WorldWideScience

Sample records for south-western amazon carbon

  1. The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient

    International Nuclear Information System (INIS)

    Espinoza, Jhan Carlo; Marengo, José Antonio; Ronchail, Josyane; Carpio, Jorge Molina; Flores, Luís Noriega; Guyot, Jean Loup

    2014-01-01

    Unprecedented wet conditions are reported in the 2014 summer (December–March) in South-western Amazon, with rainfall about 100% above normal. Discharge in the Madeira River (the main southern Amazon tributary) has been 74% higher than normal (58 000 m 3 s −1 ) at Porto Velho and 380% (25 000 m 3 s −1 ) at Rurrenabaque, at the exit of the Andes in summer, while levels of the Rio Negro at Manaus were 29.47 m in June 2014, corresponding to the fifth highest record during the 113 years record of the Rio Negro. While previous floods in Amazonia have been related to La Niña and/or warmer than normal tropical South Atlantic, the 2014 rainfall and flood anomalies are associated with warm condition in the western Pacific-Indian Ocean and with an exceptionally warm Subtropical South Atlantic. Our results suggest that the tropical and subtropical South Atlantic SST gradient is a main driver for moisture transport from the Atlantic toward south-western Amazon, and this became exceptionally intense during summer of 2014. (letter)

  2. Projected increases in the annual flood pulse of the Western Amazon

    OpenAIRE

    Zulkafli, Z.; Buytaert, W.; Manz, B.; Rosas, C. V.; Willems, P.; Lavado-Casimiro, W.; Guyot, Jean-Loup; Santini, William

    2016-01-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming...

  3. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.

    Science.gov (United States)

    Phillips, Oliver L; Brienen, Roel J W

    2017-12-01

    Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale

  4. Diversity of palm uses in the western Amazon

    DEFF Research Database (Denmark)

    Paniagua Zambrana, N.Y.; Byg, A.; Svenning, J.-C.

    2007-01-01

    Abstract  We used palm knowledge to understand the interaction between people and the rainforests and the factors that influence this dynamic process. We interviewed 278 informants in 12 villages in the Pastaza and Madidi areas of the western Amazon basin. Together they used 38 different palm......, the great variation in the knowledge they possess, and the fact that the differences between villages is so great, are important elements to consider when developing management plans for the sustainable use of the rainforest resources in the western Amazon. Keywords  Local knowledge - Palms - Western Amazon...

  5. GoAmazon – Scaling Amazon Carbon Water Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Manvendra Krishna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-06

    Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1) moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st century is largely unknown. Rainforests are the most active ecosystems with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We will resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional scale high frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O and CO at the T3 site in Manacupuru, Brazil as part of DOE's GoAmazon project. Our data will be used to inform and develop DOE's CLM on the tropical carbon-water couplings at the appropriate grid scale (10-50km). Our measurements will also validate the CO2 data from Japan's GOSAT and NASA's imminent OCO-2 satellite (launch date July 2014).

  6. Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought

    Science.gov (United States)

    Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.

  7. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    International Nuclear Information System (INIS)

    Potter, Christopher; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubio, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO 2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO 2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  8. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Christopher [NASA Ames Research Center, Moffett Field, CA (United States); Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa [California State University Monterey Bay, Seaside, CA (United States); Castilla-Rubio, Juan Carlos, E-mail: chris.potter@nasa.gov [Planetary Skin Institute, Silicon Valley, CA (United States)

    2011-07-15

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO{sub 2} uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO{sub 2} to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  9. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    Science.gov (United States)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p forests.

  10. Future of oil and gas development in the western Amazon

    International Nuclear Information System (INIS)

    Finer, Matt; Babbitt, Bruce; Novoa, Sidney; Ferrarese, Francesco; Pappalardo, Salvatore Eugenio; Marchi, Massimo De; Saucedo, Maria; Kumar, Anjali

    2015-01-01

    The western Amazon is one of the world’s last high-biodiversity wilderness areas, characterized by extraordinary species richness and large tracts of roadless humid tropical forest. It is also home to an active hydrocarbon (oil and gas) sector, characterized by operations in extremely remote areas that require new access routes. Here, we present the first integrated analysis of the hydrocarbon sector and its associated road-building in the western Amazon. Specifically, we document the (a) current panorama, including location and development status of all oil and gas discoveries, of the sector, and (b) current and future scenario of access (i.e. access road versus roadless access) to discoveries. We present an updated 2014 western Amazon hydrocarbon map illustrating that oil and gas blocks now cover 733 414 km 2 , an area much larger than the US state of Texas, and have been expanding since the last assessment in 2008. In terms of access, we documented 11 examples of the access road model and six examples of roadless access across the region. Finally, we documented 35 confirmed and/or suspected untapped hydrocarbon discoveries across the western Amazon. In the Discussion, we argue that if these reserves must be developed, use of the offshore inland model—a method that strategically avoids the construction of access roads—is crucial to minimizing ecological impacts in one of the most globally important conservation regions. (letter)

  11. Green Ocean Amazon 2014/15 – Scaling Amazon Carbon Water Couplings Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Manvendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parket, Harrison [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Katherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rahn, Thom [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Christoffersson, B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wunch, Debra [California Inst. of Technology (CalTech), Pasadena, CA (United States); Wennberg, Paul [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2016-08-01

    Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1), moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st Century is largely unknown. Rainforests are the most active ecosystems, with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We set out to resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional-scale high-frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O, and CO at the T3 site in Manacupuru, Brazil, as part of DOE's GoAmazon 2014/15 project. Our data will be used to inform and develop DOE's Community Land Model (CLM) on the tropical carbon-water couplings at the appropriate grid scale (10-50 km). Our measurements will also validate the CO2 data from Japan's Greenhouse gases Observing Satellite (GOSAT) and NASA's Orbiting Carbon Observatory (OCO)-2 satellite (launched in July, 2014). Our data addresses these science questions: 1. How does ecosystem heterogeneity and climate variability influence the rainforest carbon cycle? 2. How well do current tropical ecosystem models simulate the observed regional carbon cycle? 3. Does nitrogen deposition (from the Manaus, Brazil, plume) enhance rainforest carbon uptake?

  12. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    Science.gov (United States)

    Druffel, E. R. M.; Bauer, J. E.; Griffin, S.

    2005-03-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.

  13. Long-term decline of the Amazon carbon sink.

    Science.gov (United States)

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  14. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    Science.gov (United States)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  15. Stable carbon isotopic assessment of prehistoric diets in the south-western Cape, Cape Town, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Sealy, J C

    1984-01-01

    This thesis consists of a stable carbon isotopic assessment of the diets of the Holocene human inhabitants of the south-western Cape, South-Africa. Samples of the foods these people ate were collected from each of the four major physiographic zones in the area, and their /sup 13/C//sup 12/C ratios measured. A total of more than 200 such analyses enabled the estimation of the average delta /sup 13/C values of prehistoric human diets in each zone. This information is used to interpret delta /sup 13/C measurements on a series of archaeological human skeletons. The results are consistent with a model of prehistoric subsistence behaviour in which people living at the coast made intensive use of marine food resources throughout the Holocene, consuming such a large proportion of these foods that they must have spent much, if not all of their time at the coast. Inland skeletons reflect an almost entirely terrestrial diet. These results contradict hypotheses about seasonal population movements between the coast and the interior generated from excavated archaeological material. Considerable changes in many of our current views of the Late Stone Age of the south-western Cape will have to be made in order to accommodate these data.

  16. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    OpenAIRE

    Chen, Y; Randerson, JT; Morton, DC

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the south...

  17. Forecasting Malaria in the Western Amazon

    Science.gov (United States)

    Pan, W. K.; Zaitchik, B. F.; Pizzitutti, F.; Berky, A.; Feingold, B.; Mena, C.; Janko, M.

    2017-12-01

    Reported cases of malaria in the western Amazon regions of Peru, Colombia and Ecuador have more than tripled since 2011. Responding to this epidemic has been challenging given large-scale environmental impacts and demographic changes combined with changing financial and political priorities. In Peru alone, malaria cases increased 5-fold since 2011. Reasons include changes in the Global Malaria Fund, massive flooding in 2012, the "mega" El Nino in 2016, and continued natural resource extraction via logging and mining. These challenges prompted the recent creation of the Malaria Cero program in 2017 with the goal to eradicate malaria by 2021. To assist in malaria eradiation, a team of investigators supported by NASA have been developing an Early Warning System for Malaria. The system leverages demographic, epidemiological, meteorological and land use/cover data to develop a four-component system that will improve detection of malaria across the western Amazon Basin. System components include a land data assimilation system (LDAS) to estimate past and future hydrological states and flux, a seasonal human population model to estimate population at risk and spatial connectivity to high risk transmission areas, a sub-regional statistical model to identify when and where observed malaria cases have exceeded those expected, and an Agent Based Model (ABM) to integrate human, environmental, and entomological transmission dynamics with potential strategies for control. Data include: daily case detection reports between 2000 and 2017 from all health posts in the region of Loreto in the northern Peruvian Amazon; LDAS outputs (precipitation, temperature, humidity, solar radiation) at a 1km and weekly scale; satellite-derived estimates of land cover; and human population size from census and health data. This presentation will provide an overview of components, focusing on how the system identifies an outbreak and plans for technology transfer.

  18. Oil and gas projects in the Western Amazon: threats to wilderness, biodiversity, and indigenous peoples.

    Science.gov (United States)

    Finer, Matt; Jenkins, Clinton N; Pimm, Stuart L; Keane, Brian; Ross, Carl

    2008-08-13

    The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.

  19. Oil and Gas Projects in the Western Amazon: Threats to Wilderness, Biodiversity, and Indigenous Peoples

    Science.gov (United States)

    Finer, Matt; Jenkins, Clinton N.; Pimm, Stuart L.; Keane, Brian; Ross, Carl

    2008-01-01

    Background The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. Methodology/Principal Findings We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or “blocks” that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover ∼688,000 km2 of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Conclusions/Significance Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories. PMID:18716679

  20. Oil and gas projects in the Western Amazon: threats to wilderness, biodiversity, and indigenous peoples.

    Directory of Open Access Journals (Sweden)

    Matt Finer

    Full Text Available BACKGROUND: The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2 of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. CONCLUSIONS/SIGNIFICANCE: Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.

  1. Projected increases in the annual flood pulse of the western Amazon

    Science.gov (United States)

    Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Veliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William

    2016-04-01

    The impact of a changing climate on the Amazon basin is a subject of intensive research due to its rich biodiversity and the significant role of rain forest in carbon cycling. Climate change has also direct hydrological impact, and there have been increasing efforts to understand such dynamics at continental and subregional scales such as the scale of the western Amazon. New projections from the Coupled Model Inter- comparison Project Phase 5 (CMIP5) ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the river. Using extremes value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 years. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100- year return floods). These findings are in agreement with previously projected increases in high extremes under the Special Report on Emissions Scenarios (SRES) climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amid a growing literature that more strongly emphasises future droughts and their impact on the viability of the rain forest system over the greater Amazonia.

  2. A new species of Besleria (Gesneriaceae) from the western Amazon rainforest

    OpenAIRE

    Gabriel Emiliano Ferreira; Andréa Onofre De Araújo; Michael John Gilbert Hopkins; Alain Chautems

    2017-01-01

    Gabriel Emiliano Ferreira, Andréa Onofre De Araújo, Michael John Gilbert Hopkins, Alain Chautems (2017): A new species of Besleria (Gesneriaceae) from the western Amazon rainforest. Brittonia 69 (2): 241-245, DOI: 10.1007/s12228-017-9464-6

  3. Separating the Effects of Tropical Atlantic and Pacific SST-driven Climate Variability on Amazon Carbon Exchange

    Science.gov (United States)

    Liptak, J.; Keppel-Aleks, G.

    2016-12-01

    Amazon forests store an estimated 25% percent of global terrestrial carbon per year1, 2, but the responses of Amazon carbon uptake to climate change is highly uncertain. One source of this uncertainty is tropical sea surface temperature variability driven by teleconnections. El Nino-Southern Oscillation (ENSO) is a key driver of year-to-year Amazon carbon exchange, with associated temperature and precipitation changes favoring net carbon storage in La Nina years, and net carbon release during El Nino years3. To determine how Amazon climate and terrestrial carbon fluxes react to ENSO alone and in concert with other SST-driven teleconnections such as the Atlantic Multidecadal Oscillation (AMO), we force the atmosphere (CAM5) and land (CLM4) components of the CESM(BGC) with prescribed monthly SSTs over the period 1950—2014 in a Historical control simulation. We then run an experiment (PAC) with time-varying SSTs applied only to the tropical equatorial Pacific Ocean, and repeating SST seasonal cycle climatologies elsewhere. Limiting SST variability to the equatorial Pacific indicates that other processes enhance ENSO-driven Amazon climate anomalies. Compared to the Historical control simulation, warming, drying and terrestrial carbon loss over the Amazon during El Nino periods are lower in the PAC simulation, especially prior to 1990 during the cool phase of the AMO. Cooling, moistening, and net carbon uptake during La Nina periods are also reduced in the PAC simulation, but differences are greater after 1990 during the warm phase of the AMO. By quantifying the relationships among climate drivers and carbon fluxes in the Historical and PAC simulations, we both assess the sensitivity of these relationships to the magnitude of ENSO forcing and quantify how other teleconnections affect ENSO-driven Amazon climate feedbacks. We expect that these results will help us improve hypotheses for how Atlantic and Pacific climate trends will affect future Amazon carbon carbon

  4. The recent extreme hydrological events in the Western Amazon Basin: The role of the Pacific and Atlantic Oceans

    Science.gov (United States)

    Espinoza, J.; Ronchail, J.; Guyot, J.; Santini, W.; Lavado, W.; Ore-Hybam Observatory

    2013-05-01

    The Peruvian Amazonas River, the main western tributary of the Amazon basin, has a huge drainage (750 000 km2, 50% of which lies in the Andes) and a mean discharge estimated in 32 000 m3/s, which correspond to 15% of the Amazon discharge at the estuary. Recently, in a context of significant discharge diminution during the low-water season (1970-2012), severe hydrological events, as intense droughts and floods, have been reported in the Peruvian Amazonas River. As they have not been always observed in other regions of the Amazon basin and because they have strong impacts on vulnerable riverside residents, we shall focus on the origin and the predictability of the western Amazon extremes, providing a review of the main findings about the climate features during recent extreme hydrological events in western Amazon. While the lowest discharge value was observed in September 2010 (8 300 m3/s) at the hydrological Tamshiyacu station (near to Iquitos city), a rapid transition toward a high discharge was noticed in April 2011 (45 000 m3/s). Finally, in April 2012, during the on going high waters period, the Amazonas River is experimenting its historical highest discharge (55 000 m3/s). Our work is based on several datasets including in-situ discharge and rainfall information from ORE-HYBAM observatory. Extreme droughts (1995, 2005 and 2010) are generally associated with positive SST anomalies in the tropical North Atlantic and weak trade winds and water vapor transport toward the western Amazon, which, in association with increased subsidence over central and southern Amazon, explain the lack of rainfall and very low discharge values. But, in 1998, toward the end of the 1997-98 El Niño event, the drought has been more likely related to an anomalous divergence of water vapor in the western Amazon that is characteristic of a warm event in the Pacific. The years with a rapid transition form low waters to very high floods (e.g. September 2010 to April 2011) are characterized

  5. Palm harvest impact in the western Amazon, Andes and Pacific lowlands

    DEFF Research Database (Denmark)

    Balslev, Henrik

    2011-01-01

    Palms are the most useful group of plants in tropical American forests and in this project we study the effect of extraction and trade of palms on forests in the western Amazon, Andes, and Pacific lowlands. We determine the size of the resource by making palm community studies in the different...

  6. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.

    Science.gov (United States)

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.

  7. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  8. Origin, transport and deposition of leaf-wax biomarkers in the Amazon Basin and the adjacent Atlantic

    Science.gov (United States)

    Häggi, Christoph; Sawakuchi, André O.; Chiessi, Cristiano M.; Mulitza, Stefan; Mollenhauer, Gesine; Sawakuchi, Henrique O.; Baker, Paul A.; Zabel, Matthias; Schefuß, Enno

    2016-11-01

    Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the δD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The δ13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our δ13C results show depleted δ13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane δD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane δD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane δD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield δD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long

  9. Amazon River carbon dioxide outgassing fuelled by wetlands.

    Science.gov (United States)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C; Savoye, Nicolas; Deborde, Jonathan; Souza, Edivaldo Lima; Albéric, Patrick; Landim de Souza, Marcelo F; Roland, Fabio

    2014-01-16

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.

  10. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  11. Diel variation in the structure of fish assemblages in south western Amazon streams

    Directory of Open Access Journals (Sweden)

    Igor David da Costa

    Full Text Available Abstract: Aim We investigate the influence of luminosity, habitat conservation and pluviometric periods in fish assemblages of in pasture and forest small streams in western amazon. Methods Sampling was conducted every two months from July 2013 to April 2014 in nine first- and second-order streams using seine nets and dip nets during the day and night. Fish composition, richness and total abundance were determined for each sampling period. The PERMANOVA was used to evaluate the effects of land use, season, and photoperiod, on fish assemblages. Fish assemblage structure for each stream in the presence and absence of photoperiod was ordered by NMDS analysis. Results In the light period, 3,484 specimens from 69 species were collected, while 4,574 specimens from 71 species where collected in the dark period. No significant differences in abundance and species richness were recorded between the presence and absence of luminosity periods, rainy and dry seasons and streams in forest and deforested areas. We found evidence of the dark phase composition and richness of exclusive species (22% of species collected were found at night, which were greater than in the light period (20% of species. Conclusion Despite our failure to identify any nycterohemeral segregation, the results complement existing knowledge of regional ichthyofauna and help provide a better understanding of the distributional, behavioral and functional ecological patterns of fish assemblages.

  12. Soil and vegetation carbon stocks in Brazilian Western Amazonia: relationships and ecological implications for natural landscapes.

    Science.gov (United States)

    Schaefer, C E G R; do Amaral, E F; de Mendonça, B A F; Oliveira, H; Lani, J L; Costa, L M; Fernandes Filho, E I

    2008-05-01

    The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east-west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There

  13. Amazon Land Wars in the South of Para

    Science.gov (United States)

    Simmons, Cynthia S.; Walker, Robert T.; Arima, Eugenio Y.; Aldrich, Stephen P.; Caldas, Marcellus M.

    2007-01-01

    The South of Para, located in the heart of the Brazilian Amazon, has become notorious for violent land struggle. Although land conflict has a long history in Brazil, and today impacts many parts of the country, violence is most severe and persistent here. The purpose of this article is to examine why. Specifically, we consider how a particular Amazonian place, the so-called South of Para has come to be known as Brazil's most dangerous badland. We begin by considering the predominant literature, which attributes land conflict to the frontier expansion process with intensified struggle emerging in the face of rising property values and demand for private property associated with capitalist development. From this discussion, we distill a concept of the frontier, based on notions of property rights evolution and locational rents. We then empirically test the persistence of place-based violence in the region, and assess the frontier movement through an analysis of transportation costs. The findings from the analyses indicate that the prevalent theorization of frontier violence in Amazonia does little to explain its persistent and pervasive nature in the South of Para. To fill this gap in understanding, we develop an explanation based the geographic conception of place, and we use contentious politics theory heuristically to elucidate the ways in which general processes interact with place specific history to engender a landscape of violence. In so doing, we focus on environmental, cognitive, and relational mechanisms (and implicated structures), and attempt to deploy them in an explanatory framework that allows direct observation of the accumulating layers of the region's tragic history. We end by placing our discussion within a political ecological context, and consider the implications of the Amazon Land War for the environment.

  14. How Do Tropical Sea Surface Temperatures Influence the Seasonal Distribution of Precipitation in the Equatorial Amazon?.

    Science.gov (United States)

    Fu, Rong; Dickinson, Robert E.; Chen, Mingxuan; Wang, Hui

    2001-10-01

    Although the correlation between precipitation over tropical South America and sea surface temperatures (SSTs) over the Pacific and Atlantic has been documented since the early twentieth century, the impact of each ocean on the timing and intensity of the wet season over tropical South America and the underlying mechanisms have remained unclear. Numerical experiments have been conducted using the National Center for Atmospheric Research Community Climate Model Version 3 to explore these impacts. The results suggest the following.1)Seasonality of SSTs in the tropical Pacific and Atlantic has an important influence on precipitation in the eastern Amazon during the equinox seasons. The eastern side of the Amazon is influenced both by the direct thermal circulation of the Atlantic intertropical convergence zone (ITCZ) and by Rossby waves. These processes are enhanced by the seasonal cycles of SSTs in the tropical Atlantic and Pacific. SSTs affect Amazon precipitation much less during the solstice seasons and in the western Amazon.2)The seasonality of SSTs in the Atlantic more strongly affects Amazon rainfall than does that of the Pacific. Without the former, austral spring in the eastern equatorial Amazon would be a wet season, rather than the observed dry season. As a consequence of the lag at that time of the southward seasonal migration of the Atlantic SSTs behind that of the insolation, the Atlantic ITCZ centers itself near 10°N, instead of at the equator, imposing subsidence and low-level anticyclonic flow over the eastern equatorial Amazon, thus drying the air above the planetary boundary layer and reducing the low-level moisture convergence. Consequently, convection in the eastern Amazon is suppressed despite strong surface heating.3)Seasonality of the SSTs in the tropical Pacific also tends to reduce precipitation in the eastern Amazon during both spring and fall. In spring, subsidence is enhanced not only through a zonal direct circulation, but also through

  15. The importance of forest structure for carbon fluxes of the Amazon rainforest

    Science.gov (United States)

    Rödig, Edna; Cuntz, Matthias; Rammig, Anja; Fischer, Rico; Taubert, Franziska; Huth, Andreas

    2018-05-01

    Precise descriptions of forest productivity, biomass, and structure are essential for understanding ecosystem responses to climatic and anthropogenic changes. However, relations between these components are complex, in particular for tropical forests. We developed an approach to simulate carbon dynamics in the Amazon rainforest including around 410 billion individual trees within 7.8 million km2. We integrated canopy height observations from space-borne LIDAR in order to quantify spatial variations in forest state and structure reflecting small-scale to large-scale natural and anthropogenic disturbances. Under current conditions, we identified the Amazon rainforest as a carbon sink, gaining 0.56 GtC per year. This carbon sink is driven by an estimated mean gross primary productivity (GPP) of 25.1 tC ha‑1 a‑1, and a mean woody aboveground net primary productivity (wANPP) of 4.2 tC ha‑1 a‑1. We found that successional states play an important role for the relations between productivity and biomass. Forests in early to intermediate successional states are the most productive, and woody above-ground carbon use efficiencies are non-linear. Simulated values can be compared to observed carbon fluxes at various spatial resolutions (>40 m). Notably, we found that our GPP corresponds to the values derived from MODIS. For NPP, spatial differences can be observed due to the consideration of forest successional states in our approach. We conclude that forest structure has a substantial impact on productivity and biomass. It is an essential factor that should be taken into account when estimating current carbon budgets or analyzing climate change scenarios for the Amazon rainforest.

  16. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  17. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  18. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  19. Biogeography of squirrel monkeys (genus Saimiri): South-central Amazon origin and rapid pan-Amazonian diversification of a lowland primate.

    Science.gov (United States)

    Lynch Alfaro, Jessica W; Boubli, Jean P; Paim, Fernanda P; Ribas, Camila C; Silva, Maria Nazareth F da; Messias, Mariluce R; Röhe, Fabio; Mercês, Michelle P; Silva Júnior, José S; Silva, Claudia R; Pinho, Gabriela M; Koshkarian, Gohar; Nguyen, Mai T T; Harada, Maria L; Rabelo, Rafael M; Queiroz, Helder L; Alfaro, Michael E; Farias, Izeni P

    2015-01-01

    The squirrel monkey, Saimiri, is a pan-Amazonian Pleistocene radiation. We use statistical phylogeographic methods to create a mitochondrial DNA-based timetree for 118 squirrel monkey samples across 68 localities spanning all Amazonian centers of endemism, with the aim of better understanding (1) the effects of rivers as barriers to dispersal and distribution; (2) the area of origin for modern Saimiri; (3) whether ancestral Saimiri was a lowland lake-affiliated or an upland forest taxa; and (4) the effects of Pleistocene climate fluctuation on speciation. We also use our topology to help resolve current controversies in Saimiri taxonomy and species relationships. The Rondônia and Inambari centers in the southern Amazon were recovered as the most likely areas of origin for Saimiri. The Amazon River proved a strong barrier to dispersal, and squirrel monkey expansion and diversification was rapid, with all speciation events estimated to occur between 1.4 and 0.6Ma, predating the last three glacial maxima and eliminating climate extremes as the main driver of squirrel monkey speciation. Saimiri expansion was concentrated first in central and western Amazonia, which according to the "Young Amazon" hypothesis was just becoming available as floodplain habitat with the draining of the Amazon Lake. Squirrel monkeys also expanded and diversified east, both north and south of the Amazon, coincident with the formation of new rivers. This evolutionary history is most consistent with a Young Amazon Flooded Forest Taxa model, suggesting Saimiri has always maintained a lowland wetlands niche and was able to greatly expand its range with the transition from a lacustrine to a riverine system in Amazonia. Saimiri vanzolinii was recovered as the sister group to one clade of Saimiri ustus, discordant with the traditional Gothic vs. Roman morphological division of squirrel monkeys. We also found paraphyly within each of the currently recognized species: S. sciureus, S. ustus, and S

  20. Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments

    Science.gov (United States)

    Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano M.; Sawakuchi, André O.; Zabel, Matthias; Baker, Paul A.; Hefter, Jens; Mollenhauer, Gesine

    2017-05-01

    The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al / Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S / V) and cinnamyl to vanillyl (C / V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon

  1. Chemical and carbon isotope composition of Varzeas sediments and its interactions with some Amazon basin rivers

    International Nuclear Information System (INIS)

    Martinelli, L.A.

    1986-01-01

    Varzea sediment samples were collected on the banks of Amazon rivers and in the most important tributaires. The samples were taken in three different river stages. The major cations, pH, total nitrogen, total phosphorus, carbon and δ 13 C values were determined. The concentration of major basic cations - Ca,Mg,K e Na were greater in the main channel sediments than in the tributaires. Probably the differences in the substrats geology and erosion regimes of the basins account for this patterns, generally. The major basic cation, total phosphorus and carbon concentration were lower in the low Amazon Varzeas. Between the three differents sampling periods, pratically the elements concentration in Varzea sediment was constant. Finally, the datas showed that the most parts of Varzea carbon sediment had it's origin in the fine particulated organic matter transported by the Amazon river. (C.D.G.) [pt

  2. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    Science.gov (United States)

    Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.

    2011-10-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  3. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    International Nuclear Information System (INIS)

    Numata, Izaya; Cochrane, Mark A; Souza, Carlos M Jr; Sales, Marcio H

    2011-01-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  4. Applying NASA Imaging Radar Datasets to Investigate the Geomorphology of the Amazon's Planalto

    Science.gov (United States)

    McDonald, K. C.; Campbell, K.; Islam, R.; Alexander, P. M.; Cracraft, J.

    2016-12-01

    The Amazon basin is a biodiversity rich biome and plays a significant role into shaping Earth's climate, ocean and atmospheric gases. Understanding the history of the formation of this basin is essential to our understanding of the region's biodiversity and its response to climate change. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired during that time over the Planalto, in the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. We employ UAVSAR data collections to assess the utility of these high quality imaging radar data for use in identifying geomorphologic features and vegetation communities within the context of improving the understanding of evolutionary processes, and their utility in aiding interpretation of datasets from Earth-orbiting satellites to support a basin-wide characterization across the Amazon. We derive maps of landcover and river branching structure from UAVSAR imagery. We compare these maps to those derived using imaging radar datasets from the Japanese Space Agency's ALOS PALSAR and Digital Elevation Models (DEMs) from NASA's Shuttle Radar Topography Mission (SRTM). Results provide an understanding of the underlying geomorphology of the Amazon planalto as well as its relationship to geologic processes and will support interpretation of the evolutionary history of the Amazon Basin. Portions of this work have been carried out within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility.This work is carried out with support from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.

  5. Local and regional palm (Arecaceae) species richness patterns and their cross-scale determinants in the western Amazon

    DEFF Research Database (Denmark)

    Kristiansen, Thea; Svenning, J.-C.; Pedersen, Dennis

    2011-01-01

    divergent environmental conditions or biogeographic histories. 2. We investigated the cross-scale determinants of palm alpha and gamma diversity across the western Amazon using a large field-based data set: a census of all palm individuals in 312 transects, totalling 98 species. We used regression...

  6. Modelling basin-wide variations in Amazon forest photosynthesis

    Science.gov (United States)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to use parameterized and validated ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. Recent research has found major differences in above-ground net primary productivity (ANPP), above ground biomass and tree dynamics across Amazonia. West Amazonia is more dynamic, with younger trees, higher stem growth rates and lower biomass than central and eastern Amazon (Baker et al. 2004; Malhi et al. 2004; Phillips et al. 2004). A factor of three variation in above-ground net primary productivity has been estimated across Amazonia by Malhi et al. (2004). Different hypotheses have been proposed to explain the observed spatial variability in ANPP (Malhi et al. 2004). First, due to the proximity to the Andes, sites from western Amazonia tend to have richer soils than central and eastern Amazon and therefore soil fertility could possibly be highly related to the high wood productivity found in western sites. Second, if GPP does not vary across the Amazon basin then different patterns of carbon allocation to respiration could also explain the observed ANPP gradient. However since plant growth depends on the interaction between photosynthesis, transport of assimilates, plant respiration, water relations and mineral nutrition, variations in plant gross photosynthesis (GPP) could also explain the observed variations in ANPP. In this study we investigate whether Amazon GPP can explain variations of observed ANPP. We use a sun and shade canopy gas exchange model that has been calibrated and evaluated at five rainforest sites (Mercado et al. 2009) to simulate gross primary productivity of 50 sites across the Amazon basin during the period 1980-2001. Such simulation differs from the ones performed with global vegetation models (Cox et al. 1998; Sitch et al. 2003) where i) single plant functional

  7. First record of Annonaceae wood for the Neogene of South America, Amazon Basin, Brazil

    Directory of Open Access Journals (Sweden)

    Emilio Alberto Amaral Soares

    Full Text Available ABSTRACT: The relief of the regions of Manaus and Itacoatiara, Central Amazon, is supported by Neogene siliciclastic rocks, bounded at the base and top by lateritic paleosols and covered by quaternary sedimentary deposits from the Solimões-Amazon river system. This unit is informally assigned to the Novo Remanso Formation, consists of usually reddish and ferruginized sandstones, conglomerates and pelites, with few identified fossil records, a fact that has hindered its stratigraphic position, and the paleoenvironmental reconstruction of the last phase of the Amazon Basin settling. This study describes, for the first time, the occurrence of fossil wood in outcroppings of the left bank of the Amazon River, where anatomical and morphological data has enabled its characterization to the species level. Thus, the data marks the record of the Annonaceae in South America, as well as the depositional processes related to incorporation of organic material in the sandy layer and the fossilization processes that allowed its preservation. In an unprecedented way, this study has described Duguetiaxylon amazonicum nov. gen and sp. and provided information on the anatomical and systematic character, as well as data on plant-insect interaction, and a better understanding of the family.

  8. Impacts of land use on climate and ecosystem productivity over the Amazon and the South American continent

    DEFF Research Database (Denmark)

    Wu, M; Schurgers, Guy; Ahlström, A.

    2017-01-01

    vegetation dynamics over South America with a regional Earth system model that also accounts for vegetation dynamics. The biophysical and biogeochemical impacts from LULCC were addressed with two simulations over the CORDEX-South America domain. The results show that LULCC imposes local and remote influences...... conclude that ongoing deforestation around the fringes of the Amazon could impact pristine forest by changing mesoscale circulation patterns, amplifying the degradation of natural vegetation caused by direct, local impacts of land use activities.......The Amazon basin is characterized by a strong interplay between the atmosphere and vegetation. Anthropogenic land use and land cover change (LULCC) affects vegetation and the exchange of energy and water with the atmosphere. Here we have assessed potential LULCC impacts on climate and natural...

  9. Basin-Wide Amazon Forest Tree Mortality From a Large 2005 Storm

    Science.gov (United States)

    Negron Juarez, R. I.; Chambers, J. Q.; Guimaraes, G.; Zeng, H.; Raupp, C.; Marra, D. M.; Ribeiro, G.; Saatchi, S. S.; Higuchi, N.

    2010-12-01

    Blowdowns are a recurrent characteristic of Amazon forests and are produced, among others, by squall lines. Squall lines are aligned clusters (typical length of 1000 km, width of 200 km) of deep convective cells that produce heavy rainfall during the dry season and significant rainfall during the wet season. These squall lines (accompanied by intense downbursts from convective cells) have been associated with large blowdowns characterized by uprooted, snapped trees, and trees being dragged down by other falling trees. Most squall lines in Amazonia form along the northeastern coast of South America as sea breeze-induced instability lines and propagate inside the continent. They occur frequently (~4 times per month), and can reach the central and even extreme western parts of Amazonia. Squall lines can also be generated inside the Amazon and propagate toward the equator. In January 2005 a squall line propagated from south to north across the entire Amazon basin producing widespread forest tree mortality and contributed to the elevated mortality observed that year. Over the Manaus region (3.4 x104 km2), disturbed forest patches generated by the squall produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. The elevated mortality observed in the Central Amazon in 2005 is unlikely to be related to the 2005 Amazon drought since drought did not affect Central or Eastern Amazonia. Assuming a similar rate of forest mortality across the basin, the squall line could have potentially produced tree mortality estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. This vulnerability is likely to increase in a warming climate with models projecting an increase in storm intensity.

  10. The carbon balance of South America: a review of the status, decadal trends and main determinants

    Directory of Open Access Journals (Sweden)

    M. Gloor

    2012-12-01

    Full Text Available We summarise the contemporary carbon budget of South America and relate it to its dominant controls: population and economic growth, changes in land use practices and a changing atmospheric environment and climate. Component flux estimate methods we consider sufficiently reliable for this purpose encompass fossil fuel emission inventories, biometric analysis of old-growth rainforests, estimation of carbon release associated with deforestation based on remote sensing and inventories, and agricultural export data. Alternative methods for the estimation of the continental-scale net land to atmosphere CO2 flux, such as atmospheric transport inverse modelling and terrestrial biosphere model predictions, are, we find, hampered by the data paucity, and improved parameterisation and validation exercises are required before reliable estimates can be obtained. From our analysis of available data, we suggest that South America was a net source to the atmosphere during the 1980s (~ 0.3–0.4 Pg C a−1 and close to neutral (~ 0.1 Pg C a−1 in the 1990s. During the latter period, carbon uptake in old-growth forests nearly compensated for the carbon release associated with fossil fuel burning and deforestation.

    Annual mean precipitation over tropical South America as inferred from Amazon River discharge shows a long-term upward trend. Although, over the last decade dry seasons have tended to be drier, with the years 2005 and 2010 in particular experiencing strong droughts. On the other hand, precipitation during the wet seasons also shows an increasing trend. Air temperatures have also increased slightly. Also with increases in atmospheric CO2 concentrations, it is currently unclear what effect these climate changes are having on the forest carbon balance of the region. Current indications are that the forests of the Amazon Basin have acted as a substantial long-term carbon sink, but with the most recent

  11. Synergistic effects of drought and deforestation on the resilience of the south-eastern Amazon rainforest

    NARCIS (Netherlands)

    Staal, A.; Dekkers, S.; Hirota Magalhaes, M.; Nes, van E.H.

    2015-01-01

    The south-eastern Amazon rainforest is subject to ongoing deforestation and is expected to become drier due to climate change. Recent analyses of the distribution of tree cover in the tropics show three modes that have been interpreted as representing alternative stable states: forest, savanna and

  12. Maximizing Amazonia's Ecosystem Services: Juggling the potential for carbon storage, agricultural yield and biodiversity in the Amazon

    Science.gov (United States)

    O'Connell, C. S.; Foley, J. A.; Gerber, J. S.; Polasky, S.

    2011-12-01

    The Amazon is not only an exceptionally biodiverse and carbon-rich tract of tropical forest, it is also a case study in land use change. Over the next forty years it will continue to experience pressure from an urbanizing and increasingly affluent populace: under a business-as-usual scenario, global cropland, pasture and biofuels systems will carry on expanding, while the Amazon's carbon storage potential will likely become another viable revenue source under REDD+. Balancing those competing land use pressures ought also take into account Amazonia's high - but heterogeneous - biodiversity. Knowing where Amazonia has opportunities to make efficient or optimal trade offs between carbon storage, agricultural production and biodiversity can allow policymakers to direct or influence LUC drivers. This analysis uses a spatially-explicit model that takes climate and management into account to quantify the potential agricultural yield of both the Amazon's most important agricultural commodities - sugar, soy and maize - as well as several that are going to come into increasing prominence, including palm oil. In addition, it maps the potential for carbon to be stored in forest biomass and relative species richness across Amazonia. We then compare carbon storage, agricultural yield and species richness and identify areas where efficient trade offs occur between food, carbon, and biodiversity - three critical ecosystem goods and services provided by the world's largest tropical forest.

  13. Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean

    Science.gov (United States)

    Moutin, Thierry; Wagener, Thibaut; Caffin, Mathieu; Fumenia, Alain; Gimenez, Audrey; Baklouti, Melika; Bouruet-Aubertot, Pascale; Pujo-Pay, Mireille; Leblanc, Karine; Lefevre, Dominique; Helias Nunige, Sandra; Leblond, Nathalie; Grosso, Olivier; de Verneil, Alain

    2018-05-01

    Surface waters (0-200 m) of the western tropical South Pacific (WTSP) were sampled along a longitudinal 4000 km transect (OUTPACE cruise, DOI: 10.17600/15000900) during the austral summer (stratified) period (18 February to 3 April 2015) between the Melanesian Archipelago (MA) and the western part of the SP gyre (WGY). Two distinct areas were considered for the MA, the western MA (WMA), and the eastern MA (EMA). The main carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes provide a basis for the characterization of the expected trend from oligotrophy to ultra-oligotrophy, and the building of first-order budgets at the daily and seasonal timescales (using climatology). Sea surface chlorophyll a well reflected the expected oligotrophic gradient with higher values obtained at WMA, lower values at WGY, and intermediate values at EMA. As expected, the euphotic zone depth, the deep chlorophyll maximum, and nitracline depth deepen from west to east. Nevertheless, phosphaclines and nitraclines did not match. The decoupling between phosphacline and nitracline depths in the MA allows for excess P to be locally provided in the upper water by winter mixing. We found a significant biological soft tissue carbon pump in the MA sustained almost exclusively by dinitrogen (N2) fixation and essentially controlled by phosphate availability in this iron-rich environment. The MA appears to be a net sink for atmospheric CO2, while the WGY is in quasi-steady state. We suggest that the necessary excess P, allowing the success of nitrogen fixers and subsequent carbon production and export, is mainly brought to the upper surface by local deep winter convection at an annual timescale rather than by surface circulation. While the origin of the decoupling between phosphacline and nitracline remains uncertain, the direct link between local P upper water enrichment, N2 fixation, and organic carbon production and export, offers a possible shorter timescale than previously thought between

  14. Long-term Carbon Loss and Recovery Following Selective Logging in Amazon Forests

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Maoyi; Asner, Gregory P.

    2010-09-30

    Amazon deforestation contributes significantly to global carbon (C) emissions. In comparison, the contribution from selective logging to atmospheric CO2 emissions, and its impact on regional C dynamics, is highly uncertain. Using a new geographically-based modeling approach in combination with high resolution remote sensing data from 1999-2002, we estimate that C emissions were 0.04 – 0.05 Pg C yr-1 due to selective logging from a ~2,664,960 km2 region of the Brazilian Amazon. Selective logging was responsible for 15-19% higher carbon emissions than reported from deforestation (clear-cutting) alone. Our simulations indicated that forest carbon lost via selective logging lasts two to three decades following harvest, and that the original live biomass takes up to a century to recover, if the forests are not subsequently cleared. The two- to three-decade loss of carbon results from the biomass damaged by logging activities, including leaves, wood, and roots, estimated to be 89.1 Tg C yr-1 from 1999-2002 over the study region, leaving 70.0 Tg C yr-1 and 7.9 Tg C yr-1 to accumulate as coarse woody debris and soil C, respectively. While avoided deforestation is central to crediting rainforest nations for reduced carbon emissions, the extent and intensity of selective logging are also critical to determining carbon emissions in the context of Reduced Emissions from Deforestation and Forest Degradation (REDD). We show that a combination of automated high-resolution satellite monitoring and detailed forest C modeling can yield spatially explicit estimates of harvest related C losses and subsequent recovery in support of REDD and other international carbon market mechanisms.

  15. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Science.gov (United States)

    Sanders, Luciana M.; Taffs, Kathryn; Stokes, Debra; Sanders, Christian J.; Enrich-Prast, Alex; Amora-Nogueira, Leonardo; Marotta, Humberto

    2018-01-01

    Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers). A sediment accumulation rate of ˜ 4 mm yr-1 for the previous ˜ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m-2 yr-1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC) burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer) during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer) during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in the floodplain of the Amazon Basin.

  16. High-resolution forest carbon stocks and emissions in the Amazon.

    Science.gov (United States)

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  17. Species structure of sand fly (Diptera: Psychodidae fauna in the Brazilian western Amazon

    Directory of Open Access Journals (Sweden)

    Luiz Herman Soares Gil

    2009-11-01

    Full Text Available We surveyed areas of the state of Rondônia in western Amazon for phlebotomine, which are potential vectors of leishmaniasis. A total of 5,998 specimens were captured, resulting in the identification of 48 species within the Lutzomyia (99.98% and Brumptomyia (0.02% genera. The predominant species was Lutzomyia davisi, followed by Lutzomyia umbratilis, Lutzomyia llanosmartinsi, Lutzomyia c. carrerai, Lutzomyia dendrophyla, Lutzomyia nevesi and Lutzomyia whitmani. All sand flies identified as vectors for cutaneous leishmaniasis in Brazil, i.e., Lu. davisi, Lu. umbratilis, Lu. c. carrerai and Lu. whitmani, were found in the surveyed areas.

  18. Low vertical transfer rates of carbon inferred from radiocarbon analysis in an Amazon Podzol

    Directory of Open Access Journals (Sweden)

    C. A. Sierra

    2013-06-01

    Full Text Available Hydromorphic Podzol soils in the Amazon Basin generally support low-stature forests with some of the lowest amounts of aboveground net primary production (NPP in the region. However, they can also exhibit large values of belowground NPP that can contribute significantly to the total annual inputs of organic matter into the soil. These hydromorphic Podzol soils also exhibit a horizon rich in organic matter at around 1–2 m depth, presumably as a result of eluviation of dissolved organic matter and sesquioxides of Fe and Al. Therefore, it is likely that these ecosystems store large quantities of carbon by (1 large amounts of C inputs to soils dominated by their high levels of fine-root production, (2 stabilization of organic matter in an illuviation horizon due to significant vertical transfers of C. To assess these ideas we studied soil carbon dynamics using radiocarbon in two adjacent Amazon forests growing on contrasting soils: a hydromorphic Podzol and a well-drained Alisol supporting a high-stature terra firme forest. Our measurements showed similar concentrations of C and radiocarbon in the litter layer and the first 5 cm of the mineral soil for both sites. This result is consistent with the idea that the hydromorphic Podzol soil has similar soil C storage and cycling rates compared to the well-drained Alisol that supports a more opulent vegetation. However, we found important differences in carbon dynamics and transfers along the vertical profile. At both soils, we found similar radiocarbon concentrations in the subsoil, but the carbon released after incubating soil samples presented radiocarbon concentrations of recent origin in the Alisol, but not in the Podzol. There were no indications of incorporation of C fixed after 1950 in the illuvial horizon of the Podzol. With the aid of a simulation model, we predicted that only a minor fraction (1.7% of the labile carbon decomposed in the topsoil is transferred to the subsoil of the Podzol

  19. Ecological carbon sequestration via wood harvest and storage (WHS): Can it be a viable climate mitigation and adaptation strategy for the Amazon?

    Science.gov (United States)

    Zeng, N.

    2015-12-01

    A carbon sequestration strategy is proposed in which forests are sustainably managed to optimal carbon productivity, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a 'carbon scrubber' or 'carbon remover' that provides continuous sequestration (negative emissions). The stored wood is a semi-permanent carbon sink, but also serves as a 'biomass/bioenergy reserve' that could be utilized in the future. We discuss the particular relevance of this strategy to the Amazon which is under the double threat of climate change and deforestation. As an alternative to REDD, we propose mixed-use of peripheral Amazon basin while keeping the core of the Amazon intact. We argue that this may be a more practical solution in light of the likely climate change impact and human activities.

  20. An Atlantic influence on Amazon rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Zeng, Ning [University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD (United States); University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States)

    2010-02-15

    Rainfall variability over the Amazon basin has often been linked to variations in Pacific sea surface temperature (SST), and in particular, to the El Nino/Southern Oscillation (ENSO). However, only a fraction of Amazon rainfall variability can be explained by ENSO. Building upon the recent work of Zeng (Environ Res Lett 3:014002, 2008), here we provide further evidence for an influence on Amazon rainfall from the tropical Atlantic Ocean. The strength of the North Atlantic influence is found to be comparable to the better-known Pacific ENSO connection. The tropical South Atlantic Ocean also shows some influence during the wet-to-dry season transition period. The Atlantic influence is through changes in the north-south divergent circulation and the movement of the ITCZ following warm SST. Therefore, it is strongest in the southern part of the Amazon basin during the Amazon's dry season (July-October). In contrast, the ENSO related teleconnection is through anomalous east-west Walker circulation with largely concentrated in the eastern (lower) Amazon. This ENSO connection is seasonally locked to boreal winter. A complication due to the influence of ENSO on Atlantic SST causes an apparent North Atlantic SST lag of Amazon rainfall. Removing ENSO from North Atlantic SST via linear regression resolves this causality problem in that the residual Atlantic variability correlates well and is in phase with the Amazon rainfall. A strong Atlantic influence during boreal summer and autumn is particularly significant in terms of the impact on the hydro-ecosystem which is most vulnerable during the dry season, as highlighted by the severe 2005 Amazon drought. Such findings have implications for both seasonal-interannual climate prediction and understanding the longer-term changes of the Amazon rainforest. (orig.)

  1. Methane and carbon dioxide fluxes in the waterlogged forests of south and middle taiga of Western Siberia

    Science.gov (United States)

    Glagolev, M. V.; Ilyasov, D. V.; Terentieva, I. E.; Sabrekov, A. F.; Mochenov, S. Yu; Maksutov, S. S.

    2018-03-01

    Field measurements of methane and carbon dioxide flux were carried out using portable static chambers in south (ST) and middle taiga subzones (MT) of Western Siberia (WS) from 16 to 24 August 2015. Two sites were investigated: Bakchar bog in the Tomsk region (in typical ecosystems for this area: oligotrophic bog/forest border and waterlogged forest) and Shapsha in Khanty-Mansiysk region (in waterlogged forest). The highest values of methane fluxes (mgC·m-2·h-1) were obtained in burnt wet birch forest (median 6.96; first quartile 3.12; third quartile 8.95). The lowest values of methane fluxes (among the sites mentioned above) were obtained in seasonally waterlogged forests (median -0.08; first and third quartiles are -0.14 and -0.03 mgC·m-2·h-1 respectively). These data will help to estimate the regional methane flux from the waterlogged and periodically flooded forests and to improve its prediction.

  2. Future drying of the southern Amazon and central Brazil

    Science.gov (United States)

    Yoon, J.; Zeng, N.; Cook, B.

    2008-12-01

    Recent climate modeling suggests that the Amazon rainforest could exhibit considerable dieback under future climate change, a prediction that has raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable. However, the periphery, notably the southern edge, is in danger of drying out, driven by two main processes. First, a decline in precipitation of 24% in the southern Amazon lengthens the dry season and reduces soil moisture, despite of an increase in precipitation during the wet season, due to the nonlinear response in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season precipitation: (1) a stronger north-south tropical Atlantic sea surface temperature gradient; (2) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure. Secondly, evaporation will increase due to the general warming, thus also reducing soil moisture. As a consequence, the median of the models projects a reduction of vegetation by 20%, and enhanced fire carbon flux by 10-15% in the southern Amazon, central Brazil, and parts of the Andean Mountains. Because the southern Amazon is also under intense human influence, the double pressure of deforestation and climate change may subject the region to dramatic changes in the 21st century.

  3. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil

    Directory of Open Access Journals (Sweden)

    L. M. Sanders

    2018-01-01

    Full Text Available Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers. A sediment accumulation rate of  ∼ 4 mm yr−1 for the previous  ∼ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m−2 yr−1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in

  4. Leaching Characteristics of Uranium And Copper from Their Mineralization in the Carbonate Rich latosol of Abu-Thor Locality, South Western Sinai, Egypt

    International Nuclear Information System (INIS)

    El-Sheikh, E.M.; Ghazala, R.A.; Abdelwarith, A.; Salem, F.; Ali, S.

    2015-01-01

    The chemical processing of the poly-mineralized carbonate rich latosol ore occurring at Abu-Thor locality of south western Sinai area has been studied for the recovery of uranium and copper metal values. A technological sample assaying 700 ppm U and 9.7% Cu was collected. In the present study, two successive percolation leaching procedures were performed after determination of optimum leaching factors by agitation leaching process. The first was carried out for uranium recovery by using urea as organic leaching agent which was possible to achieve leaching efficiency exceeding 90.3%. This procedure was followed by a second one for copper recovery using ammonium hydroxide solution and ammonium carbonate. The obtained dissolution efficiency was about 93%. The leached metal values namely U and Cu from the studied ore were then extracted as marketable products in the form of ammonium diuranate and copper sulphate, respectively.

  5. The isotopic composition of soil organic carbon on a north - south transect in western Canada

    Czech Academy of Sciences Publication Activity Database

    Bird, M.; Šantrůčková, Hana; Lloyd, J.; Lawson, E.

    2002-01-01

    Roč. 53, - (2002), s. 393-403 ISSN 1351-0754 Institutional research plan: CEZ:AV0Z6066911 Keywords : isotopic composition * soil organic carbon * western Canada Subject RIV: EH - Ecology, Behaviour Impact factor: 1.452, year: 2002

  6. Size and frequency of natural forest disturbances and the Amazon forest carbon balance

    Science.gov (United States)

    F.D.B. Espirito-Santo; M. Gloor; M. Keller; Y. Malhi; S. Saatchi; B. Nelson; R.C. Oliveira Junior; C. Pereira; J. Lloyd; S. Frolking; M. Palace; Y.E. Shimabukuro; V. Duarte; A. Monteagudo Mendoza; G. Lopez-Gonzalez; T.R. Baker; T.R. Feldpausch; R.J.W. Brienen; G.P. Asner; D.S. Boyd; O.L. Phillips

    2014-01-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel...

  7. Preliminary report on osteochondrosis in cattle in the north-western parts of South Africa

    Directory of Open Access Journals (Sweden)

    Leon Prozesky

    2016-07-01

    Full Text Available The north-western part of South Africa, in particular, is well known for mineral imbalances. Aphosphorosis, resulting in rickets and osteomalacia, received a lot of attention at the turn of the nineteenth century (1882–1912. This was followed in 1997 by research on Vryburg hepatosis, another area-specific mineral imbalance–related disease in young calves reared on manganese-rich soil derived from the weathering of dolomitic (carbonate rock formations. In 1982, a totally new syndrome (osteochondrosis manifested in, amongst others, areas in South Africa where aphosphorosis was rife. Osteochondrosis was also identified in the south-western parts of Namibia as well as southern Botswana and other areas in South Africa. Osteochondrosis has a multifactorial aetiology and this study focused on the role of minerals, particularly phosphorus, in the development of the disease. A significant improvement in the clinical signs in experimental animals and a reduction of osteochondrosis occurred on farms where animals received bioavailable trace minerals and phosphorus as part of a balanced lick. An increase in the occurrence of the disease on farms during severe drought conditions in 2012–2013 prompted researchers to investigate the possible role of chronic metabolic acidosis in the pathogenesis of the disease.

  8. Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles.

    Science.gov (United States)

    Barthem, Ronaldo B; Goulding, Michael; Leite, Rosseval G; Cañas, Carlos; Forsberg, Bruce; Venticinque, Eduardo; Petry, Paulo; Ribeiro, Mauro L de B; Chuctaya, Junior; Mercado, Armando

    2017-02-06

    We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species-B. rousseauxii, B. platynemum, and B. juruense-spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born.

  9. The Amazon hydrometeorology: Climatology, variability and links to changes in weather patterns

    Science.gov (United States)

    Fernandes, Katia De Avila

    -Southern Oscillation. During El Nino (La Nina) a strong (weak) subtropical jet stream over South America tends to prevent transient systems from moving to southern Amazon, resulting in decreased (increased) CAI days during SON. The second mode of co-variability shows an anomalously warm western Indian Ocean also related to strong subtropical jet stream, except the jet is positioned farther north in South America, which along with the absence of a well defined subpolar jet stream, favors the northward displacement of transient waves into central South America, but show little response in southern Amazon. The CAI days reconstructed from the first and second modes do not present any significant trend in southern Amazon. CAI days reconstructed from the third mode of co-variability on the other hand, reproduces the SON observed trend in almost its entirety. The third mode of co-variability describes negative (positive) anomalies in CAI days associated with cold (warm) SST anomalies in the eastern tropical Pacific, anomalous wavetrain in the Southern Hemisphere and Walker Cell displacement that are unfavorable (favorable) to the incursion of CAI into southern Amazon. The temporal evolution of this mode correlates negatively with the Pacific Decadal Oscillation, suggesting that the recent gradual shift in PDO polarity reflected on the interannual response of Southern Pacific atmospheric patterns, hence on the behavior of transients propagation. The negative PDO index and its related atmospheric patterns are in agreement with the reduced observed CAI days, which also related to a delayed wet season onset in the southern Amazon.

  10. Phylogeny of Amazona barbadensis and the Yellow-headed Amazon complex (Aves: Psittacidae): a new look at South American parrot evolution.

    Science.gov (United States)

    Urantówka, Adam Dawid; Mackiewicz, Paweł; Strzała, Tomasz

    2014-01-01

    The Yellow-shouldered Amazon (Amazona barbadensis) is the sole parrot of the genus Amazona that inhabits only dry forests. Its population has been dropping; therefore it has been the topic of many studies and conservation efforts. However, the phylogenetic relationship of this species to potential relatives classified within the Yellow-Headed Amazon (YHA) complex are still not clear. Therefore, we used more extensive data sets, including the newly sequenced mitochondrial genome of A. barbadensis, to conduct phylogenetic analyses. Various combinations of genes and many phylogenetic approaches showed that A. barbadensis clustered significantly with A. ochrocephala ochrocephala from Colombia and Venezuela, which created the Northern South American (NSA) lineage, clearly separated from two other lineages within the YHA complex, the Central (CA) and South American (SA). Tree topology tests and exclusion of rapidly evolving sites provided support for a NSA+SA grouping. We propose an evolutionary scenario for the YHA complex and its colonization of the American mainland. The NSA lineage likely represents the most ancestral lineage, which derived from Lesser Antillean Amazons and colonized the northern coast of Venezuela about a million years ago. Then, Central America was colonized through the Isthmus of Panama, which led to the emergence of the CA lineage. The southward expansion to South America and the origin of the SA lineage happened almost simultaneously. However, more intensive or prolonged gene flow or migrations have led to much weaker geographic differentiation of genetic markers in the SA than in the CA lineage.

  11. Freshwater shrimps (Macrobrachium depressimanum and Macrobrachium jelskii) as biomonitors of Hg availability in the Madeira River Basin, Western Amazon.

    Science.gov (United States)

    Galvão, R C F; Holanda, I B B; De Carvalho, D P; Almeida, R; Souza, C M M; Lacerda, L D; Bastos, W R

    2018-01-10

    Total mercury (THg) concentrations measured in two freshwater shrimp species (Macrobrachium depressimanum and Macrobrachium jelskii) showed a relationship with the location of artisanal and small-scale gold mining (ASGM) from the Madeira River Basin, Western Amazon. Between August 2009 and May 2010, 212 shrimp samples were collected in the confluence of the Madeira River with three of its tributaries (Western Amazon). THg concentration was quantified in the exoskeleton, hepatopancreas and muscle tissue of the shrimps by cold vapor atomic absorption spectrophotometry. There were no significant differences between the two shrimp species when samples came from the Madeira River, but Hg concentrations were significantly lower in a tributary outside the influence of the gold mining area. Average THg concentrations were higher in the hepatopancreas (up to 160.0 ng g -1 ) and lower in the exoskeleton and muscle tissue (10.0-35.0 ng g -1 and Madeira River respond to local environmental levels of Hg and can be considered as biomonitors for environmental Hg at this spatial scale. These organisms are important for moving Hg up food webs including those that harbor economic significant fish species and thus enhancing human exposure.

  12. 137Cs in the western South Pacific Ocean

    International Nuclear Information System (INIS)

    Yamada, Masatoshi; Wang Zhongliang

    2007-01-01

    The 137 Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea (two stations) Basins of the western South Pacific Ocean by γ spectrometry using a low background Ge detector. The 137 Cs activities ranged from 1.4 to 2.3 Bq m -3 over the depth interval 0-250 m and decreased exponentially from the subsurface to 1000 m depth. The distribution profiles of 137 Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. There was a remarkable difference for the vertical profiles of 137 Cs activity between the East Caroline Basin station in this study and the GEOSECS (Geochemical Ocean Sections Study) station at the same latitude in the Equatorial Pacific Ocean; the 137 Cs inventory over the depth interval 100-1000 m increased from 400 ± 30 Bq m -2 to 560 ± 30 Bq m -2 during the period from 1973 to 1992. The total 137 Cs inventories in the western South Pacific Ocean ranged from 850 ± 70 Bq m -2 in the Coral Sea Basin to 1270 ± 90 Bq m -2 in the South Fiji Basin. Higher 137 Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137 Cs inventories were 1.9-4.5 times (2.9 ± 0.7 on average) and 1.7-4.3 times (3.1 ± 0.7 on average) higher than that of the expected deposition density of atmospheric global fallout at the same latitude and that of the estimated 137 Cs deposition density in 10 o latitude by 10 deg. longitude grid data obtained by Aoyama et al. [Aoyama M, Hirose K, Igarashi Y. Re-construction and updating our understanding on the global weapons tests 137 Cs fallout. J Environ Monit 2006;8:431-438], respectively. The possible processes for higher 137 Cs inventories in the western South Pacific Ocean than that of the expected deposition density of atmospheric global fallout may be attributable to the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137 Cs from

  13. Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system

    Directory of Open Access Journals (Sweden)

    Mario Vicente Caputo

    Full Text Available ABSTRACT: The development of the transcontinental Amazon River System involved geological events in the Andes Chain; Vaupés, Purus and Gurupá arches; sedimentary basins of the region and sea level changes. The origin and age of this river have been discussed for decades, and many ideas have been proposed, including those pertaining to it having originated in the Holocene, Pleistocene, Pliocene, Late Miocene, or even earlier times. Under this context, the geology of the sedimentary basins of northern Brazil has been analyzed from the Mesozoic time on, and some clarifications are placed on its stratigraphy. Vaupés Arch, in Colombia, was uplifted together with the Andean Mountains in the Middle Miocene time. In the Cenozoic Era, the Purus Arch has not blocked this drainage system westward to marine basins of Western South America or eastward to the Atlantic Ocean. Also the Gurupá Arch remained high up to the end of Middle Miocene, directing this drainage system westward. With the late subsidence and breaching of the Gurupá Arch and a major fall in sea level, at the beginning of the Late Miocene, the Amazon River quickly opened its pathway to the west, from the Marajó Basin, through deep headward erosion, capturing a vast drainage network from cratonic and Andean areas, which had previously been diverted towards the Caribbean Sea. During this time, the large siliciclastic influx to the Amazon Mouth (Foz do Amazonas Basin and its fan increased, due to erosion of large tracts of South America, linking the Amazon drainage network to that of the Marajó Basin. This extensive exposure originated the Late Miocene (Tortonian unconformity, which marks the onset of the transcontinental Amazon River flowing into the Atlantic Ocean.

  14. Mesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic

    Directory of Open Access Journals (Sweden)

    Brandon J. Conroy

    2017-08-01

    Full Text Available Diazotrophic cyanobacteria, those capable of fixing di-nitrogen (N2, are considered one of the major sources of new nitrogen (N in the oligotrophic tropical ocean, but direct incorporation of diazotrophic N into food webs has not been fully examined. In the Amazon River-influenced western tropical North Atlantic (WTNA, diatom diazotroph associations (DDAs and the filamentous colonial diazotrophs Trichodesmium have seasonally high abundances. We sampled epipelagic mesozooplankton in the Amazon River plume and WTNA in May–June 2010 to investigate direct grazing by mesozooplankton on two DDA populations: Richelia associated with Rhizosolenia diatoms (het-1 and Hemiaulus diatoms (het-2, and on Trichodesmium using highly specific qPCR assays targeting nitrogenase genes (nifH. Both DDAs and Trichodesmium occurred in zooplankton gut contents, with higher detection of het-2 predominantly in calanoid copepods (2.33–16.76 nifH copies organism-1. Abundance of Trichodesmium was low (2.21–4.03 nifH copies organism-1, but they were consistently detected at high salinity stations (>35 in calanoid copepods. This suggests direct grazing on DDAs, Trichodesmium filaments and colonies, or consumption as part of sinking aggregates, is common. In parallel with the qPCR approach, a next generation sequencing analysis of 16S rRNA genes identified that cyanobacterial assemblage associated with zooplankton guts was dominated by the non-diazotrophic unicellular phylotypes Synechococcus (56% and Prochlorococcus (26%. However, in two separate calanoid copepod samples, two unicellular diazotrophs Candidatus Atelocyanobacterium thalassa (UCYN-A and Crocosphaera watsonii (UCYN-B were present, respectively, as a small component of cyanobacterial assemblages (<2%. This study represents the first evidence of consumption of DDAs, Trichodesmium, and unicellular cyanobacteria by calanoid copepods in an area of the WTNA known for high carbon export. These diazotroph populations

  15. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    Directory of Open Access Journals (Sweden)

    Acácio Aparecido Navarrete

    2011-10-01

    Full Text Available The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure and ammonia-oxidizing Archaea (richness and community composition were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009 from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old, agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA of Archaea (306 sequences, the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366, followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715, crops (H' = 1.4613; D = 0.3309 and secondary forest (H' = 0.8633; D = 0.5405. All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 % previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

  16. Climatic and ecological future of the Amazon: likelihood and causes of change

    Science.gov (United States)

    Cook, B.; Zeng, N.; Yoon, J.-H.

