms that ancestry has a direct impact on an individual's immune response to infectious diseases. In addition, we emphasize the importance of collaborative research, especially for populations in southern Africa that have a high incidence of potentially fatal infectious diseases such as HIV and tuberculosis.

  14. Interactions between western gall rust and its Pinus hosts, P. jeffreyi and P. contorta, in Sierra De San Pedro Martir National Park, Northern Baja California, Mexico

    Science.gov (United States)

    Detlev R. Vogler; Brian W. Geils

    2008-01-01

    The Sierra de San Pedro Martir is a mountain range in north-central Baja that comprises the southern-most extension of the Californian coniferous flora, including Pinus jeffreyi, P. contorta, P. lambertiana, Abies concolor, and Calocedrus decurrens. These forests are similar...

  15. Industrial Physics---Southern California Style

    Science.gov (United States)

    Leslie, Stuart

    2013-03-01

    Only in Southern California did space-age style really come into its own as a unique expression of Cold War scientific culture. The corporate campuses of General Atomic in San Diego and North American Aviation in Los Angeles perfectly expressed the exhilarating spirit of Southern California's aerospace era, scaling up the residential version of California modernism to industrial proportion. Architects William Pereira and A.C. Martin Jr., in collaboration with their scientific counterparts, fashioned military-industrial `dream factories' for industrial physics that embodied the secret side of the space-age zeitgeist, one the public could only glimpse of in photographs, advertisements, and carefully staged open houses. These laboratories served up archetypes of the California dream for a select audience of scientists, engineers, and military officers, live-action commercials for a lifestyle intended to lure the best and brightest to Southern California. Paradoxically, they hid in plain sight, in the midst of aerospace suburbs, an open secret, at once visible and opaque, the public face of an otherwise invisible empire. Now, at the end of the aerospace era, these places have become an endangered species, difficult to repurpose, on valuable if sometimes highly polluted land. Yet they offer an important reminder of a more confident time when many physicists set their sights on the stars.

  16. Caracterización de las principales pesquerías del golfo San Jorge Patagonia, Argentina Characterization of the main fisheries in San Jorge Gulf, Patagonia, Argentina

    Directory of Open Access Journals (Sweden)

    María Eva Góngora

    2012-03-01

    Full Text Available En el golfo San Jorge se desarrollan varias actividades económicas de relevancia, entre ellas dos pesquerías industriales: la pesquería de merluza común (Merluccius hubbsi Marini, 1933 y la pesquería de langostino patagónico (Pleoticus muelleri Bate, 1888, ambas se solapan espacial y temporalmente. En la pesquería de merluza del golfo San Jorge opera una flota fresquera de altura, compuesta por unas 20 embarcaciones, y una flota costera, compuesta por unas 30 embarcaciones. En esta pesquería se pesca alrededor del 10% de lo capturado en el stock sur de merluza. En la pesquería de langostino del golfo San Jorge opera una flota congeladora tangonera compuesta por 80 embarcaciones, responsable de más del 75% de los desembarques de langostino realizados en la República Argentina. Ambas pesquerías tienen como principal problema la captura incidental de merluza, en una de sus principales áreas de cría. En el presente trabajo se describe el manejo actual en las pesquerías del golfo San Jorge, el cual consiste principalmente en cierres espaciales y temporales para la pesca de langostino, y zonificaciones por estrato de flota para la merluza. En ninguna de las dos pesquerías descriptas se han tomado medidas que reduzcan eficazmente la captura incidental.In San Jorge Gulf, several important economic activities are developed, including two industrial fisheries: hake (Merluccius hubbsi Marini, 1933 and Argentine red shrimp (Pleoticus muelleri Bate, 1888. Both overlap spatially and temporally. The San Jorge Gulf hake fishery consists of a high-seas ice trawler fleet (n = 20 fishing vessels and a coastal fleet (n = 30 fishing vessels. These fisheries capture about 10% of the catch of the southern hake stock. The Argentine red shrimp fishery consists of a double-beam trawler fleet with 80 freezer vessels, responsible for more than 75% of shrimp landings in Argentina. The main problem of both fisheries is the bycatch of hake in one of its

  17. Enhanced Preliminary Assessment Report: Presidio of San Francisco Military Reservation, San Francisco, California

    Science.gov (United States)

    1989-11-01

    CAD981415656 Filmore Steiner Bay San Francisco 24 PG&E Gas Plant SanFran 502-IG CAD981415714 Bay North Point Buchanan Laguna 25 PG&E Gas Plant SanFran 502-1H...76-ioV /5,JO /0.7 /,230 PSF Water PSF, Main U.N. Lagunda Honda Analvte Plant Clearwell Reservoir Plaza Reservoi- Chlordane inetab. ə.2 ə.2 (1.2 ə.2

  18. Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

    CERN Multimedia

    Claudia Marcelloni

    2006-01-01

    Mr. Lorenzo Dellai, presidente della provincia Autonoma di Trento and Professor Andrea Zanotti, president dell'Instituto Trentino di Cultura, visit ALICE experiment underground area and Pixel Silicon Laboratory

  19. 18 September 2012 - PD Dr. med. Andreas Trojan Researcher, University of Zürich and Mr Marc Forster Independant Swiss Movie Director Switzerland visiting the CMS underground area with Head of international Relations F. Pauss and CMS Collaboration Z. Szillasi.

    CERN Multimedia

    Jean-Claude Gadmer

    2012-01-01

    18 September 2012 - PD Dr. med. Andreas Trojan Researcher, University of Zürich and Mr Marc Forster Independant Swiss Movie Director Switzerland visiting the CMS underground area with Head of international Relations F. Pauss and CMS Collaboration Z. Szillasi.

