WorldWideScience

Sample records for south indian ocean

  1. Drift pumice in the Indian and South Atlantic oceans

    International Nuclear Information System (INIS)

    Frick, C.; Kent, L.E.

    1984-01-01

    Sixty-three samples of drift pumice, collected at the coasts of South Africa, East Africa, Madagascar, Mauritius, the Cocos Islands, Australia, Indonesia, Brazil, Marion Island and Bouvet Island, were investigated petrographically and geochemically with a view to establishing the possible source areas. Geochemically five distinct groups could be distinguished and some could be liked to specific eruptions in the Indian, Atlantic and Pacific oceans. Group A pumice originated from a submarine eruption off Zavodovski Island in the South Sandwich Island Group in 1962. The pumice in Group B occurs mainly on the beaches bordering the Atlantic Ocean, and was found on the west coast of South Africa, on the sea floor south-west of South Africa, and in Brazil. The source of this group is unknown, but all the evidence indicates that it must have been from the Mid-Atlantic Ridge in the South Atlantic Ocean. The Group C pumice was found in the southern Indian Ocean, probably from the Mid-Indian Ridge. The fourth group originated from a submarine eruption along the Tonga Trench in the Pacific Ocean. Group E, which is by far the most homogeneous, includes samples from Australia, the Indian Ocean islands, East and South Africa and samples of the undisputed Krakatoan origin. Specimens from the Krakatoan eruption are still the most abundant type of drift pumice that can be found

  2. Ocean transport and variability studies of the South Pacific, Southern, and Indian Oceans

    Science.gov (United States)

    Church, John A.; Cresswell, G. R.; Nilsson, C. S.; Mcdougall, T. J.; Coleman, R.; Rizos, C.; Penrose, J.; Hunter, J. R.; Lynch, M. J.

    1991-01-01

    The objectives of this study are to analyze ocean dynamics in the western South Pacific and the adjacent Southern Ocean and the eastern Indian Ocean. Specifically, our objectives for these three regions are, for the South Pacific Ocean: (1) To estimate the volume transport of the east Australian Current (EAC) along the Australian coast and in the Tasman Front, and to estimate the time variability (on seasonal and interannual time scales) of this transport. (2) To contribute to estimating the meridional heat and freshwater fluxes (and their variability) at about 30 deg S. Good estimates of the transport in the western boundary current are essential for accurate estimates of these fluxes. (3) To determine how the EAC transport (and its extension, the Tasman Front and the East Auckland Current) closes the subtropical gyre of the South Pacific and to better determine the structure at the confluence of this current and the Antarctic Circumpolar Current. (4) To examine the structure and time variability of the circulation in the western South Pacific and the adjacent Southern Ocean, particularly at the Tasman Front. For the Indian Ocean: (5) To study the seasonal interannual variations in the strength of the Leeuwin Current. (6) To monitor the Pacific-Indian Ocean throughflow and the South Equatorial and the South Java Currents between northwest Australia and Indonesia. (7) To study the processes that form the water of the permanent oceanic thermocline and, in particular, the way in which new thermocline water enters the permanent thermocline in late winter and early spring as the mixed layer restratifies. For the Southern Ocean: (8) To study the mesoscale and meridional structure of the Southern Ocean between 150 deg E and 170 deg E; in particular, to describe the Antarctic frontal system south of Tasmania and determine its interannual variability; to estimate the exchanges of heat, salt, and other properties between the Indian and Pacific Oceans; and to investigate the

  3. The Indian Ocean Experiment : Widespread air pollution from South and Southeast Asia

    NARCIS (Netherlands)

    Lelieveld, J; Crutzen, PJ; Ramanathan, A.; Andreae, MO; Brenninkmeijer, CAM; Campos, T; Cass, GR; Dickerson, RR; Fischer, H; de Gouw, JA; Hansel, A; Jefferson, A; Kley, D; de Laat, ATJ; Lal, S; Lawrence, MG; Lobert, JM; Mayol-Bracero, OL; Mitra, AP; Novakov, T; Oltmans, SJ; Prather, KA; Reiner, T; Rodhe, H; Scheeren, HA; Sikka, D; Williams, J

    2001-01-01

    The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure Long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution Levels were observed over

  4. Distribution of Tritium and {sup 137}CS in South Indian Ocean Waters - Implications of Water Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, P. P.; Jeskovsky, M.; Sykora, I. [Comenius University, Faculty of Mathematics, Physics and Informatics, Bratislava (Slovakia); Aoyama, M. [Meteorological Research Institute, Tsukuba (Japan); Gastaud, J.; Levy, I. [International Atomic Energy Agency, Marine Environment Laboratories (Monaco); Hamajima, Y. [Kanazawa University, Low-Level Radioactivity Laboratory, Nomi (Japan); Hirose, K. [Sophia University, Faculty of Science and Technology, Tokyo (Japan); Sanchez-Cabeza, J. A. [Universitat Autonoma de Barcelona, Bellaterra (Spain)

    2013-07-15

    The World Ocean, and specifically the Indian Ocean, plays a significant role in the better understanding of the climate. The distribution of global fallout {sup 3}H, {sup 14}C, {sup 90}Sr, {sup 129}I and {sup 137}Cs in the seawater of the Indian Ocean, after their main injection from atmospheric nuclear weapons tests during the 1960s, have been investigated. Results obtained in the framework of the SHOTS (Southern Hemisphere Ocean Tracer Studies) project are evaluated and compared with previously published data. The enhanced {sup 3}H and {sup 137}Cs levels observed in the south Indian ocean indicate transport of water masses labelled with these radionuclides from the central Pacific Ocean via the Indonesian Seas to the Indian Ocean. The observed surface gradients and presence of several water masses in the south Indian ocean makes this ocean one of the most dynamic parts of the World ocean. (author)

  5. Foraminifera Population from South Africa Coast Line (Indian and Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    Engin Meriç

    2014-11-01

    Full Text Available Cape Town is the second-largest city of the Republic of South Africa. Research is conducted in 3 different stations: Maori Bay, which lies in the southwest of Cape Town, and Pyramid Rock and Partridge Points which lies in the False Bay, southeast part of Cape Town. Samples are taken from young sediments at 10.00 and 20.00 m depths, and collected by scuba-diving method. The aim of the study is to investigate the living benthic foraminifera assemblages in the Atlantic Ocean, and to compare these assemblages with the southeastern part of the Atlantic Ocean, the Arabian Sea, Indian Ocean and Western Pacific assemblages. Moreover, the aim of the study is to determine whether there are any benthic foraminifera forms reaching to the Mediterranean from Pacific Ocean, Indian Ocean or Red Sea via Suez Channel.

  6. Oxygen isotope records of Globigerina bulloides across a north-south transect in the south-western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khare, N.; Chaturvedi, S.K.; Saraswat, R

    , Washington, D.C). Lutjeharms, J.R.E., N.M. Walters and B.R. Allanson. 1985. Oceanic frontal systems and biologicalenhancement. p.11-21. In: Antarctic Nutrient Cycles and Food Webs. ed. by W.R. Siegfried et al., Springer-Verlag, NewYork. Matsumoto, K., J...: Ocean Sci. J.: 44(2); 2009; 117-123 OXYGEN ISOTOPE RECORDS OF GLOBIGERINA BULLOIDES ACROSS A NORTH-SOUTH TRANSECT IN THE SOUTH-WESTERN INDIAN OCEAN N. Khare 1* , S. K. Chaturvedi 2 and R. Saraswat 3 1. Ministry of Earth Sciences, Block...

  7. North-south diversity of Scolecithricidae species (Copepoda: Calanoida) in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishnan, T.C.; Balachandran, T.

    The effectiveness of north-south hydrographical barriers in restricting the distributions of Scolecithricidae species (Copepoda:Calanoida) in the euphotic zone of the Indian Ocean was studied. Twenty seven species belonging to 7 genera were...

  8. Temperature Data From AUSTRALIA STAR and Other Platforms From Indian Ocean and South Pacific Ocean From 19860929 to 19890106 (NODC Accession 8900196)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data from Australia Star and other ships from Indian Ocean and South Pacific Ocean from September 29, 1986 to January 6, 1989. The data were collected by...

  9. Evidence of a southward eddy corridor in the South-West Indian ocean

    CSIR Research Space (South Africa)

    Ansorge, IJ

    2015-09-01

    Full Text Available Mesoscale eddies and meanders have been shown to be one of the dominant sources of flow variability in the world s ocean. One example of an isolated eddy hotspot is the South-West Indian Ridge (SWIR). Several investigations have shown that the SWIR...

  10. A lightning climatology of the South-West Indian Ocean

    Directory of Open Access Journals (Sweden)

    C. Bovalo

    2012-08-01

    Full Text Available The World Wide Lightning Location Network (WWLLN data have been used to perform a lightning climatology in the South-West Indian Ocean (SWIO region from 2005 to 2011. Maxima of lightning activity were found in the Maritime Continent and southwest of Sri Lanka (>50 fl km−2 yr−1 but also over Madagascar and above the Great Lakes of East Africa (>10–20 fl km−2 yr−1. Lightning flashes within tropical storms and tropical cyclones represent 50 % to 100 % of the total lightning activity in some oceanic areas of the SWIO (between 10° S and 20° S.

    The SWIO is characterized by a wet season (November to April and a dry season (May to October. As one could expect, lightning activity is more intense during the wet season as the Inter Tropical Convergence Zone (ITCZ is present over all the basin. Flash density is higher over land in November–December–January with values reaching 3–4 fl km−2 yr−1 over Madagascar. During the dry season, lightning activity is quite rare between 10° S and 25° S. The Mascarene anticyclone has more influence on the SWIO resulting in shallower convection. Lightning activity is concentrated over ocean, east of South Africa and Madagascar.

    A statistical analysis has shown that El Niño–Southern Oscillation mainly modulates the lightning activity up to 56.8% in the SWIO. The Indian Ocean Dipole has a significant contribution since ~49% of the variability is explained by this forcing in some regions. The Madden–Julian Oscillation did not show significative impact on the lightning activity in our study.

  11. Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations

    Science.gov (United States)

    Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll

    2017-08-01

    The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.

  12. Radiocarbon Content of Dissolved Organic Carbon in the South Indian Ocean

    Science.gov (United States)

    Bercovici, S. K.; McNichol, A. P.; Xu, L.; Hansell, D. A.

    2018-01-01

    We report four profiles of the radiocarbon content of dissolved organic carbon (DOC) spanning the South Indian Ocean (SIO), ranging from the Polar Front (56°S) to the subtropics (29°S). Surface waters held mean DOC Δ14C values of -426 ± 6‰ ( 4,400 14C years) at the Polar Front and DOC Δ14C values of -252 ± 22‰ ( 2,000 14C years) in the subtropics. At depth, Circumpolar Deep Waters held DOC Δ14C values of -491 ± 13‰ ( 5,400 years), while values in Indian Deep Water were more depleted, holding DOC Δ14C values of -503 ± 8‰ ( 5,600 14C years). High-salinity North Atlantic Deep Water intruding into the deep SIO had a distinctly less depleted DOC Δ14C value of -481 ± 8‰ ( 5,100 14C years). We use multiple linear regression to assess the dynamics of DOC Δ14C values in the deep Indian Ocean, finding that their distribution is characteristic of water masses in that region.

  13. Pelagic communities of the South West Indian Ocean seamounts: R/V Dr Fridtjof Nansen Cruise 2009-410

    Science.gov (United States)

    Rogers, A. D.; Alvheim, O.; Bemanaja, E.; Benivary, D.; Boersch-Supan, P.; Bornman, T. G.; Cedras, R.; Du Plessis, N.; Gotheil, S.; Høines, A.; Kemp, K.; Kristiansen, J.; Letessier, T.; Mangar, V.; Mazungula, N.; Mørk, T.; Pinet, P.; Pollard, R.; Read, J.; Sonnekus, T.

    2017-02-01

    The seamounts of the southern Indian Ocean remain some of the most poorly studied globally and yet have been subject to deep-sea fishing for decades and may face new exploitation through mining of seabed massive sulphides in the future. As an attempt to redress the knowledge deficit on deep-sea benthic and pelagic communities associated mainly with the seamounts of the South West Indian Ridge two cruises were undertaken to explore the pelagic and benthic ecology in 2009 and 2011 respectively. In this volume are presented studies on pelagic ecosystems around six seamounts, five on the South West Indian Ridge, including Atlantis Bank, Sapmer Seamount, Middle of What Seamount, Melville Bank and Coral Seamount and one un-named seamount on the Madagascar Ridge. In this paper, existing knowledge on the seamounts of the southwestern Indian Ocean is presented to provide context for the studies presented in this volume. An account of the overall aims, approaches and methods used primarily on the 2009 cruise are presented including metadata associated with sampling and some of the limitations of the study. Sampling during this cruise included physical oceanographic measurements, multibeam bathymetry, biological acoustics, and net sampling of phytoplankton, macrozooplankton and micronekton/nekton. The studies that follow reveal new data on the physical oceanography of this dynamic region of the oceans, and the important influence of water masses on the pelagic ecology associated with the seamounts of the South West Indian Ridge. New information on the pelagic fauna of the region fills an important biogeographic gap for the mid- to high-latitudes of the oceans of the southern hemisphere.

  14. Distribution of Oxycephalidae (Hyperiidea-Amphipoda) in the Indian Ocean- A statistical study

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, K.K.C.; Jayalakshmy, K.V.

    Statistical analysis of oxycephalids on coexistence of the species showed two clusters of high affinity in the Arabian Sea, four in the Bay of Bengal, one in the South East Indian Ocean and three in the South West Indian Ocean. Species occurring...

  15. Vulnerability of teleosts caught by the pelagic tuna longline fleets in South Atlantic and Western Indian Oceans

    Science.gov (United States)

    Lucena-Frédou, Flávia; Kell, Laurie; Frédou, Thierry; Gaertner, Daniel; Potier, Michel; Bach, Pascal; Travassos, Paulo; Hazin, Fábio; Ménard, Frédéric

    2017-06-01

    Productivity and Susceptibility Analysis (PSA) is a methodology for evaluating the vulnerability of a stock based on its biological productivity and susceptibility to fishing. In this study, we evaluated the vulnerability of 60 stocks of tuna, billfishes and other teleosts caught by the tuna longline fleets operating in the South Atlantic and Indian Ocean using a semi-quantitative PSA. We (a) evaluated the vulnerability of the species in the study areas; (b) compared the vulnerability of target and non-target species and oceans; (c) analyzed the sensitivity of data entry; and (d) compared the results of the PSA to other fully quantitative assessment methods. Istiophoridae exhibited the highest scores for vulnerability. The top 10 species at risk were: Atlantic Istiophorus albicans; Indian Ocean Istiompax indica; Atlantic Makaira nigricans and Thunnus alalunga; Indian Ocean Xiphias gladius; Atlantic T. albacares, Gempylus serpens, Ranzania laevis and X. gladius; and Indian Ocean T. alalunga. All species considered at high risk were targeted or were commercialized bycatch, except for the Atlantic G. serpens and R. laevis which were discarded, and may be considered as a false positive. Those species and others at high risk should be prioritized for further assessment and/or data collection. Most species at moderate risk were bycatch species kept for sale. Conversely, species classified at low risk were mostly discarded. Overall, species at high risk were overfished and/or subjected to overfishing. Moreover, all species considered to be within extinction risk (Critically Endangered, Endangered and Vulnerable) were in the high-risk category. The good concordance between approaches corroborates the results of our analysis. PSA is not a replacement for traditional stock assessments, where a stock is assessed at regular intervals to provide management advice. It is of importance, however, where there is uncertainty about catches and life history parameters, since it can

  16. Investigating the Indian Ocean Geoid Low

    Science.gov (United States)

    Ghosh, A.; Gollapalli, T.; Steinberger, B. M.

    2016-12-01

    The lowest geoid anomaly on Earth lies in the Indian Ocean just south of the Indian peninsula.Several theories have been proposed to explain this geoid low, most of which invoke past subduction. Some recent studies have alsoargued that high velocity anomalies in the lower mantle coupled with low velocity anomalies in the upper mantle are responsible for these negative geoidanomalies. However, there is no general consensus regarding the source of the Indian Ocean negative geoid. We investigate the source of this geoid low by using forward models of density driven mantle convection using CitcomS. We test various tomography models in our flow calculations with different radial and lateral viscosity variations. Many tomography modelsproduce a fairly high correlation to the global geoid, however none could match the precise location of the geoid low in the Indian Ocean. Amerged P-wave model of LLNL-G3DV3 in the Indian Ocean region and S40rts elsewhere yields a good fit to the geoid anomaly, both in pattern and magnitude.The source of this geoid low seems to stem from a low velocity anomaly stretching from a depth of 300 km up to 700 km in the northern Indian Ocean region.This velocity anomaly could potentially arise from material rising along the edge of the African LLSVP and moving towards the northeast, facilitated by the movementof the Indian plate in the same direction.

  17. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean

    NARCIS (Netherlands)

    Dupont, L.M.; Caley, T.; Kim, J.H.; Castañeda, I.S; Malaize, B.; Giraudeau, J.

    2011-01-01

    Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a

  18. Notes on some Indo-Pacific Pontoniinae III-IX descriptions of some new genera and species from the Western Indian Ocean and the South China Sea

    NARCIS (Netherlands)

    Bruce, A.J.

    1967-01-01

    CONTENTS Introduction................... 1 III. Anapontonia denticauda Bruce, 1966, from the western Indian Ocean . . 2 IV. Mesopontonia gorgoniophila gen. nov., sp. nov., from the South China Sea 13 V. Metapontonia fungiacola gen. nov., sp. nov., from the western Indian Ocean 23 VI. The genus

  19. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from DISCOVERY in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 1993-02-06 to 1993-03-18 (NCEI Accession 0143944)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143944 includes discrete sample and profile data collected from DISCOVERY in the Indian Ocean, South Atlantic Ocean and Southern Oceans (> 60...

  20. Pelagic ecology of the South West Indian Ocean Ridge seamounts: Introduction and overview

    Science.gov (United States)

    Rogers, A. D.

    2017-02-01

    The Indian Ocean was described by Behrman (1981) as the "Forlorn Ocean", a region neglected by science up to the late-1950s. For example, the Challenger Expedition from 1872 to 1876 largely avoided the Indian Ocean, sailing from Cape Town into Antarctic waters sampling around the Prince Edward Islands, Kerguelen Island and Crozet Islands before heading to Melbourne. From 1876 to the 1950s there were expeditions on several vessels including the Valdivia, Gauss and Planet (Germany), the Snellius (Netherlands), Discovery II, MahaBiss (United Kingdom), Albatross (Sweden), Dana and Galathea (Denmark; Behrman, 1981). There was no coordination between these efforts and overall the Indian Ocean, especially the deep sea remained perhaps the most poorly explored of the world's oceans. This situation was largely behind the multilateral effort represented by the International Indian Ocean Expedition (IIEO), which was coordinated by the Scientific Committee for Ocean Research (SCOR), and which ran from 1959-1965. Work during this expedition focused on the Arabian Sea, the area to the northwest of Australia and the waters over the continental shelves and slopes of coastal states in the region. Subsequently several large-scale international oceanographic programmes have included significant components in the Indian Ocean, including the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE). These studies were focused on physical oceanographic measurements and biogeochemistry and whilst the Indian Ocean is still less understood than other large oceans it is now integrated into the major ocean observation systems (Talley et al., 2011). This cannot be said for many aspects of the biology of the region, despite the fact that the Indian Ocean is one of the places where exploitation of marine living resources is still growing (FAO, 2016). The biology of the deep Indian Ocean outside of the Arabian Sea is particularly poorly understood given the presence

  1. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and Southern Oceans from 2011-01-04 to 2011-02-06 (NCEI Accession 0143947)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143947 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and Southern Oceans (>...

  2. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, PAR Sensor and other instruments from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and Southern Oceans from 2007-12-16 to 2008-01-27 (NCEI Accession 0143932)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143932 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and Southern Oceans (>...

  3. Immunohistochemical localization of CYP1A, vitellogenin and Zona radiata proteins in the liver of swordfish (Xiphias gladius L.) taken from the Mediterranean Sea, South Atlantic, South Western Indian and Central North Pacific Oceans

    International Nuclear Information System (INIS)

    Desantis, S.; Corriero, A.; Cirillo, F.; Deflorio, M.; Brill, R.; Griffiths, M.; Lopata, A.L.; Serna, J.M. de la; Bridges, C.R.; Kime, D.E.; De Metrio, G.

    2005-01-01

    Cytochrome P4501A (CYP1A) monoxygenase, vitellogenin (Vtg) and Zona radiata proteins (Zrp) are frequently used as biomarkers of fish exposure to organic contaminants. In this work, swordfish liver sections obtained from the Mediterranean Sea, the South African coasts (South Atlantic and South Western Indian Oceans) and the Central North Pacific Ocean were immunostained with antisera against CYP1A, Zrp, and Vtg. CYP1A induction was found in hepatocytes, epithelium of the biliary ductus and the endothelium of large blood vessels of fish from the Mediterranean Sea and South African waters, but not from the Pacific Ocean. Zrp and Vtg were immunolocalized in hepatocytes of male swordfish from the Mediterranean Sea and from South African waters. Plasma Dot-Blot analysis, performed in Mediterranean and Pacific specimens, revealed the presence of Zrp and Vtg in males from Mediterranean but not from Pacific. These results confirm previous findings about the potential exposure of Mediterranean swordfish to endocrine, disrupting chemicals and raise questions concerning the possible presence of xenobiotic contaminants off the Southern coasts of South Africa in both the South Atlantic and South Western Indian Oceans

  4. Interannual variability of the tropical Indian Ocean mixed layer depth

    Digital Repository Service at National Institute of Oceanography (India)

    Keerthi, M.G.; Lengaigne, M.; Vialard, J.; Montegut, C.deB.; Muraleedharan, P.M.

    , shoaling the MLD (Masson et al. 2002, Qu and Meyers 2005, Du et al. 2005). The seasonal cycle in the southern tropical Indian Ocean has been less 3 investigated. Seasonal shoaling and deepening of the mixed layer in the south-western Tropical Indian...

  5. Nodules of the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Kodagali, V.N.

    of calcareous sediments within, and pelagic sediments south of 15 degrees S latitude Prior to the launching of the project, very little data was available on the Indian Ocean nodules compared to those of Pacific This chapter summaries the findings of the project...

  6. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 1996-03-17 to 1996-05-20 (NODC Accession 0116640)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116640 includes discrete sample and profile data collected from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern Oceans (> 60...

  7. Plasticity of trophic interactions among sharks from the oceanic south-western Indian Ocean revealed by stable isotope and mercury analyses

    Science.gov (United States)

    Kiszka, Jeremy J.; Aubail, Aurore; Hussey, Nigel E.; Heithaus, Michael R.; Caurant, Florence; Bustamante, Paco

    2015-02-01

    Sharks are a major component of the top predator guild in oceanic ecosystems, but the trophic relationships of many populations remain poorly understood. We examined chemical tracers of diet and habitat (δ15N and δ13C, respectively) and total mercury (Hg) concentrations in muscle tissue of seven pelagic sharks: blue shark (Prionace glauca), short-fin mako shark (Isurus oxyrinchus), oceanic whitetip shark (Carcharhinus longimanus), scalloped hammerhead shark (Sphyrna lewini), pelagic thresher shark (Alopias pelagicus), crocodile shark (Pseudocarcharias kamoharai) and silky shark (Carcharhinus falciformis), from the data poor south-western tropical Indian Ocean. Minimal interspecific variation in mean δ15N values and a large degree of isotopic niche overlap - driven by high intraspecific variation in δ15N values - was observed among pelagic sharks. Similarly, δ13C values of sharks overlapped considerably for all species with the exception of P. glauca, which had more 13C-depleted values indicating possibly longer residence times in purely pelagic waters. Geographic variation in δ13C, δ15N and Hg were observed for P. glauca and I. oxyrinchus. Mean Hg levels were similar among species with the exception of P. kamoharai which had significantly higher Hg concentrations likely related to mesopelagic feeding. Hg concentrations increased with body size in I. oxyrinchus, P. glauca and C. longimanus. Values of δ15N and δ13C varied with size only in P. glauca, suggesting ontogenetic shifts in diets or habitats. Together, isotopic data indicate that - with few exceptions - variance within species in trophic interactions or foraging habitats is greater than differentiation among pelagic sharks in the south-western Indian Ocean. Therefore, it is possible that this group exhibits some level of trophic redundancy, but further studies of diets and fine-scale habitat use are needed to fully test this hypothesis.

  8. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 2002-11-24 to 2003-01-23 (NODC Accession 0108068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108068 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the Indian Ocean, South Atlantic Ocean and Southern...

  9. Understanding Rossby wave trains forced by the Indian Ocean Dipole

    Science.gov (United States)

    McIntosh, Peter C.; Hendon, Harry H.

    2018-04-01

    Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.

  10. Liver lipids of Indian and Atlantic Ocean spinner Carcharhinus ...

    African Journals Online (AJOL)

    Shark liver oils are rich in polyunsaturated fatty acids, especially the n3 moieties. Data on the liver fatty acids of sharks from African waters, however, are limited. Liver samples from sharks from the western Indian Ocean off the east coast of South Africa and those from the Atlantic Ocean and Gulf of Mexico were examined.

  11. HTLV-I infection in the South West Indian Ocean islands, particularly in La Réunion and the Seychelles.

    Science.gov (United States)

    Aubry, P; Bovet, P; Vitrac, D; Schooneman, F; Hollanda, J; Malvy, D; Gaüzère, B-A

    2013-10-01

    Data on HTLV-I are scarce in several Southwest Indian Ocean islands except for La Réunion and The Seychelles. The two cases of HTLV-I have been confirmed by Western-Blot in La Réunion, among blood donors. In Seychelles (87 400 inhabitants in 2012), where blood donors and some other cases are screened, HTLV-I was confirmed with a line immune assay in 43 persons and at least 10-20 patients are known to have tropical spastic paraparesia or adult T-cell lymphoma associated with HTLV-I. In the south-west Indian Ocean, a possibly important other issue may be co-infection of HTLV-1 with the Strongyloides stercoralis roundworm, which is endemic in all countries of the region and which can sometimes lead to severe symptomatic infestation.

  12. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from JAMES CLARK ROSS in the Indian Ocean, South Atlantic Ocean and Southern Oceans from 2008-12-26 to 2009-01-30 (NODC Accession 0110254)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110254 includes discrete sample and profile data collected from JAMES CLARK ROSS in the Indian Ocean, South Atlantic Ocean and Southern Oceans (>...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the Indian Ocean, South Pacific Ocean and Southern Oceans from 2012-11-28 to 2013-01-04 (NCEI Accession 0143950)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143950 includes discrete sample and profile data collected from MIRAI in the Indian Ocean, South Pacific Ocean and Southern Oceans (> 60 degrees...

  14. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean

    Directory of Open Access Journals (Sweden)

    L. M. Dupont

    2011-11-01

    Full Text Available Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a pollen record of the marine core MD96-2048 retrieved by the Marion Dufresne from the Indian Ocean ∼120 km south of the Limpopo River mouth. The sedimentation at the site is slow and continuous. The upper 6 m (spanning the past 342 Ka have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials, the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests. During glacials open mountainous scrubland dominated. Montane forest with Podocarpus extended during humid periods was favoured by strong local insolation. Correlation with the sea surface temperature record of the same core indicates that the extension of mountainous scrubland primarily depends on sea surface temperatures of the Agulhas Current. Our record corroborates terrestrial evidence of the extension of open mountainous scrubland (including fynbos-like species of the high-altitude Grassland biome for the last glacial as well as for other glacial periods of the past 300 Ka.

  15. Western Indian Ocean Journal of Marine Science - Vol 8, No 2 (2009)

    African Journals Online (AJOL)

    Eddy formation around South West Mascarene Plateau (Indian Ocean) as evidenced by satellite 'global ocean colour' data · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. MR Badal, SDDV Rughooputh, L Rydberg, IS Robinson, C Pattiaratchi.

  16. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from ROGER REVELLE in the Indian Ocean, South Pacific Ocean and others from 2007-02-04 to 2007-03-16 (NCEI Accession 0144252)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144252 includes Surface underway data collected from ROGER REVELLE in the Indian Ocean, South Pacific Ocean, Southern Oceans (> 60 degrees South)...

  17. Trends in the Indian Ocean Climatology due to anthropogenic induced global warming

    CSIR Research Space (South Africa)

    Meyer, AA

    2009-09-01

    Full Text Available clearly show that due to global warming the South West Indian Ocean Climatology has been changing and that this changing trend will continue into the future as global warming continues. The impacts of regional oceanic climate change on the regions coastal...

  18. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean and others from 1993-04-04 to 1993-05-09 (NODC Accession 0115004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115004 includes chemical, discrete sample, physical and profile data collected from AURORA AUSTRALIS in the Indian Ocean, South Pacific Ocean,...

  19. The ocean-atmosphere response to wind-induced thermocline changes in the tropical South Western Indian Ocean

    NARCIS (Netherlands)

    Manola, Iris; Selten, F. M.; De Ruijter, W. P M; Hazeleger, W.

    2014-01-01

    In the Indian Ocean basin the sea surface temperatures (SSTs) are most sensitive to changes in the oceanic depth of the thermocline in the region of the Seychelles Dome. Observational studies have suggested that the strong SST variations in this region influence the atmospheric evolution around the

  20. Rajella paucispinosa n. sp., a new deep-water skate (Elasmobranchii, Rajidae) from the western Indian Ocean off South Mozambique, and a revised generic diagnosis.

    Science.gov (United States)

    Weigmann, Simon; Stehmann, Matthias F W; Thiel, Ralf

    2014-08-08

    A new species of the widely in temperate and tropical latitudes distributed skate genus Rajella is described based on an almost adult male specimen from the western Indian Ocean off South Mozambique. The holotype of R. paucispinosa n. sp. was caught during cruise 17 of RV 'Vityaz' along the deep western Indian Ocean in 1988/89. It is the northernmost record of a Rajella specimen in the western Indian Ocean. The new species is the 18th valid species of the genus and the fifth species in the western Indian Ocean. It differs from its congeners in the small maximal total length of about 50 cm and only few thorns on the dorsal surface. The new species has only two thorns on each orbit, one nuchal thorn, one right scapular thorn (left one not detectable, abraded), and one median row of tail thorns. Other species of Rajella typically have half rings of thorns on orbital rims, a triangle of thorns on nape-shoulder region, and at least three rows of tail thorns. Another conspicuous feature of the new species is the almost completely white dorsal and ventral coloration. 

  1. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the AURORA AUSTRALIS in the Indian Ocean and South Pacific Ocean from 1994-12-13 to 1995-02-01 (NODC Accession 0115020)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115020 includes chemical, discrete sample, physical and profile data collected from AURORA AUSTRALIS in the Indian Ocean and South Pacific Ocean from...