    2010-05-01

    Some recent climate modeling results suggested a possible dieback of the Amazon rainforest under future climate change, a prediction that raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable as rainfall is projected to increase in nearly all models. However, the periphery, notably the southern edge of the Amazon and further south in central Brazil, are in danger of drying out, driven by two main processes. Firstly, a decline in precipitation of 22% in the southern Amazon's dry season (May-September) reduces soil moisture, despite an increase in precipitation during the wet season, due to nonlinear responses in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season rainfall: (1) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure; (2) a stronger north-south tropical Atlantic sea surface temperature gradient, and to lesser degree a warmer eastern equatorial Pacific. Secondly, evaporation demand will increase due to the general warming, further reducing soil moisture. In terms of ecosystem response, higher maintenance cost and reduced productivity under warming may also have additional adverse impact. The drying corresponds to a lengthening of the dry season by 11 days. As a consequence, the median of the models projects a reduction of 20% in vegetation carbon stock in the southern Amazon, central Brazil, and parts of the Andean Mountains. Further, VEGAS predicts enhancement of fire risk by 10-15%. The increase in fire is primarily due to the reduction in soil moisture, and the decrease in dry season rainfall, which

  17. Synergistic effects of drought and deforestation on the resilience of the south-eastern Amazon rainforest

    OpenAIRE

    Staal, A.; Dekkers, S.; Hirota Magalhaes, M.; Nes, van, E.H.

    2015-01-01

    The south-eastern Amazon rainforest is subject to ongoing deforestation and is expected to become drier due to climate change. Recent analyses of the distribution of tree cover in the tropics show three modes that have been interpreted as representing alternative stable states: forest, savanna and treeless states. This situation implies that a change in environmental conditions, such as in the climate, could cause critical transitions from a forest towards a savanna ecosystem. Shifts to savan...

  18. Stability in a changing world - palm community dynamics in the hyperdiverse western Amazon over 17 years.

    Science.gov (United States)

    Olivares, Ingrid; Svenning, Jens-Christian; van Bodegom, Peter M; Valencia, Renato; Balslev, Henrik

    2017-03-01

    Are the hyperdiverse local forests of the western Amazon undergoing changes linked to global and local drivers such as climate change, or successional dynamics? We analyzed local climatic records to assess potential climatic changes in Yasuní National Park, Ecuador, and compared two censuses (1995, 2012) of a palm community to assess changes in community structure and composition. Over 17 years, the structure and composition of this palm community remained remarkably stable. Soil humidity was significantly lower and canopy conditions were significantly more open in 2012 compared to 1995, but local climatic records showed that no significant changes in precipitation, temperature or river level have occurred during the last decade. Thus, we found no evidence of recent directional shifts in climate or the palm community in Yasuní. The absence of changes in local climate and plant community dynamics in Yasuní contrasts with recent findings from eastern Amazon, where environmental change is driving significant changes in ecosystem dynamics. Our findings suggest that until now, local forests in the northwest Amazon may have escaped pressure from climate change. The stability of this rich palm community embedded in the hyperdiverse Yasuní National Park underlines its uniqueness as a sanctuary for the protection of Amazonian diversity from global change impacts. © 2016 John Wiley & Sons Ltd.

  19. New views on "old" carbon in the Amazon River: Insight from the source of organic carbon eroded from the Peruvian Andes

    Science.gov (United States)

    Clark, K. E.; Hilton, R. G.; West, A. J.; Malhi, Y.; Gröcke, D. R.; Bryant, C. L.; Ascough, P. L.; Robles Caceres, A.; New, M.

    2013-05-01

    rivers play a key role in the delivery of particulate organic carbon (POC) to large river systems and the ocean. Due to the extent of its drainage area and runoff, the Amazon River is one of Earth's most important biogeochemical systems. However, the source of POC eroded from the humid region of the Eastern Andes and the input of fossil POC from sedimentary rocks (POCfossil) remains poorly constrained. Here we collected suspended sediments from the Kosñipata River during flood events to better characterize Andean POC, measuring the nitrogen to organic carbon ratio (N/C), stable carbon isotopes (δ13Corg) and radiocarbon (Δ14Corg). Δ14Corg values ranged from -711‰ to -15‰, and significant linear trends between Δ14Corg, N/C and δ13Corg suggested that this reflects the mixing of POCfossil with very young organic matter (Δ14Corg 50‰) from the terrestrial biosphere (POCnon-fossil). Using N/C and Δ14Corg in an end-member mixing analysis, we quantify the fraction of POCfossil (to within 0.1) and find that it contributes a constant proportion of the suspended sediment mass (0.37 ± 0.03%) and up to 80% of total POC. In contrast, the relative contribution of POCnon-fossil was variable, being most important during the rising limb and peak discharges of flood events. The new data shed light on published measurements of "old" POC (low Δ14Corg) in Andean-fed tributaries of the Amazon River, with their Δ14Corg and δ13Corg values consistent with variable addition of POCfossil. The findings suggest a greater persistence of Andean POC in the lowland Amazon than previously recognized.

  20. Introducing carbon taxes in South Africa

    International Nuclear Information System (INIS)

    Alton, Theresa; Arndt, Channing; Davies, Rob; Hartley, Faaiqa; Makrelov, Konstantin; Thurlow, James; Ubogu, Dumebi

    2014-01-01

    Highlights: • South Africa is considering introducing a carbon tax to reduce greenhouse gas emissions. • A phased-in tax of US$30 per ton can achieve national emissions reductions targets set for 2025. • Ignoring all potential benefits, the tax reduces national welfare by about 1.2 percent in 2025. • Border carbon adjustments reduce welfare losses while maintaining emissions reductions. • The mode for recycling carbon tax revenues strongly influences distributional outcomes. - Abstract: South Africa is considering introducing a carbon tax to reduce greenhouse gas emissions. Following a discussion of the motivations for considering a carbon tax, we evaluate potential impacts using a dynamic economywide model linked to an energy sector model including a detailed evaluation of border carbon adjustments. Results indicate that a phased-in carbon tax of US$30 per ton of CO 2 can achieve national emissions reductions targets set for 2025. Relative to a baseline with free disposal of CO 2 , constant world prices and no change in trading partner behavior, the preferred tax scenario reduces national welfare and employment by about 1.2 and 0.6 percent, respectively. However, if trading partners unilaterally impose a carbon consumption tax on South African exports, then welfare/employment losses exceed those from a domestic carbon tax. South Africa can lessen welfare/employment losses by introducing its own border carbon adjustments. The mode for recycling carbon tax revenues strongly influences distributional outcomes, with tradeoffs between growth and equity

  1. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans

    Science.gov (United States)

    Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides

    2002-11-01

    Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well

  2. Carbon balance variability in the Amazon Basin with climate change based on regular atmospheric profiling of greenhouse gases

    Science.gov (United States)

    Gatti, L.; Domingues, L. G.; Gloor, M.; Miller, J. B.; Peters, W.; Silva, M. G.; Correia, C. S. D. C.; Basso, L. S.; Alden, C. B.; Borges, V. F.; Marani, L.; Santos, R. S.; Crispim, S. P.; Sanches, A.; Costa, W. R.

    2017-12-01

    Net carbon exchange between tropical land and the atmosphere is potentially important because the vast amounts of carbon in forests and soils can be released on short time-scales e.g. via deforestation or changes in temperature and precipitation. Such changes may thus cause feedbacks on global climate as have been predicted in earth system models. The Amazon is the most significant region in the global carbon cycle, hosting by far the largest carbon vegetation and soil carbon pools ( 200 PgC). From 2010 onwards we have extended an earlier greenhouse gas measurement program to include regular vertical profiles of CO2 from the ground up to 4.5 km height at four sites along the main air-stream over the Amazon Basin. Our measurements demonstrate that surface flux signals are primarily concentrated to the lower 2 km and thus vertical profile measurements are ideally suited to estimate greenhouse gas balances. To understand the role of Amazon in global carbon budget it is important to maintain a long period of measurements that can represent the whole region. Our results already permit a range of insights about the magnitude, seasonality, inter-annual variation of carbon fluxes and their climate controls. Most recent years have been anomalously hot with the southern part of the Basin having warmed the most. Precipitation regimes also seem to have shifted with an increase in extreme floods. For the specific period we will discuss the period of 2010 to 2016, where the years 2010 and 2015/16 were anomalously dry and hot (both El Nino years) and the year 2013 was the wettest and coldest year. This period provides an interesting contrast of climatic conditions in a warming world with increasing human pressures and we will present the carbon balance for the basin during the last 7 years. We will analyze the effect of this climate variability on annual and seasonal carbon balances for these seven years using our atmospheric data. Our data permit us not only to estimate net CO2

  3. Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon

    Directory of Open Access Journals (Sweden)

    Paula Marcela Duque Jaramillo

    2013-12-01

    Full Text Available Cowpea (Vigna unguiculata is an important grain-producing legume that can forego nitrogen fertilization by establishing an efficient symbiosis with nitrogen-fixing bacteria. Although inoculating strains have already been selected for this species, little is known about the genotypic and symbiotic diversity of native rhizobia. Recently, Bradyrhizobium has been shown to be the genus most frequently trapped by cowpea in agricultural soils of the Amazon region. We investigated the genetic and symbiotic diversity of 148 bacterial strains with different phenotypic and cultural properties isolated from the nodules of the trap species cowpea, which was inoculated with samples from soils under agroforestry systems from the western Amazon. Sixty non-nodulating strains indicated a high frequency of endophytic strains in the nodules. The 88 authenticated strains had varying symbiotic efficiency. The SPAD (Soil Plant Analysis Development index (indirect measurement of chlorophyll content was more efficient at evaluating the contribution of symbiotic N2-fixation than shoot dry matter under axenic conditions. Cowpea-nodulating bacteria exhibited a high level of genetic diversity, with 68 genotypes identified by BOX-PCR. Sequencing of the 16S rRNA gene showed a predominance of the genus Bradyrhizobium, which accounted for 70 % of all strains sequenced. Other genera identified were Rhizobium, Ochrobactrum, Paenibacillus, Bosea, Bacillus, Enterobacter, and Stenotrophomonas. These results support the promiscuity of cowpea and demonstrate the high genetic and symbiotic diversity of rhizobia in soils under agroforestry systems, with some strains exhibiting potential for use as inoculants. The predominance of Bradyrhizobium in land uses with different plant communities and soil characteristics reflects the adaptation of this genus to the Amazon region.

  4. Variability in warm-season atmospheric circulation and precipitation patterns over subtropical South America: relationships between the South Atlantic convergence zone and large-scale organized convection over the La Plata basin

    Science.gov (United States)

    Mattingly, Kyle S.; Mote, Thomas L.

    2017-01-01

    Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.

  5. A deforestation-induced tipping point for the South American monsoon system

    Science.gov (United States)

    Boers, Niklas; Marwan, Norbert; Barbosa, Henrique M. J.; Kurths, Jürgen

    2017-01-01

    The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback.

  6. Drought sensitivity of the Amazon rainforest.

    Science.gov (United States)

    Phillips, Oliver L; Aragão, Luiz E O C; Lewis, Simon L; Fisher, Joshua B; Lloyd, Jon; López-González, Gabriela; Malhi, Yadvinder; Monteagudo, Abel; Peacock, Julie; Quesada, Carlos A; van der Heijden, Geertje; Almeida, Samuel; Amaral, Iêda; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R; Bánki, Olaf; Blanc, Lilian; Bonal, Damien; Brando, Paulo; Chave, Jerome; de Oliveira, Atila Cristina Alves; Cardozo, Nallaret Dávila; Czimczik, Claudia I; Feldpausch, Ted R; Freitas, Maria Aparecida; Gloor, Emanuel; Higuchi, Niro; Jiménez, Eliana; Lloyd, Gareth; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Neill, David A; Nepstad, Daniel; Patiño, Sandra; Peñuela, Maria Cristina; Prieto, Adriana; Ramírez, Fredy; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Thomas, Anne Sota; Steege, Hans Ter; Stropp, Juliana; Vásquez, Rodolfo; Zelazowski, Przemyslaw; Alvarez Dávila, Esteban; Andelman, Sandy; Andrade, Ana; Chao, Kuo-Jung; Erwin, Terry; Di Fiore, Anthony; Honorio C, Eurídice; Keeling, Helen; Killeen, Tim J; Laurance, William F; Peña Cruz, Antonio; Pitman, Nigel C A; Núñez Vargas, Percy; Ramírez-Angulo, Hirma; Rudas, Agustín; Salamão, Rafael; Silva, Natalino; Terborgh, John; Torres-Lezama, Armando

    2009-03-06

    Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.

  7. Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts

    Science.gov (United States)

    Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter

    2017-06-01

    Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets

  8. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  9. On the offshore dispersal of the Amazon's Plume in the North Atlantic: Comments on the paper by A. Longhurst, ``Seasonal cooling and blooming in tropical oceans''

    Science.gov (United States)

    Muller-Karger, F. E.; Richardson, P. L.; Mcgillicuddy, D.

    1995-11-01

    Coastal Zone Color Scanner (CZCS) satellite images show extensive plumes of discolored water extending from South America into the western tropical Atlantic. The most conspicuous plumes originate at the mouths of the Amazon and Orinoco Rivers, and plumes originating at smaller rivers can also be seen from space. In a recent paper by Longhurst (1993), the plume associated with the Amazon River was attributed to phytoplankton blooms stimulated by nutrients supplied via eddy upwelling. We revisit the argument that this plume is of riverine origin, and offer evidence that material present near continental margins can be advected offshore and trace circulation patterns in the adjacent ocean.

  10. Effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Trumbore, Susan E.; Davidson, Eric A.

    1994-01-01

    The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales.

  11. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon.

    Science.gov (United States)

    Fine, Paul V A; Daly, Douglas C; Villa Muñoz, Gorky; Mesones, Italo; Cameron, Kenneth M

    2005-07-01

    Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.

  12. Hepatitis e virus: Western Cape, South Africa

    NARCIS (Netherlands)

    R.G. Madden (Richie); Wallace, S. (Sebastian); M. Sonderup; Korsman, S. (Stephen); Chivese, T. (Tawanda); Gavine, B. (Bronwyn); Edem, A. (Aniefiok); Govender, R. (Roxy); English, N. (Nathan); Kaiyamo, C. (Christy); Lutchman, O. (Odelia); A.A. Eijck (Annemiek); S.D. Pas (Suzan); Webb, G.W. (Glynn W); Palmer, J. (Joanne); Goddard, E. (Elizabeth); Wasserman, S. (Sean); H.R. Dalton (Harry); C.W. Spearman

    2016-01-01

    textabstractAIM To conduct a prospective assessment of anti-hepatitis E virus (HEV) IgG seroprevalence in the Western Cape Province of South Africa in conjunction with evaluating risk factors for exposure. METHODS Consenting participants attending clinics and wards of Groote Schuur, Red Cross

  13. Contrasting evidence of Holocene ice margin retreat, south-western Greenland

    DEFF Research Database (Denmark)

    Levy, L. B.; Larsen, N. K.; Davidson, T. A.

    2017-01-01

    Constraining the Greenland Ice Sheet's (GrIS) response to Holocene climate change provides calibrations for ice sheet models that hindcast past ice margin fluctuations. Ice sheet models predict enhanced ice retreat in south-western Greenland during the middle Holocene; however, few geological...... observations corroborating the extensive retreat are available. We present new data from lake sediment cores from the Isua region, south-western Greenland, which provide constraints on Holocene fluctuations of the GrIS margins. Our data indicate that the main GrIS margin was 30 km west of its present...

  14. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  15. Dietary intake and habits of South Asian immigrants living in Western countries.

    Science.gov (United States)

    LeCroy, Madison N; Stevens, June

    2017-06-01

    Previous reviews have indicated that immigration from South Asian to Western countries leads to unhealthy changes in diet; however, these reviews have been limited by the methods used in some included studies. This critical narrative review summarizes findings from original research articles that performed appropriate statistical analyses on diet data obtained using culturally appropriate diet assessment measures. All studies quantitatively compared the diets of South Asian immigrants with those of residents of Western or South Asian countries or with those of South Asian immigrants who had varying periods of time since immigration. Most studies examined total energy and nutrient intake among adults. Total energy intake tended to decrease with increasing duration of residence and immigrant generation, and immigrants consumed less protein and monounsaturated fat compared with Westerners. However, findings for intakes of carbohydrate, total fat, saturated fat, polyunsaturated fat, and micronutrients were mixed. Studies that examine food group intake and include South Asians living in South Asia as a comparison population are needed. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  17. DOCUMENTED RECORD OF A MIGRATING EASTERN SLATY THRUSH (Turdus subalaris) (TURDIDAE, PASSERIFORMES) IN WESTERN MATO GROSSO STATE, BRAZIL

    OpenAIRE

    Breno Dias Vitorino; Angélica Vilas Boas da Frota; Renato da Silva Nunes

    2016-01-01

    The Eastern Slaty Thrush (Turdus subalaris) occurs in the meridional parts of South America, from Bolivia Southward to Argentina, Paraguay and South and Southeastern Brazil. During the winter on the continent, it performs migration little known toward areas of ecotone between Amazon and Cerrado, with little information on their area of wintering in the Mato Grosso state. In this study we report on a record documenting the species for the Alto Rio Guaporé basin, Western Mato Grosso, based on a...

  18. Invariance of the carbonate chemistry of the South China Sea from the glacial period to the Holocene and its implications to the Pacific Ocean carbonate system

    Science.gov (United States)

    Luo, Yiming; Kienast, Markus; Boudreau, Bernard P.

    2018-06-01

    Substantial and correlated changes in marine carbonate (CaCO3) content of oceanic sediments commonly accompany the transitions from cold glacial periods to warm interglacial periods. The South China Sea (SCS) is said to be ocean-dominated at depth, and its CaCO3 records should reflect and preserve the effects of changes in the carbonate chemistry of the (western) Pacific Ocean. Using published and newly acquired CaCO3 data and a model for carbonate compensation dynamics, we show that a significant change with respect to carbonate saturation is unlikely to have occurred in the SCS during the last glacial-interglacial transition. Instead, the results from a carbonate deposition model argue that the saturation state of the SCS was largely invariant; a separate diagenetic model argues that changes in sediment CaCO3 content can be explained by alterations in lithogenic input. In turn, this could indicate that the carbonate ion concentration of the (western) Pacific at depths shallower than the sill to the SCS (ca. 2,400 m) has not changed appreciably between the last glacial period and the present interglacial.

  19. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.

    Science.gov (United States)

    Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan

    2018-02-13

    Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

  20. Hydrologic resilience and Amazon productivity.

    Science.gov (United States)

    Ahlström, Anders; Canadell, Josep G; Schurgers, Guy; Wu, Minchao; Berry, Joseph A; Guan, Kaiyu; Jackson, Robert B

    2017-08-30

    The Amazon rainforest is disproportionately important for global carbon storage and biodiversity. The system couples the atmosphere and land, with moist forest that depends on convection to sustain gross primary productivity and growth. Earth system models that estimate future climate and vegetation show little agreement in Amazon simulations. Here we show that biases in internally generated climate, primarily precipitation, explain most of the uncertainty in Earth system model results; models, empirical data and theory converge when precipitation biases are accounted for. Gross primary productivity, above-ground biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000 mm annual precipitation, where the system transitions between water and radiation limitation of evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting resilience of the Amazon to climate change. Changes in precipitation and land use are therefore more likely to govern biomass and vegetation structure in Amazonia.Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.

  1. Remote SST Forcing and Local Land-Atmosphere Moisture Coupling as Drivers of Amazon Temperature and Carbon Cycle Variability

    Science.gov (United States)

    Levine, P. A.; Xu, M.; Chen, Y.; Randerson, J. T.; Hoffman, F. M.

    2017-12-01

    Interannual variability of climatic conditions in the Amazon rainforest is associated with El Niño-Southern Oscillation (ENSO) and ocean-atmosphere interactions in the North Atlantic. Sea surface temperature (SST) anomalies in these remote ocean regions drive teleconnections with Amazonian surface air temperature (T), precipitation (P), and net ecosystem production (NEP). While SST-driven NEP anomalies have been primarily linked to T anomalies, it is unclear how much the T anomalies result directly from SST forcing of atmospheric circulation, and how much result indirectly from decreases in precipitation that, in turn, influence surface energy fluxes. Interannual variability of P associated with SST anomalies lead to variability in soil moisture (SM), which would indirectly affect T via partitioning of turbulent heat fluxes between the land surface and the atmosphere. To separate the direct and indirect influence of the SST signal on T and NEP, we performed a mechanism-denial experiment to decouple SST and SM anomalies. We used the Accelerated Climate Modeling for Energy (ACMEv0.3), with version 5 of the Community Atmosphere Model and version 4.5 of the Community Land Model. We forced the model with observed SSTs from 1982-2016. We found that SST and SM variability both contribute to T and NEP anomalies in the Amazon, with relative contributions depending on lag time and location within the Amazon basin. SST anomalies associated with ENSO drive most of the T variability at shorter lag times, while the ENSO-driven SM anomalies contribute more to T variability at longer lag times. SM variability and the resulting influence on T anomalies are much stronger in the eastern Amazon than in the west. Comparing modeled T with observations demonstrate that SST alone is sufficient for simulating the correct timing of T variability, but SM anomalies are necessary for simulating the correct magnitude of the T variability. Modeled NEP indicated that variability in carbon fluxes

  2. Response of the Amazon rainforest to late Pleistocene climate variability

    Science.gov (United States)

    Häggi, Christoph; Chiessi, Cristiano M.; Merkel, Ute; Mulitza, Stefan; Prange, Matthias; Schulz, Michael; Schefuß, Enno

    2017-12-01

    Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and δ13C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on δ13C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial-interglacial climate variability.

  3. The role of fluvial sediment supply and river-mouth hydrology in the dynamics of the muddy, Amazon-dominated Amapa-Guianas coast, South America: A three-point research agenda

    OpenAIRE

    Anthony, Edward J.; Gardel, Antoine; Proisy, Christophe; Fromard, François; Gensac, Erwan; Peron, Christina; Walcker, Romain; Lesourd, Sandric

    2013-01-01

    The morphology and sediment dynamics of the 1500 km-long coast of South America between the mouths of the Amazon and the Orinoco Rivers are largely dependent on the massive suspended-sediment discharge of the Amazon, part of which is transported alongshore as mud banks. These mud banks have an overwhelming impact on the geology, the geomorphology, the ecology and the economy of this coast. Although numerous field investigations and remote sensing studies have considerably enhanced our underst...

  4. PARTICULATE ORGANIC CARBON, cloud amount/frequency and other data from COLUMBUS ISELIN in the North American Coastline-South and South Atlantic Ocean from 1990-05-23 to 1990-06-13 (NODC Accession 9100150)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data was collected from R/V COLUMBUS ISELIN in South Atlantic Ocean and North American Coast line-South during the Amazon Shelf Sediment Study (AMASSEDS) between May...

  5. Molecular characterization of an earliest cacao (Theobroma cacao L.) collection from Peruvian Amazon using microsatllite DNA markers

    Science.gov (United States)

    Cacao (Theobroma cacao L.) is indigenous to the Amazon region of South America. The Peruvian Amazon harbors a large number of diverse cacao populations. Since the 1930s, several numbers of populations have been collected from the Peruvian Amazon and maintained as ex situ germplasm repositories in ...

  6. Hydroclimate changes across the Amazon lowlands over the past 45,000 years

    Science.gov (United States)

    Wang, Xianfeng; Edwards, R. Lawrence; Auler, Augusto S.; Cheng, Hai; Kong, Xinggong; Wang, Yongjin; Cruz, Francisco W.; Dorale, Jeffrey A.; Chiang, Hong-Wei

    2017-01-01

    Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin—one of Earth’s major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.

  7. Hydrological Retrospective of floods and droughts: Case study in the Amazon

    Science.gov (United States)

    Wongchuig Correa, Sly; Cauduro Dias de Paiva, Rodrigo; Carlo Espinoza Villar, Jhan; Collischonn, Walter

    2017-04-01

    Recent studies have reported an increase in intensity and frequency of hydrological extreme events in many regions of the Amazon basin over last decades, these events such as seasonal floods and droughts have originated a significant impact in human and natural systems. Recently, methodologies such as climatic reanalysis are being developed in order to create a coherent register of climatic systems, thus taking this notion, this research efforts to produce a methodology called Hydrological Retrospective (HR), that essentially simulate large rainfall datasets over hydrological models in order to develop a record over past hydrology, enabling the analysis of past floods and droughts. We developed our methodology on the Amazon basin, thus we used eight large precipitation datasets (more than 30 years) through a large scale hydrological and hydrodynamic model (MGB-IPH), after that HR products were validated against several in situ discharge gauges dispersed throughout Amazon basin, given focus in maximum and minimum events. For better HR results according performance metrics, we performed a forecast skill of HR to detect floods and droughts considering in-situ observations. Furthermore, statistical temporal series trend was performed for intensity of seasonal floods and drought in the whole Amazon basin. Results indicate that better HR represented well most past extreme events registered by in-situ observed data and also showed coherent with many events cited by literature, thus we consider viable to use some large precipitation datasets as climatic reanalysis mainly based on land surface component and datasets based in merged products for represent past regional hydrology and seasonal hydrological extreme events. On the other hand, an increase trend of intensity was realized for maximum annual discharges (related to floods) in north-western regions and for minimum annual discharges (related to drought) in central-south regions of the Amazon basin, these features were

  8. Explaining ecological clusters of maternal depression in South Western Sydney

    Science.gov (United States)

    2014-01-01

    Background The aim of the qualitative study reported here was to: 1) explain the observed clustering of postnatal depressive symptoms in South Western Sydney; and 2) identify group-level mechanisms that would add to our understanding of the social determinants of maternal depression. Methods Critical realism provided the methodological underpinning for the study. The setting was four local government areas in South Western Sydney, Australia. Child and Family practitioners and mothers in naturally occurring mothers groups were interviewed. Results Using an open coding approach to maximise emergence of patterns and relationships we have identified seven theoretical concepts that might explain the observed spatial clustering of maternal depression. The theoretical concepts identified were: Community-level social networks; Social Capital and Social Cohesion; "Depressed community"; Access to services at the group level; Ethnic segregation and diversity; Supportive social policy; and Big business. Conclusions We postulate that these regional structural, economic, social and cultural mechanisms partially explain the pattern of maternal depression observed in families and communities within South Western Sydney. We further observe that powerful global economic and political forces are having an impact on the local situation. The challenge for policy and practice is to support mothers and their families within this adverse regional and global-economic context. PMID:24460690

  9. Explaining ecological clusters of maternal depression in South Western Sydney.

    Science.gov (United States)

    Eastwood ED, John; Kemp, Lynn; Jalaludin, Bin

    2014-01-24

    The aim of the qualitative study reported here was to: 1) explain the observed clustering of postnatal depressive symptoms in South Western Sydney; and 2) identify group-level mechanisms that would add to our understanding of the social determinants of maternal depression. Critical realism provided the methodological underpinning for the study. The setting was four local government areas in South Western Sydney, Australia. Child and Family practitioners and mothers in naturally occurring mothers groups were interviewed. Using an open coding approach to maximise emergence of patterns and relationships we have identified seven theoretical concepts that might explain the observed spatial clustering of maternal depression. The theoretical concepts identified were: Community-level social networks; Social Capital and Social Cohesion; "Depressed community"; Access to services at the group level; Ethnic segregation and diversity; Supportive social policy; and Big business. We postulate that these regional structural, economic, social and cultural mechanisms partially explain the pattern of maternal depression observed in families and communities within South Western Sydney. We further observe that powerful global economic and political forces are having an impact on the local situation. The challenge for policy and practice is to support mothers and their families within this adverse regional and global-economic context.

  10. Sedimentology and stratigraphy of Neoproterozoic-lower Paleozoic carbonate-siliciclastic succession of the southwesternmost Amazon Craton, state of Rondônia, Brazil

    OpenAIRE

    Afonso, Jhon Willy Lopes; Nogueira, Afonso César Rodrigues

    2018-01-01

    ABSTRACT: Facies and stratigraphic analysis were carried out in Neoproterozoic-Lower Paleozoic carbonate-siliciclastic deposits of Cacoal and Pimenta Bueno formations exposed on basement rocks and into the Pimenta Bueno Graben, northwestern portion of Parecis Basin, southwesternmost Amazon Craton. The redescription and redefinion of this succession confirmed the previous interpretation for the Cacoal Formation as a Marinoan (~ 635 Ma) cap carbonate. The Cacoal Formation is subdivided here in ...

  11. Carbon emissions risk map from deforestation in the tropical Amazon

    Science.gov (United States)

    Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.

    2011-12-01

    Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.

  12. A habitat overlap analysis derived from Maxent for Tamarisk and the South-western Willow Flycatcher

    Science.gov (United States)

    Patricia York; Paul Evangelista; Sunil Kumar; James Graham; Curtis Flather; Thomas Stohlgren

    2011-01-01

    Biologic control of the introduced and invasive, woody plant tamarisk (Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher (Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control...

  13. Measures to Facilitate Necessity Entrepreneurship : Western Cape South Africa

    OpenAIRE

    Macura, Alexander; Sjölund, John

    2005-01-01

    Problem- In the townships and rural areas of the Western Cape province of South Africa unemployment can be as high as 60%. For many, starting a business is the only viable option to survive. There are many organizations seeking to help entrepreneurs to successfully start and manage a business, but services are significantly lacking. We therefore wish to determine what business service providers in the Western Cape are doing today to help necessity entrepreneurs succeed, and what can be done b...

  14. Health Concerns in the Amazon Region

    Centers for Disease Control (CDC) Podcasts

    Residents of the Amazon region of South America contend with a number of health threats - from mosquito-borne diseases to difficulty accessing doctors and healthcare facilities in such a vast area. This podcast helps explore some of the health issues in the region and what's being done to address them.

  15. The Amazon-Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia and northern Chile

    Science.gov (United States)

    Tosdal, R.M.

    1996-01-01

    Middle Proterozoic rocks underlying the Andes in western Bolivia, western Argentina, and northern Chile and Early Proterozoic rocks of the Arequipa massif in southern Peru?? from the Arequipa-Antofalla craton. These rocks are discontinuously exposed beneath Mesozoic and Cenozoic rocks, but abundant crystalline clasts in Tertiary sedimentary rocks in the western altiplano allow indirect samples of the craton. Near Berenguela, western Bolivia, the Oligocene and Miocene Mauri Formation contains boulders of granodiorite augen gneiss (1171??20 Ma and 1158??12 Ma; U-Pb zircon), quartzose gneiss and granofels that are inferred to have arkosic protoliths (1100 Ma source region; U-Pb zircon), quartzofeldspathic and mafic orthogneisses that have amphibolite- and granulite-facies metamorphic mineral assemblages (???1080 Ma metamorphism; U-Pb zircon), and undeformed granitic rocks of Phanerozoic(?) age. The Middle Proterozoic crystalline rocks from Berenguela and elsewhere in western Bolivia and from the Middle Proterozoic Bele??n Schist in northern Chile generally have present-day low 206Pb/204Pb ( 15.57), and elevated 208Pb/204Pb (37.2 to 50.7) indicative of high time-averaged Th/U values. The Middle Proterozoic rocks in general have higher presentday 206Pb/204Pb values than those of the Early Proterozoic rocks of the Arequipa massif (206Pb/204Pb between 16.1 and 17.1) but lower than rocks of the southern Arequipa-Antofalla craton (206Pb/204Pb> 18.5), a difference inferred to reflect Grenvillian granulite metamorphism. The Pb isotopic compositions for the various Proterozoic rocks lie on common Pb isotopic growth curves, implying that Pb incorporated in rocks composing the Arequipa-Antofalla craton was extracted from a similar evolving Pb isotopic reservoir. Evidently, the craton has been a coherent terrane since the Middle Proterozoic. Moreover, the Pb isotopic compositions for the Arequipa-Antofalla craton overlap those of the Amazon craton, thereby supporting a link

  16. Amazon soil charcoal: Pyrogenic carbon stock depends of ignition source distance and forest type in Roraima, Brazil.

    Science.gov (United States)

    da Silva Carvalho, Lidiany C; Fearnside, Philip M; Nascimento, Marcelo T; Barbosa, Reinaldo I

    2018-04-18

    Pyrogenic carbon (PyC) derived from charcoal particles (paleo + modern) deposited in the soil column has been little studied in the Amazon, and our understanding of the factors that control the spatial and vertical distribution of these materials in the region's forest soils is still unclear. The objective of this study was to test the effect of forest type and distance from the ignition source on the PyC stocks contained in macroscopic particles of soil charcoal (≥2 mm; 1 m depth) dispersed in ecotone forests of the northern Brazilian Amazon. Thirty permanent plots were set up near a site that had been occupied by pre-Columbian and by modern populations until the late 1970s. The sampled plots represent seasonal and ombrophilous forests that occur under different hydro-edaphic restrictions. Our results indicate that the largest PyC stock was spatially dependent on distance to the ignition source ( 50 cm) in seasonal forests was limited by hydro-edaphic impediments that restricted the occurrence of charcoal. These results suggest that PyC stocks derived from macroscopic charcoal particles in the soil of this Brazilian Amazon ecotone region are controlled by the distance from the ignition source of the fire, and that forest types with higher hydro-edaphic restrictions can inhibit formation and accumulation of charcoal. Making use of these distinctions reduces uncertainty and improves our ability to understand the variability of PyC stocks in forests with a history of fire in the Amazon. © 2018 John Wiley & Sons Ltd.

  17. Trophic opportunism of central Amazon floodplain fish

    OpenAIRE

    Mortillaro, J. M.; Pouilly, Marc; Wach, M.; Freitas, C. E. C.; Abril, G.; Meziane, T.

    2015-01-01

    The food web of the central Amazon basin displays one of the largest discrepancies in food source utilisation versus availability for consumers. While C-4 macrophytes dominate the primary producing biomass in floodplains, the food web is dominated by the use of C-3 carbon sources. Amazon fish species have wide-ranging diets and show feeding flexibility in response to spatial and temporal patterns in food source availability. Fish are therefore expected to use a range of available resources. F...

  18. Anaglyph, South America

    Science.gov (United States)

    2003-01-01

    This anaglyph (stereoscopic view) of South America was generated with data from the Shuttle Radar Topography Mission (SRTM). It is best viewed at or near full resolution with anaglyph glasses. For this broad view the resolution of the data was first reduced to 30 arcseconds (about 928 meters north-south but variable east-west), matching the best previously existing global digital topographic data set called GTOPO30. The data were then resampled to a Mercator projection with approximately square pixels (about one kilometer, or 0.6 miles, on each side). Even at this decreased resolution the variety of landforms comprising the South American continent is readily apparent.Topographic relief in South America is dominated by the Andes Mountains, which extend all along the Pacific Coast. These mountains are created primarily by the convergence of the Nazca and South American tectonic plates. The Nazca Plate, which underlies the eastern Pacific Ocean, slides under western South America resulting in crustal thickening, uplift, and volcanism. Another zone of plate convergence occurs along the northwestern coast of South America where the Caribbean Plate also slides under the South American Plate and forms the northeastern extension of the Andes Mountains.East of the Andes, much of northern South America drains into the Amazon River, the world's largest river in terms of both watershed area and flow volume. Topographic relief is very low in much of the Amazon Basin but SRTM data provide an excellent detailed look at the basin's three-dimensional drainage pattern, including the geologic structural trough (syncline) that hosts the eastern river channel.North of the Amazon, the Guiana Highlands commonly stand in sharp contrast to the surrounding lowlands, indeed hosting the world's tallest waterfall, Angel Falls (979 meters or 3212 feet). Folded and fractured bedrock structures are distinctive in the topographic pattern.South of the Amazon, the Brazilian Highlands show a mix of

  19. The Battle for Critical Internet Resources: South America vs. Amazon.com, Inc.

    Directory of Open Access Journals (Sweden)

    Patricia Vargas-Leon

    2015-04-01

    Full Text Available Purpose – To analyze the controversy about the allocation of critical Internet resources generated by ICANN's new gTLD program with a particular focus on the .AMAZON TLD. Methodology/approach/design – This article presents an exploratory case study about the .AMAZON controversy. The initial analysis of this ongoing research is based on data collected from various reports and media coverage on ICANN's new gTLD policy. The article draws from political economy theory to analyze disputes about critical Internet resources. Findings – This article discusses preliminary findings of the .AMAZON case, a contested prime example in ICANN's efforts to extend the Internet's domain name space. Practical implications – The findings may inform related controversies in the gTLD program and contribute to a differentiated understanding of CIR allocation in Internet governance, and respective policy-making. Originality/value – The value of this article is the specific discussion of the .AMAZON case in the larger context of ICANN's new gTLD program, and its analysis that describes the controversy from a property rights perspective.

  20. The Battle for Critical Internet Resources: South America vs. Amazon.com, Inc.

    Directory of Open Access Journals (Sweden)

    Patricia Vargas-Leon

    2015-05-01

    Full Text Available Purpose – To analyze the controversy about the allocation of critical Internet resources generated by ICANN's new gTLD program with a particular focus on the .AMAZON TLD. Methodology/approach/design – This article presents an exploratory case study about the .AMAZON controversy. The initial analysis of this ongoing research is based on data collected from various reports and media coverage on ICANN's new gTLD policy. The article draws from political economy theory to analyze disputes about critical Internet resources. Findings – This article discusses preliminary findings of the .AMAZON case, a contested prime example in ICANN's efforts to extend the Internet's domain name space. Practical implications – The findings may inform related controversies in the gTLD program and contribute to a differentiated understanding of CIR allocation in Internet governance, and respective policy-making. Originality/value – The value of this article is the specific discussion of the .AMAZON case in the larger context of ICANN's new gTLD program, and its analysis that describes the controversy from a property rights perspective.

  1. Net Heterotrophy in the Amazon Continental Shelf Changes Rapidly to a Sink of CO2 in the Outer Amazon Plume

    Directory of Open Access Journals (Sweden)

    Nathalie Lefèvre

    2017-09-01

    Full Text Available The Amazon continental shelf and adjacent oceanic area were sampled for inorganic and organic carbon parameters in order to improve data coverage and understanding of carbon cycling dynamics within this important region. Seasonal coverage of the Amazon plume on the French Guiana continental shelf further north, was provided by CO2 monitoring using a merchant ship sailing from France to French Guiana (2006–2016. Salinity ranged from 1 to 36 (transects in April 2013, and May 2014. At salinity below 10, strong outgassing was observed with fugacity of CO2 (fCO2 over 2,000 μatm. This region displayed net heterotrophy, fueled by organic matter with terrestrial origin, as shown by δ13C and δ15N values of suspended particles. A δ13C cross shelf average of −31% was measured during May 2014, contrasting with oceanic values in excess of −20%. The reactivity of this terrestrial material resulted in the local production of dissolved inorganic and organic carbon as well as fluorescent humic compounds. Further offshore, the dilution of freshwater by ocean waters created a sink for CO2, enhanced by biological activity. The strongest CO2 drawdowns, associated with high chlorophyll a concentrations, were observed on the French Guiana continental shelf in the outer Amazon plume, with fCO2 values below 150 μatm. Here, a CO2 sink was present almost throughout the year, with a seasonal maximum of −9.2 mmol CO2 m−2d−1 observed in June 2015. However, both the CO2 and salinity distributions could vary significantly within a few days, confirming the presence of many eddies in this region. The Amazon continental shelf hence behaved as a transition zone between an inshore source of CO2 to the atmosphere and an offshore sink. Some marine phytoplankton production was detected but occurred mainly close to the French Guiana shelf. A mean net CO2 outgassing of 44 ± 43.6 mmol m−2d−1 was estimated for the area. Quantifying the CO2 flux for the entire Amazon

  2. Cancer distribution pattern in south-western Nigeria | Awodele ...

    African Journals Online (AJOL)

    The burden of cancer in Nigeria is appreciable with about 100,000 new cancer cases been reported in the country each year. This study aimed to determine the level of occurrence and pattern of distribution of different cancer types in two major functional cancer registries in south-western Nigeria. A desk review of the level ...

  3. Vulnerability of Amazon forests to storm-driven tree mortality

    Science.gov (United States)

    Negrón-Juárez, Robinson I.; Holm, Jennifer A.; Magnabosco Marra, Daniel; Rifai, Sami W.; Riley, William J.; Chambers, Jeffrey Q.; Koven, Charles D.; Knox, Ryan G.; McGroddy, Megan E.; Di Vittorio, Alan V.; Urquiza-Muñoz, Jose; Tello-Espinoza, Rodil; Alegria Muñoz, Waldemar; Ribeiro, Gabriel H. P. M.; Higuchi, Niro

    2018-05-01

    Tree mortality is a key driver of forest community composition and carbon dynamics. Strong winds associated with severe convective storms are dominant natural drivers of tree mortality in the Amazon. Why forests vary with respect to their vulnerability to wind events and how the predicted increase in storm events might affect forest ecosystems within the Amazon are not well understood. We found that windthrows are common in the Amazon region extending from northwest (Peru, Colombia, Venezuela, and west Brazil) to central Brazil, with the highest occurrence of windthrows in the northwest Amazon. More frequent winds, produced by more frequent severe convective systems, in combination with well-known processes that limit the anchoring of trees in the soil, help to explain the higher vulnerability of the northwest Amazon forests to winds. Projected increases in the frequency and intensity of convective storms in the Amazon have the potential to increase wind-related tree mortality. A forest demographic model calibrated for the northwestern and the central Amazon showed that northwestern forests are more resilient to increased wind-related tree mortality than forests in the central Amazon. Our study emphasizes the importance of including wind-related tree mortality in model simulations for reliable predictions of the future of tropical forests and their effects on the Earth’ system.

  4. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.

    1992-01-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  5. The distribution of thiamin and pyridoxine in the western tropical North Atlantic Amazon River plume

    Directory of Open Access Journals (Sweden)

    Laila Pualani Barada

    2013-03-01

    Full Text Available B-vitamins are recognized as essential organic growth factors for many organisms, although little is known about their abundance and distribution in marine ecosystems. Despite their metabolic functions regulating important enzymatic reactions, the methodology to directly measure different B-vitamins in aquatic environments has only recently been developed. Here, we present the first direct measurements of two B-vitamins, thiamin (B1 and pyridoxine (B6, in the Amazon River plume-influenced Western Tropical North Atlantic (WTNA Ocean, an area known to have high productivity, carbon (C and dinitrogen (N2 fixation, and C sequestration. The vitamins B1 and B6 ranged in concentrations from undetectable to 230 pM and 40 pM, respectively. Significantly higher concentrations were measured in the surface plume water at some stations and variation with salinity was observed, suggesting a possible riverine influence on those B-vitamins. The influences of vitamins B1 and B6 on biogeochemical processes such as C and N2 fixation were investigated using a linear-regression model that indicated that the availability of those organic factors could affect these rates in the WTNA. In fact, significant increases in C fixation and N2 fixation were observed with increasing vitamin B1 concentrations at some low and mesohaline stations (stations 9.1 and 1; p value <0.017 and <0.03, respectively. N2 fixation was also found to have a significant positive correlation with B1 concentrations at station 1 (p value = 0.029, as well as vitamin B6 at station 9.1 (p value <0.017. This work suggests that there can be a dynamic interplay between essential biogeochemical rates (C and N2 fixation and B-vitamins, drawing attention to potential roles of B-vitamins in ecosystem dynamics, community structure, and global biogeochemistry.

  6. [Environmental efficiency evaluation under carbon emission constraint in Western China].

    Science.gov (United States)

    Rong, Jian-bo; Yan, Li-jiao; Huang, Shao-rong; Zhang, Ge

    2015-06-01

    This research used the SBM model based on undesirable outputs to measure the static environmental efficiency of Western China under carbon emission constraint from 2000 to 2012. The researchers also utilized the Malmquist index to further analyze the change tendency of environmental efficiency. Additionally, Tobit regression analysis was used to study the factors relevant to environmental efficiency. Practical solutions to improve environmental quality in Western China were put forward. The study showed that in Western China, environmental efficiency with carbon emission constraint was significantly lower than that without carbon emission constraint, and the difference could be described as an inverse U-shaped curve which increased at first and then decreased. Guang-xi and Inner Mongolia, the two provinces met the effective environmental efficiency levels all the time under carbon emission constraint. However, the five provinces of Guizhou, Gansu, Qinghai, Ningxia and Xinjiang did not. Furthermore, Ningxia had the lowest level of environmental efficiency, with a score between 0.281-0.386. Although the environmental efficiency of most provinces was currently at an ineffective level, the environmental efficiency quality was gradually improving at an average speed of 6.6%. Excessive CO2 emission and a large amount of energy consumption were the primary factors causing environmental inefficiency in Western China, and energy intensity had the most negative impact on the environmental efficiency. The increase of import and export trade reduced the environmental efficiency significantly in Western China, while the increase of foreign direct investment had a positive effect on its environmental efficiency.

  7. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)

    Science.gov (United States)

    Martin, S. T.; Artaxo, P.; Machado, L. A. T.; Manzi, A. O.; Souza, R. A. F.; Schumacher, C.; Wang, J.; Andreae, M. O.; Barbosa, H. M. J.; Fan, J.; Fisch, G.; Goldstein, A. H.; Guenther, A.; Jimenez, J. L.; Pöschl, U.; Silva Dias, M. A.; Smith, J. N.; Wendisch, M.

    2016-04-01

    biomass burning seasons, respectively. The Manaus plume is present year-round, and it is transported by prevailing northeasterly and easterly winds in the wet and dry seasons, respectively. This introduction also organizes information relevant to many papers in the special issue. Information is provided on the vehicle fleet, power plants, and industrial activities of Manaus. The mesoscale and synoptic meteorologies relevant to the two IOPs are presented. Regional and long-range transport of emissions during the two IOPs is discussed based on satellite observations across South America and Africa. Fire locations throughout the airshed are detailed. In conjunction with the context and motivation of GoAmazon2014/5 as presented in this introduction, research articles including thematic overview articles are anticipated in this special issue to describe the detailed results and findings of the GoAmazon2014/5 Experiment.

  8. The Amazon Basin in transition

    Science.gov (United States)

    Eric A. Davidson; Alessandro C. de Araujo; Paulo Artaxo; Jennifer K. Balch; I. Foster Brown; Mercedes M.C. Bustamente; Michael T. Coe; Ruth S. DeFriess; Michael Keller; Marcos Longo; J. William Munger; Wilfrid Schroeder; Britaldo Soares-Filho; Carlos M. Souza, Jr.; Steven C. Wofsy

    2012-01-01

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional...

  9. Meteorological and oceanographic aspects of a winter storm over the south-western Cape Province, South Africa

    International Nuclear Information System (INIS)

    Jury, M.R.; Shillington, F.A.; Prestidge, G.; Maxwell, C.D.

    1986-01-01

    In May the southern hemisphere circumpolar jet stream accelerates in response to a growing temperature gradient between the pole and equator. Initially, the jet stream may 'spin up' in pulses, causing the upper air current to become unstable and to meander equatorwards out of the higher latitudes (40-50 degrees S). Winter storms induced by the jet stream and which move, from west to east, to the south of the African continent are then guided by the upper air currents further north. Between 15 and 17 May 1984, such a sequence of synoptic weather events developed and the south-western Cape came under the influence of the 'roaring 40's'. In this article a chronology of the storm and its meteorological effects are described using data collected at the Koeberg nuclear power station, the Cape Town Airport Weather Office and across the south-western Cape. The destructive effects of the storm, particularly felt along the coast as a result of large swells and a significant storm surge, are discussed

  10. Amazon rainforest responses to elevated CO2: Deriving model-based hypotheses for the AmazonFACE experiment

    Science.gov (United States)

    Rammig, A.; Fleischer, K.; Lapola, D.; Holm, J.; Hoosbeek, M.

    2017-12-01

    Increasing atmospheric CO2 concentration is assumed to have a stimulating effect ("CO2 fertilization effect") on forest growth and resilience. Empirical evidence, however, for the existence and strength of such a tropical CO2 fertilization effect is scarce and thus a major impediment for constraining the uncertainties in Earth System Model projections. The implications of the tropical CO2 effect are far-reaching, as it strongly influences the global carbon and water cycle, and hence future global climate. In the scope of the Amazon Free Air CO2 Enrichment (FACE) experiment, we addressed these uncertainties by assessing the CO2 fertilization effect at ecosystem scale. AmazonFACE is the first FACE experiment in an old-growth, highly diverse tropical rainforest. Here, we present a priori model-based hypotheses for the experiment derived from a set of 12 ecosystem models. Model simulations identified key uncertainties in our understanding of limiting processes and derived model-based hypotheses of expected ecosystem responses to elevated CO2 that can directly be tested during the experiment. Ambient model simulations compared satisfactorily with in-situ measurements of ecosystem carbon fluxes, as well as carbon, nitrogen, and phosphorus stocks. Models consistently predicted an increase in photosynthesis with elevated CO2, which declined over time due to developing limitations. The conversion of enhanced photosynthesis into biomass, and hence ecosystem carbon sequestration, varied strongly among the models due to different assumptions on nutrient limitation. Models with flexible allocation schemes consistently predicted an increased investment in belowground structures to alleviate nutrient limitation, in turn accelerating turnover rates of soil organic matter. The models diverged on the prediction for carbon accumulation after 10 years of elevated CO2, mainly due to contrasting assumptions in their phosphorus cycle representation. These differences define the expected

  11. The Amazon reveals its secrets--partly

    Science.gov (United States)

    Betancourt, Julio L.

    2000-01-01

    The role of the tropics in global climate change during glacial cycles is hotly debated in paleoclimate cycles today. Records from South America have not provided a clear picture of tropical climate change. In his Perspective, Betancourt highlights the study by Maslin and Burns, who have deduced the outflow of the Amazon over the past 14,000 years. This may serve as a proxy that integrates hydrology over the entire South American tropics, although the record must be interpreted cautiously because factors other than rainfall may contribute to the variability in outflow.

  12. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  13. Potential role of vegetation dynamics on recent extreme droughts over tropical South America

    Science.gov (United States)

    Wang, G.; Erfanian, A.; Fomenko, L.

    2017-12-01

    Tropical South America is a drought hot spot. In slightly over a decade (2005-2016), the region encountered three extreme droughts (2005, 2010, and 2016). Recurrent extreme droughts not only impact the region's eco-hydrology and socio-economy, but are also globally important as they can transform the planet's largest rainforest, the Amazon, from a carbon sink to a carbon source. Understanding drought drivers and mechanisms underlying extreme droughts in tropical South America can help better project the fate of the Amazon rainforest in a changing climate. In this study we use a regional climate model (RegCM4.3.4) coupled with a comprehensive land-surface model (CLM4.5) to study the present-day hydroclimate of the region, focusing specifically on what might have caused the frequent recurrence of extreme droughts. In the context of observation natural variability of the global oceanic forcing, we tackle the role of land-atmosphere interactions and ran the model with and without dynamic vegetation to study how vegetation dynamics and carbon-nitrogen cycles may have influenced the drought characteristics. Our results demonstrate skillful simulation of the South American climate in the model, and indicate substantial sensitivity of the region's hydroclimatology to vegetation dynamics. This presentation will compare the role of global oceanic forcing versus regional land surface feedback in the recent recurrent droughts, and will characterize the effects of vegetation dynamics in enhancing the drought severity. Preliminary results on future projections of the regional ecosystem and droughts perspective will be also presented.

  14. Hypoxia adaptation in fish of the Amazon: a never-ending task | Val ...

    African Journals Online (AJOL)

    In addition to seasonal long-term changes in dissolved oxygen and carbon dioxide, water bodies of the Amazon present periodic short-term episodes of hypoxia and even anoxia. To preserve gas exchange and acid base balance, fish of the Amazon have developed multiple adaptive solutions which occur at all biological ...

  15. Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the western Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Acacio Aparecido Navarrete

    2015-12-01

    Full Text Available Members of the phylum Acidobacteria are among the most abundant soil bacteria on Earth, but little is known about their response to environmental changes. We asked how the relative abundance and biogeographic patterning of this phylum and its subgroups responded to forest-to-pasture conversion in soils of the western Brazilian Amazon. Pyrosequencing of 16S rRNA genes was employed to assess the abundance and composition of the Acidobacteria community across 54 soil samples taken using a spatially nested sampling scheme at the landscape level. Numerically, Acidobacteria represented 20% of the total bacterial community in forest soils and 11% in pasture soils. Overall, 15 different Acidobacteria subgroups of the current 26 subgroups were detected, with Acidobacteria subgroups 1, 3, 5, and 6 accounting together for 87% of the total Acidobacteria community in forest soils and 75% in pasture soils. Concomitant with changes in soil chemistry after forest-to-pasture conversion - particularly an increase in properties linked to soil acidity and nutrient availability - we observed an increase in the relative abundances of Acidobacteria subgroups 4, 10, 17, and 18, and a decrease in the relative abundances of other Acidobacteria subgroups in pasture relative to forest soils. The composition of the total Acidobacteria community as well as the most abundant Acidobacteria subgroups (1, 3, 5, and 6 was significantly more similar in composition across space in pasture soils than in forest soils. These results suggest that preponderant responses of Acidobacteria subgroups, especially subgroups 1, 3, 4, 5, and 6, to forest-to-pasture conversion effects in soils could be used to define management-indicators of agricultural practices in the Amazon Basin. These acidobacterial responses are at least in part through alterations on acidity- and nutrient-related properties of the Amazon soils.

  16. Differential Response of Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their Biogeographic Patterns in the Western Brazilian Amazon

    Science.gov (United States)

    Navarrete, Acacio A.; Venturini, Andressa M.; Meyer, Kyle M.; Klein, Ann M.; Tiedje, James M.; Bohannan, Brendan J. M.; Nüsslein, Klaus; Tsai, Siu M.; Rodrigues, Jorge L. M.

    2015-01-01

    Members of the phylum Acidobacteria are among the most abundant soil bacteria on Earth, but little is known about their response to environmental changes. We asked how the relative abundance and biogeographic patterning of this phylum and its subgroups responded to forest-to-pasture conversion in soils of the western Brazilian Amazon. Pyrosequencing of 16S rRNA genes was employed to assess the abundance and composition of the Acidobacteria community across 54 soil samples taken using a spatially nested sampling scheme at the landscape level. Numerically, Acidobacteria represented 20% of the total bacterial community in forest soils and 11% in pasture soils. Overall, 15 different Acidobacteria subgroups of the current 26 subgroups were detected, with Acidobacteria subgroups 1, 3, 5, and 6 accounting together for 87% of the total Acidobacteria community in forest soils and 75% in pasture soils. Concomitant with changes in soil chemistry after forest-to-pasture conversion—particularly an increase in properties linked to soil acidity and nutrient availability—we observed an increase in the relative abundances of Acidobacteria subgroups 4, 10, 17, and 18, and a decrease in the relative abundances of other Acidobacteria subgroups in pasture relative to forest soils. The composition of the total Acidobacteria community as well as the most abundant Acidobacteria subgroups (1, 3, 5, and 6) was significantly more similar in composition across space in pasture soils than in forest soils. These results suggest that preponderant responses of Acidobacteria subgroups, especially subgroups 1, 3, 4, 5, and 6, to forest-to-pasture conversion effects in soils could be used to define management-indicators of agricultural practices in the Amazon Basin. These acidobacterial responses are at least in part through alterations on acidity- and nutrient-related properties of the Amazon soils. PMID:26733981

  17. Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5

    Directory of Open Access Journals (Sweden)

    S. T. Martin

    2016-04-01

    correspond to the clean and biomass burning seasons, respectively. The Manaus plume is present year-round, and it is transported by prevailing northeasterly and easterly winds in the wet and dry seasons, respectively. This introduction also organizes information relevant to many papers in the special issue. Information is provided on the vehicle fleet, power plants, and industrial activities of Manaus. The mesoscale and synoptic meteorologies relevant to the two IOPs are presented. Regional and long-range transport of emissions during the two IOPs is discussed based on satellite observations across South America and Africa. Fire locations throughout the airshed are detailed. In conjunction with the context and motivation of GoAmazon2014/5 as presented in this introduction, research articles including thematic overview articles are anticipated in this special issue to describe the detailed results and findings of the GoAmazon2014/5 Experiment.

  18. Investigating smoke's influence on primary production throughout the Amazon

    Science.gov (United States)

    Flanner, M. G.; Mahowald, N. M.; Zender, C. S.; Randerson, J. T.; Tosca, M. G.

    2007-12-01

    Smoke from annual burning in the Amazon causes large reduction in surface insolation and increases the diffuse fraction of photosynthetically-active radiation (PAR). These effects have competing influence on gross primary production (GPP). Recent studies indicate that the sign of net influence depends on aerosol optical depth, but the magnitude of smoke's effect on continental-scale carbon cycling is very poorly constrained and may constitute an important term of fire's net impact on carbon storage. To investigate widespread effects of Amazon smoke on surface radiation properties, we apply a version of the NCAR Community Atmosphere Model with prognostic aerosol transport, driven with re-analysis winds. Carbon aerosol emissions are derived from the Global Fire Emissions Database (GFED). We use AERONET observations to identify model biases in aerosol optical depth, single-scatter albedo, and surface radiative forcing, and prescribe new aerosol optical properties based on field observations to improve model agreement with AERONET data. Finally, we quantify a potential range of smoke-induced change in large-scale GPP based on: 1) ground measurements of GPP in the Amazon as a function of aerosol optical depth and diffuse fraction of PAR, and 2) empirical functions of ecosystem-scale photosynthesis rates currently employed in models such as the Community Land Model (CLM).

  19. Radioactive mineral potential of carbonatites in western parts of the South American shields

    International Nuclear Information System (INIS)

    Premoli, C.; Kroonenberg, S.B.

    1984-01-01

    During the last eight years at least six carbonatites or clusters of carbonatites have been discovered in the western parts of the South American cratons. In contrast to the carbonatites of the eastern part of the South American shields, which have been well studied and placed in a tectonic context together with the West African carbonatite provinces, those of the western part of the South American cratons have received litte attention. This paper is a compilation of published and original data on these occurrences, their geology, geochemistry, structural setting and radioactive mineral potential. An exploration strategy is devised based on experiences in this rainforest-clad area and the peculiar genetic aspect of carbonatites. Some details of a possibly new uranium mineral encountered in Cerro Cora carbonatite are given. (author)

  20. MODELING THE EFFECTS OF CLIMATE AND LAND USE CHANGE ON CARBON AND TRACE GAS BUDGETS OVER THE AMAZON REGION USING NASA SATELLITE PRODUCTS

    Science.gov (United States)

    As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...

  1. The Battle for Critical Internet Resources: South America vs. Amazon.com, Inc.

    OpenAIRE

    Patricia Vargas-Leon; Andreas Kuehn

    2015-01-01

    Purpose – To analyze the controversy about the allocation of critical Internet resources generated by ICANN's new gTLD program with a particular focus on the .AMAZON TLD. Methodology/approach/design – This article presents an exploratory case study about the .AMAZON controversy. The initial analysis of this ongoing research is based on data collected from various reports and media coverage on ICANN's new gTLD policy. The article draws from political economy theory to analyze disputes about...

  2. Influence of the stratospheric humidity and methane on the ozone column depletion over the western side of South America

    International Nuclear Information System (INIS)

    Da Silva, L.; Morales, L.; Cordero, R.R.

    2009-01-01

    The ozone column depletion over the western side of South America has been previously explained as a consequence of winds in the area of the depletion, which lead to the compression and thinning of the ozone layer. However, humidity and methane (originated in the Amazon forest and the Pacific Ocean) transported by these winds toward the stratosphere may also have a role in the ozone depletion. Oxidation of methane generates additional humidity, which in turn reacts with ozone, destroying it. Humidity and methane levels were measured by NASA and HALOE during an ozone depletion event (January 1998) that occurred along with El Nino. By analyzing these measurements, we found that, at different altitudes, changes in the humidity seem to be associated with changes in the ozone such that an increment of humidity may lead to an ozone depletion. Moreover, we found that during the event, the sum 2CH4+H2O was roughly constant only at altitudes lower than 50 km; the ratio CH4/H2O exhibited an exponential decay with the altitude that may allow assessing the generation mechanism of stratospheric humidity from methane.

  3. Gangnam-Style Plastic Surgery: The Science of Westernized Beauty in South Korea.

    Science.gov (United States)

    Leem, So Yeon

    2017-10-01

    New beauty ideals and particular types of plastic surgery beauty have emerged in South Korea from the early twenty-first century. By defining Gangnam-style plastic surgery as a hybrid of old Westernized beauty ideals and a new science of beauty with variations and contradictions, I intend to twist the simplistic understanding of non-Western plastic surgery as an effort to resemble the white westerner's body. I also draw political implications from a case of monstrous Gangnam-style beauty made by excessive plastic surgery.

  4. Investigating a green economy transition of the electricity sector in the Western Cape province of South Africa: a system dynamics approach

    Directory of Open Access Journals (Sweden)

    Oosthuizen, Juan

    2016-12-01

    Full Text Available The Western Cape Government in South Africa has identified the concept of a green economy as a way to transform the Province’s economy to one that is more sustainable from an economic, social, and environmental perspective. System dynamics modelling was used to develop a better understanding of the implications of different green economy policies and investments in the electricity sector of the Western Cape Province. The results suggest that continuing on the current policy path would increase the gap between demand and supply, increase the carbon footprint of the electricity sector, and not provide growth in employment in the sector. Strategic green economy investments are therefore expected to impact positively on a number of indicators across a number of sectors.

  5. Measuring the Carbon Intensity of the South African Economy

    DEFF Research Database (Denmark)

    Arndt, Channing; Davies, Rob; Makrelov, Konstantin

    2013-01-01

    We estimate the carbon intensity of industries, products and households in South Africa using data from a high resolution supply-use table. Direct and indirect carbon usage is measured using multiplier methods that capture inter-industry linkages and multi-product supply chains. Carbon intensity ...... or poorer households. Seven percent of emissions arise through marketing margins, implying that carbon pricing should be accompanied by supporting public policies and investments.......We estimate the carbon intensity of industries, products and households in South Africa using data from a high resolution supply-use table. Direct and indirect carbon usage is measured using multiplier methods that capture inter-industry linkages and multi-product supply chains. Carbon intensity...... is found to be high for exports but low for major employing sectors. Middle-income households are the most carbon-intensive consumers. These results suggest that carbon pricing policies (without border tax adjustments) would adversely affect export earnings, but should not disproportionately hurt workers...

  6. Health Concerns in the Amazon Region

    Centers for Disease Control (CDC) Podcasts

    2009-04-09

    Residents of the Amazon region of South America contend with a number of health threats - from mosquito-borne diseases to difficulty accessing doctors and healthcare facilities in such a vast area. This podcast helps explore some of the health issues in the region and what's being done to address them.  Created: 4/9/2009 by Emerging Infectious Diseases.   Date Released: 4/9/2009.