  20. Description of gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California

    Science.gov (United States)

    Woodrow, Donald L.; John L. Chin,; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2017-06-27

    Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and Carquinez Strait, California. The gravity cores collected within San Pablo Bay contain bioturbated laminated silts and sandy clays, whole and broken bivalve shells (mostly mussels), fossil tube structures, and fine-grained plant or wood fragments. Gravity cores from the channel wall of Carquinez Strait east of San Pablo Bay consist of sand and clay layers, whole and broken bivalve shells (less than in San Pablo Bay), trace fossil tubes, and minute fragments of plant material.

  1. 76 FR 9709 - Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary

    Science.gov (United States)

    2011-02-22

    ... Water Quality Challenges in the San Francisco Bay/Sacramento-San Joaquin Delta Estuary AGENCY... the San Francisco Bay/ Sacramento-San Joaquin Delta Estuary (Bay Delta Estuary) in California. EPA is... programs to address recent significant declines in multiple aquatic species in the Bay Delta Estuary. EPA...

  2. 33 CFR 165.776 - Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico 165.776 Section 165.776 Navigation and Navigable Waters COAST... Guard District § 165.776 Security Zone; Coast Guard Base San Juan, San Juan Harbor, Puerto Rico (a...

  3. 76 FR 22809 - Safety Zone; Bay Ferry II Maritime Security Exercise; San Francisco Bay, San Francisco, CA

    Science.gov (United States)

    2011-04-25

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2011-0196] RIN 1625-AA00 Safety Zone; Bay Ferry II Maritime Security Exercise; San Francisco Bay, San Francisco, CA AGENCY... Security Exercise; San Francisco Bay, San Francisco, CA. (a) Location. The limits of this safety zone...

  4. 76 FR 10945 - San Luis Trust Bank, FSB, San Luis Obispo, CA; Notice of Appointment of Receiver

    Science.gov (United States)

    2011-02-28

    ... DEPARTMENT OF THE TREASURY Office of Thrift Supervision San Luis Trust Bank, FSB, San Luis Obispo, CA; Notice of Appointment of Receiver Notice is hereby given that, pursuant to the authority... appointed the Federal Deposit Insurance Corporation as sole Receiver for San Luis Trust Bank, FSB, San Luis...

  5. Performance of BATAN-SANS instrument

    Energy Technology Data Exchange (ETDEWEB)

    Ikram, Abarrul; Insani, Andon [National Nuclear Energy Agency, P and D Centre for Materials Science and Technology, Serpong (Indonesia)

    2003-03-01

    SANS data from some standard samples have been obtained using BATAN-SANS instrument in Serpong. The experiments were performed for various experimental set-ups that involve different detector positions and collimator lengths. This paper describes the BATAN-SANS instrument briefly as well as the data taken from those experiments and followed with discussion of the results concerning the performance and calibration of the instrument. The standard samples utilized in these experiments include porous silica, polystyrene-poly isoprene, silver behenate, poly ball and polystyrene-poly (ethylene-alt-propylene). Even though the results show that BATAN-SANS instrument is in good shape, but rooms for improvements are still widely open especially for the velocity selector and its control system. (author)

  6. AMS San Diego Testbed - Calibration Data

    Data.gov (United States)

    Department of Transportation — The data in this repository were collected from the San Diego, California testbed, namely, I-15 from the interchange with SR-78 in the north to the interchange with...

  7. San Antonio Bay 1986-1989

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effect of salinity on utilization of shallow-water nursery habitats by aquatic fauna was assessed in San Antonio Bay, Texas. Overall, 272 samples were collected...

  8. San Francisco Bay Interferometric Bathymetry: Area B

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High resolution sonar data were collected over ultra-shallow areas of the San Francisco Bay estuary system. Bathymetric and acoustic backscatter data were collected...

  9. April 1906 San Francisco, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1906 San Francisco earthquake was the largest event (magnitude 8.3) to occur in the conterminous United States in the 20th Century. Recent estimates indicate...

  10. San Jacinto Tries Management by Objectives

    Science.gov (United States)

    Deegan, William

    1974-01-01

    San Jacinto, California, has adopted a measurable institutional objectives approach to management by objectives. Results reflect, not only improved cost effectiveness of community college education, but also more effective educational programs for students. (Author/WM)

  11. Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado

    Science.gov (United States)

    Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.

    2015-01-01

    In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.

  12. University of California, San Diego (UCSD) Sky Imager Cloud Position Study Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kleissl, J. [Univ. of California, San Diego, CA (United States); Urquhart, B. [Univ. of California, San Diego, CA (United States); Ghonima, M. [Univ. of California, San Diego, CA (United States); Dahlin, E. [Univ. of California, San Diego, CA (United States); Nguyen, A. [Univ. of California, San Diego, CA (United States); Kurtz, B. [Univ. of California, San Diego, CA (United States); Chow, C. W. [Univ. of California, San Diego, CA (United States); Mejia, F. A. [Univ. of California, San Diego, CA (United States)

    2016-04-01

    During the University of California, San Diego (UCSD) Sky Imager Cloud Position Study, two University of California, San Diego Sky Imagers (USI) (Figure 1) were deployed the U.S. Department of Energy(DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains SGP) research facility. The UCSD Sky Imagers were placed 1.7 km apart to allow for stereographic determination of the cloud height for clouds over approximately 1.5 km. Images with a 180-degree field of view were captured from both systems during daylight hours every 30 seconds beginning on March 11, 2013 and ending on November 4, 2013. The spatial resolution of the images was 1,748 × 1,748, and the intensity resolution was 16 bits using a high-dynamic-range capture process. The cameras use a fisheye lens, so the images are distorted following an equisolid angle projection.

  13. SANS observations on weakly flocculated dispersions

    DEFF Research Database (Denmark)

    Mischenko, N.; Ourieva, G.; Mortensen, K.