  2. Seasonal variation of the South Indian tropical gyre

    NARCIS (Netherlands)

    Aguiar-González, B.; Ponsoni, Leandro; Ridderinkhof, H.; van Aken, H.M.; de Ruijter, W.P.M.; Maas, L.R.M.

    2016-01-01

    Based on satellite altimeter data and global atlases of temperature, salinity, wind stress and wind-driven circulation we investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles–Chagos Thermocline Ridge (SCTR).

  3. Indian Ocean Rim Cooperation

    DEFF Research Database (Denmark)

    Wippel, Steffen

    Since the mid-1990s, the Indian Ocean has been experiencing increasing economic cooperation among its rim states. Middle Eastern countries, too, participate in the work of the Indian Ocean Rim Association, which received new impetus in the course of the current decade. Notably Oman is a very active...

  4. Dissolved inorganic carbon, alkalinity, temperature, salinity and SEA SURFACE TEMPERATURE collected from discrete sample and profile observations using CTD, bottle and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 2002-10-16 to 2012-03-06 (NCEI Accession 0157351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157351 includes chemical, discrete sample, physical and profile data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean, Southern...

  5. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the SHIRASE in the Indian Ocean, South Pacific Ocean and Tasman Sea from 1992-12-03 to 1993-03-19 (NODC Accession 0113597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113597 includes biological, chemical, discrete sample, physical and profile data collected from SHIRASE in the Indian Ocean, South Pacific Ocean and...

  6. Swell Propagation over Indian Ocean Region

    Directory of Open Access Journals (Sweden)

    Suchandra A. Bhowmick

    2011-06-01

    Full Text Available Swells are the ocean surface gravity waves that have propagated out of their generating fetch to the distant coasts without significant attenuation. Therefore they contain a clear signature of the nature and intensity of wind at the generation location. This makes them a precursor to various atmospheric phenomena like distant storms, tropical cyclones, or even large scale sea breeze like monsoon. Since they are not affected by wind once they propagate out of their generating region, they cannot be described by regional wave models forced by local winds. However, their prediction is important, in particular, for ship routing and off shore structure designing. In the present work, the propagation of swell waves from the Southern Ocean and southern Indian Ocean to the central and northern Indian Ocean has been studied. For this purpose a spectral ocean Wave Model (WAM has been used to simulate significant wave height for 13 years from 1993–2005 using NCEP blended winds at a horizontal spatial resolution of 1° × 1°. It has been observed that Indian Ocean, with average wave height of approximately 2–3 m during July, is mostly dominated by swell waves generated predominantly under the extreme windy conditions prevailing over the Southern Ocean and southern Indian Ocean. In fact the swell waves reaching the Indian Ocean in early or mid May carry unique signatures of monsoon arriving over the Indian Subcontinent. Pre-monsoon month of April contains low swell waves ranging from 0.5–1 m. The amplitudes subsequently increase to approximately 1.5–2 meters around 7–15 days prior to the arrival of monsoon over the Indian Subcontinent. This embedded signature may be utilized as one of the important oceanographic precursor to the monsoon onset over the Indian Ocean.

  7. Phylogeny and colonization history of Pringlea antiscorbutica (Brassicaceae), an emblematic endemic from the South Indian Ocean Province.

    Science.gov (United States)

    Bartish, Igor V; Aïnouche, Abdelkader; Jia, Dongrui; Bergstrom, Dana; Chown, Steven L; Winkworth, Richard C; Hennion, Françoise

    2012-11-01

    The origins and evolution of sub-Antarctic island floras are not well understood. In particular there is uncertainty about the ages of the contemporary floras and the ultimate origins of the lineages they contain. Pringlea R. Br. (Brassicaceae) is a monotypic genus endemic to four sub-Antarctic island groups in the southern Indian Ocean. Here we used sequences from both the chloroplast and nuclear genomes to examine the phylogenetic position of this enigmatic genus. Our analyses confirm that Pringlea falls within the tribe Thelypodieae and provide a preliminary view of its relationships within the group. Divergence time estimates and ancestral area reconstructions imply Pringlea diverged from a South American ancestor ~5 Myr ago. It remains unclear whether the ancestor of Pringlea dispersed directly to the South Indian Ocean Province (SIOP) or used Antarctica as a stepping-stone; what is clear, however, is that following arrival in the SIOP several additional long-distance dispersal events must be inferred to explain the current distribution of this species. Our analyses also suggest that although Pringlea is likely to have inherited cold tolerance from its closest relatives, the distinctive morphology of this species evolved only after it split from the South American lineage. More generally, our results lend support to the hypothesis that angiosperms persisted on the sub-Antarctic islands throughout the Pliocene and Pleistocene. Taken together with evidence from other sub-Antarctic island plant groups, they suggest the extant flora of sub-Antarctic is likely to have been assembled over a broad time period and from lineages with distinctive biogeographic histories. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The Indian Ocean as a Connector

    Science.gov (United States)

    Durgadoo, J. V.; Biastoch, A.; Boning, C. W.

    2016-02-01

    The Indian Ocean is a conduit for the upper ocean flow of the global thermohaline circulation. It receives water from the Pacific Ocean through the Indonesian throughflow and the Tasman leakage, and exports water into the Atlantic by means of Agulhas leakage. A small contribution from the northern Indian Ocean is also detectable within Agulhas leakage. Changes on different timescales in the various components of the Pacific inflows and the Atlantic outflow have been reported. Little is known on the role of the Indian Ocean circulation in communicating changes from the Pacific into the Atlantic, let alone any eventual alterations in response to climate change. The precise routes and timescales of Indonesian throughflow, Tasman leakage, Red Sea and Persian Gulf Waters towards the Atlantic are examined in a Lagrangian framework within a high-resolution global ocean model. In this presentation, the following questions are addressed: How are Pacific waters modified in the Indian Ocean before reaching the Agulhas system? On what timescale is water that enters the Indian Ocean from the Pacific flushed out? How important are detours in the Bay of Bengal and Arabian Sea?

  9. Clustering Indian Ocean Tropical Cyclone Tracks by the Standard Deviational Ellipse

    Directory of Open Access Journals (Sweden)

    Md. Shahinoor Rahman

    2018-05-01

    Full Text Available The standard deviational ellipse is useful to analyze the shape and the length of a tropical cyclone (TC track. Cyclone intensity at each six-hour position is used as the weight at that location. Only named cyclones in the Indian Ocean since 1981 are considered for this study. The K-means clustering algorithm is used to cluster Indian Ocean cyclones based on the five parameters: x-y coordinates of the mean center, variances along zonal and meridional directions, and covariance between zonal and meridional locations of the cyclone track. Four clusters are identified across the Indian Ocean; among them, only one cluster is in the North Indian Ocean (NIO and the rest of them are in the South Indian Ocean (SIO. Other characteristics associated with each cluster, such as wind speed, lifespan, track length, track orientation, seasonality, landfall, category during landfall, total accumulated cyclone energy (ACE, and cyclone trend, are analyzed and discussed. Cyclone frequency and energy of Cluster 4 (in the NIO have been following a linear increasing trend. Cluster 4 also has a higher number of landfall cyclones compared to other clusters. Cluster 2, located in the middle of the SIO, is characterized by the long track, high intensity, long lifespan, and high accumulated energy. Sea surface temperature (SST and outgoing longwave radiation (OLR associated with genesis of TCs are also examined in each cluster. Cyclone genesis is co-located with the negative OLR anomaly and the positive SST anomaly. Localized SST anomalies are associated with clusters in the SIO; however, TC geneses of Cluster 4 are associated with SSTA all over the Indian Ocean (IO.

  10. Partial pressure (or fugacity) of carbon dioxide, temperature, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from TANGAROA in the Indian Ocean, South Pacific Ocean and others from 1999-02-02 to 1999-02-28 (NCEI Accession 0155958)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0155958 includes Surface underway, chemical, meteorological and physical data collected from TANGAROA in the Indian Ocean, South Pacific Ocean,...

  11. Western Indian Ocean Journal of Marine Science - Vol 13, No 1 (2014)

    African Journals Online (AJOL)

    View or download the full issue, Untitled () PDF. Table of Contents. Articles. Morphology of the Zambezi River plume in the Sofala Bank, Mozambique · EMAIL ... (Iles Eparses, France) in the Mozambique Channel, South Western Indian Ocean.

  12. Quaternary radiolarian faunal changes in the tropical Indian Ocean: Inferences to paleomonsoonal oscillation of the 10 degrees S hydrographic front

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.

    The northern Indian Ocean is characterized by three distinct surface water masses, i.e. (1) highly saline (greater than 34.5 ppt) Arabian Sea, (2) low saline (less than 34.5 ppt) Bay of Bengal and (3) a moderate salinity Indian Ocean watermass south...

  13. 500 kyr of Indian Ocean Walker Circulation Variability Using Foraminiferal Mg/Ca and Stable Isotopes

    Science.gov (United States)

    Groeneveld, J.; Mohtadi, M.; Lückge, A.; Pätzold, J.

    2017-12-01

    The tropical Indian Ocean is a key location for paleoclimate research affected by different oceanographic and atmospheric processes. Annual climate variations are strongly controlled by the Indian and Asian Monsoon characterized by bi-annually reversing trade winds. Inter-annual climate variations in the Walker circulation are caused by the Indian Ocean Dipole and El Niño-Southern Oscillation resulting in either heavy flooding or severe droughts like for example the famine of 2011 in eastern Africa. Oceanographically the tropical western Indian Ocean receives water masses from the Indonesian Gateway area, sub-Antarctic waters that upwell south of the equator, and the outflow waters from the highly saline Red Sea. On the other hand, the tropical western Indian Ocean is a major source for providing water masses to the Agulhas Current system. Although the eastern Indian Ocean has been studied extensively, the tropical western Indian Ocean is still lacking in high quality climate-archives that have the potential to provide important information to understand how the ocean and atmospheric zonal circulation have changed in the past, and possibly will change in the future. Until now there were no long sediment cores available covering several glacial-interglacial cycles in the tropical western Indian Ocean. Core GeoB 12613-1, recovered during RV Meteor Cruise M75/2 east of the island of Pemba off Tanzania, provides an open-ocean core with well-preserved sediments covering the last five glacial-interglacial cycles ( 500 kyr). Mg/Ca and stable isotopes on both surface- and thermocline dwelling foraminifera have been performed to test how changes in sea water temperatures and relative sea water salinity were coupled on orbital time scales. The results are compared with similar records generated for the tropical eastern Indian Ocean in core SO139-74KL off Sumatra. Water column stratification on both sides of the Indian Ocean and the cross-basin gradients in sea water

  14. Oceanic Precondition and Evolution of the Indian Ocean Dipole Events

    Science.gov (United States)

    Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.

    2008-12-01

    Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.

  15. Convective Lofting Links Indian Ocean Air Pollution to Recurrent South Atlantic Ozone Maxima

    Science.gov (United States)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J.

    2003-12-01

    We extend on our analysis of equatorial tropospheric ozone to illustrate the contributions of South Asian pollution export in forming episodes of high O3 over the Atlantic Ocean. We amplify on an earlier description of a broad resolution of the "Atlantic Paradox," for the Jan-Feb-March period, which included initial indications of a very long-distance contribution from South Asia. The approach has been to describe typical periods of significant maximum and minimum tropospheric ozone for early 1999, exploiting TOMS tropospheric ozone estimates jointly with characteristic features of the SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone soundings. Further investigation of the Total Tropospheric Ozone (TTO) record for all of 1999 suggests that there are repeated periods of very long-distance Asian influence crossing Africa, with an apparent effect on those portions of the Atlantic Equatorial troposphere which are downwind. Trajectory analyses suggest that the pattern over the Indian Ocean is complex: a sequence invoving multiple or mixed combustion sources, low level transport, cumulonimbus venting, and high-level transport to the west seem to be indicated by the TTO record. Biomass burning, fossil and biofuel combustion, and lighting seem to all contribute. For the Atlantic, burning and lighting on adjacent continents as well as episodes of this cross-Africa long-distance transport are all linked in a coordinated seasonal march: all are related by movement of the sun. However, interseasonal tropical variability related to the Madden-Julian oscillation allows intermittent ozone buildups that depart from the seasonal norm.

  16. Transport of North Pacific 137Cs labeled waters to the south-eastern Atlantic Ocean

    Science.gov (United States)

    Sanchez-Cabeza, J. A.; Levy, I.; Gastaud, J.; Eriksson, M.; Osvath, I.; Aoyama, M.; Povinec, P. P.; Komura, K.

    2011-04-01

    During the reoccupation of the WOCE transect A10 at 30°S by the BEAGLE2003 cruise, the SHOTS project partners collected a large number of samples for the analysis of isotopic tracers. 137Cs was mostly deposited on the oceans surface during the late 1950s and early 1960s, after the atmospheric detonation of large nuclear devices, which mostly occurred in the Northern Hemisphere. The development of advanced radioanalytical and counting techniques allowed to obtain, for the first time in this region, a zonal section of 137Cs water concentrations, where little information existed before, thus constituting an important benchmark for further studies. 137Cs concentrations in the upper waters (0-1000 m) of the south-eastern Atlantic Ocean are similar to those observed in the south-western Indian Ocean, suggesting transport of 137Cs labeled waters by the Agulhas current to the Benguela Current region. In contrast, bomb radiocarbon data do not show this feature, indicating the usefulness of 137Cs as a radiotracer of water mass transport from the Indian to the South Atlantic Ocean.

  17. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 2002-10-16 to 2006-12-31 (NCEI Accession 0157276)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157276 includes Surface underway, chemical, meteorological and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean,...

  18. Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans.

    Science.gov (United States)

    Ryan, Peter G

    2008-08-01

    I compare plastic ingested by five species of seabirds sampled in the 1980s and again in 1999-2006. The numbers of ingested plastic particles have not changed significantly, but the proportion of virgin pellets has decreased 44-79% in all five species: great shearwater Puffinus gravis, white-chinned petrel Procellaria aequinoctialis, broad-billed prion Pachyptila vittata, white-faced storm petrel Pelagodroma marina and white-bellied storm petrel Fregetta grallaria. The populations sampled range widely in the South Atlantic and western Indian Oceans. The most marked reduction occurred in great shearwaters, where the average number of pellets per bird decreased from 10.5 to 1.6. This species migrates between the South and North Atlantic each year. Similar decreases in virgin pellets have been recorded in short-tailed shearwaters Puffinus tenuirostris in the Pacific Ocean and northern fulmars Fulmarus glacialis in the North Sea. More data are needed on the relationship between plastic loads in seabirds and the density of plastic at sea in their foraging areas, but the consistent decrease in pellets in birds suggests there has been a global change in the composition of small plastic debris at sea over the last two decades.

  19. Superficial mineral resources of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Siddiquie, H.N.; Hashimi, N.H.; Gujar, A; Valsangkar, A

    The sea floor of the Indian Ocean and the continental margins bordering the ocean are covered by a wide variety of terrigenous, biogenous and anthigenic mineral deposits. The biogenous deposits in the Indian Ocean comprise the corals on shallow...

  20. Seasonal variations of thermocline circulation and ventilation in the Indian Ocean

    Science.gov (United States)

    You, Yuzhu

    1997-05-01

    Two seasonal hydrographic data sets, including temperature, salinity, dissolved oxygen, and nutrients, are used in a mixing model which combines cluster analysis with optimum multiparameter analysis to determine the spreading and mixing of the thermocline waters in the Indian Ocean. The mixing model comprises a system of four major source water masses, which were identified in the thermocline through cluster analysis. They are Indian Central Water (ICW), North Indian Central Water (NICW) interpreted as aged ICW, Australasian Mediterranean Water (AAMW), and Red Sea Water (RSW)/Persian Gulf Water (PGW). The mixing ratios of these water masses are quantified and mapped on four isopycnal surfaces which span the thermocline from 150 to 600 m in the northern Indian Ocean, on two meridional sections along 60°E and 90°E, and on two zonal sections along 10°S and 6°N. The mixing ratios and pathways of the thermocline water masses show large seasonal variations, particularly in the upper 400-500 m of the thermocline. The most prominent signal of seasonal variation occurs in the Somali Current, the western boundary current, which appears only during the SW (summer) monsoon. The northward spreading of ICW into the equatorial and northern Indian Ocean is by way of the Somali Current centered at 300-400 m on the σθ=26.7 isopycnal surface during the summer monsoon and of the Equatorial Countercurrent during the NE (winter) monsoon. More ICW carried into the northern Indian Ocean during the summer monsoon is seen clearly in the zonal section along 6°N. NICW spreads southward through the western Indian Ocean and is stronger during the winter monsoon. AAMW appears in both seasons but is slightly stronger during the summer in the upper thermocline. The westward flow of AAMW is by way of the South Equatorial Current and slightly bends to the north on the σθ=26.7 isopycnal surface during the summer monsoon, indicative of its contribution to the western boundary current. Outflow

  1. Deciphering Detailed Plate Kinematics of the Indian Ocean: A Combined Indian-Australian-French Initiative

    Science.gov (United States)

    Vadakkeyakath, Y.; Müller, R.; Dyment, J.; Bhattacharya, G.; Lister, G. S.; Kattoju, K. R.; Whittaker, J.; Shuhail, M.; Gibbons, A.; Jacob, J.; White, L. T.; Bissessur, P. D.; Kiranmai, S.

    2012-12-01

    The Indian Ocean formed as a result of the fragmentation and dispersal of East Gondwanaland since the Jurassic. The deep ocean basins in the Indian Ocean contain the imprints of this plate tectonic history, which is related with several major events such as the Kerguelen, Marion and Reunion hotspot inception and the Indo-Eurasian collision. A broad model for evolution of the Indian Ocean was proposed in the early 1980s. Subsequently, French scientists collected a large amount of magnetic data from the western and southern parts of the Indian Ocean while Indian and Australian scientists collected considerable volumes of magnetic data from the regions of Indian Ocean around their mainlands. Using these data, the Indian, French and Australian researchers independently carried out investigations over different parts of the Indian Ocean and provided improved models of plate kinematics at different sectoral plate boundaries. Under two Indo-French collaborative projects, detailed magnetic investigations were carried out in the Northwestern and Central Indian Ocean by combining the available magnetic data from conjugate regions. Those projects were complemented by additional area-specific studies in the Mascarene, Wharton, Laxmi and Gop basins, which are characterized by extinct spreading regimes. These Indo-French projects provided high resolution and improved plate tectonic models for the evolution of the conjugate Arabian and Eastern Somali basins that constrain the relative motion between the Indian-African (now Indian-Somalian) plate boundaries, and the conjugate Central Indian, Crozet and Madagascar basins that mainly constrain the relative motions of Indian-African (now Capricorn-Somalian) and Indian-Antarctic (now Capricorn-Antarctic) plate boundaries. During the same period, Australian scientists carried out investigations in the southeastern part of the Indian Ocean and provided an improved understanding of the plate tectonic evolution of the Indian

  2. Teleconnections of the tropical Atlantic to the tropical Indian and Pacific Oceans. A review of recent findings

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chunzai [NOAA Atlantic Oceanographic and Meteorological Lab., Miami, FL (United States); Kucharski, Fred; Barimalala, Rondrotiana [The Abdus Salam International Centre for Theoretical Physics, Earth System Physics, Section Trieste (Italy); Bracco, Annalisa [School of Earth and Atmospheric Sciences Georgia, Inst. of Tech., Atlanta, GA (United States)

    2009-08-15

    Recent studies found that tropical Atlantic variability may affect the climate in both the tropical Pacific and Indian Ocean basins, possibly modulating the Indian summer monsoon and Pacific ENSO events. A warm tropical Atlantic Ocean forces a Gill-Matsuno-type quadrupole response with a low-level anticyclone located over India that weakens the Indian monsoon circulation, and vice versa for a cold tropical Atlantic Ocean. The tropical Atlantic Ocean can also induce changes in the Indian Ocean sea surface temperatures (SSTs). especially along the coast of Africa and in the western side of the Indian basin. Additionally, it can influence the tropical Pacific Ocean via an atmospheric teleconnection that is associated with the Atlantic Walker circulation. Although the Pacific El Nino does not contemporaneously correlate with the Atlantic Nino, anomalous warming or cooling of the two equatorial oceans can form an inter-basin SST gradient that induces surface zonal wind anomalies over equatorial South America and other regions in both ocean basins. The zonal wind anomalies act as a bridge linking the two ocean basins, and in turn reinforce the inter-basin SST gradient through the atmospheric Walker circulation and oceanic processes. Thus, a positive feedback seems to exist for climate variability of the tropical Pacific-Atlantic Oceans and atmospheric system, in which the inter-basin SST gradient is coupled to the overlying atmospheric wind. (orig.)

  3. Interannual to Decadal SST Variability in the Tropical Indian Ocean

    Science.gov (United States)

    Wang, G.; Newman, M.; Han, W.

    2017-12-01

    The Indian Ocean has received increasing attention in recent years for its large impacts on regional and global climate. However, due mainly to the close interdependence of the climate variation within the Tropical Pacific and the Indian Ocean, the internal sea surface temperature (SST) variability within the Indian Ocean has not been studied extensively on longer time scales. In this presentation we will show analysis of the interannual to decadal SST variability in the Tropical Indian Ocean in observations and Linear Inverse Model (LIM) results. We also compare the decoupled Indian Ocean SST variability from the Pacific against fully coupled one based on LIM integrations, to test the factors influence the features of the leading SST modes in the Indian Ocean. The result shows the Indian Ocean Basin (IOB) mode, which is strongly related to global averaged SST variability, passively responses to the Pacific variation. Without tropical Indo-Pacific coupling interaction, the intensity of IOB significantly decreases by 80%. The Indian Ocean Dipole (IOD) mode demonstrates its independence from the Pacific SST variability since the IOD does not change its long-term characteristics at all without inter-basin interactions. The overall SSTA variance decreases significantly in the Tropical Indian Ocean in the coupling restricted LIM runs, especially when the one-way impact from the Pacific to the Indian Ocean is turned off, suggesting that most of the variability in the Indian Ocean comes from the Pacific influence. On the other hand, the Indian Ocean could also transport anomalies to the Pacific, making the interaction a complete two-way process.

  4. Pb-Sr-Nd isotopic data of Indian Ocean ridges: New evidence of large-scale mapping of mantle heterogeneities

    International Nuclear Information System (INIS)

    Hamelin, B.; Dupre, B.; Allegre, C.J.

    1986-01-01

    A Pb-Sr-Nd isotope study of South West and East Indian Ridges confirms that the Indian Ocean belongs to a specific regional isotopic domain, as previously suggested by the results from islands of this ocean. The isotopic domain defined by the Indian MORB is indeed different from that of the North Atlantic and East Pacific Oceans. This demonstrates that the convective circulation of the upper mantle does not allow a rapid homogenization from one region to the other. The isotopic data of the Indian ridges can be interpreted by a contamination model, in which the depleted upper mantle (identical to that under the North Atlantic) is contaminated by two different types of contaminant, one corresponding to the source of the ''central Indian Ocean'' islands (Amsterdam, St. Paul, Marion, Prince Edward, Reunion, Rodriguez, Mauritius), and the other to a source similar to that of Walvis or Ninety East aseismic ridges. These two contaminants would have contributed to the ridge volcanism in different proportion over time. (orig.)

  5. Temperature profile and other data collected from XBT casts in Indian Ocean and N / S Pacific Ocean from ICEBIRD and other platforms from 02 January 1993 to 01 January 1994 (NODC Accession 9400207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using XBT casts from ICEBIRD and other platforms in Indian Ocean and North / South Pacific Ocean. Data were...

  6. TSUNAMIGENIC SOURCES IN THE INDIAN OCEAN

    Directory of Open Access Journals (Sweden)

    B. K. Rastogi

    2008-01-01

    Full Text Available Based on an assessment of the repeat periods of great earthquakes from past seismicity, convergence rates and paleoseismological results, possible future source zones of tsunami generating earthquakes in the Indian Ocean (possible seismic gap areas are identified along subduction zones and zones of compression. Central Sumatra, Java, Makran coast, Indus Delta, Kutch-Saurashtra, Bangladesh and southern Myanmar are identified as possible source zones of earthquakes in near future which might cause tsunamis in the Indian Ocean, and in particular, that could affect India. The Sunda Arc (covering Sumatra and Java subduction zone, situated on the eastern side of the Indian Ocean, is one of the most active plate margins in the world that generates frequent great earthquakes, volcanic eruptions and tsunamis. The Andaman- Nicobar group of islands is also a seismically active zone that generates frequent earthquakes. However, northern Sumatra and Andaman-Nicobar regions are assessed to be probably free from great earthquakes (M!8.0 for a few decades due to occurrence of 2004 Mw 9.3 and 2005 Mw 8.7 earthquakes. The Krakatau volcanic eruptions have caused large tsunamis in the past. This volcano and a few others situated on the ocean bed can cause large tsunamis in the future. List of past tsunamis generated due to earthquakes/volcanic eruptions that affected the Indian region and vicinity in the Indian Ocean are also presented.

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from the Drifting Buoy in the Indian Ocean, South Atlantic Ocean and others from 2001-11-20 to 2007-05-08 (NODC Accession 0117495)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117495 includes Surface underway, biological, chemical, meteorological and physical data collected from Drifting Buoy in the Indian Ocean, South...

  8. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    M. H. England

    1994-08-01

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of

  9. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    Matthew H. England

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean

  10. Impact of improved momentum transfer coefficients on the dynamics and thermodynamics of the north Indian Ocean

    Science.gov (United States)

    Parekh, Anant; Gnanaseelan, C.; Jayakumar, A.

    2011-01-01

    Long time series of in situ observations from the north Indian Ocean are used to compute the momentum transfer coefficients over the north Indian Ocean. The transfer coefficients behave nonlinearly for low winds (<4 m/s), when most of the known empirical relations assume linear relations. Impact of momentum transfer coefficients on the upper ocean parameters is studied using an ocean general circulation model. The model experiments revealed that the Arabian Sea and Equatorial Indian Ocean are more sensitive to the momentum transfer coefficients than the Bay of Bengal and south Indian Ocean. The impact of momentum transfer coefficients on sea surface temperature is up to 0.3°C-0.4°C, on mixed layer depth is up to 10 m, and on thermocline depth is up to 15 m. Furthermore, the impact on the zonal current is maximum over the equatorial Indian Ocean (i.e., about 0.12 m/s in May and 0.15 m/s in October; both May and October are the period of Wyrtki jets and the difference in current has potential impact on the seasonal mass transport). The Sverdrup transport has maximum impact in the Bay of Bengal (3 to 4 Sv in August), whereas the Ekman transport has maximum impact in the Arabian Sea (4 Sv during May to July). These highlight the potential impact of accurate momentum forcing on the results from current ocean models.

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 1996-10-21 to 1996-11-23 (NCEI Accession 0157233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157233 includes Surface underway, chemical, meteorological, optical and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific...

  12. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Barometric pressure sensor, Carbon dioxide (CO2) gas analyzer and other instruments from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and others from 1997-02-02 to 1997-02-17 (NCEI Accession 0157416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157416 includes Surface underway, chemical, meteorological, optical and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific...

  13. Differential Heating in the Indian Ocean Differentially Modulates Precipitation in the Ganges and Brahmaputra Basins

    Directory of Open Access Journals (Sweden)

    Md Shahriar Pervez

    2016-10-01

    Full Text Available Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Two interactive climate modes of the Indo-Pacific—the El Niño/Southern Oscillation (ENSO and the Indian Ocean dipole mode—modulate the amount of precipitation over India, in addition to precipitation over Africa, Indonesia, and Australia. However, this modulation is not spatially uniform. The precipitation in southern India is strongly forced by the Indian Ocean dipole mode and ENSO. In contrast, across northern India, encompassing the Ganges and Brahmaputra basins, the climate mode influence on precipitation is much less. Understanding the forcing of precipitation in these river basins is vital for food security and ecosystem services for over half a billion people. Using 28 years of remote sensing observations, we demonstrate that (i the tropical west-east differential heating in the Indian Ocean influences the Ganges precipitation and (ii the north-south differential heating in the Indian Ocean influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the Indian Ocean and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature anomalies in the Indian Ocean are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. These new indices have the potential to aid forecasting of drought and flooding, to contextualize land cover and land use change, and to assess the regional impacts of climate change.

  14. Differential heating in the Indian Ocean differentially modulates precipitation in the Ganges and Brahmaputra basins

    Science.gov (United States)

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2016-01-01

    Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Two interactive climate modes of the Indo-Pacific—the El Niño/Southern Oscillation (ENSO) and the Indian Ocean dipole mode—modulate the amount of precipitation over India, in addition to precipitation over Africa, Indonesia, and Australia. However, this modulation is not spatially uniform. The precipitation in southern India is strongly forced by the Indian Ocean dipole mode and ENSO. In contrast, across northern India, encompassing the Ganges and Brahmaputra basins, the climate mode influence on precipitation is much less. Understanding the forcing of precipitation in these river basins is vital for food security and ecosystem services for over half a billion people. Using 28 years of remote sensing observations, we demonstrate that (i) the tropical west-east differential heating in the Indian Ocean influences the Ganges precipitation and (ii) the north-south differential heating in the Indian Ocean influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the Indian Ocean and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature anomalies in the Indian Ocean are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. These new indices have the potential to aid forecasting of drought and flooding, to contextualize land cover and land use change, and to assess the regional impacts of climate change.

  15. Deep-sea ecosystems of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Koslow, J.A.

    are potential sites for hydrothermal mineralization and contain active vent fields. There are no available estimates for the numbers of seamounts in the Indian Ocean based on echo sounder recordings. Satellite altimetry data indicate that the Indian Ocean has...

  16. Atlantic and indian oceans pollution in africa

    Science.gov (United States)

    Abubakar, Babagana

    Africa is the second largest and most populated continent after Asia. Geographically it is located between the Atlantic and Indian Oceans. Most of the Africa's most populated and industrialized cities are located along the coast of the continent facing the Atlantic and Indian Oceans, example of such cities include Casablanca, Dakar, Accra, Lagos, Luanda and Cape town all facing the Atlantic Ocean and cities like East London, Durban, Maputo, Dar-es-salaam and Mogadishu are all facing the Indian Ocean. As a result of the geographical locations of African Coastal Cities plus increase in their population, industries, sea port operations, petroleum exploration activities, trafficking of toxic wastes and improper waste management culture lead to the incessant increase in the pollution of the two oceans. NATURE OF POLLUTION OF THE ATLANTIC OCEAN i. The petroleum exploration activities going on along the coast of "Gulf of Guinea" region and Angola continuously causes oil spillages in the process of drilling, bunkering and discharging of petroleum products in the Atlantic Ocean. ii. The incessant degreasing of the Sea Ports "Quay Aprons" along the Coastal cities of Lagos, Luanda, Cape Town etc are continuously polluting the Atlantic Ocean with chemicals. iii. Local wastes generated from the houses located in the coastal cities are always finding their ways into the Atlantic Ocean. NATURE OF POLLUTION OF THE INDIAN OCEAN i. Unlike the Atlantic ocean where petroleum is the major pollutant, the Indian Ocean is polluted by Toxic / Radioactive waste suspected to have been coming from the developed nations as reported by the United Nations Environmental Programme after the Tsunami disaster in December 2004 especially along the coast of Somalia. ii. The degreasing of the Quay Aprons at Port Elizabeth, Maputo, Dar-es-Salaam and Mongolism Sea Ports are also another major source polluting the Indian Ocean. PROBLEMS GENERATED AS A RESULT OF THE OCEANS POLLUTION i. Recent report

  17. Hydrological and chlorofluoromethane measurements of the Indonesian throughflow entering the Indian Ocean

    Science.gov (United States)

    Fieux, M.; Andrié, C.; Charriaud, E.; Ilahude, A. G.; Metzl, N.; Molcard, R.; Swallow, J. C.