  7. Regional Atmospheric CO2 Inversion Reveals Seasonal and Geographic Differences in Amazon Net Biome Exchange

    Science.gov (United States)

    Alden, Caroline B.; Miller, John B.; Gatti, Luciana V.; Gloor, Manuel M.; Guan, Kaiyu; Michalak, Anna M.; van der Laan-Luijkx, Ingrid; Touma, Danielle; Andrews, Arlyn; Basso, Luana G.; hide

    2016-01-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (Approx.1-8 x 10(exp -6) km2) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  8. The carbon debt from Amazon forest degradation: integrating airborne lidar, field measurements, and an ecosystem demography model.

    Science.gov (United States)

    Longo, M.; Keller, M. M.; dos-Santos, M. N.; Scaranello, M. A., Sr.; Pinagé, E. R.; Leitold, V.; Morton, D. C.

    2016-12-01

    Amazon deforestation has declined over the last decade, yet forest degradation from logging, fire, and fragmentation continue to impact forest carbon stocks and fluxes. The magnitude of this impact remains uncertain, and observation-based studies are often limited by short time intervals or small study areas. To better understand the long-term impact of forest degradation and recovery, we have been developing a framework that integrates field plot measurements and airborne lidar surveys into an individual- and process-based model (Ecosystem Demography model, ED). We modeled forest dynamics for three forest landscapes in the Amazon with diverse degradation histories: conventional and reduced-impact logging, logging and burning, and multiple burns. Based on the initialization with contemporary forest structure and composition, model results suggest that degraded forests rapidly recover (30 years) water and energy fluxes compared with old-growth, even at sites that were affected by multiple fires. However, degraded forests maintained different carbon stocks and fluxes even after 100 years without further disturbances, because of persistent differences in forest structure and composition. Recurrent disturbances may hinder the recovery of degraded forests. Simulations using a simple fire model entirely dependent on environmental controls indicate that the most degraded forests would take much longer to reach biomass typical of old-growth forests, because drier conditions near the ground make subsequent fires more intense and more recurrent. Fires in tropical forests are also closely related to nearby human activities; while results suggest an important feedback between fires and the microenvironment, additional work is needed to improve how the model represents the human impact on current and future fire regimes. Our study highlights that recovery of degraded forests may act as an important carbon sink, but efficient recovery depends on controlling future disturbances.

  9. Greenhouse problem in the Amazon jungle clearing

    International Nuclear Information System (INIS)

    Reis, E.J.; Margulis, S.

    1991-01-01

    This paper discusses the contribution of Amazon jungle clearing to the greenhouse problem and makes an assessment of long-run prospects. The introductory sections pose the problem from both international and Brazilian perspectives. The next section describes major features of the Amazonia ecosystems and presents methods and evidence on deforestation and on its impact on carbon dioxide emissions. Based upon cross-section information for a sample of municipalities in the Brazilian Amazon, the following section estimates elasticities of deforestation in relation to major economic factors- government policies included- and uses them to make projections for the future pace of deforestation. The last section discusses policy alternatives to slow down forest conversion

  10. HIV/AIDS: Knowledge and attitudes of dentists in South-Western ...

    African Journals Online (AJOL)

    Objective: The purpose of this study was to assess the knowledge and attitudes of dentists in South-Western Nigeria in relation to HIV/AIDS. Materials and methods: A questionnaire survey of 164 dentists in Lagos, Ibadan and Benin The data was analyzed using Epi-info statistical software. Results: The modes of ...

  11. Cutaneous adornment in the Yoruba of south-western Nigeria - past and present.

    Science.gov (United States)

    George, Adekunle O; Ogunbiyi, Adebola O; Daramola, Olaniyi O M

    2006-01-01

    The traditional practice of cutaneous adornment is rich and vast amongst the Yoruba in the south-western part of Nigeria. There are varieties of traditionally made products, such as oils, soaps, fragrances, and beads, that have been employed over the years to enhance body beauty. This rich cultural heritage, however, has more or less given way to the values of Western culture, together with the disadvantages of the latter, manifesting as sequelae on the skin.

  12. LBA-ECO LC-03 Hypsography, Rivers, Roads, and DEM, Four Areas across Brazilian Amazon

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides four related spatial data products for four study areas across the Brazilian Amazon: Manaus, Amazonas; Tapajos National Forest, Para Western...

  13. Cretaceous paleogeography and depositional cycles of western South America

    Science.gov (United States)

    Macellari, C. E.

    The western margin of South America was encroached upon by a series of marine advances that increased in extent from the Early Cretaceous to a maximum in the early Late Cretaceous for northern South America (Venezuela to Peru). In southern South America, however, the area covered by the marine advances decreased from a maximum in the Early Cretaceous to a minimum during mid-Cretaceous time, followed by a widespread advance at the end of the period. A series of unconformity-bounded depositional cycles was recognized in these sequences: five cycles in northern South America, and six (but not exactly equivalent) cycles in the Cretaceous back-arc basins of southern South America (Neuquén and Austral, or Magallanes, Basins). Both widespread anoxic facies and maximum flooding of the continent in northern South America coincide in general terms with recognized global trends, but this is not the case in southern South America. Here, anoxic facies are restricted to the Lower Cretaceous and seem to be controlled by local aspects of the basin evolution and configuration. The contrasts observed between northern and southern South America can be explained by differences in tectonic setting and evolution. To the north, sediments were deposited around the tectonically stable Guayana-Brazilian Massifs, and thus registered global "signals" such as anoxic events and major eustatic changes. The southern portion of the continent, on the contrary, developed in an active tectonic setting. Here, the mid-Cretaceous Peruvian Orogeny overprinted, to a large extent, world-wide trends and only the earliest and latest Cretaceous conform to global depositional patterns.

  14. A direct estimate of evapotranspiration over the Amazon basin and implications for our understanding of carbon and water cycling

    Science.gov (United States)

    Swann, A. L. S.; Koven, C.; Lombardozzi, D.; Bonan, G. B.

    2017-12-01

    Evapotranspiration (ET) is a critical term in the surface energy budget as well as the water cycle. There are few direct measurements of ET, and thus the magnitude and variability is poorly constrained at large spatial scales. Estimates of the annual cycle of ET over the Amazon are critical because they influence predictions of the seasonal cycle of carbon fluxes, as well as atmospheric dynamics and circulation. We estimate ET for the Amazon basin using a water budget approach, by differencing rainfall, discharge, and time-varying storage from the Gravity Recovery and Climate Experiment. We find that the climatological annual cycle of ET over the Amazon basin upstream of Óbidos shows suppression of ET during the wet season, and higher ET during the dry season, consistent with flux tower based observations in seasonally dry forests. We also find a statistically significant decrease in ET over the time period 2002-2015 of -1.46 mm/yr. Our direct estimate of the seasonal cycle of ET is largely consistent with previous indirect estimates, including energy budget based approaches, an up-scaled station based estimate, and land surface model estimates, but suggests that suppression of ET during the wet season is underestimated by existing products. We further quantify possible contributors to the phasing of the seasonal cycle and downward time trend using land surface models.

  15. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil.

    Science.gov (United States)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0-30 and the 0-100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km(2) and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m(-2), respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Oxygen isotope records of Globigerina bulloides across a north-south transect in the south-western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khare, N.; Chaturvedi, S.K.; Saraswat, R

    , Washington, D.C). Lutjeharms, J.R.E., N.M. Walters and B.R. Allanson. 1985. Oceanic frontal systems and biologicalenhancement. p.11-21. In: Antarctic Nutrient Cycles and Food Webs. ed. by W.R. Siegfried et al., Springer-Verlag, NewYork. Matsumoto, K., J...: Ocean Sci. J.: 44(2); 2009; 117-123 OXYGEN ISOTOPE RECORDS OF GLOBIGERINA BULLOIDES ACROSS A NORTH-SOUTH TRANSECT IN THE SOUTH-WESTERN INDIAN OCEAN N. Khare 1* , S. K. Chaturvedi 2 and R. Saraswat 3 1. Ministry of Earth Sciences, Block...

  17. Molecular characterization of the hepatitis B virus in autochthonous and endogenous populations in the Western Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Ádila Liliane Barros Dias

    2012-02-01

    Full Text Available INTRODUCTION: Hepatitis B virus (HBV infection is a serious public health issue worldwide. Hepatitis B virus is classified into eight genotypes, varying from A to H, with distinct geographical distributions. In Brazil, the most frequent genotypes are A, D, and F. METHODS: This study aimed to characterize the HBV genotypes in cases of hepatitis B virus and hepatitis D virus (HDV co-infections in an endemic area in the Western Brazilian Amazon. We analyzed 86 serum samples reactive for HBsAg from indigenous and non-indigenous populations obtained from previous serological surveys. RESULTS: Of the 86 reactive serum samples, 39 were found to be HBV-DNA-positive by semi-nested PCR. The genotypes were established by sequencing the amplified S gene region. We obtained 20 sequences classified into three genotypes: A, D, and F. Genotype A was the most frequent (60%, followed by D (35% and F (5%. CONCLUSIONS: The distribution of the HBV genotypes reflected the pattern of historical occupation of the region.

  18. Phylogeography of the dark fruit-eating bat Artibeus obscurus in the Brazilian Amazon.

    Science.gov (United States)

    Ferreira, Wallax Augusto Silva; Borges, Bárbara do Nascimento; Rodrigues-Antunes, Symara; de Andrade, Fernanda Atanaena Gonçalves; Aguiar, Gilberto Ferreira de Souza; de Sousa e Silva-Junior, José; Marques-Aguiar, Suely Aparecida; Harada, Maria Lúcia

    2014-01-01

    Artibeus obscurus (Mammalia: Chiroptera) is endemic to South America, being found in at least 18 Brazilian states. Recent studies revealed that different populations of this genus present distinct phylogeographic patterns; however, very little is known on the population genetics structure of A. obscurus in the Amazon rainforest. Here, using a fragment (1010bp) of the mitochondrial gene cytochrome b from 87 samples, we investigated patterns of genetic divergence among populations of A. obscurus from different locations in the Brazilian Amazon rainforest and compared them with other Brazilian and South American regions. Analysis of molecular variance (AMOVA), fixation index (Fst) analysis, and phylogeographic patterns showed divergence between two major monophyletic groups, each one corresponding to a geographic region associated with the Atlantic and Amazon forest biomes. The Atlantic forest clusters formed a monophyletic group with a high bootstrap support and a fragmented distribution that follows the pattern predicted by the Refuge Theory. On the other hand, a different scenario was observed for the Amazon forest, where no fragmentation was identified. The AMOVA results revealed a significant geographic heterogeneity in the distribution of genetic variation, with 70% found within populations across the studied populations (Fst values ranging from 0.05864 to 0.09673; φST = 0.55). The intrapopulational analysis revealed that one population (Bragança) showed significant evidence of population expansion, with the formation of 2 distinct phylogroups, suggesting the occurrence of a subspecies or at least a different population in this region. These results also suggest considerable heterogeneity for A. obscurus in the Amazon region.

  19. Contingent feasibility for forest carbon credit: evidence from South Korean firms.

    Science.gov (United States)

    Roh, TaeWoo; Koo, Ja-Choon; Cho, Dong-Sung; Youn, Yeo-Chang

    2014-11-01

    Under the Kyoto Protocol, a global governmental response to climate change, protocol signatories make an effort to cut their greenhouse gas emissions. South Korea is not included in the list of Annex I countries; yet, South Korea is the seventh highest emitter of CO2. The South Korean government has enacted various institutional policies to encourage greenhouse gas reductions. While previous studies have focused on the guidance that reflects the stance of suppliers in the carbon market, this study focuses on South Korean firms' actual demand for forest carbon credits. By applying the contingent valuation method, we estimated domestic firms' willingness to pay for forest carbon credits. We then applied a rank-ordered logistic regression to confirm whether the rank of forest carbon credits, as compared to any other carbon credit, is influenced by a firm's characteristics. The results showed that Korean firms are willing to pay 5.45 USD/tCO2 and 7.77 USD/tCO2 for forest carbon credits in domestic and overseas forest carbon projects, respectively. Therefore, the introduction of forest carbon credits in the Korean carbon market seems reasonable. Analysis of the priority rankings of forest carbon credits, however, demonstrated that forestry projects were least likely to be ranked by firms as their first priority. Although relative preferences for forest carbon credits were influenced by individual firms' characteristics such as prior experience of environmental CSR related activities and whether the firm established an emissions reduction plan, the impact of perceived behavior control, whether the firm was included in the emissions target management scheme on forest carbon credits was negligible. Therefore, forest carbon credits are not a feasible solution without strong government support or institutional instruments. The results of this study are expected to provide policy makers with realistic approaches to formulate climatic change-related policies. Copyright © 2014

  20. The sustainability of carbon sinks in forests. Studying the sensitivity of forest carbon sinks in the Netherlands, Europe and the Amazon to climate and management

    International Nuclear Information System (INIS)

    Kruijt, B.; Kramer, K.; Van den Wyngaert, I.; Groen, R.; Elbers, J.A.; Jans, W.W.P.

    2003-01-01

    The aim of this study was to assess the sustainability of carbon sinks in managed or unmanaged forests of Europe and the Amazon. First, the functioning and seasonal variability of the carbon sink strength in forest ecosystems was analysed in relation to climate variability. For this, existing global data sets of ecosystem fluxes measured by eddy correlation were analysed. A simple, comprehensive empirical model was derived to represent these flux variabilities. Also, new soil respiration measurements were initiated in the Netherlands and Amazonia and their usefulness to understand the uptake- and emission components of carbon exchange was analysed. Then, two long-term forest dynamics models were parameterised (FORSPACE and CENTURY) for Dutch Pinus and Fagus forests, to study the development of forest carbon stocks over a century under different management and climate scenarios. Finally, using the empirical model as well as the long-term models, scenario predictions were made. It turns out that uptake rates are expected to decrease in a climate with higher temperatures, but that storage capacity for carbon can be expected to be slightly enhanced, especially if also the management intensity is carefully tuned down

  1. Jurassic carbonate microfacies, sea-level changes and the Toarcian anoxic event in the Tethys Himalaya (South Tibet)

    Science.gov (United States)

    Han, Zhong; Hu, Xiumian; Garzanti, Eduardo

    2016-04-01

    Detailed microfacies analysis of carbonate rocks from the Tingri and Nyalam areas of South Tibet allowed us to reconstruct the evolution of sedimentary environments during the Early to Middle Jurassic. Based on texture, sedimentary structure, grain composition and fossil content of about 500 thin sections, 17 microfacies overall were identified, and three evolutionary stages were defined. Stage 1 (Rhaetian?-lower Sinemurian Zhamure Formation) was characterized by siliciclastic and mixed siliciclastic-carbonate sedimentation on a barrier shore environment, stage 2 (upper Sinemurian-Pliensbachian Pupuga Formation) by high-energy grainstones with rich benthic faunas thriving on a carbonate platform, and stage 3 (Toarcian-lower Bajocian Nieniexiongla Formation) by low-energy mudstones intercalated with frequent storm layers on a carbonate ramp. Besides, Carbon isotope analyses (δ13Ccarb and δ13Corg) were performed on the late Pliensbachian-early Toarcian interval, and the organic matter recorded a pronounced stepped negative excursion -4.5‰ corresponding to characteristics of the early Toarcian oceanic anoxic event globally, which began just below the stage 2-stage 3 facies shifting boundary. The comparison between the Tethys Himalaya (South Tibet) and the tropical/subtropical zones of the Western Tethys and Panthalassa was carried out to discuss the factors controlling sedimentary evolution. The change from stage 1 to stage 2 was possibly induced by sea-level rise, when the Tibetan Tethys Himalaya was located at tropical/subtropical latitudes in suitable climatic and ecological conditions for carbonate sedimentation. The abrupt change from stage 2 to stage 3 is interpreted as a consequence of the early Toarcian oceanic anoxic event, accompanied by obvious carbon-isotope negative excursion and sea-level rise. The failed recovery from the carbonate crisis in the early Bajocian, with continuing deposition on a low-energy carbonate ramp, is ascribed to the tectonic

  2. Predictors of Mortality in a Critical Care Unit in South Western Kenya

    African Journals Online (AJOL)

    Abstract. Background: Critical care in developing countries has been ... which may impact the quality of care. Hospitals also ... and referral facility located in South Western Kenya in Bomet .... p=0.01). As regards end of life care; 40.4% of those.

  3. South America, Shaded Relief and Colored Height

    Science.gov (United States)

    2003-01-01

    This image of South America was generated with data from the Shuttle Radar Topography Mission (SRTM). For this broad view the resolution of the data was first reduced to 30 arcseconds (about 928 meters north-south but variable east-west), matching the best previously existing global digital topographic data set called GTOPO30. The data were then resampled to a Mercator projection with approximately square pixels (about one kilometer, or 0.6 miles, on each side). Even at this decreased resolution the variety of landforms comprising the South American continent is readily apparent.Topographic relief in South America is dominated by the Andes Mountains, which extend all along the Pacific Coast. These mountains are created primarily by the convergence of the Nazca and South American tectonic plates. The Nazca Plate, which underlies the eastern Pacific Ocean, slides under western South America resulting in crustal thickening, uplift, and volcanism. Another zone of plate convergence occurs along the northwestern coast of South America where the Caribbean Plate also slides under the South American Plate and forms the northeastern extension of the Andes Mountains.East of the Andes, much of northern South America drains into the Amazon River, the world's largest river in terms of both watershed area and flow volume. Topographic relief is very low in much of the Amazon Basin but SRTM data provide an excellent detailed look at the basin's three-dimensional drainage pattern, including the geologic structural trough (syncline) that hosts the eastern river channel.North of the Amazon, the Guiana Highlands commonly stand in sharp contrast to the surrounding lowlands, indeed hosting the world's tallest waterfall, Angel Falls (979 meters or 3212 feet). Folded and fractured bedrock structures are distinctive in the topographic pattern.South of the Amazon, the Brazilian Highlands show a mix of landforms, including some broad areas of consistent topographic patterns that indicate the

  4. Sedimentology and stratigraphy of Neoproterozoic-lower Paleozoic carbonate-siliciclastic succession of the southwesternmost Amazon Craton, state of Rondônia, Brazil

    Directory of Open Access Journals (Sweden)

    Jhon Willy Lopes Afonso

    2018-02-01

    Full Text Available ABSTRACT: Facies and stratigraphic analysis were carried out in Neoproterozoic-Lower Paleozoic carbonate-siliciclastic deposits of Cacoal and Pimenta Bueno formations exposed on basement rocks and into the Pimenta Bueno Graben, northwestern portion of Parecis Basin, southwesternmost Amazon Craton. The redescription and redefinion of this succession confirmed the previous interpretation for the Cacoal Formation as a Marinoan (~ 635 Ma cap carbonate. The Cacoal Formation is subdivided here in two units separate by sharp contact found exclusively overlying Mesoproterozoic crystalline basement rocks: 1 a homonymous formation characterized by diamictites, sandstones and siltstones with dropstones interpreted as glacio-marine deposits; and 2 the Espigão d’Oeste Formation that consists of dolostone, dolomitic stromatolites, dolostone-siltstone rhythmite and siltstone interpreted as shallow to moderately deep platform deposits. The Ordovician to Silurian Pimenta Bueno Formation is a filling of Pimenta Bueno graben and overlies locally the Meso and Neoproterozoic rocks. This unit consists in diamictites, sandstones, siltstones and pelites interpreted as glacial-marine and tide- to storm-influenced platform deposits, recording a glacio-eustatic regressive-transgressive event. This new stratigraphic proposal modify the current stratigraphy for the Parecis Basin and suggest, at least, two levels of glaciation exposed in the sothwesternmost Amazon Craton related to the Marinoan and Late Ordovician-Early Silurian events.

  5. Andes hantavirus variant in rodents, southern Amazon Basin, Peru.

    Science.gov (United States)

    Razuri, Hugo; Tokarz, Rafal; Ghersi, Bruno M; Salmon-Mulanovich, Gabriela; Guezala, M Claudia; Albujar, Christian; Mendoza, A Patricia; Tinoco, Yeny O; Cruz, Christopher; Silva, Maria; Vasquez, Alicia; Pacheco, Víctor; Ströher, Ute; Guerrero, Lisa Wiggleton; Cannon, Deborah; Nichol, Stuart T; Hirschberg, David L; Lipkin, W Ian; Bausch, Daniel G; Montgomery, Joel M

    2014-02-01

    We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted.

  6. Andes Hantavirus Variant in Rodents, Southern Amazon Basin, Peru

    OpenAIRE

    Razuri, Hugo; Tokarz, Rafal; Ghersi, Bruno M.; Salmon-Mulanovich, Gabriela; Guezala, M. Claudia; Albujar, Christian; Mendoza, A. Patricia; Tinoco, Yeny O.; Cruz, Christopher; Silva, Maria; Vasquez, Alicia; Pacheco, Víctor; Ströher, Ute; Guerrero, Lisa Wiggleton; Cannon, Deborah

    2014-01-01

    We investigated hantaviruses in rodents in the southern Amazon Basin of Peru and identified an Andes virus variant from Neacomys spinosus mice. This finding extends the known range of this virus in South America and the range of recognized hantaviruses in Peru. Further studies of the epizoology of hantaviruses in this region are warranted.

  7. East of the Andes: The genetic profile of the Peruvian Amazon populations.

    Science.gov (United States)

    Di Corcia, T; Sanchez Mellado, C; Davila Francia, T J; Ferri, G; Sarno, S; Luiselli, D; Rickards, O

    2017-06-01

    Assuming that the differences between the Andes and the Amazon rainforest at environmental and historical levels have influenced the distribution patterns of genes, languages, and cultures, the maternal and paternal genetic reconstruction of the Peruvian Amazon populations was used to test the relationships within and between these two extreme environments. We analyzed four Peruvian Amazon communities (Ashaninka, Huambisa, Cashibo, and Shipibo) for both Y chromosome (17 STRs and 8 SNPs) and mtDNA data (control region sequences, two diagnostic sites of the coding region, and one INDEL), and we studied their variability against the rest of South America. We detected a high degree of genetic diversity in the Peruvian Amazon people, both for mtDNA than for Y chromosome, excepting for Cashibo people, who seem to have had no exchanges with their neighbors, in contrast with the others communities. The genetic structure follows the divide between the Andes and the Amazon, but we found a certain degree of gene flow between these two environments, as particularly emerged with the Y chromosome descent cluster's (DCs) analysis. The Peruvian Amazon is home to an array of populations with differential rates of genetic exchanges with their neighbors and with the Andean people, depending on their peculiar demographic histories. We highlighted some successful Y chromosome lineages expansions originated in Peru during the pre-Columbian history which involved both Andeans and Amazon Arawak people, showing that at least a part of the Amazon rainforest did not remain isolated from those exchanges. © 2017 Wiley Periodicals, Inc.

  8. Non-metropolitan residential gated developments in the Western Cape Province, South Africa

    CSIR Research Space (South Africa)

    Spocter, M

    2011-07-01

    Full Text Available -metropolitan locale and the topic is also unexplored in the South African context. This research attempts to address this research gap by investigating the locations of gated developments in non-metropolitan towns of varying sizes in the Western Cape...

  9. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K.

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.

  10. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme.

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO 2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO 2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO 2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO 2 eq saving per GL of water produced by the plant.

  11. South Indian "Solkattu" and Western Music Pedagogy: Creating New Rhythmic Perspectives

    Science.gov (United States)

    Wood, Brandon Keith

    2013-01-01

    Part of the classical music tradition of South India, "solkattu" reinforces the statement "If you can say it, you can play it." This system of percussive syllables can help young musicians approach rhythm training in a way not usually available to students in Western countries. This article offers applications for a music…

  12. Philorhizus occitanus sp. n. from the South-Western Alps (Piedmont, Italy (Coleoptera: Carabidae, Dromiini

    Directory of Open Access Journals (Sweden)

    Gianni Allegro

    2015-12-01

    Full Text Available Philorhizus occitanus sp. n. from the South-Western Alps (Ellero Valley and Maira Valley is described. This new species is similar to P. crucifer and P. notatus as far as the external morphology is concerned, but it is distinguished by the color pattern and the shape of elytra, as well as by the features of the median lobe of aedeagus. P. liguricus, which is easily distinguished from P. occitanus sp. n. by the external morphology, was already recorded from the South-Western Alps and from the Ligurian Apennines. P. occitanus sp. n. is a likely close relative of P. notatus, although the affinities of this relict flightless new species remain uncertain.

  13. The Impact of the AMOC Resumption in the Western South Atlantic Thermocline at the Onset of the Last Interglacial

    Science.gov (United States)

    Santos, Thiago P.; Lessa, Douglas O.; Venancio, Igor M.; Chiessi, Cristiano M.; Mulitza, Stefan; Kuhnert, Henning; Albuquerque, Ana Luiza S.

    2017-11-01

    After glacial terminations, large amounts of heat and salt were transferred from low to high latitudes, which is a crucial phenomenon for the reestablishment of the Atlantic Meridional Overturning Circulation (AMOC). However, how different glacial terminations evolved in the (sub)tropics is still poorly documented. Here we use foraminifera oxygen (δ18O) and carbon (δ13C) stable isotopes to show that the North Atlantic heat piracy, following the AMOC resumption at the early Last Interglacial, affected the thermocline δ18O levels of the subtropical western South Atlantic. Because of the cooling imposed by this process, glacial δ18O persisted in the thermocline for 7 kyr after the onset of the Last Interglacial, dampening the effect of sea level rise usually imprinted on foraminifera δ18O during terminations. Faunal composition and δ13C also suggest the existence of a colder and thicker South Atlantic Central Water coeval with the AMOC recovery. This process apparently did not occur during the last deglaciation.

  14. Education and Countering Violent Extremism: Western Logics from South to North?

    Science.gov (United States)

    Novelli, Mario

    2017-01-01

    This paper explores the way education and conflict have become entangled during the post-9/11 "war on terror" response to "radical Islam" at home and abroad. The paper charts the complex ways that education has been deployed to serve Western military and security objectives in multiple locations in the global south and how…

  15. Protecting the Amazon with protected areas

    Science.gov (United States)

    Walker, Robert; Moore, Nathan J.; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio

    2009-01-01

    This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively. PMID:19549819

  16. EFFECT OF EXTRACTIVES AND CARBONIZATION TEMPERATURE ON ENERGY CHARACTERISTICS OF WOOD WASTE IN AMAZON RAINFOREST

    Directory of Open Access Journals (Sweden)

    Jordão Cabral Moulin

    2017-06-01

    Full Text Available The objective of this study was to evaluate the effect of extractives soluble in hot water, besides final carbonization temperatures, on the gravimetric yield and properties of charcoal for waste of three native forest species from the Amazon region. Waste cuttings of Ipé, Grapia and Maçaranduba species, from the machine processing for joinery of a company in the State of Pará, were used. Carbonization was carried out in an adapted electric furnace with a heating rate of 1.67°C min-1 and final temperatures of 500, 600 and 700°C. The waste was carbonized fresh after extraction in hot water to remove extractives. Gravimetric yields were analyzed, as well as chemical features and high heating value. In the evaluation of the experiment, arranged in a factorial scheme with three factors (species x temperature x material with and without extraction, and Principal Component Analysis used too. The presence of extractives (soluble in hot water from wood waste had little influence on the gravimetric yield and immediate chemical composition of charcoal; however, it showed a greater high heating value and lower contents of hydrogen and nitrogen. The increase in the final carbonization temperature reduced the gravimetric yield in charcoal, the content of volatile materials and hydrogen, with a higher content of fixed carbon, carbon and high heating value. The treatments with the best energy characteristics were obtained from Ipé and Maçaranduba charcoals with extractives produced at 600°C, in addition to Ipê and Maçaranduba charcoals with and without extractives obtained at 700°C.

  17. Amazon`s strategic analysis approaching the Spanish market

    OpenAIRE

    Rúa de la Plaza, José

    2018-01-01

    Amazon.com has not stopped growing since its foundation in 1994, and has become the leading company in the world of e-commerce. Amazon emerged from a great idea of its founder Jeff Bezos, who has managed to turn an online books store into a company that is constantly thinking about its customers and trying to innovate, either improving existing products and services, developing new ones or entering new markets. Amazon takes advantage of economies of scale that derive from its excellent dis...

  18. Historical satellite data used to map Pan-Amazon forest cover

    Science.gov (United States)

    Kalluri, Satya; Desch, Arthur; Curry, Troy; Altstatt, Alice; Devers, Didier; Townshend, John; Tucker, Compton

    Deforestation in the Brazilian Amazon is well documented and the contributions of Brazilian deforestation to global change have been extensively discussed in both scientific and popular literature [e.g., Skole and Tucker, 1993]. However, deforestation within the non-Brazilian tropics of South America has received much less attention. The Pan-Amazon region covering Venezuela, Colombia, Ecuador, Peru, and Bolivia comprises ˜2 million km2 of tropical forest that is under increasing pressure from logging and development. Wall-to-wall high-resolution forest cover maps are needed to properly document the complex distribution patterns of deforestation in the Pan-Amazon [Tucker and Townshend, 2000]. The Deforestation Mapping Group at the University of Marylands Global Land Cover Facility is using Landsat data to generate tropical forest cover maps in this region (Figure l). The study shows that while rates of forest loss are generally lower than those in Brazil, there are hot spots where deforestation rates run as high as 2,200 km2 yr1.

  19. DOCUMENTED RECORD OF A MIGRATING EASTERN SLATY THRUSH (Turdus subalaris (TURDIDAE, PASSERIFORMES IN WESTERN MATO GROSSO STATE, BRAZIL

    Directory of Open Access Journals (Sweden)

    Breno Dias Vitorino

    2016-12-01

    Full Text Available The Eastern Slaty Thrush (Turdus subalaris occurs in the meridional parts of South America, from Bolivia Southward to Argentina, Paraguay and South and Southeastern Brazil. During the winter on the continent, it performs migration little known toward areas of ecotone between Amazon and Cerrado, with little information on their area of wintering in the Mato Grosso state. In this study we report on a record documenting the species for the Alto Rio Guaporé basin, Western Mato Grosso, based on a mist-netted individual. We present a record until now unpublished of the species in the region of Vila Bela da Santíssima Trindade and contribute to the knowledge of the species’ wintering range and their annual cycle. Keywords: Austral migration; wintering; birds; Vila Bela da Santíssima Trindade.

  20. ACADEMIC DEPENDENCY ON WESTERN DISCIPLINARY KNOWLEDGE AND CAPTIVE MIND AMONG SOUTH ASIAN SOCIOLOGISTS: A CRITIQUE

    Directory of Open Access Journals (Sweden)

    Siri Gamage

    2016-10-01

    Full Text Available This paper examines how academic dependency of South Asia on the West has resulted in what has been termed ‘captive mind’, and its impact on the knowledge production process of South Asia. To this end, it observes that the relationship between Western centres of Social Science teaching and learning vs. those of the global South, in particular Asia, is an unequal one that stems from the colonial past, leading to the treatment of Western methods and types of knowledge production as superior and therefore worthy of imitation. The application of American and European methods of studying the Social Sciences to Asian settings without due adaptation, it argues, has rendered South Asian Sociology largely incapable of generating original knowledge to contribute to the growth of an emancipatory sociological imagination that will function for the benefit of the populace. Therefore it appeals to South Asian Sociologists – and other Social Scientists – to abandon the practice of studying regional social institutions as if these are exotic phenomena, practices, norms and ritual, and evolve their disciplinary framework in more critical, creative, and relevant ways.

  1. Changes in cloudiness over the Amazon rainforests during the last two decades: diagnostic and potential causes

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola A. [The University of Texas at Austin, Department of Geological Sciences, Austin, TX (United States); Universidad de Antioquia, Grupo de Ingenieria y Gestion Ambiental (GIGA), Medellin (Colombia); Jackson School of Geosciences, Geology Foundation, PO Box B, Austin, TX (United States); Fu, Rong [The University of Texas at Austin, Department of Geological Sciences, Austin, TX (United States); Hoyos, Carlos D. [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States); Li, Wenhong [Duke University, Division of Earth and Oceanic Sciences, Nicholas School of the Environment, Durham, NC (United States); Zhou, Liming [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States); National Science Foundation, Climate and Large Scale Dynamics Program, Arlington, VA (United States)

    2011-09-15

    This study shows a decrease of seasonal mean convection, cloudiness and an increase of surface shortwave down-welling radiation during 1984-2007 over the Amazon rainforests based on the analysis of satellite-retrieved clouds and surface radiative flux data. These changes are consistent with an increase in surface temperature, increased atmospheric stability, and reduction of moisture transport to the Amazon based on in situ surface and upper air meteorological data and reanalysis data. These changes appear to link to the expansion of the western Pacific warm pool during the December-February season, to the positive phase of the Atlantic Multidecadal Oscillation and increase of SST over the eastern Pacific SST during the March-May season, and to an increase of the tropical Atlantic meridional SST gradient and an expansion of the western Pacific warm pool during September-November season. The resultant increase of surface solar radiation during all but the dry season in the Amazon could contribute to the observed increases in rainforest growth during recent decades. (orig.)

  2. Early warning signals of simulated Amazon dieback

    OpenAIRE

    Boulton, Chris; Good, Peter; Lenton, Tim

    2013-01-01

    Dieback of the Amazon rainforest has been considered a potential tipping point in the Earth system due to the belief that there is more than one stable attractor in its dynamics and for future projections within global climate models (GCMs), in some cases a huge amount of forest is lost abruptly. The rainforest is a huge carbon sink, playing a critical role in the global carbon cycle and so if dieback is going to happen over a short period of time, it is important to have some early warning t...

  3. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    International Nuclear Information System (INIS)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-01-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km 2 and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m −2 , respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m −2 , respectively. • SOC stocks were 34 and 16%, respectively

  4. Depositional Record of the Bagua Basin, Northern Peru: Implications for Climate and Tectonic Evolution of Tropical South America

    Science.gov (United States)

    Moreno, F.; George, S. W. M.; Williams, L. A.; Horton, B. K.; Garzione, C. N.

    2015-12-01

    The Andes Mountains exert critical controls on the climate, hydrology, and biodiversity of South America. The Bagua Basin, a low elevation (400-600 m) intermontane basin in northern Peru, offers a unique opportunity to study the ecological, climatic, and structural evolution of the western topographic boundary of the Amazonian foreland. Situated between the Marañon fold-thrust belt of the Western Cordillera and basement block uplifts of the Eastern Cordillera, the Bagua region contains a protracted, semi-continuous record of Triassic through Pleistocene sedimentation. Whereas Triassic-Cretaceous marine deposits were potentially related to extension and regional thermal subsidence, a Paleocene-Eocene shift to shallow marine and fluvial systems marks the onset of foreland basin conditions. Oligocene-Miocene sedimentation corresponds to a braided-meandering fluvial system with exceptional development of paleosols. In this study, we use new detrital zircon U-Pb geochronologic and oxygen stable isotopic datasets to establish a chronology of pre-Andean and Andean processes within the Bagua Basin. Detrital zircon geochronology provides constraints on when the Western and Eastern cordilleras shed sediments into the basin. Syndepositional zircons within Eocene, Oligocene and Miocene strata provide key age control for a previously poorly constrained depositional chronology. Preliminary results suggest a dramatic provenance shift in which Paleocene deposits contain almost exclusively cratonic populations (500-1600 Ma) whereas Eocene deposits show a mix of syndepositional zircons from the magmatic arc, recycled Mesozoic zircons, and cratonic zircon populations. Oxygen stable isotopes (δ18O) of carbonate nodules from Neogene paleosols will help elucidate when the Eastern Cordillera became an orographic barrier intercepting moisture from the Amazon basin to the east. Together, these records will help uncover the history of tectonics and climate interaction in tropical South

  5. Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes.

    Science.gov (United States)

    Nóbrega, Rodolfo L B; Guzha, Alphonce C; Lamparter, Gabriele; Amorim, Ricardo S S; Couto, Eduardo G; Hughes, Harold J; Jungkunst, Hermann F; Gerold, Gerhard

    2018-04-14

    Studies on the impacts of land-use and land-cover change on stream hydrochemistry in active deforestation zones of the Amazon agricultural frontier are limited and have often used low-temporal-resolution datasets. Moreover, these impacts are not concurrently assessed in well-established agricultural areas and new deforestations hotspots. We aimed to identify these impacts using an experimental setup to collect high-temporal-resolution hydrological and hydrochemical data in two pairs of low-order streams in catchments under contrasting land use and land cover (native vegetation vs. pasture) in the Amazon and Cerrado biomes. Our results indicate that the conversion of natural landscapes to pastures increases carbon and nutrient fluxes via streamflow in both biomes. These changes were the greatest in total inorganic carbon in the Amazon and in potassium in the Cerrado, representing a 5.0- and 5.5-fold increase in the fluxes of each biome, respectively. We found that stormflow, which is often neglected in studies on stream hydrochemistry in the tropics, plays a substantial role in the carbon and nutrient fluxes, especially in the Amazon biome, as its contributions to hydrochemical fluxes are mostly greater than the volumetric contribution to the total streamflow. These findings demonstrate that assessments of the impacts of deforestation in the Amazon and Cerrado biomes should also take into account rapid hydrological pathways; however, this can only be achieved through collection of high-temporal-resolution data. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Mineralogy of the carbonate sediments - western continental shelf of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Hashimi, N.H.

    An X-ray diffraction study of forty-six sediment samples and three oolitic limestone samples from the western continental shelf of India shows that aragonite is the dominant carbonate mineral (99% maximum), followed by low-magnesium calcite (77...

  7. An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa

    Directory of Open Access Journals (Sweden)

    Andrew D. Venter

    2012-09-01

    Full Text Available South Africa has the largest industrialised economy in Africa, with significant mining and metallurgical activities. A large fraction of the South African mineral assets is concentrated in the Bushveld Igneous Complex (BIC, with the western limb being the most exploited. Because the majority of the world’s platinum is produced in the BIC, this area is also of international interest. There are some indications that the western BIC should be considered an air pollution hotspot; however, inadequate data exist to substantiate these claims scientifically. To partially address this knowledge gap, a comprehensive air quality monitoring station was operated for more than 2 years in this area. Meteorological parameters, trace gas concentrations and total mass concentration of particulate matter up to 10 µm in size (PM10 were measured. Compared with South African and European ambient air quality standards, SO2, NO2 and CO concentrations were generally acceptable. The major sources of SO2 were identified as high-stack industry emissions, while household combustion from semi-formal and informal settlements was identified as the predominant source of NO2 and CO. In contrast, O3 exceeded the 8-h moving average more than 322 times per year. The main contributing factor was identified to be the influx of regional air masses, with high O3 precursor concentrations. PM10 exceeded the current South African 24-h standard 6.6 times per year, the future (2015 standard 42.3 times per year and the European standard more than 120 times per year. The main source of PM10 was identified as household combustion from semi-formal and informal settlements. The findings clearly indicate that atmospheric O3 and PM10 levels in the western BIC need to be addressed to avoid negative environmental and human health impacts.

  8. South-South exchanges enhance resource management and biodiversity conservation at various scales

    Directory of Open Access Journals (Sweden)

    William D Heyman

    2011-01-01

    Full Text Available International conservation organisations have invested considerable resources in fostering biodiversity conservation programs in the humid tropics, the most biologically diverse areas on earth. Recent approaches to conservation have centered on integrated conservation and development projects and participatory resource management programs, co-managed between governments and local communities. But these programs have had only mixed success and often suffer from insufficient quantity or quality of participation by local communities. We pose that participatory resource management is more likely to succeed when community members, 1 gain a global perspective on how their social, economic and environmental conditions compare with peer communities in other similar areas of the world, and thus better understand issues of relative scarcity and the benefits of sustainable resource management, and 2 engage as decision-makers at every stage of the conservation process up to reflective program evaluation. This paper examines the role of South-South exchanges as a tool to achieve these intermediate goals that ultimately foster more effective and participatory conservation and support sustainable local livelihoods. The data are extracted from the initiatives of the authors in two different environments- marine and coastal communities in Central America and the Caribbean, and lowland rainforest communities in the western Amazon of South America. We conclude that the exchanges are effective ways to build stakeholder comprehension about, and meaningful engagement in, resource management. South-South exchanges may also help build multi-local coalitions from various remote areas that together support biodiversity conservation at regional and global scales.

  9. Foraminifera and Thecamoebians as hydrodynamic indicators for Amazon estuarine system

    Science.gov (United States)

    Laut, L. L.; Figueiredo, A. G.; Santos, V. F.; Souza-Vieira, S.

    2007-05-01

    The Amazon mangrove forest in Brazilian territory is one of the most extended in the world. It goes from Ponta do Tubarao (4S e 43W) to Cape Orange (5N e 51W) along 2,250 km of coast line. Because the Amazon River System influence, it can be divided into two regions; one with river influence toward north and the other without river influence. In order to characterize the mangrove environment hydrodynamic on both sides of the Amazon River System, foraminifera and thecamoebians assemblages were investigated in the sediment of two estuaries; Araguari to the North (1 15S - 50 30W) and Caete to the South (0 50S - 46 30W). For both estuaries forams and thecamoebians species distribution are atypical relative to other world regions. In both, there are only few calcareous forams and almost all are small and possible of being transported in suspension. Typical estuarine species were not identified. The typical mangrove forams which are agglutinated species were dominant in both estuaries. However, the Caete estuary has a large number of forams species (29), indicating better efficiency in mixing fresh and salt water in comparison to the Araguari. On the other hand, the Araguari has big richness of thecamoebians species (15) indicating fresh water prevalence. The fresh water predominance is due to the Amazon water plume being diverted to the Amapa coast where the Araguari estuary is located. The foraminifera species was also used to determine the salt water penetration in the estuary. In the Caete estuary, salt water penetrates to about 40 km while in the Araguari it does coincide with the limit of the bore tide wave "pororoca" penetration, 45 km. Based on the species succession (forams to thecamoebians species) the Araguary estuary can be divided into three regions controlled by turbidity: the outer, middle and inner estuary. The Caete species succession is not that clear and only could be divided based on salinity into outer and inner estuary. In both estuaries forams and

  10. North-South precipitation patterns in western North America on interannual-to-decadal timescales

    Science.gov (United States)

    Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.

    1998-01-01

    The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation

  11. The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S. T. [Harvard University, Cambridge, Massachusetts; Artaxo, P. [University of São Paulo, São Paulo, Brazil; Machado, L. [National Institute for Space Research, São José dos Campos, Brazil; Manzi, A. O. [National Institute of Amazonian Research, Manaus, Amazonas, Brazil; Souza, R. A. F. [Amazonas State University, Amazonas, Brazil; Schumacher, C. [Texas A& amp,M University, College Station, Texas; Wang, J. [Brookhaven National Laboratory, Upton, New York; Biscaro, T. [National Institute for Space Research, São José dos Campos, Brazil; Brito, J. [University of São Paulo, São Paulo, Brazil; Calheiros, A. [National Institute for Space Research, São José dos Campos, Brazil; Jardine, K. [Lawrence Berkeley National Lab, Berkeley, California; Medeiros, A. [Amazonas State University, Amazonas, Brazil; Portela, B. [National Institute of Amazonian Research, Manaus, Amazonas, Brazil; de Sá, S. S. [Harvard University, Cambridge, Massachusetts; Adachi, K. [Meteorological Research Institute, Tsukuba, Ibaraki, Japan; Aiken, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico; Albrecht, R. [University of São Paulo, São Paulo, Brazil; Alexander, L. [Pacific Northwest National Laboratory, Richland, Washington; Andreae, M. O. [Max Planck Institute for Chemistry, Mainz, Germany; Barbosa, H. M. J. [University of São Paulo, São Paulo, Brazil; Buseck, P. [Arizona State University, Tempe, Arizona; Chand, D. [Pacific Northwest National Laboratory, Richland, Washington; Comstock, J. M. [Pacific Northwest National Laboratory, Richland, Washington; Day, D. A. [University of Colorado Boulder, Boulder, Colorado; Dubey, M. [Los Alamos National Laboratory, Los Alamos, New Mexico; Fan, J. [Pacific Northwest National Laboratory, Richland, Washington; Fast, J. [Pacific Northwest National Laboratory, Richland, Washington; Fisch, G. [Aeronautic and Space Institute, São José dos Campos, Brazil; Fortner, E. [Aerodyne, Inc., Billerica, Massachusetts; Giangrande, S. [Brookhaven National Laboratory, Upton, New York; Gilles, M. [Lawrence Berkeley National Lab, Berkeley, California; Goldstein, A. H. [University of California, Berkeley, Berkeley, California; Guenther, A. [University of California, Irvine, Irvine, California; Hubbe, J. [Pacific Northwest National Laboratory, Richland, Washington; Jensen, M. [Brookhaven National Laboratory, Upton, New York; Jimenez, J. L. [University of Colorado Boulder, Boulder, Colorado; Keutsch, F. N. [Harvard University, Cambridge, Massachusetts; Kim, S. [University of California, Irvine, Irvine, California; Kuang, C. [Brookhaven National Laboratory, Upton, New York; Laskin, A. [Pacific Northwest National Laboratory, Richland, Washington; McKinney, K. [Harvard University, Cambridge, Massachusetts; Mei, F. [Pacific Northwest National Laboratory, Richland, Washington; Miller, M. [Rutgers, The State University of New Jersey, New Brunswick, New Jersey; Nascimento, R. [Amazonas State University, Amazonas, Brazil; Pauliquevis, T. [Federal University of São Paulo, São Paulo, Brazil; Pekour, M. [Pacific Northwest National Laboratory, Richland, Washington; Peres, J. [University of São Paulo, São Paulo, Brazil; Petäjä, T. [University of Helsinki, Helsinki, Finland; Pöhlker, C. [Max Planck Institute for Chemistry, Mainz, Germany; Pöschl, U. [Max Planck Institute for Chemistry, Mainz, Germany; Rizzo, L. [Federal University of São Paulo, São Paulo, Brazil; Schmid, B. [Pacific Northwest National Laboratory, Richland, Washington; Shilling, J. E. [Pacific Northwest National Laboratory, Richland, Washington; Dias, M. A. Silva [University of São Paulo, São Paulo, Brazil; Smith, J. N. [University of California, Irvine, Irvine, California; Tomlinson, J. M. [Pacific Northwest National Laboratory, Richland, Washington; Tóta, J. [Federal University of West Para, Santarém, Pará, Brazil; Wendisch, M. [University of Leipzig, Leipzig, Germany

    2017-05-01

    The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment took place around the urban region of Manaus in central Amazonia across two years. The urban pollution plume was used to study the susceptibility of gases, aerosols, clouds, and rainfall to human activities in a tropical environment. Many aspects of air quality, weather, terrestrial ecosystems, and climate work differently in the tropics than in the more thoroughly studied USA, employed an unparalleled suite of measurements at nine ground sites and onboard two aircraft to investigate the flow of background air into Manaus, the emissions into the air over the city, and the advection of the pollution downwind of the city. Herein, to visualize this train of processes and its effects, observations aboard a low-flying aircraft are presented. Comparative measurements within and adjacent to the plume followed the emissions of biogenic volatile organic carbon compounds (BVOCs) from the tropical forest, their transformations by the atmospheric oxidant cycle, alterations of this cycle by the influence of the pollutants, transformations of the chemical products into aerosol particles, the relationship of these particles to cloud condensation nuclei (CCN) activity, and the differences in cloud properties and rainfall for background compared to polluted conditions. The observations of the GoAmazon2014/5 experiment illustrate how the hydrologic cycle, radiation balance, and carbon recycling may be affected by present-day as well as future economic development and pollution over the Amazonian tropical forest.

  12. Aqua-planet simulations of the formation of the South Atlantic convergence zone

    Science.gov (United States)

    Nieto Ferreira, Rosana; Chao, Winston C.

    2013-01-01

    The impact of Amazon Basin convection and cold fronts on the formation and maintenance of the South Atlantic convergence zone (SACZ) is studied using aqua-planet simulations with a general circulation model. In the model, a circular patch of warm sea-surface temperature (SST) is used to mimic the effect of the Amazon Basin on South American monsoon convection. The aqua-planet simulations were designed to study the effect of the strength and latitude of Amazon Basin convection on the formation of the SACZ. The simulations indicate that the strength of the SACZ increases as the Amazon convection intensifies and is moved away from the equator. Of the two controls studied here, the latitude of the Amazon convection exerts the strongest effect on the strength of the SACZ. An analysis of the synoptic-scale variability in the simulations shows the importance of frontal systems in the formation of the aqua-planet SACZ. Composite time series of frontal systems that occurred in the simulations show that a robust SACZ occurs when fronts penetrate into the subtropics and become stationary there as they cross eastward of the longitude of the Amazon Basin. Moisture convergence associated with these frontal systems produces rainfall not along the model SACZ region and along a large portion of the northern model Amazon Basin. Simulations in which the warm SST patch was too weak or too close to the equator did not produce frontal systems that extended into the tropics and became stationary, and did not form a SACZ. In the model, the SACZ forms as Amazon Basin convection strengthens and migrates far enough southward to allow frontal systems to penetrate into the tropics and stall over South America. This result is in agreement with observations that the SACZ tends to form after the onset of the monsoon season in the Amazon Basin.

  13. The birds of the alien Acacia thickets of the South-western Cape

    African Journals Online (AJOL)

    About 1876, the Cape Superintendent of Plantations began using the Australian Acacia cyanophylla and A. ... Strandveld; but 38 % of all nests recorded in the South-western Cape are in Acacia. S. senegalensis is .... of mixed exotic trees, often including some Acacia but also Eucalyptus, Pinus, Quercus,. Populus and other ...

  14. Description of a new moss frog from the south-western Cape (Anura ...

    African Journals Online (AJOL)

    A new species of moss frog, genus Arthroleptella, is described from the Kleinrivier mountains of the south-western Cape. It is morphologically indistinguishable from the other three species in the area. The four Cape species are allopatric, each has a unique male advertisement call, and preliminary molecular data shows ...

  15. Holocene climate variability and oceanographic changes off western South Africa

    Science.gov (United States)

    Zhao, Xueqin; Dupont, Lydie; E Meadows, Michael; Schefuß, Enno; Bouimetarhan, Ilham; Wefer, Gerold

    2017-04-01

    South Africa is located at a critical transition zone between subtropical and warm-temperate climate zones influenced by the Indian and Atlantic oceans. Presently, the seasonal changes of atmospheric and oceanic systems induce a pronounced rainfall seasonality comprised of two different rainfall zones over South Africa. How did this seasonality develop during the Holocene? To obtain a better understanding of how South African climates have evolved during the Holocene, we conduct a comprehensive spatial-temporal approach including pollen and dinoflagellate cyst records from marine sediment samples retrieved from the Namaqualand mudbelt, a Holocene terrigenous mud deposit on the shelf of western South Africa. The representation of different vegetation communities in western South Africa is assessed through pollen analysis of surface sediments. This approach allows for climate reconstructions of the summer rainfall zone (SRZ) using Group 1 (Poaceae, Cyperaceae, Phragmites-type and Typha) and winter rainfall zone (WRZ) using Group 2 (Restionaceae, Ericaceae, Anthospermum, Stoebe/Elytropappus-type, Cliffortia, Passerina, Artemisia-type and Pentzia-type) from a single marine archive. The fossil pollen data from gravity core GeoB8331-4 indicate contrasting climate patterns in the SRZ and WRZ especially during the early and middle Holocene. The rainfall amount in the SRZ is dominated by insolation forcing, while in the WRZ it is mainly attributed to the latitudinal position of the southern westerlies. Dinoflagellate cyst data show significantly different oceanographic conditions associated with climate changes on land. High percentages of autotrophic taxa like Operculodinium centrocarpum and Spiniferites spp. indicate warm and stratified conditions during the early Holocene, suggesting reduced upwelling. In contrast, the middle Holocene is characterized by a strong increase in heterotrophic taxa in particular Lejeunecysta paratenella and Echinidinium spp., indicating cool

  16. Potential groundwater contribution to Amazon evapotranspiration

    Science.gov (United States)

    Fan, Y.; Miguez-Macho, G.

    2010-07-01

    Climate and land ecosystem models simulate a dry-season vegetation stress in the Amazon forest, but observations show enhanced growth in response to higher radiation under less cloudy skies, indicating an adequate water supply. Proposed mechanisms include larger soil water store and deeper roots in nature and the ability of roots to move water up and down (hydraulic redistribution). Here we assess the importance of the upward soil water flux from the groundwater driven by capillarity. We present a map of water table depth from observations and groundwater modeling, and a map of potential capillary flux these water table depths can sustain. The maps show that the water table beneath the Amazon can be quite shallow in lowlands and river valleys (2.1 mm day-1 to the land surface averaged over Amazonia, but varies from 0.6 to 3.7 mm day-1 across nine study sites. Current models simulate a large-scale reduction in dry-season photosynthesis under today's climate and a possible dieback under projected future climate with a longer dry season, converting the Amazon from a net carbon sink to a source and accelerating warming. The inclusion of groundwater and capillary flux may modify the model results.

  17. Amazon forest dynamics under changing abiotic conditions in the early Miocene (Colombian Amazonia)

    NARCIS (Netherlands)

    Salamanca, S.; van Soelen, E.E.; Teunissen van Manen, Milan L.; Flantua, Suzette G.A.; Ventura Santos, Roberto; Roddaz, M.; Dantas, Elton Luiz; van Loon, Emiel; Sinninghe Damsté, J.S.; Kim, J.H.; Hoorn, Carina

    2016-01-01

    Aim We analysed in detail a past marine incursion event in north-western Amazonia and measured its effect on the forest composition. We also determined the sediment provenance in the fluvio-estuarine system and reconstructed the overall floral composition of the Amazon lowland forest during the

  18. Amazon forest dynamics under changing abiotic conditions in the early Miocene (Colombian Amazonia)

    NARCIS (Netherlands)

    Salamanca Villegas, S.; van Soelen, E.; Teunissen van Manen, M.L.; Flantua, S.G.A.; Santos, R.V.; Roddaz, M.; Dantas, E.L.; van Loon, E.; Sinninghe Damsté, J.S.; Kim, J.-H.; Hoorn, C.

    2016-01-01

    Aim We analysed in detail a past marine incursion event in north-westernAmazonia and measured its effect on the forest composition. We also deter-mined the sediment provenance in the ?uvio-estuarine system and recon-structed the overall ?oral composition of the Amazon lowland forest duringthe

  19. Rainfall trends in the Brazilian Amazon Basin in the past eight decades

    Science.gov (United States)

    Satyamurty, Prakki; de Castro, Aline Anderson; Tota, Julio; da Silva Gularte, Lucia Eliane; Manzi, Antonio Ocimar

    2010-01-01

    Rainfall series at 18 stations along the major rivers of the Brazilian Amazon Basin, having data since 1920s or 1930s, are analyzed to verify if there are appreciable long-term trends. Annual, rainy-season, and dry-season rainfalls are individually analyzed for each station and for the region as a whole. Some stations showed positive trends and some negative trends. The trends in the annual rainfall are significant at only six stations, five of which reporting increasing trends (Barcelos, Belem, Manaus, Rio Branco, and Soure stations) and just one (Itaituba station) reporting decreasing trend. The climatological values of rainfall before and after 1970 show significant differences at six stations (Barcelos, Belem, Benjamin Constant, Iaurete, Itaituba, and Soure). The region as a whole shows an insignificant and weak downward trend; therefore, we cannot affirm that the rainfall in the Brazilian Amazon basin is experiencing a significant change, except at a few individual stations. Subregions with upward and downward trends are interspersed in space from the far eastern Amazon to western Amazon. Most of the seasonal trends follow the annual trends, thus, indicating a certain consistency in the datasets and analysis.

  20. Miocene oceanographic changes of the western equatorial Atlantic (Ceara Rise) based on calcareous dinoflagellate cysts

    Science.gov (United States)

    Heinrich, S.; Zonneveld, K. A. F.; Willems, H.

    2010-09-01

    The middle- and upper Miocene represent a time-interval of major changes in palaeoceanography that favoured the cooling of the climate and culminated in the Northern Hemisphere Glaciation (NHG). The basis for the development of the modern deepwater circulation pattern, e.g. thermohaline circulation, was hereby established. Tectonic events played a key role in the progressing Miocene oceanography, such as the narrowing of the Panama gateway (e.g. Duque-Caro 1990) and the possible linked changes in North Atlantic Deep Water formation (Lear et al. 2003). However, the complex interaction between the closing of the Panama Gateway, the development of NADW, and thus the oceanographic progression towards our present day circulation is far from being fully understood. We want to improve the understanding of these processes by establishing a detailed palaeoceanographic reconstruction of the western equatorial Atlantic Ocean on the basis of calcareous dinoflagellate cyst (dinocyst) associations. Within this study, we investigated sediment samples from ODP Site 926A by defining the calcareous dinocyst assemblage. Site 926A is located at the southwestern flank of the Ceara Rise, an area of highest sensitivity to global deep water circulation changes. At about 12 Ma, when NADW production increased (e.g. Wright et al. 1992), we see a distinct increase in the absolute abundances of the calcareous dinocysts. This might be related to enhanced productivity or to better carbonate preservation. At 11.3 Ma, Leonella granifera, a species known to be strongly related to terrestrial input occurs. This could be a signal for the initiation of the Amazon River as a transcontinental river with the development of the Amazon fan (11.8 - 11.3 Ma; Figueiredo et al. 2009) in relation to Andean tectonism. References: Duque-Caro, H. (1990): Neogene stratigraphy, paleoceanography and palebiology in Northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology

  1. Ocean-atmosphere forcing of South American tropical paleoclimate, LGM to present

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Dwyer, G. S.; Rigsby, C. A.; Silva, C. G.; Burns, S. J.

    2012-12-01

    Because of many recent terrestrial paleoclimatic and marine paleoceanographic records, late Quaternary South American tropical paleoclimate is as well understood as that anywhere in the world. While lessons learned from the recent instrumental record of climate are informative, this record is too short to capture much of the lower frequency variability encountered in the paleoclimate records and much of the observed paleoclimate is without modern analogue. This paleoclimate is known to be regionally variable with significant differences both north and south of the equator and between the western high Andes and eastern lowlands of the Amazon and Nordeste Brazil. Various extrinsic forcing mechanisms affected climate throughout the period, including global concentrations of GHGs, Northern Hemisphere ice sheet forcing, seasonal insolation forcing of the South American summer monsoon (SASM), millennial-scale Atlantic forcing, and Pacific forcing of the large-scale Walker circulation. The magnitude of the climate response to these forcings varied temporally, largely because of the varying amplitude of the forcing itself. For example, during the last glacial, large-amplitude north Atlantic forcing during Heinrich 1 and the LGM itself, led to wet (dry) conditions south (north) of the equator. During the Holocene, Atlantic forcing was lower amplitude, thus seasonal insolation forcing generally predominated with a weaker-than-normal SASM during the early Holocene resulting in dry conditions in the south-western tropics and wet conditions in the eastern lowlands and Nordeste; in the late Holocene seasonal insolation reached a maximum in the southern tropics and climate conditions reversed.

  2. Terrestrial Carbon Fluxes from Deforestation in the Brazilian Amazon and Cerrado Regions Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Klooster, S.; Potter, C.; Genovese, V.

    2008-12-01

    The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate tropical forest and savanna (Cerrado) carbon pools for the Brazilian Amazon region over the period 2000-2004. Adjustments for mean age of forest stands were carried out across the region, resulting in a new mapping of aboveground biomass pools based on MODIS satellite data. Yearly maps of newly deforested lands from the Brazilian PRODES (Programa de calculo do desflorestamento da Amazonia ) project were combined with these NASA-CASA biomass predictions to generate seasonal budgets of potential carbon and nitrogen trace gas losses from biomass burning events. Simulations of plant residue and soil carbon decomposition were conducted in the NASA-CASA model during and following deforestation events to track the fate of aboveground biomass pools that were cut and burned each year across the region.

  3. Deep mycoses in Amazon region.

    Science.gov (United States)

    Talhari, S; Cunha, M G; Schettini, A P; Talhari, A C

    1988-09-01

    Patients with deep mycoses diagnosed in dermatologic clinics of Manaus (state of Amazonas, Brazil) were studied from November 1973 to December 1983. They came from the Brazilian states of Amazonas, Pará, Acre, and Rondônia and the Federal Territory of Roraima. All of these regions, with the exception of Pará, are situated in the western part of the Amazon Basin. The climatic conditions in this region are almost the same: tropical forest, high rainfall, and mean annual temperature of 26C. The deep mycoses diagnosed, in order of frequency, were Jorge Lobo's disease, paracoccidioidomycosis, chromomycosis, sporotrichosis, mycetoma, cryptococcosis, zygomycosis, and histoplasmosis.

  4. Impacts of drought on grape yields in Western Cape, South Africa

    Science.gov (United States)

    Araujo, Julio A.; Abiodun, Babatunde J.; Crespo, Olivier

    2016-01-01

    Droughts remain a threat to grape yields in South Africa. Previous studies on the impacts of climate on grape yield in the country have focussed on the impact of rainfall and temperature separately; meanwhile, grape yields are affected by drought, which is a combination of rainfall and temperature influences. The present study investigates the impacts of drought on grape yields in the Western Cape (South Africa) at district and farm scales. The study used a new drought index that is based on simple water balance (Standardized Precipitation Evapotranspiration Index; hereafter, SPEI) to identify drought events and used a correlation analysis to identify the relationship between drought and grape yields. A crop simulation model (Agricultural Production Systems sIMulator, APSIM) was applied at the farm scale to investigate the role of irrigation in mitigating the impacts of drought on grape yield. The model gives a realistic simulation of grape yields. The Western Cape has experienced a series of severe droughts in the past few decades. The severe droughts occurred when a decrease in rainfall occurred simultaneously with an increase in temperature. El Niño Southern Oscillation (ENSO) appears to be an important driver of drought severity in the Western Cape, because most of the severe droughts occurred in El Niño years. At the district scale, the correlation between drought index and grape yield is weak ( r≈-0.5), but at the farm scale, it is strong ( r≈-0.9). This suggests that many farmers are able to mitigate the impacts of drought on grape yields through irrigation management. At the farm scale, where the impact of drought on grape yields is high, poor yield years coincide with moderate or severe drought periods. The APSIM simulation, which gives a realistic simulation of grape yields at the farm scale, suggests that grape yields become more sensitive to spring and summer droughts in the absence of irrigation. Results of this study may guide decision-making on

  5. Deforestation in Amazonia impacts riverine carbon dynamics

    Science.gov (United States)

    Langerwisch, Fanny; Walz, Ariane; Rammig, Anja; Tietjen, Britta; Thonicke, Kirsten; Cramer, Wolfgang

    2016-12-01

    Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60 % due to

  6. Carbon stocks of trees killed by bark beetles and wildfire in the western United States

    International Nuclear Information System (INIS)

    Hicke, Jeffrey A; Meddens, Arjan J H; Kolden, Crystal A; Allen, Craig D

    2013-01-01

    Forests are major components of the carbon cycle, and disturbances are important influences of forest carbon. Our objective was to contribute to the understanding of forest carbon cycling by quantifying the amount of carbon in trees killed by two disturbance types, fires and bark beetles, in the western United States in recent decades. We combined existing spatial data sets of forest biomass, burn severity, and beetle-caused tree mortality to estimate the amount of aboveground and belowground carbon in killed trees across the region. We found that during 1984–2010, fires killed trees that contained 5–11 Tg C year −1 and during 1997–2010, beetles killed trees that contained 2–24 Tg C year −1 , with more trees killed since 2000 than in earlier periods. Over their periods of record, amounts of carbon in trees killed by fires and by beetle outbreaks were similar, and together these disturbances killed trees representing 9% of the total tree carbon in western forests, a similar amount to harvesting. Fires killed more trees in lower-elevation forest types such as Douglas-fir than higher-elevation forest types, whereas bark beetle outbreaks also killed trees in higher-elevation forest types such as lodgepole pine and Engelmann spruce. Over 15% of the carbon in lodgepole pine and spruce/fir forest types was in trees killed by beetle outbreaks; other forest types had 5–10% of the carbon in killed trees. Our results document the importance of these natural disturbances in the carbon budget of the western United States. (letter)

  7. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point.