    1997-01-01

    Structural changes occurring in colloidal dispersions of poly-(methyl metacrylate) (PMMA) particles, sterically stabilized with poly-(12-hydroxystearic acid) (PHSA), while varying the solvent quality, temperature and shear rate, are investigated by small-angle neutron scattering (SANS......). For a moderately concentrated dispersion in a marginal solvent the transition on cooling from the effective stability to a weak attraction is monitored, The degree of attraction is determined in the framework of the sticky spheres model (SSM), SANS and rheological results are correlated....

  14. Trouble Brewing in San Diego. Policy Brief

    Science.gov (United States)

    Buck, Stuart

    2010-01-01

    The city of San Diego will face enormous budgetary pressures from the growing deficits in public pensions, both at a state and local level. In this policy brief, the author estimates that San Diego faces total of $45.4 billion, including $7.95 billion for the county pension system, $5.4 billion for the city pension system, and an estimated $30.7…

  15. Toxic phytoplankton in San Francisco Bay

    Science.gov (United States)

    Rodgers, Kristine M.; Garrison, David L.; Cloern, James E.

    1996-01-01

    The Regional Monitoring Program (RMP) was conceived and designed to document the changing distribution and effects of trace substances in San Francisco Bay, with focus on toxic contaminants that have become enriched by human inputs. However, coastal ecosystems like San Francisco Bay also have potential sources of naturally-produced toxic substances that can disrupt food webs and, under extreme circumstances, become threats to public health. The most prevalent source of natural toxins is from blooms of algal species that can synthesize metabolites that are toxic to invertebrates or vertebrates. Although San Francisco Bay is nutrient-rich, it has so far apparently been immune from the epidemic of harmful algal blooms in the world’s nutrient-enriched coastal waters. This absence of acute harmful blooms does not imply that San Francisco Bay has unique features that preclude toxic blooms. No sampling program has been implemented to document the occurrence of toxin-producing algae in San Francisco Bay, so it is difficult to judge the likelihood of such events in the future. This issue is directly relevant to the goals of RMP because harmful species of phytoplankton have the potential to disrupt ecosystem processes that support animal populations, cause severe illness or death in humans, and confound the outcomes of toxicity bioassays such as those included in the RMP. Our purpose here is to utilize existing data on the phytoplankton community of San Francisco Bay to provide a provisional statement about the occurrence, distribution, and potential threats of harmful algae in this Estuary.

  16. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    Science.gov (United States)

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    The Imperial and Coachella Valleys are being formed by active plate-tectonic processes. From the Imperial Valley southward into the Gulf of California, plate motions are rifting the continent apart. In the Coachella Valley, the plates are sliding past one another along the San Andreas and related faults (fig. 1). These processes build the stunning landscapes of the region, but also produce damaging earthquakes. Rupture of the southern section of the San Andreas Fault (SAF), from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard that California will face in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of infrastructure (freeways, aqueducts, power, petroleum, and communication lines) that might bring much of southern California to a standstill. As part of the nation’s efforts to avert a catastrophe of this magnitude, a number of projects have been undertaken to more fully understand and mitigate the effects of such an event. The Salton Seismic Imaging Project (SSIP), funded jointly by the National Science Foundation (NSF) and the U.S. Geological Survey (USGS), seeks to understand, through seismic imaging, the structure of the Earth surrounding the SAF, including the sedimentary basins on which cities are built. The principal investigators (PIs) of this collaborative project represent the USGS, Virginia Polytechnic Institute and State University (Virginia Tech), California Institute of Technology (Caltech), Scripps Institution of Oceanography (Scripps), University of Nevada, Reno (UNR), and Stanford University. SSIP will create images of underground structure and sediments in the Imperial and Coachella Valleys and adjacent mountain ranges to investigate the earthquake hazards posed to cities in this area. Importantly, the images will help determine the underground geometry of the SAF, how deep the sediments are, and how fast

  17. Modelling SANS and SAXS data

    International Nuclear Information System (INIS)

    Reynolds, P.

    1999-01-01

    Full text: Small angle scattering data while on an absolute scale and relatively accurate over large ranges of observables (0.003 -1 ; 0.1 -1 ) is often relatively featureless. I will address some of the problems this causes, and some of the ways of minimising these, by reference to our recent SANS results. For the benefit of newer chums this will involve discussion of the strengths and weaknesses of data from ISIS (LOQ), Argonne (SAND) and the I.L.L. (D22), and the consequences these have for modelling. The use of simple portable or remote access systems for modelling will be discussed - in particular the IGOR based NIST system of Dr. S. Kline and the VAX based FISH system of Dr. R. Heenan, ISIS. I will illustrate that a wide variety of physically appealing and complete models are now available. If you have reason to believe in a particular microstructure, this belief can now be either falsified, or the microstructure quantified, by fitting to the entire set of scattering patterns over the entire Q-range. For example, only in cases of drastic ignorance need we use only Guinier and Porod analyses, although these may provide useful initial guidance in the modelling. We now rarely need to use oversimplified logically incomplete models - such as spherical micelles with neglect of intermicellar correlation- now that we possess fast desktop/experimental computers

  18. Southern California Edison instrument setpoint program

    International Nuclear Information System (INIS)

    Bockhorst, R.M.; Quinn, E.L.