    1996-05-01

    The Java Australia Dynamic Experiment high-resolution February-March 1992 conductivity-temperature-depth and chlorofluoromethane section obtained between Australia and Bali and on the sills between Flores, Sumba, Sawu, Roti, and the Australian continental shelf allows detailed examination of the water masses distribution and their inferred circulation. A sharp hydrological front between the Indonesian waters and the southern Indian Ocean waters is found between 13°S and 14°S in both seasons (February-March 1992 and August 1989). It separates the high-salinity surface waters to the south from the lower-salinity surface waters derived from the Indonesian Seas to the north. It reaches the surface in February 1992, whereas it was capped by a particularly low salinity surface layer in August 1989. Near Bali, the NW monsoon of February-March produces large intrusions of low-salinity water from the Java Sea, through Lombok Strait in the upper 100 m. At depth, the North Indian Intermediate Water, flowing along the Indonesian coast, brings salty, low-oxygen and low-chlorofluorocarbon water. It enters the Sawu Sea through Sumba Strait toward the east, while it undergoes strong mixing with the Indonesian Seas water. The primary pathway of the Indonesian waters is found north of the front and south of the North Indian Intermediate Water, between 13°S and 9°30'S, and the associated salinity minimum can be followed all across the Indian Ocean.

  18. The Second International Indian Ocean Expedition (IIOE-2)

    Science.gov (United States)

    Cowie, Greg; Hood, Raleigh

    2015-04-01

    The International Indian Ocean Expedition (IIOE) was one of the greatest international, interdisciplinary oceanographic research efforts of all time. Planning for the IIOE began in 1959 and the project officially continued through 1965, with forty-six research vessels participating under fourteen different flags. The IIOE motivated an unprecedented number of hydrographic surveys (and repeat surveys) over the course of the expedition covering the entire Indian Ocean basin. And it was an interdisciplinary endeavor that embraced physical oceanography, chemical oceanography, meteorology, marine biology, marine geology and geophysics. The end of 2015 will mark the 50th Anniversary of the completion of the IIOE. SCOR and the IOC are working to stimulate a new phase of coordinated international research focused on the Indian Ocean for a 5-year period beginning in late 2015 and continuing through 2020. The goal is to help to organize ongoing research and stimulate new initiatives in the 2015-2020 time frame as part of a larger expedition. Several International programs that have research ongoing or planned in the Indian Ocean during this time period and many countries are planning cruises in this time frame as well. These programs and national cruises will serve as a core for the new Indian Ocean research focus, which has been dubbed "IIOE-2." The overarching goal of the IIOE-2 is to advance our understanding of interactions between geological, oceanic and atmospheric processes that give rise to the complex physical dynamics of the Indian Ocean region, and to determine how those dynamics affect climate, extreme events, marine biogeochemical cycles, ecosystems and human populations. This understanding is required to predict the impacts of climate change, pollution, and increased fish harvesting on the Indian Ocean and its nations, as well as the influence of the Indian Ocean on other components of the Earth System. New understanding is also fundamental to policy makers for

  19. Multi-decadal modulation of the El Nino-Indian monsoon relationship by Indian Ocean variability

    International Nuclear Information System (INIS)

    Ummenhofer, Caroline C; Sen Gupta, Alexander; Li Yue; Taschetto, Andrea S; England, Matthew H

    2011-01-01

    The role of leading modes of Indo-Pacific climate variability is investigated for modulation of the strength of the Indian summer monsoon during the period 1877-2006. In particular, the effect of Indian Ocean conditions on the relationship between the El Nino-Southern Oscillation (ENSO) and the Indian monsoon is explored. Using an extended classification for ENSO and Indian Ocean dipole (IOD) events for the past 130 years and reanalyses, we have expanded previous interannual work to show that variations in Indian Ocean conditions modulate the ENSO-Indian monsoon relationship also on decadal timescales. El Nino events are frequently accompanied by a significantly reduced Indian monsoon and widespread drought conditions due to anomalous subsidence associated with a shift in the descending branch of the zonal Walker circulation. However, for El Nino events that co-occur with positive IOD (pIOD) events, Indian Ocean conditions act to counter El Nino's drought-inducing subsidence by enhancing moisture convergence over the Indian subcontinent, with an average monsoon season resulting. Decadal modulations of the frequency of independent and combined El Nino and pIOD events are consistent with a strengthened El Nino-Indian monsoon relationship observed at the start of the 20th century and the apparent recent weakening of the El Nino-Indian monsoon relationship.

  20. Multi-decadal modulation of the El Nino-Indian monsoon relationship by Indian Ocean variability

    Energy Technology Data Exchange (ETDEWEB)

    Ummenhofer, Caroline C; Sen Gupta, Alexander; Li Yue; Taschetto, Andrea S; England, Matthew H, E-mail: c.ummenhofer@unsw.edu.au [Climate Change Research Centre, University of New South Wales, Sydney (Australia)

    2011-07-15

    The role of leading modes of Indo-Pacific climate variability is investigated for modulation of the strength of the Indian summer monsoon during the period 1877-2006. In particular, the effect of Indian Ocean conditions on the relationship between the El Nino-Southern Oscillation (ENSO) and the Indian monsoon is explored. Using an extended classification for ENSO and Indian Ocean dipole (IOD) events for the past 130 years and reanalyses, we have expanded previous interannual work to show that variations in Indian Ocean conditions modulate the ENSO-Indian monsoon relationship also on decadal timescales. El Nino events are frequently accompanied by a significantly reduced Indian monsoon and widespread drought conditions due to anomalous subsidence associated with a shift in the descending branch of the zonal Walker circulation. However, for El Nino events that co-occur with positive IOD (pIOD) events, Indian Ocean conditions act to counter El Nino's drought-inducing subsidence by enhancing moisture convergence over the Indian subcontinent, with an average monsoon season resulting. Decadal modulations of the frequency of independent and combined El Nino and pIOD events are consistent with a strengthened El Nino-Indian monsoon relationship observed at the start of the 20th century and the apparent recent weakening of the El Nino-Indian monsoon relationship.

  1. Relationship between chemical composition and magnetic susceptibility in sediment cores from Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Parthiban, G.; Banakar, V.K.; Tomer, A.; Kulkarni, M.

    Three sediment cores in a north–south transect (3 degrees N to 13 degrees S) from different sediment types of the Central Indian Ocean Basin (CIOB) are studied to understand the possible relationship between magnetic susceptibility (Chi) and Al, Fe...

  2. Tropical Indian Ocean Variability Driving Southeast Australian Droughts

    Science.gov (United States)

    Ummenhofer, C. C.; England, M. H.; McIntosh, P. C.; Meyers, G. A.; Pook, M. J.; Risbey, J. S.; Sen Gupta, A.; Taschetto, A. S.

    2009-04-01

    Variability in the tropical Indian Ocean has widespread effects on rainfall in surrounding countries, including East Africa, India and Indonesia. The leading mode of tropical Indian Ocean variability, the Indian Ocean Dipole (IOD), is a coupled ocean-atmosphere mode characterized by sea surface temperature (SST) anomalies of opposite sign in the east and west of the basin with an associated large-scale atmospheric re-organisation. Earlier work has often focused on the positive phase of the IOD. However, we show here that the negative IOD phase is an important driver of regional rainfall variability and multi-year droughts. For southeastern Australia, we show that it is actually a lack of the negative IOD phase, rather than the positive IOD phase or Pacific variability, that provides the most robust explanation for recent drought conditions. Since 1995, a large region of Australia has been gripped by the most severe drought in living memory, the so-called "Big Dry". The ramifications for affected regions are dire, with acute water shortages for rural and metropolitan areas, record agricultural losses, the drying-out of two of Australia's major river systems and far-reaching ecosystem damage. Yet the drought's origins have remained elusive. For Southeast Australia, we show that the "Big Dry" and other iconic 20th Century droughts, including the Federation Drought (1895-1902) and World War II drought (1937-1945), are driven by tropical Indian Ocean variability, not Pacific Ocean conditions as traditionally assumed. Specifically, a conspicuous absence of characteristic Indian Ocean temperature conditions that are conducive to enhanced tropical moisture transport has deprived southeastern Australia of its normal rainfall quota. In the case of the "Big Dry", its unprecedented intensity is also related to recent above-average temperatures. Implications of recent non-uniform warming trends in the Indian Ocean and how that might affect ocean characteristics and climate in

  3. Zoogeography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.S.S.

    The distribution pattern of zooplankton in the Indian Ocean is briefly reviewed on a within and between ocean patterns and is limited to species within a quite restricted sort of groups namely, Copepoda, Chaetognatha, Pteropoda and Euphausiacea...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the L'ASTROLABE in the Indian Ocean, South Pacific Ocean and Tasman Sea from 2011-10-22 to 2011-12-11 (NODC Accession 0115180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115180 includes chemical, meteorological, physical and underway - surface data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean...

  5. The distribution and origin of PAHs over the Asian marginal seas, the Indian, and the Pacific Oceans: Implications for outflows from Asia and Africa

    Science.gov (United States)

    Liu, Junwen; Xu, Yue; Li, Jun; Liu, Di; Tian, Chongguo; Chaemfa, Chakra; Zhang, Gan

    2014-02-01

    Aerosol samples were collected aboard the R/V Dayang Yihao from 8 January to 7 August 2007 to investigate the geographical distribution of polycyclic aromatic hydrocarbons (PAHs) over oceans and to assess their continental origins. The highest concentrations were found over the marginal seas in Asia, especially the East and South China Seas, indicating that China is a top source of emissions into the marine atmosphere in the areas monitored on this cruise. PAH concentrations over the west oceanic region in the South Indian Ocean were noticeably higher than in other areas of the Indian Ocean, most likely because air masses from Africa, the Arabian Sea, and the Bay of Bengal exert a negative impact on those regions through long-range atmospheric transport. The PAH isomer ratio values varied over the oceans that were impacted by continental sources but remained relatively uniform over most of the remote oceans. Using diagnostic ratio analysis, we found PAHs emitted from China were mainly associated with biomass/coal burning. The measurements of levoglucosan were consistent with the results mentioned above. The western part of the South Indian Ocean atmosphere was likely affected by wildfire emissions from Africa, while the northern part was by petroleum combustion, biofuel, and wildfire burning, because the winter monsoon most likely carries aerosol from the Arabian Peninsula and India across the equator. Using the monthly images of fire activity and aerosol optical depth, it can be confirmed biomass burning from Africa can significantly influence the aerosol over the Indian Ocean.

  6. Archives: Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Items 1 - 29 of 29 ... Archives: Western Indian Ocean Journal of Marine Science. Journal Home > Archives: Western Indian Ocean Journal of Marine Science. Log in or Register to get access to full text downloads.

  7. Western Indian Ocean Journal of Marine Science: Journal ...

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science: Journal Sponsorship. Journal Home > About the Journal > Western Indian Ocean Journal of Marine Science: Journal Sponsorship. Log in or Register to get access to full text downloads.

  8. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the L'ASTROLABE in the Indian Ocean, South Pacific Ocean and Tasman Sea from 2008-10-21 to 2011-03-05 (NODC Accession 0117499)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117499 includes Surface underway, chemical, meteorological and physical data collected from L'ASTROLABE in the Indian Ocean, South Pacific Ocean and...

  9. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from DISCOVERY in the Indian Ocean and Southern Oceans from 1994-02-19 to 1994-03-30 (NCEI Accession 0144242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144242 includes discrete sample and profile data collected from DISCOVERY in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from MIRAI in the Indian Ocean, Mozambique Channel and South Atlantic Ocean from 2003-12-09 to 2004-01-24 (NCEI Accession 0144250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144250 includes Surface underway data collected from MIRAI in the Indian Ocean, Mozambique Channel and South Atlantic Ocean from 2003-12-09 to...

  11. Role of tropical Indian and Atlantic Oceans variability on ENSO

    Science.gov (United States)

    Prodhomme, Chloé; Terray, Pascal; Masson, Sebastien; Boschat, Ghyslaine

    2014-05-01

    There are strong evidences of an interaction between tropical Indian, Atlantic and Pacific Oceans. Nevertheless, these interactions remain deeply controversial. While some authors claim the tropical Indian and Atlantic oceans only play a passive role with respect to ENSO, others suggest a driving role for these two basins on ENSO. The mecanisms underlying these relations are not fully understood and, in the Indian Ocean, the possible role of both modes of tropical variability (the Indian Ocean Dipole (IOD) and the Indian Ocean Basin mode (IOB)) remain unclear. To better quantify and understand how the variability of the tropical Indian and Atlantic Oceans impact ENSO variability, we performed two sensitivity experiments using the SINTEX-F2 coupled model. For each experiment, we suppressed the variability of SST and the air-sea coupling in either the tropical Indian Ocean or tropical Atlantic Ocean by applying a strong nudging of the SST to the observed SST climatology. In both experiments, the ENSO periodicity increases. In the Atlantic experiment, our understanding of this increased periodicity is drastically limited by the strongly biased mean state in this region. Conversely, in the Indian Ocean experiment, the increase of ENSO periodicity is related to the absence of the IOB following the El Niño peak, which leads to a decrease of westerly winds in the western Pacific during late winter and spring after the peak. These weaker westerlies hinders the transition to a La Niña phase and thus increase the duration and periodicity of the event.

  12. Variability, interaction and change in the atmosphere-ocean-ecology system of the Western Indian Ocean.

    Science.gov (United States)

    Spencer, T; Laughton, A S; Flemming, N C

    2005-01-15

    Traditional ideas of intraseasonal and interannual climatic variability in the Western Indian Ocean, dominated by the mean cycle of seasonally reversing monsoon winds, are being replaced by a more complex picture, comprising air-sea interactions and feedbacks; atmosphere-ocean dynamics operating over intrannual to interdecadal time-scales; and climatological and oceanographic boundary condition changes at centennial to millennial time-scales. These forcings, which are mediated by the orography of East Africa and the Asian continent and by seafloor topography (most notably in this area by the banks and shoals of the Mascarene Plateau which interrupts the westward-flowing South Equatorial Current), determine fluxes of water, nutrients and biogeochemical constituents, the essential controls on ocean and shallow-sea productivity and ecosystem health. Better prediction of climatic variability for rain-fed agriculture, and the development of sustainable marine resource use, is of critical importance to the developing countries of this region but requires further basic information gathering and coordinated ocean observation systems.

  13. Thorium content in bottom sediments of Pacific and Indian oceans

    International Nuclear Information System (INIS)

    Gurvich, E.G.; Lisitsyn, A.P.

    1980-01-01

    Presented are the results of 232 Th distribution study in different substance-genetic types of bottom sediments of Pacific and Indian oceans. Th content determination has been carried out by the method of instrumental neutron activation analysis. Th distribution maps in the surface layer of bottom sediments of Pacific and Indian oceans are drawn. It is noted that Indian ocean sediments are much richer with Th moreover Th distribution in different types of sediments is very non-uniform. Non-uniformity of Th distribution in different types of Pacific ocean sediments is considerably less than that of Indian ocean and exceeds it only in red oozes

  14. The crucial role of ocean-atmosphere coupling on the Indian monsoon anomalous response during dipole events

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.; Swapna, P.; Ayantika, D.C.; Mujumdar, M. [Indian Institute of Tropical Meteorology, Climate and Global Modelling Division, Pune (India); Sundaram, Suchithra [Indian Institute of Tropical Meteorology, Climate and Global Modelling Division, Pune (India); Universite Catholique de Louvain, Institut d' Astronomie de Geophysique G. Lemaitre, Louvain-La-Neuve (Belgium); Kumar, Vinay [Indian Institute of Tropical Meteorology, Climate and Global Modelling Division, Pune (India); Florida State University, Department of Meteorology, Tallahassee, FL (United States)

    2011-07-15

    This paper examines an issue concerning the simulation of anomalously wet Indian summer monsoons like 1994 which co-occurred with strong positive Indian Ocean Dipole (IOD) conditions in the tropical Indian Ocean. Contrary to observations it has been noticed that standalone atmospheric general circulation models (AGCM) forced with observed SST boundary condition, consistently depicted a decrease of the summer monsoon rainfall during 1994 over the Indian region. Given the ocean-atmosphere coupling during IOD events, we have examined whether the failure of standalone AGCM simulations in capturing wet Indian monsoons like 1994 can be remedied by including a simple form of coupling that allows the monsoon circulation to dynamically interact with the IOD anomalies. With this view, we have performed a suite of simulations by coupling an AGCM to a slab-ocean model with spatially varying mixed-layer-depth (MLD) specified from observations for the 1994 IOD; as well as four other cases (1983, 1997, 2006, 2007). The specification of spatially varying MLD from observations allows us to constrain the model to observed IOD conditions. It is seen that the inclusion of coupling significantly improves the large-scale circulation response by strengthening the monsoon cross-equatorial flow; leading to precipitation enhancement over the subcontinent and rainfall decrease over south-eastern tropical Indian Ocean - in a manner broadly consistent with observations. A plausible physical mechanism is suggested to explain the monsoonal response in the coupled frame-work. These results warrant the need for improved monsoon simulations with fully coupled models to be able to better capture the observed monsoon interannual variability. (orig.)

  15. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans from 1995-07-17 to 1995-09-02 (NCEI Accession 0144339)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144339 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  16. Pb sbnd Sr sbnd Nd isotopic data of Indian Ocean ridges: new evidence of large-scale mapping of mantle heterogeneities

    Science.gov (United States)

    Hamelin, Bruno; Dupré, Bernard; Allègre, Claude J.

    1986-01-01

    A Pb sbnd Sr sbnd Nd isotope study of South West and East Indian Ridges confirms that the Indian Ocean belongs to a specific regional isotopic domain, as previously suggested by the results from islands of this ocean. The isotopic domain defined by the Indian MORB is indeed different from that of the North Atlantic and East Pacific Oceans. This demonstrates that the convective circulation of the upper mantle does not allow a rapid homogenization from one region to the other. The isotopic data of the Indian ridges can be interpreted by a contamination model, in which the depleted upper mantle (identical to that under the North Atlantic) is contaminated by two different types of contaminant, one corresponding to the source of the "central Indian Ocean" islands (Amsterdam, St. Paul, Marion, Prince Edward, Réunion, Rodriguez, Mauritius), and the other to a source similar to that of Walvis or Ninety East aseismic ridges. These two contaminants would have contributed to the ridge volcanism in different proportions over time.

  17. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, PAR Sensor and other instruments from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans from 2012-01-05 to 2012-02-12 (NCEI Accession 0143949)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143949 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  18. Mediterranean climate change and Indian Ocean warming

    International Nuclear Information System (INIS)

    Hoerling, M.; Eischeid, J.; Hurrel, J.

    2006-01-01

    General circulation model (GCM) responses to 20. century changes in sea surface temperatures (SSTs) and greenhouse gases are diagnosed, with emphasis on their relationship to observed regional climate change over the Mediterranean region. A major question is whether the Mediterranean region's drying trend since 1950 can be understood as a consequence of the warming trend in tropical SSTs. We focus on the impact of Indian Ocean warming, which is itself the likely result of increasing greenhouse gases. It is discovered that a strong projection onto the positive polarity of the North Atlantic Oscillation (NAO) index characterizes the atmospheric response structure to the 1950-1999 warming of Indian Ocean SSTs. This influence appears to be robust in so far as it is reproduced in ensembles of experiments using three different GCMs. Both the equilibrium and transient responses to Indian Ocean warming are examined. Under each scenario, the latitude of prevailing mid latitude westerlies shifts poleward during the November-April period. The consequence is a drying of the Mediterranean region, whereas northern Europe and Scandinavia receive increased precipitation in concert with the poleward shift of storminess. The IPCC (TAR) 20. century coupled ocean-atmosphere simulations forced by observed greenhouse gas changes also yield a post-1950 drying trend over the Mediterranean. We argue that this feature of human-induced regional climate change is the outcome of a dynamical feedback, one involving Indian Ocean warming and a requisite adjustment of atmospheric circulation systems to such ocean warming

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Pacific Ocean and others from 1995-03-17 to 1995-04-27 (NCEI Accession 0157358)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157358 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Pacific...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2001-01-30 to 2002-01-13 (NCEI Accession 0157365)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157365 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2004-01-20 to 2005-01-25 (NCEI Accession 0157327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157327 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  2. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2013-11-18 to 2014-12-25 (NCEI Accession 0157374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157374 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  3. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 1996-05-04 to 1997-01-08 (NCEI Accession 0157413)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157413 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic Ocean and others from 2015-01-04 to 2015-10-18 (NCEI Accession 0157344)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157344 includes Surface underway, chemical, meteorological and physical data collected from NATHANIEL B. PALMER in the Indian Ocean, South Atlantic...

  5. Physical, currents, nutrients, and other data from bottle and GEK casts from the FUJI and SHIRASE in the Indian Ocean, North Pacific Ocean, South Pacific Ocean, and Southern Oceans (> 60 degrees South) from 06 December 1965 to 10 January 1994 (NODC Accession 0000039)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical, currents, nutrients, and other data were collected from bottle and GEK casts from the FUJI and SHIRASE in the Indian Ocean and other locations from 06...

  6. Concentrations and isotopic compositions of neodymium in the eastern Indian Ocean and Indonesian straits

    Science.gov (United States)

    Jeandel, Catherine; Thouron, Danièle; Fieux, Michèle

    1998-08-01

    Four profiles of Nd concentration and isotopic composition were determined at two stations in the eastern Indian Ocean along a north/south section between Bali and Port-Hedland and at two others in the Timor and Sumba straits. Neodymium concentrations increase with depth, between 7.2 pmol/L at the surface to 41.7 pmol/L close to the bottom. The ɛ Nd of the different water masses along the section are -7.2 ± 0.2 for the Indian Bottom Waters and -6.1 ± 0.2 for the Indian Deep Waters. The intermediate and thermocline waters are less radiogenic at st-10 than at st-20 (-5.3 ± 0.3 and -3.6 ± 0.2, respectively). In the Timor Passage and Sumba Strait, ɛ Nd of the Indonesian waters is -4.1 ± 0.2 and that of the North Indian Intermediate Waters is -2.6 ± 0.3. These distinct isotopic signals constrain the origins of the different water masses sampled in the eastern Indian Ocean. They fix the limit of the nonradiogenic Antarctic and Indian contributions to the southern part of the section whereas the northern part is influenced by radiogenic Indonesian flows. In addition, the neodymium isotopic composition suggests that in the north, deep waters are influenced by a radiogenic component originating from the Sunda Arch Slope flowing deeper than 1200 m, which was not documented previously. Mixing calculations assess the conservativity of ɛ Nd on the scale of an oceanic basin. The origin of the surprising radiogenic signal of the NIIW is discussed and could result from a remobilization of Nd sediment-hosted on the Java shelf, requiring important dissolved/particulate exchange processes. Such processes, occurring in specific areas, could play an important role in the world ocean Nd budget.

  7. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from MARION DUFRESNE in the Indian Ocean and Southern Oceans from 1996-02-20 to 1996-03-31 (NODC Accession 0115012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115012 includes discrete sample and profile data collected from MARION DUFRESNE in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  8. Restricted genetic variation in populations of Achatina (Lissachatina) fulica outside of East Africa and the Indian Ocean Islands points to the Indian Ocean Islands as the earliest known common source.

    Science.gov (United States)

    Fontanilla, Ian Kendrich C; Sta Maria, Inna Mikaella P; Garcia, James Rainier M; Ghate, Hemant; Naggs, Fred; Wade, Christopher M

    2014-01-01

    The Giant African Land Snail, Achatina ( =  Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.

  9. Restricted genetic variation in populations of Achatina (Lissachatina fulica outside of East Africa and the Indian Ocean Islands points to the Indian Ocean Islands as the earliest known common source.

    Directory of Open Access Journals (Sweden)

    Ian Kendrich C Fontanilla

    Full Text Available The Giant African Land Snail, Achatina ( =  Lissachatina fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.

  10. Decadal climate predictability in the southern Indian Ocean captured by SINTEX-F using a simple SST-nudging scheme.

    Science.gov (United States)

    Morioka, Yushi; Doi, Takeshi; Behera, Swadhin K

    2018-01-26

    Decadal climate variability in the southern Indian Ocean has great influences on southern African climate through modulation of atmospheric circulation. Although many efforts have been made to understanding physical mechanisms, predictability of the decadal climate variability, in particular, the internally generated variability independent from external atmospheric forcing, remains poorly understood. This study investigates predictability of the decadal climate variability in the southern Indian Ocean using a coupled general circulation model, called SINTEX-F. The ensemble members of the decadal reforecast experiments were initialized with a simple sea surface temperature (SST) nudging scheme. The observed positive and negative peaks during late 1990s and late 2000s are well reproduced in the reforecast experiments initiated from 1994 and 1999, respectively. The experiments initiated from 1994 successfully capture warm SST and high sea level pressure anomalies propagating from the South Atlantic to the southern Indian Ocean. Also, the other experiments initiated from 1999 skillfully predict phase change from a positive to negative peak. These results suggest that the SST-nudging initialization has the essence to capture the predictability of the internally generated decadal climate variability in the southern Indian Ocean.

  11. Western Indian Ocean - A glimpse of the tectonic scenario

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.; Chaubey, A.K.

    is the en echelon displacement of the NW-SE trending ridge axis by numerous NE-SW trending fracture Western Indian Ocean - A Glimpse of the Tectonic Scenario 693 Table 1. Some information from the scientific drilling campaigns in the western Indian Ocean...: Raman Seamount; P: Panikkar Seamount; W: Wadia Guyot; S: SagarKanya Seamount; SR: ShebaRidge; CR: Carlsberg Ridge; CIR: Central Indian Ridge; SWIR: Southwest Indian Ridge; RTJ: Rodrigues Triple Junction; OFZ: Owen Fracture Zone; LR: Laxmi Ridge; MR...

  12. Metagenomic exploration of viruses throughout the Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Shannon J Williamson

    Full Text Available The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm. Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study

  13. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans from 2004-12-23 to 2005-02-17 (NODC Accession 0108076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108076 includes discrete sample and profile data collected from AURORA AUSTRALIS in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  14. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from ROGER REVELLE in the Indian Ocean and Southern Oceans from 2007-02-04 to 2007-03-17 (NODC Accession 0108119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108119 includes discrete sample and profile data collected from ROGER REVELLE in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  15. Influences of two types of El Niño event on the Northwest Pacific and tropical Indian Ocean SST anomalies

    Science.gov (United States)

    Hu, Haibo; Wu, Qigang; Wu, Zepeng

    2018-01-01

    Based on the HadISST1 and NCEP datasets, we investigated the influences of the central Pacific El Niño event (CP-EL) and eastern Pacific El Niño event (EP-EL) on the Sea Surface Temperature (SST) anomalies of the Tropical Indian Ocean. Considering the remote effect of Indian Ocean warming, we also discussed the anticyclone anomalies over the Northwest Pacific, which is very important for the South China precipitation and East Asian climate. Results show that during the El Niño developing year of EP-EL, cold SST anomalies appear and intensify in the east of tropical Indian Ocean. At the end of that autumn, all the cold SST anomaly events lead to the Indian Ocean Dipole (IOD) events. Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs. However, considering the statistical significance, more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year. For further research, EP-EL accompany with Indian Ocean Basin Warming (EPI-EL) and CP El Niño accompany with Indian Ocean Basin Warming (CPI-EL) events are classified. With the remote effects of Indian Ocean SST anomalies, the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific. For the EPI-EL developing year, large-scale warm SST anomalies arise in the North Indian Ocean in May, and persist to the autumn of the El Niño decaying year. However, for the CPI-EL, weak warm SST anomalies in the North Indian Ocean maintain to the El Niño decaying spring. Because of these different SST anomalies in the North Indian Ocean, distinct zonal SST gradient, atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Niño decaying years. Specifically, the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years, can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean. The atmospheric

  16. Ozone generation over the Indian Ocean during the South African biomass-burning period: case study of October 1992.

    Directory of Open Access Journals (Sweden)

    F. G. Taupin

    2002-04-01

    Full Text Available In this study, we present an estimation of photochemical ozone production during free tropospheric transport between the African biomass burning area and Reunion Island (Indian Ocean by means of trajectory-chemistry model calculations. Indeed, enhanced ozone concentrations (80–100 ppbv between 5 and 8 km height over Reunion Island are encountered during September–October when African biomass burning is active. The measurements performed during flight 10 of the TRACE-A campaign (October 6, 1992 have been used to initialise the lagrangian trajectory-chemistry model and several chemical forward trajectories, which reach the area of Reunion Island some days later, are calculated. We show that the ozone burden already present in the middle and upper troposphere over Southern Africa, formed from biomass burning emissions, is further enhanced by photochemical production over the Indian Ocean at the rate of 2.5 - 3 ppbv/day. The paper presents sensitivity studies of how these photochemical ozone production rates depend on initial conditions. The rates are also compared to those obtained by other studies over the Atlantic Ocean. The importance of our results for the regional ozone budget over the Indian Ocean is briefly discussed.Key words. Atmospheric composition and structure (evolution of the atmosphere; troposphere – composition and chemistry; meterorology and atmospheric dynamics (tropical meteorology

  17. Air-sea interaction over the Indian Ocean due to variations in the Indonesian throughflow

    Science.gov (United States)

    Wajsowicz, R. C.

    The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ×106 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts

  18. Bomb-test 90Sr in Pacific and Indian Ocean surface water as recorded by banded corals

    International Nuclear Information System (INIS)

    Toggweiler, J.R.; Trumbore, S.