    Science.gov (United States)

    Nepstad, Daniel C; Stickler, Claudia M; Filho, Britaldo Soares-; Merry, Frank

    2008-05-27

    Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15-26Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends.

  8. A new GPS velocity field in the south-western Balkans: insights for continental dynamics

    Science.gov (United States)

    D'Agostino, N.; Avallone, A.; Duni, L.; Ganas, A.; Georgiev, I.; Jouanne, F.; Koci, R.; Kuka, N.; Metois, M.

    2017-12-01

    The Balkans peninsula is an area of active distributed deformation located at the southern boundary of the Eurasian plate. Relatively low strain rates and logistical reasons have so far limited the characterization and definition of the active tectonics and crustal kinematics. The increasing number of GNSS stations belonging to national networks deployed for scientific and cadastral purposes, now provides the opportunity to improve the knowledge of the crustal kinematics in this area and to define a cross-national velocity field that illuminates the active tectonic deformation. In this work we homogeneously processed the data from the south western Balkans and neighbouring regions using available rinex files from scientific and cadastral networks (ALBPOS, EUREF, HemusNET, ITALPOS, KOPOS, MAKPOS, METRICA, NETGEO, RING, TGREF). In order to analyze and interpret station velocities relative to the Eurasia plate and to reduce the common mode signal, we updated the Eurasian terrestrial reference frame described in Métois et al. 2015. Starting from this dataset we present a new GPS velocity field covering the south western part of the Balkan Peninsula. Using this new velocity field, we derive the strain rate tensor to analyze the regional style of the deformation. Our results (1) improve the picture of the general southward flow of the crust characterizing the south western Balkans behind the contractional belt at the boundary with Adriatic and (2) provide new key elements for the understanding of continental dynamics in this part of the Eurasian plate boundary.

  9. Long term atmospheric aerosol characterization in the Amazon Basin

    Science.gov (United States)

    Artaxo, Paulo; Gerab, Fábio; Yamasoe, Marcia A.

    This chapter presents a characterization of atmospheric aerosols collected in different places in the Amazon Basin. Both the biogenic aerosol emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burns during the dry season were studied. The samples were collected during a three year period at three different locations in the Amazon (Cuiabá, Alta Floresta and Serra do Navio), using stacked filter units. Aerosol samples were also collected directly over fires of cerrado vegetation and tropical primary forest burns The samples were analyzed using several techniques for a number of elements. Gravimetric analyses were used to determine the total atmospheric aerosol concentration. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. Cerrado burning emissions were enriched compared to forest ones, specially for Cl, K and Zn. High atmospheric aerosol concentrations were observed in large amazonian areas due to emissions from man-made burns in the period from June to September. The emissions from burns dominate the fine fraction of the atmospheric aerosol with characteristic high contents of black carbon, S and K. Aerosols emitted in biomass burning process are correlated to the increase in the aerosol optical thickness of the atmosphere during the Amazonian dry season. The Serra do Navio aerosol is characterized by biogenic emissions with strong marine influence. The presence of trace elements characteristic of soil particulate associated with this marine contribution indicates the existence of aerosol transport from Africa to South America. Similar composition characteristics were observed in the biogenic emission aerosols from Serra do Navio and Alta Floresta.

  10. Origin of Amazon mudbanks along the northeastern coast of South America

    Science.gov (United States)

    Allison, M.A.; Lee, M.T.; Ogston, A.S.; Aller, R.C.

    2000-01-01

    Seismic profiles, sediment cores, and water column measurements were collected along the northeastern coast of Brazil to examine the origin of mudbanks in the Amazon coastal mud belt. These 10-60-km-long, shore-attached features previously had been observed to migrate along the 1200 km coast of the Guianas in response to wave forcing. CHIRP (3.5 kHz) seismic profiles of the shoreface and inner shelf located two mudbanks updrift of the previous eastern limit in French Guiana. 210Pb geochronology shows that these two banks are migrating to the northwest over a relict mud surface in 5-20 m water depth. The mudbanks are 3-4 m thick and are translating over a modern shoreface mud wedge deposited by previous mudbank passage in Amazon freshwater discharge on the shelf and by proximity to the Cassipore River estuary. Seasonal and decadal periods of sediment supply and starvation in this area likely are controlled by variations in northwest trade wind intensity. (C) 2000 Elsevier Science B.V.

  11. Simulation scenarios for rapid reduction in carbon dioxide emissions in the western electricity system

    International Nuclear Information System (INIS)

    Ford, Andrew

    2008-01-01

    This paper describes a computer simulation analysis of carbon dioxide emissions in the electric power system in the western United States. Legislation at both the state and federal level would impose a price on emissions via cap-and-trade in allowances for carbon dioxide emissions. The simulation scenarios for the western system indicate that dramatic reductions in emissions are possible with generating technologies that exist today. Wind and biomass generators play a key role even with conservative assumptions about their future costs. In contrast, generation from advanced technologies provide only a minor contribution by the year 2025. These scenarios provide support to those who argue that the US should move expeditiously to put a price on carbon dixoide emissions

  12. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceddia, Marcos Bacis, E-mail: marcosceddia@gmail.com [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Villela, André Luis Oliveira [Colégio Técnico da UFRRJ, RJ, Seropédica 23890-000 (Brazil); Pinheiro, Érika Flávia Machado [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Wendroth, Ole [Department of Plant & Soil Sciences, University of Kentucky, College of Agriculture, Lexington, KY (United States)

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km{sup 2} and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m{sup −2}, respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m{sup −2}, respectively. • SOC stocks were 34 and 16

  13. Partitioning Uncertainty In Aboveground Carbon Density Estimates: Relative Contributions From Lidar and Forest Inventory In The Brazilian Amazon.

    Science.gov (United States)

    Duffy, P.; Keller, M. M.; Morton, D. C.

    2016-12-01

    Carbon accounting for REDD+ requires knowledge of deforestation, degradation, and associated changes in forest carbon stocks. Degradation is more difficult to detect than deforestation so SilvaCarbon, an US inter-agency effort, has set a priority to better characterize forest degradation effects on carbon loss. By combining information from forest inventory and lidar data products, impacts of deforestation, degradation, and associated changes in forest carbon stocks can be more accurately characterized across space. Our approach employs a hierarchical Bayesian modeling (HBM) framework where the assimilation of information from multiple sources is accomplished using a change of support (COS) technique. The COS formulation allows data from multiple spatial resolutions to be assimilated into an intermediate resolution. This approach is being applied in Paragominas, a jurisdiction in the eastern Brazilian Amazon with a high proportion of logged and burned degraded forests where political change has opened the way for REDD+. We build on a long history of research including our extensive studies of logging damage. Our primary objective is to quantify above-ground carbon stocks and corresponding uncertainty in a spatially explicit manner. A secondary objective is to quantify the relative contribution of lower level data products to the overall uncertainty, allowing for more focused subsequent data collection in the context of uncertainty reduction. This approach provides a mechanism to assimilate information from multiple sources to produce spatially-explicit maps of carbon stocks and changes with corresponding spatially explicit maps of uncertainty. Importantly, this approach also provides a mechanism that can be used to assess the value of information from specific data products.

  14. Carbon Fluxes at the AmazonFACE Research Site

    Science.gov (United States)

    Norby, R.; De Araujo, A. C.; Cordeiro, A. L.; Fleischer, K.; Fuchslueger, L.; Garcia, S.; Hofhansl, F.; Garcia, M. N.; Grandis, A.; Oblitas, E.; Pereira, I.; Pieres, N. M.; Schaap, K.; Valverde-Barrantes, O.

    2017-12-01

    The free-air CO2 enrichment (FACE) experiment to be implemented in the Amazon rain forest requires strong pretreatment characterization so that eventual responses to elevated CO2 can be detected against a background of substantial species diversity and spatial heterogeneity. Two 30-m diameter plots have been laid out for initial characterization in a 30-m tall, old-growth, terra firme forest. Intensive measurements have been made of aboveground tree growth, leaf area, litter production, and fine-root production; these data sets together support initial estimates of plot-scale net primary productivity (NPP). Leaf-level measurements of photosynthesis throughout the canopy and over a daily time course in both the wet and dry season, coupled with meterological monitoring, support an initial estimate of gross primary productivity (GPP) and carbon-use efficiency (CUE = NPP/GPP). Monthly monitoring of CO2 efflux from the soil, partitioned into autotrophic and heterotrophic components, supports an estimate of net ecosystem production (NEP). Our estimate of NPP in the two plots (1.2 and 1.4 kg C m-2 yr-1) is 16-38% greater than previously reported for the site, primarily due to our more complete documentation of fine-root production, including root production deeper than 30 cm. The estimate of CUE of the ecosystem (0.52) is greater than most others in Amazonia; this discrepancy reflects large uncertainty in GPP, which derived from just two days of measurement, or to underestimates of the fine-root component of NPP in previous studies. Estimates of NEP (0 and 0.14 kg C m-2 yr-1) are generally consistent with a landscape-level estimate from flux tower data. Our C flux estimates, albeit very preliminary, provide initial benchmarks for a 12-model a priori evaluation of this forest. The model means of GPP, NPP, and NEP are mostly consistent with our field measurements. Predictions of C flux responses to elevated CO2 from the models become hypotheses to be tested in the FACE

  15. Longtime variation of phytoplankton in the South China Sea from the perspective of carbon fixation

    Science.gov (United States)

    Li, Teng; Bai, Yan; Chen, Xiaoyan; Zhu, Qiankun; Gong, Fang; Wang, Difeng

    2017-10-01

    The ocean is a huge carbon pool in the earth, and about half of the anthropogenic emissions of carbon dioxide are absorbed by the ocean each year. By converting inorganic carbon into organic carbon, the photosynthesis process of phytoplankton affords an important way for carbon sequestration in the ocean. According to previous researches, primary production (NPP) and the structure of phytoplankton community are important in regulate the efficiency of biological carbon pump. This study examined the spatiotemporal variability of satellite remote sensing derived chlorophyll a concentration (Chla), phytoplankton carbon biomass (Carbon), composition ratio of micro-, nano- and pico- phytoplankton, NPP and integrated particulate organic carbon (IPOC) during 1998-2007 in the South China Sea (SCS). Micro-, nano-phytoplankton and NPP showed similar seasonal variation with highest values in winter (January) (especially in the western ocean of Luzon Strait) and lowest values in summer (July) in SCS. Chla, phytoplankton carbon biomass, and IPOC showed different seasonal trends with one peak values occurred in winter and lowest in spring. Two sampling areas (A, N:17-21°, E:117.5-120° and B, N:12.5-15°, E:112-119°) in SCS were selected based on spatial distribution of the standard deviation of research parameters mentioned above. Compared to Chla, phytoplankton carbon biomass, NPP and IPOC, the interannual changes of phytoplankton community structure were remarkable in the two areas. The fraction of micro- and nano- phytoplankton in SCS tend to rise when La Nina events occur. Our results contribute to an understanding of the response of phytoplankton to climate change in the marginal sea. To quantify the efficiency of biological carbon pump in this area, more attention should be paid to the development of remote sensing algorithms of export NPP (or POC export flux) as well as the regulate mechanism of export NPP.

  16. Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America

    Science.gov (United States)

    Münnich, M.; Neelin, J. D.

    2005-11-01

    In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.

  17. Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain

    Science.gov (United States)

    Langerwisch, F.; Walz, A.; Rammig, A.; Tietjen, B.; Thonicke, K.; Cramer, W.

    2016-07-01

    Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial-riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous-riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20 % in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin

  18. Timing of mafic magmatism in the Tapajós Province (Brazil) and implications for the evolution of the Amazon Craton: evidence from baddeleyite and zircon U Pb SHRIMP geochronology

    Science.gov (United States)

    Santos, João Orestes Schneider; Hartmann, Léo Afraneo; McNaughton, Neal Jesse; Fletcher, Ian Robert

    2002-09-01

    The precise timing and possible sources of the mafic rocks in the Amazon craton are critical for reconstruction of the Atlantica supercontinent and correlation of mafic magmatism worldwide. New SHRIMP U-Pb baddeleyite and zircon ages and the reinterpretation of 207 existing dates indicate one orogenic (Ingarana) and four postorogenic (Crepori, Cachoeira Seca, Piranhas, and Periquito) basaltic events in the Tapajós Province, south central Amazon craton. Orogenic gabbro dikes that host gold mineralization are 1893 Ma and interpreted as associated with the Ingarana gabbro intrusions of the bimodal calk-alkalic Parauari intrusive suite. The age of 1893 Ma can be used as a guide to discriminate older and mineralized orogenic dikes from younger and nonmineralized Crepori- and Cachoeira Seca-related mafic dikes. The baddeleyite U-Pb age of the postorogenic Crepori dolerite (gabbro-dolerite sills and dikes) is 1780±9 Ma, ˜150 my older than the ages provided by K-Ar. This value correlates well with the Avanavero tholeiitic intrusions in the Roraima group, in the northern part of the craton in Guyana, Venezuela, and Roraima in Brazil. Early Statherian tholeiitic magmatism was widespread not only in the Amazon craton, but also in the La Plata craton of southern South America, where it is known as the giant Piedra Alta swarm of Uruguay and the post-Trans-Amazonian dikes of Tandil in Argentina. The Cachoeira Seca troctolite represents laccoliths, Feixes, and São Domingos, whose baddeleyite U-Pb age is 1186±12 Ma, 120-150 my older than the known K-Ar ages. This age is comparable to other Stenian gabbroic rocks with alkalic affinity in the craton, such as the Seringa Formation in NE Amazonas and the basaltic flows of the Nova Floresta formation in Rondônia. Dolerite from the giant Piranhas dike swarm in the western Tapajós Province has a Middle Cambrian age (507±4 Ma, baddeleyite) and inherited zircons in the 2238-1229 Ma range. The Piranhas dikes fill extensional NNE and

  19. Phlebitis associated with peripheral intravenous catheters in adults admitted to hospital in the Western Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Sandra Maria Sampaio Enes

    2016-04-01

    Full Text Available Abstract OBJECTIVE To identify the presence of phlebitis and the factors that influence the development of this complication in adult patients admitted to hospital in the western Brazilian Amazon. METHOD Exploratory study with a sample of 122 peripheral intravenous catheters inserted in 122 patients in a medical unit. Variables related to the patient and intravenous therapy were analyzed. For the analysis, we used chi-square tests of Pearson and Fisher exact test, with 5% significance level. RESULTS Complication was the main reason for catheter removal (67.2%, phlebitis was the most frequent complication (31.1%. The mean duration of intravenous therapy use was 8.81 days in continuous and intermittent infusion (61.5%, in 20G catheter (39.3%, inserted in the dorsal hand vein arc (36.9 %, with mean time of usage of 68.4 hours. The type of infusion (p=0.044 and the presence of chronic disease (p=0.005 and infection (p=0.007 affected the development of phlebitis. CONCLUSION There was a high frequency of phlebitis in the sample, being influenced by concomitant use of continuous and intermittent infusion of drugs and solutions, and more frequent in patients with chronic diseases and infection.

  20. The Western South Atlantic Ocean in a High-CO2 World: Current Measurement Capabilities and Perspectives

    Science.gov (United States)

    Kerr, Rodrigo; da Cunha, Letícia C.; Kikuchi, Ruy K. P.; Horta, Paulo A.; Ito, Rosane G.; Müller, Marius N.; Orselli, Iole B. M.; Lencina-Avila, Jannine M.; de Orte, Manoela R.; Sordo, Laura; Pinheiro, Bárbara R.; Bonou, Frédéric K.; Schubert, Nadine; Bergstrom, Ellie; Copertino, Margareth S.

    2016-03-01

    An international multi-disciplinary group of 24 researchers met to discuss ocean acidification (OA) during the Brazilian OA Network/Surface Ocean-Lower Atmosphere Study (BrOA/SOLAS) Workshop. Fifteen members of the BrOA Network (www.broa.furg.br) authored this review. The group concluded that identifying and evaluating the regional effects of OA is impossible without understanding the natural variability of seawater carbonate systems in marine ecosystems through a series of long-term observations. Here, we show that the western South Atlantic Ocean (WSAO) lacks appropriate observations for determining regional OA effects, including the effects of OA on key sensitive Brazilian ecosystems in this area. The impacts of OA likely affect marine life in coastal and oceanic ecosystems, with further social and economic consequences for Brazil and neighboring countries. Thus, we present (i) the diversity of coastal and open ocean ecosystems in the WSAO and emphasize their roles in the marine carbon cycle and biodiversity and their vulnerabilities to OA effects; (ii) ongoing observational, experimental, and modeling efforts that investigate OA in the WSAO; and (iii) highlights of the knowledge gaps, infrastructure deficiencies, and OA-related issues in the WSAO. Finally, this review outlines long-term actions that should be taken to manage marine ecosystems in this vast and unexplored ocean region.

  1. Ichnologic evidence of a Cambrian age in the southern Amazon Craton: Implications for the onset of the Western Gondwana history

    Science.gov (United States)

    Santos, Hudson P.; Mángano, M. Gabriela; Soares, Joelson L.; Nogueira, Afonso C. R.; Bandeira, José; Rudnitzki, Isaac D.

    2017-07-01

    Colonization of the infaunal ecospace by burrowing bilaterians is one of the most important behavioral innovations during the Ediacaran-Cambrian transition. The establishment of vertical burrows by suspension feeders in high-energy nearshore settings during Cambrian Age 2 is reflected by the appearance of the Skolithos Ichnofacies. For the first time, unquestionable vertical burrows typical of the Skolithos Ichnofacies, such as Skolithos linearis, Diplocraterion parallelum and Arenicolites isp., are recorded from nearshore siliciclastic deposits of the Raizama Formation, southeastern Amazon Craton, Brazil. Integration of ichnologic and sedimentologic datasets suggests that these trace fossils record colonization of high-energy and well-oxygenated nearshore sandy environments. Chronostratigraphically, the presence of these vertical burrows indicates an age not older than early Cambrian for the Raizama Formation, which traditionally has been regarded as Ediacaran. Therefore, the Raizama ichnofauna illustrates the advent of modern Phanerozoic ecology marked by the Agronomic Revolution. The discovery of the Skolithos Ichnofacies in these shallow-marine strata suggests possible connections between some central Western Gondwana basins.

  2. Microfossils in the Ordovician erratic boulders from South-western Finland

    Directory of Open Access Journals (Sweden)

    Nõlvak, J.

    1995-12-01

    Full Text Available Chitinozoans, ostracods and acritarchs found in four glacially transported limestone boulders from the south-western coast of Finland have been studied in order to test the usefulness of these microfossil groups in age determinations. Also rare specimens of conodonts, inarticulated brachiopods and foraminifers were found. Baltic limestone (or Östersjö limestone was the most problematic, because only fossils with calcitic or phosphatic shells are preserved. It is concluded that the boulders identified correlate with the Uhaku and Rakvere stages of the Middle Ordovician.

  3. POTENTIAL OF CARBON STORAGE OF RUBBER (Hevea brasiliensis MÃœLL. ARG. PLANTATIONS IN MONOCULTURE AND AGROFORESTRY SYSTEMS IN THE COLOMBIAN AMAZON

    Directory of Open Access Journals (Sweden)

    Hernán Jair Andrade

    2014-08-01

    Full Text Available Carbon sequestration potential of rubber (Hevea brasiliensis plantations was estimated in two production systems: monoculture and agroforestry system with copoazú (Theobroma grandiflorum, on farms of Florencia, El Doncello and Belén de los Andaquíes, in northeastern Colombian Amazon, department of Caquetá. The plantations were classified into three age classes, according to their productive stage: 1-7, 8-20 and > 20 years. The carbon storage was estimated using the methodology proposed by Andrade and Ibrahim (2003 and recommended by IPCC (2003. Tree carbon sinks were evaluated: above and below ground biomass, and necromass. The highest proportion of carbon storage was found in biomass, with 95 and 92% in monoculture plantations and agroforestry systems, respectively. In both types of production systems, carbon storage is a function of tree age and density. The carbon stored in monoculture plantations was higher than in agroforestry systems, due to a greater density of rubber trees in the first production system. This study confirms that rubber plantations have potential to capture and store atmospheric carbon. With this information, the issue of participating in carbon markets of the rubber production chain can be addressed, and therefore strengthen in the region’s competitiveness and sustainability.

  4. Principals' Leadership Skills and School Effectiveness: The Case of South Western Nigeria

    Science.gov (United States)

    Bolanle, Akinola Oluwatoyin

    2013-01-01

    The study sought to find out the leadership skills possessed by Principals of public secondary schools in south western Nigeria and the relationship between these leadership skills and school effectiveness in terms of student academic achievement. The descriptive survey research design was employed for the study. 154 Principals and 770 teachers,…

  5. Transfer of trace elements in the Amazon basin

    International Nuclear Information System (INIS)

    Ferraz, E.S.B.; Tuon, R.L.; Fernandes, E.A.N.

    1991-01-01

    The Amazon basin is the world's largest system both in terms of drainage area, 7x10 6 km 2 , and sediment discharge, about 1.3x10 9 tons of solid suspended material each year. It is located at northern South America in the equatorial zone, extending through nine countries, Bolivia, Peru, Ecuador, Colombia, Venezuela, Surinam, French Guyana, and Brazil, where is the majority (70%) of the total area. The Amazon basin is geologically limited in the west by the Andes Cordillera, in the south by the Brazilian altiplain, in the north by the Guyana mountains and in the east by the Atlantic Ocean. It is the most fabulous natural ecosystem of the world, remaining in a perfect state of equilibrium, not yet deeply studied. The development of mathematic models describing its dynamics is very important for its comprehension and preservation. Trace elements, in special the rare earth elements, can be useful to elaborate such models. Several processes in rivers and estuaries have been investigated through the use of REEs as tracers, addressing the riverine input of elements to the oceans from continents. Trace elements were also used to elaborate a model for chemical exchange from the water to the sediments and the subsequent release from the sediments into the water. (5 refs., 6 figs.)

  6. Palms and Palm Communities in the Upper Ucayali River Valley - a Little-Known Region in the Amazon Basin

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.; Kristiansen, Thea

    2010-01-01

    The Amazon region and its palms are inseparable. Palms make up such an important part of the rain forest ecosystem that it is impossible to imagine the Amazon basin without them. Palms are visible in the canopy and often fill up the forest understory. Palms – because of their edible fruits...... – are cornerstone species for the survival of many animals, and palms contribute substantially to forest inventories in which they are often among the ten most important families. Still, the palms and palm communities of some parts of the Amazon basin remain poorly studied and little known. We travelled to a little......-explored corner of the western Amazon basin, the upper Ucayali river valley. There, we encountered 56 different palms, 18 of which had not been registered for the region previously, and 21 of them were found 150–400 km beyond their previously known limits....

  7. Australian doctors and the visual arts. Part 5. Doctor-artists in South Australia, Tasmania, Western Australia and Queensland.

    Science.gov (United States)

    Hamilton, D G

    1986-11-17

    The contributions of Australian doctors to the visual arts are being described in a series of six articles. Work from doctors in New South Wales and Victoria has been covered previously. Now activities in South Australia, Tasmania, Western Australia, Queensland and the Northern Territory are presented.

  8. Nort-South gradients in plasma concentrations of B-vitamins and other components of one-carbon metabolism in Western Europe: results from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study

    NARCIS (Netherlands)

    Eussen, S.J.P.M.; Nilsen, R.M.; Midttun, O.; Hustad, S.; IJssenagger, N.; Meyer, K.; Fredriksen, A.; Ulvik, A.; Ueland, P.M.; Brennan, P.; Johansson, M.; Bueno-de-Mesquita, B.; Vineis, P.; Chuang, S.C.; Boutron-Ruault, M.C.; Dossus, L.; Perquier, F.; Overvad, K.; Teucher, B.; Grote, V.A.; Trichopoulou, A.; Adarakis, G.; Plada, M.; Sieri, S.; Tumino, R.; Santucci de Magistris, M.; Ros, M.M.; Peeters, P.H.M.; Redondo, M.L.; Zamora-Ros, R.; Chirlaque, M.D.; Ardanaz, E.; Sonestedt, E.; Ericson, U.; Schneede, J.; Guelpen, B.; Wark, P.A.; Gallo, V.; Norat, T.; Riboli, E.; Vollset, S.E.

    2013-01-01

    Different lifestyle patterns across Europe may influence plasma concentrations of B-vitamins and one-carbon metabolites and their relation to chronic disease. Comparison of published data on one-carbon metabolites in Western European regions is difficult due to differences in sampling procedures and

  9. North-south gradients in plasma concentrations of B-vitamins and other components of one-carbon metabolism in Western Europe: results from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study

    NARCIS (Netherlands)

    Eussen, S.J.; Nilsen, R.M.; Midttun, O.; Hustad, S.; N, I.J.; Meyer, K.; Fredriksen, A.; Ulvik, A.; Ueland, P.M.; Brennan, P.; Johansson, M.; Bueno-de-Mesquita, B.; Vineis, P.; Chuang, S.C.; Boutron-Ruault, M.C.; Dossus, L.; Perquier, F.; Overvad, K.; Teucher, B.; Grote, V.A.; Trichopoulou, A.; Adarakis, G.; Plada, M.; Sieri, S.; Tumino, R.; Magistris, M.S. de; Ros, M.M.; Peeters, P.H.M.; Redondo, M.L.; Zamora-Ros, R.; Chirlaque, M.D.; Ardanaz, E.; Sonestedt, E.; Ericson, U.; Schneede, J.; Guelpen, B. van; Wark, P.A.; Gallo, V.; Norat, T.; Riboli, E.; Vollset, S.E.

    2013-01-01

    Different lifestyle patterns across Europe may influence plasma concentrations of B-vitamins and one-carbon metabolites and their relation to chronic disease. Comparison of published data on one-carbon metabolites in Western European regions is difficult due to differences in sampling procedures and

  10. A large scale field experiment in the Amazon basin (LAMBADA/BATERISTA)

    NARCIS (Netherlands)

    Dolman, A.J.; Kabat, P.; Gash, J.H.C.; Noilhan, J.; Jochum, A.M.; Nobre, C.

    1995-01-01

    A description is given of a large-scale field experiment planned in the Amazon basin, aimed at assessing the large-scale balances of energy, water and carbon dioxide. The embedding of this experiment in global change programmes is described, viz. the Biospheric Aspects of the Hydrological Cycle

  11. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.

    Science.gov (United States)

    Levine, Naomi M; Zhang, Ke; Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L; Lewis, Simon L; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J W; Erwin, Terry L; Feldpausch, Ted R; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R

    2016-01-19

    Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.

  12. Comparing a Carbon Budget for the Amazon Basin Derived from Aircraft Observations

    Science.gov (United States)

    Chow, V. Y.; Dayalu, A.; Wofsy, S. C.; Gerbig, C.

    2015-12-01

    We present and compare a carbon budget for the Brazilian Amazon Basin based on the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program, which occurred in November 2008 & May 2009, to other published carbon budgets. In particular, we compare our budget and analysis to others also derived from aircraft observations. Using mesoscale meteorological fields from ECMWF and WRF, we drive the Stochastic Time-Inverted Lagrangian Transport (STILT) model and couple the footprint, or influence, to a biosphere model represented by the Vegetation Photosynthesis Respiration Model (VPRM). Since it is the main driver for the VPRM, we use observed shortwave radiation from towers in Brazil and French Guyana to examine the modeled shortwave radiation data from GL 1.2 (a global radiation model based on GOES 8 visible imagery), ECMWF, and WRF to determine if there are any biases in the modeled shortwave radiation output. We use WRF-STILT and ECMWF-STILT, GL 1.2 shortwave radiation, temperature, and vegetation maps (IGBP and SYNMAP) updated by landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil, to compute hourly a priori CO2 fluxes by calculating Gross Ecosystem Exchange and Respiration for the 4 significant vegetation types across two (wet and dry) seasons as defined by 10-years of averaged TRIMM precipitation data. SF6 from stations and aircraft observations are used to determine the anthropogenic CO2 background and the lateral boundary conditions are taken from CarbonTracker2013B. The BARCA aircraft mixing ratios are then used as a top down constraint in an inversion framework that solves for the parameters controlling the fluxes for each vegetation type. The inversion provides scaling factors for GEE and R for each vegetation type in each season. From there, we derive a budget for the Basin and compare/contrast with other published basinwide CO2 fluxes.

  13. U-Pbdating on detrital zircon and Nd and Hf isotopes related to the provenance of siliciclastic rocks of the Amazon Basin: Implications for the origin of Proto-Amazonas River

    Science.gov (United States)

    Dantas, Elton Luiz; Silva Souza, Valmir; Nogueira, Afonso C. R.; Ventura Santos, Roberto; Poitrasson, Franck; Vieira Cruz, Lucieth; Mendes Conceição, Anderson

    2014-05-01

    provenance dominated by Mesoproterozoic sources (1.0, 1.2 Ga) and subordinate Neoproterozoic(550-800 Ma) and Archean derivation (2.67 Ga). On the other hand, detrital zircon and Hf and NdTDM model ages for the Cretaceous Alter do Chão Formation yielded a unique Paleoproterozoicages between 2.0 and 2.3 Ga that can be correlated to sources derived from Maroni-Itacaiúnas and Central Amazonian basement provinces. The contribution of Precambrian and Paleozoic rocks exposed during the installationof the Amazonas drainage were probably significant .Such a large contribution from Neoproterozoic and Mesoproterozoic sources are not common in the proximal Amazon Craton basement .This new proposal open new perspectives to understand better the initial history of Amazon River with indication of the probable source areas during Late Cenozoic. Campbell Jr.; Frailey,C.D.; Romero-Pittman, G. 2006. The Pan-Amazonian UcayliPeneplain, late Neogenesedimentacion in Amazonia, and the Birth on the Modern Amazon River system.Palaeogeography,Palaeoclimatology, Palaeoecology. 239 (2006) 166-219 Figueiredo, J.,Hoorn, C., Van der Vem, P., Soares, E. 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Fozdo Amazonas Basin. Geology, 37(7):619-622. Hoorn,C.; Guerrero, J.; Sarmiento, G. 1995. Andean tectonics as a cause for changing drainage patterns in Miocene Northern South America. Geology, v.23, p-237-240. Nogueira, A.C.R.; Silveira, R.R.; Guimarães, J.T.F. 2013. Neogene-Quaternary sedimentary and paleovegetation history of the eastern Solimões Basin, central Amazon region.Journal of South American Earth Sciences , v. 46, p. 89-99, 2013. Potter, P.E. 1997. The Mesozoic and Cenozoic paleodrainage of South America: a natural history. Journal of South American Earth Science.v.10. p.331-344 Wesselingh, F. P., et al., 2002. Lake-Pebas: a palaeocological reconstruction of a Miocene long-lived lake comples in Western Amazônia. Cainozoic Research 1 (1-2), 35-81.

  14. Monitoring stress-related mass variations in Amazon trees using accelerometers

    Science.gov (United States)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Hut, R.; Guerin, M. F.; Leus, G.; Oliveira, R. S.; Van De Giesen, N.

    2016-12-01

    Containing half of the world's rainforests, the Amazon plays a key role in the global water and carbon budget. However, the Amazon remains poorly understood, but appears to be vulnerable to increasing moisture stress, and future droughts have the potential to considerably change the global water and carbon budget. Field measurements will allow further investigations of the effects of moisture stress and droughts on tree dynamics, and its impact on the water and carbon budget. This study focuses on studying the diurnal mass variations of seven Amazonian tree species. The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Depending on the physiological traits of an individual tree, moisture stress and drought affect processes such as photosynthesis, assimilation, transpiration, and root water uptake. In turn, these have their influence on diurnal mass variations of a tree. Our study uses measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Nineteen accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest, covering an area of 250 x 250 m. The selected species span a wide range in wood density (0.5 - 1.1), diameter (15 - 40 cm) and height (25 - 60 m). Acceleration was measured with a frequency of 10 Hz, from August 2015 to June 2016, covering both the wet and dry season. On-site additional measurements of net radiation, wind speed at three heights, temperature, and precipitation as available every 15 minutes. Dendrometers measured variation in xylem and bark thickness every 5 minutes. The MUltiple SIgnal Classification (MUSIC) algorithm was applied to the acceleration time series to estimate the frequency spectrum of each tree. A correction was necessary to account for the dominant effect of wind. The resulting spectra reveal

  15. Biomass burning in the Amazon-fertilizer for the mountaineous rain forest in Ecuador.

    Science.gov (United States)

    Fabian, Peter; Kohlpaintner, Michael; Rollenbeck, Ruetger

    2005-09-01

    Biomass burning is a source of carbon, sulfur and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very long distances, even traversing oceans. Chemical analyses of rain and fogwater samples collected in the mountaineous rain forest of south Ecuador show frequent episodes of high sulfate and nitrate concentration, from which annual deposition rates are derived comparable to those found in polluted central Europe. As significant anthropogenic sources are lacking at the research site it is suspected that biomass burning upwind in the Amazon basin is the major source of the enhanced sulfate and nitrate imput. Regular rain and fogwater sampling along an altitude profile between 1800 and 3185 m has been carried out in the Podocarpus National Park close to the Rio SanFrancisco (3 degrees 58'S, 79 degrees 5'W) in southern Ecuador. pH values, electrical conductivity and chemical ion composition were measured at the TUM-WZW using standard methods. Results reported cover over one year from March 2002 until May 2003. Annual deposition rates of sulfate were calculated ranging between 4 and 13 kg S/ha year, almost as high as in polluted central Europe. Nitrogen deposition via ammonia (1.5-4.4 kg N/ha year) and nitrate (0.5-0.8 kg N/ha year) was found to be lower but still much higher than to be expected in such pristine natural forest environment. By means of back trajectory analyses it can be shown that most of the enhanced sulfur and nitrogen deposition is most likely due to forest fires far upwind of the ecuadorian sampling site, showing a seasonal variation, with sources predominantly found in the East/North East during January-March (Colombia, Venezuala, Northern Brazil) and East/SouthEast during July-September (Peru, Brazil). Our results show that biomass burning in the Amazon basin is the predominant source of sulfur and nitrogen compounds that fertilize the mountaineous rain forest in south Ecuador. The

  16. How do we know how much groundwater is stored in south-western Cape mountains?

    CSIR Research Space (South Africa)

    Midgley, JJ

    2001-07-01

    Full Text Available Isotopes of water (D, O-18) in rain and streams were used to obtain an estimate of the amount of ground water in the south-western Cape Mountains. It was assumed that the groundwater reservoir is well-mixed and that the water isotope signals...

  17. SOCIAL ORGANIZATION BASED ON CHAIN-NETWORK LOGIC TO PROMOTE THE EXPLORATION OF NATIVE AÇAÍ IN WESTERN BRAZILIAN AMAZON.

    Directory of Open Access Journals (Sweden)

    Mariluce Paes-de-Souza

    2013-05-01

    Full Text Available The present paper has the objective to expose a proposition of organization within a chain and network logic, aiming to potentiate the extraction of the Native Açaí Berry at the Western Brazilian Amazon rainforest. This exploratory study involves the municipalities of Porto Velho, Guajará-Mirim and Machadinho D’Oeste, at the Brazilian state of Rondônia, with primary data originating mostly from conservation areas at the lower Madeira River region. As a result, it was possible to infer that from the native Açai Berry, derives food, pharmaceuticals and cosmetics, for both local consumption and international markets. It was found that beyond Açai Berry plantations availability, the lower Madeira River provides better transport logistic, consumer market and greater possibility of interaction with middleman than most Açai production areas. As a conclusion, it is made a proposition of an organizational arrangement to strengthen the extrativist productive chain of the Native Açaí Berry, based on the network and chain logic, oriented towards an organization based upon social organizations, manufacturing regularization and marketing.

  18. Disentangling the control of tectonics, eustasy, trophic conditions and climate on shallow-marine carbonate production during the Aalenian-Oxfordian interval: From the western France platform to the western Tethyan domain

    Science.gov (United States)

    Andrieu, Simon; Brigaud, Benjamin; Barbarand, Jocelyn; Lasseur, Eric; Saucède, Thomas

    2016-11-01

    The objective of this work is to improve our understanding of the processes controlling changes in the architecture and facies of intracontinental carbonate platforms. We examined the facies and sequence stratigraphy of Aalenian to Oxfordian limestones of western France. Seventy-seven outcrop sections were studied and thirty-one sedimentary facies identified in five depositional environments ranging from lower offshore to backshore. Platform evolution was reconstructed along a 500 km cross-section. Twenty-two depositional sequences were identified on the entire western France platform and correlated with European third-order sequences at the biozone level, demonstrating that eustasy was the major factor controlling the cyclic trend of accommodation. The tectonic subsidence rate was computed from accommodation measurements from the Aalenian to the Oxfordian in key localities. Tectonism controlled the sedimentation rate and platform architecture at a longer time scale. Tectonic subsidence triggered the demise of carbonate production at the Bathonian/Callovian boundary while the uplift made possible the recovery of carbonate platform from Caen to Le Mans during the mid Oxfordian. Topography of the Paleozoic basement mainly controlled lateral variations of paleodepth within the western France platform until the mid Bathonian. A synthesis of carbonate production in the western Tethyan domain at that time was conducted. Stages of high carbonate production during the Bajocian/Bathonian and the middle to late Oxfordian are synchronous with low δ13C, high eccentricity intervals, and rather dry climate promoting (1) evaporation and carbonate supersaturation, and (2) oligotrophic conditions. Periods of low carbonate production during the Aalenian and from the middle Callovian to early Oxfordian correlate with high δ13C and low eccentricity intervals, characterized by wet climate and less oligotrophic conditions. Such conditions tend to diminish growth potential of carbonate

  19. Four decades of water recycling in Atlantis (Western Cape, South Africa): Past, present and future

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2016-10-01

    Full Text Available The primary aquifer at Atlantis (Western Cape, South Africa) is ideally suited for water supply and the indirect recycling of urban stormwater runoff and treated domestic wastewater for potable purposes. The relatively thin, sloping aquifer requires...

  20. 77 FR 25141 - Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time...

    Science.gov (United States)

    2012-04-27

    ...-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time Limits for Preliminary...) orders on corrosion-resistant carbon steel flat products (CORE) from Germany and South Korea (Korea... from Germany and South Korea: Adequacy Redetermination Memorandum,'' (April 20, 2012). The preliminary...

  1. Survey of blindness and low vision in Egbedore, South-Western Nigeria.

    Science.gov (United States)

    Kolawole, O U; Ashaye, A O; Adeoti, C O; Mahmoud, A O

    2010-01-01

    Developing efficient and cost-effective eye care programmes for communities in Nigeria has been hampered by inadequate and inaccurate data on blindness and low vision. To determine the prevalence and causes of blindness and low vision among adults 50 years and older in South-Western Nigeria in order to develop viable eye care programme for the community. Twenty clusters of 60 subjects of age 50 years and older were selected by systematic random cluster sampling. Information was collected and ocular examinations were conducted on each consenting subject. Data were recorded in specially designed questionnaire and analysed using descriptive statistical methods. Out of the 1200 subjects enrolled for the study, 1183(98.6%) were interviewed and examined. Seventy five (6.3%)) of the 1183 subjects were bilaterally blind and 223(18.9%) had bilateral low vision according to WHO definition of blindness and low vision. Blindness was about 1.6 times commoner in men than women. Cataract, glaucoma and posterior segment disorders were major causes of bilateral blindness. Bilateral low vision was mainly due to cataract, refractive errors and posterior segment disorders. The prevalence of blindness and low vision in this study population was high. The main causes are avoidable. Elimination of avoidable blindness and low vision calls for attention and commitment from government and eye care workers in South Western Nigeria.

  2. Impact of Atmospheric Albedo on Amazon Evapotranspiration

    Science.gov (United States)

    Lopes, A. V.; Thompson, S. E.; Dracup, J. A.

    2013-12-01

    highly sensitive to the duration of dry spells, set by rainfall patterns, especially during wet seasons and further South from the Equator. These results points to the importance of proper understanding of convective systems and their effects on atmospheric albedo in assessing the vulnerability of Amazon basins to extended dry periods.

  3. Potential for producing bio-fuel in the Amazon deforested areas

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ricardo Cunha da [Banco Nacional de Desenvolvimento Economico e Social (BNDES), Rio de Janeiro, RJ (Brazil)

    2004-05-01

    This paper analyzes the possibility of producing bio-fuel in the Amazon degraded lands. The aim here is to combine environmental concerns with an improvement of local people well-being. Firstly, a historical analysis is conducted in order to figure out the major deforestation driving forces in Amazon and to help to arrive at a feasible energy choice. Secondly, the geographical area is chosen. It is the spatial boundaries of Carajas Iron Ore Program in the southeastern Amazon where most of the deforestation has taken place in the last few decades. For this specific context, palm oil is chosen as a technological energy alternative due to its social production structure, its environmental benefits and its productivity . A quantified analysis is realized in terms of income generation (2000-3000 US dollars/family/yr), job creation (200,000-300,000 families settled), land required and restored (2-3.2 million ha), and carbon emission from fossil fuel avoided (13.1 Mt C). Some recommendations related to institutional and economic barriers are proposed in order to encourage the technology penetration in the market. (Author)

  4. Distributions of carbon in calcareous soils under different land uses in western Iran

    Directory of Open Access Journals (Sweden)

    H. Sepahvand

    2016-10-01

    Full Text Available Concentrations of Natural stable and unstable carbon in ecosystems have been used extensively to help to understand a wide range of soil processes and functions. This study was conducted to explore the effects of land use changes on different carbon fractions (F1, F2, F3 and F4, permanganate oxidizable carbon (POXC, soil organic carbon (SOC and total organic carbon (TOC associated with soils in calcareous soils of western Iran. Four popular land uses in the selected site including natural forest, range land, dryland farming and irrigated farming systems were employed as the basis of soil sampling. The results showed a strong relationship between land use conversion and SOC stocks changes. The greatest mean values for carbon content and the least mean values of CaCO3 in bulk topsoil (0–15 cm in the forest land were observed. Dryland farming had the least both active and passive pools of C in comparison with the other land uses. The positive and significant correlations was observed between SOC, Total C and POXC contents and different C fractions. Taking C and POXC pools into account, a more definitive picture of the soil C is obtained than when only total C is measured. The influence of land use changes on overall soil carbon stocks could be helpful for making management decision for farmers and policy makers in the future, for enhancing the potential of C sequestration in western Iran.

  5. Carbon Risk Analysis Of The South African Banks’ Lending To The JSE100 CDP Companies

    Directory of Open Access Journals (Sweden)

    Alfred Bimha

    2015-11-01

    Full Text Available There is a pertinent concern over the continued lending to companies that are still pursuing projects that increase the amount of carbon emissions in the atmosphere. South Africa has most of its energy generation being done through coal thermal powered turbines. More so there are a number of new power stations being built in South Africa that are coal powered. Coal on the other hand is deemed as having the highest amount of carbon that contributes to the greenhouse effect which in turn affects the climate leading to climate change consequences. There is also a growing concern on the uptake of renewable energy initiatives by companies that are deemed carbon intensive. Banks are being castigated for not using their economic transformation role to champion the agenda of combating climate change caused by carbon emissions. In this study, the extent of lending in the short and long term to carbon intensive companies by South African banks is examined. Using a sample of the Johannesburg Stock Exchange top 100 companies that participate in Carbon Disclosure Project, an analysis is done through four carbon metrics –carbon intensity, carbon dependency, carbon exposure, carbon risk. The analysis used public information from the banks’ websites, South African Reserve Bank reports and other public databases that contain sustainability information of the JSE100 companies. The analysis was done by comparing the carbon metrics of the recognized seven (7 sectorial industry catergories (SIC on the JSE, mainly Energy & Materials, Industrials, Consumer Staples, Consumer Discretionary, Financials, IT & Telecoms and Health Care. The major finding of the research is that there is a high carbon risk in short term loans compared to long term loans across the JSE100 companies that are analysed. More so, the Energy & Materials sector seem to have the highest carbon risk compared to the other sectors.

  6. Impact of raized bogs on export of carbon and river water chemical composition in Western Siberia

    Science.gov (United States)

    Voistinova, Elena

    2010-05-01

    Bogs play an important role in functioning of the biosphere. Specific geochemical environment of the bogs results in formation of the special biogeochemical cycle of the elements. Processes of decay and transformation of organic material define the reductive conditions of bog water, form and migratory mobility of the chemical elements. Particular interest in recent years is aroused by the question of content and dynamics of the carbon in bog and river water according to indicated natural and climatic changes on the territory. The most important parts of the carbon balance in bog ecosystems together with processes of exhalation from deposit surface in the form of CO2 is its export with river water. The results of research carried out in scientific station "Vasyugansky" in south taiga subzone of Western Siberia showed that chemical composition of raised bog water includes high amounts of total iron (2,13 mg/l), ammonium ions (5,33 mg/l), humic and fulvic acids (5,21 mg/l and 45,8 mg/l), dissolved organic carbon (69,1 mg/l), COD (236,93 mgO/l), there are low mineralization and indicators of pH. Carbon comes in bog water in organic compounds: carboxylic acids, phenols, aromatic and paraffin hydrocarbons, organic phosphates, phthalates and other compounds. Formation of river waters composition in the Western Siberia takes place in the following context: high level of bogged river catchments (sometimes up to 70%), excess humidification and low heat provision. Basing on the results of study of hydrochemical runoff in small and medium rivers with different levels of bogged in river catchments (Chaya, Bakchar, Klyuch, Gavrilovka) it was noted that raised bog influence on river waters chemical composition shows in ion runoff decrease, organic substances runoff increase, increase of amounts of total iron, ammonium irons and water pH indicators decrease. Study of humic matters migration is very important in the context of formation of flexible complexes of humic and fulvic

  7. Romantic Experiences of Homeland and Diaspora South Asian Youth: Westernizing Processes of Media and Friends

    Science.gov (United States)

    Dhariwal, Amrit; Connolly, Jennifer

    2013-01-01

    The current study examined 1316 South Asian youth socialized in progressively Westernized contexts: "traditional" Indian homeland single-sex schools, "transitional" Indian homeland co-educational schools, and the immigrant "diaspora" in Canadian schools. Results showed youth in the three contexts were similar on…

  8. Prevalence of Legionella spp. in water systems of hospitals and hotels in South Western Greece.

    Science.gov (United States)

    Fragou, K; Kokkinos, P; Gogos, C; Alamanos, Y; Vantarakis, A

    2012-01-01

    The aim of the present study was to determine the prevalence of Legionella spp. in water systems of hospitals and hotels located in South Western Greece, to study the molecular epidemiology of the isolated strains and their possible association with bacterial contamination (total count and Pseudomonas aeruginosa), the water pH, and temperature. A prevalence survey for Legionella spp. by culturing techniques in water distribution systems of eight hospitals and nine hotels occurred in South Western Greece. Water sampling and microbiological analysis were carried out following the ISO methods. Legionella pneumophila was detected in 33% and 36% of the distribution systems of hospitals and hotels, respectively. Our survey results suggest a frequent prevalence of elevated concentrations of Legionella spp. in water systems of hospitals and hotels. Our investigation has confirmed the need to regularly monitor the microbiological condition of water systems in hospitals and hotels.

  9. Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study

    Directory of Open Access Journals (Sweden)

    Y. Ben-Ami

    2010-08-01

    Full Text Available Through long-range transport of dust, the North-African desert supplies essential minerals to the Amazon rain forest. Since North African dust reaches South America mostly during the Northern Hemisphere winter, the dust sources active during winter are the main contributors to the forest. Given that the Bodélé depression area in southwestern Chad is the main winter dust source, a close link is expected between the Bodélé emission patterns and volumes and the mineral supply flux to the Amazon.

    Until now, the particular link between the Bodélé and the Amazon forest was based on sparse satellite measurements and modeling studies. In this study, we combine a detailed analysis of space-borne and ground data with reanalysis model data and surface measurements taken in the central Amazon during the Amazonian Aerosol Characterization Experiment (AMAZE-08 in order to explore the validity and the nature of the proposed link between the Bodélé depression and the Amazon forest.

    This case study follows the dust events of 11–16 and 18–27 February 2008, from the emission in the Bodélé over West Africa (most likely with contribution from other dust sources in the region the crossing of the Atlantic Ocean, to the observed effects above the Amazon canopy about 10 days after the emission. The dust was lifted by surface winds stronger than 14 m s−1, usually starting early in the morning. The lofted dust, mixed with biomass burning aerosols over Nigeria, was transported over the Atlantic Ocean, and arrived over the South American continent. The top of the aerosol layer reached above 3 km, and the bottom merged with the boundary layer. The arrival of the dusty air parcel over the Amazon forest increased the average concentration of aerosol crustal elements by an order of magnitude.

  10. Asynchronous Amazon Forest Canopy Phenology Indicates Adaptation to Both Water and Light Availability

    Science.gov (United States)

    Jones, M. O.; Kimball, J. S.; Nemani, R. R.

    2015-12-01

    Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically active radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003-2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season length. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought. These insights can also inform land surface models to provide a more accurate representation of seasonal forest carbon allocation strategies responsive to environmental drivers.

  11. A Q fever cluster among workers at an abattoir in south-western Sydney, Australia, 2015

    Directory of Open Access Journals (Sweden)

    Heidi Lord

    2016-11-01

    Full Text Available Background: In September 2015, the Public Health Unit of the South Western Sydney Local Health District was notified of two possible Q fever cases. Case investigation identified that both cases were employed at an abattoir, and both cases advised that co-workers had experienced similar symptoms. Public Health Unit staff also recalled interviewing in late 2014 at least one other Q fever case who worked at the same abattoir. This prompted an outbreak investigation. Methods: The investigation incorporated active case finding, microbiological analysis, field investigation and a risk factor survey. Included cases were laboratory definitive or suspected cases occurring from October 2014 to October 2015, residing or working in south-western Sydney. A suspected case had clinically compatible illness, high-risk exposure and was epidemiologically linked to another confirmed case. A confirmed case included laboratory detection of C. burnetii. Results: Eight cases met the case definition with seven confirmed (including a deceased case and one suspected. The eight cases were all males who had been employed at an abattoir in south-western Sydney during their incubation period; symptom onset dates ranged from November 2014 to September 2015. Field investigation identified multiple potential risk factors at the abattoir, and the majority (75% of employees were not vaccinated against Q fever despite this high-risk setting. Conclusion: This cluster of Q fever in a single abattoir confirms the significance of this zoonotic disease as an occupational hazard among persons working in high-risk environments. Implementation of Q fever vaccination programmes should eliminate Q fever in high-risk occupational settings.

  12. Palaeovegetation dynamics of an ecotone forest-savanna in southern Brazilian Amazon during the late Pleistocene and Holocene based on carbon isotopes of soil organic matter

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.; Gouveia, S.E.M.; Freitas, H.A. de; Bendassoli, J.A.; Gomes, B.M.; Aravena, R.; Ribeiro, A.S.; Boulet, R.

    2002-01-01

    This study was carried out in the Brazilian southern Amazon region (Rondonia state and Humaita, southern Amazon state). Carbon isotope data on soil organic matter have been collected along an ecosystem transect of about 750 km that includes a savanna, a wooded savanna (cerrado), a tropical semideciduous forest (cerradao), a forest transition type and a tropical forest. The main objective is to evaluate the expansion-regression dynamics of these vegetation units in relation to climate changes during the Late Pleistocene (Late Glacial) and Holocene. Large ranges in δ 13 values were observed in soil organic matter collected from profiles in the savanna (-27 to -14 per mille and forest regions (-26 to -19 per mille) reflecting changing distribution of 13 C-depleted C 3 forest and 13 C enriched C 4 savanna vegetation in response to climate change. 14 C data of humin fraction and buried charcoal indicate that the organic matter in these soils is at least 17,000 years BP at 300-cm depth. In this period, the entire ecosystem transect are characterized by δ 13 C soil depth profiles, generated typically by C 3 plants (forest), inferring a humid climate in the southern Amazon region after the end of last glaciation. 13 C data also indicate that C 4 plants (grasses) have influenced significantly the vegetation at the transitional forest and the cerrado sites of southern Rondonia state and two distinct points in the forest ecosystem in the southern Amazon state. These typical C 4 type isotopic signatures probably reflect a drier climate during about 9000-8000 yr BP to 3000 yr BP and the savanna and wooded savanna expansion in distinct points of the transect. The 13 C records representing the 3000 yr show an expansion of the forest, due to a climatic improvement, in areas previously occupied by savanna vegetation. This study adds to the mounting evidence that extensive forested areas existed in the Amazon during the last glacial and that savanna vegetation expanded in response

  13. The Economic Implications of Introducing Carbon Taxes in South Africa

    DEFF Research Database (Denmark)

    Arndt, Thomas Channing

    2014-01-01

    carbon adjustments. Results indicate that a phased-in carbon tax of US$30 per ton of CO2 can achieve national emissions reductions targets set for 2025. Relative to a baseline with free disposal of CO2, constant world prices and no change in trading partner behavior, the preferred tax scenario reduces......South Africa is considering introducing a carbon tax to reduce greenhouse gas emissions. Following a discussion of the motivations for considering a carbon tax, we evaluate potential impacts using a dynamic economywide model linked to an energy sector model including a detailed evaluation of border...

  14. Improving simulated spatial distribution of productivity and biomass in Amazon forests using the ACME land model

    Science.gov (United States)

    Yang, X.; Thornton, P. E.; Ricciuto, D. M.; Shi, X.; Xu, M.; Hoffman, F. M.; Norby, R. J.

    2017-12-01

    Tropical forests play a crucial role in the global carbon cycle, accounting for one third of the global NPP and containing about 25% of global vegetation biomass and soil carbon. This is particularly true for tropical forests in the Amazon region, as it comprises approximately 50% of the world's tropical forests. It is therefore important for us to understand and represent the processes that determine the fluxes and storage of carbon in these forests. In this study, we show that the implementation of phosphorus (P) cycle and P limitation in the ACME Land Model (ALM) improves simulated spatial pattern of NPP. The P-enabled ALM is able to capture the west-to-east gradient of productivity, consistent with field observations. We also show that by improving the representation of mortality processes, ALM is able to reproduce the observed spatial pattern of above ground biomass across the Amazon region.

  15. Inundation and Gas Fluxes from Amazon Lakes and Wetlands

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B. R.; Amaral, J. H.; Barbosa, P.

    2015-12-01

    Inundation areas and wetland habitats for the lowland Amazon basin derived remote sensing with synthetic aperture radar are combined with measurements of greenhouse gas evasion derived from field measurements and new formulations of atmosphere-water. On-going field studies in representative aquatic habitats on the central Amazon floodplain are combining monthly measurements of carbon dioxide and methane concentrations and fluxes to the atmosphere with deployment of meteorological sensors and high-resolution thermistors and optical dissolved oxygen sensors. A real-time cavity ringdown spectrometer is being used to determine the gas concentrations; vertical profiles were obtained by using an equilibrator to extract gases from water, and floating chambers are used to assess fluxes. Gas fluxes varied as a function of season, habitat and water depth. Greatest carbon dioxide fluxes occurred during high and falling water levels. During low water, periods with high chlorophyll, indicative of phytoplankton, the flux of carbon dioxide switched from being emitted from the lake to being taken-up by the lake some of the time. The highest pCO2 concentration (5500 μatm) was about three times higher than the median (1700 μatm). Higher CO2 fluxes were observed in open water than in areas with flooded or floating vegetation. In contrast, methane fluxes were higher in vegetated regions. We measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. Comparison of these measurements with those calculated from meteorological and time series measurements validated new equations for turbulent kinetic energy dissipation (TKE) rates during moderate winds and cooling and illustrated that the highest dissipation rates occurred under heating. Measured gas exchange coefficients (k600) were similar to those based on the TKE dissipation rates and are well described using the surface renewal model. These k values are several times higher than

  16. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements

    Science.gov (United States)

    Gatti, L. V.; Gloor, M.; Miller, J. B.; Doughty, C. E.; Malhi, Y.; Domingues, L. G.; Basso, L. S.; Martinewski, A.; Correia, C. S. C.; Borges, V. F.; Freitas, S.; Braz, R.; Anderson, L. O.; Rocha, H.; Grace, J.; Phillips, O. L.; Lloyd, J.

    2014-02-01

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48+/-0.18 petagrams of carbon per year (PgCyr-1) during the dry year but was carbon neutral (0.06+/-0.1PgCyr-1) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25+/-0.14PgCyr-1, which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39+/-0.10PgCyr-1 previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.

  17. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    Science.gov (United States)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  18. Off-Farm Work among Rural Households: A Case Study in the Brazilian Amazon

    Science.gov (United States)

    VanWey, Leah; Vithayathil, Trina

    2013-01-01

    This article analyzes off-farm work among subsistence-level farmers in the Santarem region of the Brazilian Amazon. We build on the literature on rural livelihoods in the Global South by exploring how the opportunity to work off the farm is embedded in social relationships. We additionally differentiate our analysis by type of off-farm work, and…

  19. Mid-Holocene to Present Climate Transition in Tropical South America

    Science.gov (United States)

    Turcq, B.; Cordeiro, R.; Sifeddine, A.; Braconnot, P.; Dias, P. S.; Costa, R.; Jorgetti, T.

    2008-12-01

    The classical illustration of Holocene climate changes in tropical South America is the huge rising of Titicaca lake level from 4400 to 4000 cal BP. Because the Amazon basin is the source of Andean rainfalls we have explored Amazonian data of climate changes during the Holocene to better understand the cause of this abrupt transition. Amazonian data confirm the existence of mid-Holocene dryness: (1) lacustrine level studies show a lower precipitation/evaporation budget than present, with the lowest lake levels between 8500 and 6800 cal BP; (2) although the dominant Holocene vegetation has always been the rainforest in the heart of Amazonia, this forest expanded towards the northwestern and southwestern regions from 6800 to 1550 cal BP, moreover, pioneer elements of the rainforest developed during the mid-Holocene and the best example is those of Cecropia, between 9000 and 5000 cal BP. (3) soil d13C indicates a forest expansion over savannas areas in Roraima (north), Mato Grosso and Rondonia (southwest), during the Holocene. (4) the mid-Holocene (8000- 4000 cal BP) is characterized by repeated occurrences of forest fires, marked by the presence of charcoals in soils and lacustrine sediments. However these different records are not characterized by abrupt transitions at the end of the Middle Holocene in Amazonia. In the Andean records there is a clear north-south shift in the timing of the transition. Analysis of coupled Ocean Atmosphere Model simulations suggest that convection in Amazon basin is directly controlled by insolation leading to an almost linear response of local climate to the global forcing. Differently, in the eastern and south-western regions where the rain is brought by the South American Monsoon, the climate transition appears more abrupt. It may be because the involved climate mechanisms are more complex and depend on Ocean/Atmosphere/Vegetation coupled process (ITCZ position, ZCAS formation, etc.). Tectonic movements or threshold links to

  20. El Niño drought increased canopy turnover in Amazon forests.

    Science.gov (United States)

    Leitold, Veronika; Morton, Douglas C; Longo, Marcos; Dos-Santos, Maiza Nara; Keller, Michael; Scaranello, Marcos

    2018-03-25

    Amazon droughts, including the 2015-2016 El Niño, may reduce forest net primary productivity and increase canopy tree mortality, thereby altering both the short- and the long-term net forest carbon balance. Given the broad extent of drought impacts, inventory plots or eddy flux towers may not capture regional variability in forest response to drought. We used multi-temporal airborne Lidar data and field measurements of coarse woody debris to estimate patterns of canopy turnover and associated carbon losses in intact and fragmented forests in the central Brazilian Amazon between 2013-2014 and 2014-2016. Average annualized canopy turnover rates increased by 65% during the drought period in both intact and fragmented forests. The average size and height of turnover events was similar for both time intervals, in contrast to expectations that the 2015-2016 El Niño drought would disproportionally affect large trees. Lidar-biomass relationships between canopy turnover and field measurements of coarse woody debris were modest (R 2  ≈ 0.3), given similar coarse woody debris production and Lidar-derived changes in canopy volume from single tree and multiple branch fall events. Our findings suggest that El Niño conditions accelerated canopy turnover in central Amazon forests, increasing coarse woody debris production by 62% to 1.22 Mg C ha -1  yr -1 in drought years . No claim to original US Government works New Phytologist © 2018 New Phytologist Trust.

  1. Mercury loss from soils following conversion from forest to pasture in Rondonia, Western Amazon, Brazil

    International Nuclear Information System (INIS)

    Almeida, Marcelo D.; Lacerda, Luiz D.; Bastos, Wanderley R.; Herrmann, Joao Carlos

    2005-01-01

    This work reports on the effect of land use change on Hg distribution in Amazon soils. It provides a comparison among Hg concentrations and distribution along soil profiles under different land use categories; primary tropical forest, slashed forest prior to burning, a 1-year silviculture plot planted after 4 years of forest removal and a 5-year-old pasture plot. Mercury concentrations were highest in deeper (60-80 cm) layers in all four plots. Forest soils showed the highest Hg concentrations, ranging from 128 ng g -1 at the soil surface to 150 ng g -1 at 60-80 cm of depth. Lower concentrations were found in pasture soils, ranging from 69 ng g -1 at the topsoil to 135 ng g -1 at 60-80 cm of depth. Slashed and silviculture soils showed intermediate concentrations. Differences among plots of different soil-use categories decreased with soil depth, being non-significant below 60 cm of depth. Mercury burdens were only statistically significantly different between pasture and forest soils at the topsoil, due to the large variability of concentrations. Consequently, estimated Hg losses were only significant between these two land use categories, and only for the surface layers. Estimated Hg loss due to forest conversion to pasture ranged from 8.5 mg m -2 to 18.5 mg m -2 , for the first 20 cm of the soil profile. Mercury loss was comparable to loss rates estimated for other Amazon sites and seems to be directly related to Hg concentrations present in soils. - Deforestation can be responsible for maintaining high Hg levels in the Amazon environment, through a grasshopper effect of Hg remobilization from the affected soils

  2. Low Carbon and Climate Resilient Investments: Is South Africa ...

    African Journals Online (AJOL)

    . The aim of this paper is to review South Africa's response to climate change, with a special focus on investments in low carbon and climate resilient action. It highlights the successes to date and the challenges that still have to be addressed.