    1991-01-01

    In November of 1989, the US Nuclear Regulatory Commission (NRC) conducted an electrical safety system functional inspection (ESSFI) at the San Onofre nuclear generating station (SONGS), which was followed by an NRC audit on instrument setpoint methodology in January 1991. Units 2 and 3 at SONGS are 1100-MW(electric) Combustion Engineering (C-E) pressurized water reactors (PWRs) operated by Southern California Edison (SCE). The purpose of this paper is to summarize the results of the NRC audit and SCE's follow-up activities. The NRC team inspection reinforced the need to address several areas relative to the SCE setpoint program. The calculations withstood the intensive examination of four NRC inspectors for 2 weeks and only a few minor editorial-type problems were noted. Not one of the calculated plant protections system setpoints will change as a result of the audit. There were no questions raised relative to setpoint methodology

  19. [Christian Andreas Cothenius (1708-1789). A pro-memoria on the occasion of the 200th anniversary of his death].

    Science.gov (United States)

    Völker, A

    1990-04-01

    The 200th anniversary of the death of Christian Andreas Cothenius gave occasion to appreciate life and work of this personage of a physician. Cothenius maintained manifold connections to Halle, of which the golden doctorate and the heritage of the pharmaceutic enterprises of his teacher Friedrich Hoffmann were treated in this place. The picture of the local relations was supplemented by the history of the Cothenius medal which is today awarded by the Leopoldina of Halle.

  20. Preliminary study of the uranium potential of Tertiary rocks in the central San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Vizcaino, H.P.; O'Neill, A.J.

    1977-12-01

    Three formations in the Tertiary of the San Juan Basin were investigated for their uranium favorability. They are the Ojo Alamo Sandstone, the Nacimiento Formation, and the San Jose Formation. The study comprised a literature survey and a basin analysis, which consisted of subsurface lithofacies, stratigraphic, and radiometric mapping. Field work in preparation for the subsurface analysis consisted of examination of outcrop and measured sections, surface radiometric traverses, and checking of reported surface radioactive anomalies. Interpretation of subsurface mapping provided the primary basis for favorability assessment. The sandstone trends depicted in lithofacies maps, and stratigraphic cross sections reflect large channel complexes and major fluvial systems originating in favorable source areas. Although surface radioactivity anomalies were found to be few, weak, and widespread, the San Juan Basin has abundant favorable host rocks. The subsurface anomalies, although weak, are widespread and sometimes persist throughout thickness intervals greater than 50 ft. Subsurface anomalies were mapped on a wide-spaced grid and are generalized. On the basis of apparent source, lithology, differential permeability, contents of carbonaceous detritus, and geometry, the Nacimiento Formation and the basal facies of the San Jose Formation in the north-central basin have the greatest potential. The Ojo Alamo Sandstone is less favorable, and the Nacimiento Formation in the southern part of the basin and the upper San Jose Formation are the least favorable of the units studied

  1. Balloon Angioplasty – The Legacy of Andreas Grüntzig, M.D. (1939–1985)

    Science.gov (United States)

    Barton, Matthias; Grüntzig, Johannes; Husmann, Marc; Rösch, Josef

    2014-01-01

    In 1974, at the Medical Policlinic of the University of Zürich, German-born physician-scientist Andreas Grüntzig (1939–1985) for the first time applied a balloon-tipped catheter to re-open a severely stenosed femoral artery, a procedure, which he initially called “percutaneous transluminal dilatation”. Balloon angioplasty as a therapy of atherosclerotic vascular disease, for which Grüntzig and Charles T. Dotter (1920–1985) received a nomination for the Nobel Prize in Physiology or Medicine in 1978, became one of the most successful examples of translational medicine in the twentieth century. Known today as percutaneous transluminal angioplasty (PTA) in peripheral arteries or percutaneous transluminal coronary angioplasty (PTCA) or percutaneous coronary intervention (PCI) in coronary arteries, balloon angioplasty has become the method of choice to treat patients with acute myocardial infarction or occluded leg arteries. On the occasion of the 40th anniversary of balloon angioplasty, we summarize Grüntzig’s life and career in Germany, Switzerland, and the United States and also review the developments in vascular medicine from the 1890s to the 1980s, including Dotter’s first accidental angioplasty in 1963. The work of pioneers of catheterization, including Pedro L. Fariñas in Cuba, André F. Cournand in France, Werner Forssmann, Werner Porstmann and Eberhard Zeitler in Germany, António Egas Moniz and Reynaldo dos Santos in Portugal, Sven-Ivar Seldinger in Sweden, and Barney Brooks, Thomas J. Fogarty, Melvin P. Judkins, Richard K. Myler, Dickinson W. Richards, and F. Mason Sones in the United States, is discussed. We also present quotes by Grüntzig and excerpts from his unfinished autobiography, statements of Grüntzig’s former colleagues and contemporary witnesses, and have included hitherto unpublished historic photographs and links to archive recordings and historic materials. This year, on June 25, 2014, Andreas Grüntzig would have celebrated

  2. 77 FR 59969 - Notice of Inventory Completion: San Francisco State University, Department of Anthropology, San...

    Science.gov (United States)

    2012-10-01

    ... Inventory Completion: San Francisco State University, Department of Anthropology, San Francisco, CA... Francisco State University, NAGPRA Program (formerly in the Department of Anthropology). The human remains... State University Department of Anthropology records. In the Federal Register (73 FR 30156-30158, May 23...

  3. 78 FR 57482 - Safety Zone; America's Cup Aerobatic Box, San Francisco Bay, San Francisco, CA

    Science.gov (United States)

    2013-09-19

    ...-AA00 Safety Zone; America's Cup Aerobatic Box, San Francisco Bay, San Francisco, CA AGENCY: Coast Guard... America's Cup air shows. These safety zones are established to provide a clear area on the water for... announced by America's Cup Race Management. ADDRESSES: Documents mentioned in this preamble are part of...

  4. 77 FR 42649 - Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA

    Science.gov (United States)

    2012-07-20

    ... 1625-AA00 Safety Zone: Sea World San Diego Fireworks, Mission Bay; San Diego, CA AGENCY: Coast Guard... authorized by the Captain of the Port, or his designated representative. DATES: This rule is effective from 8... to ensure the public's safety. B. Basis and Purpose The Ports and Waterways Safety Act gives the...