    1985-01-01

    We report here measurements of bomb-test 90 Sr activity in the CaCO 3 skeletons of banded head forming corals collected from nine locations in the tropical Pacific and Indian Oceans. Density variations in skeletal carbonate demarcate annual growth bands and allow one to section individual years. Measurements of 90 Sr activity in the annual bands reconstruct the activity of the water in which the coral grew. Our oldest records date to the early years of the nuclear era and record not only fallout deposition from the major U.S. and Soviet tests of 1958-1962, but also the huge, and largely unappreciated, localized inputs from the U.S. tests at Eniwetok and Bikini atolls during 1952-1958. In the 1960's the 90 Sr activity in Indian Ocean surface water was twice as high as activity levels in the South Pacific at comparable latitudes. We suggest that substantial amounts of northern hemisphere fallout moved west and south into the Indian Ocean via passages through the Indonesian archipelago. Equatorial Pacific 90 Sr levels have remained relatively constant from the mid 1960's through the end of 1970's in spite of 90 Sr decay, reflecting a large-scale transfer of water between the temperate and tropical North Pacific. Activity levels at Fanning Is. (4 0 N, 160 0 W) appear to vary in conjunction with the 3-4 year El Nino cycle. (orig.)

  19. /sup 226/Ra in the western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.

    1987-09-01

    /sup 226/Ra profiles have been measured in the western Indian Ocean as part of the 1977-78 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10/sup 0/S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar Basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.

  20. Anthropometry of south Indian industrial workmen.

    Science.gov (United States)

    Fernandez, J E; Uppugonduri, K G

    1992-11-01

    This paper presents the results of an anthropometric survey conducted on South Indian male workers in the electronic industry. The data were collected as part of a project to modify work stations that utilized equipment from other countries. A set of 27 body dimensions were taken from a sample of 128 workmen (aged 18-35 years). The anthropometric measurements are compared with those of Indian men from Central, Western, and Northern parts of India and with those of the American, German, and Japanese men. The results indicate that in general the South Indian man is smaller than Central, Western, and Northern Indian men, as well as smaller than men in America, Germany, Japan, and Africa. This difference needs to be allowed for when considering buying and subsequently using imported equipment for the electronics industry in South India.

  1. Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs.

    Science.gov (United States)

    Séré, Mathieu G; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2015-06-03

    Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean. Surveys conducted at multiple sites in Reunion, South Africa and Mayotte between August 2010 and June 2012 revealed the presence of 6 main coral diseases: black band disease (BBD), white syndrome (WS), pink line syndrome (PLS), growth anomalies (GA), skeleton eroding band (SEB) and Porites white patch syndrome (PWPS). Overall, disease prevalence was higher in Reunion (7.5 ± 2.2%; mean ± SE) compared to South Africa (3.9 ± 0.8%) and Mayotte (2.7 ± 0.3%). Across locations, Acropora and Porites were the genera most susceptible to disease. Spatial variability was detected in both Reunion and South Africa, with BBD and WS more prevalent on shallow than deep reefs. There was also evidence of seasonality in 2 diseases: the prevalence of BBD and WS was higher in summer than winter. This was the first study to investigate the ecology of coral diseases, providing both qualitative and quantitative data, on Western Indian Ocean reefs, and surveys should be expanded to confirm these patterns.

  2. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    J. C. Currie

    2013-10-01

    Full Text Available The Indian Ocean Dipole (IOD and the El Niño/Southern Oscillation (ENSO are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries

  3. Bio-physical coupling and ocean dynamics in the central equatorial Indian Ocean during 2006 Indian Ocean Dipole

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; David, T.D.; Byju, P.; Narvekar, J.; Yoneyama, K.; Nakatani, N.; Ishida, A.; Horii, T.; Masumoto, Y.; Mizuno, K.

    an observational campaign MISMO (MIRAI Indian Ocean Cruise for the study of the MJO convection Onset) was conducted at equator and 80.5 0 E from Japanese research ship R/V Mirai during late October through November, 2006 when the onset in MJO convection is often...

  4. Phylogeography of the crown-of-thorns starfish in the Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Catherine Vogler

    Full Text Available Understanding the limits and population dynamics of closely related sibling species in the marine realm is particularly relevant in organisms that require management. The crown-of-thorns starfish Acanthaster planci, recently shown to be a species complex of at least four closely related species, is a coral predator infamous for its outbreaks that have devastated reefs throughout much of its Indo-Pacific distribution.In this first Indian Ocean-wide genetic study of a marine organism we investigated the genetic structure and inferred the paleohistory of the two Indian Ocean sister-species of Acanthaster planci using mitochondrial DNA sequence analyses. We suggest that the first of two main diversification events led to the formation of a Southern and Northern Indian Ocean sister-species in the late Pliocene-early Pleistocene. The second led to the formation of two internal clades within each species around the onset of the last interglacial. The subsequent demographic history of the two lineages strongly differed, the Southern Indian Ocean sister-species showing a signature of recent population expansion and hardly any regional structure, whereas the Northern Indian Ocean sister-species apparently maintained a constant size with highly differentiated regional groupings that were asymmetrically connected by gene flow.Past and present surface circulation patterns in conjunction with ocean primary productivity were identified as the processes most likely to have shaped the genetic structure between and within the two Indian Ocean lineages. This knowledge will help to understand the biological or ecological differences of the two sibling species and therefore aid in developing strategies to manage population outbreaks of this coral predator in the Indian Ocean.

  5. Ozone generation over the Indian Ocean during the South African biomass-burning period: case study of October 1992.

    Directory of Open Access Journals (Sweden)

    F. G. Taupin

    Full Text Available In this study, we present an estimation of photochemical ozone production during free tropospheric transport between the African biomass burning area and Reunion Island (Indian Ocean by means of trajectory-chemistry model calculations. Indeed, enhanced ozone concentrations (80–100 ppbv between 5 and 8 km height over Reunion Island are encountered during September–October when African biomass burning is active. The measurements performed during flight 10 of the TRACE-A campaign (October 6, 1992 have been used to initialise the lagrangian trajectory-chemistry model and several chemical forward trajectories, which reach the area of Reunion Island some days later, are calculated. We show that the ozone burden already present in the middle and upper troposphere over Southern Africa, formed from biomass burning emissions, is further enhanced by photochemical production over the Indian Ocean at the rate of 2.5 - 3 ppbv/day. The paper presents sensitivity studies of how these photochemical ozone production rates depend on initial conditions. The rates are also compared to those obtained by other studies over the Atlantic Ocean. The importance of our results for the regional ozone budget over the Indian Ocean is briefly discussed.

    Key words. Atmospheric composition and structure (evolution of the atmosphere; troposphere – composition and chemistry; meterorology and atmospheric dynamics (tropical meteorology

  6. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima

    Science.gov (United States)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.

    2005-01-01

    We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  7. Solubility of iron and other trace elements in rainwater collected on the Kerguelen Islands (South Indian Ocean

    Directory of Open Access Journals (Sweden)

    A. Heimburger

    2013-10-01

    Full Text Available The soluble fraction of aerosols that is deposited on the open ocean is vital for phytoplankton growth. It is believed that a large proportion of this dissolved fraction is bioavailable for marine biota and thus plays an important role in primary production, especially in HNLC oceanic areas where this production is limited by micronutrient supply. There is still much uncertainty surrounding the solubility of atmospheric particles in global biogeochemical cycles and it is not well understood. In this study, we present the solubilities of seven elements (Al, Ce, Fe, La, Mn, Nd, Ti in rainwater on the Kerguelen Islands, in the middle of the Southern Indian Ocean. The solubilities of elements exhibit high values, generally greater than 70%, and Ti remains the least soluble element. Because the Southern Indian Ocean is remote from its dust sources, only a fraction of smaller aerosols reaches the Kerguelen Islands after undergoing several cloud and chemical processes during their transport, resulting in a drastic increase in solubility. Finally, we deduced an average soluble iron deposition flux of 27 ± 6 μg m−2 d−1 (~0.5 μmol m−2 d−1 for the studied oceanic area, taking into account a median iron solubility of 82% ± 18%.

  8. Seasonal water mass distribution in the Indonesian throughflow entering the Indian Ocean

    Science.gov (United States)

    Coatanoan, C.; Metzl, N.; Fieux, M.; Coste, B.

    1999-09-01

    A multiparametric approach is used to analyze the seasonal properties of water masses in the eastern Indian Ocean. The data were measured during two cruises of the Java Australia Dynamic Experiment (JADE) program carried out during two opposite seasons: August 1989 (SE monsoon) and February-March 1992 (NW monsoon). These cruises took place at the end of a La Niña event and during an El Niño episode, respectively. Seven sources have been identified in the studied region for the 200-800 m layer: the Subtropical Indian Water, the Indian Central Water, the modified Antarctic Intermediate Water, the Indonesian Subsurface Water, the Indonesian Intermediate Water, the Arabian Sea-Persian Gulf Water (AS-PGW), and the Arabian Sea-Red Sea Water (AS-RSW). The selected tracers are potential temperature, salinity and oxygen with mass conservation and positive mixing coefficients as constraints. The analysis indicates the proportion of each water source along the Australia-Bali section and into the Indonesian channels. Although no large changes are observed for Indonesian waters, significant seasonal variations are found for the southern and northern Indian Ocean water. During the NW monsoon, the contribution of the AS-RSW increases at the entrance of the Indonesian archipelago whereas the contribution of the south Indian waters decreases in the northwest Australia basin. In a complementary study, nutrients are introduced into the multiparametric analysis in order to more clearly separate the signature of the north Indian waters (AS-PGW, AS-RSW) and to provide supplementary information on the biological history of the water masses, which is compared to large-scale primary production estimates.

  9. On the role of surface heat budget parameters over the tropical Indian Ocean in relation to the summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sastry, J.S.

    This study presents the role of sea surface temperature (SST) in the Arabian Sea and Bay of Bengal, cloud motion vector winds in the Equatorial Indian Ocean, and the cold fronts in the South Africa-Malagassy region on the onset and quantum...

  10. Oceanography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, B.N.

    This volume is an outcome of the presentation of selected 74 papers at the International Symposium on the Oceanography of the Indian Ocean held at National Institute of Oceanography during January 1991. The unique physical setting of the northern...

  11. Measurements within the Pacific-Indian oceans throughflow region

    Science.gov (United States)

    Fieux, M.; Andrié, C.; Delecluse, P.; Ilahude, A. G.; Kartavtseff, A.; Mantisi, F.; Molcard, R.; Swallow, J. C.

    1994-07-01

    Two hydrographic (θ, S, O 2) and trichlorofluoromethane (F-11) sections were carried out between the Australian continental shelf and Indonesia, in August 1989, on board the R.V. Marion Dufresne. The sections lie in the easternmost part of the Indian Ocean where the throughflow between the Pacific Ocean and the Indian Ocean emerges. They allow us to describe the features of the water-property and circulation fields of the throughflow at its entrance in the Indian Ocean. Between the Australian continental shelf and Bali, the Subtropical and Central waters are separated from the waters of the Indonesian seas by a sharp hydrological front, located around 13°30 S, below the thermocline down to 700 m. Near the coast of Bali, upwelling occurs in the near-surface layer under the effect of the southeast monsoon; at depth, between 300 m to more than 800 m, a water mass of northern Indian Ocean origin was present. From the characteristics of the bottom water found in the Lombok basin, the maximum depth of the Java ridge which separates the Lombok basin from the Northwest Australian basin lies around 3650 m. Off Sumba, Savu, Roti and Timor channels a core of low salinity and high oxygen content near-surface water was found in the axis of each channel, which suggests strong currents from the interior Indonesian seas towards the Indian Ocean. The entrance of the deep water flowing in the opposite direction, from the Indian Ocean to the Timor basin, was marked below 1400 m to the sill depth, through an increase of salinity and oxygen content. The flow reversal, observed briefly by a Pegasus direct current profiler in the Timor strait, was located at 1200 m depth. During the southeast monsoon, the net (geostrophic + Ekman) transport calculated on the section Australia-Bali give an estimate of the throughflow between 0 and 500 m of 22 ± 4 × 10 6 m 3 s -1 towards the Indian Ocean, with a concentration of the transport in the upper layers (19 × 10 6 m 3 s -1 in 0-200 m) and

  12. Coastal biogeochemical processes in the north Indian Ocean (14, S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Narvekar, P.V.; Desa, E.

    of the region are also shown with the numbers denoting the annual runoff in 10" m3. Due to the proximity to landmasses, the North Indian Ocean is probably af- fected by processes originating at the land-ocean boundary more than any other region. Lndeed... IN TIiE NORTH INDIAN OCEAN tion of contributions by the Indian oceanographic community, most of this infor- mation has been generated by scientists from countries outside this region under international efforts that started with the John Murray...

  13. West Nile virus infection in horses, Indian ocean.

    Science.gov (United States)

    Cardinale, E; Bernard, C; Lecollinet, S; Rakotoharinome, V M; Ravaomanana, J; Roger, M; Olive, M M; Meenowa, D; Jaumally, M R; Melanie, J; Héraud, J M; Zientara, S; Cêtre-Sossah, C

    2017-08-01

    The circulation of West Nile virus (WNV) in horses was investigated in the Southwest Indian ocean. In 2010, blood samples were collected from a total of 303 horses originating from Madagascar, Mauritius, Reunion and the Seychelles and tested for WNV-specific antibodies. An overall seroprevalence of 27.39% was detected in the Indian Ocean with the highest WNV antibody prevalence of 46.22% (95% CI: [37.4-55.2%]) in Madagascar. The age and origin of the horses were found to be associated with the WNV infection risk. This paper presents the first seroprevalence study investigating WN fever in horses in the Southwest Indian Ocean area and indicates a potential risk of infection for humans and animals. In order to gain a better understanding of WN transmission cycles, WNV surveillance needs to be implemented in each of the countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Upper ocean physical processes in the Tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.; Ram, P.S.

    This monograph is the outcome of an attempt by the authors to present a synthesis of the studies on physical processes in the Tropical Indian Ocean (TIO) in relation to air-sea interaction, monsoon/climate variability and biological productivity...

  15. Difference in the influence of Indo-Pacific Ocean heat content on South Asian Summer Monsoon intensity before and after 1976/1977

    Science.gov (United States)

    Dong, Yujie; Feng, Junqiao; Hu, Dunxin

    2016-05-01

    Monthly ocean temperature from ORAS4 datasets and atmospheric data from NCEP/NCAR Reanalysis I/II were used to analyze the relationship between the intensity of the South Asian summer monsoon (SASM) and upper ocean heat content (HC) in the tropical Indo-Pacific Ocean. The monsoon was differentiated into a Southwest Asian Summer Monsoon (SWASM) (2.5°-20°N, 35°-70°E) and Southeast Asian Summer Monsoon (SEASM) (2.5°-20°N, 70°-110°E). Results show that before the 1976/77 climate shift, the SWASM was strongly related to HC in the southern Indian Ocean and tropical Pacific Ocean. The southern Indian Ocean affected SWASM by altering the pressure gradient between southern Africa and the northern Indian Ocean and by enhancing the Somali cross-equatorial flow. The tropical Pacific impacted the SWASM through the remote forcing of ENSO. After the 1976/77 shift, there was a close relationship between equatorial central Pacific HC and the SEASM. However, before that shift, their relationship was weak.

  16. PBDEs in the atmosphere over the Asian marginal seas, and the Indian and Atlantic oceans

    Science.gov (United States)

    Li, Jun; Li, Qilu; Gioia, Rosalinda; Zhang, Yanlin; Zhang, Gan; Li, Xiangdong; Spiro, Baruch; Bhatia, Ravinder S.; Jones, Kevin C.

    2011-12-01

    Air samples were collected from Jan 16 to Mar 14, 2008 onboard the Oceanic II- The Scholar Ship which navigated an east-west transect from Shanghai to Cape Verde, and polybrominated diphenyl ethers (PBDEs) were analyzed in these samples. PBDE concentrations in the atmosphere over the open seas were influenced by proximity to source areas and land, and air mass origins. The concentrations of Σ 21PBDEs over the East and South China Seas, the Bay of Bengal and the Andaman Sea, the Indian Ocean, and the Atlantic Ocean were 10.8 ± 6.13, 3.22 ± 1.57, 5.12 ± 3.56, and 2.87 ± 1.81 pg m -3, respectively. BDE-47 and -99 were the dominant congeners in all the samples, suggesting that the widely used commercial penta-BDE products were the original sources. Over some parts of Atlantic and Indian Ocean, daytime concentrations of BDE-47 and BDE-99 were higher than the concentrations at night. The strong atmospheric variability does not always coincide with a diurnal cycle, but the variability in air concentrations in such remote areas of the ocean remains strong. No significant trends were found for each of PBDE congener with latitude.

  17. Plutonium in Southern Hemisphere ocean Waters

    DEFF Research Database (Denmark)

    Hirose, K.; Aoyama, M.; Gastaud, J.

    2013-01-01

    Plutonium in seawater collected by the BEAGLE2003 cruise was determined using ICP- SF-MS and alpha spectrometry after Fe co-precipitation and radiochemical purification. Levels and distributions of dissolved plutonium activity concentrations in Southern Hemisphere ocean waters are summarized here......, including historical data. Pu-239 concentrations in surface water----of the central South Pacific (32.5 °S) in 2003 were around 1 mBq/m3. The 239Pu concentrations in the Indian Ocean surface waters (20°S) were similar to that in the South Pacific, whereas the 239Pu concentrations in the South Atlantic...... surface waters (30°S) were markedly lower than those in the South Pacific and Indian Oceans. The 239Pu vertical profile pattern was similar to that in the North Pacific subtropical gyre, although 239Pu concentrations in the deep South Pacific were significantly lower than those in the North Pacific. One...

  18. Changes in ocean circulation in the South-east Atlantic Ocean during the Pliocene

    Science.gov (United States)

    Petrick, B. F.; McClymont, E.; Felder, S.; Leng, M. J.

    2013-12-01

    The Southeast Atlantic Ocean is an important ocean gateway because major oceanic systems interact with each other in a relatively small geographic area. These include the Benguela Current, Antarctic Circumpolar Current, and the input of warm and saline waters from the Indian Ocean via the Agulhas leakage. However, there remain questions about circulation change in this region during the Pliocene, including whether there was more or less Agulhas Leakage, which may have implications for the strength of the global thermohaline circulation. ODP Site 1087 (31°28'S, 15°19'E, 1374m water depth) is located outside the Benguela upwelling region and is affected by Agulhas leakage in the modern ocean. Sea-surface temperatures (SSTs) are thus sensitive to the influence of Agulhas Leakage at this site. Our approach is to apply several organic geochemistry proxies and foraminiferal analyses to reconstruct the Pliocene history of ODP 1087, including the UK37' index (SSTs), pigments (primary productivity) and planktonic foraminifera (water mass changes). SSTs during the Pliocene range from 17 to 22.5 °C (mean SSTs at 21 °C), and show variability on orbital and suborbital time scales. Our results indicate that the Benguela upwelling system had intensified and/or shifted south during the Pliocene. We find no evidence of Agulhas leakage, meaning that either Agulhas Leakage was severely reduced or displaced during the mid-Pliocene. Potential causes of the observed signals include changes to the local wind field and/or changes in the temperature of intermediate waters which upwell in the Benguela system. Pronounced cooling is observed during cold stages in the Pliocene, aligned with the M2 and KM2 events. These results may indicate that changes to the extent of the Antarctic ice sheet had impact on circulation in the south east Atlantic during the Pliocene via displacement of the Antarctic Circumpolar Currents.

  19. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  20. STOMACH CONTENT OF THREE TUNA SPECIES IN THE EASTERN INDIAN OCEAN

    Directory of Open Access Journals (Sweden)

    Bram Setyadji

    2012-12-01

    Full Text Available Feeding habit of tuna in Indian Ocean has been described around Sri Lanka, Indian Waters, Andaman Sea, western Indian Ocean (Seychelles Islands, western equatorial Indian Ocean whereas the tunas feeding habit study in Eastern Indian Oceanis merely in existence. The purpose of this study is to investigate the stomach content of three tuna species (bigeye tuna, yellowfin tuna, and skipjack tuna, apex predator in the southern part of Eastern Indian Ocean. The study was conducted in March – April, 2010 on the basis of catches of commercial tuna longline vessel based in Port of Benoa. A total of 53 individual fishes were collected, consisting of bigeye tuna (Thunnus obesus, yellowfin tuna (Thunnus albacores, and skipjack tuna (Katsuwonus pelamis. Stomach specimens were collected and analyzed.Analysis was conducted on the basis of index of preponderance method. The diet of the three tuna species showed fishes as the main diet (56–82%, followed by cephalopods (squids as the complementary diet (0–8%, and crustaceans (shrimps as the additional diet (2–4%. Fish prey composed of 6 families i.e. Alepisauridae, Bramidae, Carangidae, Clupeidae, Engraulidae, and Scombridae.

  1. Radiocesium monitoring in Indonesian waters of the Indian Ocean after the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Suseno, Heny; Wahono, Ikhsan Budi; Muslim

    2015-01-01

    Highlights: • The accident at Fukushima becomes public concern in Indonesia. • Very few data on anthropogenic radionuclide concentrations in marine areas. • Monitoring have been performed at West Sumatra Sea and South Java Sea. - Abstract: As data on anthropogenic radionuclide concentrations (i.e., 134 Cs and 137 Cs) in Indonesian marine environments including the Indian Ocean are scarce, offshore monitoring has been performed in the West Sumatra and South Java Seas. The activity concentration of 137 Cs ranges from below minimum detectable activity (MDA) to 0.13 Bq m −3 in the surface seawater of the South Java Sea and from lower than MDA to 0.28 Bq m −3 in the surface seawater of the West Sumatra Sea. The concentrations of 137 Cs in the surface seawater of the West Sumatra and South Java Seas are lower than the estimation of 137 Cs concentration in the subsurface waters owing to the input of the North Pacific Ocean via the Indonesian Throughflow (ITF). The concentrations of 134 Cs in the sampling locations were lower than MDA. These results have indicated that these Indonesian marine waters have not yet been influenced by the Fukushima radioactive release

  2. Ocean sea-ice modelling in the Southern Ocean around Indian

    Indian Academy of Sciences (India)

    An eddy-resolving coupled ocean sea-ice modelling is carried out in the Southern Ocean region (9∘–78∘E; 51∘–71∘S) using the MITgcm. The model domain incorporates the Indian Antarctic stations, Maitri (11.7∘E; 70.7∘S) and Bharati (76.1∘E; 69.4∘S). The realistic simulation of the surface variables, namely, sea ...

  3. Plutonium in Southern Hemisphere Ocean Waters

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K. [Sophia University, Tokyo (Japan); Aoyama, M. [Meteorological Research Institute, Tsukuba (Japan); Gastaud, J.; Levy, I. [Marine Environment Laboratories, International Atomic Energy Agency (Monaco); Fukasawa, M. [Japan Agency for Marine-Earth Science and Technology Yokosuka (Japan); Kim, C. -S. [Environment Laboratories, International Atomic Energy Agency, Seibersdorf (Austria); Povinec, P. P. [Comenius University, Bratislava (Slovakia); Roos, P. [Riso National Laboratory, Roskilde (Denmark); Sanchez-Cabeza, J. A. [Universitat Autonoma de Barcelona, Bellaterra (Spain); Yim, S. A. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-07-15

    Plutonium in seawater collected by the BEAGLE2003 cruise was determined using ICP-SF-MS and alpha spectrometry after Fe co-precipitation and radiochemical purification. Levels and distributions of dissolved plutonium activity concentrations in Southern Hemisphere ocean waters are summarized here, including historical data. Pu-239 concentrations in surface water of the central South Pacific (32.5{sup o}S) in 2003 were around 1 mBq/m{sup 3}. The {sup 239}Pu concentrations in the Indian Ocean surface waters (20{sup o}S) were similar to that in the South Pacific, whereas the {sup 239}Pu concentrations in the South Atlantic surface waters (30{sup o}S) were markedly lower than those in the South Pacific and Indian Oceans. The {sup 239}Pu vertical profile pattern was similar to that in the North Pacific subtropical gyre, although {sup 239}Pu concentrations in the deep South Pacific were significantly lower than those in the North Pacific. One of the dominant factors controlling plutonium distributions in the Southern Hemisphere oceans is biogeochemical processes including particle scavenging. (author)

  4. Air-Sea Coupling Over The Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Gopika, N.

    S, where thermocline domes, the ocean is tightly coupled to the atmosphere [Reverdin, 1987; Murtugudde and Busalacchi, 1999; Xie et al, 2002] and therefore expected to influence the regional climate variability. In recent years Saji et al. [1999] showed... the forcing- response pattern of the ocean-atmosphere as a coupled system. For example, the anomalous ocean-atmosphere coupled phenomena like Indian Ocean Dipole mode produces anomalous atmospheric and oceanic condition that influence regional climate...

  5. Dynamics of large scale 3-dimensional circulation of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Swapna, P.

    -diagnostic and prognostic modes. Such a model could identify both the local and remote forcing of the Indian Ocean circulation. The other objectives of the thesis are the following: (i) To study the steady state 3-dimensional circulation of Indian Ocean based on semi...

  6. Seasonality in the relationship between El Nino and Indian Ocean dipole

    Energy Technology Data Exchange (ETDEWEB)

    Roxy, Mathew [Centro-Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Indian Institute of Tropical Meteorology, Centre for Climate Change Research, Pune (India); Gualdi, Silvio; Navarra, Antonio [Centro-Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Lee Drbohlav, Hae-Kyung [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States)

    2011-07-15

    The seasonal change in the relationship between El Nino and Indian Ocean dipole (IOD) is examined using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and the twentieth century simulations (20c3m) from the Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.1. It is found that, both in ERA-40 and the model simulations, the correlation between El Nino (Nino3 index) and the eastern part of the IOD (90-110 E; 10 S-equator) is predominantly positive from January to June, and then changes to negative from July to December. Correlation maps of atmospheric and oceanic variables with respect to the Nino3 index are constructed for each season in order to examine the spatial structure of their seasonal response to El Nino. The occurrence of El Nino conditions during January to March induces low-level anti-cyclonic circulation anomalies over the southeastern Indian Ocean, which counteracts the climatological cyclonic circulation in that region. As a result, evaporation decreases and the southeastern Indian Ocean warms up as the El Nino proceeds, and weaken the development of a positive phase of an IOD. This warming of the southeastern Indian Ocean associated with the El Nino does not exist past June because the climatological winds there develop into the monsoon-type flow, enhancing the anomalous circulation over the region. Furthermore, the development of El Nino from July to September induces upwelling in the southeastern Indian Ocean, thereby contributing to further cooling of the region during the summer season. This results in the enhancement of a positive phase of an IOD. Once the climatological circulation shifts from the boreal summer to winter mode, the negative correlation between El Nino and SST of the southeastern Indian Ocean changes back to a positive one. (orig.)

  7. 2011 Tohoku Earthquake and Japan's Nuclear Disaster - Implications for Indian Ocean Rim countries

    Science.gov (United States)

    Chadha, R. K.

    2011-12-01

    The Nuclear disaster in Japan after the M9.0 Tohoku earthquake on March 11, 2011 has elicited global response to have a relook at the safety aspects of the nuclear power plants from all angles including natural hazards like earthquakes and tsunami. Several countries have gone into safety audits of their nuclear programs in view of the experience in Japan. Tectonically speaking, countries located close to subduction zones or in direct line of impact of the subduction zones are the most vulnerable to earthquake or tsunami hazard, as these regions are the locale of great tsunamigenic earthquakes. The Japan disaster has also cautioned to the possibility of great impact to the critical structures along the coasts due to other ocean processes caused by ocean-atmosphere interactions and also due to global warming and sea level rise phenomena in future. This is particular true for island countries. The 2011 Tohoku earthquake in Japan will be remembered more because of its nuclear tragedy and tsunami rather than the earthquake itself. The disaster happened as a direct impact of a tsunami generated by the earthquake 130 km off the coast of Sendai in the Honshu region of Japan. The depth of the earthquake was about 25 km below the ocean floor and it occurred on a thrust fault causing a displacement of more than 20 meters. At few places, water is reported to have inundated areas up to 8-10 km inland. The height of the tsunami varied between 10 and 3 meters along the coast. Generally, during an earthquake damage to buildings or other structures occur due to strong shaking which is expressed in the form of ground accelerations 'g'. Although, Peak Ground Accelerations (PGA) consistently exceeded 2g at several places from Sendai down south, structures at the Fukushima Daiichi Nuclear Power Plant did not collapse due to the earthquake. In the Indian Ocean Rim countries, Indian, Pakistan and South Africa are the three countries where Nuclear power plants are operational, few of them

  8. Indian Ocean experiments with a coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Wainer, I. [Sao Paulo, Univ. (Brazil). Dept. of Oceanography

    1997-03-01

    A coupled ocean-atmosphere model is used to investigate the equatorial Indian Ocean response to the seasonally varying monsoon winds. Special attention is given to the oceanic response to the spatial distribution and changes in direction of the zonal winds. The Indian Ocean is surrounded by an Asian land mass to the North and an African land mass to the West. The model extends latitudinally between 41 N and 41 S. The asymmetric atmospheric model is driven by a mass source/sink term that is proportional to the sea surface temperature (SST) over the oceans and the heat balance over the land. The ocean is modeled using the Anderson and McCreary reduced-gravity transport model that includes a prognostic equation for the SST. The coupled system is driven by the annual cycle as manifested by zonally symmetric and asymmetric land and ocean heating. They explored the different nature of the equatorial ocean response to various patterns of zonal wind stress forcing in order to isolate the impact of the remote response on the Somali current. The major conclusions are : i) the equatorial response is fundamentally different for easterlies and westerlies, ii) the impact of the remote forcing on the Somali current is a function of the annual cycle, iii) the size of the basin sets the phase of the interference of the remote forcing on the Somali current relative to the local forcing.

  9. Time Series Observations in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoy, D.M.; Naik, H.; Kurian, S.; Naqvi, S.W.A.; Khare, N.

    Ocean and the ongoing time series study (Candolim Time Series; CaTS) off Goa. In addition, this article also focuses on the new time series initiative in the Arabian Sea and the Bay of Bengal under Sustained Indian Ocean Biogeochemistry and Ecosystem...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, Barometric pressure sensor and other instruments from ROGER REVELLE in the Indian Ocean and Southern Oceans from 2008-02-04 to 2008-03-17 (NODC Accession 0108118)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108118 includes discrete sample and profile data collected from ROGER REVELLE in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  11. Sea surface salinity variability during the Indian Ocean Dipole and ENSO events in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Grunseich, G.; Subrahmanyam, B.; Murty, V.S.N.; Giese, B.S.

    into the southwestern tropical Indian Ocean. The impact of concomitant La Niña with negative IOD is also large with an intense freshening in the southeastern Arabian Sea and salting off the northern Sumatra coast....