  3. Reproductive and population parameters of spiny dogfish Squalus acanthias in the south-western Atlantic Ocean.

    Science.gov (United States)

    Colonello, J H; Cortés, F; Belleggia, M; Massa, A M

    2016-05-01

    The objective of this study was to estimate reproductive and population parameters of the spiny dogfish Squalus acanthias for the south-western Atlantic Ocean. In total, 2714 specimens (1616 males and 1098 females) were collected from surveys carried out using research vessels. Males ranged from 225 to 861 mm total length (LT ) and females from 235 to 925 mm LT . The size at maturity of females (651 mm) was significantly greater than that of males (565 mm). The maximum proportion of mature individuals (Pmax ) of the gestation ogive was 156 mm). The temporal and spatial co-occurrence of non-gravid adult females at different stages of ovarian development, as well as gravid females at all embryonic development stages would indicate that the female reproductive cycle in the south-western Atlantic Ocean is asynchronous. The results indicate that S. acanthias is susceptible to fishing pressure on account of its length at maturity, extended reproductive cycles and low fecundity. © 2016 The Fisheries Society of the British Isles.

  4. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system

    Science.gov (United States)

    Latrubesse, Edgardo M.; Cozzuol, Mario; da Silva-Caminha, Silane A. F.; Rigsby, Catherine A.; Absy, Maria Lucia; Jaramillo, Carlos

    2010-05-01

    basin, and became instead an erosional area that contributed sediments to the Amazon fluvial system. At that time, the lowland fluvial systems of southwestern Amazonia (the Purus, Jurua and Javarí basins) become isolated from the Andes by the newly formed north-flowing Ucayali system and south-east flowing Madre de Dios System. It was during the early Pliocene that the Amazon fluvial system integrated regionally and acquired its present appearance, and also when it started to drain water and sediments on a large scale to the Atlantic Ocean.

  5. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Silva, C. G.; Rigsby, C. A.; Absy, M. L.; Almeida, R. P.; Caputo, M.; Chiessi, C. M.; Cruz, F. W.; Dick, C. W.; Feakins, S. J.; Figueiredo, J.; Freeman, K. H.; Hoorn, C.; Jaramillo, C.; Kern, A. K.; Latrubesse, E. M.; Ledru, M. P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W. E.; Ramos, M. I. F.; Ribas, C. C.; Trnadade, R.; West, A. J.; Wahnfried, I.; Willard, D. A.

    2015-12-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  6. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, Maria C.; Chiessi, C.M.; Cruz, F.W.; Dick, C.W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.A.; Kern, A.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trinadade, R.; West, A.J.; Wahnfried, I.; Willard, Debra A.

    2015-01-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  7. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.

    Science.gov (United States)

    Kumaran, Navnith K P; Padmalal, Damodaran; Limaye, Ruta B; S, Vishnu Mohan; Jennerjahn, Tim; Gamre, Pradeep G

    2016-01-01

    Holocene sequences in the humid tropical region of Kerala, South-western (SW) India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The alarming rate of land

  8. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.

    Directory of Open Access Journals (Sweden)

    Navnith K P Kumaran

    Full Text Available Holocene sequences in the humid tropical region of Kerala, South-western (SW India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The

  9. Palm harvest impacts in north-western South America

    DEFF Research Database (Denmark)

    Balslev, Henrik

    2011-01-01

    Tropical forests harbor thousands of useful plants that are harvested and used in subsistence economies or traded in local, regional or international markets. The effect on the ecosystem is little known, and the forests resilience is badly understood. Palms are the most useful group of plants...... in tropical American forests. This paper introduces a cross-disciplinary study of the effects of harvesting palm products from the tropical forests in north-western South America. The size of the resource is estimated through palm community studies in the different forest formations that determines the number...... of species and individuals of all palm species. The genetic structure of useful palm species is studied to determine how much harvesting of the species contributes to genetic erosion of its populations, and whether extraction can be made without harm. Almost all palm species are used in rural communities...

  10. The role of fluvial sediment supply and river-mouth hydrology in the dynamics of the muddy, Amazon-dominated Amapá-Guianas coast, South America: A three-point research agenda

    Science.gov (United States)

    Anthony, Edward J.; Gardel, Antoine; Proisy, Christophe; Fromard, François; Gensac, Erwan; Peron, Christina; Walcker, Romain; Lesourd, Sandric

    2013-07-01

    The morphology and sediment dynamics of the 1500 km-long coast of South America between the mouths of the Amazon and the Orinoco Rivers are largely dependent on the massive suspended-sediment discharge of the Amazon, part of which is transported alongshore as mud banks. These mud banks have an overwhelming impact on the geology, the geomorphology, the ecology and the economy of this coast. Although numerous field investigations and remote sensing studies have considerably enhanced our understanding of the dynamics of this coast over the last three decades, much still remains to be understood of the unique functional mechanisms and processes driving its evolution. Among the themes that we deem as requiring further attention three come out as fundamental. The first concerns the mechanisms of formation of individual mud banks from mud streaming on the shelf off the mouth of the Amazon. An unknown quantity of the fluid mud generated by offshore estuarine front activity is transported shoreward and progressively forms mud banks on the Amapá coast, Brazil. The volume of each mud bank can contain from the equivalent of the annual mud supply of the Amazon to several times this annual sediment discharge. The mechanisms by which individual banks are generated from the Amazon turbidity maximum are still to be elucidated. Areas of research include regional mesoscale oceanographic conditions and mud supply from the Amazon. The second theme is that of variations in rates of migration of mud banks, which influence patterns of coastal accretion. Research emphasis needs to be placed on the analysis of both regional meteorological-hydrodynamic forcing and distant Atlantic forcing, as well as on the hydrology of the large rivers draining the Guyana Shield. The rivers appear to generate significant offshore deflection of mud banks in transit alongshore, through a hydraulic-groyne effect. This may favour both muddy accretion on the updrift coast and downdrift mud liquefaction with

  11. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    Directory of Open Access Journals (Sweden)

    Brian L Zielinski

    Full Text Available The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon

  12. Progress Towards Improved MOPITT-based Biomass Burning Emission Inventories for the Amazon Basin

    Science.gov (United States)

    Deeter, M. N.; Emmons, L. K.; Martinez-Alonso, S.; Wiedinmyer, C.; Arellano, A. F.; Fischer, E. V.; González-Alonso, L.; Val Martin, M.; Gatti, L. V.; Miller, J. B.; Gloor, M.; Domingues, L. G.; Correia, C. S. D. C.

    2016-12-01

    The 17-year long record of carbon monoxide (CO) concentrations from the MOPITT satellite instrument is uniquely suited for studying the interannual variability of biomass burning emissions. Data assimilation methods based on Ensemble Kalman Filtering are currently being developed to infer CO emissions within the Amazon Basin from MOPITT measurements along with additional datasets. The validity of these inversions will depend on the characteristics of the MOPITT CO retrievals (e.g., retrieval biases and vertical resolution) as well as the representation of chemistry and dynamics in the chemical transport model (CAM-Chem) used in the data assimilation runs. For example, the assumed vertical distribution ("injection height") of the biomass burning emissions plays a particularly important role. We will review recent progress made on a project to improve biomass burning emission inventories for the Amazon Basin. MOPITT CO retrievals over the Amazon Basin are first characterized, focusing on the MOPITT Version 6 "multispectral" retrieval product (exploiting both thermal-infrared and near-infrared channels). Validation results based on in-situ vertical profiles measured between 2010 and 2013 are presented for four sites in the Amazon Basin. Results indicate a significant negative bias in MOPITT retrieved lower-tropospheric CO concentrations. The seasonal and geographical variability of smoke injection height over the Amazon Basin is then analyzed using a MISR plume height climatology. This work has led to the development of a new fire emission injection height parameterization that was implemented in CAM-Chem and GEOS-Chem.. Finally, we present initial data assimilation results for the Amazon Basin and evaluate the results using available field campaign measurements.

  13. Water stress detection in the Amazon using radar

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  14. Tropical forest carbon balance: effects of field- and satellite-based mortality regimes on the dynamics and the spatial structure of Central Amazon forest biomass

    Science.gov (United States)

    Di Vittorio, Alan V.; Negrón-Juárez, Robinson I.; Higuchi, Niro; Chambers, Jeffrey Q.

    2014-03-01

    Debate continues over the adequacy of existing field plots to sufficiently capture Amazon forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are particularly uncertain due to the difficulty of observing large, infrequent disturbances. A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949-54) reported that Central Amazon plots missed 9-17% of tree mortality, and here we address ‘why’ by elucidating two distinct mortality components: (1) variation in annual landscape-scale average mortality and (2) the frequency distribution of the size of clustered mortality events. Using a stochastic-empirical tree growth model we show that a power law distribution of event size (based on merged plot and satellite data) is required to generate spatial clustering of mortality that is consistent with forest gap observations. We conclude that existing plots do not sufficiently capture losses because their placement, size, and longevity assume spatially random mortality, while mortality is actually distributed among differently sized events (clusters of dead trees) that determine the spatial structure of forest canopies.

  15. Tropical forest carbon balance: effects of field- and satellite-based mortality regimes on the dynamics and the spatial structure of Central Amazon forest biomass

    International Nuclear Information System (INIS)

    Di Vittorio, Alan V; Negrón-Juárez, Robinson I; Chambers, Jeffrey Q; Higuchi, Niro

    2014-01-01

    Debate continues over the adequacy of existing field plots to sufficiently capture Amazon forest dynamics to estimate regional forest carbon balance. Tree mortality dynamics are particularly uncertain due to the difficulty of observing large, infrequent disturbances. A recent paper (Chambers et al 2013 Proc. Natl Acad. Sci. 110 3949–54) reported that Central Amazon plots missed 9–17% of tree mortality, and here we address ‘why’ by elucidating two distinct mortality components: (1) variation in annual landscape-scale average mortality and (2) the frequency distribution of the size of clustered mortality events. Using a stochastic-empirical tree growth model we show that a power law distribution of event size (based on merged plot and satellite data) is required to generate spatial clustering of mortality that is consistent with forest gap observations. We conclude that existing plots do not sufficiently capture losses because their placement, size, and longevity assume spatially random mortality, while mortality is actually distributed among differently sized events (clusters of dead trees) that determine the spatial structure of forest canopies. (paper)

  16. Spatial and spatio-temporal analysis of malaria in the state of Acre, western Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo Augusto Kohara Melchior

    2016-11-01

    Full Text Available Since 2005, the State of Acre, western Amazon, Brazil, has reported the highest annual parasite incidence (API of malaria among the Brazilian states. This study examines malaria incidence in Acre using spatial and spatio-temporal analysis based on an ecological time series study analyzing malaria cases and deaths for the time period 1992- 2014 and using secondary data. API indexes were calculated by age, sex, parasite species, ratio of Plasmodium vivax to P. falciparum malaria, malaria mortality rate and case fatality rate. SaTScan was used to detect spatial and spatio-temporal clusters of malaria cases and data were represented in the form of choropleth maps. A high-risk cluster of malaria was detected in Vale do Juruá and three low-risk clusters in Vale do Acre for both parasite species. Those younger than 19 years of age and females showed a high incidence of malaria in Vale do Juruá, but working-age males were the most affected in Vale do Acre. The malaria mortality rate showed a decreasing trend across the state, while the case fatality rate increased only in the micro-region of Rio Branco during the study period. We conclude that malaria is a focal disease in Acre showing different spatial and spatio-temporal patterns of cases and deaths that vary by age, sex, and parasite species. Malaria incidence is thought to be influenced by factors related to regional characteristics; therefore, appropriate disease and vector control strategies must be implemented at each locality.

  17. Lichens in the Urban Environment within South-East of Western Siberia, Russia

    Directory of Open Access Journals (Sweden)

    Ekaterina V. Romanova

    2013-12-01

    Full Text Available Lichen species diversity and trend of their distribution were studied in two big cities and fi ve towns in south-east of Western Siberia. In total of 348 species from 46 families and 98 genera were found in all studied urban and suburban areas. All local checklists are characterized by high degree of the lichen species similarity between each other and smaller lists are included in bigger ones on to 64-100%. Epiphytic lichens were the largest group in all studied areas and almost half of them were occupied two and more substrates. Crustose life-form and mesophytes prevailed everywhere. Share of sensitive lichens exceeded percent of tolerant ones in big cities and was lower than tolerant ones in smaller towns. The sixteen species were the most tolerant, commonly present everywhere and have been recognized as the key species for urban lichen synusiae within south-east of Western Siberia. Five zones have been determined with IP-mapping (mapping on the base of index of air pollution tolerance in studied areas: IP=3-5 is a “normal zone”, IP=5-7 is a “moderate exposure zone”, IP=7-9 is a “mixed zone”, IP=9-10 is a “struggle zone”, and fi nally – lichen-free zone. The most studied urban areas had got quite extensive lichen-free zone (up to 35% of their areas.

  18. Health risk behaviours of stroke patients in the Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    D. Biggs

    2008-01-01

    Full Text Available Stroke is a leading cause of death and a major cause of disability globally. Individuals with physical disabilities, including thosewho have suffered a stroke are at risk of secondary complications due to the impact of their disability, which may be exacerbated by their lifestylechoices. The aim of the present study was to determine the health riskbehaviours and factors that influence these behaviours of stroke patients inthe Metropole Region of the Western Cape, South Africa. A cross – sectionalsurvey, utilizing a self-administered questionnaire on a convenient sampleof 417 stroke patients, was used to collect data. A sub-sample of 10 parti-cipants was purposively selected for in-depth, face-to-face interviews.Approximately forty percent (40.3% of the participants did not engage in physical exercise. While 30.2% smoked only9% abused alcohol. A significant association was found between age and smoking (p<0.002. Information gathered in the in-depth interviews revealed factors that influenced the behaviours of the participants. These factors includedlack of financial resources and lack of access to information. As participants were found to be at risk of secondarycomplications because of poor lifestyle choices, there is a clear need to implement health promotion programmes topromote well-ness enhancing behaviours in order to enhance the quality of health of patients who have suffered astroke in the Western Cape, South Africa.

  19. Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons

    Science.gov (United States)

    Andreae, M. O.; Artaxo, P.; Beck, V.; Bela, M.; Freitas, S.; Gerbig, C.; Longo, K.; Munger, J. W.; Wiedemann, K. T.; Wofsy, S. C.

    2012-07-01

    We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm-3; the highest values were in the southern part of the Basin at altitudes of 1-3 km. The ΔCN/ΔCO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300-500 cm-3) prevailed basinwide, and CO mixing ratios were enhanced by only ~10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no

  20. Food insecurity and dental caries in schoolchildren: a cross-sectional survey in the western Brazilian Amazon.

    Science.gov (United States)

    Frazão, Paulo; Benicio, Maria H D; Narvai, Paulo C; Cardoso, Marly A

    2014-06-01

    We analyzed the association between food insecurity and dental caries in 7- to 9-yr-old schoolchildren. We performed a cross-sectional survey nested in a population-based cohort study of 203 schoolchildren. The participants lived in the urban area of a small town within the western Brazilian Amazon. Dental examinations were performed according to criteria recommended by the World Health Organization. The number of decayed deciduous and permanent teeth as a count variable was the outcome measure. Socio-economic status, food security, behavioral variables, and child nutritional status, measured by Z-score for body mass index (BMI), were investigated, and robust Poisson regression models were used. The results showed a mean (SD) of 3.63 (3.26) teeth affected by untreated caries. Approximately 80% of schoolchildren had at least one untreated decayed tooth, and nearly 60% lived in food-insecure households. Sex, household wealth index, mother's education level, and food-insecurity scores were associated with dental caries in the crude analysis. Dental caries was 1.5 times more likely to be associated with high food-insecurity scores after adjusting for socio-economic status and sex. A significant dose-response relationship was observed. In conclusion, food insecurity is highly associated with dental caries in 7- to 9-yr-old children and may be seen as a risk factor. These findings suggest that food-security policies could reduce dental caries. © 2014 Eur J Oral Sci.

  1. Dynamics and controls of heterotrophic prokaryotic production in the western tropical South Pacific Ocean: links with diazotrophic and photosynthetic activity

    Science.gov (United States)

    Van Wambeke, France; Gimenez, Audrey; Duhamel, Solange; Dupouy, Cécile; Lefevre, Dominique; Pujo-Pay, Mireille; Moutin, Thierry

    2018-05-01

    Heterotrophic prokaryotic production (BP) was studied in the western tropical South Pacific (WTSP) using the leucine technique, revealing spatial and temporal variability within the region. Integrated over the euphotic zone, BP ranged from 58 to 120 mg C m-2 d-1 within the Melanesian Archipelago, and from 31 to 50 mg C m-2 d-1 within the western subtropical gyre. The collapse of a bloom was followed during 6 days in the south of Vanuatu using a Lagrangian sampling strategy. During this period, rapid evolution was observed in the three main parameters influencing the metabolic state: BP, primary production (PP) and bacterial growth efficiency. With N2 fixation being one of the most important fluxes fueling new production, we explored relationships between BP, PP and N2 fixation rates over the WTSP. The contribution of N2 fixation rates to bacterial nitrogen demand ranged from 3 to 81 %. BP variability was better explained by the variability of N2 fixation rates than by that of PP in surface waters of the Melanesian Archipelago, which were characterized by N-depleted layers and low DIP turnover times (TDIP 100 h), deeper in the Melanesian Archipelago, or within the entire euphotic zone in the subtropical gyre. The bacterial carbon demand to gross primary production ratio ranged from 0.75 to 3.1. These values are discussed in the framework of various assumptions and conversion factors used to estimate this ratio, including the methodological errors, the daily variability of BP, the bacterial growth efficiency and one bias so far not considered: the ability for Prochlorococcus to assimilate leucine in the dark.

  2. Analysis of measured L-band airborne land clutter from the Western Cape region of South Africa

    CSIR Research Space (South Africa)

    De Witt, JJ

    2014-10-01

    Full Text Available -band Airborne Land Clutter from the Western Cape region of South Africa J.J. de Witt and J.J. Strydom Abstract: This paper presents backscatter analysis of L-band land clutter data, measured from an airborne platform, over various terrain types...

  3. Integrating the avoidance of forest degradation into systematic conservation planning in the Eastern Amazon

    Science.gov (United States)

    Ferreira, J.; Barlow, J.; Thompson, J.; Berenguer, E.; Aragão, L. E.; Lees, A.; Lennox, G.; Brancalion, P.; Ferraz, S.; Moura, N.; Oliveira, V. H.; Louzada, J.; Solar, R.; Nunes, S.; Parry, L.; Fonseca, T.; Garrett, R.; Vieira, I.; MacNally, R.; Gardner, T.

    2017-12-01

    Undisturbed forests are becoming increasingly rare in the tropics. The area of forest degraded by some form of disturbance, such as logging or fire, in the Brazilian Amazon now greatly exceeds that which had been deforested. Yet forest policy in the Amazon, as elsewhere in the tropics, remains overwhelmingly focused curbing the rate of forest loss without considering impacts on forest quality. We use a unique data set from the Sustainable Amazon Network (RAS), in the eastern Brazilian Amazon to assess the impacts of forest disturbance on biodiversity and assess the benefits of including avoided degradation measures in conservation planning. Biodiversity data on trees and fauna from two large regions, Santarém and Paragominas, were combined with remote sensing data to model biodiversity patterns as well as estimates of above-ground carbon stocks across a range of land-use types and forest conditions. We found that impact of forest disturbance on biodiversity loss in the state of Pará equates to double that lost from deforestation alone, -the equivalent of losing 92,000-139,000 km2 of primary forest. We found a strong positive relationship between increasing carbon stocks and higher biodiversity in varyingly disturbed forests. Simulations demonstrated that a carbon-focused conservation strategy is least effective at conserving biodiversity in the least disturbed forests, highlighting the importance of on-the-ground biodiversity surveys to prioritise conservation investments in the most species rich forests. We explored trade-offs among management actions to guide priorities for habitat protection, avoided degradation and restoration and found that where restoration imposes significant opportunity and implementation costs, efforts to avoid and reverse the degradation of existing forests can deliver greater returns on investment for biodiversity conservation. Systemic planning of forest management options at regional scales can substantially improve biodiversity

  4. Childhood injuries in Ilesa, South-Western Nigeria: causes, pattern, and outcome.

    Science.gov (United States)

    Adegoke, S A; Ademola, A S; Dedeke, I O F; Oyelami, O A

    2010-01-01

    In Sub-Saharan Africa, infections and undernutrition are the leading causes of childhood death; however injuries are now contributing significantly to childhood morbidity and mortality. To determine the aetiology, morbidity and mortality associated with injuries in children in South-Western Nigeria. This was an observational cross-sectional study of consecutive childhood injury attendances and admissions into the hospital's Children Emergency Room (CHER) over a one-year period. Socio-demographic data as well as the data on the cause, site, and possible risks of injury; parts of the body affected and eventual outcome of the patients were documented. Injury accounted for 382 (10.6%) of the 3,604 attendances, 142 (11.9%) of 1193 admissions and 11 (20.4%) of 54 deaths in CHER. Their ages ranged from six weeks to 15 years, with a mean (SD) of 6.7 (3.9) years, and a male:female ratio of 1.6:1. Road traffic accidents, 130 (34.0%), were the most common cause, followed by falls 119 (31.2%), cuts 44 (11.5%), bits 26 (6.8%), and burns 24 (6.3%). Injuries occurred mostly at home 154 (40.1%), on the road 142 (37.4%), and at school 59 (15.2%). Lack of supervision and/or poor anticipation of potential dangers were the leading risks associated with childhood injuries. Injuries contribute significantly to childhood deaths in South-Western Nigeria. A well-orchestrated public enlightenment programme to improve home, school, and road supervision of children as well as concerted efforts to make these places safer could help ameliorate the situation.

  5. Annual ryegrass toxicity in Thoroughbred horses in Ceres in the Western Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    J.D. Grewar

    2009-05-01

    Full Text Available An outbreak of annual ryegrass toxicity occurred on a Thoroughbred stud in Ceres in the Western Cape Province of South Africa. This is the 1st report of annual ryegrass toxicity in horses in South Africa, although the condition has been reported in cattle and sheep populations in the past. Annual ryegrass toxicity is characterised by a variety of neurological signs including tremors, convulsions, recumbency and in many cases death. The description of the outbreak includes the history, clinical presentation and treatment protocol administered during the outbreak. Various epidemiological variables and their influence in the outbreak are also considered.

  6. Regional distribution patterns of chemical parameters in surface sediments of the south-western Baltic Sea and their possible causes

    Science.gov (United States)

    Leipe, T.; Naumann, M.; Tauber, F.; Radtke, H.; Friedland, R.; Hiller, A.; Arz, H. W.

    2017-12-01

    This study presents selected results of a sediment geochemical mapping program of German territorial waters in the south-western Baltic Sea. The field work was conducted mainly during the early 2000s. Due to the strong variability of sediment types in the study area, it was decided to separate and analyse the fine fraction (<63 μm, mud) from more than 600 surficial samples, combined with recalculations for the bulk sediment. For the contents of total organic carbon (TOC) and selected elements (P, Hg), the regional distribution maps show strong differences between the analysed fine fraction and the recalculated total sediment. Seeing that mud contents vary strongly between 0 and 100%, this can be explained by the well-known grain-size effect. To avoid (or at least minimise) this effect, further interpretations were based on the data for the fine fraction alone. Lateral transport from the large Oder River estuary combined with high abundances and activities of benthic fauna on the shallow-water Oder Bank (well sorted fine sand) could be some main causes for hotspots identified in the fine-fraction element distribution. The regional pattern of primary production as the main driver of nutrient element fixation (C, N, P, Si) was found to be only weakly correlated with, for example, the TOC distribution in the fine fraction. This implies that, besides surface sediment dynamics, local conditions (e.g. benthic secondary production) also have strong impacts. To the best of the authors' knowledge, there is no comparable study with geochemical analyses of the fine fraction of marine sediments to this extent (13,600 km2) and coverage (between 600 and 800 data points) in the Baltic Sea. This aspect proved pivotal in confidently pinpointing geochemical "anomalies" in surface sediments of the south-western Baltic Sea.

  7. Syntaxonomy and zonation patterns in coastal salt marshes of the Uilkraals Estuary, Western Cape (South Africa)

    NARCIS (Netherlands)

    Mucina, L.; Janssen, J.A.M.; O'Callaghan, M.

    2003-01-01

    Vegetation on salt marshes of the Uilkraals Estuary (near Gansbaai, Western Cape, South Africa) is described and classified into 11 associations and/or rank-less plant communities (further subdivided into a number of sub-units). These communities were grouped into 6 high-rank syntaxa (alliances and

  8. Morphological and cytological diversity of goldenrods (Solidago L. and Euthamia Nutt. from south-western Poland

    Directory of Open Access Journals (Sweden)

    Szymura Magdalena

    2015-06-01

    Full Text Available Correlations between the morphology and cytology of invasive species and the effectiveness of invasion are among the most interesting questions in invasion ecology. Amongst exceptionally successful worldwide plant invaders, species of goldenrod (Solidago and Euthamia are considered. The main aim of the study was to compare the morphology (concerning life traits and cytology of the selected goldenrods occurring in south-western Poland with the effectiveness of their invasion. The results of the study, conducted in south-western Poland, showed that life traits of invasive Solidago and Euthamia taxa were clearly not connected with the effectiveness of invasion. The most widespread species, S. gigantea and S. altissima, had the highest ramets and uncommon species such as Euthamia graminifolia and S. virgaurea had short ramets. However, S. canadensis, which is tall, is also uncommon. The most frequent species (S. gigantea produced smaller inflorescence than less frequent species (S. altissima, S. canadensis and Euthamia graminifolia. The spread of particular taxa was also not connected with the ploidy level and DNA content.

  9. A check list of the spider fauna of the Western Soutpansberg, South Africa (Arachnida: Araneae

    Directory of Open Access Journals (Sweden)

    S.H. Foord

    2002-12-01

    Full Text Available By virtue of its geological history and geographical location the Soutpansberg constitutes a refuge for a high diversity of organisms. The Western Soutpansberg forms part of the Savanna Biome and is presently the area with the highest concentration of Natural Heritage Sites in South Africa. A unique private initiative is under way to improve its national and international conservation status in a bid to conserve the mountain. A checklist of the spider species of the Western Soutpansberg collected over a five-year period is presented. Forty-six families, represented by 109 genera and 127 species have been collected. Of the species collected, 81 (64 % were wandering spiders and 46 (36 % web builders. The Thomisidae have the highest number of species (15 followed by the Araneidae and the Salticidae with 10 species each. Ninety-six genera are represented by a single species. Ninety six percent of the species collected are new records for the area. This survey is the first for the area and forms part of the South African National Survey of Arachnida (SANSA.

  10. The Amazon rainforest, climate change, and drought: How will what is below the surface affect the climate of tropical South America?

    Science.gov (United States)

    Harper, A.; Denning, A. S.; Baker, I.; Randall, D.; Dazlich, D.

    2008-12-01

    Several climate models have predicted an increase in long-term droughts in tropical South America due to increased greenhouse gases in the atmosphere. Although the Amazon rainforest is resilient to seasonal drought, multi-year droughts pose a definite problem for the ecosystem's health. Furthermore, drought- stressed vegetation participates in feedbacks with the atmosphere that can exacerbate drought. Namely, reduced evapotranspiration further dries out the atmosphere and affects the regional climate. Trees in the rainforest survive seasonal drought by using deep roots to access adequate stores of soil moisture. We investigate the climatic impacts of deep roots and soil moisture by coupling the Simple Biosphere (SiB3) model to Colorado State University's general circulation model (BUGS5). We compare two versions of SiB3 in the GCM during years with anomalously low rainfall. The first has strong vegetative stress due to soil moisture limitations. The second experiences less stress and has more realistic representations of surface biophysics. In the model, basin-wide reductions in soil moisture stress result in increased evapotranspiration, precipitation, and moisture recycling in the Amazon basin. In the savannah region of southeastern Brazil, the unstressed version of SiB3 produces decreased precipitation and weaker moisture flux, which is more in-line with observations. The improved simulation of precipitation and evaporation also produces a more realistic Bolivian high and Nordeste low. These changes highlight the importance of subsurface biophysics for the Amazonian climate. The presence of deep roots and soil moisture will become even more important if climate change brings more frequent droughts to this region in the future.

  11. Western Sicily (Italy), a key area for understanding geothermal system within carbonate reservoirs

    Science.gov (United States)

    Montanari, D.; Bertini, G.; Botteghi, S.; Catalano, R.; Contino, A.; Doveri, M.; Gennaro, C.; Gianelli, G.; Gola, G.; Manzella, A.; Minissale, A.; Montegrossi, G.; Monteleone, S.; Trumpy, E.

    2012-12-01

    Oil exploration in western Sicily started in the late 1950s when several exploration wells were drilled, and continued with the acquisition of many seismic reflection profiles and the drilling of new wells in the1980s. The geological interpretation of these data mainly provided new insights for the definition of geometric relationships between tectonic units and structural reconstruction at depth. Although it has not produced completely satisfactory results for oil industry, this hydrocarbon exploration provided a great amount of data, resulting very suitable for geothermal resource assessment. From a geothermal point of view western Sicily is, indeed, a very promising area, with the manifestation at surface of several thermal springs, localized areas of high heat flux and thick carbonates units uninterruptedly developing from surface up top great depths. These available data were often collected with the modalities and purposes typical of oil exploration, not always the finest for geothermal exploration as in the case of temperature measurements. The multidisciplinary and integrated review of these data, specifically corrected for geothermal purposes, and the integration with new data acquired in particular key areas such as the Mazara Del Vallo site in the southern part of western Sicily, allowed us to better understand this medium-enthalpy geothermal system, to reconstruct the modalities and peculiarities of fluids circulation, and to evaluate the geothermal potentialities of western Sicily. We suggest that western Sicily can be taken as a reference for the understanding of geothermal systems developed at a regional scale within carbonate rocks. This study was performed within the framework of the VIGOR project (http://www.vigor-geotermia.it).

  12. Carbon exchange in Western Siberian watershed mires and implication for the greenhouse effect : A spatial temporal modeling approach

    NARCIS (Netherlands)

    Borren, W.

    2007-01-01

    The vast watershed mires of Western Siberia formed a significant sink of carbon during the Holocene. Because of their large area these mires might play an important role in the carbon exchange between terrestrial ecosystems and the atmosphere. However, estimation of the Holocene and future carbon

  13. Potential hydrologic changes in the Amazon by the end of the 21st century and the groundwater buffer

    International Nuclear Information System (INIS)

    Pokhrel, Yadu N; Fan, Ying; Miguez-Macho, Gonzalo

    2014-01-01

    This study contributes to the discussions on the future of the Amazon rainforest under a projected warmer-drier climate from the perspectives of land hydrology. Using IPCC HadGEM2-ES simulations of the present and future Amazon climate to drive a land hydrology model that accounts for groundwater constraint on land drainage, we assess potential hydrologic changes in soil water, evapotranspiration (ET), water table depth, and river discharge, assuming unchanged vegetation. We ask: how will ET regimes shift at the end of the 21st century, and will the groundwater help buffer the anticipated water stress in some places-times? We conducted four 10 yr model simulations, at the end of 20th and 21st century, with and without the groundwater. Our model results suggest that, first, over the western and central Amazon, ET will increase due to increased potential evapotranspiration (PET) with warmer temperatures, despite a decrease in soil water; that is, ET will remain PET or atmospheric demand-limited. Second, in the eastern Amazon dry season, ET will decrease in response to decreasing soil water, despite increasing PET demand; that is, ET in these regions-seasons will remain or become more soil water or supply-limited. Third, the area of water-limited regions will likely expand in the eastern Amazonia, with the dry season, as indicated by soil water store, even drier and longer. Fourth, river discharge will be significantly reduced over the entire Amazon but particularly so in the southeastern Amazon. By contrasting model results with and without the groundwater, we found that the slow soil drainage constrained by shallow groundwater can buffer soil water stress, particularly in southeastern Amazon dry season. Our model suggests that, if groundwater buffering effect is accounted for, the future Amazon water stress may be less than that projected by most climate models. (letter)

  14. Hantavirus pulmonary syndrome (rio Mamore virus) in the peruvian Amazon region

    OpenAIRE

    Mamani, Enrique; Centro Nacional de Salud Pública. Instituto Nacional de Salud. Lima, Perú. biólogo.; García, María P.; Centro Nacional de Salud Pública. Instituto Nacional de Salud. Lima, Perú. tecnólogo médico.; Miraval, María L.; Centro Nacional de Salud Pública. Instituto Nacional de Salud. Lima, Perú. médico anátomo-patólogo.; Valencia, Pedro; Centro Nacional de Salud Pública. Instituto Nacional de Salud. Lima, Perú. Médico infectólogo.; Quino, Alberto H.; Hospital Regional de Loreto, Gobierno Regional de Loreto. Loreto, Perú. médico intensivista.; Álvarez, Carlos; Unidad de Análisis y Generación de Evidencias en Salud Pública. Instituto Nacional de Salud. Lima, Perú. médico anátomo-patólogo.; Donaires, Luis F.; Dirección Regional de Salud de Loreto, Gobierno Regional de Loreto. Loreto, Perú. médico epidemiólogo.

    2014-01-01

    Hantavirus infection is a viral zoonotic infection borne by rodents which most letal form clinical is the Hantavirus Pulmonary Syndrome (SPH, Spanish abbreviation). The Mamore River variant originates in South America and was found in rodents without any association to human diseases. Two cases of SPH were identified in the Peruvian Amazon region in November 2011. In both cases, a molecular diagnostic testing was conducted by the Instituto Nacional de Salud from Peru. A phylogenetic analy...

  15. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon

    Science.gov (United States)

    Marcos Longo; Michael Keller; Maiza N. dos-Santos; Veronika Leitold; Ekena R. Pinagé; Alessandro Baccini; Sassan Saatchi; Euler M. Nogueira; Mateus Batistella; Douglas C. Morton

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n = 359) and airborne lidar data (18,000 ha)...

  16. Immunohistochemical localization of CYP1A, vitellogenin and Zona radiata proteins in the liver of swordfish (Xiphias gladius L.) taken from the Mediterranean Sea, South Atlantic, South Western Indian and Central North Pacific Oceans

    International Nuclear Information System (INIS)

    Desantis, S.; Corriero, A.; Cirillo, F.; Deflorio, M.; Brill, R.; Griffiths, M.; Lopata, A.L.; Serna, J.M. de la; Bridges, C.R.; Kime, D.E.; De Metrio, G.

    2005-01-01

    Cytochrome P4501A (CYP1A) monoxygenase, vitellogenin (Vtg) and Zona radiata proteins (Zrp) are frequently used as biomarkers of fish exposure to organic contaminants. In this work, swordfish liver sections obtained from the Mediterranean Sea, the South African coasts (South Atlantic and South Western Indian Oceans) and the Central North Pacific Ocean were immunostained with antisera against CYP1A, Zrp, and Vtg. CYP1A induction was found in hepatocytes, epithelium of the biliary ductus and the endothelium of large blood vessels of fish from the Mediterranean Sea and South African waters, but not from the Pacific Ocean. Zrp and Vtg were immunolocalized in hepatocytes of male swordfish from the Mediterranean Sea and from South African waters. Plasma Dot-Blot analysis, performed in Mediterranean and Pacific specimens, revealed the presence of Zrp and Vtg in males from Mediterranean but not from Pacific. These results confirm previous findings about the potential exposure of Mediterranean swordfish to endocrine, disrupting chemicals and raise questions concerning the possible presence of xenobiotic contaminants off the Southern coasts of South Africa in both the South Atlantic and South Western Indian Oceans

  17. Cervical HPV natural history among young Western Cape, South African women: The randomized control EVRI Trial

    NARCIS (Netherlands)

    Sudenga, Staci L.; Torres, B. Nelson; Botha, Matthys H.; Zeier, Michele; Abrahamsen, Martha E.; Glashoff, Richard H.; Engelbrecht, Susan; Schim van der Loeff, Maarten F.; van der Laan, Louvina E.; Kipping, Siegfried; Taylor, Douglas; Giuliano, Anna R.

    2016-01-01

    The objective of this analysis was to assess human papillomavirus (HPV) infection persistence and incidence 7-months post-enrollment by HPV vaccine study arm (vaccine or placebo). HIV-negative, sexually active women aged 16-24 years in the Western Cape, South Africa, were enrolled in the EVRI Trial

  18. Regional and Seasonal Diet of the Western Burrowing Owl in South-Central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Derek B. Hall, Paul D. Greger, Jeffrey R. Rosier

    2009-04-01

    We examined diets of Western Burrowing Owls (Athene cunicularia hypugaea) based on contents of pellets and large prey remains collected year-round at burrows in each of the 3 regions in south central Nevada (Mojave Desert, Great Basin Desert, and Transition region). The most common prey items, based on percent frequency of occurrence, were crickets and grasshoppers, beetles, rodents, sun spiders, and scorpions. The most common vertebrate prey was kangaroo rats (Dipodomys spp.). True bugs (Hemiptera), scorpions, and western harvest mice (Reithrodontomys megalotis) occurred most frequently in pellets from the Great Basin Desert region. Kangaroo rats (Dipodomys spp.) and pocket mice (Perognathinae) were the most important vertebrate prey items in the Transition and Mojave Desert regions, respectively. Frequency of occurrence of any invertebrate prey was high (>80%) in samples year-round but dropped in winter samples, with scorpions and sun spiders exhibiting the steepest declines. Frequency of occurrence of any vertebrate prey peaked in spring samples, was intermediate for winter and summer samples, and was lowest in fall samples. With the possible exception of selecting for western harvest mice in the Great Basin Desert region, Western Burrowing Owls in our study appeared to be opportunistic foragers with a generalist feeding strategy.

  19. The epidemiology of malaria in Rondonia (Western Amazon region, Brazil): study of a riverine population.

    Science.gov (United States)

    Camargo, L M; Noronha, E; Salcedo, J M; Dutra, A P; Krieger, H; Pereira da Silva, L H; Camargo, E P

    1999-01-15

    We report on a longitudinal study concerning the incidence of malaria in a riverine population (Portuchuelo) settled on the riverbanks of Rio Madeira, in the State of Rondonia, Brazil. We found the incidence of malaria to be seasonal, prevailing in the dry months of June and July. The Annual Parasite Index (API) was 292/1000 inhabitants, almost three times that of the state of Rondonia for the same period. In contrast with other studied Rondonian populations, malaria in Portuchuelo was more prevalent in youngsters Amazon region where most of its members were born. Due to the permanent presence of malaria among riverine populations, we are proposing that they may act as perennial reserves of malaria and, therefore, as sources of infection for migrants or eventual settlers at their vicinity. To date, the opposite view has been generally held. Anopheles darlingi, the main vector species in the area, is essentially sylvatic, which contributes to make the control of malaria highly problematic. The only hopes for control rest on permanent surveillance and the prompt treatment of patients, which are also problematic considering the vastness of the Amazon region and the remoteness of some of its riverine settlements.

  20. Pfatp6 molecular profile of Plasmodium falciparum isolates in the western Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Brasil Larissa W

    2012-04-01

    Full Text Available Abstract Background Anti-malarial drug resistance has emerged as one of the biggest challenges confronting the worldwide effort to control malaria. The appearance of chloroquine and multi-drug resistance had devastating effects on therapeutic efficacy of former first-line agents. Artemisinin has proven to be an excellent therapeutic alternative to fill the void in chemotherapeutic options left by resistance mechanisms. At the time of introduction, no resistance to artemisinins had been recorded, and artemisinins demonstrated excellent parasite reduction rates. In an attempt to protect artemisinin efficacy, the World Health Organization (WHO made artemisinin-based combination therapy (ACT its official first-line treatment recommendation for uncomplicated Plasmodium falciparum in 2006. In Brazil, artemether/lumefantrine became the Brazilian Malaria Control Programme's official treatment recommendation in 2007. The sarco/endoplasmic reticulum Ca2+ - ATPase ortholog of P. falciparum (pfatp6 has been suggested as one of the targets of artemisinins. Consequently, pfatp6 gene polymorphisms are being investigated as markers of artemisinin resistance elsewhere. The goal of this work was to describe the molecular profile of pfatp6 in P. falciparum isolates from different localities in the Amazonas State. Methods DNA polymorphisms of the pfatp6 gene in 80 P. falciparum isolates from 11 municipalities of the Amazonas State (Western Brazilian Amazon, before and after the introduction of ACT in the Brazilian anti-malarial guidelines, were analysed by automatic sequencing. Mutations in the pfatp6 gene were searched using Mutation Surveyor v3.25 software. Results The P. falciparum pfatp6 gene presented polymorphisms at codons 37, 630 and 898. The R37K mutation was found in 16% of the samples, A630S in 32% and I898I in 52%. No S769N mutation, however, was detected in the analysed samples. Conclusion Despite the small number of samples, data presented here

  1. Insight on the Peruvian Amazon River: A Planform Metric Characterization of its Morphodynamics

    Science.gov (United States)

    Garcia, A. M. P.; Ortals, C.; Frias, C. E.; Abad, J. D.; Vizcarra, J.

    2014-12-01

    Starting in Peru, the Amazon River flows through Colombia and Brazil; additionally, tributaries from Bolivia, Venezuela, and Ecuador contribute to the massive river and its unique geomorphic features. Accordingly, the Amazon Basin has become an important aspect of South America; it is an area of extraordinary biodiversity, rich resources, and unique cultures. However, due to the sheer magnitude and exceptionality of the Amazon River, research regarding the morphodynamic processes that shape and define the river has been difficult. Consequently, current research has not completely understood the planform dynamics of some portions of this river that present a main channel and secondary channels known as "anabranching structures". The purpose of this research was to gain an understanding of the geomorphology of the upper Amazon, the Peruvian section, by obtaining migration rates and planform metrics, including channel count, length, width, and sinuosity, as well as island count, area, and shape. With this data, the morphodynamics of the Peruvian Amazon, especially the relationship between the main channel and its secondary channels in each "anabranching structure" along the river, could be analyzed according to correlations found between various metrics. This analysis was carried out for 5-year time spans over a period of 25 years. Preliminary results showed that the average migration rate versus channel bend radius envelope peak is lower for the secondary channels than for the main channel. However, the maximum migration rate was not always found in the main channel; for several structures, the most dynamic channels were the secondary ones. This implies a certain periodicity to the river's migratory patterns that could be related to the valley boundaries, the local channel sinuosity or geological formations in the study area.

  2. The Impacts of Amazon Deforestation on Pacific Climate

    Science.gov (United States)

    Lindsey, Leah

    Variability in eastern Pacific sea surface temperatures (SSTs) associated with the El Nino Southern Oscillation are known to affect Amazonian precipitation, but to what extent do changing Amazonian vegetation and rainfall impact eastern Pacific SST? The Amazon rainforest is threatened by many factors including climate change and clearing for agricultural reasons. Forest fires and dieback are more likely due to increased frequency and intensity of droughts in the region. It is possible that extensive Amazon deforestation can enhance El Nino conditions by weakening the Walker circulation. Correlations between annual rainfall rates over the Amazon and other atmospheric parameters (global precipitation, surface air temperature, low cloud amount, 500 hPa vertical velocity, surface winds, and 200 hPa winds) over the eastern Pacific indicate strong relationships among these fields. Maps of these correlations (teleconnection maps) reveal that when the Amazon is rainy SSTs in the central and eastern Pacific are cold, rainfall is suppressed over the central and eastern Pacific, low clouds are prominent over the eastern and southeastern Pacific, and subsidence over the central and eastern Pacific is enhanced. Precipitation in the Amazon is also consistent with a strong Walker circulation (La Nina conditions), manifest as strong correlations with the easterly surface and westerly 200 hPa zonal winds. Coupling between Amazon rainfall and these fields are seen in observations and model data. Correlations were calculated using data from observations, reanalysis data, two models under the Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP), and an AMIP run with the model used in this study, the Community Earth System Model (CESM1.1.1). Although the correlations between Amazon precipitation and the aforementioned fields are strong, they do not show causality. In order to investigate the impact of tropical South American deforestation on the

  3. Vertebrate tracks in Late Pleistocene-Holocene (?) carbonate aeolianites, Pafos, Cyprus

    DEFF Research Database (Denmark)

    Milàn, Jesper; Theodorou, Georgios; Loope, David B.

    2015-01-01

    n 2005, numerous vertebrate tracks were discovered in carbonate aeolianites in and around the town of Paphos, in the south western part of Cyprus. The main track-bearing exposure is located in a protected archaeological site near the Agia Solomoni Church in side the city of Paphos, where cross...

  4. Potential contribution of groundwater to dry-season ET in the Amazon

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Fan, Ying

    2010-05-01

    Climate and land ecosystem models simulate vegetation stress in the Amazon forest in the dry season, but observations show enhanced growth in response to higher radiation under less cloudy skies indicating an adequate water supply. The question is: how does the vegetation obtain sufficient water, and what is missing in the models? Shallow model soil and rooting depth is a factor; the ability of roots to move water up and down (hydraulic redistribution) may be another, but another cause may lie in the buffering effect of the groundwater found in nature but absent in models. We present observational and modeling evidence that the vast groundwater store, consequence of high annual rainfall combined with poor drainage in the Amazon, may provide a stable source for dry-season photosynthesis. The water table beneath the Amazon is sufficiently shallow (38% area 2mm/day to dry-season evapotranspiration, a non-negligible portion of tower-observed flux of 3-4mm/day, the latter including canopy-interception loss and open-water evaporation. This may have important implications to our understanding of Amazonia ecosystem response and feedback to climate change. Current models, lacking groundwater, predict a significant reduction in dry-season photosynthesis under current climate and large-scale dieback under projected future climate converting the Amazon from a net carbon sink to a net source and accelerating warming. If groundwater is considered in the models, the magnitude of the responses and feedbacks may be reduced.

  5. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    Science.gov (United States)

    Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  6. Results of a pediatric vision screening program in western South Dakota.

    Science.gov (United States)

    Terveen, Daniel C; Moser, Jess M; Spencer, Terrence S

    2015-03-01

    South Dakota is one of eight states that do not require any vision screening for children. This study describes the results of the first children's vision screening program in the state. Children ages 6 months to 12 years were screened using the SPOT photoscreener by lay volunteers as part of the Northern Plains Eye Foundation's Western South Dakota Children's Vision Screening Initiative (CVSI). Referral criteria were based on the recommendations of the manufacturer. Data was stratified by age group, sex, and percentage of children referred for hyperopia, myopia, astigmatism, anisocoria, anisometropia, and ocular misalignment. The cost benefit of amblyopia treatment in South Dakota was also calculated. Screenings were completed on 4,784 children from August 2012 to May 2014 with 62 excluded due to age. Mean age of the 4,722 (2,373 females) subjects was 6 years 7 months. Overall, the SPOT device referred 563 (11.9 percent) children. There was no significant difference in referral rate based on sex (p = 0.598). Children aged 73-144 months had the highest referral rate (12.2 percent) and children aged 12-30 months had the lowest referral rate (7.9 percent). The suspected reasons for referral based upon the screenings were as follows: 371 (7.9 percent) astigmatism, 24 (0.5 percent) ocular misalignment, 101 (2.1 percent) anisometropia, 135 (2.9 percent) myopia, 36 (0.8 percent) hyperopia, and 16 (0.3 percent) anisocoria. The SPOT photoscreener yielded an acceptable referral rate of 11.9 percent. This study represents an effective model for pediatric vision screening in South Dakota.

  7. Bayesian inferences suggest that Amazon Yunga Natives diverged from Andeans less than 5000 ybp: implications for South American prehistory.

    Science.gov (United States)

    Scliar, Marilia O; Gouveia, Mateus H; Benazzo, Andrea; Ghirotto, Silvia; Fagundes, Nelson J R; Leal, Thiago P; Magalhães, Wagner C S; Pereira, Latife; Rodrigues, Maira R; Soares-Souza, Giordano B; Cabrera, Lilia; Berg, Douglas E; Gilman, Robert H; Bertorelle, Giorgio; Tarazona-Santos, Eduardo

    2014-09-30

    Archaeology reports millenary cultural contacts between Peruvian Coast-Andes and the Amazon Yunga, a rainforest transitional region between Andes and Lower Amazonia. To clarify the relationships between cultural and biological evolution of these populations, in particular between Amazon Yungas and Andeans, we used DNA-sequence data, a model-based Bayesian approach and several statistical validations to infer a set of demographic parameters. We found that the genetic diversity of the Shimaa (an Amazon Yunga population) is a subset of that of Quechuas from Central-Andes. Using the Isolation-with-Migration population genetics model, we inferred that the Shimaa ancestors were a small subgroup that split less than 5300 years ago (after the development of complex societies) from an ancestral Andean population. After the split, the most plausible scenario compatible with our results is that the ancestors of Shimaas moved toward the Peruvian Amazon Yunga and incorporated the culture and language of some of their neighbors, but not a substantial amount of their genes. We validated our results using Approximate Bayesian Computations, posterior predictive tests and the analysis of pseudo-observed datasets. We presented a case study in which model-based Bayesian approaches, combined with necessary statistical validations, shed light into the prehistoric demographic relationship between Andeans and a population from the Amazon Yunga. Our results offer a testable model for the peopling of this large transitional environmental region between the Andes and the Lower Amazonia. However, studies on larger samples and involving more populations of these regions are necessary to confirm if the predominant Andean biological origin of the Shimaas is the rule, and not the exception.

  8. Amazon water lenses and the influence of the North Brazil Current on the continental shelf

    Science.gov (United States)

    Prestes, Yuri O.; Silva, Alex Costa da; Jeandel, Catherine

    2018-05-01

    The exchange processes on the Amazon continental shelf in northern Brazil are subject to complex interactions that involve forcings derived from distinct sources. The Amazon shelf is a unique and highly dynamic environment in which considerable discharge of freshwater enters the Atlantic Ocean, producing extensive Amazon Water Lenses (AWL). In addition to the presence of the AWL, the shelf is influenced by the semidiurnal oscillations of the tides and the strong North Brazil Current (NBC), a boundary current of the western Atlantic. The present study was based primarily on the influence of the freshwater input and the NBC on the shelf and the Amazon Shelf Break (ASB) off the mouth of the Pará River. For this purpose, hydrographic and hydrodynamic data were obtained by moorings of the AMANDES Project (April-July 2008), located on the Amazon shelf and the ASB. Spectral analysis and the continuous wavelet transform were applied to define tidal (high frequency/short period) and subtidal (low frequency/long period) signals. The results indicated that on both the shelf and the break, the semidiurnal tides are responsible for the residual landward transport and are predominantly across-shelf. Low-frequency motions in the synoptic bands and the AWL are related to spatial changes in the velocity field, mainly on the ASB in the along-shelf direction. The flow of the NBC can be interpreted as an along-shelf low-frequency oscillation capable of altering the spatial configuration of the velocity field, although its influence is perceived only in the absence of the AWL.

  9. A source of methane from upland forests in the Brazilian Amazon.

    Science.gov (United States)

    Janaina Braga do Carmo; Michael Keller; Jadson Dezincourt Dias; Plinio Barbosa de Camargo; Patrick Crill

    2006-01-01

    We sampled air in the canopy layer of undisturbed upland forests during wet and dry seasons at three sites in the Brazilian Amazon region and found that both methane(CH4) and carbon dioxide (CO2) mixing ratios increased at night. Such increases were consistent across sites and seasons. A canopy layer budget model based on measured soil-atmosphere fluxes of CO2 was...

  10. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use

    Science.gov (United States)

    de Almeida Castanho, Andrea D.; Galbraith, David; Zhang, Ke; Coe, Michael T.; Costa, Marcos H.; Moorcroft, Paul

    2016-01-01

    The Amazon tropical evergreen forest is an important component of the global carbon budget. Its forest floristic composition, structure, and function are sensitive to changes in climate, atmospheric composition, and land use. In this study biomass and productivity simulated by three dynamic global vegetation models (Integrated Biosphere Simulator, Ecosystem Demography Biosphere Model, and Joint UK Land Environment Simulator) for the period 1970-2008 are compared with observations from forest plots (Rede Amazónica de Inventarios Forestales). The spatial variability in biomass and productivity simulated by the DGVMs is low in comparison to the field observations in part because of poor representation of the heterogeneity of vegetation traits within the models. We find that over the last four decades the CO2 fertilization effect dominates a long-term increase in simulated biomass in undisturbed Amazonian forests, while land use change in the south and southeastern Amazonia dominates a reduction in Amazon aboveground biomass, of similar magnitude to the CO2 biomass gain. Climate extremes exert a strong effect on the observed biomass on short time scales, but the models are incapable of reproducing the observed impacts of extreme drought on forest biomass. We find that future improvements in the accuracy of DGVM predictions will require improved representation of four key elements: (1) spatially variable plant traits, (2) soil and nutrients mediated processes, (3) extreme event mortality, and (4) sensitivity to climatic variability. Finally, continued long-term observations and ecosystem-scale experiments (e.g. Free-Air CO2 Enrichment experiments) are essential for a better understanding of the changing dynamics of tropical forests.

  11. Programming Amazon EC2

    CERN Document Server

    Vliet, Jurg

    2011-01-01

    If you plan to use Amazon Web Services to run applications in the cloud, the end-to-end approach in this book will save you needless trial and error. You'll find practical guidelines for designing and building applications with Amazon Elastic Compute Cloud (EC2) and a host of supporting AWS tools, with a focus on critical issues such as load balancing, monitoring, and automation. How do you move an existing application to AWS, or design your application so that it scales effectively? How much storage will you require? Programming Amazon EC2 not only helps you get started, it will also keep y

  12. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  13. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.

    Science.gov (United States)

    Cox, Peter M; Pearson, David; Booth, Ben B; Friedlingstein, Pierre; Huntingford, Chris; Jones, Chris D; Luke, Catherine M

    2013-02-21

    The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.

  14. Vegetation Dynamics and Rainfall Sensitivity of the Amazon

    Science.gov (United States)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Nino southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million sq km) and across 80% of the subtropical grasslands (3.3 million sq km). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Nino events, NDVI was reduced about 16.6% across an area of up to 1.6 million sq km compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  15. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River basin

    DEFF Research Database (Denmark)

    Sawakuchi, A.O.; Jain, M.; Mineli, T.D.

    2018-01-01

    The Amazon region hosts the world's largest watershed spanning from high elevation Andean terrains to lowland cratonic shield areas in tropical South America. This study explores variations in optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) signals in suspended...... silt and riverbed sands retrieved from major Amazon rivers. These rivers drain Pre-Cambrian to Cenozoic source rocks in areas with contrasting denudation rates. In contrast to the previous studies, we do not observe an increase in the OSL sensitivity of quartz with transport distance; for example...... shield areas (denudation rate ξ=0.04 mmyr−1), while low sensitivity quartz occurs in less stable Andean terrains (ξ=0.24 mmyr−1). An apparent linear correlation between quartz OSL sensitivity and denudation rate suggests that OSL sensitivity may be used as a proxy for erosion rates in the Amazon basin...

  16. Simulating fire regimes in the Amazon in response to climate change and deforestation.

    Science.gov (United States)

    Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato

    2011-07-01

    Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change

  17. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean.

    Science.gov (United States)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Crave, Alain; Viers, Jérôme; Filizola, Naziano; Martinez, Jean-Michel; Oliveira, Tereza Cristina; Sánchez, Liz Stefanny Hidalgo; Lagane, Christelle; Casimiro, Waldo Sven Lavado; Noriega, Luis; Pombosa, Rodrigo

    2016-06-01

    The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the "Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia" (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983-1992 and 2000-2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 10(6) t year(-1) (263-278) of TDS during the 2003-2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes-sedimentary area-shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have

  18. The Vine Trust's Amazon Hope boats--providing a dental service on the Amazon.

    Science.gov (United States)

    Mason, Shona M C

    2013-01-01

    The Vine Trust's Amazon Hope Project is a medical and dental programme providing healthcare to communities along the Amazon River in Peru. Volunteers from the UK and other countries work alongside Peruvian staff employed by their partner organization, Union Biblica del Peru, to provide a health service from a boat which serves communities on several tributaries who otherwise would have no other access to care. The dental programme involves a basic restorative and extraction service, with scope to develop a preventive programme. Dentists'and DCPs' skills are transferable globally: this article illustrates how one volunteer dental project is working to provide relevant and sustainable dental health care in the Amazon jungle.

  19. Correlation of proterozoic sediments of Western and Central Africa and South America based upon radiochronological and paleontological data

    International Nuclear Information System (INIS)

    Bonhomme, M.G.

    1982-01-01

    Nearly 70 new Rb-Sr isochron ages and many K-Ar conventional ages have been determined between 1975 and 1980 on Proterozoic sedimentary or metasedimentary sequences in western and Central Africa and South America. Some stratigraphic results have been established: (1) five formations have been dated of the Lower Proterozoic; (2) a long sedimentation gap occurs, mainly in western Africa and in some regions of Central Africa and South America between nearly 1600 and 1100 Ma; (3) the upper Riphean assemblages of stromatolites have been dated and compared to those of the Eurasian craton; (4) two main glacial events have been dated, the first one placed at ca. 950 Ma, the second during the Vendian, at ca. 650-620 Ma; (5) it can be stated that, when applied to Precambrian sequences, all stratigraphic methods must be used together. (Auth.)

  20. Large emissions from floodplain trees close the Amazon methane budget

    Science.gov (United States)

    Pangala, Sunitha R.; Enrich-Prast, Alex; Basso, Luana S.; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R. C.; Gatti, Luciana V.; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-01

    Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010-2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources.

  1. Large emissions from floodplain trees close the Amazon methane budget.

    Science.gov (United States)

    Pangala, Sunitha R; Enrich-Prast, Alex; Basso, Luana S; Peixoto, Roberta Bittencourt; Bastviken, David; Hornibrook, Edward R C; Gatti, Luciana V; Marotta, Humberto; Calazans, Luana Silva Braucks; Sakuragui, Cassia Mônica; Bastos, Wanderley Rodrigues; Malm, Olaf; Gloor, Emanuel; Miller, John Bharat; Gauci, Vincent

    2017-12-14

    Wetlands are the largest global source of atmospheric methane (CH 4 ), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH 4 in the tropics, consistently underestimate the atmospheric burden of CH 4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH 4 emissions. Here we report CH 4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH 4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ 13 C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH 4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a 'top-down' regional estimate of CH 4 emissions of 42.7 ± 5.6 teragrams of CH 4 a year for the Amazon basin, based on regular vertical lower-troposphere CH 4 profiles covering the period 2010-2013. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, indicating that large CH 4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH 4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH 4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH 4 source when trees are combined with other emission sources.

  2. Acid ran and below-cloud scavenging in south-western China

    International Nuclear Information System (INIS)

    Tanner, P.A.; Lei, H.C.; Huang, M.Y.; Shen, Z.L.

    1997-01-01

    Major urban areas in south-western China exhibit unique air pollution problems due to increasing use of high sulphur-content fuels in an environment of unfavourable topography and climate. Ambient levels of sulphur dioxide exceed the air quality objectives, and this gas is the major precursor of acid rain. Cloudwater chemistry studies are reported for urban, suburban and countryside locations, during the period 1985-89. Although cloudwater acidity was found to increase towards the cloud base, the acidity was much greater for rainwater samples collected simultaneously, and was more pronounced in urban rather than neighbouring suburban or countryside regions. The main contribution to the acidity arises from below-cloud scavenging of gas and aerosol and model calculations are able to simulate this behaviour

  3. The carbon budget of South Asia

    Directory of Open Access Journals (Sweden)

    P. K. Patra

    2013-01-01

    Full Text Available The source and sinks of carbon dioxide (CO2 and methane (CH4 due to anthropogenic and natural biospheric activities were estimated for the South Asian region (Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka. Flux estimates were based on top-down methods that use inversions of atmospheric data, and bottom-up methods that use field observations, satellite data, and terrestrial ecosystem models. Based on atmospheric CO2 inversions, the net biospheric CO2 flux in South Asia (equivalent to the Net Biome Productivity, NBP was a sink, estimated at −104 ± 150 Tg C yr−1 during 2007–2008. Based on the bottom-up approach, the net biospheric CO2 flux is estimated to be −191 ± 193 Tg C yr−1 during the period of 2000–2009. This last net flux results from the following flux components: (1 the Net Ecosystem Productivity, NEP (net primary production minus heterotrophic respiration of −220 ± 186 Tg C yr−1 (2 the annual net carbon flux from land-use change of −14 ± 50 Tg C yr−1, which resulted from a sink of −16 Tg C yr−1 due to the establishment of tree plantations and wood harvest, and a source of 2 Tg C yr−1 due to the expansion of croplands; (3 the riverine export flux from terrestrial ecosystems to the coastal oceans of +42.9 Tg C yr−1; and (4 the net CO2 emission due to biomass burning of +44.1 ± 13.7 Tg C yr−1. Including the emissions from the combustion of fossil fuels of 444 Tg C yr−1 for the 2000s, we estimate a net CO2 land–atmosphere flux of 297 Tg C yr−1. In addition to CO2, a fraction of the sequestered carbon in terrestrial ecosystems is released to the atmosphere as CH4. Based on bottom-up and top-down estimates, and chemistry-transport modeling, we estimate that 37 ± 3.7 Tg C yr−1

  4. Patterns of geographic expansion of Aedes aegypti in the Peruvian Amazon.

    Directory of Open Access Journals (Sweden)

    Sarah Anne Guagliardo

    2014-08-01

    Full Text Available In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities.We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95 km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level.Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos.In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.

  5. Towards quantifying uncertainty in predictions of Amazon 'dieback'.

    Science.gov (United States)

    Huntingford, Chris; Fisher, Rosie A; Mercado, Lina; Booth, Ben B B; Sitch, Stephen; Harris, Phil P; Cox, Peter M; Jones, Chris D; Betts, Richard A; Malhi, Yadvinder; Harris, Glen R; Collins, Mat; Moorcroft, Paul

    2008-05-27

    Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a 'business-as-usual' emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated. We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the parameters specified in the atmosphere component of HadCM3 and their associated influence on predicted surface climate. We then enhance the land surface description and (ii) implement a multilayer canopy light interception model and compare with the simple 'big-leaf' approach used in the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-structured approximation of an individual-based model (ecosystem demography). We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of the refined light interception model leads to an increase in simulated gross plant carbon uptake for the present day, but, with altered respiration, the net effect is a decrease in net primary productivity. However, this does not significantly affect the carbon loss from vegetation and soil as a consequence of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback. The potential for human-induced climate change to trigger the loss of Amazon rainforest appears robust within the context of the uncertainties explored in this paper. Some further uncertainties should be explored, particularly with respect to the

  6. Trypanosoma cruzi IV causing outbreaks of acute Chagas disease and infections by different haplotypes in the Western Brazilian Amazonia.