  5. 75 FR 27432 - Security Zone; Golden Guardian 2010 Regional Exercise; San Francisco Bay, San Francisco, CA

    Science.gov (United States)

    2010-05-17

    ... can better evaluate its effects on them and participate in the rulemaking process. Small businesses... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2010-0221] RIN 1625-AA87 Security Zone; Golden Guardian 2010 Regional Exercise; San Francisco Bay, San Francisco, CA AGENCY...

  6. Fertilizing Southern Hardwoods

    Science.gov (United States)

    W. M. Broadfoot; A. F. Ike

    1967-01-01

    If present trends continue, fertilizing may soon be economically feasible in southern hardwood stands. Demands for the wood are rising, and the acreage alloted for growing it is steadily shrinking. To supply anticipated requests for information, the U. S. Forest Service has established tree nutrition studies at the Southern Hardwoods Laboratory in Stoneville,...

  7. Southern Gothic Literature

    DEFF Research Database (Denmark)

    Bjerre, Thomas Ærvold

    2017-01-01

    Provides an outline of Southern Gothic Literature, offers an argument about its history and shape, and discusses the scholarly literature surrounding Southern Gothic. Oxford Research Encyclopedia is an online peer-reviewed encyclopedia for researchers, teachers, and students interested in all...... facets of the study of literature...

  8. A new bathyal sipunculan from Southern California, with ecological notes

    Science.gov (United States)

    Thompson, Bruce E.

    1980-11-01

    Golfingia (Nephasoma) nicolasi n. sp. is described. It is a long, slender species with a filiform introvert that is 6 to 7 times the length of the trunk. The species was often the numerically dominant taxon in samples collected from the San Nicolas Basin, California, and was also callected from several other basins off southern California. Analyses of several collections from the San Nicolas Basin show that the population was spatially patchy; temporal variation was also indicated but only one year was sampled adequately. Average population densities were highest at the base of the slopes descending into the basin from the highly productive Santa Rosa-Cortes Ridge and Tanner Bank. G. nicolasi appears to feed on the large amounts of organic detritus that accumulate from this source.

  9. The Festival of San Gregorio Atlapulco, Mexico. Play area cultural and identity

    Directory of Open Access Journals (Sweden)

    Gisela Landázuri Benítez

    2012-01-01

    Full Text Available In the middle of a crisis in Mexican’s rural area, native communities located in the southern part of México City find an alternative in cultural resistance and in the recuperation of historic, economic, natural and cultural heritage.In particular, there is a contrast between religious feasts and the current historical moment, where Mexican situation is often characterized through poverty, unemployment, insecurity and social dislocation.In the village of San Gregorio Atlapulco, the celebration of their local patron saint is a way to endure centuries-old traditions. In the celebration, we find cultural elements that have withstood the ravages of colonialism, modernity and urbanization.

  10. Quality management for design engineering for San Onofre nuclear generating station

    International Nuclear Information System (INIS)

    Thompson, P.C.; Baker, R.L.

    1991-01-01

    Quality management, as applied to design engineering for the San Onofre nuclear generating station, provides a systematic process for data collection and analysis of performance indicators for quality, cost, and delivery of design modifications for the three operating units. Southern California Edison (SCE) and Bechtel Power Corporation (BPC) have collaborated to establish a performance baseline from nearly 2 years of data. This paper discusses how the baseline was developed and how it can be used to predict and assess future performance. It further discusses new insights to the engineering process and opportunities for improvements that have been identified

  11. Heat and Groundwater Flow in the San Gabriel Mountains, California

    Science.gov (United States)

    Newman, A. A.; Becker, M.; Laton, W. R., Jr.

    2017-12-01

    Groundwater flow paths in mountainous terrain often vary widely in both time and space. Such systems remain difficult to characterize due to fracture-dominated flow paths, high topographic relief, and sparse hydrologic data. We develop a hydrogeologic conceptual model of the Western San Gabriel Mountains in Southern California based on geophysical, thermal, and hydraulic head data. Boreholes are located along the San Gabriel Fault Zone (SGFZ) and cover a wide range of elevations to capture the heterogeneity of the hydrogeologic system. Long term (2016-2017) monitoring of temperature and hydraulic head was carried out in four shallow (300-600m depth) boreholes within the study area using fiber-optic distributed temperature sensing (DTS). Borehole temperature profiles were used to assess the regional groundwater flow system and local flows in fractures intersecting the borehole. DTS temperature profiles were compared with available borehole geophysical logs and head measurements collected with grouted vibrating wire pressure transducers (VWPT). Spatial and temporal variations in borehole temperature profiles suggest that advective heat transfer due to fluid flow affected the subsurface thermal regime. Thermal evidence of groundwater recharge and/or discharge and flow through discrete fractures was found in all four boreholes. Analysis of temporal changes to the flow system in response to seasonal and drilling-induced hydraulic forcing was useful in reducing ambiguities in noisy datasets and estimating interborehole relationships. Acoustic televiewer logs indicate fractures were primarily concentrated in densely fractured intervals, and only a minor decrease of fracture density was observed with depth. Anomalously high hydraulic gradients across the SGFZ suggest that the feature is a potential barrier to lateral flow. However, transient thermal anomalies consistent with groundwater flow within the SGFZ indicate this feature may be a potential conduit to vertical flow

  12. Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California

    Science.gov (United States)

    Witter, Robert C.; Knudsen, Keith L.; Sowers, Janet M.; Wentworth, Carl M.; Koehler, Richard D.; Randolph, Carolyn E.; Brooks, Suzanna K.; Gans, Kathleen D.