  12. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  13. A tropospheric ozone maximum over the equatorial Southern Indian Ocean

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2012-05-01

    Full Text Available We examine the distribution of tropical tropospheric ozone (O3 from the Microwave Limb Sounder (MLS and the Tropospheric Emission Spectrometer (TES by using a global three-dimensional model of tropospheric chemistry (GEOS-Chem. MLS and TES observations of tropospheric O3 during 2005 to 2009 reveal a distinct, persistent O3 maximum, both in mixing ratio and tropospheric column, in May over the Equatorial Southern Indian Ocean (ESIO. The maximum is most pronounced in 2006 and 2008 and less evident in the other three years. This feature is also consistent with the total column O3 observations from the Ozone Mapping Instrument (OMI and the Atmospheric Infrared Sounder (AIRS. Model results reproduce the observed May O3 maximum and the associated interannual variability. The origin of the maximum reflects a complex interplay of chemical and dynamic factors. The O3 maximum is dominated by the O3 production driven by lightning nitrogen oxides (NOx emissions, which accounts for 62% of the tropospheric column O3 in May 2006. We find the contribution from biomass burning, soil, anthropogenic and biogenic sources to the O3 maximum are rather small. The O3 productions in the lightning outflow from Central Africa and South America both peak in May and are directly responsible for the O3 maximum over the western ESIO. The lightning outflow from Equatorial Asia dominates over the eastern ESIO. The interannual variability of the O3 maximum is driven largely by the anomalous anti-cyclones over the southern Indian Ocean in May 2006 and 2008. The lightning outflow from Central Africa and South America is effectively entrained by the anti-cyclones followed by northward transport to the ESIO.

  14. Geochemical implications of gabbro from the slow-spreading Northern Central Indian Ocean Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, Dwijesh; Misra, S.; Banerjee, R.; Weis, D.

    ., 1989) and the dynamics of crystallization of plutonic rocks (Bloomer et al., 1989; Meyer et al., 1989). The recovery of gabbroic rocks is mostly restricted to major transform faults or fracture zones transecting mid-ocean ridges, e.g., Mid... gabbro of Indian Ocean Ridge System (Fig 1) is ODP leg 118 from SWIR (Dick et al., 2002; Coogan et al, 2001). Gabbro from Leg 179 (ODP Hole 735B from Atlantis II fracture zone, Dick et al., 2000) and Leg 179 (Hole 1105A) near Leg 118 have also been...

  15. On some aspects of Indian Ocean warm pool

    Digital Repository Service at National Institute of Oceanography (India)

    Saji, P.K.; Balchand, A.N.; RameshKumar, M.R.

    Annual and interannual variation of Indian Ocean Warm Pool (IOWP) was studied using satellite and in situ ocean temperature data IOWP surface area undergoes a strong annual cycle attaining a maximum of 24x106km2 during April...

  16. Indian Ocean warming modulates Pacific climate change.

    Science.gov (United States)

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-11-13

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east-west Walker circulation) through the Pacific ocean-atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific's could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries.

  17. Inputs from Indian rivers to the ocean: A synthesis

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; George, M.D.; SenGupta, R.

    ). Fluxes of chemical substances to the Indian Ocean from these rivers are computed to a first approximation. The major ion contents are inversely proportional to the river runoff especially for the rivers entering the Arabian Sea. On an average Indian...

  18. Tracing the drift of MH370 debris throughout the Indian Ocean

    Science.gov (United States)

    Biastoch, Arne; Durgadoo, Jonathan V.; Rühs, Siren

    2017-04-01

    On 8 March 2014, a missing Boeing 777 of Malaysia Airlines (MH370) disappeared from radar screens. Since then, extensive search efforts aim to find the missing plane in the southeastern Indian Ocean. Starting with a flaperon washed up at La Réunion in July 2015, several pieces of debris were found at different shores at islands and African coasts in the southwestern Indian Ocean. Ocean currents were examined to understand the drift paths of debris throughout the Indian Ocean, and in consequence to identify the location of MH370. Here we present a series of Lagrangian analyses in which we follow particles representing virtual pieces of debris advected in an operational high-resolution ocean model. Of particular importance is the lare-scale influence of surface waves through Stokes drift. Large number of particles are analysed in statistical approaches to provide most likely starting locations. Different pieces of debris are combined to refine probability maps of their joint start positions. Forward vs. backward advection approaches are compared.

  19. Wagging the Pacific Dog by its Indian Tail? : A west Indian Ocean Precursor to El Niño

    NARCIS (Netherlands)

    Wieners, C.E.

    2018-01-01

    Cool Sea Surface Temperature (SST) anomalies tend to prevail in the Seychelles Dome region (Southwest Indian Ocean, NE of Madagascar) during the Northern hemisphere summer-autumn 1.5 years before El Niño. This West Indian Ocean precursor might potentially help to predict El Niño/Southern Oscillation

  20. [Post nearly Drowning Vibrio alginolyticus Septicemia Acquired in Reunion (Indian Ocean)].

    Science.gov (United States)

    Gaüzère, B-A; Chanareille, P; Vandroux, D

    2016-08-01

    AbstractWe report the first case of Vibrio alginolyticus septicemia in the Indian Ocean (Reunion Island), in a patient (70-year-old-man) with multiple underlying conditions, following a nearly drowning in the lagoon of Reunion. From now on, V. alginolyticus should be considered as a possible agent of septicemia in the Indian Ocean, particularly following marine activities.

  1. Performance of the ocean state forecast system at Indian National Centre for Ocean Information Services

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, T.M.B.; Sirisha, P.; Sandhya, K.G.; Srinivas, K.; SanilKumar, V.; Sabique, L.; Nherakkol, A.; KrishnaPrasad, B.; RakhiKumari; Jeyakumar, C.; Kaviyazhahu, K.; RameshKumar, M.; Harikumar, R.; Shenoi, S.S.C.; Nayak, S.

    The reliability of the operational Ocean State Forecast system at the Indian National Centre for Ocean Information Services (INCOIS) during tropical cyclones that affect the coastline of India is described in this article. The performance...

  2. Hydrographic and chemical data obtained during the SOCCOM float deployment expedition on-board R/V Investigator cruise IN2016_v02 in the Indian and Southern Ocean (14 March - 13 April, 2016) (NCEI Accession 0163191)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163191 includes biological, chemical, discrete sample, optical, physical and profile data collected from Investigator in the Indian Ocean and South...

  3. Deciphering detailed plate kinematics of the Indian Ocean and developing a unified model for East Gondwanaland reconstruction: An Indian-Australian-French initiative

    Digital Repository Service at National Institute of Oceanography (India)

    Yatheesh, V.; Dyment, J.; Bhattacharya, G.C.; Muller, R.D.

    The Indian Ocean formed as a result of the fragmentation and dispersal of Gondwanaland since the Jurassic. The deep ocean basins in the Indian Ocean contain the imprints of this plate tectonic history, which is related with several major tectonic...

  4. Evaluation of radiative fluxes over the north Indian Ocean

    Science.gov (United States)

    Ramesh Kumar, M. R.; Pinker, Rachel T.; Mathew, Simi; Venkatesan, R.; Chen, W.

    2018-05-01

    Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of radiation measurements; moreover, certain oceanic regions are substantially under-sampled, such as the north Indian Ocean. The National Institute of Ocean Technology, Chennai, India, under its Ocean Observation Program has deployed an Ocean Moored Network for the Northern Indian Ocean (OMNI) both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure radiation and rainfall, in addition to other basic meteorological parameters. They are also equipped with sensors to measure sub-surface currents, temperature, and conductivity from the surface up to a depth of 500 m. Observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the National Aeronautics and Space Administration (NASA) AQUA and TERRA satellites have been used to infer surface radiation over the north Indian Ocean. In this study, we focus only on the shortwave (SW↓) fluxes. The evaluations of the MODIS-based SW↓ fluxes against the RAMA observing network have shown a very good agreement between them, and therefore, we use the MODIS-derived fluxes as a reference for the evaluation of the OMNI observations. In an early deployment of the OMNI buoys, the radiation sensors were placed at 2 m above the sea surface; subsequently, the height of the sensors was raised to 3 m. In this study, we show that there was a substantial improvement in the agreement between the buoy observations and the satellite estimates, once the sensors were raised to higher levels. The correlation coefficient increased from 0.87 to 0.93, and both the bias and standard deviations decreased substantially.

  5. Water mass characteristic in the outflow region of the Indonesian throughflow during and post 2016 negative Indian ocean dipole event

    Science.gov (United States)

    Bayhaqi, A.; Iskandar, I.; Surinati, D.; Budiman, A. S.; Wardhana, A. K.; Dirhamsyah; Yuan, D.; Lestari, D. O.

    2018-05-01

    Strong El Niño and positive Indian Ocean Dipole (pIOD) events in 2015/2016 followed by relatively strong negative Indian Ocean Dipole (nIOD) and weak La Niña in 2016 events have affected hydrography conditions in the Indonesian Throughflow (ITF) region. Two research cruises were conducted using RV Baruna Jaya VIII in August and November 2016. These cruises aim to evaluate possible impact of those two climate mode events on the water mass characteristic in the outflow region of the ITF. Hydrographic data from those two cruises were combined with the sea surface temperature (SST) from the Advanced Very High Resolution Radiometer (AVHRR) and surface wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The results showed that in the 2016 anomaly year, the cooler sea surface temperature was observed during the negative IOD (nIOD) event while the warmer temperature was found in the post of nIOD event. The observed water mass characteristics in the outflow region of the ITF revealed that the upper layer was dominated by the Indian Ocean water mass, while the Pacific Ocean water mass was observed in the deeper layer. The observed current data across the Sumba Strait showed that the South Java Coastal Current (SJCC) was observed in the upper layer, propagating eastward toward the Savu Sea. A few days later, the observed currents in the upper layer of the Ombai Strait revealed the ITF flow towards the Indian Ocean. Meanwhile, the lower layer showed an eastward flow towards the Ombai Strait.

  6. Evidence for multiphase folding of the central Indian Ocean lithosphere

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    Long-wavelength (100-300 km) folding in the central Indian Ocean associated with the diffuse plate boundary separating the Indian, Australian, and Capricorn plates is Earth's most convincing example of organized large-scale lithospheric deformation...

  7. Phylogeography of Indo-Pacific reef fishes: sister wrassesCoris gaimardandC. cuvieriin the Red Sea, Indian Ocean and Pacific Ocean

    KAUST Repository

    Ahti, Pauliina A.; Coleman, Richard R.; DiBattista, Joseph; Berumen, Michael L.; Rocha, Luiz A.; Bowen, Brian W.

    2016-01-01

    Aim: The aim of this study was to resolve the evolutionary history, biogeographical barriers and population histories for sister species of wrasses, the African Coris (Coris cuvieri) in the Indian Ocean and Red Sea, and the Yellowtail Coris (Coris gaimard) in the Pacific Ocean. Glacial sea level fluctuations during the Pleistocene have shaped the evolutionary trajectories of Indo-Pacific marine fauna, primarily by creating barriers between the Red Sea, Indian Ocean and Pacific Ocean. Here, we evaluate the influence of these episodic glacial barriers on sister species C. cuvieri and C. gaimard. Location: Red Sea, Indian Ocean, Pacific Ocean. Methods: Sequences from mitochondrial DNA cytochrome oxidase c subunit I (COI), and nuclear introns gonadotropin-releasing hormone (GnRH) and ribosomal S7 protein were analysed in 426 individuals from across the range of both species. Median-joining networks, analysis of molecular variance and Bayesian estimates of the time since most recent common ancestor were used to resolve recent population history and connectivity. Results: Cytochrome oxidase c subunit I haplotypes showed a divergence of 0.97% between species, and nuclear alleles were shared between species. No population structure was detected between the Indian Ocean and Red Sea. The strongest signal of population structure was in C. gaimard between the Hawaiian biogeographical province and other Pacific locations (COI ϕ(symbol)ST = 0.040-0.173, P < 0.006; S7 ϕ(symbol)ST = 0.046, P < 0.001; GnRH ϕ(symbol)ST = 0.022, P < 0.005). Time to most recent common ancestor is c. 2.12 Ma for C. cuvieri and 1.76 Ma for C. gaimard. Main conclusions: We demonstrate an Indian-Pacific divergence of c. 2 Myr and high contemporary gene flow between the Red Sea and Indian Ocean, mediated in part by the long pelagic larval stage. The discovery of hybrids at Christmas Island indicates that Indian and Pacific lineages have come into secondary contact after allopatric isolation. Subspecies

  8. Phylogeography of Indo-Pacific reef fishes: sister wrassesCoris gaimardandC. cuvieriin the Red Sea, Indian Ocean and Pacific Ocean

    KAUST Repository

    Ahti, Pauliina A.

    2016-02-01

    Aim: The aim of this study was to resolve the evolutionary history, biogeographical barriers and population histories for sister species of wrasses, the African Coris (Coris cuvieri) in the Indian Ocean and Red Sea, and the Yellowtail Coris (Coris gaimard) in the Pacific Ocean. Glacial sea level fluctuations during the Pleistocene have shaped the evolutionary trajectories of Indo-Pacific marine fauna, primarily by creating barriers between the Red Sea, Indian Ocean and Pacific Ocean. Here, we evaluate the influence of these episodic glacial barriers on sister species C. cuvieri and C. gaimard. Location: Red Sea, Indian Ocean, Pacific Ocean. Methods: Sequences from mitochondrial DNA cytochrome oxidase c subunit I (COI), and nuclear introns gonadotropin-releasing hormone (GnRH) and ribosomal S7 protein were analysed in 426 individuals from across the range of both species. Median-joining networks, analysis of molecular variance and Bayesian estimates of the time since most recent common ancestor were used to resolve recent population history and connectivity. Results: Cytochrome oxidase c subunit I haplotypes showed a divergence of 0.97% between species, and nuclear alleles were shared between species. No population structure was detected between the Indian Ocean and Red Sea. The strongest signal of population structure was in C. gaimard between the Hawaiian biogeographical province and other Pacific locations (COI ϕ(symbol)ST = 0.040-0.173, P < 0.006; S7 ϕ(symbol)ST = 0.046, P < 0.001; GnRH ϕ(symbol)ST = 0.022, P < 0.005). Time to most recent common ancestor is c. 2.12 Ma for C. cuvieri and 1.76 Ma for C. gaimard. Main conclusions: We demonstrate an Indian-Pacific divergence of c. 2 Myr and high contemporary gene flow between the Red Sea and Indian Ocean, mediated in part by the long pelagic larval stage. The discovery of hybrids at Christmas Island indicates that Indian and Pacific lineages have come into secondary contact after allopatric isolation. Subspecies

  9. Premature mortality patterns among American Indians in South Dakota, 2000-2010.

    Science.gov (United States)

    Christensen, Mathew; Kightlinger, Lon

    2013-05-01

    American Indians in South Dakota have the highest mortality rates in the nation compared to other racial and ethnic groups and American Indians in other states. Cause-related and age-specific mortality patterns among American Indians in South Dakota are identified to guide prevention planning and policy efforts designed to reduce mortality within this population, in both South Dakota and other parts of the U.S. Death certificate data from South Dakota (2000-2010), on 5738 American Indians and 70,580 whites, were used to calculate age-specific mortality rates and rate ratios. These values were examined in order to identify patterns among the leading causes of death. Analyses were completed in 2011 and 2012. Within the South Dakota population, 70% of American Indians died before reaching age 70 years, compared to 25% of whites. Fatal injuries and chronic diseases were the leading causes of premature mortality. Nine leading causes of death showed consistent patterns of mortality disparity between American Indians and whites, with American Indians having significantly higher rates of mortality at lower ages. Premature mortality among American Indians in South Dakota is a serious public health problem. Unified efforts at the federal, tribal, state, and local levels are needed to reduce premature death within this population. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Mineral resources of the Indian Ocean and related scientific research

    Digital Repository Service at National Institute of Oceanography (India)

    Siddiquie, H.N.; Gujar, A.R.; Hashimi, N.H.; Valsangkar, A.B.; Nath, B.N.

    The Indian Ocean (area: 74.917 x 106 km2, water volume: 291.945 x 106 km3, average depth: 3897 m) is the third largest of the world oceans. The lands bordering the ocean contain almost 40 percent of the world's population and contribute...

  11. WATER TEMPERATURE and Other Data From Indian Ocean from 19760222 to 19910407 (NODC Accession 9400146)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The primary productivity and biological data in this accession were collected in the Indian Ocean by the Indian Ocean Data Center. Data was collected between...

  12. History of oceanography of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sengupta, R.

    This paper highlights history of the oceanography of the Indian Ocean. Oceanographic activities during Ancient period, Medieval period, British period, Post-Independence period are briefly discussed. The role of the IIOE, IOC, UNESCO are also...

  13. Biodiversity of chaetognaths of the Andaman Sea, Indian Ocean.

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Gireesh, R.

    Andaman Sea is a prominent biodiversity hotspot in the Indian Ocean. Stratified zooplankton collections were taken at 33 locations during 2003-2006. Average density of chaetognaths was 8.5/msup(3) in open ocean and 41.6/m sup(3) in coastal waters...

  14. Distribution of runup heights of the December 26, 2004 tsunami in the Indian Ocean

    Science.gov (United States)

    Choi, Byung Ho; Hong, Sung Jin; Pelinovsky, Efim

    2006-07-01

    A massive earthquake with magnitude 9.3 occurred on December 26, 2004 off the northern Sumatra generated huge tsunami waves affected many coastal countries in the Indian Ocean. A number of field surveys have been performed after this tsunami event; in particular, several surveys in the south/east coast of India, Andaman and Nicobar Islands, Sri Lanka, Sumatra, Malaysia, and Thailand have been organized by the Korean Society of Coastal and Ocean Engineers from January to August 2005. Spatial distribution of the tsunami runup is used to analyze the distribution function of the wave heights on different coasts. Theoretical interpretation of this distribution is associated with random coastal bathymetry and coastline led to the log-normal functions. Observed data also are in a very good agreement with log-normal distribution confirming the important role of the variable ocean bathymetry in the formation of the irregular wave height distribution along the coasts.

  15. Temperature profile and water depth data collected from USS BARBEY using BT and XBT casts in the Indian ocean and other seas from 07 January 1989 to 31 January 1989 (NODC Accession 8900034)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS BARBEY in the Indian Ocean, South China Sea, Burma Sea, and Malacca of...

  16. Ecosystem characterization in Indian Ocean sector, Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Dhargalkar, V.K.; Parulekar, A.H.

    is most pronounced, which makes Indian Ocean sector an upwelled area marked by high nutrients, appreciable growth rate of phytoplankton and rich organic matter in the water column. The fractionation studies revealed the importance of picoautotrophs...

  17. Ulrike Freitag: Indian Ocean, Migrants and State Formation in Hadhramaut. Reforming the Homeland. Ulrike Freitag & William Clarence-Smith : Hadhrami Traders, Scholars and Statesmen in the Indian Ocean, 1750s-1960s.

    Directory of Open Access Journals (Sweden)

    Jean Lambert

    2003-01-01

    Full Text Available Ulrike Freitag Indian Ocean, Migrants and State Formation in Hadhramaut. Reforming the Homeland Leyde / Boston, Brill, 2003 Ulrike Freitag & William Clarence-Smith (directeurs Hadhrami Traders, Scholars and Statesmen in the Indian Ocean, 1750s-1960s Leyde / New-York / Cologne, Brill, 1997 Le livre Indian Ocean, Migrants and State Formation in Hadhramaut nous présente l'histoire moderne du Hadramaout, du début du xixe siècle à la fin de la période britannique (1967, en parallèle avec...

  18. The diversity of Indian Ocean Heterotardigrada

    Directory of Open Access Journals (Sweden)

    Roberto SANDULLI

    2007-09-01

    Full Text Available Information about Indian Ocean tardigrades is quite scarce and in most cases refers to species in coastal coralline sediment and occasionally in abyssal mud. The present data concern species found in the intertidal sand of Coco and La Digue Islands in the Seychelles, previously unsampled for tardigrades, as well as species in subtidal sediment found at depths ranging between 1 and 60 m off the shores of the Maldive Atolls. These sediments are all very similar and consist of heterogeneous coralline sand, moderately or scarcely sorted. Sixteen species (three new to science were found in the Seychelles, belonging to Renaudarctidae, Stygarctidae, Halechiniscidae, Batillipedidae and Echiniscoididae. Diversity and evenness data are also interesting, with maximum values of H' = 2.59 and of J = 0.97. In the Maldives 25 species were found (two new to science belonging to Neostygarctidae, Stygarctidae, Halechiniscidae and Batillipedidae. Such a number of species, despite the low percentage of tardigrade fauna (only 0.6% of the total meiofauna, contributes to the high values of both diversity and evenness, with H' ranging between 1.5 and 2.6 and J between 0.6 and 1. The Indian Ocean tardigrade fauna currently numbers 31 species of Arthrotardigrada and 2 species of Echiniscoidida. In the present study, Arthrotardigrada are the most abundant and all the families are present except Neoarctidae. Halechiniscidae is present with all the sub-families (except Euclavartinae, thus contributing to the high diversity values. Furthermore, 18 species, representing more than 50% of the total marine tardigrade fauna, are new records for the Indian Ocean, including five species new to science.

  19. Regal phylogeography: Range-wide survey of the marine angelfish Pygoplites diacanthus reveals evolutionary partitions between the Red Sea, Indian Ocean, and Pacific Ocean.

    Science.gov (United States)

    Coleman, Richard R; Eble, Jeffrey A; DiBattista, Joseph D; Rocha, Luiz A; Randall, John E; Berumen, Michael L; Bowen, Brian W

    2016-07-01

    The regal angelfish (Pygoplites diacanthus; family Pomacanthidae) occurs on reefs from the Red Sea to the central Pacific, with an Indian Ocean/Rea Sea color morph distinct from a Pacific Ocean morph. To assess population differentiation and evaluate the possibility of cryptic evolutionary partitions in this monotypic genus, we surveyed mtDNA cytochrome b and two nuclear introns (S7 and RAG2) in 547 individuals from 15 locations. Phylogeographic analyses revealed four mtDNA lineages (d=0.006-0.015) corresponding to the Pacific Ocean, the Red Sea, and two admixed lineages in the Indian Ocean, a pattern consistent with known biogeographic barriers. Christmas Island in the eastern Indian Ocean had both Indian and Pacific lineages. Both S7 and RAG2 showed strong population-level differentiation between the Red Sea, Indian Ocean, and Pacific Ocean (ΦST=0.066-0.512). The only consistent population sub-structure within these three regions was at the Society Islands (French Polynesia), where surrounding oceanographic conditions may reinforce isolation. Coalescence analyses indicate the Pacific (1.7Ma) as the oldest extant lineage followed by the Red Sea lineage (1.4Ma). Results from a median-joining network suggest radiations of two lineages from the Red Sea that currently occupy the Indian Ocean (0.7-0.9Ma). Persistence of a Red Sea lineage through Pleistocene glacial cycles suggests a long-term refuge in this region. The affiliation of Pacific and Red Sea populations, apparent in cytochrome b and S7 (but equivocal in RAG2) raises the hypothesis that the Indian Ocean was recolonized from the Red Sea, possibly more than once. Assessing the genetic architecture of this widespread monotypic genus reveals cryptic evolutionary diversity that merits subspecific recognition. We recommend P.d. diacanthus and P.d. flavescens for the Pacific and Indian Ocean/Red Sea forms. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Larval and postlarval stages of Atypopenaeus Alcock (Decapoda, Penaeidae: Penaeinae) from Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Paulinose, V.T.

    Two of the early mysis stages and an early postlarva of a species of Atypopenaeus are described here for the first time. A total of 15 specimens were obtained from the Indian Ocean during the International Indian Ocean Expedition (IIOE). The species...

  1. Transport and scavenging of Pu in surface waters of the Southern Hemisphere Oceans

    DEFF Research Database (Denmark)

    Gastaud, J.; Povinec, P.P.; Aoyama, M.

    2011-01-01

    The distribution of 239Pu in Atlantic and Indian Ocean waters about four decades after their main injection from atmospheric nuclear weapons tests is discussed. Recent data obtained in the framework of the SHOTS (Southern Hemisphere Ocean Tracer Studies) projects are evaluated and compared...... with previous investigations. Seawater samples were collected during the round the globe BEAGLE2003 (Blue Ocean Global Expedition) along the 30°S transect in the Atlantic and the 20°S transect in the Indian Ocean. The results indicate transport of surface waters labelled with 239Pu from the western North...... Pacific via the Indonesian Seas to the South Indian Ocean and then to the South Atlantic Ocean. Along the whole BEAGLE2003 sampling route, the Atlantic Ocean has the lowest 239Pu content due to its particle scavenging on the long way from the western North Pacific. On the other hand, concentrations...

  2. Biophysical processes in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mc; Murtugudde, R.; Vialard, J.; Vinayachandran, P.N.; Wiggert, J.D.; Hood, R.R.; Shankar, D.; Shetye, S.R.

    Ocean Biogeochemical Processes and Ecological Variability Geophysical Monograph Series 185 Copyright 200� by the American Geophysical Union. 10.102�/2008GM000768 Biophysical Processes in the Indian Ocean J. P. McCreary, 1 R. Murtugudde, 2 J. Vialard, 3...) also plots the upper-layer thickness, h 1 , from the model of McCreary et al. [1��3] (hereinafter referred to as MKM); h 1 simulates the structure of the top of the actual thermocline reasonably well, except that it is somewhat too thin from 5...

  3. The Role of Indian Ocean SST Anomalies in Modulating Regional Rainfall Variability and Long-term Change

    Science.gov (United States)

    Ummenhofer, C. C.; Sen Gupta, A.; England, M. H.

    2008-12-01

    In a series of atmospheric general circulation model simulations, the potential impact of Indian Ocean sea surface temperature (SST) anomalies in modulating low- to mid-latitude precipitation around the Indian Ocean rim countries is explored. The relative importance of various characteristic tropical and subtropical Indian Ocean SST poles, both individually and in combination, to regional precipitation changes is quantified. A mechanism for the rainfall modulation is proposed, by which the SST anomalies induce changes in the thermal properties of the atmosphere, resulting in a reorganization of the large-scale atmospheric circulation across the Indian Ocean basin. Across western and southern regions of Australia, rainfall anomalies are found to be due to modulations in the meridional thickness gradient, thermal wind, and baroclinicity, leading to changes in the moisture flux onto the continent. The pattern of large-scale circulation changes over the tropical Indian Ocean and adjacent land masses is consistent with an anomalous strengthening of the Walker cell, leading to variations in precipitation of opposite sign across western and eastern regions of the basin. Links between long-term changes in Indian Ocean surface properties and regional precipitation changes in Indian Ocean rim countries are also discussed in a broader context with implications for water management and seasonal forecasting.

  4. Regal phylogeography: Range-wide survey of the marine angelfish Pygoplites diacanthus reveals evolutionary partitions between the Red Sea, Indian Ocean, and Pacific Ocean

    KAUST Repository

    Coleman, Richard R.

    2016-04-08

    The regal angelfish (Pygoplites diacanthus; family Pomacanthidae) occupies reefs from the Red Sea to the central Pacific, with an Indian Ocean/Rea Sea color morph distinct from a Pacific Ocean morph. To assess population differentiation and evaluate the possibility of cryptic evolutionary partitions in this monotypic genus, we surveyed mtDNA cytochrome b and two nuclear introns (S7 and RAG2) in 547 individuals from 15 locations. Phylogeographic analyses revealed four mtDNA lineages (d = 0.006 – 0.015) corresponding to the Pacific Ocean, the Red Sea, and two admixed lineages in the Indian Ocean, a pattern consistent with known biogeographical barriers. Christmas Island in the eastern Indian Ocean had both Indian and Pacific lineages. Both S7 and RAG2 showed strong population-level differentiation between the Red Sea, Indian Ocean, and Pacific Ocean (ΦST = 0.066 – 0.512). The only consistent population sub-structure within these three regions was at the Society Islands (French Polynesia), where surrounding oceanographic conditions may reinforce isolation. Coalescence analyses indicate the Pacific (1.7 Ma) as the oldest extant lineage followed by the Red Sea lineage (1.4 Ma). Results from a median-joining network suggest radiations of two lineages from the Red Sea that currently occupy the Indian Ocean (0.7 – 0.9 Ma). Persistence of a Red Sea lineage through Pleistocene glacial cycles suggests a long-term refuge in this region. The affiliation of Pacific and Red Sea populations, apparent in cytochrome b and S7 (but equivocal in RAG2) raises the hypthosis that the Indian Ocean was recolonized from the Red Sea, possibly more than once. Assessing the genetic architecture of this widespread monotypic genus reveals cryptic evolutionary diversity that merits subspecific recognition.

  5. Regal phylogeography: Range-wide survey of the marine angelfish Pygoplites diacanthus reveals evolutionary partitions between the Red Sea, Indian Ocean, and Pacific Ocean

    KAUST Repository

    Coleman, Richard R.; Eble, Jeffrey A.; DiBattista, Joseph; Rocha, Luiz A.; Randall, John E.; Berumen, Michael L.; Bowen, Brian W.

    2016-01-01

    The regal angelfish (Pygoplites diacanthus; family Pomacanthidae) occupies reefs from the Red Sea to the central Pacific, with an Indian Ocean/Rea Sea color morph distinct from a Pacific Ocean morph. To assess population differentiation and evaluate the possibility of cryptic evolutionary partitions in this monotypic genus, we surveyed mtDNA cytochrome b and two nuclear introns (S7 and RAG2) in 547 individuals from 15 locations. Phylogeographic analyses revealed four mtDNA lineages (d = 0.006 – 0.015) corresponding to the Pacific Ocean, the Red Sea, and two admixed lineages in the Indian Ocean, a pattern consistent with known biogeographical barriers. Christmas Island in the eastern Indian Ocean had both Indian and Pacific lineages. Both S7 and RAG2 showed strong population-level differentiation between the Red Sea, Indian Ocean, and Pacific Ocean (ΦST = 0.066 – 0.512). The only consistent population sub-structure within these three regions was at the Society Islands (French Polynesia), where surrounding oceanographic conditions may reinforce isolation. Coalescence analyses indicate the Pacific (1.7 Ma) as the oldest extant lineage followed by the Red Sea lineage (1.4 Ma). Results from a median-joining network suggest radiations of two lineages from the Red Sea that currently occupy the Indian Ocean (0.7 – 0.9 Ma). Persistence of a Red Sea lineage through Pleistocene glacial cycles suggests a long-term refuge in this region. The affiliation of Pacific and Red Sea populations, apparent in cytochrome b and S7 (but equivocal in RAG2) raises the hypthosis that the Indian Ocean was recolonized from the Red Sea, possibly more than once. Assessing the genetic architecture of this widespread monotypic genus reveals cryptic evolutionary diversity that merits subspecific recognition.

  6. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3, No 2 (2004) >. Log in or Register to get access to full text downloads.

  7. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 6, No 2 (2008) >. Log in or Register to get access to full text downloads.

  8. Cd, Zn, Ni and Cu in the Indian Ocean

    NARCIS (Netherlands)

    Saager, Paul M.; Baar, Hein J.W. de; Howland, Robin J.

    1992-01-01

    Vertical profiles of dissolved Cd, Zn, Ni and Cu in the Northwest Indian Ocean (Arabian Sea) exhibit a nutrient type distribution also observed in other oceans. The area is characterized by strong seasonal upwelling and a broad oxygen minimum zone in intermediate waters. However, neither Cd, Zn, Ni

  9. Carbon dioxide and nitrous oxide in the North Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.; Naqvi, S.W.A; Jayakumar, D.A; George, M.D.; Narvekar, P.V.; DeSousa, S

    The understanding of biogeochemical cycling of carbon dioxide and nitrous oxide in the oceans is essential for predicting the fate of anthropogenically emitted components. The North Indian Ocean, with its diverse regimes, provides us with a natural...