    Directory of Open Access Journals (Sweden)

    Wuelton Marcelo Monteiro

    Full Text Available BACKGROUND: Chagas disease is an emergent tropical disease in the Brazilian Amazon Region, with an increasing number of cases in recent decades. In this region, the sylvatic cycle of Trypanosoma cruzi transmission, which constitutes a reservoir of parasites that might be associated with specific molecular, epidemiological and clinical traits, has been little explored. The objective of this work is to genetically characterize stocks of T. cruzi from human cases, triatomines and reservoir mammals in the State of Amazonas, in the Western Brazilian Amazon. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 96 T. cruzi samples from four municipalities in distant locations of the State of Amazonas. Molecular characterization of isolated parasites from cultures in LIT medium or directly from vectors or whole human blood was performed by PCR of the non-transcribed spacer of the mini-exon and of the 24 S alfa ribosomal RNA gene, RFLP and sequencing of the mitochondrial cytochrome c oxidase subunit II (COII gene, and by sequencing of the glucose-phosphate isomerase gene. The T. cruzi parasites from two outbreaks of acute disease were all typed as TcIV. One of the outbreaks was triggered by several haplotypes of the same DTU. TcIV also occurred in isolated cases and in Rhodnius robustus. Incongruence between mitochondrial and nuclear phylogenies is likely to be indicative of historical genetic exchange events resulting in mitochondrial introgression between TcIII and TcIV DTUs from Western Brazilian Amazon. TcI predominated among triatomines and was the unique DTU infecting marsupials. CONCLUSION/SIGNIFICANCE: DTU TcIV, rarely associated with human Chagas disease in other areas of the Amazon basin, is the major strain responsible for the human infections in the Western Brazilian Amazon, occurring in outbreaks as single or mixed infections by different haplotypes.

  7. Modelling sustainable international tourism demand to the Brazilian Amazon

    OpenAIRE

    Divino, Jose Angelo; McAleer, Michael

    2008-01-01

    The Amazon rainforest is one of the world's greatest natural wonders and holds great importance and significance for the world's environmental balance. Around 60% of the Amazon rainforest is located in the Brazilian territory. The two biggest states of the Amazon region are Amazonas (the upper Amazon) and Para (the lower Amazon), which together account for around 73% of the Brazilian Legal Amazon, and are the only states that are serviced by international airports in Brazil's North region. Th...

  8. Recovery of Methane Consumption by Secondary Forests in the Amazon River Basin

    Science.gov (United States)

    Webster, K. D.; Meredith, L. K.; Piccini, W.; Pedrinho, A.; Nüsslein, K.; Van Haren, J. L. M.; Camargo, P. B. D.; Mui, T. S.; Saleska, S. R.

    2017-12-01

    Methane (CH4) is a major greenhouse gas in Earth's atmosphere and its atmospheric global mole fraction has roughly doubled since the start of the industrial revolution. The tropics are thought to be a major CH4 emitter, with the Amazon River Basin estimated to contribute 7 % of the annual flux to the atmosphere. The Amazon has experienced extensive land use change during the past 30 years, but we lack an understanding of the qualitative and quantitative effects of land use change on CH4 flux from the Amazon and the associated reasons. To illuminate the factors controlling CH4 flux across land use gradients in the Amazon we measured the CH4 fluxes and will measure the associated stable isotopic composition from pastures, primary forests, and secondary forests, at Ariquemes (Western Amazon, more deforested), and Santarem (Eastern Amazon, less deforested), Brazil. The sites near Santarem were sampled in June of 2016 and the sites near Ariquemes were sampled in March and April of 2017, both at the end of the wet season. Little difference was observed between land use types in Santarem with each land use type slightly consuming atmospheric CH4. However, pasture fluxes at Ariquemes were higher (+520 μg-C m-2 hr-1) than in primary (0 μg-C m-2 hr-1) and secondary forests (-20 μg-C m-2 hr-1; p = 6*10-4). CH4 flux from individual Santarem sites was not correlated with environmental variables. CH4 flux from Airquemes was correlated with several parameters across all samples including soil temperature (p = 7*10-4), and soil humidity (p = 0.02). Despite the fact that pastures experienced higher soil temperatures than forest soils this appears to be a low predictor of CH4 flux from these environments as it was seen at both Santarem and Ariquemes. The analysis of the stable isotopic composition of CH4 from these chambers will aid in understanding the competing processes of microbial CH4 consumption and production in these soils and why pastures may become CH4 sources and

  9. Changes in the forest ecosystems in areas impacted by aridization in south-western Romania

    OpenAIRE

    Pravalie, Remus; Sîrodoev, Igor; Peptenatu, Daniel

    2014-01-01

    Background In the past few decades, global climate change has accentuated the intensification of aridization in South-Western Romania, with direct and indirect consequences on the quality of forest ecosystems. In addition to qualitative deterioration, the quantitative changes brought about by intensive anthropic deforestation have created the conditions for a decline in the size of forest areas on vast tracts of land. The paper aims to analyze the qualitative and quantitative changes in the f...

  10. TMRT OBSERVATIONS OF CARBON-CHAIN MOLECULES IN SERPENS SOUTH 1a

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan; Shen, Zhi-Qiang; Wang, Junzhi; Chen, Xi; Wu, Ya-Jun; Zhao, Rong-Bing; Wang, Jin-Qing; Zuo, Xiu-Ting; Fan, Qing-Yuan; Hong, Xiao-Yu; Jiang, Dong-Rong; Li, Bin; Liang, Shi-Guang; Ling, Quan-Bao; Liu, Qing-Hui; Qian, Zhi-Han; Zhang, Xiu-Zhong; Zhong, Wei-Ye; Ye, Shu-Hua, E-mail: lijuan@shao.ac.cn [Department of Radio Science and Technology, Shanghai Astronomical Observatory, 80 Nandan RD, Shanghai 200030 (China)

    2016-06-20

    We report Shanghai Tian Ma Radio Telescope (TMRT) detections of several long carbon-chain molecules in the C and Ku bands, including HC{sub 3}N, HC{sub 5}N, HC{sub 7}N, HC{sub 9}N, C{sub 3}S, C{sub 6}H, and C{sub 8}H toward the starless cloud Serpens South 1a. We detected some transitions (HC{sub 9}N J = 13–12, F = 12–11, and F = 14–13; H{sup 13}CCCN J = 2–1, F = 1–0, and F = 1–1; HC{sup 13}CCN J = 2–1, F = 2–2, F = 1–0, and F = 1–1; HCC{sup 13}CN J = 2–1, F = 1–0, and F = 1–1) and resolved some hyperfine components (HC{sub 5}N J = 6–5, F = 5–4; H{sup 13}CCCN J = 2–1, F = 2–1) for the first time in the interstellar medium. The column densities of these carbon-chain molecules in the range 10{sup 12}–10{sup 13} cm{sup −2} are comparable to two carbon-chain molecule rich sources, TMC-1 and Lupus-1A. The abundance ratios are 1.00:(1.11 ± 0.15):(1.47 ± 0.18) for [H{sup 13}CCCN]:[HC{sup 13}CCN]:[HCC{sup 13}CN]. This result implies that the {sup 13}C isotope is also concentrated in the carbon atom adjacent to the nitrogen atom in HC{sub 3}N in Serpens South 1a, which is similar to TMC-1. The [HC{sub 3}N]/[H{sup 13}CCCN] ratio of 78 ± 9, the [HC{sub 3}N]/[HC{sup 13}CCN] ratio of 70 ± 8, and the [HC{sub 3}N]/[HCC{sup 13}CN] ratio of 53 ± 4 are also comparable to those in TMC-1. Serpens South 1a proves to be a suitable testing ground for understanding carbon-chain chemistry.

  11. How many more dams in the Amazon?

    International Nuclear Information System (INIS)

    Tundisi, J.G.; Goldemberg, J.; Matsumura-Tundisi, T.; Saraiva, A.C.F.

    2014-01-01

    The Amazon watershed harbors a megadiversity of terrestrial and aquatic plants and animals. Mechanisms that sustain this biodiversity are the water level fluctuations the fluvial dynamics and the intense gene flux due to permanent integration of climatological, geomorphological and biological components of the system. The construction of hydroelectric reservoirs to support economic development of Brazil and other countries that share the Amazon basin will interfere with the ecological dynamics of this ecosystem changing the hydrological, hydrosocial and fundamental processes. Furthermore the construction of Andean reservoirs can disrupt the connectivity with the lower Amazon ecosystem. Principles of ecohydrologies, ecological engineering and preservation of key river basins, have to be applied in order to optimize energy production and promote conservation practices. Long term planning and integration of countries that share the Amazon basin is a strategic decision to control and develop the hydropower exploitation in the region. - Highlights: • The Amazon basin is an ecosystem of megadiversity. • The demand for energy threatens this ecosystem. • Climate, water, forests and floodplain interacts in the Amazon basin. • Dams in the Amazon basin will impact the hydrological and biological systems. • Ecohydrological principles and ecological engineering technology are necessary

  12. Evaluation of paleovegetation changes in the northwest part of the Amazon region, Brazil: a carbon isotope approach in soils

    International Nuclear Information System (INIS)

    Gomes, B.M.; Pessenda, L.C.R.; Aravena, R.

    1995-01-01

    Full text. Numerous studies have focused on the understanding of the vegetation dynamics in the amazon region and its realtion to climate. The research approaches in these studies have involved the use of biological, geomorphologic and botanical tools, (1,2). Our approach involves the use of 13 and 14 C analyses in soil organic mater t infer past vegeation changes in the Amazon region (3). This is based on the distinct composition that characterize the C 3 and C 4 plants, that formed the different vegetation communities that exist in the Amazon region. 14 C used as a dating tool. This paper present data in soils collected in the Rondonia State, located in the northwestern part of the Amazon region. The soils were collected along a transect that include four distinct vegetation communities, ranging from a Cerrado type vegetation (southern part), dominated by C 4 grasses, to a tropical forest (northern part). The soils types are Latossolo Vermelho Amarelo at the Cerrado, Cerrado-transition and forest-transition sites, and Podzolico Vermelho amarelo at the forest site. 14 C data obtained in total soil organic matter, humin fraction and charcoal indicate that the organic matterin these soils is at least Holocene in age. The forest and the forest-transition sites area characterized by typical δ 13 C profiles (-29 to -24 0/00), indicating the predominance of C 3 plants during the past in this region. The Cerrado-transition sites show a significant change in δ 13 C from -27.5 0/00 at the surface to -19 0/00 at 30 cm. This value changed toward more depleted δ 13 C values at the 90-100 cm depth interval, reaching a value of -30 0/00 at 190-200 cm depth interval. This trend has to be associated to a change from a forest type vegetation (190-200 cm to 130-140 cm), to a vegetation community with a mayor influence of C 4 palnts recorded i the interval between 110-120 to 20-23 cm depth. The δ 13 C values at the Cerrado sites are the more enriched ones observed in this study

  13. European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa.

    Science.gov (United States)

    Stepkowski, Tomasz; Moulin, Lionel; Krzyzańska, Agnieszka; McInnes, Alison; Law, Ian J; Howieson, John

    2005-11-01

    We applied a multilocus phylogenetic approach to elucidate the origin of serradella and lupin Bradyrhizobium strains that persist in soils of Western Australia and South Africa. The selected strains belonged to different randomly amplified polymorphic DNA (RAPD)-PCR clusters that were distinct from RAPD clusters of applied inoculant strains. Phylogenetic analyses were performed with nodulation genes (nodA, nodZ, nolL, noeI), housekeeping genes (dnaK, recA, glnII, atpD), and 16S-23S rRNA intergenic transcribed spacer sequences. Housekeeping gene phylogenies revealed that all serradella and Lupinus cosentinii isolates from Western Australia and three of five South African narrow-leaf lupin strains were intermingled with the strains of Bradyrhizobium canariense, forming a well supported branch on each of the trees. All nodA gene sequences of the lupin and serradella bradyrhizobia formed a single branch, referred to as clade II, together with the sequences of other lupin and serradella strains. Similar patterns were detected in nodZ and nolL trees. In contrast, nodA sequences of the strains isolated from native Australian legumes formed either a new branch called clade IV or belonged to clade I or III, whereas their nonsymbiotic genes grouped outside the B. canariense branch. These data suggest that the lupin and serradella strains, including the strains from uncultivated L. cosentinii plants, are descendants of strains that most likely were brought from Europe accidentally with lupin and serradella seeds. The observed dominance of B. canariense strains may be related to this species' adaptation to acid soils common in Western Australia and South Africa and, presumably, to their intrinsic ability to compete for nodulation of lupins and serradella.

  14. The Political Economy of Carbon Tax in South Africa | Mbadlanyana ...

    African Journals Online (AJOL)

    This is why many countries are trying to change environmentally harmful behaviour by introducing market-based mitigation measures such as carbon tax. This article engages with the discourse on the political economy of climate change, with a particular focus on South Africa, with the aim of assessing the viability of ...

  15. AFRICAN-STYLE MEDIATION AND WESTERN-STYLE DIVORCE AND FAMILY MEDIATION: REFLECTIONS FOR THE SOUTH AFRICAN CONTEXT

    Directory of Open Access Journals (Sweden)

    AE Boniface

    2012-12-01

    Full Text Available Both Western-styled mediation and African-styled mediation are practised in South Africa. Each of these models is applied in specific social contexts. In this article a brief explanation of what is meant by the term divorce and family mediation is provided. Thereafter the principles and processes of both Western-styled divorce and family mediation and African-styled group mediation are explored. Attention is given to the roles of mediators in both of these models as well as the ubuntu-styled values found in African group mediation. In Africa, there is a tradition of family neighbourhood negotiation facilitated by elders and an attitude of togetherness in the spirit of humanhood. Both of these show a commitment to the community concerned and a comprehensive view of life. In Africa conflicts are viewed as non-isolated events and are viewed in their social contexts. Not only are consequences for the disputing parties taken into account but also consequences for others in their families. These methods can be found in present-day methods, which are either used independently of imported Western structures or used alternatively to such structures. In this article the concept of mediation circles, as currently found in Western-styled mediation are also covered. Additionally, the provisions of the Children’s Act 38 of 2005 referring to mediation as well as the provisions of the Child Justice Act 75 of 2008 and family group conferencing in the realm of restorative justice in South Africa are critiqued. It is suggested that divorce and family mediation can learn from the principles of restorative justice applied during family group conferencing as well as from African-styled group mediation.

  16. Hydrocarbon prospects of the western continental slope of India as indicatEd. by surficial enrichment of organic carbon

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Mascarenhas, A.; PrakashBabu, C.

    The sediments from the continental mid-slope (150-1500 m depth) of the western margin are highly enriched in organic carbon (upto 16%) occurring as a long and wide band off Bombay to southern tip of India. Organic carbon is essentially of marine...

  17. Grazing by Zooplankton on Diazotrophs in the Amazon River Plume and Western Tropical North Atlantic

    Science.gov (United States)

    Conroy, B.; Steinberg, D. K.; Song, B.; Foster, R.

    2016-02-01

    Organisms capable of fixing di-nitrogen (N2), known as diazotrophs, are important primary producers and a potentially significant source for new nitrogen entering the planktonic food web. However, limited evidence exists for zooplankton grazing on diazotrophs compared to other primary producers. In the western tropical North Atlantic Ocean (WTNA), the Amazon River plume creates a niche for symbiotic diatom-diazotroph associations (DDAs) which can form large blooms. In adjacent non-plume-influenced waters, the colonial cyanobacterium Trichodesmium is abundant. In order to reveal zooplankton-diazotroph grazing interactions and determine the fate of newly fixed nitrogen, gut contents of zooplankton captured in these two regions were compared based on quantitative PCR (qPCR) assay of nitrogenase genes (nifH), and their microbiomes compared using next generation sequencing (NGS) analysis of 16S rRNA genes. We sampled individual copepods from discrete depth intervals (0-25m and 25-50m) and in two size classes (0.5-1mm and 1-2mm) for analysis. A modified DNA extraction protocol was developed and 54 extracts were used as templates in nifH qPCR assays for the larger size fraction diazotrophs (>10µm): Trichodesmium, and Hemiaulus or Rhizosolenia (diatoms)-Richelia (diazotroph) associations. Copepod gut content nifH copies ranged from 1.6 to 13.6 copies individual-1 for the assay targeting the Hemiaulus-Richelia DDA and from 1.1 to 3.0 copies individual-1 for Trichodesmium. 16S NGS conducted on 35 extracts with an Ion Torrent PGM and mothur revealed that cyanobacteria sequences accounted for up to 20% of sequences per extract. Our results show that both DDAs and Trichodesmium are prey for zooplankton, and that new nitrogen moves through the food web via these grazing interactions. These interactions should be considered in future explorations of the global ocean nitrogen cycle.

  18. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome

    Science.gov (United States)

    Noojipady, Praveen; Morton, C. Douglas; Macedo, N. Marcia; Victoria, C. Daniel; Huang, Chengquan; Gibbs, K. Holly; Edson Bolfe, L.

    2017-02-01

    Land use, land use change, and forestry accounted for two-thirds of Brazil’s greenhouse gas emissions profile in 2005. Amazon deforestation has declined by more than 80% over the past decade, yet Brazil’s forests extend beyond the Amazon biome. Rapid expansion of cropland in the neighboring Cerrado biome has the potential to undermine climate mitigation efforts if emissions from dry forest and woodland conversion negate some of the benefits of avoided Amazon deforestation. Here, we used satellite data on cropland expansion, forest cover, and vegetation carbon stocks to estimate annual gross forest carbon emissions from cropland expansion in the Cerrado biome. Nearly half of the Cerrado met Brazil’s definition of forest cover in 2000 (≥0.5 ha with ≥10% canopy cover). In areas of established crop production, conversion of both forest and non-forest Cerrado formations for cropland declined during 2003-2013. However, forest carbon emissions from cropland expansion increased over the past decade in Matopiba, a new frontier of agricultural production that includes portions of Maranhão, Tocantins, Piauí, and Bahia states. Gross carbon emissions from cropland expansion in the Cerrado averaged 16.28 Tg C yr-1 between 2003 and 2013, with forest-to-cropland conversion accounting for 29% of emissions. The fraction of forest carbon emissions from Matopiba was much higher; between 2010-2013, large-scale cropland conversion in Matopiba contributed 45% of total Cerrado forest carbon emissions. Carbon emissions from Cerrado-to-cropland transitions offset 5%-7% of the avoided emissions from reduced Amazon deforestation rates during 2011-2013. Comprehensive national estimates of forest carbon fluxes, including all biomes, are critical to detect cross-biome leakage within countries and achieve climate mitigation targets to reduce emissions from land use, land use change, and forestry.

  19. Impact of land use change on the land atmosphere carbon flux of South and South East Asia: A Synthesis of Dynamic Vegetation Model Results

    Science.gov (United States)

    Cervarich, M.; Shu, S.; Jain, A. K.; Poulter, B.; Stocker, B.; Arneth, A.; Viovy, N.; Kato, E.; Wiltshire, A.; Koven, C.; Sitch, S.; Zeng, N.; Friedlingstein, P.

    2015-12-01

    Understanding our present day carbon cycle and possible solutions to recent increases in atmospheric carbon dioxide is dependent upon quantifying the terrestrial carbon budget. Currently, global land cover and land use change is estimated to emit 0.9 PgC yr-1 compared to emissions due to fossil fuel combustion and cement production of 8.4 PgC yr-1. South and Southeast Asia (India, Nepal, Bhutan, Bangladesh, Burma, Thailand, Laos, Vietnam, Cambodia, Malaysia, Philippines, Indonesia, Pakistan, Myanmar, and Singapore) is a region of rapid land cover and land use change due to the continuous development of agriculture, deforestation, reforestation, afforestation, and the increased demand of land for people to live. In this study, we synthesize outputs of nine models participated in Global Carbon Budget Project to identify the carbon budget of South and southeast Asia, diagnose the contribution of land cover and land use change to carbon emissions and assess areas of uncertainty in the suite of models. Uncertainty is determined using the standard deviation and the coefficient of variation of net ecosystem exchange and its component parts. Results show the region's terrestrial biosphere was a source of carbon emissions from the 1980 to the early 1990s. During the same time period, land cover and land use change increasingly contributed to carbon emission. In the most recent two decades, the region became a carbon sink since emission due to land cover land use changes. Spatially, the greatest total emissions occurred in the tropical forest of Southeast Asia. Additionally, this is the subregion with the greatest uncertainty and greatest biomass. Model uncertainty is shown to be proportional to total biomass. The atmospheric impacts of ENSO are shown to suppress the net biosphere productivity in South and Southeast Asia leading to years of increased carbon emissions.

  20. Deforestation in the Brazilian Amazon

    NARCIS (Netherlands)

    Boekhout van Solinge, T.|info:eu-repo/dai/nl/156696207

    2015-01-01

    This essay takes a (green) criminological and multidisciplinary perspective on deforestation in the Brazilian Amazon, by focusing on the crimes and damages that are associated with Amazonian deforestation. The analysis and results are partly based on longer ethnographic stays in North Brazil (Amazon

  1. The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa

    DEFF Research Database (Denmark)

    Oelofse, Myles; Birch-Thomsen, Torben; Magid, Jakob

    2016-01-01

    adverse environmental impacts in South Africa. Little is known about the effects of black wattle encroachment on soil carbon, therefore the aim of this study was to investigate the impact of black wattle encroachment of natural grassland on soil carbon stocks and dynamics. Focussing on two sites...... in the Eastern Cape, South Africa, the study analysed carbon stocks in soil and litter on a chronosequence of black wattle stands of varying ages (up to >50 years) and compared these with adjacent native grassland. The study found that woody encroachment of grassland at one site had an insignificant effect...... on soil and litter carbon stocks. The second site showed a clear decline in combined soil and litter carbon stocks following wattle encroachment. The lowest stock was in the oldest wattle stand, meaning that carbon stocks are still declining after 50 years of encroachment. The results from the two sites...

  2. Structural signatures of water-soluble organic aerosols in contrasting environments in South America and Western Europe.

    Science.gov (United States)

    Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Pereira, Guilherme; Vasconcellos, Pérola; Gioda, Adriana; Carreira, Renato; Silva, Artur M S; Duarte, Armando C; Smichowski, Patricia; Rojas, Nestor; Sanchez-Ccoyllo, Odon

    2017-08-01

    This study describes and compares the key structural units present in water-soluble organic carbon (WSOC) fraction of atmospheric aerosols collected in different South American (Colombia - Medellín and Bogotá, Peru - Lima, Argentina - Buenos Aires, and Brazil - Rio de Janeiro, São Paulo, and Porto Velho, during moderate (MBB) and intense (IBB) biomass burning) and Western European (Portugal - Aveiro and Lisbon) locations. Proton nuclear magnetic resonance ( 1 H NMR) spectroscopy was employed to assess the relative distribution of non-exchangeable proton functional groups in aerosol WSOC of diverse origin, for the first time to the authors' knowledge in South America. The relative contribution of the proton functional groups was in the order H-C > H-C-C= > H-C-O > Ar-H, except in Porto Velho during MBB, Medellín, Bogotá, and Buenos Aires, for which the relative contribution of H-C-O was higher than that of H-C-C=. The 1 H NMR source attribution confirmed differences in aging processes or regional sources between the two geographic regions, allowing the differentiation between urban combustion-related aerosol and biological particles. The aerosol WSOC in Aveiro, Lisbon, and Rio de Janeiro during summer are more oxidized than those from the remaining locations, indicating the predominance of secondary organic aerosols. Fresh emissions, namely of smoke particles, becomes important during winter in Aveiro and São Paulo, and in Porto Velho during IBB. The biosphere is an important source altering the chemical composition of aerosol WSOC in South America locations. The source attribution in Medellín, Bogotá, Buenos Aires, and Lima confirmed the mixed contributions of biological material, secondary formation, as well as urban and biomass burning emissions. Overall, the information and knowledge acquired in this study provide important diagnostic tools for future studies aiming at understanding the water-soluble organic aerosol problem, their sources and

  3. Environmental change and the carbon balance of Amazonian forests

    International Nuclear Information System (INIS)

    Aragao, Luiz E.O.C.; Poulter, Benjamin

    2014-01-01

    Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21. Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990's mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990's and early 2000's to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) PgCyear-1 in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land-use change for 2008, can be negated or reversed during drought years [NBP=-0.06 (-0.31 to +0.01) PgCyear -1 ]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land-use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency. (authors)

  4. Environmental change and the carbon balance of Amazonian forests.

    Science.gov (United States)

    Aragão, Luiz E O C; Poulter, Benjamin; Barlow, Jos B; Anderson, Liana O; Malhi, Yadvinder; Saatchi, Sassan; Phillips, Oliver L; Gloor, Emanuel

    2014-11-01

    Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990s mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990s and early 2000s to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) Pg C year(-1) in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land-use change for 2008, can be negated or reversed during drought years [NBP = -0.06 (-0.31 to +0.01) Pg C year(-1) ]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land-use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical

  5. Análise biogeográfica da avifauna da região oeste do baixo Rio Negro, amazônia brasileira Biogeographical analysis of the avifauna in the lower western Rio Negro region in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Sérgio H. Borges

    2007-12-01

    Full Text Available Neste estudo é realizada uma análise biogeográfica detalhada da avifauna da Amazônia Central a oeste do Rio Negro, região onde está localizado o Parque Nacional do Jaú (PNJ. As distribuições geográficas de 383 táxons (espécies e subespécies de aves registradas no PNJ foram analisadas através de métodos biogeográficos qualitativos e quantitativos (análise de agrupamento e análise de parcimônia de endemismo. A avifauna do PNJ é fortemente influenciada pelas regiões noroeste e oeste da bacia amazônica. Foram identificadas três unidades biogeográficas e o PNJ se agrupa com sítios localizados no alto Rio Orinoco e na Guiana. De modo similar, o PNJ se agrupa com o sítio do alto Rio Orinoco tendo a Guiana como grupo-irmão no cladograma de área com maior suporte. Diferentes sub-grupos de espécies revelaram cladogramas de áreas com variadas topologias, sugerindo complexos cenários de diversificação da avifauna amazônica. Estes cenários biogeográficos podem ter sido influenciados por eventos geológicos ocorridos durante o Mioceno e Pleistoceno. Neste estudo foi identificada uma área de endemismo não descrita para a Amazônia - a área de endemismo Rio Negro. A avifauna da região do PNJ, além de ser representativa dos setores noroeste e oeste da Amazônia, possui táxons de distribuição restrita à região central da Amazônia, reforçando ainda mais sua importância na proteção da biodiversidade amazônica.This study makes a detailed biogeographical analysis of Central Amazon avifauna west of the Rio Negro, where Parque Nacional do Jaú (PNJ is located. The geographical distribution of 383 bird taxa (species or subspecies recorded in PNJ was analyzed through qualitative and quantitative biogeographic methods (cluster analysis and parsimony analysis of endemicity. Results showed that the avifauna of PNJ is strongly influenced by the northwestern and western regions of the Amazon Basin. Three biogeographic units

  6. Microbial dolomite crusts from the carbonate platform off western India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Kessarkar, P.M.; Krumbein, W.E.; Krajewski, K.P.; Schneider, R.J.

    Association of Sedimentologists, Sedimentology, 50, 819-830 Microbial dolomite crusts off western India 821 dolomite crusts [2 x 2·5 em to 3 x 0'5 em) and pebbles occur within these sediments. METHODS Thin sections of the crusts were studied petro graphically....E. (19S7) Holocene dolomitization Df suprcarbon...

  7. Socio-ecological costs of Amazon nut and timber production at community household forests in the Bolivian Amazon.

    Science.gov (United States)

    Soriano, Marlene; Mohren, Frits; Ascarrunz, Nataly; Dressler, Wolfram; Peña-Claros, Marielos

    2017-01-01

    The Bolivian Amazon holds a complex configuration of people and forested landscapes in which communities hold secure tenure rights over a rich ecosystem offering a range of livelihood income opportunities. A large share of this income is derived from Amazon nut (Bertholletia excelsa). Many communities also have long-standing experience with community timber management plans. However, livelihood needs and desires for better living conditions may continue to place these resources under considerable stress as income needs and opportunities intensify and diversify. We aim to identify the socioeconomic and biophysical factors determining the income from forests, husbandry, off-farm and two keystone forest products (i.e., Amazon nut and timber) in the Bolivian Amazon region. We used structural equation modelling tools to account for the complex inter-relationships between socioeconomic and biophysical factors in predicting each source of income. The potential exists to increase incomes from existing livelihood activities in ways that reduce dependency upon forest resources. For example, changes in off-farm income sources can act to increase or decrease forest incomes. Market accessibility, social, financial, and natural and physical assets determined the amount of income community households could derive from Amazon nut and timber. Factors related to community households' local ecological knowledge, such as the number of non-timber forest products harvested and the number of management practices applied to enhance Amazon nut production, defined the amount of income these households could derive from Amazon nut and timber, respectively. The (inter) relationships found among socioeconomic and biophysical factors over income shed light on ways to improve forest-dependent livelihoods in the Bolivian Amazon. We believe that our analysis could be applicable to other contexts throughout the tropics as well.

  8. Scientific study of 13C/12C carbon and 18O/16O oxygen stable isotopes biological fractionation in grapes in the Black Sea, Don Basin and the Western Caspian regions

    Directory of Open Access Journals (Sweden)

    Kolesnov Alexander

    2017-01-01

    Full Text Available The report presents the results of a study of carbon and oxygen stable isotopes in carbohydrates and intracellular water of red and white grapes of 2016 wine-growing season in the Crimean peninsula areas, South-west coast of the Greater Caucasus, the Don basin and the Western Caspian region. The mass concentration of reducing sugars in the studied grape samples has been from 17.5 to 25.0 g/100 ml, titrated acids concentration (based on tartaric acid – from 6.0 to 9.1 g/l, the buffer capacity 34.1–63.2 mg-Eq/l. Red and white wine made from respective grapes contained from 0.5 to 3.6 g/l of residual sugar; from 11.1 to 14.5% ethanol by volume; buffer capacity was 35.2–52.6 mg-Eq/l. It has been found that the δ13CVPDB values for carbohydrates of red and white grape varieties as a result of biological fractionation of carbon isotopes in the agro-climatic conditions of plant growth for the studied geographical areas are ranging from − 26.74 to − 20.74‰ (the Crimean peninsula; from − 27.31 to − 21.58‰ (South West Coast of the Greater Caucasus, from − 27.33 to − 24.73‰ (Don Basin and from − 26.64 to − 23.17‰ (West Caspian. The δ13CVPDB values for ethanol of the red and white dry wines range from − 28.52 to − 24.26‰ (the Crimean peninsula; from − 29.23 to − 24.52‰ (South West Coast of the Greater Caucasus; from − 28.97 to − 26.22‰ (Don Basin; from − 29.14 to − 25.22‰ (Western Caspian. Compared with the surface water and groundwater (averages from δ18OVSMOW− 13.90 to − 6.38‰ and with precipitation (averages from δ18OVSMOW − 10.30 to − 9.04‰ the δ18OVSMOW values in intracellular water of grapes are the following: for the Crimean peninsula grapes, from 0.40 to 4.97‰; the South West Coast of the Greater Caucasus, from -2.11 to 6.29‰; the Don Basin, from − 2.21 to 6.26‰; the Western Caspian, from − 0.24 to 1.44‰. It has been noted that in conditions of

  9. Norm Levels in Mine Pit Lakes in South-Western Spain

    International Nuclear Information System (INIS)

    Manjón, G.; Galván, J.; Mantero, J.; Díaz, I.; García-Tenorio, R.

    2015-01-01

    Former mining activities in a pyritic area in south-western Spain have generated mine pits in which underground water and rainwater has accumulated. The accumulated waters have produced oxidation of the pyrite and, consequently, the pit water has become acidic, causing the dissolution of metals and radionuclides of natural origin. The paper discusses the activity concentration levels of uranium isotopes and other radionuclides in water samples and sediments collected from these mine pit lakes. Tributaries of the nearby Odiel River, when crossing the mining area, show low pH values and high concentrations of uranium isotopes due to acid mine drainage. Through the analysis of several isotope activity ratios, the presence of radionuclides in the pit lakes and the influence of these radionuclides on the surrounding area and the Odiel River are evaluated. (author)

  10. South African carbon observations: CO2 measurements for land, atmosphere and ocean

    CSIR Research Space (South Africa)

    Feig, Gregor T

    2017-11-01

    Full Text Available , Mudau AE, Monteiro PMS. South African carbon observations: CO2 measurements for land, atmosphere and ocean. S Afr J Sci. 2017;113(11/12), Art. #a0237, 4 pages. http://dx.doi. org/10.17159/sajs.2017/a0237 Carbon dioxide plays a central role in earth... References 1. Houghton RA. Balancing the global carbon budget. Annu Rev Earth Planet Sci. 2007;35:313–347. https://doi.org/10.1146/annurev. earth.35.031306.140057 2. Denman KL. Climate change, ocean processes and ocean iron fertilization. Mar Ecol Prog Ser...

  11. Monitoring selective logging in western Amazonia with repeat lidar flights

    Science.gov (United States)

    H.E. Andersen; S.E. Reutebuch; R.J. McGaughey; M.V.N. d' Oliveira; M. Keller

    2014-01-01

    The objective of this study was to test the use of repeat flight, airborne laser scanning data (lidar) for estimating changes associated with low-impact selective logging (approx. 10-15 m3 ha−1 = 5-7% of total standing volume harvested) in natural tropical forests in the Western Brazilian Amazon. Specifically, we investigated change in area...

  12. AMAZON HADOOP FRAMEWORK USED IN BUSINESS FOR BIG DATA ANALYSIS

    OpenAIRE

    Ankush Verma*, Dr Neelesh Jain

    2017-01-01

    The Amazon MapReduce programming model, introduced by Amazon, a simple and efficient way of performing distributed computation over large data sets on the web especially for e-commerce. Amazon EMR work on Master/Slave Architecture using Amazon EMR for map and reduce big data. Amazon EC2 use cloud computing is a central part of designed web service that provides resizable compute capacity in the cloud. Here we also discuss about the Benefit and limitation of using Amazon EMR. Amazon S3 use eas...

  13. Satellite-based Analysis of CO Variability over the Amazon Basin

    Science.gov (United States)

    Deeter, M. N.; Emmons, L. K.; Martinez-Alonso, S.; Tilmes, S.; Wiedinmyer, C.

    2017-12-01

    Pyrogenic emissions from the Amazon Basin exert significant influence on both climate and air quality but are highly variable from year to year. The ability of models to simulate the impact of biomass burning emissions on downstream atmospheric concentrations depends on (1) the quality of surface flux estimates (i.e., emissions inventories), (2) model dynamics (e.g., horizontal winds, large-scale convection and mixing) and (3) the representation of atmospheric chemical processes. With an atmospheric lifetime of a few months, carbon monoxide (CO) is a commonly used diagnostic for biomass burning. CO products are available from several satellite instruments and allow analyses of CO variability over extended regions such as the Amazon Basin with useful spatial and temporal sampling characteristics. The MOPITT ('Measurements of Pollution in the Troposphere') instrument was launched on the NASA Terra platform near the end of 1999 and is still operational. MOPITT is uniquely capable of measuring tropospheric CO concentrations using both thermal-infrared and near-infrared observations, resulting in the ability to independently retrieve lower- and upper-troposphere CO concentrations. We exploit the 18-year MOPITT record and related datasets to analyze the variability of CO over the Amazon Basin and evaluate simulations performed with the CAM-chem chemical transport model. We demonstrate that observed differences between MOPITT observations and model simulations provide important clues regarding emissions inventories, convective mixing and long-range transport.

  14. Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    Science.gov (United States)

    Das, K.; Kodali, A.; Szubert, M.; Ganguly, S.; Bongard, J.

    2016-12-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  15. The Pulse of the Amazon

    Science.gov (United States)

    Spencer, R. G.; Moura, J. M. S.; Mitsuya, M.; Peucker-Ehrenbrink, B.; Holmes, R. M.; Galy, V.; Drake, T.

    2017-12-01

    Rivers integrate over a fixed and definable area (the watershed), with their discharge and chemistry at any given point a function of upstream processes. As a consequence, examination of riverine discharge and chemistry can provide powerful indictors of change within a watershed. To assess the validity of this approach long-term datasets are required from fluvial environments around the globe. The Amazon River delivers one-fifth of the total freshwater discharged to the ocean and so represents a fundamentally important site for examination of long-term major ion, trace element, nutrient, and organic matter (OM) export. Here we describe data from a multi-year, monthly sampling campaign of the Amazon River at Obidos (Para, Brazil). Clear seasonality in all analyte fluxes is apparent and is linked to hydrology, however dissolved OM composition appears dominated by allochthonous sources throughout the year as evidenced by optical parameters indicative of high molecular weight and high relative aromatic content. Annual loads of some analytes for 2011-2013 inclusive varied by up to 50%, highlighting significant variability in flux from year to year that was linked to inter-annual hydrologic shifts (i.e. higher fluxes in wetter years). Finally, encompassing both intra- and inter-annual variability, a robust correlation was observed between chromophoric dissolved OM (CDOM) absorbance and dissolved organic carbon (DOC) concentration highlighting the potential to improve DOC flux estimates at this globally significant site via CDOM measurements from in situ technologies or remote sensing techniques.

  16. Coarse woody debris in undisturbed and logged forests in the eastern Brazilian Amazon.

    Science.gov (United States)

    Michael Keller; Michael Palace; Gregory P. Asner; Rodrigo Jr. Pereira; Jose Natalino M. Silva

    2004-01-01

    Coarse woody debris (CWD) is an important component of the carbon cycle in tropical forests. We measured the volume and density of fallen CWD at two sites, Cauaxi and Tapajós in the Eastern Amazon. At both sites we studied undisturbed forests (UFs) and logged forests 1 year after harvest. Conventional logging (CL) and reduced impact logging (RIL) were...

  17. CARBON FIXING CAPACITY OF AMAZONIAN SOILS IN RELATION TO ITS DEGRADATION CONDITIONS

    OpenAIRE

    Clara Patricia Peña Venegas; Edmundo Rafael Mendoza Olmos; Carlos Hernando Rodríguez León; Gladys Inés Cardona Vanegas; Bernardo Eusebio Betancurt Parra; Maolenmarx Tatiana Garzón Gómez

    2015-01-01

    Amazonian deforestation and transformation alert about their effects worldwide. One concern is the increase of the Carbon (C) levels emitted. Previous works have estimated the fixed C in Amazon forests without including the C stored in soils. Within soil, the organic carbon molecules are highly sensitive to degradation, affecting the natural capacity of soils to fix and store C. The present study evaluates the impact of degradation in the natural capacity of Amazon soils to fix C. Thirty five...

  18. Western Tropical Atlantic Hydrologic change during the last 130,000 years

    Science.gov (United States)

    McGrath, S. M.; Lavoie, N.; Oppo, D.

    2016-12-01

    Abrupt climate changes in the North Atlantic during the last 130,000 years are associated with hydrologic changes in the western tropical Atlantic Ocean. Previous studies on marine sediment cores from between 4°S and the equator have documented pulses of terrigenous sediment recording increased precipitation and weathering on the Brazilian Nordeste associated with Heinrich events. We worked on cores KNR197-3-11CDH (7°40'N, 53°49'W, water depth 550 m) and KNR 197-3-46CDH (7°50.1621'N, 53°39.8051'W, 947m water depth) located farther north along the South American continental slope, where sediment derives from the Amazon river basin and is transported by the North Brazilian Current. Preliminary stratigraphy based on magnetic susceptibility shows a possible correlation with the Greenland ice core δ18O stratigraphy. We use sediment elemental composition, determined by x-ray fluorescence (XRF) to evaluate variations in terrigenous sediment runoff and δ18O of the planktonic foraminifers Globierinoides ruber to evaluate variations in western tropical North Atlantic surface hydrography across North Atlantic abrupt climate events. Similarities and differences among our records and the records from the more southerly cores will help understand the mechanisms of hydrologic changes in the regions on abrupt climate time scales.

  19. FIRST RECORD OF THE AMAZON LILY Eucharis sanderi (AMARYLLIDACEAE) FOR ISLA GORGONA, COLOMBIA

    OpenAIRE

    Yusti-Muñoz, Ana Paola; Velandia-Perilla, Jorge H.

    2013-01-01

    The amazon lily Eucharis sanderi is a rare species endemic to western Colombia, with few locality records known. We documented the occurrence of the species for the first time on Isla Gorgona, near the Pacific coast of Colombia, based on a specimen collected in May, 2011. Isla Gorgona is an important protected area for the conservation of threatened species such as E. sanderi. We recommend that research be conducted to determine the conservation status of the population of this species on the...

  20. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change.

    Science.gov (United States)

    Fleischer, Elisa; Khashimov, Ilhom; Hölzel, Norbert; Klemm, Otto

    2016-03-01

    The growing demand for agricultural products has been leading to an expansion and intensification of agriculture around the world. More and more unused land is currently reclaimed in the regions of the former Soviet Union. Driven by climate change, the Western Siberian grain belt might, in a long-term, even expand into the drained peatland areas to the North. It is crucial to study the consequences of this land-use change with respect to the carbon cycling as this is still a major knowledge gap. We present for the first time data on the atmosphere-ecosystem exchange of carbon dioxide and methane of an arable field and a neighboring unused grassland on peat soil in Western Siberia. Eddy covariance measurements were performed over one vegetation period. No directed methane fluxes were found due to an effective drainage of the study sites. The carbon dioxide fluxes appeared to be of high relevance for the global carbon and greenhouse gas cycles. They showed very site-specific patterns resulting from the development of vegetation: the persistent plants of the grassland were able to start photosynthesizing soon after snow melt, while the absence of vegetation on the managed field lead to a phase of emissions until the oat plants started to grow in June. The uptake peak of the oat field is much later than that of the grassland, but larger due to a rapid plant growth. Budgeting the whole measurement period, the grassland served as a carbon sink, whereas the oat field was identified to be a carbon source. The conversion from non-used grasslands on peat soil to cultivated fields in Western Siberia is therefore considered to have a positive feedback on climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean)

    Science.gov (United States)

    Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup

    2015-04-01

    The Mesozoïc Egyptian margin is the south margin of a remnant of the Neo-Tethys Ocean, at the African northern plate boundary. East Mediterranean basin developed during the late Triassic-Early Jurassic rifting with a NW-SE opening direction (Frizon de Lamotte et al., 2011). During Mesozoïc, Egypt margin was a transform margin with a NW-SE orientation of transform faults. In the Eastern Mediterranean basin, Mesozoïc margins are characterized by mixed carbonate-siliciclastics platforms where subsidence and eustacy are the main parameters controlling the facies distribution and geometries of the platform-to-basin transition. Geometries and facies on the platform-slope-basin system, today well constrained on the Levant area, where still poorly known on the Egyptian margin. Geometries and stratigraphic architecture of the Egyptian margin are revealed, thanks to a regional seismic and well data-base provided by an industrial-academic group (GRI, Total). The objective is to understand the sismostratigraphic architecture of the platform-slope-basin system in a key area from Western Desert to Nile delta and Levant margin. Mapping of the top Jurassic and top Cretaceous show seismic geomorphology of the margin, with the cartography of the hinge line from Western Desert to Sinaï. During the Jurassic, carbonate platform show a prograding profile and a distally thickening of the external platform, non-abrupt slope profiles, and palaeovalleys incisions. Since the Cretaceous, the aggrading and retrograding mixed carbonate-siliciclastic platform show an alternation of steep NW-SE oblique segments and distally steepened segments. These structures of the platform edge are strongly controlled by the inherited tethyan transform directions. Along the hinge line, embayments are interpreted as megaslides. The basin infilling is characterised by an alternation of chaotic seismic facies and high amplitude reflectors onlaping the paleoslopes. MTC deposits can mobilize thick sedimentary

  2. High HIV, HPV, and STI Prevalence Among Young Western Cape, South African Women: EVRI HIV Prevention Preparedness Trial

    NARCIS (Netherlands)

    Giuliano, Anna R.; Botha, Matthys H.; Zeier, Michele; Abrahamsen, Martha E.; Glashoff, Richard H.; van der Laan, Louvina E.; Papenfuss, Mary; Engelbrecht, Susan; Schim van der Loeff, Maarten F.; Sudenga, Staci L.; Torres, Benji N.; Kipping, Siegfried; Taylor, Douglas

    2015-01-01

    Background:This study sought to assess the feasibility of conducting a phase III HIV prevention trial using a multivalent human papillomavirus (HPV) vaccine (Gardasil; Merck, Whitehouse Station, NJ).Methods:A total of 479 sexually active women aged 16-24 years in the Western Cape, South Africa, were

  3. Traditional and western medicine: cultural beliefs and practices of South African Indian Muslims with regard to stroke.

    Science.gov (United States)

    Bham, Zaheerah; Ross, Eleanor

    2005-01-01

    To investigate the beliefs of caregivers and traditional healers within the South African Indian Muslim community regarding the etiology and treatment of stroke and the persons likely to be consulted in this regard. A descriptive case study design was employed which incorporated two groups and was located within a qualitative paradigm. Data were collected within the homes of caregivers and the consulting rooms of traditional healers. Ten caregivers of persons who had sustained strokes and 10 traditional healers were interviewed. Individual interviews were held with participants. Responses to semi-structured interview schedules were analyzed using thematic content analysis and descriptive statistics. For both groups, religion and faith in God played a pertinent role in beliefs regarding etiology of illnesses such as stroke. Caregivers used a combination of traditional and Western medicine approaches. For traditional healers, treatment was based on the premise of restoring the balance between hot and cold in the body, which had been placed in disequilibrium by the stroke. Participants expressed disillusionment with referrals to Western healthcare professionals whose treatment was often regarded as culturally inappropriate. They also emphasized the integral role played by family members in the treatment of illness and disease. Results have implications for: culturally sensitive management of stroke patients in the South African Indian Muslim community; collaboration between Western and traditional healers; involvement of families in the remediation process; and further research.

  4. Palaeontological evidence for the last temporal occurrence of the ancient western Amazonian river outflow into the Caribbean.

    Directory of Open Access Journals (Sweden)

    Orangel Aguilera

    Full Text Available Fossil catfishes from fluvio-lacustrine facies of late Miocene Urumaco, early Pliocene Castilletes and late Pliocene San Gregorio formations provide evidence of a hydrographic connection in what is today desert regions of northern Colombia and Venezuela. New discoveries and reevaluation of existing materials leads to the recognition of two new records of the pimelodid Brachyplatystoma cf. vaillantii, and of three distinct doradid taxa: Doraops sp., Rhinodoras sp., and an unidentified third form. The presence of fossil goliath long-whiskered catfishes and thorny catfishes are indicative of the persistence of a fluvial drainage system inflow into the South Caribbean during the Pliocene/Pleistocene boundary, complementary to the previous western Amazonian hydrographic system described from the Middle Miocene Villavieja Formation in central Colombia and Late Miocene Urumaco Formation in northwestern Venezuela. The Pliocene Castilletes and San Gregorio formations potentially represent the last lithostratigraphic units related with an ancient western Amazonian fish fauna and that drainage system in the Caribbean. Alternatively, it may preserve faunas from a smaller, peripheral river basin that was cut off earlier from the Amazon-Orinoco, today found in the Maracaibo basin and the Magdalena Rivers.

  5. Aboveground Biomass Variability Across Intact and Degraded Forests in the Brazilian Amazon

    Science.gov (United States)

    Longo, Marcos; Keller, Michael; Dos-Santos, Maiza N.; Leitold, Veronika; Pinage, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, re, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained70 of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 +/- 2.5 and 31.9 +/- 10.8 kg C m(exp -2). Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 +/- 0.7 kg C m(-2)(94%) of ACD. Forests that burned nearly15 years ago had between 4.1 +/- 0.5 and 6.8 +/- 0.3 kg C m(exp -2) (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 +/- 0.3 and 4.4 +/- 0.4 kg C m(exp -2)(4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pan-tropical products consistently overestimated ACD in degraded forests, under-estimated ACD in intact forests, and showed little sensitivity to res and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation(REDD+).

  6. Amazon River carbon dioxide outgassing fuelled by wetlands

    NARCIS (Netherlands)

    Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.-H.; Bernardes, M.C.; Savoye, N.; Deborde, J.; Souza, E.L.; Alberic, P.; de Souza, M.F.L.; Roland, F.

    2014-01-01

    River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle(1). A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial

  7. Estimating drought induced tree mortality in the Amazon rainforest: A simulation study with a focus on plant hydraulic processes

    Science.gov (United States)

    Papastefanou, P.; Fleischer, K.; Hickler, T.; Grams, T.; Lapola, D.; Quesada, C. A.; Zang, C.; Rammig, A.

    2017-12-01

    The Amazon basin was recently hit by severe drought events that were unprecedented in their severity and spatial extent, e.g. during 2005, 2010 and 2015/2016. Significant amounts of biomass were lost, turning large parts of the rainforest from a carbon sink into a carbon source. It is assumed that drought-induced tree mortality from hydraulic failure played an important role during these events and may become more frequent in the Amazon region in the future. Many state-of-the-art dynamic vegetation models do not include plant hydraulic processes and fail to reproduce observed rainforest responses to drought events, such as e.g. increased tree mortality. We address this research gap by developing a simple plant-hydraulic module for the dynamic vegetation model LPJ-GUESS. This plant-hydraulic module uses leaf water potential and cavitation as baseline processes to simulate tree mortality under drought stress. Furthermore, we introduce different plant strategies in the model, which describe e.g. differences in the stomatal regulation under drought stress. To parameterize and evaluate our hydraulic module, we use a set of available observational data from the Amazon region. We apply our model to the Amazon Basin and highlight similarities and differences across other measured and predicted drought responses, e.g. extrapolated observations and data derived from satellite measurements. Our results highlight the importance of including plant hydraulic processes in dynamic vegetation models to correctly predict vegetation dynamics under drought stress and show major differences on the vegetation dynamics depending on the selected plant strategies. We also identify gaps in process understanding of the triggering factors, the extent and the consequences of drought responses that hampers our ability to predict potential impact of future drought events on the Amazon rainforest.

  8. Morphology and mitochondrial phylogenetics reveal that the Amazon River separates two eastern squirrel monkey species: Saimiri sciureus and S. collinsi.

    Science.gov (United States)

    Mercês, Michelle P; Lynch Alfaro, Jessica W; Ferreira, Wallax A S; Harada, Maria L; Silva Júnior, José S

    2015-01-01

    Saimiri has a complicated taxonomic history, and there is continuing disagreement about the number of valid taxa. Despite these controversies, one point of consensus among morphologists has been that the eastern Amazonian populations of squirrel monkeys form a single terminal taxon, Saimiri sciureus sciureus (Linnaeus, 1758). This group is distributed to both the north and south of the middle to lower Amazon River and in the Marajó Archipelago. However, a recent molecular study by Lavergne and colleagues suggested that the Saimiri sciureus complex (comprised of S. s. sciureus sensu lato, S. s. albigena, S. s. macrodon, and S. s. cassiquiarensis) was paraphyletic. The discordance between morphological and molecular studies prompted us to conduct a new multidisciplinary analysis, employing a combination of morphological, morphometric, and molecular markers. Our results suggest the currently recognized taxon S. s. sciureus contains two distinct species, recognized by the Phylogenetic Species Concept: Saimiri sciureus (Linnaeus, 1758) and Saimiri collinsi Osgood, 1916. East Amazonian squirrel monkeys north of the Amazon have a gray crown (S. sciureus), and south of the Amazon, the crown is yellow (S. collinsi). Morphometric measurements also clearly distinguish between the two species, with the most important contributing factors including width across upper canines for both sexes. For males, the mean zygomatic breadth was significantly wider in S. sciureus compared to S. collinsi, and for females, the width across the upper molars was wider in S. sciureus compared to S. collinsi. Mitochondrial phylogenetic analyses support this separation of the eastern Amazonian squirrel monkeys into two distinct taxa, recovering one clade (S. sciureus) distributed to the north of the Amazon River, from the Negro River and Branco River to the Guiana coast and the Brazilian state of Amapá, and another clade (S. collinsi) south of the Amazon River, from the region of the Tapaj

  9. Carbon Impacts of Fire- and Bark Beetle-Caused Tree Mortality across the Western US using the Community Land Model (Invited)

    Science.gov (United States)

    Meddens, A. J.; Hicke, J. A.; Edburg, S. L.; Lawrence, D. M.

    2013-12-01

    Wildfires and bark beetle outbreaks cause major forest disturbances in the western US, affecting ecosystem productivity and thereby impacting forest carbon cycling and future climate. Despite the large spatial extent of tree mortality, quantifying carbon flux dynamics following fires and bark beetles over larger areas is challenging because of forest heterogeneity, varying disturbance severities, and field observation limitations. The objective of our study is to estimate these dynamics across the western US using the Community Land Model (version CLM4.5-BGC). CLM4.5-BGC is a land ecosystem model that mechanistically represents the exchanges of energy, water, carbon, and nitrogen with the atmosphere. The most recent iteration of the model has been expanded to include vertically resolved soil biogeochemistry and includes improved nitrogen cycle representations including nitrification and denitrification and biological fixation as well as improved canopy processes including photosynthesis. Prior to conducting simulations, we modified CLM4.5-BGC to include the effects of bark beetle-caused tree mortality on carbon and nitrogen stocks and fluxes. Once modified, we conducted paired simulations (with and without) fire- and bark beetle-caused tree mortality by using regional data sets of observed mortality as inputs. Bark beetle-caused tree mortality was prescribed from a data set derived from US Forest Service aerial surveys from 1997 to 2010. Annual tree mortality area was produced from observed tree mortality caused by bark beetles and was adjusted for underestimation. Fires were prescribed using the Monitoring Trends in Burn Severity (MTBS) database from 1984 to 2010. Annual tree mortality area was produced from forest cover maps and inclusion of moderate- and high-severity burned areas. Simulations show that maximum yearly reduction of net ecosystem productivity (NEP) caused by bark beetles is approximately 20 Tg C for the western US. Fires cause similar reductions

  10. Carbonate dissolution in the South Atlantic Ocean: evidence from ultrastructure breakdown in Globigerina bulloides

    Science.gov (United States)

    Dittert, Nicolas; Henrich, Rüdiger

    2000-04-01

    Ultrastructure dissolution susceptibility of the planktic foraminifer Globigerina bulloides, carbonate ion content of the water column, calcium carbonate content of the sediment surface, and carbonate/carbon weight percentage ratio derived from sediment surface samples were investigated in order to reconstruct the position of the calcite saturation horizon, the sedimentary calcite lysocline, and the calcium carbonate compensation depth (CCD) in the modern South Atlantic Ocean. Carbonate ion data from the water column refer to the GEOSECS locations 48, 103, and 109 and calcium carbonate data come from 19 GeoB sediment surface samples of 4 transects into the Brazil, the Guinea, and the Cape Basins. We present a new (paleo-) oceanographic tool, namely the Globigerina bulloides dissolution index (BDX). Further, we give evidence (a) for progressive G. bulloides ultrastructural breakdown with increasing carbonate dissolution even above the lysocline; (b) for a sharp BDX increase at the sedimentary lysocline; and (c) for the total absence of this species at the CCD. BDX puts us in the position to distinguish the upper open ocean and the upwelling influenced continental margin above from the deep ocean below the sedimentary lysocline. Carbonate ion data from water column samples, calcite weight percentage data from surface sediment samples, and carbonate/carbon weight percentage ratio appear to be good proxies to confirm BDX. As shown by BDX both the calcite saturation horizon (in the water column) and the sedimentary lysocline (at the sediment-water interface) mark the boundary between the carbonate ion undersaturated and highly corrosive Antarctic Bottom Water and the carbonate ion saturated North Atlantic Deep Water (NADW) of the modern South Atlantic.

  11. Amazon: Is Profitability a Possibility?

    Directory of Open Access Journals (Sweden)

    Brett DENNIS

    2014-06-01

    Full Text Available In today’s society, companies seem to all be following the same trend; growth in profitability at all cost. Higher profits, for the most part, leads to more investors and more potential financing. Amazon.com appears to be breaking that trend, however. Their strategy seems to be growth, but not in profits. We would like to look into how and why Amazon is growing at such a fast pace, while their profits are staying steady at a very low level. Is profitability a possibility for Amazon? We believe that a marginal increase in price could accomplish just that, with a minimal impact to consumers.

  12. Amazon Web Services- a Case Study

    OpenAIRE

    Narendula, Rammohan

    2012-01-01

    The Amazon Web Services (AWS) is a set (more than 25) of proprietary web-based services owned by Amazon.com. All these services ranging from simple storage to sophisticated database services constitute the cloud platform oered by Amazon. An extensive list of customers for AWS include Dropbox, UniLever, Airbnb, Nasdaq, Netflix. As of 2007, there are more than 300K developers actively using AWS. It is one of the pioneers which brought the cloud computing closer to masses helping number of start...

  13. Water yield issues in the jarrah forest of south-western Australia

    Science.gov (United States)

    Ruprecht, J. K.; Stoneman, G. L.

    1993-10-01

    The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge

  14. The economic and environmental effects of a carbon tax in South Africa: A dynamic CGE modelling approach

    Directory of Open Access Journals (Sweden)

    Jan Van Heerden

    2016-12-01

    South Africa’s National Treasury released its Carbon Tax Policy Paper in May 2013. The paper proposed a R120/tCO2-equiv. levy on coal, gas and petroleum fuels. Here, we model the possible impacts of such a tax on the South African economy using the computable general equilibrium (CGE 53-sector model of the University of Pretoria’s Department of Economics. The model shows that the carbon tax has the capacity to decrease South Africa’s greenhouse gas (GHG emissions by between 1 900MtCO2-equiv. and 2 300MtCO2-equiv. between 2016 and 2035. The extent of emissions reductions is most sensitive to the rate at which tax exemptions are removed. Recycling of carbon tax revenue reduces the extent of emissions reductions due to the fact that economic growth is supported. The manner in which carbon tax revenue is recycled back into the economy is therefore important in terms of the extent of emissions reductions achieved, but not as significant as the influence of different exemption schedules. The model shows the carbon tax to have a net negative impact on South Africa’s gross domestic product (GDP relative to the baseline under all exemption regimes and all revenue recycling options assessed. The negative impact of the carbon tax on GDP is, however, greatly reduced by the manner in which the tax revenue is recycled. Recycling in the form of a production subsidy for all industries results in the lowest negative impact on GDP.

  15. Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability

    International Nuclear Information System (INIS)

    Jones, Matthew O; Kimball, John S; Nemani, Ramakrishna R

    2014-01-01

    Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO 2 ) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003–2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought. (letter)

  16. Short term effects of fire on soil respiration in Peruvian Amazon

    Science.gov (United States)

    Suarez, L. F.; Kruijt, B.

    2008-05-01

    Severe changes are affecting the role of Amazon in the Earth system. One of these possible effects could be the modification of the role of soils in the carbon cycle due to land use and land cover change activities mainly involving the change of forest by crops. In this sense, fire is the main tool used by farmers for land use and also is an important factor for mobilizing C from the soil to the atmosphere, mainly as CO2. This could have an important effect in the global warming. This proposal will evaluate the variation of the soil respiration related to the seasonality and the fire effects on soils in the Amazon of Peru and Brazil. In experimental locations of Peru with different vegetation cover (forest and pasture), we measured soil respiration along with the organic carbon and the microbial biomass of soils during campaigns covering wet and dry seasons. Complementary measurements of soil temperature, water and nutrient content were performed. Also, we reproduced a fire experiment simulating agricultural local activity by the technique of "slash and burn" to evaluate fire effects on soil respiration. Measurements were taken after the soil cooled and at least 3 days after the fire. Additionally, the carbon stocks of the subplots were evaluated. Evaluation of the variations of CO2 fluxes and the capacity of adaptation to fire and water content are discussed through the comparisons of the different locations, type of soils and concentration of available N (nitrate and ammonium) as an indicator of nutrient content.

  17. Invasive vascular plant species of oxbow lakes in south-western Poland

    Directory of Open Access Journals (Sweden)

    Spałek Krzysztof

    2015-06-01

    Full Text Available Natural water reservoirs are very valuable floristic sites in south-western Poland. Among them, the most important for the preservation of biodiversity of flora are oxbow lakes. The long-term process of human pressure on habitats of this type caused disturbances of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of the last two hundred years, led to systematic disappearances of localities of many plant species connected with rare habitats and also to the appearance of numerous invasive plant species. They are: Azolla filiculoides, Echinocystis lobata, Erechtites hieraciifolia, Impatiens glandulifera, I. parviflora, Reynoutria japonica, Solidago canadensis, S. gigantea and S. graminifolia. Field works were conducted in years 2005-2012.

  18. A vicious circle of fire, deforestation and climate change: an integrative study for the Amazon region

    Science.gov (United States)

    Thonicke, K.; Rammig, A.; Gumpenberger, M.; Vohland, K.; Poulter, B.; Cramer, W.

    2009-04-01

    The Amazon rainforest is threatened by deforestation due to wood extraction and agricultural production leading to increasing forest fragmentation and forest degradation. These changes in land surface characteristics and water fluxes are expected to further reduce convective precipitation. Under future climate change the stability of the Amazon rainforest is likely to decrease thus leading to forest dieback (savannization) or forest degradation (secondarization). This puts the Amazon rainforest at risk to reduce the generation of precipitation, to act as a carbon sink and biodiversity hotspot. Fires increased in the past during drought years and in open vegetation thereby further accelerating forest degradation. Deforestation as a result of socioeconomic development in the Amazon basin is projected to further increase in the 21st century and brings climate-induced changes forward. Combined effects of deforestation vs. climate change on the stability of the Amazon rainforest and the role of fire in this system need to be quantified in an integrated study. We present simulation results from future climate (AR4) and deforestation (SimAmazon) experiments using the LPJmL-SPITFIRE vegetation model. Land use change is the main driving factor of forest degradation before 2050, whereas extreme climate change scenarios lead to forest degradation by the end of 2100. Forest fires increase with increasing drought conditions during the 21st century. The resulting effects on vegetation secondarization and savannization and their feedbacks on fire spread and emissions will be presented. The effect of wildfires and intentional burning on forest degradation under future climate and socioeconomic change will be discussed, and recommendations for an integrated land use and fire management are given.

  19. Notes on some Indo-Pacific Pontoniinae III-IX descriptions of some new genera and species from the Western Indian Ocean and the South China Sea

    NARCIS (Netherlands)

    Bruce, A.J.