    2006-01-01

    This report presents a map and database of Quaternary deposits and liquefaction susceptibility for the urban core of the San Francisco Bay region. It supercedes the equivalent area of U.S. Geological Survey Open-File Report 00-444 (Knudsen and others, 2000), which covers the larger 9-county San Francisco Bay region. The report consists of (1) a spatial database, (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map and liquefaction interpretation (part 3), and (4) a text introducing the report and describing the database (part 1). All parts of the report are digital; part 1 describes the database and digital files and how to obtain them by downloading across the internet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a consistent detailed treatment of the central part of the 9-county region in which much of the mapping of Open-File Report 00-444 was either at smaller (less detailed) scale or represented only preliminary revision of earlier work. Like Open-File Report 00-444, the current mapping uses geomorphic expression, pedogenic soils, inferred depositional environments, and geologic age to define and distinguish the map units. Further scrutiny of the factors controlling liquefaction susceptibility has led to some changes relative to Open-File Report 00-444: particularly the reclassification of San Francisco Bay mud (Qhbm) to have only MODERATE susceptibility and the rating of artificial fills according to the Quaternary map units inferred to underlie them (other than dams - adf). The two colored

  13. Compact High Resolution SANS using very cold neutrons (VCN-SANS)

    International Nuclear Information System (INIS)

    Kennedy, S.; Yamada, M.; Iwashita, Y.; Geltenbort, P.; Bleuel, M.; Shimizu, H.

    2011-01-01

    SANS (Small Angle Neutron Scattering) is a popular method for elucidation of nano-scale structures. However science continually challenges SANS for higher performance, prompting exploration of ever-more exotic and expensive technologies. We propose a compact high resolution SANS, using very cold neutrons, magnetic focusing lens and a wide-angle spherical detector. This system will compete with modern 40 m pinhole SANS in one tenth of the length, matching minimum Q, Q-resolution and dynamic range. It will also probe dynamics using the MIEZE method. Our prototype lens (a rotating permanent-magnet sextupole), focuses a pulsed neutron beam over 3-5 nm wavelength and has measured SANS from micelles and polymer blends. (authors)

  14. Effects of local geology on ground motion in the San Francisco Bay region, California—A continued study

    Science.gov (United States)

    Gibbs, James F.; Borcherdt, Roger D.

    1974-01-01

    intensity increments predicted for various geologic units are -0.3 for granite, 0.2 for Franciscan Formation, 0.6 for other pre-Tertiary, Tertiary bedrock, 0.8 for Santa Clara Formation, 1 .3 for older bay sediments, 2.4 for younger bay mud. These empirical relations, together with detailed geologic maps, delineate areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hayward fault.

  15. Southern Identity in "Southern Living" Magazine

    Science.gov (United States)

    Lauder, Tracy

    2012-01-01

    A fantasy-theme analysis of the editors' letters in "Southern Living" magazine shows an editorial vision of valuing the past and showcasing unique regional qualities. In addition, a content analysis of the visual representation of race in the magazine's formative years and recent past validates that inhabitants of the region were portrayed…

  16. Bedrock aquifers of eastern San Juan County, Utah

    Science.gov (United States)

    Avery, Charles

    1986-01-01

    This study is one of a series of studies appraising the waterbearing properties of the Navajo Sandstone and associated formations in southern Utah.  The study area is about 4,600 square miles, extending from the Utah-Arizona State line northward to the San Juan-Grand County line and westward from the Utah-Colorado State line to the longitude of about 109°50'.Some of the water-yielding formations are grouped into aquifer systems. The C aquifer is comprised of the DeChelly Sandstone Member of the Cutler Formation.  The P aquifer is comprised of the Cedar Mesa Member of the Cutler Formation and the undifferentiated Cutler Formation. The N aquifer is comprised of the sedimentary section that includes the Wingate Sandstone, Kayenta Formation, Navajo Sandstone, Carmel Formation, and Entrada sandstone.  The M aquifer is comprised of the Bluff Sandstone Member and other sandstone units of the Morrison Formation.  The D aquifer is comprised of the Burro Canyon Formation and Dakota Sandstone.  Discharge from the ground-water reservoir to the San Juan River between gaging stations at Four Corners and Mexican Hat is about 66 cubic feet per second.The N aquifer is the main aquifer in the study area. Recharge by infiltration of precipitation is estimated to be 25,000 acre-feet per year.  A major ground-water divide exists under the broad area east of Monticello.  The thickness of the N aquifer, where the sedimentary section is fully preserved and saturated, generally is 750 to 1,250 feet.   Hydraulic conductivity values obtained from aquifer tests range from 0.02 to 0.34 foot per day.  The total volume of water in transient storage is about 11 million acre-feet. Well discharge somewhat exceeded 2,340 acre-feet during 1981.  Discharge to the San Juan River from the N aquifer is estimated to be 6.9 cubic feet per second. Water quality ranges from a calcium bicarbonate to sodium chloride type water

  17. Cacao use and the San Lorenzo Olmec

    Science.gov (United States)

    Powis, Terry G.; Cyphers, Ann; Gaikwad, Nilesh W.; Grivetti, Louis; Cheong, Kong

    2011-01-01

    Mesoamerican peoples had a long history of cacao use—spanning more than 34 centuries—as confirmed by previous identification of cacao residues on archaeological pottery from Paso de la Amada on the Pacific Coast and the Olmec site of El Manatí on the Gulf Coast. Until now, comparable evidence from San Lorenzo, the premier Olmec capital, was lacking. The present study of theobromine residues confirms the continuous presence and use of cacao products at San Lorenzo between 1800 and 1000 BCE, and documents assorted vessels forms used in its preparation and consumption. One elite context reveals cacao use as part of a mortuary ritual for sacrificial victims, an event that occurred during the height of San Lorenzo's power. PMID:21555564

  18. 77 FR 66499 - Environmental Impact Statement: San Bernardino and Los Angeles Counties, CA

    Science.gov (United States)

    2012-11-05

    ... San Bernardino, 285 East Hospitality Lane, San Bernardino, California 92408 (2) Sheraton Ontario..., November 13, 2012 from 5-7 p.m. at the Hilton San Bernardino, 285 East Hospitality Lane, San Bernardino...