  10. The role stratification on Indian ocean mixing under global warming

    Science.gov (United States)

    Praveen, V.; Valsala, V.; Ravindran, A. M.

    2017-12-01

    The impact of changes in Indian ocean stratification on mixing under global warming is examined. Previous studies on global warming and associated weakening of winds reported to increase the stratification of the world ocean leading to a reduction in mixing, increased acidity, reduced oxygen and there by a reduction in productivity. However this processes is not uniform and are also modulated by changes in wind pattern of the future. Our study evaluate the role of stratification and surface fluxes on mixing focusing northern Indian ocean. A dynamical downscaling study using Regional ocean Modelling system (ROMS) forced with stratification and surface fluxes from selected CMIP5 models are presented. Results from an extensive set of historical and Representative Concentration Pathways 8.5 (rcp8.5) scenario simulations are used to quantify the distinctive role of stratification on mixing.

  11. Examining cross-equatorial precipitation variability in the western Indian Ocean using stalagmites from Madagascar

    Science.gov (United States)

    Scroxton, N.; Burns, S. J.; McGee, D.; Hardt, B. F.; Godfrey, L.; Ranivoharimanana, L.; Faina, P.

    2017-12-01

    The behavior of the world's monsoon systems and the position of the Inter Tropical Convergence Zone (ITCZ) resulting from large global climatic changes is reasonably well understood at orbital and millennial timescales. However, under the boundary conditions and relatively modest forcing of the last 2000 years it is not yet clear how tropical monsoon systems changed and why. The traditional schema of north-south translation of the ITCZ is being challenged by new theories relating to meridional expansion and contraction of the tropical rain belt, and/or to changes in zonal circulation patterns resembling modern El-Niño Southern Oscillation end members. Located at a hotspot of zonal and meridional climate forcing, stalagmites from the western Indian Ocean can provide new insights into past rainfall variability and uncover the driving mechanisms. Here, we present results from a new southern hemisphere speleothem record from Anjohibe cave, northwestern Madagascar, covering the last 1,700 years. We demonstrate that our quasi-annual, precisely dated, stable oxygen isotope record serves as a proxy for the strength of the northwestern Madagascan monsoon. The record shows a multi-decadal, in-phase relationship with its northern hemisphere monsoon counterpart from Oman - contrary to the expected antiphase relationship that would result from north-south ITCZ translation. At the centennial scale, the Madagascan record correlates well with precipitation records from Eastern Africa. We discuss the potential causes of western Indian Ocean precipitation coherency, and how it relates to either symmetrical changes in continental sensible heating, or to a low frequency zonal sea-surface temperature mode.

  12. Magma Supply of Southwest Indian Ocean: Implication from Crustal Thickness Anomalies

    Science.gov (United States)

    Chiheng, L.; Jianghai, L.; Huatian, Z.; Qingkai, F.

    2017-12-01

    The Southwest Indian Ridge (SWIR) is one of the world's slowest spreading ridges with a full spreading rate of 14mm a-1, belonging to ultraslow spreading ridge, which are a novel class of spreading centers symbolized by non-uniform magma supply and crustal accretion. Therefore, the crustal thickness of Southwest Indian Ocean is a way to explore the magmatic and tectonic process of SWIR and the hotspots around it. Our paper uses Residual Mantle Bouguer Anomaly processed with the latest global public data to invert the relative crustal thickness and correct it according to seismic achievements. Gravity-derived crustal thickness model reveals a huge range of crustal thickness in Southwest Indian Ocean from 0.04km to 24km, 7.5km of average crustal thickness, and 3.5km of standard deviation. In addition, statistics data of crustal thickness reveal the frequency has a bimodal mixed skewed distribution, which indicates the crustal accretion by ridge and ridge-plume interaction. Base on the crustal thickness model, we divide three types of crustal thickness in Southwest Indian Ocean. About 20.31% of oceanic crust is 9.8km thick as thick crust. Furthermore, Prominent thin crust anomalies are associated with the trend of most transform faults, but thick crust anomalies presents to northeast of Andrew Bain transform fault. Cold and depleted mantle are also the key factors to form the thin crust. The thick crust anomalies are constrained by hotspots, which provide abundant heat to the mantle beneath mid-ocean ridge or ocean basin. Finally, we roughly delineate the range of ridge-plume interaction and transform fault effect.

  13. Cenozoic History of the Equatorial Indian Ocean Recorded by Nd Isotopes: The Closure of the Indonesian Gateway

    Science.gov (United States)

    Gourlan, A. T.; Meynadier, L.; Allegre, C. J.

    2005-12-01

    The northward tectonic motion of the Australian plate and the evolution of the Indonesian Island Arcs through the last 20 Ma, generate changes in the flow and the origin of the circulation between the Pacific and the Southern Indian Oceans. Indeed, the emergence of the Indonesian Archipelago and probably the rapid uplift of the island of Halmahera have dramatically reduced the Indonesian Gateway. However, the precise dating of this event is still a matter of debate. The Neodymium isotopic composition of marine sediments is an extremely good proxy to reconstruct the major changes in the past ocean circulation. The residence time of Nd is shorter than the circulation time of the global ocean. Therefore, the Nd isotopic composition varies between the different ocean basins and is function of changes in source provenances, paleocirculation, orogenic processes, and intensity of weathering on the continents as well as on the volcanic arcs. To reconstruct the evolution of the oceanic flow from the Pacific to the equatorial Indian Ocean since the Miocene, we have applied on high carbonates content sediments a leaching technique using acetic acid. The reliability of our technique has been assessed by comparison with the Hydroxylamine hydrochloride technique developed by Bayon et al (1). The Nd isotopic composition is determinated in the past seawater from the record in Fe-Mn oxides. The sedimentary sequences are accurately dated using bio and chimiostratigraphy. Three ODP Sites were chosen in the Indian Ocean with a water depth ranging from 1600 to 2800 m and mutually distant by about 3000 km. From West to East: Site 761 which is at the western edge of the Indonesian Gateway on the central northeastern part of the Wombat Plateau off NW Australia, Site 757 is located on the south of the Ninetyeast ridge and Site 707 is located in the western tropical Indian Ocean near the Seychelles Islands. Our data are compared with the first results from Site 807 located in the Pacific

  14. Calanoid copepods of the International Indian Ocean Expedition

    Digital Repository Service at National Institute of Oceanography (India)

    Stephen, R.; Devi, K.S.; Meenakshikunjamma, P.P.; Gopalakrishnan, T.C.; Saraswathy, M.

    The distribution of calanoid copepods is discussed based on the subsorted taxa of the International Indian Ocean Expedition samples. Of the 32 calanoid taxa only 17 groups were considered as significant components. The family Eycalanidae...

  15. Ferromanganese nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.; Pattan, J.N.

    In order to delineate a mine site for ferromanganese nodules, extensive surveys were conducted in Central Indian Ocean Basin. Mapping of the basin by multibeam swath bathymetry (Hydrosweep) has revealed many new bottom relief features...

  16. Organochlorine pesticide residues in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.; Sarkar, A.

    periodic monitoring of the levels of the major pollutants. One on-going exercise has been to evaluate, qualitatively and quantitatively, the persistent organochlorine pesticide residues in the Northern Indian Ocean. The baseline levels of some...

  17. Western Indian Ocean Journal of Marine Science: Submissions

    African Journals Online (AJOL)

    Already have a Username/Password for Western Indian Ocean Journal of Marine Science? ... Editorial Policy ... The manuscript is your own original work, and does not duplicate any other previously published work, including your own ...

  18. Indian Ocean warming modulates Pacific climate change

    Science.gov (United States)

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-01-01

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east–west Walker circulation) through the Pacific ocean–atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific’s could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries. PMID:23112174

  19. Indian Ocean floor deformation induced by the Reunion plume rather than the Tibetan Plateau

    Science.gov (United States)

    Iaffaldano, G.; Davies, D. R.; DeMets, C.

    2018-05-01

    The central Indian Ocean is considered the archetypal diffuse oceanic plate boundary. Data from seismic stratigraphy and deep-sea drilling indicate that the contractional deformation of the Indian Ocean lithosphere commenced at 15.4-13.9 Ma, but experienced a sharp increase at 8-7.5 Ma. This has been maintained through to the present day, with over 80% of the shortening accrued over the past 8 Myr. Here we build on previous efforts to refine the form, timing and magnitude of the regional plate-motion changes by mitigating the noise in reconstructed Indian and Capricorn plate motions relative to Somalia. Our noise-mitigated reconstructions tightly constrain the significant speed up of the Capricorn plate over the past 8 Myr and demonstrate that the history of the Indian Ocean floor deformation cannot be explained without this plate-motion change. We propose that the Capricorn plate-motion change is driven by an increase in the eastward-directed asthenospheric flow associated with the adjacent Reunion plume, and quantitatively demonstrate the viability of this hypothesis. Our inference is supported by volcanic age distributions along the Reunion hotspot track, the anomalously high residual bathymetry of the Central Indian Ridge, full-waveform seismic tomography of the underlying asthenosphere and geochemical observations from the Central Indian Ridge. These findings challenge the commonly accepted link between the deformation of the Indian Ocean floor and the Tibetan Plateau's orogenic evolution and demonstrate that temporal variations in upwelling mantle flow can drive major tectonic events at the Earth's surface.

  20. Tsunami Early Warning for the Indian Ocean Region - Status and Outlook

    Science.gov (United States)

    Lauterjung, Joern; Rudloff, Alexander; Muench, Ute; Gitews Project Team

    2010-05-01

    seismological monitoring and data analysis. The automatic seismic data processing software SeisComP3, is not only operational in the warning centre in Jakarta and successfully used for rapid earthquake information, but also in different Indian Ocean rim countries like the once mentioned before as well as in India, Thailand and Pakistan. Close cooperation has been established with Australia, South Africa and India for the real-time exchange mainly of seismological and sea level data.

  1. Seasonal cycle of cross-equatorial flow in the central Indian Ocean

    Science.gov (United States)

    Wang, Yi; McPhaden, Michael J.

    2017-05-01

    This study investigates the seasonal cycle of meridional currents in the upper layers of central equatorial Indian Ocean using acoustic Doppler current profiler (ADCP) and other data over the period 2004-2013. The ADCP data set collected along 80.5°E is the most comprehensive collection of direct velocity measurements in the central Indian Ocean to date, providing new insights into the meridional circulation in this region. We find that mean volume transport is southward across the equator in the central Indian Ocean in approximate Sverdrup balance with the wind stress curl. In addition, mean westerly wind stress near the equator drives convergent Ekman flow in the surface layer and subsurface divergent geostrophic flow in the thermocline at 50-150 m depths. In response to a mean northward component of the surface wind stress, the maximum surface layer convergence is shifted off the equator to between 0.5° and 1°N. Evidence is also presented for the existence of a shallow equatorial roll consisting of a northward wind-driven surface drift overlaying the southward directed subsurface Sverdrup transport. Seasonal variations are characterized by cross-equatorial transports flowing from the summer to the winter hemisphere in quasi-steady Sverdrup balance with the wind stress curl. In addition, semiannually varying westerly monsoon transition winds lead to semiannual enhancements of surface layer Ekman convergence and geostrophic divergence in the thermocline. These results quantify expectations from ocean circulation theories for equatorial Indian Ocean meridional circulation patterns with a high degree of confidence given the length of the data records.

  2. Carcharhinus humani sp. nov., a new whaler shark (Carcharhiniformes:Carcharhinidae) from the western Indian Ocean.

    Science.gov (United States)

    White, William T; Weigmann, Simon

    2014-06-19

    A new species of whaler shark, Carcharhinus humani sp. nov., is described based on five type specimens from the western Indian Ocean near the Socotra Islands, off Kuwait, Mozambique, and South Africa. The new species represents the fifth species of the C. dussumieri/sealei group and the third species of the C. sealei subgroup. The new species is the only species of the C. sealei subgroup known from the western Indian Ocean. Within the C. sealei subgroup, C. humani differs from C. sealei in having a sharply demarcated black apical marking on the second dorsal fin which does not extend onto body surface (vs. black marking diffuse-edged and usually extending onto upper sides of trunk), a longer horizontal prenarial length (4.1-4.7 vs. 3.4-4.2% TL), and a longer preoral length (6.8-7.6 vs. 5.7-6.5% TL); C. humani differs from C. coatesi in having a taller second dorsal fin (its height 4.0-4.5 vs. 2.9-3.6% TL), a shorter first dorsal fin (its length 13.4-14.6 vs. 14.8-17.3% TL), and more vertebrae (total centra 152-167 vs. 134-147).

  3. Cross-Mating Compatibility and Competitiveness among Aedes albopictus Strains from Distinct Geographic Origins - Implications for Future Application of SIT Programs in the South West Indian Ocean Islands.

    Science.gov (United States)

    Damiens, David; Lebon, Cyrille; Wilkinson, David A; Dijoux-Millet, Damien; Le Goff, Gilbert; Bheecarry, Ambicadutt; Gouagna, Louis Clément

    2016-01-01

    The production of large numbers of males needed for a sustainable sterile insect technique (SIT) control program requires significant developmental and operational costs. This may constitute a significant economic barrier to the installation of large scale rearing facilities in countries that are undergoing a transition from being largely dependent on insecticide use to be in a position to integrate the SIT against Aedes albopictus. Alternative options available for those countries could be to rely on outsourcing of sterile males from a foreign supplier, or for one centralised facility to produce mosquitoes for several countries, thus increasing the efficiency of the mass-rearing effort. However, demonstration of strain compatibility is a prerequisite for the export of mosquitoes for transborder SIT applications. Here, we compared mating compatibility among Ae. albopictus populations originating from three islands of the South Western Indian Ocean, and assessed both insemination rates and egg fertility in all possible cross-mating combinations. Furthermore, competitiveness between irradiated and non-irradiated males from the three studied strains, and the subsequent effect on female fertility were also examined. Although morphometric analysis of wing shapes suggested phenoptypic differences between Ae. albopictus strains, perfect reproductive compatibility between them was observed. Furthermore, irradiated males from the different islands demonstrated similar levels of competitiveness and induced sterility when confronted with fertile males from any of the other island populations tested. In conclusion, despite the evidence of inter-strain differences based on male wing morphology, collectively, our results provide a new set of expectations for the use of a single candidate strain of mass-reared sterile males for area-wide scale application of SIT against Ae. albopictus populations in different islands across the South Western Indian Ocean. Cross

  4. Minima of interannual sea-level variability in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Aparna, S.G.; Mc; Suresh, I.; Neetu, S.; Durand, F.; Shenoi, S.S.C.; Al Saafani, M.A.

    of interannual sea-level variability in the Indian Ocean D. Shankar a ,S.G.Aparna a ,J.P.McCreary b ,I.Suresh a , S. Neetu a ,F.Durand c , S. S. C. Shenoi a , M. A. Al Saafani a,d a National Institute of Oceanography,Dona Paula, Goa 403 004, India. b SOEST..., for example,the reviewby Schott and McCreary, 2001) implies that changes in sea level can be forced at a given loca- tion by winds blowing elsewhere earlier in the season. This phenomenon, called remote forcing, “merges the equatorial Indian Ocean, the Arabian...

  5. Soldiers, Artisans, Cultivators and Revolutionaries: The Movement of Sikhs in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    Anjali Gera Roy

    2012-06-01

    Full Text Available The geography of Punjab, a land-locked region divided between India and Pakistan, makes it an unlikely player in oceanic sojourns. But imperial interventions in Punjab in the middle of the 19th century triggered movements from Punjab that inserted this region in the littoral narrative of the Indian Ocean. Unlike the movements of lascars and traders, who have been central to the revisionist histories of the Indian Ocean, those from Punjab have not featured in oceanic dialogues. The absence of Sikhs in Indian Ocean studies is largely due to the silence of Sikh soldiers, skilled craftsmen and cultivators with largely rural roots who were uprooted to strange lands. The confusion of Sikhs with Hindus, Muslims and, even Afghans, in the colonial era, as well as the classification of Punjabi Muslims as Pakistani in the post-colonial, further problematizes the Sikh migration narrative. Drawing on a wide range of official and unofficial historical sources, this essay argues that twin developments in Punjab, namely the construction of Sikhs as ‘a martial race’ and their integration into the imperial capitalist economy, connects the movements of soldiers and policemen to Shanghai, Hong Kong, the Straits Settlements and Kenya with those of skilled artisans to Mombasa and Uganda. Keywords: Sikhs, Indian Ocean, labour migration, cultural identity

  6. Elders recall an earlier tsunami on Indian Ocean shores

    Science.gov (United States)

    Kakar, Din Mohammad; Naeem, Ghazala; Usman, Abdullah; Hasan, Haider; Lohdi, Hira; Srinivasalu, Seshachalam; Andrade, Vanessa; Rajendran, C.P.; Naderi Beni, Abdolmajid; Hamzeh, Mohammad Ali; Hoffmann, Goesta; Al Balushi, Noora; Gale, Nora; Kodijat, Ardito; Fritz, Hermann M.; Atwater, Brian F.

    2014-01-01

    Ten years on, the Indian Ocean tsunami of 26 December 2004 still looms large in efforts to reduce coastal risk. The disaster has spurred worldwide advances in tsunami detection and warning, tsunami-risk assessment, and tsunami awareness [Satake, 2014]. Nearly a lifetime has passed since the northwestern Indian Ocean last produced a devastating tsunami. Documentation of this tsunami, in November 1945, was hindered by international instability in the wake of the Second World War and, in British India, by the approach of independence and partition. The parent earthquake, of magnitude 8.1, was widely recorded, and the tsunami registered on tide gauges, but intelligence reports and newspaper articles say little about inundation limits while permitting a broad range of catalogued death tolls. What has been established about the 1945 tsunami falls short of what's needed today for ground-truthing inundation models, estimating risk to enlarged populations, and anchoring awareness campaigns in local facts. Recent efforts to reduce coastal risk around the Arabian Sea include a project in which eyewitnesses to the 1945 tsunami were found and interviewed (Fig. 1), and related archives were gathered. Results are being made available through UNESCO's Indian Ocean Tsunami Information Center in hopes of increasing scientific understanding and public awareness of the region's tsunami hazards.

  7. Stratification of zooplankton in the northwestern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Paulinose, V.T.; Gopalakrishnan, T.C.; Nair, K.K.C.; Aravindakshan, P.N.

    Study on stratification of zooplankton in the north western Indian Ocean was carried out with special reference to its relative abundance and distribution. Samples were collected using multiple plankton net, during first cruise of ORV Sagar Kanya...

  8. Bothid larvae (Pleuronectiformes-Pisces) of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, C.B.L.

    the Indian Ocean, their regional, seasonal as well as diurnal variations. Engyprosopon grandisquamis dominated contributing to 23.2% of the total larvae. Numerically the incidence of bothid larvae suggested a uniform pattern of distribution during the two...

  9. Internal constitution of manganese nodules from the Central Indian Ocean basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ghosh, A.K.; Mukhopadhyay, R.

    Morphological, chemical, physical and acoustic properties of Mn-nodules in the the Indian Ocean are inter-linked and depend much on local and regional oceanic environments. These nodules are anisotropic and sound propagation is faster parallel...

  10. Carbonate preservation during the 'mystery interval' in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D.

    maximum is a feature noted across the world oceans and considered to signify carbonate preservation, although it is missing from many sediment cores from the eastern equatorial Pacific, tropical Atlantic and subtropical Indian Ocean The carbonate...

  11. An initial assessment of Ocean Energy Resources in the Western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Hammar, Linus; Ehnberg, Jimmy

    2011-07-01

    The demand for modern energy is accelerating in the Western Indian Ocean (coastal East Africa). A mixture of different energy sources will by necessity be the option for the long-term future and the most adequate solutions naturally vary between locations. The vast coastlines and many islands of the region make ocean energy (OE) a relevant field to explore. With an early understanding of the resources strategic planning towards sustainable development is facilitate. Moreover, early awareness facilitates a respectful integration of new technologies in the fragile and for local people invaluable ecosystems. This study provides a first assessment of the frontier OE technologies and corresponding resources in the region. Five renewable Ocean Energy technologies have been reviewed and the physical resource abundance for respective energy source has been screened based on available literature and databases. The Western Indian Ocean is shared between nine African countries and two French departments. The studied countries are the Comoros, Kenya, Madagascar, Mauritius, Mayotte, Mozambique, the Seychelles, Tanzania, and Reunion. The energy situation is insufficient throughout the region, either as consequence of lacking domestic energy sources or rudimentary grid extension. The results indicate that ocean energy resources are abundant in much of the region, but different sources have potential in different areas. Several countries have favourable physical conditions for extracting energy from waves and from the temperature gradient between the surface and deep water. Wave power is a young but currently available technology which can be utilized for both large- and small-scale applications. Ocean Thermal Energy Conversion is a technology under development that, once proven, may be applicable for large-scale power production. The physical conditions for small-scale tidal barrage power, tidal stream power, and ocean current power are less pronounced but may be of interest at

  12. Biogeochemical studies of selenium in the Indian Ocean

    International Nuclear Information System (INIS)

    Hattori, H.; Nakaguchi, Y.; Hiraki, K.; Kimura, M.; Koike, Y.

    1999-01-01

    Selenium that is a one of trace essential elements exists mainly in the chemical form of Se(IV), Se(VI) and organic selenium in ocean. Moreover, the monitoring of the selenium species has become a matter of interest as a mean of estimating their influence in biological processes in ocean. In recent works, some investigators reported that Se(IV) shows nutrient-type especially like silica's behavior, Se(VI) shows an approximately constant value, and the biological activities control the distribution of organic selenium. However, these reports were not included the whole world's oceans. It is necessary to research several oceans for the explication of fate on selenium. We investigated at the most interesting area - the Eastern Indian Ocean where should play a key role in global ocean's cycle for acquiring the new knowledge of selenium species at first

  13. Checklist of Recent thecideoid brachiopods from the Indian Ocean and Red Sea, with a description of a new species of Thecidellina from Europa Island and a re-description of T. blochmanni Dall from Christmas Island.

    Science.gov (United States)

    Logan, Alan; Hoffmann, Jana; Lüter, Carsten

    2015-09-08

    Compilation of a checklist of Recent thecideoid brachiopods from the Indian Ocean and Red Sea indicates that members of this superfamily are represented by a small number of species. The subfamily Lacazellinae is represented by Ospreyella maldiviana from the Maldive Islands but the presence of Lacazella cannot yet be confirmed in the Indian Ocean as the holotype of Lacazella mauritiana from Mauritius is lost. The subfamily Thecidellininae is represented by Thecidellina blochmanni from Christmas Island in the eastern Indian Ocean and the Red Sea while a new species T. europa is here described from Europa Island in the Mozambique Channel. The subfamily Minutellinae is represented by Minutella minuta from Samper Bank and Walters Bank in the south-western Indian Ocean and in the Red Sea. Since the holotype of Thecidellina blochmanni from Flying Fish Cove, Christmas Island is also lost, this species is re-described and illustrated mainly from topotypes in the Museum für Naturkunde, Berlin, from which a suggested neotype has been selected.

  14. The warm pool in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shetye, S.R.

    is larger and warmer, a peculiarity of the pool in the Indian Ocean is its seasonal variation. The surface area of the pool changes from 24 x 106 km2 in April to 8 x 106 km2 in September due to interaction with the southwest monsoon. The annual cycles of sea...

  15. Western Indian Ocean Journal of Marine Science

    African Journals Online (AJOL)

    The Western Indian Ocean Journal of Marine Science (WIOJMS) provides an avenue for ... Effects of blood meal as a substitute for fish meal in the culture of juvenile Silver ... area of eastern Africa: the case of Quirimbas National Park, Mozambique ... This work is licensed under a Creative Commons Attribution 3.0 License.

  16. Zooplankton biomass and abundance of Antarctic krill Euphausia superba DANA in Indian Ocean sector of the southern ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Parulekar, A.H.

    Zooplankton sampling was carried out during the first six Indian Scientific Expeditions to Antarctica (1981-1987) to estimate krill abundance in the Indian sector of the Southern Ocean (between 35 to 70 degrees S and 10 to 52 degrees E). This study...

  17. Redefining Maritime Security Threats in the Eastern Indian Ocean Region.

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Arjun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    This occasional paper analyzes the general security issues and trends relating to maritime trafficking of radiological and nuclear material using small vessels, minor ports, and unchecked areas of coastline existing in the Eastern Indian Ocean Region today. By the Eastern Indian Ocean Region is meant the area starting from the tip of the Indian peninsula in the west to the Straits of Malacca in the east. It lays focus on the potential sources of nuclear or radiological material that may be trafficked here. It further undertakes a study of the terrorist groups active in the region as well as the multinational or national interdiction organizations that have been created to counter maritime threats. It also seeks to discern the various technologies for detecting materials of concern available in the area. Finally, it ascertains possible methods and technologies to improve the maritime security system in the region.

  18. Macrofaunal diversity in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pavithran, S.; Ingole, B.S.; Nanajkar, M.; Nath, B.N.

    to the increasing interest of mankind in the non-living resources and destructive deep-sea fishing practices present in these areas. The polymetallic nodule is one such resource, looked upon as an alternative to land-based minerals. The Central Indian Ocean Basin...

  19. Geochemical variability of MORBs along slow to intermediate spreading Carlsberg-Central Indian Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ray, D.; Misra, S.; Banerjee, R.

    ). The mixing trend definitely excludes EM1 [dehydrated and recrystallized oceanic basalt formed during subduction plus 5-10% marine pelagic sediment, Weaver, 1991], EM2 [dehydrated and recrystallized oceanic basalt formed during subduction plus 5... are plotted on or close to the mixing line between the average depleted mantle and the Indian Ocean Pelagic sediments, and this mixing line excludes the EM1, EM2 and HIMU (Fig. 12, c, e). The CR, NCIR and SCIR MORBs are closer to the average depleted...

  20. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the Indian Ocean, North Pacific Ocean and South Pacific Ocean from 2001-12-08 to 2002-01-19 (NODC Accession 0113547)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113547 includes biological, chemical, discrete sample, physical and profile data collected from Hakuho Maru in the Indian Ocean, North Pacific Ocean...

  1. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the Indian Ocean, North Pacific Ocean and South Pacific Ocean from 2001-12-08 to 2002-01-19 (NODC Accession 0112347)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112347 includes biological, chemical, discrete sample, physical and profile data collected from Hakuho Maru in the Indian Ocean, North Pacific Ocean...

  2. Retrieval of sea surface air temperature from satellite data over Indian Ocean: An empirical approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    the sea surface air temperature from satellite derived sea surface humidity in the Indian Ocean. Using the insitu data on surface met parameters collected on board O.R.V. Sagar Kanya in the Indian Ocean over a period of 15 years, the relationship between...

  3. Distribution of pelagic harpacticoid copepods from the Indian ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Haridas, P.; Rao, T.S.S.

    Pelagic harpacticoid copepods have been studied from the International Indian Ocean Expedition collections. Macrosetella gracilis and Miracia efferata were the most common species of harpacticoids with high densities near land masses. Other three...

  4. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    Science.gov (United States)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2018-06-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  5. Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming

    Science.gov (United States)

    Chen, Zesheng; Du, Yan; Wen, Zhiping; Wu, Renguang; Wang, Chunzai

    2017-09-01

    This study investigates the influence of southeast tropical Indian Ocean (SETIO) sea surface temperature (SST) warming on Indo-Pacific climate during the decaying phase of the 2015/16 El Niño by using observations and model experiments. The results show that the SETIO SST warming in spring 2016 enhanced local convection and forced a "C-shape" wind anomaly pattern in the lower troposphere. The "C-shape" wind anomaly pattern over the eastern tropical Indian Ocean consists of anomalous westerly flow south of the equator and anomalous easterly flow north of the equator. The anomalous easterly flow then extended eastward into the western North Pacific (WNP) and facilitates the development or the maintenance of an anomalous anticyclone over the South China Sea (SCS). Correspondingly, the eastern part of the Bay of Bengal, the SCS and the WNP suffered less rainfall. Such precipitation features and the associated "C-shape" wind anomaly pattern shifted northward about five latitudes in summer 2016. Additionally, the SETIO warming can induce local meridional circulation anomalies, which directly affect Indo-Pacific climate. Numerical model experiments further confirm that the SETIO SST warming plays an important role in modulating Indo-Pacific climate.

  6. Land - Ocean Climate Linkages and the Human Evolution - New ICDP and IODP Drilling Initiatives in the East African Rift Valley and SW Indian Ocean

    Science.gov (United States)

    Zahn, R.; Feibel, C.; Co-Pis, Icdp/Iodp

    2009-04-01

    , and Interocean Exchanges"; IODP ref. no. 702-full) aims at deciphering the late Neogene ocean history of the SW Indian Ocean. SAFARI specifically targets the Agulhas Current in the SW Indian Ocean that constitutes the strongest western boundary current in the southern hemisphere oceans. The Current transports warm and saline surface waters from the tropical Indian Ocean to the southern tip of Africa. Exchanges with the atmosphere influence eastern and southern African climates including individual weather systems such as extra-tropical cyclone formation in the region and rainfall patterns. Ocean models further suggest the "leakage" of Agulhas water around South Africa into the Atlantic potentially modulates the Atlantic meridional overturning circulation (MOC) with consequences for climate globally. The SAFARI drilling initiative aims to retrieve a suite of long drill cores along the southeast African margin and in the Indian-Atlantic ocean gateway. SAFARI will shed light on the history of Agulhas Current warm water transports along the southeast African margin during the late Neogene and its linking with ocean-climate developments. Specific objectives of SAFARI are to test (1) the sensitivity of the Agulhas Current to changing climates of the Plio/Pleistocene, including upstream forcing linked with equatorial Indian Ocean changes and Indonesian Throughflow; (2) the Current's influence on eastern and southern Africa climates, including rain fall patterns and vegetation changes; (3) buoyancy transfer to the Atlantic by Agulhas leakage around southern Africa, and (4) the contribution of variable Agulhas Leakage to shifts of the Atlantic MOC during episodes of major ocean and climate reorganizations of the past 5 Ma. These studies will provide insight into the Current's influence on eastern and southern African terrestrial climates, including its possible impact on the late Neogene evolution of large mammals including hominids. The ICDP and IODP drilling campaigns will

  7. Surface water carbon dioxide in the southwest Indian sector of the Southern Ocean

    International Nuclear Information System (INIS)

    Metzl, N.; Brunet, C.; Poisson, A.