    1967-01-01

    CONTENTS Introduction................... 1 III. Anapontonia denticauda Bruce, 1966, from the western Indian Ocean . . 2 IV. Mesopontonia gorgoniophila gen. nov., sp. nov., from the South China Sea 13 V. Metapontonia fungiacola gen. nov., sp. nov., from the western Indian Ocean 23 VI. The genus

  20. A Systems Dynamic Model for Drug Abuse and Drug-Related Crime in the Western Cape Province of South Africa

    Directory of Open Access Journals (Sweden)

    Farai Nyabadza

    2017-01-01

    Full Text Available The complex problem of drug abuse and drug-related crimes in communities in the Western Cape province cannot be studied in isolation but through the system they are embedded in. In this paper, a theoretical model to evaluate the syndemic of substance abuse and drug-related crimes within the Western Cape province of South Africa is constructed and explored. The dynamics of drug abuse and drug-related crimes within the Western Cape are simulated using STELLA software. The simulation results are consistent with the data from SACENDU and CrimeStats SA, highlighting the usefulness of such a model in designing and planning interventions to combat substance abuse and its related problems.

  1. Gastroptychus Cavimurus sp. nov., a new Chirostylid (Crustacea, Decapoda, Anomura) from off the western coast of South America

    NARCIS (Netherlands)

    Baba, K.

    1977-01-01

    During the second cruise of the Japanese Research Vessel "Kaiyo Maru" to the western coast of South America in 1968-69, Dr. Osame Tabeta of the Shimonoseki University of Fisheries, then on the staff of the Kyushu University, collected a number of galatheids off the northern Peruvian coast. All of

  2. Amazon Fund: financing deforestation avoidance

    Directory of Open Access Journals (Sweden)

    Jacques Marcovitch

    2014-06-01

    Full Text Available The Amazon Fund, created in 2008 by the Brazilian Federal Government, is managed by Banco Nacional de Desenvolvimento Econômico e Social (BNDES. It is a pioneering initiative to fundraise and manage financial resources to cut back deforestation and support sustainable development for 30 million inhabitants in the Amazon Biome. The Amazon Fund has already received more than R$ 1.7 billion in grants (about USD 787 million. This essay analyzes the Amazon Fund's governance and management with focus on its operation and from its stakeholders' perspectives. A combination of research methods includes: documental research, in-depth interviews, and speech analysis. The study offers a comparative analysis of strengths and weaknesses related to its governance. Furthermore, it proposes ways to improve its management towards greater effectiveness. The essay also includes an assessment of the government of Norway, a major donor to the fund. The governments of Norway and Germany, in partnership with Brazil, reveal how important it is to experiment with new means of international cooperation to successfully reduce greenhouse gas emissions through rainforest preservation.

  3. New DDT inputs after 30 years of prohibition in Spain. A case study in agricultural soils from south-western Spain

    International Nuclear Information System (INIS)

    Munoz-Arnanz, Juan; Jimenez, Begona

    2011-01-01

    This study provides information on the current status of contamination by DDT in agricultural soils in south-western Spain. A recent use of technical DDT in at least 17% of the soils was found based on the values ( p,p ' /p,p ' =[p,p ' -DDE+p,p ' -DDD]/[p,p ' -DDT]. According to the ratio R o,p ' /p,p ' =[o,p ' -DDT]/[p,p ' -DDT], a dicofol type contamination was detected in about 27% of the soils. A wide range of concentrations was observed (0.08-11.1 ng/g d.w.) regardless of the type of crop soil. Enantiomeric fractions (EFs), based on the chiral analysis of o,p'-DDT residues differed from the racemic value (0.500) in most soils but they were not correlated with the study variables [DDTs], SOM, R p,p ' /p,p ' and R o,p ' /p,p ' . Given the health risks posed by DDT, our findings support how the environmental control of legacy pollutants such as DDT cannot be neglected. - Highlights: → Fresh technical DDT inputs detected in agricultural soils. → A Dicofol type contamination was found in agricultural soils from south-western Spain. → EFs of o,p'-DDT do not provide a good measure for overall DDT degradation. - Based on the isomeric ratio R p,p ' /p,p ' , a plausible recent input of technical DDT was found in agricultural soils from south-western Spain after more than 30 years of DDT ban.

  4. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Elisa, E-mail: elisa.fleischer@uni-muenster.de [Institute of Landscape Ecology, Climatology Research Group, University of Münster, Münster (Germany); Khashimov, Ilhom, E-mail: nixonlp@mail.ru [Institute of Earth Science, Physical Geography and Geoecology Department, Tyumen State University, Tyumen (Russian Federation); Hölzel, Norbert, E-mail: nhoelzel@uni-muenster.de [Institute of Landscape Ecology, Biodiversity and Ecosystem Research Group, University of Münster, Münster (Germany); Klemm, Otto, E-mail: otto.klemm@uni-muenster.de [Institute of Landscape Ecology, Climatology Research Group, University of Münster, Münster (Germany)

    2016-03-01

    The growing demand for agricultural products has been leading to an expansion and intensification of agriculture around the world. More and more unused land is currently reclaimed in the regions of the former Soviet Union. Driven by climate change, the Western Siberian grain belt might, in a long-term, even expand into the drained peatland areas to the North. It is crucial to study the consequences of this land-use change with respect to the carbon cycling as this is still a major knowledge gap. We present for the first time data on the atmosphere-ecosystem exchange of carbon dioxide and methane of an arable field and a neighboring unused grassland on peat soil in Western Siberia. Eddy covariance measurements were performed over one vegetation period. No directed methane fluxes were found due to an effective drainage of the study sites. The carbon dioxide fluxes appeared to be of high relevance for the global carbon and greenhouse gas cycles. They showed very site-specific patterns resulting from the development of vegetation: the persistent plants of the grassland were able to start photosynthesizing soon after snow melt, while the absence of vegetation on the managed field lead to a phase of emissions until the oat plants started to grow in June. The uptake peak of the oat field is much later than that of the grassland, but larger due to a rapid plant growth. Budgeting the whole measurement period, the grassland served as a carbon sink, whereas the oat field was identified to be a carbon source. The conversion from non-used grasslands on peat soil to cultivated fields in Western Siberia is therefore considered to have a positive feedback on climate change. - Highlights: • Grasslands on drained peat soil can act as carbon sinks. • Arable fields on drained peat act as carbon sources due to long phases of bare soil. • CH{sub 4} emissions from drained peatlands seem to play a smaller role than CO{sub 2} fluxes. • Conversion from grassland to arable field has

  5. Accretionary and collisional orogenesis in the south domain of the western Central Asian Orogenic Belt (CAOB)

    Science.gov (United States)

    Cai, Keda; Long, Xiaoping; Chen, Huayong; Sun, Min; Xiao, Wenjiao

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) was the result of long-lived multi-stage tectonic evolution, including Proterozoic to Paleozoic accretion and collision, Mesozoic intracontinental modification, and Cenozoic rapid deformation and uplift. The accretionary and collisional orogenesis of its early history generated a huge orogenic collage consisting of diverse tectonic units including island arcs, ophiolites, accretionary prisms, seamounts, oceanic plateaus and micro-continents. These incorporated orogenic components preserved valuable detailed information on orogenic process and continental crust growth, which make the CAOB a key region to understanding of continental evolution, mantle-crust interaction and associated mineralization. The western CAOB refers to the west region in North Xinjiang of China and circum-Balkash of Kazakhstan, with occurrences of the spectacular Kazakhstan orocline and its surrounding mountain belts. Because orogenic fabrics of this part mostly preserve their original features caused by the interactions among the southern Siberian active margin in the north and the Tarim Craton in the south, the western CAOB can be regarded as an ideal region to study the processes of the accretionary and collisional orogenesis and associated mineralization. Since a large number of researchers have been working on this region, research advances bloom strikingly in a short-time period. Therefore, we, in this special issue, focus on these new study advances on the south domain of the western CAOB, including the Kazakhstan collage system, Tianshan orogenic belt and Beishan region, and it is anticipated that this issue can draw more attention from the international research groups to be interested in the studies on orogenesis of the CAOB.

  6. Epidemiology of viruses causing chronic hepatitis among populations from the Amazon Basin and related ecosystems

    Directory of Open Access Journals (Sweden)

    Echevarría José M.

    2003-01-01

    Full Text Available On the last twenty years, viral hepatitis has emerged as a serious problem in almost all the Amerindian communities studied in the Amazon Basin and in other Amazon-related ecological systems from the North and Center of South America. Studies performed on communities from Bolivia, Brazil, Colombia, Peru and Venezuela have shown a high endemicity of the hepatitis B virus (HBV infection all over the region, which is frequently associated to a high prevalence of infection by hepatitis D virus among the chronic HBV carriers. Circulation of both agents responds mainly to horizontal virus transmission during childhood through mechanisms that are not fully understood. By contrast, infection by hepatitis C virus (HCV, which is present in all the urban areas of South America, is still very uncommon among them. At the moment, there is not data enough to evaluate properly the true incidence that such endemicity may have on the health of the populations affected. Since viral transmission might be operated by mechanisms that could not be acting in other areas of the World, it seems essential to investigate such mechanisms and to prevent the introduction of HCV into these populations, which consequences for health could be very serious.

  7. Regional Impacts of Climate Change on the Amazon Rainforest: 2080-2100

    Science.gov (United States)

    Cook, K. H.; Vizy, E. K.

    2006-12-01

    A regional climate model with resolution of 60 km is coupled with a potential vegetation model to simulate future climate over South America. The following steps are taken to effectively communicate the results across disciplines and to make them useful to the policy and impacts communities: the simulation is aimed at a particular time period (2081-2100), the climate change results are translated into changes in vegetation distribution, and the results are reported on regional space scales relative to political boundaries. In addition, the model validation in clearly presented to provide perspective on uncertainty for the prognosis. The model reproduces today's climate and vegetation over tropical and subtropical South America accurately. In simulations of the future, the model is forced by the IPCC's A2 scenario of future emissions, which assumes that CO2 emissions continue to grow at essentially today's rate throughout the 21st century, reaching 757 ppmv averaged over 2081-2100. The model is constrained on its lateral boundaries by atmospheric conditions simulated by a global climate model, applied as anomalies to present day conditions, and predicted changes in sea surface temperatures. The extent of the Amazon rainforest is reduced by about 70 per cent in the simulation, and the shrubland (caatinga) vegetation of Brazil's Nordeste region spreads westward and southward well into the continental interior. Bolivia, Paraguay, and Argentina lose all of their rainforest vegetation, and Brazil and Peru lose most of it. The surviving rain forest is concentrated near the equator. Columbia's rainforest survives largely intact and, along the northern coast, Venezuela and French Guiana suffer relatively small reductions. The loss in Guyana and Surinam is 30-50 per cent. Much of the rainforest in the central Amazon north of about 15S is replaced by savanna vegetation, but in southern Bolivia, northern Paraguay, and southern Brazil, grasslands take the place of the

  8. Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon.

    Science.gov (United States)

    Galford, Gillian L; Soares-Filho, Britaldo; Cerri, Carlos E P

    2013-06-05

    The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes.

  9. Flora and fauna associated with prairie dog colonies and adjacent ungrazed mixed-grass prairie in western South Dakota

    Science.gov (United States)

    William Agnew; Daniel W. Uresk; Richard M. Hansen

    1986-01-01

    Vegetation, small rodents, and birds were sampled during the growing seasons of 2 years on prairie dog (Cynomys ludovicianus) colonies and adjacent mixed-grass prairie in western South Dakota. Prairie dog grazing decreased mulch cover, maximum height of vegetation, plant species richness, and tended to decrease live plant canopy cover compared to...

  10. Understanding Hydrological Regime Alterations Caused by dams: the Santiago River case in the Andean Region of the Amazon Basin.

    Science.gov (United States)

    Rosero-Lopez, D.; Flecker, A.; Walter, M. T.

    2016-12-01

    Water resources in South America have been clearly targeted as key sources for hydropower expansion over the next 30 years. Ecuador, among the most biologically diverse countries in the world, has the highest density of hydropower dams, either operational, under construction, or planned, in the Amazon Basin. Ecuador's ambitious plan to change its energy portfolio is conceived to satisfy the country's demand and to empower the country to be the region's first hydroelectric energy exporter. The Santiago watershed located in the southeast part of the country has 39 facilities either under construction or in operation. The Santiago River and its main tributaries (Zamora and Upano) are expected to be impounded by large dams over the next 10 years. In order to understand the magnitude and potential impacts of regional dam development on hydrological regimes, a 35-year historical data set of stream discharge was analyzed. We examined flow regimes for time series between the construction of each dam, starting with the oldest and largest built in 1982 up until the most recent dam built in 2005. Preliminary results indicate a systematic displacement in flow seasonality following post-dam compared to pre-dam conditions. There are also notable differences in the distributions of peaks and pulses in post-dam flows. The range of changes from these results shows that punctuated and cumulative impacts are related to the size of each new impoundment. These observations and their implications to the livelihoods, biota, and ecosystems services in the Santiago watershed need to be incorporated into a broader cost-benefit analysis of hydropower generation in the western Amazon Basin.

  11. Diversity and Contested Social Identities in Multilingual and Multicultural Contexts of the University of the Western Cape, South Africa

    Science.gov (United States)

    Banda, Felix; Peck, Amiena

    2016-01-01

    We draw on Rampton's "Crossing: Language and Ethnicity Among Adolescents" (2014. 2nd ed. New York: Routledge) notion of "crossing" to explore contestations in ethnolinguistic, cultural and racial affiliations at the University of the Western Cape (UWC), a university built for "Coloureds" in apartheid South Africa, but…

  12. From disaster to sustainability: floods, changing property relations and water management in the south-western Netherlands, c. 1500-1800

    NARCIS (Netherlands)

    Cruijningen, van P.J.

    2014-01-01

    When large parts of the south-western Netherlands flooded in the fifteenth and sixteenth centuries the main cause was insufficient maintenance of the sea defences. The subsequent re-embankment of the polders resulted in changes to both soil conditions and property relations in the region. The Church

  13. Energy sector integration for low carbon development in Greater Mekong sub-region: Towards a model of South-South cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yongping

    2010-09-15

    The Greater Mekong Sub-region (GMS) in Southeast Asia has embarked on a roadmap of power interconnection and expanded energy sector cooperation. An Asian development bank committed study using Model of Energy Supply Systems Alternatives and their General Environmental Impacts (MESSAGE) assessed the impacts of various scenarios, the results indicate that GMS integration will help these countries to achieve low carbon and sustainable development. The article suggests that the experience of GMS cooperation be made a model for South-South cooperation in the global effort to fight climate change.

  14. Variations of the paleo-productivity in benthic foraminifera records in MIS 3 from western South China Sea

    Science.gov (United States)

    Niu, Y.; Du, J.; Huang, B.; Chen, M.

    2010-12-01

    Understanding climate change of last glacial age as the background information of climate forecasting is particularly important in climate research. Marine Isotope Stage 3 (MIS 3, 61-24 ka B.P.) is a relative warm and unstable period in the last glacial. Millennium scale abrupt climate changes, such as Heinrich events and Dansgaard-Oeschger (D-O) cycles, are identified in this period. Research topic on the variations of monsoon during the glacial cycles, especially in MIS 3, is critical for understanding low latitude climatic change and the global paleo-environment as a whole. Fortunately, high resolution sedimentary records in western South China Sea provide us valuable materials to uncover how East Asia Summer Monsoon (EASM) system acts in a highly fluctuating climate ambient like MIS 3. Core 17954 is located in the modern summer upwelling area off the Vietnam coast in western South China Sea (SCS), its sediments record the variations of upwelling generated by EASM. In this work, we carry out paleo-ecological analyses on planktonic ( Neogloboquadrina dutertrei, Globigerina bulloides) and benthic foraminifera (Bulimina aculeate, Uvigerina peregrina, Cibicidoides wuellerstorfi, ect.) sampled from Core 17954 to investigate paleo-productivity and nutrition change of western SCS and its relation to EASM. The results show that benthic and planktonic foraminifera have similar responses to nutrition change. Various indicators of productivity on the basis of benthic foraminiferal analyses reflect an overall three stage change trend: productivity gradually increases from the beginning of MIS 3 (60-40 ka) to its maximum during 35-30 ka, and finally declines after 30 ka. There is also another important discovery, if we observe the climate change in MIS 3 as a whole, we can also find western SCS and Northern Hemisphere High latitude have strong correspondences in such changes: Heinrich events coincided with high productivity events in the western SCS. Further, the result of

  15. Biomass Burning and Natural Emissions in the Brazilian Amazon Rainforest: Chemical Composition and Impact on the Oxidative Capacity of the Atmosphere

    Science.gov (United States)

    dos Santos, F. C.; Longo, K.; Guenther, A. B.; Gu, D.; Kim, S.; Freitas, S.; Moreira, D. S.; Flávio, L.; Braz, R.; Brito, J.; Oram, D.; Foster, G.; Lee, J. D.

    2017-12-01

    Emitted by vegetation, isoprene (2-methyl-1,3-butadiene) is the most abundant non-methane hydrocarbons, with an annual global emission calculated ranging from 440 to 660Tg carbon, depending on the driving variables like temperature, solar radiation, LAI and PFT. The natural compounds like isoprene and terpenes present in the troposphere are about 90% and 50%, respectively, removed from the atmosphere by oxidation performed by hydroxyl radical (OH). Considering the importance of these emissions and the hydroxyl radical reaction in the atmosphere, the SAMBBA (South American Biomass Burning Analysis) experiment, which occurred during the dry season (September 2012) in the Brazilian Amazon Rainforest, provided information about the chemical composition of the atmosphere through airborne observations. Although primarily focused on biomass burning flights, the SAMBBA project carried out flights in pristine environment. In this study, we determine the ambient distribution of CO, NOx and O3, and evaluate the oxidative capacity of the Amazon rainforest in different chemical regimes, using the ratio [MVK + MACR]/[Isoprene]. Beyond that, we proposed an improvement on the formulation of indirect OH density calculation, using the photochemical aging [O3]/[CO] as a parameter. Balancing numerical modeling and direct observations, the numerical model BRAMS was coupled to MEGAN emission model to get a better result for isoprene and OH in the atmosphere, representing the observations during SAMBBA field campaign. In relation to OH estimation, we observed an improvement in the concentration values using the modified sequential reaction model, for both biomass burning regimes and background environment. We also detected a long-range transport events of O3, considering the high levels of O3 in aged plumes at high altitudes (5,500 - 6,500 m), and the detection of an O3 inflow in the Amazon basin from Africa. These findings support the importance of long-range transport events as a

  16. Relict thermokarst carbon source kept stable within gas hydrate stability zone of the South Kara Sea

    Science.gov (United States)

    Portnov, A.; Mienert, J.; Winsborrow, M.; Vadakkepuliyambatta, S.; Semenov, P.

    2017-12-01

    Substantial shallow sources of carbon can exist in the South Kara Sea shelf, extending offshore from the permafrost areas of Yamal Peninsula and the Polar Ural coast. Our study presents new evidence for >250 buried relict thermokarst units. These amalgamated thawing wedges formed in the uppermost permafrost of the past and are still recognizable in today's non-permafrost areas. Part of these potential carbon reservoirs are kept stable within the South Kara Sea gas hydrate stability zone (GHSZ). We utilize an extensive 2D high-resolution seismic dataset, collected in the South Kara Sea in 2005-2006 by Marine Arctic Geological Expedition (MAGE), to map distinctive U-shaped units that are acoustically transparent. These units appear all over the study area in water depths 50-250 m. Created by thermal erosion into Cretaceous-Paleogene bedrock, they are buried under the younger glacio-marine deposits and reach hundreds of meters wide and up to 100 meters thick. They show the characteristics of relict thermokarst, generated during ancient episode(s) of sea level regression of the South Kara Sea. These thermokarst units are generally limited by the Upper Regional Unconformity, which is an erosional horizon created by several glaciation events during the Pleistocene. On land, permafrost is known to sequester large volumes of carbon, half of which is concentrated within thermokarst structures. Based on modern thermokarst analogues we demonstrate with our study that a significant amount of organic carbon can be stored under the Kara Sea. To assess the stability of these shallow carbon reservoirs we carried out GHSZ modeling, constrained by geochemical analyses, temperature measurements and precise bathymetry. This revealed a significant potential for a GHSZ in water depths >225 m. The relict thermokast carbon storage system is stable under today's extremely low bottom water temperatures ( -1.7 °C) that allows for buried GHSZ, located tens of meters below the seabed

  17. On Dams in the Amazon Basin, Teleconnected Impacts, and Neighbors Unaware of the Damage to their Natural Resources and Assets.

    Science.gov (United States)

    Latrubesse, E. M.; Park, E.

    2017-12-01

    In a recent study, Latrubesse et al., (2017) demonstrated that the accumulated negative environmental effects of more than one hundred existing dams and at least 288 proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin's floodplains, estuary and sediment plume. The authors introduced a Dam Environmental Vulnerability Index (DEVI) to quantify the current and potential impacts of dams in the basin. The current and potential vulnerabilities of different regions of the Amazon basin was assessed, and the results highlighted the need for a more efficient and integrative legal framework involving all nine countries of the basin in an anticipatory assessment to minimize the negative socio-environmental and biotic impacts of hydropower developments. Here we present expanded information on the potential impacts of dams in the lower Amazon and the northeast Atlantic coast of South America, and revisit our proposed integrative strategies for basin management which are based on the adaptation and functionality of the institutional and legal framework already existing in the Amazon countries. Participative strategies involving members from the Amazon Cooperation Treaty Organization (ACTO) countries, and additional members (for example, France), such as the creation of a basin committee -as defined by the Brazilian Law of Waters of Brazil-, and the creation of an Amazon Basin Panel allowing the participation of scientists that could have a policy-relevant role but should be not policy-prescriptive, are also discussed. ReferencesLatrubesse, E., Arima E. Dunne T., Park E., Baker V, Horta F.,Wight, C., Wittmann F., Zuanon, J., Baker P., Ribas C, Norgaard R., Filizola N., Ansar A., Flyvbjerg B., Stevaux, J. 2017. Damming the rivers of the Amazon basin. Nature, 546, 363-369.

  18. Heritage and the Development of Stellenbosch, Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Fabio Todeschini

    2017-06-01

    Full Text Available The jurisdiction of Stellenbosch, located adjacent to, but outside of, the Cape Town metropolitan area in the Western Cape Province of South Africa, comprises over one thousand square kilometers of landscapes spanning: spectacular mountain wilderness areas; many productive rural valleys that are an integral part of the celebrated Cape Winelands; and a number of historic, characterful urban centres founded during the 17th century. Overall, this blend of domains attracts increasing numbers of tourists, while the places are also home to a growing population. The pressures for change and growth are significant: so is the need for appropriate policies and plans in the longer-term public interest. The authors report on a three-year project they are conducting for the local authority that focuses on the definition of the natural and cultural heritage and, in principle, on how development should be channelled.

  19. Petrography and stable isotope geochemistry of Oligocene-Miocene continental carbonates in south Texas: Implications for paleoclimate and paleoenvironment near sea-level

    Science.gov (United States)

    Godfrey, Conan; Fan, Majie; Jesmok, Greg; Upadhyay, Deepshikha; Tripati, Aradhna

    2018-05-01

    Cenozoic sedimentary rocks in the southern Texas Gulf Coastal Plains contain abundant continental carbonates that are useful for reconstructing terrestrial paleoclimate and paleoenvironment in a region near sea-level. Our field observations and thin section characterizations of the Oligocene and Miocene continental carbonates in south Texas identified three types of pedogenic carbonates, including rhizoliths, carbonate nodules, and platy horizons, and two types of groundwater carbonates, including carbonate-cemented beds and carbonate concretions, with distinctive macromorphologic and micromorphologic features. Based on preservations of authigenic microfabrics and variations of carbon and oxygen isotopic compositions, we suggest these carbonates experienced minimal diagenesis, and their stable isotopic compositions reflect paleoclimate and paleoenvironment in south Texas. Our Oligocene and Miocene carbonate clumped isotope temperatures (T(Δ47)) are 23-28 °C, slightly less than or comparable to the range of modern mean annual and mean warm season air temperature (21-27 °C) in the study area. These T(Δ47) values do not show any dependency on carbonate-type, or trends through time suggesting that groundwater carbonates were formed at shallow depths. These data could indicate that air temperature in south Texas was relatively stable since the early Oligocene. The reconstructed paleo-surface water δ18O values are similar to modern surface water which could indicate that meteoric water δ18O values also remained stable since the early Oligocene. Mean pedogenic carbonate δ13C values increased - 4.6‰ during the late Miocene, most likely reflecting an expansion of C4 grassland in south Texas. This study provides the first mid- and late Cenozoic continental records of paleoclimate and paleoecology in a low-latitude, near sea-level region.

  20. European Origin of Bradyrhizobium Populations Infecting Lupins and Serradella in Soils of Western Australia and South Africa† ‡

    Science.gov (United States)

    Stępkowski, Tomasz; Moulin, Lionel; Krzyżańska, Agnieszka; McInnes, Alison; Law, Ian J.; Howieson, John

    2005-01-01

    We applied a multilocus phylogenetic approach to elucidate the origin of serradella and lupin Bradyrhizobium strains that persist in soils of Western Australia and South Africa. The selected strains belonged to different randomly amplified polymorphic DNA (RAPD)-PCR clusters that were distinct from RAPD clusters of applied inoculant strains. Phylogenetic analyses were performed with nodulation genes (nodA, nodZ, nolL, noeI), housekeeping genes (dnaK, recA, glnII, atpD), and 16S-23S rRNA intergenic transcribed spacer sequences. Housekeeping gene phylogenies revealed that all serradella and Lupinus cosentinii isolates from Western Australia and three of five South African narrow-leaf lupin strains were intermingled with the strains of Bradyrhizobium canariense, forming a well supported branch on each of the trees. All nodA gene sequences of the lupin and serradella bradyrhizobia formed a single branch, referred to as clade II, together with the sequences of other lupin and serradella strains. Similar patterns were detected in nodZ and nolL trees. In contrast, nodA sequences of the strains isolated from native Australian legumes formed either a new branch called clade IV or belonged to clade I or III, whereas their nonsymbiotic genes grouped outside the B. canariense branch. These data suggest that the lupin and serradella strains, including the strains from uncultivated L. cosentinii plants, are descendants of strains that most likely were brought from Europe accidentally with lupin and serradella seeds. The observed dominance of B. canariense strains may be related to this species' adaptation to acid soils common in Western Australia and South Africa and, presumably, to their intrinsic ability to compete for nodulation of lupins and serradella. PMID:16269740

  1. The Development Needs of Newly Appointed Senior School Leaders in the Western Cape South Africa: A Case Study

    Directory of Open Access Journals (Sweden)

    Nelius Jansen van Vuuren

    2017-12-01

    Full Text Available The essential role that senior school leaders play in school leadership teams to ensure effective strategic leadership in schools has been the subject of intense discussion for many years. Crucial to this debate is the establishment of professional learning and leadership approaches for newly appointed senior school leaders. Recommendations for policy and practice highlight the importance of appropriate, multifaceted, developmental support initiatives for newly appointed school leaders. In many countries, including South Africa, a teaching qualification and, in most cases, extensive teaching experience is the only requirement for being appointed as a senior school leader in a school. This tends to suggest that no further professional development is required for newly appointed school leaders, the problem addressed in this paper. This paper reports on the main findings of the perceived development needs of newly appointed senior school leaders in the Western Cape, South Africa, and suggests that school leaders occupy a unique and specialist role in education, which requires relevant and specific preparation to support effective leadership. The respondents of this study report a lack of contextualised training and support before and after their appointment in their new roles creating unique development needs. This paper, therefore, employs a mixed-method approach to gather data to understand the perceived needs of twenty newly appointed senior school leaders in the Western Cape, South Africa.

  2. [Prevalence of arterial hypertension in communities along the Madeira River, Western Brazilian Amazon].

    Science.gov (United States)

    Oliveira, Beatriz Fátima Alves de; Mourão, Dennys de Souza; Gomes, Núbia; Costa, Janaina Mara C; Souza, Andreia Vasconcelos de; Bastos, Wanderley Rodrigues; Fonseca, Marlon de Freitas; Mariani, Carolina Fiorillo; Abbad, Guilherme; Hacon, Sandra S

    2013-08-01

    The aim of this cross-sectional study was to estimate the prevalence of hypertension among adults (n = 841) in communities along the Madeira River in the Brazilian Amazon, prior to startup of the Santo Antônio Hydroelectric Plant. The study gathered information on sociodemographic conditions, history of diseases, habits, fish consumption, and anthropometric parameters. Logistic regression was used to calculate odds ratios and the respective confidence intervals. Among the riverine communities, 26% (95%CI: 23%-29%) of adults presented hypertension (29% in men [95%CI: 24%-33%] and 23% in women [95%CI: 19%-27%]). Factors associated with hypertension were age, BMI, and place of residence in men and age, triglycerides, and blood glucose in women. The findings can contribute to strategies for state and municipal health services to monitor and prevent cardiovascular events.

  3. Carbon exchange in Western Siberian watershed mires and implication for the greenhouse effect. A spatial temporal modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Borren, W.

    2007-01-19

    The vast watershed mires of Western Siberia formed a significant sink of carbon during the Holocene. Because of their large area these mires might play an important role in the carbon exchange between terrestrial ecosystems and the atmosphere. However, estimation of the Holocene and future carbon balance of whole Western Siberian mires is hampered by the lack of spatially resolved models. The main objective was to assess the carbon exchange fluxes of the mires using a 3-D dynamic approach. These exchange fluxes comprise the sequestration of carbon dioxide (CO2) by peat growth, the emission of methane (CH4) by anaerobic peat decay and the emission of CO2 by aerobic peat decay. From the detailed analysis of peat cores from different sites in the southern taiga of Western Siberia, it emerged that Holocene peat growth and carbon accumulation had different trends, caused by variations in vegetation succession. These differences were strongly influenced by the position in the landscape. Therefore, the effect of climatic change on mire development varied spatially. The indirect effects of climate change through local hydrology appeared to be more important than direct influences of changes in precipitation and temperature. Mire development is closely connected to hydrological dynamics. In the thesis a 3-D dynamic modeling approach is described that makes use of groundwater modeling. In successive timesteps peat growth and decay as well as mire type distribution were calculated, depending on hydrological conditions. The model was forced with a paleo-precipitation record to include variable climatic input. The model results show the Holocene development of a watershed mire from a few small spots to a contiguous mire landscape. As hydrology is the major limiting factor, the mire development is most sensitive to precipitation and evapotranspiration. Under unchanged conditions the mire will grow further, eventually reaching its maximum peat thickness around 11400 yr A.D. Under

  4. Carbon exchange in Western Siberian watershed mires and implication for the greenhouse effect. A spatial temporal modeling approach

    International Nuclear Information System (INIS)

    Borren, W.

    2007-01-01

    The vast watershed mires of Western Siberia formed a significant sink of carbon during the Holocene. Because of their large area these mires might play an important role in the carbon exchange between terrestrial ecosystems and the atmosphere. However, estimation of the Holocene and future carbon balance of whole Western Siberian mires is hampered by the lack of spatially resolved models. The main objective was to assess the carbon exchange fluxes of the mires using a 3-D dynamic approach. These exchange fluxes comprise the sequestration of carbon dioxide (CO2) by peat growth, the emission of methane (CH4) by anaerobic peat decay and the emission of CO2 by aerobic peat decay. From the detailed analysis of peat cores from different sites in the southern taiga of Western Siberia, it emerged that Holocene peat growth and carbon accumulation had different trends, caused by variations in vegetation succession. These differences were strongly influenced by the position in the landscape. Therefore, the effect of climatic change on mire development varied spatially. The indirect effects of climate change through local hydrology appeared to be more important than direct influences of changes in precipitation and temperature. Mire development is closely connected to hydrological dynamics. In the thesis a 3-D dynamic modeling approach is described that makes use of groundwater modeling. In successive timesteps peat growth and decay as well as mire type distribution were calculated, depending on hydrological conditions. The model was forced with a paleo-precipitation record to include variable climatic input. The model results show the Holocene development of a watershed mire from a few small spots to a contiguous mire landscape. As hydrology is the major limiting factor, the mire development is most sensitive to precipitation and evapotranspiration. Under unchanged conditions the mire will grow further, eventually reaching its maximum peat thickness around 11400 yr A.D. Under

  5. Spatial Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field Campaign Sites

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Feng, Zhe; Hagos, Samson M.; Fast, Jerome; Machado, Luiz A. T.; Martin, Scot T.

    2016-07-01

    The Amazon rainforest is one of a few regions of the world where continental tropical deep convection occurs. The Amazon’s isolation makes it challenging to observe, but also creates a unique natural laboratory to study anthropogenic impacts on clouds and precipitation in an otherwise pristine environment. Extensive measurements were made upwind and downwind of the large city of Manaus, Brazil during the Observations and Modeling of the Green Ocean Amazon 2014-2015 (GoAmazon2014/5) field campaign. In this study, 15 years of high-resolution satellite data are analyzed to examine the spatial and diurnal variability of convection occurring around the GoAmazon2014/5 sites. Interpretation of anthropogenic differences between the upwind (T0) and downwind (T1-T3) sites is complicated by naturally-occurring spatial variability between the sites. During the rainy season, the inland propagation of the previous day’s sea-breeze front happens to be in phase with the background diurnal cycle near Manaus, but is out of phase elsewhere. Enhanced convergence between the river-breezes and the easterly trade winds generates up to 10% more frequent deep convection at the GoAmazon2014/5 sites east of the river (T0a, T0t/k, and T1) compared to the T3 site which was located near the western bank. In general, the annual and diurnal cycles during 2014 were representative of the 2000-2013 distributions. The only exceptions were in March when the monthly mean rainrate was above the 95th percentile and September when both rain frequency and intensity were suppressed. The natural spatial variability must be accounted for before interpreting anthropogenically-induced differences among the GoAmazon2014/5 sites.

  6. A Synoptic Assessment of the Amazon River-Ocean Continuum during Boreal Autumn: From Physics to Plankton Communities and Carbon Flux

    Directory of Open Access Journals (Sweden)

    Moacyr Araujo

    2017-07-01

    Full Text Available The Amazon generates the world's largest offshore river plume, which covers extensive areas of the tropical Atlantic. The data and samples in this study were obtained during the oceanographic cruise Camadas Finas III in October 2012 along the Amazon River-Ocean Continuum (AROC. The cruise occurred during boreal autumn, when the river plume reaches its maximum eastward extent. In this study, we examine the links between physics, biogeochemistry and plankton community structure along the AROC. Hydrographic results showed very different conditions, ranging from shallow well-mixed coastal waters to offshore areas, where low salinity Amazonian waters mix with open ocean waters. Nutrients, mainly NO3− and SiO2−, were highly depleted in coastal regions, and the magnitude of primary production was greater than that of respiration (negative apparent oxygen utilization. In terms of phytoplankton groups, diatoms dominated the region from the river mouth to the edge of the area affected by the North Brazil Current (NBC retroflection (with chlorophyll a concentrations ranging from 0.02 to 0.94 mg m−3. The North Equatorial Counter Current (NECC region, east of retroflection, is fully oligotrophic and the most representative groups are Cyanobacteria and dinoflagellates. Additionally, in this region, blooms of cyanophyte species were associated with diatoms and Mesozooplankton (copepods. A total of 178 zooplankton taxa were observed in this area, with Copepoda being the most diverse and abundant group. Two different zooplankton communities were identified: a low-diversity, high-abundance coastal community and a high-diversity, low-abundance oceanic community offshore. The CO2 fugacity (fCO2sw, calculated from total alkalinity (1,450 < TA < 2,394 μmol kg−1 and dissolved inorganic carbon (1,303 < DIC < 2,062 μmol kg−1 measurements, confirms that the Amazon River plume is a sink of atmospheric CO2 in areas with salinities <35 psu, whereas, in regions

  7. Furuncular Myiasis Caused by Dermatobia hominis in a Traveler Returning from the Amazon Jungle.

    Science.gov (United States)

    Kuşcu, Ferit; Özsoy, Kerem Mazhar; Ulu, Aslıhan; Kurtaran, Behice; Kömür, Süheyla; İnal, Ayşe Seza; Taşova, Yeşim; Aksu, Hasan Salih Zeki

    2017-09-01

    A 39-year-old man who was returning from the Amazon Jungle and had no medical history presented with a furuncular lesion on his right parietal scalp. Despite receiving appropriate antimicrobial treatment, his lesion did not heal. After surgical intervention, a Dermatobia hominis larva was extracted. The human botfly D. hominis is the most common causative agent of furuncular myiasis among travelers returning from Central and South America. Surgery is the main treatment option, and secondary bacterial infection should be kept in mind.

  8. Cytogenetic characterization of the strongly electric Amazonian eel, Electrophorus electricus (Teleostei, Gymnotiformes, from the Brazilian rivers Amazon and Araguaia

    Directory of Open Access Journals (Sweden)

    Soraia B.A. Fonteles

    2008-01-01

    Full Text Available A karyotype analysis of the electric eel, Electrophorus electricus (Teleostei, Gymnotiformes, a strongly electric fish from northern South America, is presented. Two female specimens were analyzed, one from the Amazon River and one from the Araguaia River. The specimens had a chromosomal number of 2n = 52 (42M-SM + 10A. C-bands were present in a centromeric and pericentromeric position on part of the chromosomes; some interstitial C-bands were also present. Heteromorphic nucleolus organizer regions (NORs were detected in two chromosome pairs of the specimen from the Amazon River. The chromosome number and karyotype characteristics are similar to those of other Gymnotidae species. The genera Electrophorus and Gymnotus are positioned as the basal lineages in the Gymnotiformes phylogeny.

  9. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  10. South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon

    Science.gov (United States)

    Cook, K. H.; Vizy, E. K.

    2006-01-01

    The climate of the Last Glacial Maximum (LGM) over South America is simulated using a regional climate model with 60-km resolution, providing a simulation that is superior to those available from global models that do not resolve the topography and regional-scale features of the South American climate realistically. LGM conditions on SST, insolation, vegetation, and reduced atmospheric CO2 on the South American climate are imposed together and individually. Remote influences are not included. Annual rainfall is 25-35% lower in the LGM than in the present day simulation throughout the Amazon basin. A primary cause is a 2-3 month delay in the onset of the rainy season, so that the dry season is about twice as long as in the present day. The delayed onset occurs because the low-level inflow from the tropical Atlantic onto the South American continent is drier than in the present day simulation due to reduced evaporation from cooler surface waters, and this slows the springtime buildup of moist static energy that is needed to initiate convection. Once the monsoon begins in the Southern Hemisphere, LGM rainfall rates are similar to those in the present day. In the Northern Hemisphere, however, rainfall is lower throughout the (shortened) rainy season. Regional-scale structure includes slight precipitation increases in the Nordeste region of Brazil and along the eastern foothills of the Andes, and a region in the center of the Amazon basin that does not experience annual drying. In the Andes Mountains, the signal is complicated, with regions of significant rainfall increases adjacent to regions with reduced precipitation.

  11. Top-down estimates of biomass burning emissions of black carbon in the western United States

    Science.gov (United States)

    Y. H. Mao; Q. B. Li; D. Chen; L. Zhang; W. -M. Hao; K.-N. Liou

    2014-01-01

    We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May-October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS...

  12. Trace element levels in whole blood of riparian villagers of the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Lisboa Rodrigues, Jairo; Lemos Batista, Bruno [Laboratorio de Toxicologia e Essencialidade de Metais, Depto. de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto-USP, Avenida do Cafe s/n, Monte Alegre, 14040-903, Ribeirao Preto-SP (Brazil); Fillion, Myriam [Centre interdisciplinaire de recherche sur la biologie, la sante, la societe et l' environnement (CINBIOSE), Universite du Quebec a Montreal (Canada); Passos, Carlos J.S. [Faculdade UnB Planaltina (FUP), Universidade de Brasilia, Planaltina (DF) (Brazil); Mergler, Donna [Centre interdisciplinaire de recherche sur la biologie, la sante, la societe et l' environnement (CINBIOSE), Universite du Quebec a Montreal (Canada); Barbosa, Fernando, E-mail: fbarbosa@fcfrp.usp.br [Laboratorio de Toxicologia e Essencialidade de Metais, Depto. de Analises Clinicas, Toxicologicas e Bromatologicas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto-USP, Avenida do Cafe s/n, Monte Alegre, 14040-903, Ribeirao Preto-SP (Brazil)

    2009-06-15

    Monitoring the nutritional status of essential elements is of critical importance in human health. However, trace element concentrations in biological fluids are affected by environmental and physiological parameters, and therefore considerable variations can occur between specific population subgroups. Brazil is a large country with much food diversity. Moreover, dietary habits differ from north to south. As an example, the traditional populations of the Brazilian Amazon basin are heavily dependent on fish, fruits, vegetables and manioc for their daily sustenance. However, very few studies have examined to what extent these diets reflect adequate nutritional status for essential elements. Then, in the present study we have evaluated the levels of some trace elements (Cu, Co, Zn Sr, and Rb) in the whole blood of a riparian Brazilian Amazonian population and estimated the influence of age and gender on levels and inter-element interactions in the same population. For this, 253 subjects, aged 15 to 87, from 13 communities situated on the banks of the Tapajos, one of the major tributaries of the Amazon, were randomly selected. The values found for cobalt, copper and strontium in whole blood are in the same range as in other populations. On the other hand, the levels of rubidium and zinc may be considered higher. Moreover, gender was shown to influence Zn and Cu levels while age influenced the concentrations of Sr and Rb in men and Cu in women. Given the scarcity of studies examining nutritional status in traditional communities of the Amazon, our study is the first to provide relevant insight into trace element values in this region and inter-element interactions. This paper is also of particular importance for future studies looking at the possible protective effects of traditional Amazon riparian diets against mercury intake from fish consumption.

  13. Trace element levels in whole blood of riparian villagers of the Brazilian Amazon

    International Nuclear Information System (INIS)

    Lisboa Rodrigues, Jairo; Lemos Batista, Bruno; Fillion, Myriam; Passos, Carlos J.S.; Mergler, Donna; Barbosa, Fernando

    2009-01-01

    Monitoring the nutritional status of essential elements is of critical importance in human health. However, trace element concentrations in biological fluids are affected by environmental and physiological parameters, and therefore considerable variations can occur between specific population subgroups. Brazil is a large country with much food diversity. Moreover, dietary habits differ from north to south. As an example, the traditional populations of the Brazilian Amazon basin are heavily dependent on fish, fruits, vegetables and manioc for their daily sustenance. However, very few studies have examined to what extent these diets reflect adequate nutritional status for essential elements. Then, in the present study we have evaluated the levels of some trace elements (Cu, Co, Zn Sr, and Rb) in the whole blood of a riparian Brazilian Amazonian population and estimated the influence of age and gender on levels and inter-element interactions in the same population. For this, 253 subjects, aged 15 to 87, from 13 communities situated on the banks of the Tapajos, one of the major tributaries of the Amazon, were randomly selected. The values found for cobalt, copper and strontium in whole blood are in the same range as in other populations. On the other hand, the levels of rubidium and zinc may be considered higher. Moreover, gender was shown to influence Zn and Cu levels while age influenced the concentrations of Sr and Rb in men and Cu in women. Given the scarcity of studies examining nutritional status in traditional communities of the Amazon, our study is the first to provide relevant insight into trace element values in this region and inter-element interactions. This paper is also of particular importance for future studies looking at the possible protective effects of traditional Amazon riparian diets against mercury intake from fish consumption.

  14. Causes and impacts of the 2005 Amazon drought

    International Nuclear Information System (INIS)

    Zeng Ning; Yoon, Jin-Ho; Marengo, Jose A; Nobre, Carlos A; Subramaniam, Ajit; Mariotti, Annarita; Neelin, J David

    2008-01-01

    A rare drought in the Amazon culminated in 2005, leading to near record-low streamflows, small Amazon river plume, and greatly enhanced fire frequency. This episode was caused by the combination of 2002-03 El Nino and a dry spell in 2005 attributable to a warm subtropical North Atlantic Ocean. Analysis for 1979-2005 reveals that the Atlantic influence is comparable to the better-known Pacific linkage. While the Pacific influence is typically locked to the wet season, the 2005 Atlantic impact concentrated in the Amazon dry season when its hydroecosystem is most vulnerable. Such mechanisms may have wide-ranging implications for the future of the Amazon rainforest

  15. Amazon Forests Response to Droughts: A Perspective from the MAIAC Product

    Science.gov (United States)

    Bi, Jian; Myneni, Ranga; Lyapustin, Alexei; Wang, Yujie; Park, Taejin; Chi, Chen; Yan, Kai; Knyazikhin, Yuri

    2016-01-01

    Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  16. Antarctic Bottom Water temperature changes in the western South Atlantic from 1989 to 2014

    Science.gov (United States)

    Johnson, Gregory C.; McTaggart, Kristene E.; Wanninkhof, Rik

    2014-12-01

    Warming of abyssal waters in recent decades contributes to global heat uptake and sea level rise. Repeat oceanographic section data in the western South Atlantic taken mostly in 1989 (1995 across the Scotia Sea), 2005, and 2014 are used to quantify warming in abyssal waters that spread northward through the region from their Antarctic origins in the Weddell Sea. While much of the Scotia Sea warmed between 1995 and 2005, only the southernmost portion, on the north side of the Weddell Gyre, continued to warm between 2005 and 2014. The abyssal Argentine Basin also warmed between 1989 and 2005, but again only the southernmost portion continued to warm between 2005 and 2014, suggesting a slowdown in the inflow of the coldest, densest Antarctic Bottom Waters into the western South Atlantic between 1989 and 2014. In contrast, the abyssal waters of the Brazil Basin warmed both between 1989 and 2005 and between 2005 and 2014, at a rate of about 2 m°C yr-1. This warming is also assessed in terms of the rates of change of heights above the bottom for deep isotherms in each deep basin studied. These results, together with findings from previous studies, suggest the deep warming signal observed in the Weddell Sea after the mid-1970s Weddell Polynya was followed by abyssal warming in the Argentine Basin from the late 1970s through about 2005, then warming in the deep Vema Channel from about 1992 through at least 2010, and warming in the Brazil Basin from 1989 to 2014.

  17. Fragmentation of Andes-to-Amazon connectivity by hydropower dams.

    Science.gov (United States)

    Anderson, Elizabeth P; Jenkins, Clinton N; Heilpern, Sebastian; Maldonado-Ocampo, Javier A; Carvajal-Vallejos, Fernando M; Encalada, Andrea C; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems-the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services.

  18. Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia

    Directory of Open Access Journals (Sweden)

    W. Dawes

    2012-08-01

    Full Text Available The groundwater resource contained within the sandy aquifers of the Swan Coastal Plain, south-west Western Australia, provides approximately 60 percent of the drinking water for the metropolitan population of Perth. Rainfall decline over the past three decades coupled with increasing water demand from a growing population has resulted in falling dam storage and groundwater levels. Projected future changes in climate across south-west Western Australia consistently show a decline in annual rainfall of between 5 and 15 percent. There is expected to be a reduction of diffuse recharge across the Swan Coastal Plain. This study aims to quantify the change in groundwater recharge in response to a range of future climate and land cover patterns across south-west Western Australia.

    Modelling the impact on the groundwater resource of potential climate change was achieved with a dynamically linked unsaturated/saturated groundwater model. A vertical flux manager was used in the unsaturated zone to estimate groundwater recharge using a variety of simple and complex models based on climate, land cover type (e.g. native trees, plantation, cropping, urban, wetland, soil type, and taking into account the groundwater depth.

    In the area centred on the city of Perth, Western Australia, the patterns of recharge change and groundwater level change are not consistent spatially, or consistently downward. In areas with land-use change, recharge rates have increased. Where rainfall has declined sufficiently, recharge rates are decreasing, and where compensating factors combine, there is little change to recharge. In the southwestern part of the study area, the patterns of groundwater recharge are dictated primarily by soil, geology and land cover. In the sand-dominated areas, there is little response to future climate change, because groundwater levels are shallow and much rainfall is rejected recharge. Where the combination of native vegetation and

  19. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    Science.gov (United States)

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  20. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    Directory of Open Access Journals (Sweden)

    Matt Finer

    Full Text Available Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1 There is a critical need for further strategic regional and basin scale evaluation of dams. 2 There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3 Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  1. Environmental patterns and biomass distribution of gelatinous macrozooplankton. Three study cases in the South-western Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    H. W. Mianzan

    2000-12-01

    Full Text Available Periodic swarms or blooms of gelatinous macrozooplankton have a negative effect on many human activities such as tourism, fisheries, and industry, but for several reasons (sampling procedures, underestimation of their real abundance, etc., they have often been neglected in the local literature. The high spatial resolution exercise of the South-western Atlantic anchovy Engraulis anchoita Recruitment Project (SARP was therefore also suitable for estimating standing stocks of jelly macrozooplankton, attempting to establish particular environmental patterns exerting control on the spatial distribution of these facultative carnivorous predators in coastal frontal environments. These studies were carried out through a sampling programme on board the German R/V Meteor in three different systems, convergence and divergent, in the South-western Atlantic Ocean: Region A (42°S on the Argentine shelf, characterised by tidal mixing fronts; Region B (36°S, the freshwater outflow from Río de la Plata; and Region C (28°S, under upwelling events in subtropical waters on the Brazilian shelf. In general, a dominance of gelatinous macrozooplankton, compared with the other fraction of macrozooplankton and micronekton was observed. Mean standing stock of the gelatinous zooplankton was always greater than 50% of organic carbon (org. C in every section analysed. The lobate ctenophore Mnemiopsis leidyi dominated the zooplankton biomass in Region A, Argentina. It represented 60% of total org. C and was more abundant at the stratified zone of the front. Ctenophores were also dominant in Region B, Río de la Plata, where the related species Mnemiopsis mccradyi and the cydippid ctenophore Pleurobrachia pileus comprised 81% of total org. C. Mnemiopsis was most common in areas of vertical thermal and saline stratification, while Pleurobrachia was dominant in the less stratified areas. Gelatinous zooplankton was also the principal component of the macrozooplankton biomass

  2. [Chemical denudation rates and carbon dioxide sink in Koxkar glacierised region at the south slope of Mt. Tianshan, China].

    Science.gov (United States)

    Wang, Jian; Xu, Jun-li; Zhang, Shi-qiang; Liu, Shi-yin; Han, Hai-dong

    2010-04-01

    Chemical denudation rates and carbon dioxide sink were from water samples from ice-melt water, precipitation and river water were collected daily from June 21st to September 10th in 2004 in the Koxkar glacier region, south slope of Mt. Tianshan, China. The law of conservation of mass was applied for calculating chemical denudation fluxes and transient carbon dioxide sink. It is found that: 1) There were average of 60.7 kg x (km2 x d)(-1) and 60.2 kg x (km2 x d)(-1) solutes supplied by precipitation and ice melt-water respectively which accounted for about 7.7% and 7.6% of the total solutes of bulk river water [791.2 kg x (km2 x d)(-1)]. Consequently, the rate of chemical denudation derived from the crustal flux was 558.0 kg x (km2 x d)(-1), accounting for 70.5%. 2) Carbonation weathering was 308.9 kg x (km2 x d)(-1), and heavier than that of the other chemical denudations. The crustal concentration of bicarbonates (HCO3-) is attributed chiefly to the carbonation of carbonates (limestone and dolomite) and aluminosilicates/silicates. A further important source of bicarbonates and sulphates is pyrite oxidation coupled with limestone/dolomite dissolution. The transient carbon dioxide sink can be estimated by ion balance law, which is 81.0 kg x (km2 x d)(-1), accounting for 14.2%. 3) The chemical denudation rates was 641.1 kg x (km2 x d)(-1) with relationship of specific conductivity to concentrations of dissolved carbonate in water, which is only 4.4% less than that obtained from mass balance method without regard to carbon dioxide sink. The study also implied important to evaluate chemical denudation fluxes of poor data in western mountain area, China. However, because of without chemical analysis and ion partitioning, the transient CO2 drawdown cannot be established.

  3. Soil color indicates carbon and wetlands: developing a color-proxy for soil organic carbon and wetland boundaries on sandy coastal plains in South Africa.

    Science.gov (United States)

    Pretorius, M L; Van Huyssteen, C W; Brown, L R

    2017-10-13

    A relationship between soil organic carbon and soil color is acknowledged-albeit not a direct one. Since heightened carbon contents can be an indicator of wetlands, a quantifiable relationship between color and carbon might assist in determining wetland boundaries by rapid, field-based appraisal. The overarching aim of this initial study was to determine the potential of top soil color to indicate soil organic carbon, and by extension wetland boundaries, on a sandy coastal plain in South Africa. Data were collected from four wetland types in northern KwaZulu-Natal in South Africa. Soil samples were taken to a depth of 300 mm in three transects in each wetland type and analyzed for soil organic carbon. The matrix color was described using a Munsell soil color chart. Various color indices were correlated with soil organic carbon. The relationship between color and carbon were further elucidated using segmented quantile regression. This showed that potentially maximal carbon contents will occur at values of low color indices, and predictably minimal carbon contents will occur at values of low or high color indices. Threshold values can thus be used to make deductions such as "when the sum of dry and wet Value and Chroma values is 9 or more, carbon content will be 4.79% and less." These threshold values can then be used to differentiate between wetland and non-wetland sites with a 70 to 100% certainty. This study successfully developed a quantifiable correlation between color and carbon and showed that wetland boundaries can be determined based thereon.

  4. Tropical forest mapping at regional scale using the GRFM SAR mosaics over the Amazon in South America

    NARCIS (Netherlands)

    Sgrenzaroli, M.

    2004-01-01

    The work described in this thesis concerns the estimation of tropical forest vegetation cover in the Amazon region using as data source a continental scale high resolution (100 m) radar mosaic as data source. The radar mosaic was compiled by the Jet Propulsion Laboratory (NASA JPL) using

  5. 90–100% renewable electricity for the South West Interconnected System of Western Australia

    International Nuclear Information System (INIS)

    Lu, Bin; Blakers, Andrew; Stocks, Matthew

    2017-01-01

    Rapidly increasing penetration of renewables, primarily wind and photovoltaics (PV), is causing a move away from fossil fuel in the Australian electric power industry. This study focuses on the South West Interconnected System in Western Australia. Several high (90% and 100%) renewables penetration scenarios have been modelled, comprising wind and PV supplemented with a small amount of biogas, and compared with a “like-for-like” fossil-fuel replacement scenario. Short-term off-river (closed cycle) pumped hydro energy storage (PHES) is utilised in some simulations as a large-scale conventional storage technology. The scenarios are examined by using a chronological dispatch model. An important feature of the modelling is that only technologies that have been already deployed on a large scale (>150 gigawatts) are utilised. This includes wind, PV and PHES. The modelling results demonstrate that 90–100% penetration by wind and PV electricity is compatible with a balanced grid. With the integration of off-river PHES, 90% renewables penetration is able to provide low-carbon electricity at competitive prices. Pumped hydro also facilitates a 100% renewables scenario which produces zero greenhouse gas emissions with attractive electricity prices. A sensitivity analysis shows the most important factors in the system cost are discount rate and wind turbine cost. - Highlights: • Short-term off-river pumped hydro energy storage (STORES). • 90–100% renewables for a large-scale self-contained power system. • PV and wind serves 80–90% of the total energy. • 90% renewables system costs $116 ($103)/MWh using 2016 (2030) prices.

  6. Modelling sustainable international tourism demand to the Brazilian Amazon

    NARCIS (Netherlands)

    J.A. Divino (Jose Angelo); M.J. McAleer (Michael)

    2008-01-01

    textabstractThe Amazon rainforest is one of the world’s greatest natural wonders and holds great importance and significance for the world’s environmental balance. Around 60% of the Amazon rainforest is located in the Brazilian territory. The two biggest states of the Amazon region are Amazonas (the

  7. Business as Usual: Amazon.com and the Academic Library

    Science.gov (United States)

    Van Ullen, Mary K.; Germain, Carol Anne

    2002-01-01

    In 1999, Steve Coffman proposed that libraries form a single interlibrary loan based entity patterned after Amazon.com. This study examined the suitability of Amazon.com's Web interface and record enhancements for academic libraries. Amazon.com could not deliver circulating monographs in the University at Albany Libraries' collection quickly…

  8. Evapotranspiration seasonality across the Amazon Basin

    Science.gov (United States)

    Eiji Maeda, Eduardo; Ma, Xuanlong; Wagner, Fabien Hubert; Kim, Hyungjun; Oki, Taikan; Eamus, Derek; Huete, Alfredo

    2017-06-01

    Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and an important indicator of ecosystem functioning. Despite its importance, the seasonal variability of ET over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this study, we carry out a water balance approach to analyse seasonal patterns in ET and their relationships with water and energy drivers over five sub-basins across the Amazon Basin. We used in situ measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and magnitude. The highest mean annual ET was found in the northern Rio Negro basin (˜ 1497 mm year-1) and the lowest values in the Solimões River basin (˜ 986 mm year-1). For the first time in a basin-scale study, using observational data, we show that factors limiting ET vary across climatic gradients in the Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are driven by a combination of energy and water availability, as neither rainfall nor radiation alone could explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry watersheds. Finally, we compared our results with estimates obtained by two ET models, and we conclude that neither of the two tested models could provide a consistent representation of ET seasonal patterns across the Amazon.

  9. South Africa : an opportunity for Western Europe ?

    International Nuclear Information System (INIS)

    Fischer, D.

    1989-01-01

    Of the six threshold countries (Argentina, Brazil, India, Israel, Pakistan, and South Africa), South Africa is the only one that, by a judicious application of pressures and incentives might be induced to accede the Non-Proliferation Treaty. There are several reasons for this, which derive chiefly from South Africa's political isolation and economic vulnerability and the absence of any credible military threat from beyond the country's borders. (author)

  10. Is Amazon the next Google?

    OpenAIRE

    Budzinski, Oliver; Köhler, Karoline Henrike

    2015-01-01

    Dominant or apparently dominant internet platform increasingly become subject to both antitrust investigations and further-reaching political calls for regulation. While Google is currently in the focus of the discussion, the next candidate is already on the horizon - the ubiquitous online trading platform Amazon. Competitors and suppliers but also famous economists like Paul Krugman unite in criticizing Amazon's market power and alleged abuse of it. In this paper, we collect the multitude of...

  11. Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of north-western South America.

    Science.gov (United States)

    Jiménez-Segura, L F; Galvis-Vergara, G; Cala-Cala, P; García-Alzate, C A; López-Casas, S; Ríos-Pulgarín, M I; Arango, G A; Mancera-Rodríguez, N J; Gutiérrez-Bonilla, F; Álvarez-León, R

    2016-07-01

    The remarkable fish diversity in the Caribbean rivers of north-western South America evolved under the influences of the dramatic environmental changes of neogene northern South America, including the Quechua Orogeny and Pleistocene climate oscillations. Although this region is not the richest in South America, endemism is very high. Fish assemblage structure is unique to each of the four aquatic systems identified (rivers, streams, floodplain lakes and reservoirs) and community dynamics are highly synchronized with the mono-modal or bi-modal flooding pulse of the rainy seasons. The highly seasonal multispecies fishery is based on migratory species. Freshwater fish conservation is a challenge for Colombian environmental institutions because the Caribbean trans-Andean basins are the focus of the economic development of Colombian society, so management measures must be directed to protect aquatic habitat and their connectivity. These two management strategies are the only way for helping fish species conservation and sustainable fisheries. © 2016 The Fisheries Society of the British Isles.

  12. Climate change and runoff in south-western Australia

    Science.gov (United States)

    Silberstein, R. P.; Aryal, S. K.; Durrant, J.; Pearcey, M.; Braccia, M.; Charles, S. P.; Boniecka, L.; Hodgson, G. A.; Bari, M. A.; Viney, N. R.; McFarlane, D. J.

    2012-12-01

    SummaryThis paper presents the results of computer simulations of runoff from 13 major fresh and brackish river basins in south-western Australia (SWA) under climate projections obtained from 15 GCMs with three future global warming scenarios equivalent to global temperature rises of 0.7 °C, 1.0 °C and 1.3 °C by 2030. The objective was to apply an efficient methodology, consistent across a large region, to examine the implications of the best available projections in climate trends for future surface water resources. An ensemble of rainfall-runoff models was calibrated on stream flow data from 1975 to 2007 from 106 gauged catchments distributed throughout the basins of the study area. The sensitivity of runoff to projected changes in mean annual rainfall is examined using the climate 'elasticity' concept. Averaged across the study area, all 15 GCMs project declines in rainfall under all global warming scenarios with a median decline of 8% resulting in a median decline in runoff of 25%. Such uniformity in projections from GCMs is unusual. Over SWA the average annual runoff under the 5th wettest and 5th driest of the 45 projections of the 2030 climate declines by 10 and 42%, respectively. Under the 5th driest projection the runoff decline ranges from 53% in the northern region to 40% in the southern region. Strong regional variations in climate sensitivity are found with the proportional decline in runoff greatest in the northern region and the greatest volumetric declines in the wetter basins in the south. Since the mid 1970s stream flows into the major water supply reservoirs in SWA have declined by more than 50% following a 16% rainfall reduction. This has already had major implications for water resources planning and for the preservation of aquatic and riparian ecosystems in the region. Our results indicate that this reduction in runoff is likely to continue if future climate projections eventuate.

  13. Amazon rainforest exchange of carbon and subcanopy air flow: Manaus LBA site--a complex terrain condition.

    Science.gov (United States)

    Tóta, Julio; Fitzjarrald, David Roy; da Silva Dias, Maria A F

    2012-01-01

    On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras--ZF2--02°36'17.1'' S, 60°12'24.4'' W), subcanopy horizontal and vertical gradients of the air temperature, CO(2) concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008) was used with a network of wind, air temperature, and CO(2) sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO(2)) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO(2) into those estimates.

  14. Behavioural and chemical evidence for multiple colonisation of the Argentine ant, Linepithema humile, in the Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Wossler Theresa C

    2011-02-01

    Full Text Available Abstract Background The Argentine ant, Linepithema humile, is a widespread invasive ant species that has successfully established in nearly all continents across the globe. Argentine ants are characterised by a social structure known as unicoloniality, where territorial boundaries between nests are absent and intraspecific aggression is rare. This is particularly pronounced in introduced populations and results in the formation of large and spatially expansive supercolonies. Although it is amongst the most well studied of invasive ants, very little work has been done on this ant in South Africa. In this first study, we investigate the population structure of Argentine ants in South Africa. We use behavioural (aggression tests and chemical (CHC approaches to investigate the population structure of Argentine ants within the Western Cape, identify the number of supercolonies and infer number of introductions. Results Both the aggression assays and chemical data revealed that the Western Cape Argentine ant population can be divided into two behaviourally and chemically distinct supercolonies. Intraspecific aggression was evident between the two supercolonies of Argentine ants with ants able to discriminate among conspecific non-nestmates. This discrimination is linked to the divergence in cuticular hydrocarbon profiles of ants originating from the two supercolonies. Conclusions The presence of these two distinct supercolonies is suggestive of at least two independent introductions of this ant within the Western Cape. Moreover, the pattern of colonisation observed in this study, with the two colonies interspersed, is in agreement with global patterns of Argentine ant invasions. Our findings are of interest because recent studies show that Argentine ants from South Africa are different from those identified in other introduced ranges and therefore provide an opportunity to further understand factors that determine the distributional and spread

  15. Amazon Forests’ Response to Droughts: A Perspective from the MAIAC Product

    Directory of Open Access Journals (Sweden)

    Jian Bi

    2016-04-01

    Full Text Available Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth’s climate system. It is only possible to assess Amazon forests’ response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC Moderate Resolution Imaging Spectroradiometer (MODIS vegetation index (VI data to assess Amazon forests’ response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6 MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1 the droughts decreased the greenness (i.e., photosynthetic activity of Amazon forests; (2 the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3 in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  16. Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape.