  19. Coastal ocean transport patterns in the central Southern California Bight

    Science.gov (United States)

    Noble, M.A.; Rosenberger, K.J.; Hamilton, P.; Xu, J. P.

    2009-01-01

    In the past decade, several large programs that monitor currents and transport patterns for periods from a few months to a few years were conducted by a consortium of university, federal, state, and municipal agencies in the central Southern California Bight, a heavily urbanized section of the coastal ocean off the west coast of the United States encompassing Santa Monica Bay, San Pedro Bay, and the Palos Verdes shelf. These programs were designed in part to determine how alongshelf and cross-shelf currents move sediments, pollutants, and suspended material through the region. Analysis of the data sets showed that the current patterns in this portion of the Bight have distinct changes in frequency and amplitude with location, in part because the topography of the shelf and upper slope varies rapidly over small spatial scales. However, because the mean, subtidal, and tidal-current patterns in any particular location were reasonably stable with time, one could determine a regional pattern for these current fields in the central Southern California Bight even though measurements at the various locations were obtained at different times. In particular, because the mean near-surface flows over the San Pedro and Palos Verdes shelves are divergent, near-surface waters from the upper slope tend to carry suspended material onto the shelf in the northwestern portion of San Pedro Bay. Water and suspended material are also carried off the shelf by the mean and subtidal flow fields in places where the orientation of the shelf break changes abruptly. The barotropic tidal currents in the central Southern California Bight flow primarily alongshore, but they have pronounced amplitude variations over relatively small changes in alongshelf location that are not totally predicted by numerical tidal models. Nonlinear internal tides and internal bores at tidal frequencies are oriented more across the shelf. They do not have a uniform transport direction, since they move fine sediment

  20. Safety evaluation report related to the full-term operating license for San Onofre Nuclear Generating Station, Unit 1 (Docket No. 50-206)

    International Nuclear Information System (INIS)

    1991-07-01

    The safety evaluation report for the full-term operating license application filed by the Southern California Edison Company and the San Diego Gas and Electric Company has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located in San Diego County, California. The staff has evaluated the issues related to the conversion of the provisional operating license to a full-term operating license and concluded that the facility can continue to be operated without endangering the health and safety of the public following the license conversion. 43 refs., 3 figs., 3 tabs

  1. Spontaneous non-volcanic tremor detected in the Anza Seismic Gap of San Jacinto Fault

    Science.gov (United States)

    Hutchison, A. A.; Ghosh, A.

    2017-12-01

    Non-volcanic tremor (NVT), a type of slow earthquake, is becoming more frequently detected along plate boundaries, particularly in subduction zones, and is also observed along the San Andreas Fault [e.g. Nadeau & Dolenc, 2005]. NVT is typically associated with transient deformation (i.e. slow slip) in the transition zone [e.g. Ide et al., 2007], and at times it is observed with deep creep along faults [e.g. Beroza & Ide, 2011]. Using several independent location and detection methods including multi-beam backprojection [Ghosh et al., 2009a; 2012], envelope cross correlation [Wech & Creager, 2008], spectral analyses and visual inspection of existing network stations and high-density mini seismic array data, we detect multiple discrete spontaneous tremor events in the Anza Gap of the San Jacinto Fault (SJF) in June, 2011. The events occur on the SJF where the Hot Springs Fault terminates, on the northwestern boundary of the Anza Gap, below the inferred seismogenic zone characterized by velocity weakening frictional behavior [e.g. Lindsay et al., 2014]. The location methods provide consistent locations for each event in our catalog. Low slowness values help rule-out surface noise that may result in false detections. Analyses of frequency spectra show these time windows are depleted in high frequency energy in the displacement amplitude spectrum compared to small local regular (fast) earthquakes. This spectral pattern is characteristic of tremor [Shelly et al., 2007]. We interpret this tremor to be a seismic manifestation of slow-slip events below the seismogenic zone. Recently, an independent geodetic study suggests that the 2010 El Mayor-Cucupah earthquake triggered a slow-slip event in the Anza Gap [Inbal et al., 2017]. In addition, multiple studies infer deep creep in the SJF [e.g. Meng & Peng et al., 2016; Jiang & Fialko, 2016] indicating that this fault is capable of producing slow slip events. Transient tectonic behavior like tremor and slow slip may be playing

  2. Examining and Comparing Earthquake Readiness in East San Francisco Bay Area Communities (Invited)

    Science.gov (United States)

    Ramirez, N.; Bul, V.; Chavez, A.; Chin, W.; Cuff, K. E.; Girton, C.; Haynes, D.; Kelly, G.; Leon, G.; Ramirez, J.; Ramirez, R.; Rodriquez, F.; Ruiz, D.; Torres, J.