    1991-01-01

    Measurements of partial pressure of carbon dioxide (pCO 2 ), total dissolved inorganic carbon (TCO 2 ), total alkalinity (TA) and chlorophyll a (Chl a) have been made in surface water in the southwestern Indian sector of the Southern Ocean (20-85 degE) in the austral summer (INDIVAT V cruise, January-February 1987). Between Antarctica and Africa, pCO 2 distribution was linked to the oceanic frontal zones and Chl a variations. The pCO 2 spatial structure was very close to that explored in summer 1967 in the same region but the pCO 2 differences between the ocean and the atmosphere were smaller in 1987 than 20 years ago. At all latitudes strongly contrasting surface pCO 2 characteristics were found between eastern (around 80 degE) and western (around 25 degE) regions; CO 2 sources were mainly in the west and CO 2 sinks in the east. South of 60 degS, the contrast could be due to biological activity. Between 60 degS and the Antarctic Polar Front, intensification of upwelling might be responsible for the higher pC) 2 values in the west.37 refs.; 4 figs

  8. Cerium anomaly variations in ferromanganese nodules and crusts from the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Roelandts, I.; Sudhakar, M.; Pluger, W.L.; Balaram, V.

    Fifty analyses of rare earth elements as well as mineralogical studies have been carried out on a suite of manganese nodules and crusts from the Central Indian Basin and the Western Indian Ocean. The aim was to identify the processes controlling...

  9. Alteration of basaltic glasses from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    Textural, mineralogical and compositional characteristics of basaltic glasses from the Central Indian Ocean show them to be altered to varying extents through their interaction with the seawater, resulting in the formation of palagonite. The major...

  10. 137Cs, 239+24Pu and 24Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas

    International Nuclear Information System (INIS)

    Yamada, Masatoshi; Zheng Jian; Wang Zhongliang

    2006-01-01

    Surface seawater samples were collected along the track of the R/V Hakuho-Maru cruise (KH-96-5) from Tokyo to the Southern Ocean. The 137 Cs activities were determined for the surface waters in the western North Pacific Ocean, the Sulu and Indonesian Seas, the eastern Indian Ocean, the Bay of Bengal, the Andaman Sea, and the South China Sea. The 137 Cs activities showed a wide variation with values ranging from 1.1 Bq m -3 in the Antarctic Circumpolar Region of the Southern Ocean to 3 Bq m -3 in the western North Pacific Ocean and the South China Sea. The latitudinal distributions of 137 Cs activity were not reflective of that of the integrated deposition density of atmospheric global fallout. The removal rates of 137 Cs from the surface waters were roughly estimated from the two data sets of Miyake et al. [Miyake Y, Saruhashi K, Sugimura Y, Kanazawa T, Hirose K. Contents of 137 Cs, plutonium and americium isotopes in the Southern Ocean waters. Pap Meteorol Geophys 1988;39:95-113] and this study to be 0.016 yr -1 in the Sulu and Indonesian Seas, 0.033 yr -1 in the Bay of Bengal and Andaman Sea, and 0.029 yr -1 in the South China Sea. These values were much lower than that in the coastal surface water of the western Northwest Pacific Ocean. This was likely due to less horizontal and vertical mixing of water masses and less scavenging. 239+24 Pu activities and 24 Pu/ 239 Pu atom ratios were also determined for the surface waters in the western North Pacific Ocean, the Sulu and Indonesian Seas and the South China Sea. The 24 Pu / 239 Pu atom ratios ranged from 0.199 ± 0.026 to 0.248 ± 0.027 on average, and were significantly higher than the global stratospheric fallout ratio of 0.18. The contributions of the North Pacific Proving Grounds close-in fallout Pu were estimated to be 20% for the western North Pacific Ocean, 39% for the Sulu and Indonesian Seas and 42% for the South China Sea by using the two end-member mixing model. The higher 24 Pu / 239 Pu atom ratios

  11. Population Genetic Status of the Western Indian Ocean

    African Journals Online (AJOL)

    Abstract—Population genetics offers a useful technique for studying the population structure of marine organisms and has relevance to both systematics and the conservation of biodiversity. The Western Indian Ocean (WIO) is faced with increasing evidence of degradation and effective management initiatives are needed to ...

  12. Oceanographic cruise Indian Ocean and Java Trench June 1969 (NODC Accession 7100908)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This report contains oceanographic data which was obtained aboard H.M.A.S DIAMANTINA during an oceanographic cruise in the Java Trench and the Indian Ocean during...

  13. IndOBIS, an Ocean Biogeographic Information System for assessment and conservation of Indian Ocean biodiversity

    Digital Repository Service at National Institute of Oceanography (India)

    Chavan, V.S.; Achuthankutty, C.T.; Berghe, E.V.; Wafar, M.V.M.

    Compilation of inventories of components of coastal and marine biodiversity of Indian Ocean is hampered by several factors: low effort by some countries, preference to certain taxon, dwindling taxonomic expertise, low infrastructure of Information...

  14. TOGA Sea Level Center: Data from the Indian Ocean (NODC Accession 9000251)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a scan of the analog publication 'TOGA Sea Level Center: Data from the Indian Ocean'. Abstract from p. iii of the publication: The TOGA Sea...

  15. Third Indian National Conference on Harbour and Ocean Engineering (INCHOE - 2004). Proceedings

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; SanilKumar, V.; Jayakumar, S.

    The two volumes contain 103 scientific papers in the field of harbour and ocean engineering, presented at the Third Indian National Conference on Harbour and Ocean Engineering (INCHOE - 2004), held at National Institute of Oceanography (NIO), Dona...

  16. A new atlas of temperature and salinity for the North Indian Ocean

    Indian Academy of Sciences (India)

    The most used temperature and salinity climatology for the world ocean, including the Indian Ocean, is the World Ocean Atlas (WOA) (Antonov et al 2006, 2010; Locarnini et al 2006, 2010) because of the vast amount of data used in its preparation. The WOA climatology does not, however, include all the available ...

  17. Oceanographic data and information network in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Reddy, G.V.

    National Oceanographic Data Centres (RNODCs) and 3 World Data Centres (WDCs) for oceanographic data /information management and exchange. Regional data/information network in the Indian Ocean is being managed by 9 NODCs and 2 RNODCs and oceanographic...

  18. Slow spreading ridges of the Indian Ocean: An overview of marine geophysical investigations

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.; Mudholkar, A.V.; Samudrala, K.

    Sparse and non-availability of high resolution geophysical data hindered the delineation of accurate morphology, structural configuration, tectonism and spreading history of Carlsberg Ridge (CR) and Central Indian Ridges (CIR) in the Indian Ocean...

  19. Occurrence of @iNeogloboquadrina pachyderma@@ new subspecies in the shelf-slope sediments of northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    ~'N in the Bay of Bengal. Studies of hydrological conditions in the Indian Ocean reveal that the Subtropical Subsurface Water Mass is traceable as far north as the Gulf of Aden, and the Indian Ocean Deep Bottom Water Mass originating in the deepest...

  20. Indian Ocean Networks and the Transmutations of Servitude

    DEFF Research Database (Denmark)

    Kaarsholm, Preben

    2016-01-01

    Focusing on Durban and its harbour, the article discusses the importation of different kinds of transnational bonded labour into Natal in the last half of the 19th century, and examines the ways in which Southern African and Indian Ocean histories were intertwined in the processes that built the ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... particularly in the Indian region, which suggests that the tropical Pacific SST forcing is not sufficient to represent ENSO-induced teleconnection patterns over South Asia. Therefore, SST forcing over the tropical Indian Ocean together with air–sea coupling is alsorequired for better representation of ENSO-induced changes ...

  2. Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: Ocean Circulation Implications

    Science.gov (United States)

    Johnson, G. C.; Chambers, D. P.

    2013-12-01

    Ocean mass variations are important for diagnosing sea level budgets, the hydrological cycle and global energy budget, as well as ocean circulation variability. Here seasonal cycles and decadal trends of ocean mass from January 2003 to December 2012, both global and regional, are analyzed using GRACE Release 05 data. The trend of global flux of mass into the ocean approaches 2 cm decade-1 in equivalent sea level rise. Regional trends are of similar magnitude, with the North Pacific, South Atlantic, and South Indian oceans generally gaining mass and other regions losing mass. These trends suggest a spin-down of the North Pacific western boundary current extension and the Antarctic Circumpolar Current in the South Atlantic and South Indian oceans. The global average seasonal cycle of ocean mass is about 1 cm in amplitude, with a maximum in early October and volume fluxes in and out of the ocean reaching 0.5 Sv (1 Sv = 1 × 106 m3 s-1) when integrated over the area analyzed here. Regional patterns of seasonal ocean mass change have typical amplitudes of 1-4 cm, and include maxima in the subtropics and minima in the subpolar regions in hemispheric winters. The subtropical mass gains and subpolar mass losses in the winter spin up both subtropical and subpolar gyres, hence the western boundary current extensions. Seasonal variations in these currents are order 10 Sv, but since the associated depth-averaged current variations are only order 0.1 cm s-1, they would be difficult to detect using in situ oceanographic instruments. a) Amplitude (colors, in cm) and b) phase (colors, in months of the year) of an annual harmonic fit to monthly GRACE Release 05 CSR 500 km smoothed maps (concurrently with a trend and the semiannual harmonic). The 97.5% confidence interval for difference from zero is also indicated (solid black line). Data within 300 km of coastlines are not considered.

  3. Optimized coral reconstructions of the Indian Ocean Dipole: An assessment of location and length considerations

    Science.gov (United States)

    Abram, Nerilie J.; Dixon, Bronwyn C.; Rosevear, Madelaine G.; Plunkett, Benjamin; Gagan, Michael K.; Hantoro, Wahyoe S.; Phipps, Steven J.

    2015-10-01

    The Indian Ocean Dipole (IOD; or Indian Ocean Zonal Mode) is a coupled ocean-atmosphere climate oscillation that has profound impacts on rainfall distribution across the Indian Ocean region. Instrumental records provide a reliable representation of IOD behavior since 1958, while coral reconstructions currently extend the IOD history back to 1846. Large fluctuations in the number and intensity of positive IOD events over time are evident in these records, but it is unclear to what extent this represents multidecadal modulation of the IOD or an anthropogenically forced change in IOD behavior. In this study we explore the suitability of coral records from single-site locations in the equatorial Indian Ocean for capturing information about the occurrence and magnitude of positive IOD (pIOD) events. We find that the optimum location for coral reconstructions of the IOD occurs in the southeastern equatorial Indian Ocean, along the coast of Java and Sumatra between ~3 and 7°S. Here the strong ocean cooling and atmospheric drying during pIOD events are unambiguously recorded in coral oxygen isotope records, which capture up to 50% of IOD variance. Unforced experiments with coupled climate models suggest that potential biases in coral estimates of pIOD frequency are skewed toward overestimating pIOD recurrence intervals and become larger with shorter reconstruction windows and longer pIOD recurrence times. Model output also supports the assumption of stationarity in sea surface temperature relationships in the optimum IOD location that is necessary for paleoclimate reconstructions. This study provides a targeted framework for the future generation of paleoclimate records, including optimized coral reconstructions of past IOD variability.

  4. 2nd Radio and Antenna Days of the Indian Ocean (RADIO 2014)

    Science.gov (United States)

    2014-10-01

    It was an honor and a great pleasure for all those involved in its organization to welcome the participants to the ''Radio and Antenna Days of the Indian Ocean'' (RADIO 2014) international conference that was held from 7th to 10th April 2014 at the Sugar Beach Resort, Wolmar, Flic-en-Flac, Mauritius. RADIO 2014 is the second of a series of conferences organized in the Indian Ocean region. The aim of the conference is to discuss recent developments, theories and practical applications covering the whole scope of radio-frequency engineering, including radio waves, antennas, propagation, and electromagnetic compatibility. The RADIO international conference emerged following discussions with engineers and scientists from the countries of the Indian Ocean as well as from other parts of the world and a need was felt for the organization of such an event in this region. Following numerous requests, the Island of Mauritius, worldwide known for its white sandy beaches and pleasant tropical atmosphere, was again chosen for the organization of the 2nd RADIO international conference. The conference was organized by the Radio Society, Mauritius and the Local Organizing Committee consisted of scientists from SUPELEC, France, the University of Mauritius, and the University of Technology, Mauritius. We would like to take the opportunity to thank all people, institutions and companies that made the event such a success. We are grateful to our gold sponsors CST and FEKO as well as URSI for their generous support which enabled us to partially support one PhD student and two scientists to attend the conference. We would also like to thank IEEE-APS and URSI for providing technical co-sponsorship. More than hundred and thirty abstracts were submitted to the conference. They were peer-reviewed by an international scientific committee and, based on the reviews, either accepted, eventually after revision, or rejected. RADIO 2014 brought together participants from twenty countries spanning

  5. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005-2014

    Science.gov (United States)

    Yao, Wenjun; Shi, Jiuxin; Zhao, Xiaolong

    2017-07-01

    Basin-scale freshening of Antarctic Intermediate Water (AAIW) is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo) data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity increase of thermocline water, indicating a hydrological cycle intensification. This was supported by the precipitation-minus-evaporation change in the Southern Hemisphere from 2000 to 2014. Freshwater input from atmosphere to ocean surface increased in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle changes, a decrease in the transport of Agulhas Leakage (AL), which was revealed by the simulated velocity field, was proposed to be a contributor to the associated freshening of AAIW. Further calculation showed that such a decrease could account for approximately 53 % of the observed freshening (mean salinity reduction of about 0.012 over the AAIW layer). The estimated variability of AL was inferred from a weakening of wind stress over the South Indian Ocean since the beginning of the 2000s, which would facilitate freshwater input from the source region. The mechanical analysis of wind data here was qualitative, but it is contended that this study would be helpful to validate and test predictably coupled sea-air model simulations.

  6. Southern Indian Ocean SST as a modulator for the progression of Indian summer monsoon

    Science.gov (United States)

    Shahi, Namendra Kumar; Rai, Shailendra; Mishra, Nishant

    2018-01-01

    This study explores the possibility of southern Indian Ocean (SIO) sea surface temperature (SST) as a modulator for the early phase of Indian summer monsoon and its possible physical mechanism. A dipole-like structure is obtained from the empirical orthogonal function (EOF) analysis which is similar to an Indian Ocean subtropical dipole (IOSD) found earlier. A subtropical dipole index (SDI) is defined based on the SST anomaly over the positive and negative poles. The regression map of rainfall over India in the month of June corresponding to the SDI during 1983-2013 shows negative patterns along the Western Ghats and Central India. However, the regression pattern is insignificant during 1952-1982. The multiple linear regression models and partial correlation analysis also indicate that the SDI acts as a dominant factor to influence the rainfall over India in the month of June during 1983-2013. The similar result is also obtained with the help of composite rainfall over the land points of India in the month of June for positive (negative) SDI events. It is also observed that the positive (negative) SDI delays (early) the onset dates of Indian monsoon over Kerala during the time domain of our study. The study is further extended to identify the physical mechanism of this impact, and it is found that the heating (cooling) in the region covering SDI changes the circulation pattern in the SIO and hence impacts the progression of monsoon in India.

  7. Climate of the northern Indian Ocean and associated productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Sastry, J.S.; Gopinathan, C.K.

    The climatic factors likely to influence the phytoplankton production in the northern Indian Ocean are examined. The major cause for the high productivity of the Arabian Sea is the nutrient enrichment of the euphotic zone by upwelling especially off...

  8. Lithogenic fluxes to the northern Indian Ocean - An overview

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.

    Lithogenic fluxes to the northern Indian Ocean, measurEd. by time-series sediment traps, exhibit a strong seasonality with the bulk of the material (40 to 80 %) being deposited during the southwest monsoon period. This seasonality is more pronounced...

  9. Phytoplankton composition and biomass across the southern Indian Ocean

    DEFF Research Database (Denmark)

    Schlüter, Louise; Henriksen, Peter; Nielsen, Torkel Gissel

    2011-01-01

    prochlorophytes dominated at these two stations, but also pelagophytes, haptophytes and cyanobacteria were abundant. Haptophytes Type 6 (sensu Zapata et al., 2004), most likely Emiliania huxleyi, and pelagophytes were the dominating eucaryotes in the southern Indian Ocean. Prochlorophytes dominated...

  10. Role of North Indian Ocean Air-Sea Interaction in Summer Monsoon Intraseasonal Oscillation

    Science.gov (United States)

    Zhang, L.; Han, W.; Li, Y.

    2017-12-01

    Air-sea coupling processes over the North Indian Ocean associated with Indian summer monsoon intraseasonal oscillation (MISO) are analyzed. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation (via cloud cover change) and surface latent heat flux (associated with surface wind speed change). In turn, SST anomalies determine the changing rate of MISO precipitation (dP/dt): warm (cold) SST anomalies cause increasing (decreasing) precipitation rate through increasing (decreasing) surface convergence. Air-sea interaction gives rise to a quadrature relationship between MISO precipitation and SST anomalies. A local air-sea coupling model (LACM) is established based on these observed physical processes, which is a damped oscillatory system with no external forcing. The period of LACM is proportional to the square root of mean state mixed layer depth , assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the North Indian Ocean during the May-June monsoon developing (July-August mature) phase when is shallow (deep). This result is consistent with observed MISO statistics. An oscillatory external forcing of a typical 30-day period is added to LACM, representing intraseasonal oscillations originated from the equatorial Indian Ocean and propagate into the North Indian Ocean. The period of LACM is then determined by both the inherent period associated with local air-sea coupling and the period of external forcing. It is found that resonance occurs when , amplifying the MISO in situ. This result explains the larger MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with seasonal cycle of . LACM, however, fails to predict the observed small MISO amplitude during the September-October monsoon decaying phase, when is also shallow. This deficiency might be associated with the

  11. The Indonesian Throughflow (ITF) and its impacts on the Indian Ocean during the global warming slowdown period

    Science.gov (United States)

    Makarim, S.; Liu, Z.; Yu, W.; Yan, X.; Sprintall, J.

    2016-12-01

    The global warming slowdown indicated by a slower warming rate at the surface layer accompanied by stronger heat transport into the deeper layers has been explored in the Indian Ocean. Although the mechanisms of the global warming slowdown are still under warm debate, some clues have been recognized that decadal La Nina like-pattern induced decadal cooling in the Pacific Ocean and generated an increase of the Indonesian Throughflow (ITF) transport in 2004-2010. However, how the ITF spreading to the interior of the Indian Ocean and the impact of ITF changes on the Indian Ocean, in particular its water mass transformation and current system are still unknown. To this end, we analyzed thermohaline structure and current system at different depths in the Indian Ocean both during and just before the global warming slowdown period using the ORAS4 and ARGO dataset. Here, we found the new edge of ITF at off Sumatra presumably as northward deflection of ITF Lombok Strait, and The Monsoon Onset Monitoring and Social Ecology Impact (MOMSEI) and Java Upwelling Variation Observation (JUVO) dataset confirmed this evident. An isopycnal mixing method initially proposed by Du et al. (2013) is adopted to quantify the spreading of ITF water in the Indian Ocean, and therefore the impacts of ITF changes on the variation of the Agulhas Current, Leuween Current, Bay of Bengal Water. This study also prevailed the fresher salinity in the Indian Ocean during the slowdown warming period were not only contributed by stronger transport of the ITF, but also by freshening Arabian Sea and infiltrating Antartic Intermediate Water (AAIW).

  12. Morphometric studies on a part of Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.

    Morphometric and slope angle studies carried out on a part of Indian Ocean Basin have shown that gentle slope angle ranges dominate, 92% of the area represented by 0-3 degrees slopes. Young's hypothesis of log-normal distribution of slope angle...

  13. Cross-Mating Compatibility and Competitiveness among Aedes albopictus Strains from Distinct Geographic Origins - Implications for Future Application of SIT Programs in the South West Indian Ocean Islands.

    Directory of Open Access Journals (Sweden)

    David Damiens

    Full Text Available The production of large numbers of males needed for a sustainable sterile insect technique (SIT control program requires significant developmental and operational costs. This may constitute a significant economic barrier to the installation of large scale rearing facilities in countries that are undergoing a transition from being largely dependent on insecticide use to be in a position to integrate the SIT against Aedes albopictus. Alternative options available for those countries could be to rely on outsourcing of sterile males from a foreign supplier, or for one centralised facility to produce mosquitoes for several countries, thus increasing the efficiency of the mass-rearing effort. However, demonstration of strain compatibility is a prerequisite for the export of mosquitoes for transborder SIT applications. Here, we compared mating compatibility among Ae. albopictus populations originating from three islands of the South Western Indian Ocean, and assessed both insemination rates and egg fertility in all possible cross-mating combinations. Furthermore, competitiveness between irradiated and non-irradiated males from the three studied strains, and the subsequent effect on female fertility were also examined. Although morphometric analysis of wing shapes suggested phenoptypic differences between Ae. albopictus strains, perfect reproductive compatibility between them was observed. Furthermore, irradiated males from the different islands demonstrated similar levels of competitiveness and induced sterility when confronted with fertile males from any of the other island populations tested. In conclusion, despite the evidence of inter-strain differences based on male wing morphology, collectively, our results provide a new set of expectations for the use of a single candidate strain of mass-reared sterile males for area-wide scale application of SIT against Ae. albopictus populations in different islands across the South Western Indian Ocean. Cross

  14. The evolution of the Indian Ocean parrots (Psittaciformes): extinction, adaptive radiation and eustacy.

    Science.gov (United States)

    Kundu, S; Jones, C G; Prys-Jones, R P; Groombridge, J J

    2012-01-01

    Parrots are among the most recognisable and widely distributed of all bird groups occupying major parts of the tropics. The evolution of the genera that are found in and around the Indian Ocean region is particularly interesting as they show a high degree of heterogeneity in distribution and levels of speciation. Here we present a molecular phylogenetic analysis of Indian Ocean parrots, identifying the possible geological and geographical factors that influenced their evolution. We hypothesise that the Indian Ocean islands acted as stepping stones in the radiation of the Old-World parrots, and that sea-level changes may have been an important determinant of current distributions and differences in speciation. A multi-locus phylogeny showing the evolutionary relationships among genera highlights the interesting position of the monotypic Psittrichas, which shares a common ancestor with the geographically distant Coracopsis. An extensive species-level molecular phylogeny indicates a complex pattern of radiation including evidence for colonisation of Africa, Asia and the Indian Ocean islands from Australasia via multiple routes, and of island populations 'seeding' continents. Moreover, comparison of estimated divergence dates and sea-level changes points to the latter as a factor in parrot speciation. This is the first study to include the extinct parrot taxa, Mascarinus mascarinus and Psittacula wardi which, respectively, appear closely related to Coracopsis nigra and Psittacula eupatria. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Combined effect of MJO, ENSO and IOD on the intraseasonal variability of northeast monsoon rainfall over south peninsular India

    Science.gov (United States)

    Sreekala, P. P.; Rao, S. Vijaya Bhaskara; Rajeevan, K.; Arunachalam, M. S.

    2018-02-01

    The present study has examined the combined effect of MJO, ENSO and IOD on the intraseasonal and interannual variability of northeast monsoon rainfall over south peninsular India. The study has revealed that the intraseasonal variation of daily rainfall over south peninsular India during NEM season is associated with various phases of eastward propagating MJO life cycle. Positive rainfall anomaly over south peninsular India and surrounding Indian Ocean (IO) is observed during the strong MJO phases 2, 3 and 4; and negative rainfall anomaly during the strong MJO phases 5,6,7,8 and 1. Above normal (below normal) convection over south peninsular India and suppressed convection over east Indian and West Pacific Ocean, high pressure (low pressure) anomaly over West Pacific Ocean, Positive (negative) SST anomalies over equatorial East and Central Pacific Ocean and easterly wind anomaly (westerly anomaly) over equatorial Indian Ocean are the observed features during the first three MJO (5, 6, 7) phases and all these features are observed in the excess (drought) NEMR composite. This suggests that a similar mode of physical mechanism is responsible for the intraseasonal and interannual variability of northeast monsoon rainfall. The number of days during the first three phases (last four phases) of MJO, where the enhanced convection and positive rainfall anomaly is over Indian Ocean (East Indian ocean and West Pacific Ocean), is more (less) during El Nino and IOD years and less during La Nina and NIOD years and vice versa. The observed excess (deficit) rainfall anomaly over west IO and south peninsular India and deficit (excess) rainfall anomaly over east IO including Bay of Bengal and West Pacific Ocean suggest that the more (less) number of first three phases during El Nino and IOD (La Nina and Negative IOD) is due to the interaction between eastward moving MJO and strong easterlies over equatorial IO present during El Nino and IOD years. This interaction would inhibit the

  16. Gravity anomalies over the central Indian ridge between 3 degree S and 11 degree S, Indian Ocean: Segmentation and crustal structure

    Digital Repository Service at National Institute of Oceanography (India)

    Samudrala, K.; KameshRaju, K.A; RamaRao, P.

    High-resolution shipboard geophysical investigations along the Indian Ocean ridge system are sparse especially over the Carlsberg and Central Indian ridges. In the present study, the shipboard gravity and multibeam bathymetry data acquired over a...

  17. Chemical oceanography of the Indian Ocean, North of the equator

    Digital Repository Service at National Institute of Oceanography (India)

    SenGupta, R.; Naqvi, S.W.A.

    Chemical oceanographic studies in the North Indian Ocean have revealed several interesting and unique features. Dissolved oxygen northern boundary, prevents quick renewal of subsurface reducing conditions prevail at intermediate depths (ca. 150...

  18. Application of Seasat Altimetry to Tectonic Studies of Fracture Zones in the Southern Oceans

    Science.gov (United States)

    1987-06-01

    separation of the Indian, African and Antartic plates. More accurate poles describing the development of the Southwest Indian Ocean during the Cretaceous to...directions and rates across the common boundaries of the African, Indian, Antartic and South American plate system. It is 250 from the poles calculated

  19. Processes of interannual mixed layer temperature variability in the thermocline ridge of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; Foltz, G.R.; McPhaden, M.J.; Pous, S.; Montegut , C.deB.

    , Brest Center, Pointe du Diable, B.P. 70 Plouzane 29280, France Corresponding author address: B Praveen Kumar Modelling and Ocean observations Group (MOG) Indian National Centre for Ocean Information Services (INCOIS), Hyderabad. India... SST after the end of El Niño, and to prolong its regional climate impacts (the so-called Indian Ocean “capacitor” effect). Murtugudde et al. (2000) and Du et al. (2009) did not focus on the TRIO region, but showed that a combination of vertical...

  20. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    Science.gov (United States)

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  1. New evidence on the sequence of deglacial warming in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Govil, P.

    . Quat. Sci., vol.25(7); 2010; 1138-1143 A New Evidence on Sequence of Deglacial Warming in the Tropical Indian Ocean P. Divakar Naidu 1 , Pawan Govil 1,2 1 National Institute of Oceanography, Dona Paula 403 004, Goa, India 2 National Centre... relative timing of abrupt climate warming in the tropics versus the high latitudes should be known. Therefore, the present communication is aimed to address the start of deglaciation in the Indian Ocean based on sea surface temperature (SST) derived from...

  2. Distribution of Bowen ratio over the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, G.R.L.; Rao, M.V.; Prasad, P.H.; Reddy, K.G.

    The monthly averages of Bowen ratio over the north Indian Ocean have been computed Three typical situations in the months of January May and September are taken for the present study Month to month differences in the Bowen ratio over the study...

  3. Zika virus infection in Asian island countries in Indian Ocean:Present situation

    Institute of Scientific and Technical Information of China (English)

    Somsri Wiwanitkit; Viroj Wiwanitkit

    2016-01-01

    Zika virus infection is the present global problem. The infection is widely seen in tropical Latin and South American countries and results in several problems in that area. In addition, the previous big outbreak in many island countries in Pacific region brings attention to the further expansion of the infection worldwide. The specific situation of the infection in island countries is very interesting. Here, the current situation (in 2016) of Zika virus infection in Asian island countries in Indian Ocean is summarized and presented. Although there is still no current problem in the Asian island countries in Indian Ocean, the appearance of infection in the sea resorts of countries lining Indian Ocean is a big concern. Due to the high volume of traveler to sea resorts, emergence of the new disease in Asian island countries in Indian Ocean can be expected.

  4. Challenges for present and future estimates of anthropogenic carbon in the Indian Ocean

    Science.gov (United States)

    Goyet, C.; Touratier, F.

    One of the main challenges we face today is to determine the evolution of the penetration of anthropogenic CO2 into the Indian Ocean and its impacts on marine and human life. Anthropogenic CO2 reaches the ocean via air-sea interactions as well as riverine inputs. It is then stored in the ocean and follows the oceanic circulation. As the carbon dioxide from the atmosphere penetrates into the sea, it reacts with water and acidifies the ocean. Consequently, the whole marine ecosystem is perturbed, thus potentially affecting the food web, which has, in turn, a direct impact on seafood supply for humans. Naturally, this will mainly affect the growing number of people living in coastal areas. Although anthropogenic CO2 in the ocean is identical with natural CO2 and therefore cannot be detected alone, many approaches are available today to estimate it. Since most of the results of these methods are globally in agreement, here we chose one of these methods, the tracer using oxygen, total inorganic carbon, and total alkalinity (TrOCA) approach, to compute the 3-D distribution of the anthropogenic CO2 concentrations throughout the Indian Ocean. The results of this distribution clearly illustrate the contrast between the Arabian Sea and the Bay of Bengal. They further show the importance of the southern part of this ocean that carries some anthropogenic CO2 at great depths. In order to determine the future anthropogenic impacts on the Indian Ocean, it is urgent and necessary to understand the present state. As the seawater temperature increases, how and how fast will the ocean circulation change? What will the impacts on seawater properties be? Many people are living on the bordering coasts, how will they be affected?

  5. Phylogeography of Rattus norvegicus in the South Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Melanie Hingston

    2016-12-01

    Full Text Available Norway rats are a globally distributed invasive species, which have colonized many islands around the world, including in the South Atlantic Ocean. We investigated the phylogeography of Norway rats across the South Atlantic Ocean and bordering continental countries. We identified haplotypes from 517 bp of the hypervariable region I of the mitochondrial D-loop and constructed a Bayesian consensus tree and median-joining network incorporating all other publicly available haplotypes via an alignment of 364 bp. Three Norway rat haplotypes are present across the islands of the South Atlantic Ocean, including multiple haplotypes separated by geographic barriers within island groups. All three haplotypes have been previously recorded from European countries. Our results support the hypothesis of rapid Norway rat colonization of South Atlantic Ocean islands by sea-faring European nations from multiple European ports of origin. This seems to have been the predominant pathway for repeated Norway rat invasions of islands, even within the same archipelago, rather than within-island dispersal across geographic barriers.

  6. Drift pumice in the central Indian Ocean Basin: Geochemical evidence

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Mudholkar, A.V.; JaiSankar, S.; Ilangovan, D.

    Abundant white to light grey-coloured pumice without ferromanganese oxide coating occurs within the Quaternary sediments of the Central Indian Ocean Basin (CIOB). Two distinct groups of pumice are identified from their geochemical composition, which...