    Science.gov (United States)

    Kline, Jeffrey D; Harmon, Mark E; Spies, Thomas A; Morzillo, Anita T; Pabst, Robert J; McComb, Brenda C; Schnekenburger, Frank; Olsen, Keith A; Csuti, Blair; Vogeler, Jody C

    2016-10-01

    Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen

  17. The Northwest Amazon in Perspective: A Reading from the 5th-6th Centuries to 1767

    Directory of Open Access Journals (Sweden)

    Jean Pierre Goulard

    2010-02-01

    Full Text Available The history of northwestern South America, focusing on the Amazon basin, is put into perspective using the prevalent models of social organization in the lowlands of the Amazon for more than a thousand years. The proposed analysis makes it possible to understand the modes and periods of occupation of this territory. The article concludes that the region should be perceived as a whole, irrespective of which populations inhabited it in the different periods. Thus it is apparent that several waves of occupation took place. The first, Arawakan, wave established a spatial scheme that was retained by the following ones, adapting it to their needs. Furthermore, the author proposes approaching the installation of the Jesuit missions with the same perspective, since they also appropriated the spatial arrangement they found upon their arrival. Only after their expulsion did the partitioning of the territory begin according to European criteria.

  18. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    Science.gov (United States)

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  19. Selective logging in the Brazilian Amazon.

    Science.gov (United States)

    G. P. Asner; D. E. Knapp; E. N. Broadbent; P. J. C. Oliveira; M Keller; J. N. Silva

    2005-01-01

    Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square...

  20. Stormflow influence on nutrient dynamics in micro-catchments under contrasting land use in the Cerrado and Amazon Biomes, Brazil

    Science.gov (United States)

    Edelmann, Katharina; Nóbrega, Rodolfo L. B.; Gerold, Gerhard

    2017-04-01

    The Amazon and Cerrado biomes in Brazil have been under intense land-use change during the past few decades. The conversion of native vegetation to pastures and croplands has caused impacts on hydrological processes in these biomes, resulting in increased streamflow and nutrient fluxes. Our aim was to compare the nutrient dynamics during stormflow events in two pairs of adjacent micro-catchments with similar physical characteristics under contrasting land use, i.e. native vegetation (rainforest or cerrado) and pasture. One pair of catchments was located in the Amazon and the other in the Cerrado, both on the Amazon Agricultural Frontier in the Brazilian states of Mato Grosso and Pará. We collected hydrological and hydrochemical data on 50 stormflow events on a sub-hourly resolution during the wet seasons of 2013 and 2014. We compared the dynamics of total inorganic carbon (TIC), total organic carbon (TOC), dissolved organic carbon (DOC), nitrate (NO3), calcium (Ca), potassium (K), and magnesium (Mg) in different hydrograph parts, i.e. rising limb, peak and recession limb, between the catchments within the same biome. For the Cerrado biome, our findings show that the nutrient concentrations in the stormflows were higher in the pasture catchment than in the cerrado catchment. In the Amazon biome, we found an inverse relationship with higher concentrations in the forest catchment than in the pasture catchment, except for TIC and K. Most nutrients in the cerrado catchment had the highest concentrations in the rising limb. Mg, however, reached highest concentrations during peak discharge, and lowest in the recession limb. In the adjacent pasture catchment, in contrast, the highest nutrient concentrations were observed during the peak discharge (TIC, TOC, Ca) or the recession limb (DOC, NO3, K, Mg) with lowest in the rising limb, except for NO3, which showed the lowest concentrations during peak discharge. In the Amazon forest catchment, the peak discharge showed the

  1. Carbonate system distribution south of the Canary Islands in spring 2000

    Directory of Open Access Journals (Sweden)

    Iván R. Ucha

    2010-11-01

    Full Text Available The measurement of the surface molar fraction of CO2 (atmosphere and sea water and water column pHT, total alkalinity, AT, nutrients and oxygen were carried out in spring 2000 at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC and in the area located south of the Canary Islands. The significant eddy field strongly affecting the pattern of the chemical and carbonate system variables is presented and discussed. A mixing model based on the thermohaline properties of the water masses was established. The model explained over 97% of the variability found in the distribution of the chemical variables. Intermediate waters to the south of the Canary Islands show a high contribution of Antarctic waters with about 5% of pure Antarctic Intermediate Water. Moreover, the surface structure affected the atmosphere-ocean carbon dioxide exchange, making the area act as a CO2 sink taking up 9.1 mmol m-2 week-1, corresponding to 0.03 Mt of CO2 which were taken up by the area in a week at the end of March 2000.

  2. Demography of Oenocarpus bataua and implications for sustainable harvest of its fruit in western Amazon

    DEFF Research Database (Denmark)

    Isaza, Carolina; Matorrell, C; Cevallos, G

    2016-01-01

    Oenocarpus bataua is one of the most abundant and most used palm in the Amazon region. The main resource obtained from the species is the fruits that are harvested for human consumption. Across its distribution area adults are felled to obtain the racemes, which may affect the palm’s populations...... with an average of 11 adults ha-1 (variation 0–132 adults ha-1). The population finite growth rate (λ) in Amacayacu, Colombia, was 0.9103 because of slow growth and low survival of stemless individuals and low recruitment. On the contrary, in Yasuní we found a growing population with λ=1.0368. According to our...

  3. Platforms of the Nicaraguan Rise: Examples of the sensitivity of carbonate sedimentation to excess trophic resources

    Science.gov (United States)

    Hallock, Pamela; Hine, Albert C.; Vargo, Gabriel A.; Elrod, Jane A.; Jaap, Walter C.

    1988-12-01

    The Nicaraguan Rise is an active tectonic structure in the western Caribbean. Carbonate accumulation on its platforms has not kept pace with relative Holocene sea-level rise, despite a tropical location remote from terrigenous sedimentation. Trophic resources apparently exceed levels favoring coral-reef development because sponge-algal communities dominate the drowning western platforms, in contrast to mixed coral-algal benthos on Pedro Bank and well- developed coral reefs along the north coast of Jamaica. Concentrations of biotic pigments in sea-surface waters show a corresponding west-east gradient; oceanic waters flowing over the western banks carry nearly twice as much biotic pigment as oceanic waters north of Jamaica. Sources enriching the western Caribbean are terrestrial runoff, upwelling off northern South America, and topographic upwelling over the Nicaraguan Rise. That relatively modest levels of trophic resources can suppress coral-reef development holds important implications for understanding carbonate platform drownings in the geologic record.

  4. [Hantavirus pulmonary syndrome (Rio Mamore virus) in the Peruvian Amazon region].

    Science.gov (United States)

    Casapía, Martín; Mamani, Enrique; García, María P; Miraval, María L; Valencia, Pedro; Quino, Alberto H; Alvarez, Carlos; Donaires, Luis F

    2012-01-01

    Hantavirus infection is a viral zoonotic infection borne by rodents which most letal form clinical is the Hantavirus Pulmonary Syndrome (SPH, Spanish abbreviation). The Mamore River variant originates in South America and was found in rodents without any association to human diseases. Two cases of SPH were identified in the Peruvian Amazon region in November 2011. In both cases, a molecular diagnostic testing was conducted by the Instituto Nacional de Salud from Peru. A phylogenetic analysis of a viral genome fragment and a histopathological evaluation were conducted. Both patients developed adult respiratory distress syndrome and refractory shock. A patient died and another one recovered 12 days later.

  5. Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve.

    Science.gov (United States)

    Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane

    2018-02-05

    Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon

  6. Three new species of Diascia (Scrophulariaceae from the Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    K. E. Steiner

    2009-08-01

    Full Text Available Three new annual species of Diascia Link & Otto are described from the Western Cape Province of South Africa. D. collina is characterized by greyish magenta flowers with two divergent yellow sacs containing oil-secreting trichomes. It is restricted to granite outcrops in the vicinity of Saldanha Bay, from the West Coast National Park and Langebaan north to Vredenburg. D. pusilla is closely related to D. collina. but differs from that species in having smaller flowers with shorter, ± parallel sacs, and posticous filaments that lack a protuberance where they bend sharply backwards towards the upper lip. It occurs in grey to whitish sands usually near seasonally moist or wet areas. It has not been found more than 35 km from the coast and ranges from Modderrivier, south o f Darling, north to Lambert’s Bay. D. appendiculata is related to D. diffusa (Thunb. Benth. and is characterized by having small, mainly reddish lilac to greyish magenta flowers, two shallow depressions in the corolla tube at the base of the upper lip, and posticous filaments with sterile appendages. It is known from only six localities in the general vicinity of Citrusdal and occurs in fynbos vegetation on lower mountain slopes or flats, in loose alluvial sands derived from Table Mountain Sandstone.

  7. Being alone and expectations lost: a critical realist study of maternal depression in South Western Sydney.

    Science.gov (United States)

    Eastwood, John G; Kemp, Lynn A; Jalaludin, Bin B

    2015-01-01

    The study reported here is part of a critical realist multilevel study. It seeks to identify and explain complex perinatal contextual social and psychosocial mechanisms that may influence the developmental origins of health and disease, with a focus on the role of postnatal depression. The aims of the greater study are to: (1) describe the phenomenon of postnatal depression in South Western Sydney; and (2) identify mechanisms that would add to our understanding of the psycho-social causes of maternal depression. This paper will move beyond our previous quantitative descriptions of individual-level predictors of depressive symptoms by seeking the views of local mothers and practitioners, to explain the mechanisms that might be involved. The study was set in South Western Sydney, New South Wales, Australia. An Explanatory Theory Building Method was used. The previously reported quantitative study was a non-linear principal component analysis and logistic regression study of 15,389 months delivering in 2002 and 2003. This intensive qualitative study used open coding of interviews, of seven practitioners and three naturally occurring mothers groups, to enable maximum emergence. The theoretical concepts identified were: attachment and nurturing, infant temperament, unplanned pregnancy and sole parenthood, support for mothers, access to services, stress, financial hardship, isolation and marginalisation, mothers' "loss of control" and "power", and expectations and dreams. Being alone and expectations lost emerged as possible triggers of stress and depression for mothers. These findings might also apply to others who have their dreams shattered during life's transitions. In these situations social and cultural context can either nurture and support or marginalise and isolate. The challenge for policy and practice is to support mothers and their partners during the transition to parenthood within a challenging social and material context.

  8. Simulating SOC changes in 11 land use change chronosequences from the Brazilian Amazon with RothC and Century models

    NARCIS (Netherlands)

    Cerri, C.E.P.; Easter, M.; Paustian, K.; Killian, K.; Coleman, K.; Bernoux, M.; Falloon, P.; Powlson, D.S.; Batjes, N.H.; Milne, E.; Cerri, C.C.

    2007-01-01

    Land use and land cover changes in the Brazilian Amazon have major implications for regional and global carbon (C) cycling. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the region. The main objective of this study was to evaluate the accuracy of

  9. Developing occupational chronologies for surface archaeological deposits from heat retainer hearths on Pine Point and Langwell stations, Far Western New South Wales, Australia

    International Nuclear Information System (INIS)

    Shiner, J.

    2003-01-01

    The archaeological record of arid Australia is dominated by deflated distributions of stone artefacts and heat retainer hearths covering many thousands of square metres. These deposits have often been over-looked by archaeologists in preference for stratified deposits, which are regarded as more appropriate for investigating temporal issues. In recent years this situation had slowly begun to change with the large-scale dating of heat retainer hearths from surface contexts. The work of of Fanning and Holdaway (2001) and Holdaway et al. (2002) in Far Western New South Wales has demonstrated that through the dating of large numbers of hearths it is possible to develop occupational chronologies for surface deposits. At a wider landscape scale these chronologies reflect the timing and tempo of the occupation of different places. A major component of my doctoral fieldwork on Pine Point and Langwell stations, 50 km south of Broken Hill in Western New South Wales, aimed to establish occupational chronologies from hearths for surface archaeological distributions. This paper reports on radiocarbon results from this investigation. (author). 6 refs., 2 figs., 1 tab

  10. Dynamics of the organic matter from the soil resulting from the changes of the Amazon northeastern ground use

    International Nuclear Information System (INIS)

    Camargo, Plinio Barbosa de; Martinelli, Luiz Antonio; Victoria, Reynaldo Luiz; Trumbore, Susan

    1997-01-01

    Aiming a better understanding of the problems related with carbon dynamic in the Amazon soils, soil profiles have been sampled for the determination of: soil carbon content and the variations between areas covered with natural forests, pastures and brush woods; average permanence time of the soil organic matter and the variations between different vegetal covering types; soil organic matter quality in terms of the refractory characteristics and the variation resulting from the changes in the vegetation type. The obtained answers define the soil organic matter dynamic itself. Therefore, the organic matter elementary analysis has been combined, by determining the carbon concentration, with the use of carbon natural isotope 14 C and the stable 13 C

  11. High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures

    International Nuclear Information System (INIS)

    Nelson, James; Johnston, Josiah; Mileva, Ana; Fripp, Matthias; Hoffman, Ian; Petros-Good, Autumn; Blanco, Christian; Kammen, Daniel M.

    2012-01-01

    Decarbonizing electricity production is central to reducing greenhouse gas emissions. Exploiting intermittent renewable energy resources demands power system planning models with high temporal and spatial resolution. We use a mixed-integer linear programming model – SWITCH – to analyze least-cost generation, storage, and transmission capacity expansion for western North America under various policy and cost scenarios. Current renewable portfolio standards are shown to be insufficient to meet emission reduction targets by 2030 without new policy. With stronger carbon policy consistent with a 450 ppm climate stabilization scenario, power sector emissions can be reduced to 54% of 1990 levels by 2030 using different portfolios of existing generation technologies. Under a range of resource cost scenarios, most coal power plants would be replaced by solar, wind, gas, and/or nuclear generation, with intermittent renewable sources providing at least 17% and as much as 29% of total power by 2030. The carbon price to induce these deep carbon emission reductions is high, but, assuming carbon price revenues are reinvested in the power sector, the cost of power is found to increase by at most 20% relative to business-as-usual projections. - Highlights: ► Intermittent generation necessitates high-resolution electric power system models. ► We apply the SWITCH planning model to the western North American grid. ► We explore carbon policy and resource cost scenarios through 2030. ► As the carbon price rises, coal generation is replaced with solar, wind, gas and/or nuclear generation ► A 450 ppm climate stabilization target can be met at a 20% or lower cost increase.

  12. Role of atmospheric heating over the South China Sea and western Pacific regions in modulating Asian summer climate under the global warming background

    Science.gov (United States)

    He, Bian; Yang, Song; Li, Zhenning

    2016-05-01

    The response of monsoon precipitation to global warming, which is one of the most significant climate change signals at the earth's surface, exhibits very distinct regional features, especially over the South China Sea (SCS) and adjacent regions in boreal summer. To understand the possible atmospheric dynamics in these specific regions under the global warming background, changes in atmospheric heating and their possible influences on Asian summer climate are investigated by both observational diagnosis and numerical simulations. Results indicate that heating in the middle troposphere has intensified in the SCS and western Pacific regions in boreal summer, accompanied by increased precipitation, cloud cover, and lower-tropospheric convergence and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS and western Pacific and continental South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The result highlights the important role of air-sea interaction in understanding the changes in Asian climate.

  13. Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4

    Science.gov (United States)

    Li, Wenhong; Fu, Rong; Dickinson, Robert E.

    2006-01-01

    The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.

  14. Atmospheric CO2 measurements reveal strong drought sensitivity of Amazonian carbon balance

    Science.gov (United States)

    Miller, J. B.; Gatti, L.; Gloor, M.; Doughty, C.; Malhi, Y.; Domingues, L. G.; Basso, L. S.; Martinewski, A.; Correia, C.; Borges, V.; Freitas, S. R.; Braz, R.; Anderson, L.; Rocha, H.; Grace, J.; Phillips, O.; Lloyd, J.

    2013-12-01

    Potential feedbacks between land carbon pools and climate are one of the largest sources of uncertainty for predicting future global climate, but estimates of their sensitivity to climate anomalies in the tropics and determination of underlying mechanisms are either incomplete or strongly model-based. Amazonia alone stores ~150-200 Pg of labile carbon, and has experienced an increasing trend in temperature and extreme floods and droughts over the last two decades. Here we report the first Amazon Basin-wide seasonal and annual carbon balances based on tropospheric greenhouse gas sampling, during an anomalously dry and a wet year, 2010 and 2011, providing the first whole-system assessment of sensitivity to such conditions. During 2010, the Amazon Basin lost 0.5×0.2 PgCyr-1 while in 2011 it was approximately carbon neutral (0.06×0.1 PgCyr-1). Carbon loss via fire was 0.5×0.1 PgCyr-1 in 2010 and 0.3×0.1 PgCyr-1 in 2011, as derived from Basin-wide carbon monoxide (CO) enhancements. Subtracting fire emissions from total carbon flux to derive Basin net biome exchange (NBE) reveals that in 2010 the non-fire regions of the Basin were carbon neutral; in 2011 they were a net carbon sink of -0.3×0.1 PgC yr-1, roughly consistent with a three-decade long intact-forest biomass sink of ~ -0.5×0.3 PgCyr-1 estimated from forest censuses. Altogether, our results suggest that if the recent trend of precipitation extremes persists, the Amazon region may become an increasing carbon source as a result of both emissions from fires and suppression of NBE by drought.

  15. Palystes kreutzmanni sp. n. – a new huntsman spider species from fynbos vegetation in Western Cape Province, South Africa (Araneae, Sparassidae, Palystinae

    Science.gov (United States)

    Jäger, Peter; Kunz, Dirk

    2010-01-01

    Abstract Palystes kreutzmanni sp. n. is described from habitats close to Kleinmond, in the Western Cape Province, South Africa. Spiders of this new species live in the typical fynbos vegetation of the Western Cape region. They build retreats between apical leaves of Leucadendron bushes. The systematic position of Palystes kreutzmanni sp. n. is discussed. Male and female show characters of different species groups, especially the female copulatory organ seems to be unique within the genus Palystes L. Koch, 1875. PMID:21594031

  16. Machinery penile injuries associated with traditional trousers of the Yoruba of South-western Nigeria: A consideration for proper work clothes

    Directory of Open Access Journals (Sweden)

    A.A. Popoola

    2012-03-01

    Full Text Available Appropriateness of garments for different vocations to avoid unintended injury to the worker has always been recognized. This report of two cases of machinery penile injuries in patients wearing the traditional trousers of the Yoruba tribe of south-western Nigeria emphasizes the need for wearing appropriate clothes when operating machines.

  17. Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bruno S. de O.; Coutinho, Felipe H.; Gregoracci, Gustavo B.; Leomil, Luciana; de Oliveira, Louisi S.; Fróes, Adriana; Tschoeke, Diogo; Soares, Ana Carolina; Cabral, Anderson S.; Ward, Nicholas D.; Richey, Jeffrey E.; Krusche, Alex V.; Yager, Patricia L.; de Rezende, Carlos Eduardo; Thompson, Cristiane C.; Thompson, Fabiano L.; Imperiale, Michael J.

    2017-10-04

    ABSTRACT

    The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river’s lower reach (n= 5) and plume (n= 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus,Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral familiesMicroviridaeandMyoviridaewere the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum.

    IMPORTANCEThe Amazon River forms a vast plume in the

  18. A Southern Hemisphere atmospheric history of carbon monoxide from South Pole firn air

    Science.gov (United States)

    Verhulst, K. R.; Aydin, M.; Novelli, P. C.; Holmes, C. D.; Prather, M. J.; Saltzman, E. S.

    2013-12-01

    Carbon monoxide (CO) is a reactive trace gas and is important to tropospheric photochemistry as a major sink of hydroxyl radicals (OH). Major sources of CO are fossil fuel combustion, linked mostly to automotive emissions, biomass burning, and oxidation of atmospheric methane. Understanding changes in carbon monoxide over the past century will improve our understanding of man's influence on the reactivity of the atmosphere. Little observational information is available about CO levels and emissions prior to the 1990s, particularly for the Southern Hemisphere. The NOAA global flask network provides the most complete instrumental record of CO, extending back to 1988. Annually averaged surface flask measurements suggest atmospheric CO levels at South Pole were relatively stable from 2004-2009 at about 51 nmol mol-1 [Novelli and Masarie, 2013]. In this study, a 20th century atmospheric history of CO is reconstructed from South Pole firn air measurements, using a 1-D firn air diffusion model. Firn air samples were collected in glass flasks from two adjacent holes drilled from the surface to 118 m at South Pole, Antarctica during the 2008/2009 field season and CO analysis was carried out by NOAA/CCG. Carbon monoxide levels increase from about 45 nmol mol-1 in the deepest firn sample at 116 m to 52 nmol mol-1 at 107 m, and remain constant at about 51-52 nmol mol-1 at shallower depths. Atmospheric histories based on the firn air reconstructions suggest that CO levels over Antarctica increased by roughly 40% (from about 36 to 50 nmol mol-1) between 1930-1990, at a rate of about 0.18 nmol mol-1 yr-1. Firn air and surface air results suggest the rate of CO increase at South Pole slowed considerably after 1990. The firn air-based atmospheric history is used to infer changes in Southern Hemisphere CO emissions over the 20th century.

  19. N2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise)

    Science.gov (United States)

    Caffin, Mathieu; Moutin, Thierry; Foster, Rachel Ann; Bouruet-Aubertot, Pascale; Michelangelo Doglioli, Andrea; Berthelot, Hugo; Guieu, Cécile; Grosso, Olivier; Helias-Nunige, Sandra; Leblond, Nathalie; Gimenez, Audrey; Petrenko, Anne Alexandra; de Verneil, Alain; Bonnet, Sophie

    2018-05-01

    We performed nitrogen (N) budgets in the photic layer of three contrasting stations representing different trophic conditions in the western tropical South Pacific (WTSP) Ocean during austral summer conditions (February-March 2015). Using a Lagrangian strategy, we sampled the same water mass for the entire duration of each long-duration (5 days) station, allowing us to consider only vertical exchanges for the budgets. We quantified all major vertical N fluxes both entering (N2 fixation, nitrate turbulent diffusion, atmospheric deposition) and leaving the photic layer (particulate N export). The three stations were characterized by a strong nitracline and contrasted deep chlorophyll maximum depths, which were lower in the oligotrophic Melanesian archipelago (MA, stations LD A and LD B) than in the ultra-oligotrophic waters of the South Pacific Gyre (SPG, station LD C). N2 fixation rates were extremely high at both LD A (593 ± 51 µmol N m-2 d-1) and LD B (706 ± 302 µmol N m-2 d-1), and the diazotroph community was dominated by Trichodesmium. N2 fixation rates were lower (59 ± 16 µmol N m-2 d-1) at LD C, and the diazotroph community was dominated by unicellular N2-fixing cyanobacteria (UCYN). At all stations, N2 fixation was the major source of new N (> 90 %) before atmospheric deposition and upward nitrate fluxes induced by turbulence. N2 fixation contributed circa 13-18 % of primary production in the MA region and 3 % in the SPG water and sustained nearly all new primary production at all stations. The e ratio (e ratio = particulate carbon export / primary production) was maximum at LD A (9.7 %) and was higher than the e ratio in most studied oligotrophic regions (leading to N accumulation in the upper layer appears as a characteristic of the WTSP during the summer season.

  20. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    Science.gov (United States)

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  1. Absence of vaccinia virus detection in a remote region of the Northern Amazon forests, 2005-2015.

    Science.gov (United States)

    Costa, Galileu Barbosa; Lavergne, Anne; Darcissac, Edith; Lacoste, Vincent; Drumond, Betânia Paiva; Abrahão, Jônatas Santos; Kroon, Erna Geessien; de Thoisy, Benoît; de Souza Trindade, Giliane

    2017-08-01

    Vaccinia virus (VACV) circulates in Brazil and other South America countries and is responsible for a zoonotic disease that usually affects dairy cattle and humans, causing economic losses and impacting animal and human health. Furthermore, it has been detected in wild areas in the Brazilian Amazon. To better understand the natural history of VACV, we investigated its circulation in wildlife from French Guiana, a remote region in the Northern Amazon forest. ELISA and plaque reduction neutralization tests were performed to detect anti-orthopoxvirus antibodies. Real-time and standard PCR targeting C11R, A56R and A26L were applied to detect VACV DNA in serum, saliva and tissue samples. No evidence of VACV infection was found in any of the samples tested. These findings provide additional information on the VACV epidemiological puzzle. The virus could nevertheless be circulating at low levels that were not detected in areas where no humans or cattle are present.

  2. Monitoring Strategies for REDD+: Integrating Field, Airborne, and Satellite Observations of Amazon Forests

    Science.gov (United States)

    Morton, Douglas; Souza, Carlos, Jr.; Souza, Carlos, Jr.; Keller, Michael

    2012-01-01

    Large-scale tropical forest monitoring efforts in support of REDD+ (Reducing Emissions from Deforestation and forest Degradation plus enhancing forest carbon stocks) confront a range of challenges. REDD+ activities typically have short reporting time scales, diverse data needs, and low tolerance for uncertainties. Meeting these challenges will require innovative use of remote sensing data, including integrating data at different spatial and temporal resolutions. The global scientific community is engaged in developing, evaluating, and applying new methods for regional to global scale forest monitoring. Pilot REDD+ activities are underway across the tropics with support from a range of national and international groups, including SilvaCarbon, an interagency effort to coordinate US expertise on forest monitoring and resource management. Early actions on REDD+ have exposed some of the inherent tradeoffs that arise from the use of incomplete or inaccurate data to quantify forest area changes and related carbon emissions. Here, we summarize recent advances in forest monitoring to identify and target the main sources of uncertainty in estimates of forest area changes, aboveground carbon stocks, and Amazon forest carbon emissions.

  3. Emissions from vegetation fires and their influence on atmospheric composition over the Amazon Basin (Invited)

    Science.gov (United States)

    Andreae, M. O.; Artaxo, P.; Bela, M. M.; de Freitas, S. R.; Gerbig, C.; Longo, K. M.; Wiedemann, K. T.; Wofsy, S. C.

    2010-12-01

    Over the past decades, several campaigns have been conducted in the Amazon Basin, during which the emissions from biomass burning were characterized. Other campaigns, as well as remote sensing studies, have produced clear evidence that the budget of traces gases (including CO2) and aerosols over the Basin are strongly perturbed by vegetation fires. We will briefly review these studies and present some recent measurements made during the the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft measurement program, which consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B). The measurements covered the altitude range from the surface up to about 4500 m, and spanned across the Amazon Basin. While our results confirm the importance of biomass burning for the atmospheric composition over the Amazon Basin in general, they also highlight some complexities. One is the influence of transatlantic transport: Amazonia is downwind of massive fire regions in Africa, and depending on season and locality, these can make an important contribution to the trace gas and aerosol burden over the Amazon Basin. Another difficulty arises from the fact that representative emission ratios for CO relative to CO2 are difficult to obtain in the field, owing to the influence of biospheric exchange on the distribution of CO2 concentrations. The consequences of these and other uncertainties for a quantitative assessment of the sources of trace gases over Amazonia and for the estimation of carbon exchange with the biosphere will be discussed.

  4. Causes of blindness and career choice among pupils in a blind school; South Western Nigeria.

    Science.gov (United States)

    Fadamiro, Christianah Olufunmilayo

    2014-01-01

    The causes of Blindness vary from place to place with about 80% of it been avoidable. Furthermore Blind people face a lot of challenges in career choice thus limiting their economic potential and full integration into the society. This study aims at identifying the causes of blindness and career choice among pupils in a school for the blind in South -Western Nigeria. This is a descriptive study of causes of blindness and career choice among 38 pupils residing in a school for the blind at Ikere -Ekiti, South Western Nigeria. Thirty eight pupils comprising of 25 males (65.8%) and 13 females (34.2%) with age range from 6-39 years were seen for the study, The commonest cause of blindness was cataract with 14 cases (36.84%) while congenital glaucoma and infection had an equal proportion of 5 cases each (13.16%). Avoidable causes constituted the greatest proportion of the causes 27 (71.05%) while unavoidable causes accounted for 11 (28.9%). The law career was the most desired profession by the pupils 11 (33.3%) followed by Teaching 9 (27.3%), other desired profession includes engineering, journalism and farming. The greatest proportion of causes of blindness identified in this study is avoidable. There is the need to create public awareness on some of the notable causes particularly cataract and motivate the community to utilize available eye care services Furthermore there is need for career talk in schools for the blind to enable them choose career where their potential can be fully maximized.

  5. Mercury Pollution Studies of Some Rivers Draining the Bibiani-Anwiaso-Bekwai Mining Community of South Western Ghana

    OpenAIRE

    V.K. Nartey; L.K. Doamekpor; S. Sarpong-Kumankuma; T. Akabzaa; F.K. Nyame; J.K. Kutor; D. Adotey

    2011-01-01

    The project assessed the extent of mercury pollution of some rivers that drain the Bibiani-Anwiaso- Bekwai district which is a typical mining community in the south western part of Ghana. In the study, surfacewater and sediment samples were collected from seven streams that drain this mining community and analyzed for total mercury, organic mercury and elemental mercury. Mercury concentrations of non-filtered water was determined using the ICP-OES after reduction with stannous chloride (SnCl2...

  6. Health-related quality of life of patients six months poststroke living in the Western Cape, South Africa

    OpenAIRE

    Rhoda, Anthea J.

    2014-01-01

    Background: The majority of individuals report a decline in health-related quality of life following a stroke. Quality of life and factors predicting quality of life could differ in individuals from lower income countries. The aim of this study was therefore to determine the quality of life and factors influencing quality of life of community-dwelling stroke patients living in low-income, peri-urban areas in the Western Cape, South Africa. Method: An observational, longitudinal study was u...

  7. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.

    2000-01-01

    1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate

  8. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    Science.gov (United States)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  9. The impact of Amazonian deforestation on Amazon basin rainfall

    Science.gov (United States)

    Spracklen, D. V.; Garcia-Carreras, L.

    2015-11-01

    We completed a meta-analysis of regional and global climate model simulations (n = 96) of the impact of Amazonian deforestation on Amazon basin rainfall. Across all simulations, mean (±1σ) change in annual mean Amazon basin rainfall was -12 ± 11%. Variability in simulated rainfall was not explained by differences in model resolution or surface parameters. Across all simulations we find a negative linear relationship between rainfall and deforestation extent, although individual studies often simulate a nonlinear response. Using the linear relationship, we estimate that deforestation in 2010 has reduced annual mean rainfall across the Amazon basin by 1.8 ± 0.3%, less than the interannual variability in observed rainfall. This may explain why a reduction in Amazon rainfall has not consistently been observed. We estimate that business-as-usual deforestation (based on deforestation rates prior to 2004) would lead to an 8.1 ± 1.4% reduction in annual mean Amazon basin rainfall by 2050, greater than natural variability.

  10. A link of full-scale accelerated pavement testing to long-term pavement performance study in the Western Cape Province of South Africa

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph K

    2016-09-01

    Full Text Available of Accelerated Pavement Testing in Pavement Sustainability A Link of Full-Scale Accelerated Pavement Testing to Long-Term Pavement Performance Study in the Western Cape Province of South Africa J. K. Anochie-Boateng W. JvdM Steyn C. Fisher L. Truter...

  11. Psychopathology among senior secondary school students in Ilesa, south western Nigeria.

    Science.gov (United States)

    Fatoye, F O; Morakinyo, O

    2003-09-01

    The prevalence rate of psychopathology and the relationship between psychopathology and some socio-demographic variables and consolidated current drug use were studied in 600 randomly selected senior secondary school students in Ilesa, south-western Nigeria. The 30-item version of the General Health Questionnaire and the WHO student drug use questionnaire were administered for the study. The findings revealed that the prevalence of psychopathology among the study population was 39.5%. There were significant positive associations between psychopathology and belonging to low socio-economic status, coming from a polygamous family and self-rated poor academic performance. The results also showed that although psychopathology was commoner amongst respondents who were engaged in current use of psychoactive substances than those who were not, the difference was not significant. The implications of these findings within the context of the limitations of the study and the importance of effective preventive and therapeutic student mental health services are discussed.

  12. Insecta, Coleoptera, Elmidae, Amazon region

    Directory of Open Access Journals (Sweden)

    Passos, M. I. S.

    2010-01-01

    Full Text Available A list of Elmidae species from Amazon is presented. The list was prepared based on a literature surveyand examination of the entomological collection of Instituto Nacional de Pesquisas da Amazônia (INPA. The listincludes 102 species, with ten new occurrences recorded, being one for the Amazon (which includes areas ofBrazil, Bolivia, Colombia, Guyana, French Guyana, Peru, Suriname and Venezuela three for the Amazonas state,and six for other localities in Brazil. Reports about species bibliography contents were also included, as well asavailable species municipalities distributional data.

  13. Amazon River investigations, reconnaissance measurements of July 1963

    Science.gov (United States)

    Oltman, Roy Edwin; Sternberg, H. O'R.; Ames, F.C.; Davis, L.C.

    1964-01-01

    The first measurements of the flow of the Amazon River were made in July 1963 as a joint project of the University of Brazil, the Brazilian Navy, and the U.S. Geological Survey. The discharge of the Amazon River at Obidos was 7,640,000 cfs at an annual flood stage somewhat lower than the average. For comparison the maximum known discharge of the Mississippi River at Vicksburg is about 2,300,000 cfs. Dissolved-solids concentrations and sediment loads of the Amazon River and of several major tributaries were found to be low.

  14. Radium and barium in the Amazon River system

    International Nuclear Information System (INIS)

    Moore, W.S.; Edmond, J.M.

    1984-01-01

    Data for 226 Ra and 228 Ra in the Amazon River system show that the activity of each radium isotope is strongly correlated with barium concentrations. Two trends are apparent, one for rivers which drain shield areas and another for all other rivers. These data suggest that there has been extensive fractionation of U, Th, and Ba during weathering in the Amazon basin. The 226 Ra data fit a flux model for the major ions indicating that 226 Ra behaves conservatively along the main channel of the Amazon River

  15. Comparison Between Paeoenvironmental and Land Use Changes Records in Brazilian Amazon Ecosystems

    Science.gov (United States)

    Cordeiro, R. C.; Turcq, B. J.; Rodrigues, R. A.; Sifeddine, A.; Seoane, J. S.; Simões Filho, F. L.; Conceicao, M. G.

    2008-12-01

    Interpretations of biomass burn records in lacustrine sediments need a comparison among the charcoal particle fluxes influenced by different plant communities. The charcoal fluxes, which are related with paleofires, represent an important disturbance to the atmospheric system. These charcoal particles emitted to the atmosphere can promote a decrease in the sunlight penetration and greenhouse gas enhancement.Thus, the evaluation of charcoal deposition, as a consequence of regional burns, will have great importance to determine the impact of climatic change in different tropical ecosystems. This subject will be an important contribution for understanding the dynamics among vegetation, climate and carbon cycle along the present interglacial. In this study, paleofires records were obtained through the charcoal particle fluxes analysis in sediments of lakes surrounded by different vegetation, which represents the most spread ecosystems in Brazil. The main goals were to identify major events of vegetation burn during the Holocene and evaluate the influence of biomass availability to charcoal fluxes. Fires records were obtained through the charcoal particles flux analyses in lacustrine sediments cores at the following locations Brazilian Amazon: Lagoa da Pata (AM); Humaitá (AM), Lago do Saci (PA), Carajás N4, (PA); and Caracarana (RO) and reservoirs sediments in an intense land use change region (Alta Floresta, MT). The charcoal analyses could have also a great importance in evaluating the impact of dry climates in different ecosystems. Determination of fire frequencies and dimensions in key areas of South America, during the Holocene, is a first step to understand the global carbon transference between terrestrial and atmospheric systems. The synchronism among the fires occurrences show a good relation with the middle Holocene dry climate phase in Brazil. Discrepancy in the flux values could be attributed to differences in biomass availability provided by these

  16. Stress distribution and seismicity patterns of the 2011 seismic swarm in the Messinia basin, (South-Western Peloponnesus, Greece

    Directory of Open Access Journals (Sweden)

    G. Chouliaras

    2013-01-01

    Full Text Available In this investigation we examine the local stress field and the seismicity patterns associated with the 2011–2012 seismicity swarm in the Messinia basin, south-western Peloponnesus, Greece, using the seismological data of the National Observatory of Athens (NOA. During this swarm more than 2000 events were recorded in a 12 month period by the Hellenic Unified Seismological Network (HUSN and also by the additional local installation of four portable broadband seismographic stations by NOA.

    The results indicate a Gaussian distribution of swarm activity and the development of a seismicity cluster in a pre-existing seismic gap within the Messinia basin. Centroid Moment Tensor solutions demonstrate a normal fault trending northwest–southeast and dipping to the southwest primarily due to an extensional stress field. During this seismicity swarm an epicentre migration of the three largest shocks is observed, from one end of the rupture zone in the north-western part of the cluster, towards the other edge of the rupture in the south-eastern part of the cluster. This migration is found to follow the Coulomb failure criterion that predicts the advancement and retardation of the stress field and the patterns of increases and decreases of the seismicity rate (b-value of the frequency–magnitude relation.

  17. Seasonal & Daily Amazon Column CO2 & CO Observations from Ground & Space Used to Evaluate Tropical Ecosystem Models

    Science.gov (United States)

    Dubey, M. K.; Parker, H. A.; Wennberg, P. O.; Wunch, D.; Jacobson, A. R.; Kawa, S. R.; Keppel-Aleks, G.; Basu, S.; O'Dell, C.; Frankenberg, C.; Michalak, A. M.; Baker, D. F.; Christofferson, B.; Restrepo-Coupe, N.; Saleska, S. R.; De Araujo, A. C.; Miller, J. B.

    2016-12-01

    The Amazon basin stores 150-200 PgC, exchanges 18 PgC with the atmosphere every year and has taken up 0.42-0.65 PgC/y over the past two decades. Despite its global significance, the response of the tropical carbon cycle to climate variability and change is ill constrained as evidenced by the large negative and positive feedbacks in future climate simulations. The complex interplay of radiation, water and ecosystem phenology remains unresolved in current tropical ecosystem models. We use high frequency regional scale TCCON observations of column CO2, CO and CH4 near Manaus, Brazil that began in October 2014 to understand the aforementioned interplay of processes in regulating biosphere-atmosphere exchange. We observe a robust daily column CO2 uptake of about 2 ppm (4 ppm to 0.5 ppm) over 8 hours and evaluate how it changes as we transition to the dry season. Back-trajectory calculations show that the daily CO2 uptake footprint is terrestrial and influenced by the heterogeneity of the Amazon rain forests. The column CO falls from above 120 ppb to below 80 ppb as we transition from the biomass burning to wet seasons. The daily mean column CO2 rises by 3 ppm from October through June. Removal of biomass burning, secular CO2 increase and variations from transport (by Carbon tracker simulations) implies an increase of 2.3 ppm results from tropical biospheric processes (respiration and photosynthesis). This is consistent with ground-based remote sensing and eddy flux observations that indicate that leaf development and demography drives the tropical carbon cycle in regions that are not water limited and is not considered in current models. We compare our observations with output from 7 CO2 inversion transport models with assimilated meteorology and find that while 5 models reproduce the CO2 seasonal cycle all of them under predict the daily drawdown of CO2 by a factor of 3. This indicates that the CO2 flux partitioning between photosynthesis and respiration is incorrect

  18. Higher absorbed solar radiation partly offset the negative effects of water stress on the photosynthesis of Amazon forests during the 2015 drought

    Science.gov (United States)

    Li, Xing; Xiao, Jingfeng; He, Binbin

    2018-04-01

    Amazon forests play an important role in the global carbon cycle and Earth’s climate. The vulnerability of Amazon forests to drought remains highly controversial. Here we examine the impacts of the 2015 drought on the photosynthesis of Amazon forests to understand how solar radiation and precipitation jointly control forest photosynthesis during the severe drought. We use a variety of gridded vegetation and climate datasets, including solar-induced chlorophyll fluorescence (SIF), photosynthetic active radiation (PAR), the fraction of absorbed PAR (APAR), leaf area index (LAI), precipitation, soil moisture, cloud cover, and vapor pressure deficit (VPD) in our analysis. Satellite-derived SIF observations provide a direct diagnosis of plant photosynthesis from space. The decomposition of SIF to SIF yield (SIFyield) and APAR (the product of PAR and fPAR) reveals the relative effects of precipitation and solar radiation on photosynthesis. We found that the drought significantly reduced SIFyield, the emitted SIF per photon absorbed. The higher APAR resulting from lower cloud cover and higher LAI partly offset the negative effects of water stress on the photosynthesis of Amazon forests, leading to a smaller reduction in SIF than in SIFyield and precipitation. We further found that SIFyield anomalies were more sensitive to precipitation and VPD anomalies in the southern regions of the Amazon than in the central and northern regions. Our findings shed light on the relative and combined effects of precipitation and solar radiation on photosynthesis, and can improve our understanding of the responses of Amazon forests to drought.

  19. Correlations of some Neoproterozoic carbonate-dominated successions in South America based on high-resolution chemostratigraphy

    Directory of Open Access Journals (Sweden)

    Alcides Nobrega Sial

    Full Text Available ABSTRACT: This report reviews and incorporates new elemental and isotope chemostratigraphic data for correlation of Neoproterozoic carbonate-dominated successions in South America (Argentina, Bolivia, Brazil, Paraguay and Uruguay. These thick mixed carbonate/siliciclastic successions were largely deposited in epicontinental basins or accumulated on passive margins on the edges of cratons (e.g. São Francisco, Amazonia, Rio Apa Block, Pampia and Río de la Plata paleocontinents during extensional events related to the rifting of the Rodinia Supercontinent. From the stratigraphic point of view, these successions occur as three mega-sequences: glaciogenic, marine carbonate platform (above glaciomarine diamictites or rift successions, and dominantly continental to transitional siliciclastics. In the orogenic belts surrounding cratons, carbonate-dominated successions with important volcanoclastic/siliciclastic contribution have been, in most cases, strongly deformed. The precise ages of these successions remain a matter of debate, but recently new paleontological and geochronological data have considerably constrained depositional intervals. Here, we report high-resolution C, O, Sr, and S isotope trends measured in well-preserved sample sets and mainly use Sr and C isotopes in concert with lithostratigraphic/biostratigraphic observations to provide detailed correlations of these successions. The establishing of a high-level and definite chemostratigraphic correlation between Neoproterozoic basins in South America is the main goal of this work.

  20. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    Science.gov (United States)

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-03-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

  1. Hereditary angio-oedema in the Western Cape Province, South Africa.

    Science.gov (United States)

    Coovadia, K M; Chothia, M-Y; Baker, S G; Peter, J G; Potter, P C

    2018-03-28

    Hereditary angio-oedema (HAE) is an autosomal dominant condition caused by a deficiency in the C1-esterase inhibitor protein, resulting in increased bradykinin release. It presents clinically with recurrent attacks of angio-oedema, commonly affecting the limbs, face, upper airway and gastrointestinal tract. Little is known about this condition in sub-Saharan Africa. To analyse and report on the clinical presentation and treatment of patients with HAE in the Western Cape Province, South Africa. A retrospective analysis was conducted on a series of 60 cases of HAE seen between 2010 and 2015 at the Allergy Diagnostic and Clinical Research Unit, University of Cape Town Lung Institute, and the Allergy Clinic at Groote Schuur Hospital, Cape Town. The findings in 43 cases of type 1 HAE are described. Parameters assessed included age, gender, age of diagnosis, duration of illness, family history, identifiable triggers, average duration of attack, number of attacks per year and type of attack. A total of 43 patients were included in this study. Of these, 65.1% (28/43) were female. The median age at diagnosis was 20 years (interquartile range (IQR) 10 - 27) and the median duration of illness 10.5 years (IQR 6 - 22). Of the patients, 62.8% (27/43), 32.6% (14/43) and 4.7% (2/43) were of mixed ancestry, white and black African, respectively; 51.2% (22/43) were index cases, with the remaining 48.8% (21/43) diagnoses via family member screening, 12 families making up the majority of the cohort. The mean (standard deviation) duration of an acute attack was 49 (25.8) hours, and 64.3% (27/42), 71.4% (30/42), 14.3% (6/42) and 88.1% (37/42) of patients experienced facial or upper airway, abdominal, external genitalia and limb attacks, respectively. Danazol for long-term prophylaxis was used in 21 patients, while C1-inhibitor concentrate (Berinert) was accessed for short-term prophylaxis in only four patients. Acute life-threating attacks were treated with fresh frozen plasma in 11

  2. Feedbacks between land cover and climate changes in the Brazilian Amazon and Cerrado biomes

    Science.gov (United States)

    Coe, M. T.; Silverio, D. V.; Bustamante, M.; Macedo, M.; Shimbo, J.; Brando, P. M.

    2016-12-01

    An estimated 20% of Amazon forests and 45% of Cerrado savannas have been cleared to make way for the expansion of croplands and pasturelands in Brazil. Although deforestation rates have decreased or remained steady over the last decade, the cumulative area deforested continues to grow in both biomes. These land-use transitions are expected to influence regional climate by reducing evapotranspiration (ET), increasing land surface temperatures (LST), and ultimately reducing regional precipitation. Here we present results from spatial analyses to quantify the impact of land-use transitions on the regional climate of the Amazon-Cerrado agricultural frontier. The analyses combine satellite observations and model outputs from the MODIS dataset. Results from the southeastern Amazon indicate that transitions from forest to pasture or cropland decreased mean annual ET (by 24% and 32%, respectively) and increased LST (by 4.2°C and 6.4°C). Preliminary results from the Cerrado indicate that transitions from woody savannas to pasture or cropland also result in substantial reductions in mean annual ET (23% and 20%, respectively) and increases in LST (by 1.6°C in both cases). These results reinforce the need to better understand how land-use change at regional scales may alter climate by changing ecosystem properties (beyond carbon stocks and fluxes). It is important to evaluate these responses across different biomes, particularly in tropical regions under increasing deforestation pressure.

  3. Zero carbon energy system of South East Europe in 2050

    International Nuclear Information System (INIS)

    Dominković, D.F.; Bačeković, I.; Ćosić, B.; Krajačić, G.; Pukšec, T.; Duić, N.; Markovska, N.

    2016-01-01

    Highlights: • 100% renewable energy system of the South East Europe has been achieved. • Sector integration makes the zero carbon system cheaper compared to the base year. • Numerous renewable technologies needed to achieve zero carbon in the year 2050. • Energy efficiency is a crucial part in a transition to the zero carbon energy system. • No technology has a larger share than 30%; increased security of energy supply. - Abstract: South East Europe is the region in a part of Europe with approximately 65.5 million inhabitants, making up 8.9% of Europe’s total population. The countries concerned have distinct geographical features, various climates and significant differences in gross domestic product per capita, so the integration of their energy systems is considered to be a challenging task. Large differences between energy mixes, still largely dominated by fossil-fuel consumption, make this task even more demanding. This paper presents the transition steps to a 100% renewable energy system which need to be carried out until the year 2050 in order to achieve zero carbon energy society. Novelty of this paper compared to other papers with similar research goals is the assumed sustainable use of biomass in the 100% renewable energy system of the region considered. It is important to emphasize here that only the sustainable use of biomass can be considered carbon-neutral. The resulting biomass consumption of the model was 725.94 PJ for the entire region, which is in line with the biomass potential of the region. Modelling the zero-carbon energy system was carried out using the smart energy system concept, together with its main integration pillars, i.e. power-to-heat and power-to-gas technologies. The resulting power generation mix shows that a wide variety of energy sources need to be utilized and no single energy source has more than a 30% share, which also increases the security of supply. Wind turbines and photovoltaics are the main technologies with

  4. Changes in the forest ecosystems in areas impacted by aridization in south-western Romania.

    Science.gov (United States)

    Pravalie, Remus; Sîrodoev, Igor; Peptenatu, Daniel

    2014-01-06

    In the past few decades, global climate change has accentuated the intensification of aridization in South-Western Romania, with direct and indirect consequences on the quality of forest ecosystems. In addition to qualitative deterioration, the quantitative changes brought about by intensive anthropic deforestation have created the conditions for a decline in the size of forest areas on vast tracts of land. The paper aims to analyze the qualitative and quantitative changes in the forest ecosystems in South-Western Romania, changes due to the synergic context of the global climate changes and the anthropic pressures of the past three decades. In order to capture the evolution of aridization in the study area, specific aridization indexes have been calculated, such as the De Martonne index and the UNEP aridity index. 1990 and 2011 satellite images have been used in order to quantify the qualitative changes. The results obtained indicated that, in the past two decades, the quality of the biomass declined as a result of the increase in the climatic aridity conditions (De Martonne si UNEP aridity index, indicating in the last decades, annual values under 15 mm/°C, and under 0.5 mm/mm, that means that the values situated under these thresholds, describe arid and semi-arid climate conditions). Also, the uncontrolled logging across vast surfaces caused the loss of forest ecosystems by 7% in the overall study area, during the last three decades. The severe effects of aridization meant, first of all, a significant decline in the quality of the ecosystem services supplied by forests. In the absence of viable actions to correct the present situation, the extremely undesirable consequences of an ecological and social nature will arise in the near future.

  5. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina)

    Science.gov (United States)

    Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.

    2014-01-01

    Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side

  6. Genetic diversity and population structure of the New World screwworm fly from the Amazon region of Brazil.

    Science.gov (United States)

    Mastrangelo, Thiago; Fresia, Pablo; Lyra, Mariana L; Rodrigues, Rosangela A; Azeredo-Espin, Ana Maria L

    2014-10-01

    Cochliomyia hominivorax (Coquerel) is a myiasis fly that causes economic losses to livestock farmers in warmer American regions. Previous studies of this pest had found population structure at north and south of the Amazon Basin, which was considered to be a barrier to dispersal. The present study analyzed three mitochondrial DNA (mtDNA) markers and eight nuclear microsatellite loci to investigate for the first time the genetic diversity and population structure across the Brazilian Amazon region (Amazonia). Both mtDNA and microsatellite data supported the existence of much diversity and significant population structure among nine regional populations of C. hominivorax, which was found to be surprisingly common in Amazonia. Forty-six mtDNA haplotypes were identified, of which 39 were novel and seven had previously been found only at south of Amazonia. Seventy microsatellite alleles were identified by size, moderate to high values of heterozygosity were discovered in all regions, and a Bayesian clustering analysis identified four genetic groups that were not geographically distributed. Reproductive compatibility was also investigated by laboratory crossing, but no evidence of hybrid dysgenesis was found between an Amazonian colony and one each of from Northeast and Southeast Brazil. The results have important implications for area-wide control by the Sterile Insect Technique. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  7. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    Science.gov (United States)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  8. Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment

    International Nuclear Information System (INIS)

    Giangrande, Scott E.; Feng, Zhe; Jensen, Michael P.; Comstock, Jennifer M.; Johnson, Karen L.

    2017-01-01

    Routine cloud, precipitation and thermodynamic observations collected by the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Aerial Facility (AAF) during the 2-year US Department of Energy (DOE) ARM Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign are summarized. These observations quantify the diurnal to large-scale thermodynamic regime controls on the clouds and precipitation over the undersampled, climatically important Amazon basin region. The extended ground deployment of cloud-profiling instrumentation enabled a unique look at multiple cloud regimes at high temporal and vertical resolution. This longer-term ground deployment, coupled with two short-term aircraft intensive observing periods, allowed new opportunities to better characterize cloud and thermodynamic observational constraints as well as cloud radiative impacts for modeling efforts within typical Amazon wet and dry seasons.

  9. Power in the pasture: Energy and the history of ranching in western South Dakota

    Science.gov (United States)

    Howe, Jenika

    Transitions in the use of energy transformed the landscape, labor, and domestic life of cattle ranching in western South Dakota from the late-nineteenth to the middle of the twentieth centuries. The introduction of new energy sources to the Black Hills spurred the expansion of European Americans into the region, while helping to displace native peoples like the Lakotas. Changing energy use also intensified ranch labor in the pastures and in the household, drawing individual ranches into new connections with their surroundings. Examining cattle ranching through the lens of energy provides new insights into the momentum of energetic systems in societies, affording historians a way to understand past energy use as they consider present and future environmental concerns.

  10. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin

    NARCIS (Netherlands)

    Figueiredo, J.; Hoorn, C.; van der Ven, P.; Soares, E.

    2009-01-01

    New biostratigraphic, isotopic, and well log data from exploration wells on the outer continental shelf and uppermost Amazon deep-sea fan, Brazil, reveal that the Amazon River was initiated as a transcontinental river between 11.8 and 11.3 Ma ago (middle to late Miocene), and reached its present

  11. IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest

    Science.gov (United States)

    Das, Kamalika; Kodali, Anuradha; Szubert, Marcin; Ganguly, Sangram; Bongard, Joshua

    2016-01-01

    Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this

  12. Potential Impact of Planned Andean Dams on the Amazon Fluvial Ecosystem

    Science.gov (United States)

    Forsberg, B.; Melack, J. M.; Dunne, T.; Barthem, R. B.; Paiva, R. C. D.; Sorribas, M.; Silva, U. L., Jr.

    2016-12-01

    Increased energy demand has led to plans for building 151 new dams in the western Amazon, mostly in the Andes Region. Historical data and simulation scenarios were used to explore potential impacts above and below six of the largest storage dams planned for the region. These impacts included: 1) reduction in the downstream sediment supply 2) reduction in the downstream nutrient supply, 3) attenuation of the downstream flood pulse and 4) increased greenhouse gas emissions. Together, the six dams are expected to reduce the total downstream supply of sediments, total phosphorus (TP) and total nitrogen (TN) from the Andes by 66, 65 and 49%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These impacts are expected to be greatest close to the dams but could also extend to the central Amazon floodplain and delta regions. The attenuation of the downstream flood pulse following impoundment is expected to alter the survival, phenology and growth patterns of floodplain vegetation and result in lower fish yields in the downstream regions closest to the dams. Greenhouse gas emissions above and below the dams are expected to increase, contributing to significantly higher regional and global emissions for dams. Gas fired power plants are suggested as a cleaner, less impactful alternative to meeting regional energy demands.

  13. [Pilot study of echocardiographic studies using color- and pulsed-wave spectral Doppler methods in blue-crowned amazons (Amazona ventralis) and blue-fronted amazons (Amazona a. aestiva)].

    Science.gov (United States)

    Pees, M; Straub, J; Schumacher, J; Gompf, R; Krautwald-Junghanns, M E

    2005-02-01

    Colour-flow and pulsed-wave spectral Doppler echocardiography was performed on 6 healthy, adult Hispaniolan amazon parrots (Amazona ventralis) and 6 blue-fronted amazon parrots (Amazona a. aestiva) to establish normal reference values. Birds were anesthetized with isoflurane in oxygen and placed in dorsal recumbency. An electrocardiogram was recorded continuously and birds were imaged with a micro-phased-array scanner with a frequency of 7.0 MHz. After assessment of cardiac function in 2-D-echocardiography, blood flow across the left and the right atrioventricular valve and across the aortic valve was determined using color-flow and pulsed-wave spectral Doppler echocardiography. Diastolic inflow (mean value +/- standard deviation) into the left ventricle was 0.17 +/- 0.02 m/s (Hispaniolan amazons) and 0.18 +/- 0.03 m/s (Blue fronted amazons). Diastolic inflow into the right ventricle was 0.22 +/- 0.05 m/s (Hispaniolan amazons) and 0.22 +/- 0.04 m/s (Blue fronted amazons). Velocity across the aortic valve was 0.84 +/- 0.07 m/s (Hispaniolan amazons) and 0.83 +/- 0.08 m/s (Blue fronted amazons). Systolic pulmonary flow could not be detected in any of the birds in this study. No significant differences were evident between the two species examined. Results of this study indicate that Doppler echocardiography is a promising technique to determine blood flow in the avian heart. Further studies in other avian species are needed to establish reference values for assessment of cardiac function in diseased birds.

  14. CARBON FIXING CAPACITY OF AMAZONIAN SOILS IN RELATION TO ITS DEGRADATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Clara Patricia Peña Venegas

    2015-06-01

    Full Text Available Amazonian deforestation and transformation alert about their effects worldwide. One concern is the increase of the Carbon (C levels emitted. Previous works have estimated the fixed C in Amazon forests without including the C stored in soils. Within soil, the organic carbon molecules are highly sensitive to degradation, affecting the natural capacity of soils to fix and store C. The present study evaluates the impact of degradation in the natural capacity of Amazon soils to fix C. Thirty five farms with different typology were selected in Caquetá department which hold the highest deforestation and soil degradation rates in the Colombian Amazon. Soil samples were taken from natural forest relicts, cropping areas and introduced pastures of the farms, in locations with high, intermediate and low soil degradation. Aerial biomass was estimated in pastures with different level of soil degradation. Changes in the labile C stock were estimated from the soil organic carbon and the microbial biomass using substrate induced respiration. Results showed that the main C pool is in the natural forest relicts and the crops of the farms, independently from the size or type of farm sampled. The hills with higher intervention showed the lowest soil C fixation capacities. The soil C fixation capacity was related with changes in the soil microbial composition where conserved soils store preferentially C as fungal biomass while degraded soils store C as bacterial biomass. These estimations contribute to establish the cost of sustainability and soil degradation in the Colombian Amazon.

  15. Neogene sharks and rays from the Brazilian 'Blue Amazon'.

    Directory of Open Access Journals (Sweden)

    Orangel Aguilera

    Full Text Available The lower Miocene Pirabas Formation in the North of Brazil was deposited under influence of the proto-Amazon River and is characterized by large changes in the ecological niches from the early Miocene onwards. To evaluate these ecological changes, the elasmobranch fauna of the fully marine, carbonate-rich beds was investigated. A diverse fauna with 24 taxa of sharks and rays was identified with the dominant groups being carcharhiniforms and myliobatiforms. This faunal composition is similar to other early Miocene assemblages from the proto-Carribbean bioprovince. However, the Pirabas Formation has unique features compared to the other localities; being the only Neogene fossil fish assemblage described from the Atlantic coast of Tropical Americas. Phosphate oxygen isotope composition of elasmobranch teeth served as proxies for paleotemperatures and paleoecology. The data are compatible with a predominantly tropical marine setting with recognized inshore and offshore habitats with some probable depth preferences (e.g., Aetomylaeus groups. Paleohabitat of taxa particularly found in the Neogene of the Americas (†Carcharhinus ackermannii, †Aetomylaeus cubensis are estimated to have been principally coastal and shallow waters. Larger variation among the few analyzed modern selachians reflects a larger range for the isotopic composition of recent seawater compared to the early Miocene. This probably links to an increased influence of the Amazon River in the coastal regions during the Holocene.

  16. Global Carbon-and-Conservation Models, Global Eco-States? Ecuador’s Yasuní-ITT Initiative and Governance Implications

    Directory of Open Access Journals (Sweden)

    Conny Davidsen

    2013-05-01

    Full Text Available The “global carbon age” marks a structural change far beyond the economic realms of implementing carbon trade, affecting the fabric of global environmental governance and its actors. Carbon trade and conservation in the Global South have taken on various forms, and climate change mitigation efforts in light of continued rainforest deforestation are scrambling to establish effective approaches. Ecuador’s Yasuní-ITT Initiative proposes a new global carbon-and-conservation model in the Ecuadorian Amazon that leaves oil reserves of the Yasuní Ishpingo Tambococha Tiputini (ITT oil fields underground, in exchange for international compensation payments that would be based on voluntary contributions of governments and nongovernmental actors in an international conservation partnership and trust fund under the auspices of the United Nations Development Programme. This model suggests far-reaching consequences, as it introduces new global scales for the sharing and management of environmental costs within a framework of neoliberal cost internalization. The analysis in this paper uses the concept of the “ecological state” (Duit, 2008 as a theoretical point of departure to examine the trans-scalar implications of such a carbon-and-conservation model on global governance structures toward a “global ecological state” (or global eco-state.

  17. Ozone measurements in the Amazon

    Science.gov (United States)

    Kirchhoff, V. W. J. H.

    Several scientists of the Brazilian Institute for Space Research (Instituto de Pesquisas Espacias, or INPE; headquarters at Sāo Jose dos Campos, Sao Paulo) went to Manaus (3°S, 60°W), in the central region of the Amazon forest during July-August 1985 to study the atmosphere of the equatorial rainforest. The expedition to the Amazon was part of a large binational atmospheric chemistry field campaign that was organized to measure several atmospheric gases of the forest environment. This was definitely the largest scientific field expedition in this field ever performed on Brazilian territory.

  18. Trans-Amazon Drilling Project (TADP) : Origins and evolution of the forests, climate, and hydrology of the South American tropics

    NARCIS (Netherlands)

    Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, M.; Chiessi, C.M.; Cruz, F.W.; Dick, C. W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.; Kern, A.K.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trnadade, R.; West, A.J.; Wahnfried, I.; Willard, D.A.

    2015-01-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this

  19. Amazon Rainforest Exchange of Carbon and Subcanopy Air Flow: Manaus LBA Site—A Complex Terrain Condition

    Directory of Open Access Journals (Sweden)

    Julio Tóta

    2012-01-01

    Full Text Available On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras—ZF2—02°36′17.1′′ S, 60°12′24.4′′ W, subcanopy horizontal and vertical gradients of the air temperature, CO2 concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008 was used with a network of wind, air temperature, and CO2 sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy and daytime downslope (negative buoyancy flow pattern on a moderately inclined slope (12% was observed. The microcirculations observed above the canopy (38 m over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO2 were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO2 into those estimates.

  20. Exploring the Geomorphology of the Amazon's Planalto and Understanding the Origin of the Modern Amazon Basin with Imaging Radar:

    Science.gov (United States)

    Islam, R.; McDonald, K. C.; Azarderakhsh, M.; Campbell, K.; Cracraft, J.; Carnaval, A. C.

    2015-12-01

    interpretation of the evolutionary history of the Amazon Basin. We are grateful to Naira Pinto and JPL UAVSAR for the acquisition of the UAVSAR data and NASA Biodiversity Program for funding, JAXA Kyoto and Carbon initiative, JAXA EORC and Alaska Satellite Facility for providing PALSAR data, and the NSF DIMENSIONS of Biodiversity program for the grant.