    2009-12-01

    Based on past experiences, the potential for casualties and mass destruction that can result from a high magnitude earthquake are well known. Nevertheless, given the East San Francisco Bay Area’s proximity to the Hayward and San Andreas faults, learning about earthquakes and disaster preparedness is of particular importance. While basic educational programs and materials are available both through emergency relief agencies and schools, little research has been done on their effectiveness. Because of the wide socioeconomic spread between communities in the East Bay, we decided to investigate understandings of issues related to disaster and earthquake preparedness among local populations based upon average household income. To accomplish this, we created a survey that was later uploaded to and implemented using Palm Treo Smart Phones. Survey locations were selected in such a way that they reflected the understandings of residents in a diverse set of socio-economic settings. Thus, these locations included a grocery store and nearby plaza in the Fruitvale district of Oakland, CA (zip=94601; median household income= 33,152), as well as the nearby town of Alameda, CA (zip=94502, median household income= 87,855). Preliminary results suggest that in terms of the objective questions on the survey, people from Alameda who participated in our study performed significantly better (difference in percentage correct greater than 10%) than the people from Fruitvale on two of the advanced earthquake knowledge questions. Interestingly enough, people in Fruitvale significantly outperformed people in Alameda on two of the basic earthquake knowledge questions. The final important finding was that while houses in Alameda tended to be newer and more often retrofitted than houses in Fruitvale, the people of the latter location tended to have a higher percentage of respondents claim confidence in the ability of their house to withstand a major earthquake. Based on preliminary results we

  3. Mammal Track Counts - San Diego County, 2010 [ds709

    Data.gov (United States)

    California Natural Resource Agency — The San Diego Tracking Team (SDTT) is a non-profit organization dedicated to promoting the preservation of wildlife habitat in San Diego County through citizen-based...

  4. Coastal Cactus Wren, San Diego Co. - 2009 [ds702

    Data.gov (United States)

    California Natural Resource Agency — The San Diego Multiple Species Conservation program (MSCP) was developed for the conservation of plants and animals in the southeast portion of San Diego County....

  5. Coastal Cactus Wren, San Diego Co. - 2011 [ds708

    Data.gov (United States)

    California Natural Resource Agency — The San Diego Multiple Species Conservation program (MSCP) was developed for the conservation of plants and animals in the southeast portion of San Diego County....

  6. Species Observations (poly) - San Diego County [ds648

    Data.gov (United States)

    California Natural Resource Agency — Created in 2009, the SanBIOS database serves as a single repository of species observations collected by various departments within the County of San Diego's Land...

  7. Mammal Track Counts - San Diego County [ds442

    Data.gov (United States)

    California Natural Resource Agency — The San Diego Tracking Team (SDTT) is a non-profit organization dedicated to promoting the preservation of wildlife habitat in San Diego County through citizen-based...

  8. Species Observations (poly) - San Diego County [ds648

    Data.gov (United States)

    California Department of Resources — Created in 2009, the SanBIOS database serves as a single repository of species observations collected by various departments within the County of San Diego's Land...

  9. European Southern Observatory

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    Professor A. Blaauw, Director general of the European Southern Observatory, with George Hampton on his right, signs the Agreement covering collaboration with CERN in the construction of the large telescope to be installed at the ESO Observatory in Chile.

  10. University of Southern California

    Data.gov (United States)

    Federal Laboratory Consortium — The focus of the University of Southern California (USC) Children''s Environmental Health Center is to develop a better understanding of how host susceptibility and...

  11. Southern African Business Review

    African Journals Online (AJOL)

    The Southern African Business Review is a refereed and accredited scientific journal of the College of Economic and Management Sciences of the .... The effects of extended water supply disruptions on the operations of SMEs · EMAIL FREE ...

  12. Southern African Business Review

    African Journals Online (AJOL)

    Southern African Business Review. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 20, No 1 (2016) >. Log in or Register to get access to full text downloads.

  13. Spatial and temporal trends of contaminants in eggs of wading birds from San Francisco Bay, California

    Science.gov (United States)

    Hothem, R.L.; Roster, D.L.; King, K.A.; Keldsen, T.J.; Marois, Katherine C.; Wainwright, S.E.

    1995-01-01

    Between 1989 and 1991, reproduction by black-crowned night-herons (Nycticorax nycticorax) and snowy egrets (Egretta thula) was studied at sites in San Francisco Bay. Eggs were collected from these and other bay sites and from South Wilbur Flood Area, a reference site in California's San Joaquin Valley. Eggs were analyzed for inorganic trace elements, organochlorine pesticides, and polychlorinated biphenyls (PCBs). Results were compared among sites and years and with results of previous studies. There was some evidence of impaired reproduction, but concentrations of contaminants were generally lower than threshold levels for such effects. Egg hatchability was generally good, with predation being the factor that most limited reproductive success. Mean PCB concentrations were generally higher in eggs from the south end of San Francisco Bay than from the north, but the only temporal change, an increase, was observed at Alcatraz Island. There were spatial differences for p,p'-DDE in night-heron eggs in 1990, but the highest mean concentration of DDE was in night-heron eggs from South Wilbur in 1991. Temporal declines in maximum concentrations of DDE in eggs were observed in the bay, but means did not change significantly over time, At Bair Island in the southern end of the bay, mean concentrations of mercury decreased while selenium increased in night-heron eggs over time, but there were no clear bay-wide spatial or temporal trends for either element.

  14. Carbon Isotopic tests on the Origins of the Shuram Anomaly from the San Juan Fm., Peru

    Science.gov (United States)

    Hodgin, E. B.

    2015-12-01

    Carbon isotope anomalies are associated with perturbations to the carbon cycle that offer insight into the geochemical evolution of the Earth. The largest Carbon isotope anomaly in earth history is the Shuram, which remains poorly understood in spite of being linked to the oxygenation of earth, the rise of metazoans, and a complete reorganization of the carbon cycle. From a basin transect of the carbonate-dominated San Juan Formation in southern Peru, we present evidence for the first clear example of the Shuram isotope anomaly in South America. Unique to this succession are ~140 meters of organic-rich black shale within the anomaly, containing as much as 4% TOC. Preliminary data from the organic-rich black shales of the San Juan Fm. confirm that δ13Corg is relatively invariant and does not covary with δ13Ccarb. Th