  7. 137Cs in the western South Pacific Ocean

    International Nuclear Information System (INIS)

    Yamada, Masatoshi; Wang Zhongliang

    2007-01-01

    The 137 Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea (two stations) Basins of the western South Pacific Ocean by γ spectrometry using a low background Ge detector. The 137 Cs activities ranged from 1.4 to 2.3 Bq m -3 over the depth interval 0-250 m and decreased exponentially from the subsurface to 1000 m depth. The distribution profiles of 137 Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. There was a remarkable difference for the vertical profiles of 137 Cs activity between the East Caroline Basin station in this study and the GEOSECS (Geochemical Ocean Sections Study) station at the same latitude in the Equatorial Pacific Ocean; the 137 Cs inventory over the depth interval 100-1000 m increased from 400 ± 30 Bq m -2 to 560 ± 30 Bq m -2 during the period from 1973 to 1992. The total 137 Cs inventories in the western South Pacific Ocean ranged from 850 ± 70 Bq m -2 in the Coral Sea Basin to 1270 ± 90 Bq m -2 in the South Fiji Basin. Higher 137 Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137 Cs inventories were 1.9-4.5 times (2.9 ± 0.7 on average) and 1.7-4.3 times (3.1 ± 0.7 on average) higher than that of the expected deposition density of atmospheric global fallout at the same latitude and that of the estimated 137 Cs deposition density in 10 o latitude by 10 deg. longitude grid data obtained by Aoyama et al. [Aoyama M, Hirose K, Igarashi Y. Re-construction and updating our understanding on the global weapons tests 137 Cs fallout. J Environ Monit 2006;8:431-438], respectively. The possible processes for higher 137 Cs inventories in the western South Pacific Ocean than that of the expected deposition density of atmospheric global fallout may be attributable to the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137 Cs from

  8. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    Science.gov (United States)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume

  9. Moho depth variations over the Maldive Ridge and adjoining Arabian and Central Indian Basins, Western Indian Ocean, from three dimensional inversion of gravity anomalies

    Science.gov (United States)

    Kunnummal, Priyesh; Anand, S. P.; Haritha, C.; Rama Rao, P.

    2018-05-01

    Analysis of high resolution satellite derived free air gravity data has been undertaken in the Greater Maldive Ridge (GMR) (Maldive Ridge, Deep Sea Channel, northern limit of Chagos Bank) segment of the Chagos Laccadive Ridge and the adjoining Arabian and Central Indian Basins. A Complete Bouguer Anomaly (CBA) map was generated from the Indian Ocean Geoidal Low removed Free Air Gravity (hereinafter referred to as "FAG-IOGL") data by incorporating Bullard A, B and C corrections. Using the Parker method, Moho topography was initially computed by inverting the CBA data. From the CBA the Mantle Residual Gravity Anomalies (MRGA) were computed by incorporating gravity effects of sediments and lithospheric temperature and pressure induced anomalies. Further, the MRGA was inverted to get Moho undulations from which the crustal thickness was also estimated. It was found that incorporating the lithospheric thermal and pressure anomaly correction has provided substantial improvement in the computed Moho depths especially in the oceanic areas. But along the GMR, there was not much variation in the Moho thickness computed with and without the thermal and pressure gravity correction implying that the crustal thickness of the ridge does not depend on the oceanic isochrones used for the thermal corrections. The estimated Moho depths in the study area ranges from 7 km to 28 km and the crustal thickness from 2 km to 27 km. The Moho depths are shallower in regions closer to Central Indian Ridge in the Arabian Basin i.e., the region to the west of the GMR is thinner compared to the region in the east (Central Indian Basin). The thickest crust and the deepest Moho are found below the N-S trending GMR segment of the Chagos-Laccadive Ridge. Along the GMR the crustal thickness decreases from north to south with thickness of 27 km below the Maldives Ridge reducing to ∼9 km at 3°S and further increasing towards Chagos Bank. Even though there are similarities in crustal thickness between

  10. India's manganese nodule mine site in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.

    This commentary highlights the activities of massive exploration programme for manganese nodule deposits in the Central Indian Basin located 5 km below the ocean surface and India's claim for mine site development and registration with UNCLOS...

  11. Development of manganese nodule resources in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    Resources evalution on grade and abundance of nodules using statistical methods for grab samples and photography data, combined with bathymetric and structural mapping, were carried out for delineation of the potential area of Central Indian Ocean...

  12. Bacterial Diversity in Deep-Sea Sediments from Afanasy Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Meena, R.M.; Deobagkar, D.D.

    Deep-sea sediments can reveal much about the last 200 million years of Earth history, including the history of ocean life and climate. Microbial diversity in Afanasy Nikitin seamount located at Equatorial East Indian Ocean (EEIO) was investigated...

  13. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005–2014

    Directory of Open Access Journals (Sweden)

    W. Yao

    2017-07-01

    Full Text Available Basin-scale freshening of Antarctic Intermediate Water (AAIW is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity increase of thermocline water, indicating a hydrological cycle intensification. This was supported by the precipitation-minus-evaporation change in the Southern Hemisphere from 2000 to 2014. Freshwater input from atmosphere to ocean surface increased in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle changes, a decrease in the transport of Agulhas Leakage (AL, which was revealed by the simulated velocity field, was proposed to be a contributor to the associated freshening of AAIW. Further calculation showed that such a decrease could account for approximately 53 % of the observed freshening (mean salinity reduction of about 0.012 over the AAIW layer. The estimated variability of AL was inferred from a weakening of wind stress over the South Indian Ocean since the beginning of the 2000s, which would facilitate freshwater input from the source region. The mechanical analysis of wind data here was qualitative, but it is contended that this study would be helpful to validate and test predictably coupled sea–air model simulations.

  14. Assessing Detecting and Deterring the Threat of Maritime Nuclear and Radiological Smuggling in the Western Indian Ocean Region

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M. Umer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Cooperative Monitoring Center

    2017-03-01

    This paper proposes that current maritime smuggling routes in the western Indian Ocean region are similar to those in the past and that the motivations of terrorist groups and the presence of radioactive sources in the Indian Ocean littoral and other states present a significant security threat. The majority of regional terrorist groups have a hybrid structure, piggybacking on criminal activity to fund their terror activities. Additionally, states have used maritime routes in the Indian Ocean region to transport nuclear materials and missiles. Thus, the maritime dimension of such threats remains, and may be increasing. This paper focuses on issues, motivations, pathways, and methods to detect and interdict nuclear and radiological trafficking. It analyzes the potential use of maritime technology applications for radiation detection and presents recommendations for states and multinational nonproliferation advocacy organizations to address the threat in the Indian Ocean region.

  15. Petrology of seamounts in the Central Indian Ocean Basin: Evidence for near-axis origin

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Batiza, R.; Iyer, S.D.

    Previous studies on the distribution and morphology of ancient seamount chains (>50 Ma) in the Central Indian Ocean basin (CIOB) indicated their generation from the fast spreading Southeast Indian Ridge. The petrology of some of these seamounts...

  16. Intraseasonal meridional current variability in the eastern equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ogata, T.; Sasaki, H.; Murty, V.S.N.; Sarma, M.S.S.; Masumoto, Y.

    . [2007] demonstrate the possibility of the air-sea interac- tion in the eastern Indian Ocean at the intraseasonal time- scale by analyzing observed and simulated data. Recent studies also reveal that multiscale air-sea interactions be- tween intraseasonal...

  17. Role of sea surface wind stress forcing on transport between Tropical Pacific and Indian Ocean

    Science.gov (United States)

    Zhao, Q.

    Using an Indian-Pacific Ocean Circulation Model (IPOM) a simulation study on the Transports of between Tropical Pacific and Indian Ocean such as Indonesian Through flow (ITF) has been done. IPOM covered the area 25°E-70°W, 35°S-60°N. There are 31 levels in the vertical with 22 levels upper 400m in it. The horizontal resolution is 1/3° lat x 1.5° lon between 10°S and 10°N. The coastline and ocean topography of IPOM is prepared from Scripps topography data on 1x1°grid. Forcing IPOM with monthly observational wind stress in 1990-1999 the interannual variation of sea temperature has been reproduced well, not only on El Nino in the Pacific but also on Indian Ocean Dipole (IOD). Therefore, the oceanic circulations in the tropical ocean are reasonable. The analyses of the oceanic circulations from the simulations suggest that the transport southward through Makassar Strait is the primary route of thermocline water masses from the North Pacific to the Indonesian sea. The transport westward through Bali-Western Australian Transect (BWAT, at 117.5E) can be thought as the final output of ITF through the archipelago to Indian Ocean. The transport westward through BWAT is in 8-12S above 150m, its core centered near surface 10S, which looks like a jet. The westward velocity is more than 50 cm/s. The transport shows significant seasonal and interannual variations. The maximum is in Jul-Oct, minimum in Jan-Mar. These results are consistent with some observation basically. The correlation analyses indict that the variations of transport westward is related with the southeasterly anomaly in the east tropical Indian ocean. The transport variation lags wind anomaly about 3 months. The correlation coefficient is more than 0.6. The transport is strong during IOD, for example in 1994 and 1997. The variations are also related with the northwesterly anomaly in the center equatorial Pacific and the easterly in the eastern equatorial Pacific. The transport is strong in most ENSO

  18. Key to the identification of larvae and postlarvae of the penaeid prawns (Decapoda: Penaeidea) of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Paulinose, V.T.

    Some of the major criteria for identifying the larvae and early postlarvae of the penaeid prawns of the Indian Ocean are presented based on the study on material collected during the International Indian Ocean Expedition (1960-65). The key also...

  19. The impact of summertime north Indian Ocean SST on tropical cyclone genesis over the western North Pacific

    Science.gov (United States)

    Zheng, Jiayu; Wu, Qiaoyan; Guo, Yipeng; Zhao, Sen

    2017-04-01

    In this study, we investigate the impact of interannual variability of boreal summertime (June-September) north Indian Ocean (NIO) sea surface temperature (SST) on the distribution of tropical cyclone (TC) genesis over the western North Pacific (WNP) using observational datasets. In the boreal summers with warm (cold) SST in the NIO, fewer (more) than normal TCs form over the entire WNP, with fewer (more) TCs forming north of 10°N and more (fewer) TCs forming south of 10°N. The warm (cold) SST in the NIO induces anomalous anticyclonic (cyclonic) vorticity north of 10°N and cyclonic (anticyclonic) vorticity south of 10°N, which contributes to the meridional seesaw-like distribution of WNP TC genesis. This study provides a new perspective to understand TC activities over the WNP and may help seasonal TC prediction.

  20. A study on the evolution of Indian Ocean triple junction and the process of deformation in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Rao, T.C.S.

    It is generally presumed that the intraplate deformation in the Central Indian Basin (CIB) is a direct consequence of spreading across the South East Indian Ridge and the resistance to shortening at the continental collision between India...

  1. Depths of Intraplate Indian Ocean Earthquakes from Waveform Modeling

    Science.gov (United States)

    Baca, A. J.; Polet, J.

    2014-12-01

    The Indian Ocean is a region of complex tectonics and anomalous seismicity. The ocean floor in this region exhibits many bathymetric features, most notably the multiple inactive fracture zones within the Wharton Basin and the Ninetyeast Ridge. The 11 April 2012 MW 8.7 and 8.2 strike-slip events that took place in this area are unique because their rupture appears to have extended to a depth where brittle failure, and thus seismic activity, was considered to be impossible. We analyze multiple intraplate earthquakes that have occurred throughout the Indian Ocean to better constrain their focal depths in order to enhance our understanding of how deep intraplate events are occurring and more importantly determine if the ruptures are originating within a ductile regime. Selected events are located within the Indian Ocean away from major plate boundaries. A majority are within the deforming Indo-Australian tectonic plate. Events primarily display thrust mechanisms with some strike-slip or a combination of the two. All events are between MW5.5-6.5. Event selections were handled this way in order to facilitate the analysis of teleseismic waveforms using a point source approximation. From these criteria we gathered a suite of 15 intraplate events. Synthetic seismograms of direct P-waves and depth phases are computed using a 1-D propagator matrix approach and compared with global teleseismic waveform data to determine a best depth for each event. To generate our synthetic seismograms we utilized the CRUST1.0 software, a global crustal model that generates velocity values at the hypocenter of our events. Our waveform analysis results reveal that our depths diverge from the Global Centroid Moment Tensor (GCMT) depths, which underestimate our deep lithosphere events and overestimate our shallow depths by as much as 17 km. We determined a depth of 45km for our deepest event. We will show a comparison of our final earthquake depths with the lithospheric thickness based on

  2. Circulation of the surface waters in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Sharma, G.S.

    The circulation pattern of the surface waters in the North Indian Ocean for different months of the year is discussed. In order to arrive at a reliable and detailed picture of the circulation pattern, streamlines are drawn using the isogon technique...

  3. Indian Ocean surface winds from NCMRWF analysis as compared

    Indian Academy of Sciences (India)

    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it with in situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) ...

  4. Behaviour and habitat of the Indian Ocean amphibious blenny ...

    African Journals Online (AJOL)

    Alticus monochrus Bleeker is an amphibious blenny that inhabits exposed and moderately exposed rocky shores of Mauritius and other islands of the southwestern Indian Ocean. It remains above the water line on moist or wet substrata over which it migrates vertically and/or horizontally with the tide. Rapid terrestrial ...

  5. United States interests in South Asia

    Science.gov (United States)

    2009-12-11

    Gulf of Malacca in the 10 Bhupinder Singh , ―The Indian Ocean and regional Security‖ (Punjab: B.C...Qaida in Afghanistan. Swati Parashar of the South Asian Analysis Group says that, US led anti terrorist operations cannot exclude South Asia...23 Swati Parashar, ―The U.S and South Asia: From Tactical Security Relationship Towards a Strategic Partnership,‖ 2006, http

  6. Reconciling plate kinematic and seismic estimates of lithospheric convergence in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bull, J.M.; DeMets, C.; Krishna, K.S.; Sanderson, D.J.; Merkouriev, S.

    The far-field signature of the India-Asia collision and history of uplift in Tibet are recorded by sediment input into the Indian Ocean and the strain accumulation history across the diffuse plate boundary between the Indian and Capricorn plates. We...

  7. Indian Ocean Dipole and El Nino/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Currie, J.C.; Lengaigne, M.; Vialard, J.; Kaplan, D.M.; Aumont, O.; Naqvi, S.W.A.; Maury, O.

    Offshore Node, South African Environmental Observation Network, Cape Town, South Africa 3Institut de Recherche pour le Développement, Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques, UMR 7617, Université Pierre et Marie... that relate to changes in ascending and descending branches of the Walker circu- lation (Du et al., 2009; Reason et al., 2000; Venzke et al., 2000). In turn, such physical perturbations can affect the biol- ogy in local and distant oceans (Ménard et al., 2007...

  8. High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Rajesh, S.; Majumdar, T.J.; Rao, G.S.; Radhakrishna, M.; Krishna, K.S.; Rajawat, A.S.

    ') geoid anomaly map of the northern Indian Ocean generated from the altimeter data obtained from Geodetic Missions of GEOSAT and ERS-1 along with ERS-2, TOPEX/POSIDEON and JASON satellites is presented. The geoid map of the Indian Ocean is dominated by a...

  9. South Dakota NASA Space Grant Consortium Creating Bridges in Indian Country

    Science.gov (United States)

    Bolman, J. R.

    2004-12-01

    The South Dakota Space Grant Consortium (SDSGC) was established March 1, 1991 by a NASA Capability Enhancement Grant. Since that time SDSGC has worked to provide earth and space science educational outreach to all students across South Dakota. South Dakota has nine tribes and five tribal colleges. This has presented a tremendous opportunity to develop sustainable equitable partnerships and collaborations. SDSGC believes strongly in developing programs and activities that highlight the balance of indigenous science and ways of knowing with current findings in contemporary science. This blending of science and culture creates a learning community where individuals, especially students, can gain confidence and pride in their unique skills and abilities. Universities are also witnessing the accomplishments and achievements of students who are able to experience a tribal college environment and then carry that experience to a college/university/workplace and significantly increase the learning achievement of all. The presentation will highlight current Tribal College partnerships with Sinte Gleska University and Oglala Lakota College amongst others. Programs and activities to be explained during the presentation include: Native Connections, Scientific Knowledge for Indian Learning and Leadership (SKILL), Bridges to Success Summer Research Program, Fire Ecology Summer Experience, and dual enrolled/college bridge programs. The presentation will also cover the current initiatives underway through NASA Workforce Development. These include: partnering program with the Annual He Sapa Wacipi, American Indian Space Days 2005, NASA research/internship programs and NASA Fellow Summit. An overview of recent American Indian student success will conclude the presentation. The South Dakota School of Mines and Technology has struggled over many years to develop and implement sustainable successful initiatives with Tribal Colleges and Communities. The motivating philosophy is the

  10. Ferromanganese oxides on sharks' teeth from Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    The mineralogy, composition and growth rates of ferromanganese (Fe-Mn) oxides over the sharks' teeth from the Central Indian Ocean Basin are presented. The trends of metal enrichment (Mn, Ni, Cu and Zn) and depletion (Fe and Co), the Mn/Fe ratio...

  11. Composition of macrobenthos from the Central Indian Ocean Basin

    Indian Academy of Sciences (India)

    The deep sea is well known for its high faunal diversity. But the current interest in its abundant polymetallic nodules, poses a threat to the little known benthic organisms surviving in this unique environment. The present study is the first attempt to document the Indian Ocean abyssal benthic diversity of macroinvertebrates ...

  12. Intraseasonal response of the northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation

    Digital Repository Service at National Institute of Oceanography (India)

    Vialard, J.; Shenoi, S.S.C.; Mc; Shankar, D.; Durand, F.; Fernando, V.; Shetye, S.R.

    Author version: Geophys. Res. Lett.: 36(14); 2009; doi:10.1029/2009GL038450; 5 pp Intraseasonal response of Northern Indian Ocean coastal waveguide to the Madden-Julian Oscillation J. Vialard 1 2 , S.S.C Shenoi 2 , J.P. McCreary 3 , D. Shankar 2... involving both equatorial wave dynamics and coastal wave propagation around the perimeter of the northern Indian Ocean [McCreary et al., 1993]. The East India Coastal Current (EICC), for example, is strongly influenced by remote wind forcing from...

  13. Regional Ocean Modeling System (ROMS): Oahu South Shore

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Regional Ocean Modeling System (ROMS) 2-day, 3-hourly forecast for the region surrounding the south shore of the island of Oahu at approximately 200-m resolution....

  14. Barriers and Motives to PA in South Asian Indian Immigrant Women.

    Science.gov (United States)

    Daniel, Manju; Abendroth, Maryann; Erlen, Judith A

    2017-03-01

    The high prevalence of chronic illnesses in South Asian Indian immigrant women underscores the need for identifying factors that could influence their PA. The purpose of this qualitative study was to examine the perspectives of South Asian Indian immigrant women related to barriers to and motives for lifestyle PA within the PA Framework for South Asian Indian Immigrants. Forty women participated in focus groups that were conducted in English and Hindi. Focus group questions were open-ended and semistructured. Transcribed and de-identified audiotaped sessions were coded and analyzed using Atlas.ti software. Role expectation was a core theme for barriers with four subthemes: lack of time, loss of interest, diminished social support, and environmental constraints. Self-motivation was a core theme for motives with three subthemes: optimal physical and psychological health, emphasis on external beauty, and strong social support. Future PA interventions need to target these culturally sensitive factors.

  15. Indian Ocean radiocarbon: Data from the INDIGO 1, 2, and 3 cruises

    International Nuclear Information System (INIS)

    Sepanski, R.J.

    1991-01-01

    This document presents 14 C activities (expressed in the internationally adopted Δ 14 C scale) from water samples taken at various locations and depths in the Indian and Southern oceans through the Indien Gaz Ocean (INDIGO) project. These data were collected as part of the INDIGO 1, INDIGO 2, and INDIGO 3 cruises, which took place during the years 1985, 1986, and 1987, respectively. These data have been used to estimate the penetration of anthropogenic CO 2 in the Indian and Southern oceans. The document also presents supporting data for potential temperature, salinity, density (sigma-theta), δ 13 C, and total CO 2 . All radiocarbon measurements have been examined statistically for quality of sample counts and stability of counting efficiency and background. In addition, all data have been reviewed by the Carbon Dioxide Information Analysis Center and assessed for gross accuracy and consistency (absence of obvious outliers and other anomalous values). These data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of this document and a magnetic tape containing machine-readable files. This document provides sample listing of the Indian Ocean radiocarbon data as they appear on the magnetic tape, as well as a complete listing of these data in tabular form. This document also offers retrieval program listings, furnishes information on sampling methods and data selection, defines limitations and restrictions of the data, and provides reprints of pertinent literature. 13 refs., 4 tabs

  16. Okamejei ornata n. sp., a new deep-water skate (Elasmobranchii, Rajidae) from the northwestern Indian Ocean off Socotra Islands

    Science.gov (United States)

    Weigmann, Simon; Stehmann, Matthias F. W.; Thiel, Ralf

    2015-05-01

    A new species of the Indo-Pacific skate genus Okamejei is described based on 10 specimens caught around the Socotra Islands (northwestern Indian Ocean). The type series of Okamejei ornata n. sp. was sampled during cruise 17 of RV 'Vityaz' along the deep western Indian Ocean in 1988/89. The new species represents the fifth species of Okamejei in the western Indian Ocean and differs from its congeners in having a unique dorsal pattern of variable dark brown spots encircled with beige pigment and arranged into rosettes. The dorsal ground color is ocher, but the anterior snout is dusky. Compared to congeners in the western Indian Ocean, the new species has a shorter preorbital snout length, a greater orbit diameter, fewer pectoral radials, an intermediate distance between first gill slits, and an intermediate number of upper jaw tooth rows.

  17. The effects of natural iron fertilisation on deep-sea ecology: the Crozet Plateau, Southern Indian Ocean.

    Directory of Open Access Journals (Sweden)

    George A Wolff

    Full Text Available The addition of iron to high-nutrient low-chlorophyll (HNLC oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF has been proposed as a means of mitigating anthropogenic atmospheric CO(2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth to the East (naturally iron fertilized; +Fe and South (HNLC of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.

  18. Effects of air-sea coupling on the boreal summer intraseasonal oscillations over the tropical Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ailan [CMA, Key Open Laboratory for Tropical Monsoon, Institute of Tropical and Marine Meteorology, Guangzhou (China); Li, Tim [CMA, Key Open Laboratory for Tropical Monsoon, Institute of Tropical and Marine Meteorology, Guangzhou (China); University of Hawaii, IPRC, Honolulu, Hawaii (United States); University of Hawaii, Department of Meteorology, Honolulu, Hawaii (United States); Fu, Xiouhua [University of Hawaii, IPRC, Honolulu, Hawaii (United States); Luo, Jing-Jia; Masumoto, Yukio [Research Institute for Global Change, JAMSTEC, Yokohama (Japan)

    2011-12-15

    The effects of air-sea coupling over the tropical Indian Ocean (TIO) on the eastward- and northward-propagating boreal summer intraseasonal oscillation (BSISO) are investigated by comparing a fully coupled (CTL) and a partially decoupled Indian Ocean (pdIO) experiment using SINTEX-F coupled GCM. Air-sea coupling over the TIO significantly enhances the intensity of both the eastward and northward propagations of the BSISO. The maximum spectrum differences of the northward- (eastward-) propagating BSISO between the CTL and pdIO reach 30% (25%) of their respective climatological values. The enhanced eastward (northward) propagation is related to the zonal (meridional) asymmetry of sea surface temperature anomaly (SSTA). A positive SSTA appears to the east (north) of the BSISO convection, which may positively feed back to the BSISO convection. In addition, air-sea coupling may enhance the northward propagation through the changes of the mean vertical wind shear and low-level specific humidity. The interannual variations of the TIO regulate the air-sea interaction effect. Air-sea coupling enhances (reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole (IOD) mode, positive Indian Ocean basin (IOB) mode and normal years (during positive IOD and negative IOB years). Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback. A climatological weak westerly in the equatorial Indian Ocean can be readily reversed by anomalous zonal SST gradients during the positive IOD and negative IOB events. Although the SSTA is always positive to the northeast of the BSISO convection for all interannual modes, air-sea coupling reduces the zonal asymmetry of the low-level specific humidity and thus the eastward propagation spectrum during the positive IOD and negative IOB modes, while strengthening them during the other modes. Air-sea coupling enhances the northward propagation under all

  19. Impact of sinking carbon flux on accumulation of deep-ocean carbon in the Northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; DileepKumar, M.; Saino, T.

    calculations using 14 C activity arises from the separation of natural 90 Biogeochemistry (2007) 82:89–100 123 and bomb-produced 14 C. Rubin and Key (2002) proposed the potential alkalinity method to achieve the separation. However, they found anomalous scatter... in the relationship between 14 C and potential alkalinity caused by data from the northern Indian Ocean (north of equator) and attributed that to the possible transportation of bomb radiocarbon, as carbonate particles from the surface ocean to the sediment...

  20. Monsoon-driven variability in the southern Red Sea and the exchange with the Indian Ocean

    Science.gov (United States)

    Sofianos, S. S.; Papadopoulos, V. P.; Abualnaja, Y.; Nenes, A.; Hoteit, I.

    2016-02-01

    Although progress has been achieved in describing and understanding the mean state and seasonal cycle of the Red Sea dynamics, their interannual variability is not yet well evaluated and explained. The thermohaline characteristics and the circulation patterns present strong variability at various time scales and are affected by the strong and variable atmospheric forcing and the exchange with the Indian Ocean and the gulfs located at the northern end of the basin. Sea surface temperature time-series, derived from satellite observations, show considerable trends and interannual variations. The spatial variability pattern is very diverse, especially in the north-south direction. The southern part of the Red Sea is significantly influenced by the Indian Monsoon variability that affects the sea surface temperature through the surface fluxes and the circulation patterns. This variability has also a strong impact on the lateral fluxes and the exchange with the Indian Ocean through the strait of Bab el Mandeb. During summer, there is a reversal of the surface flow and an intermediate intrusion of a relatively cold and fresh water mass. This water originates from the Gulf of Aden (the Gulf of Aden Intermediate Water - GAIW), is identified in the southern part of the basin and spreads northward along the eastern Red Sea boundary to approximately 24°N and carried across the Red Sea by basin-size eddies. The GAIW intrusion plays an important role in the heat and freshwater budget of the southern Red Sea, especially in summer, impacting the thermohaline characteristics of the region. It is a permanent feature of the summer exchange flow but it exhibits significant variation from year to year. The intrusion is controlled by a monsoon-driven pressure gradient in the two ends of the strait and thus monsoon interannual variability can laterally impose its signal to the southern Red Sea thermohaline patterns.

  1. Planktonic foraminifera from core tops of western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Guptha, M.V.S.

    distributional pattern showing upward trend in its abundance from 38 per cent at 21 degrees S latitude to 0.8 per cent at 6 degrees N latitude. Sub-tropical fauna is sparsely distributed in the Equatorial Indian Ocean. Based on these studies it is interpreted...

  2. The ecology of scattering layer biota around Indian Ocean seamounts and islands

    OpenAIRE

    Boersch-Supan, Philipp Hanno

    2014-01-01

    The waters of the open ocean constitute the largest living space on Earth but despite its obvious significance to the biosphere, the open ocean remains an unexplored frontier. With a regional focus on the Indian Ocean, this thesis investigates (i) the distribution of pelagic biota on basin scales, (ii) the effect of abrupt topography on pelagic biota and their predator-prey relationships, and (iii) the use of genetic techniques to elucidate population connectivity and dispersal of pelag...

  3. After continents divide: Comparative phylogeography of reef fishes from the Red Sea and Indian Ocean

    KAUST Repository

    Dibattista, Joseph D.; Berumen, Michael L.; Gaither, Michelle R.; Rocha, Luiz A.; Eble, Jeff A.; Choat, John Howard; Craig, Matthew T.; Skillings, Derek J.; Bowen, Brian W.

    2013-01-01

    Aim: The Red Sea is a biodiversity hotspot characterized by a unique marine fauna and high endemism. This sea began forming c. 24 million years ago with the separation of the African and Arabian plates, and has been characterized by periods of desiccation, hypersalinity and intermittent connection to the Indian Ocean. We aim to evaluate the impact of these events on the genetic architecture of the Red Sea reef fish fauna. Location: Red Sea and Western Indian Ocean. Methods: We surveyed seven reef fish species from the Red Sea and adjacent Indian Ocean using mitochondrial DNA cytochrome c oxidase subunit I and cytochrome b sequences. To assess genetic variation and evolutionary connectivity within and between these regions, we estimated haplotype diversity (h) and nucleotide diversity (π), reconstructed phylogenetic relationships among haplotypes, and estimated gene flow and time of population separation using Bayesian coalescent-based methodology. Results: Our analyses revealed a range of scenarios from shallow population structure to diagnostic differences that indicate evolutionary partitions and possible cryptic species. Conventional molecular clocks and coalescence analyses indicated time-frames for divergence between these bodies of water ranging from 830,000 years to contemporary exchange or recent range expansion. Colonization routes were bidirectional, with some species moving from the Indian Ocean to the Red Sea compared with expansion out of the Red Sea for other species. Main conclusions: We conclude that: (1) at least some Red Sea reef fauna survived multiple salinity crises; (2) endemism is higher in the Red Sea than previously reported; and (3) the Red Sea is an evolutionary incubator, occasionally contributing species to the adjacent Indian Ocean. The latter two conclusions - elevated endemism and species export - indicate a need for enhanced conservation priorities for the Red Sea. © 2013 Blackwell Publishing Ltd.

  4. After continents divide: Comparative phylogeography of reef fishes from the Red Sea and Indian Ocean

    KAUST Repository

    Dibattista, Joseph D.

    2013-01-07

    Aim: The Red Sea is a biodiversity hotspot characterized by a unique marine fauna and high endemism. This sea began forming c. 24 million years ago with the separation of the African and Arabian plates, and has been characterized by periods of desiccation, hypersalinity and intermittent connection to the Indian Ocean. We aim to evaluate the impact of these events on the genetic architecture of the Red Sea reef fish fauna. Location: Red Sea and Western Indian Ocean. Methods: We surveyed seven reef fish species from the Red Sea and adjacent Indian Ocean using mitochondrial DNA cytochrome c oxidase subunit I and cytochrome b sequences. To assess genetic variation and evolutionary connectivity within and between these regions, we estimated haplotype diversity (h) and nucleotide diversity (π), reconstructed phylogenetic relationships among haplotypes, and estimated gene flow and time of population separation using Bayesian coalescent-based methodology. Results: Our analyses revealed a range of scenarios from shallow population structure to diagnostic differences that indicate evolutionary partitions and possible cryptic species. Conventional molecular clocks and coalescence analyses indicated time-frames for divergence between these bodies of water ranging from 830,000 years to contemporary exchange or recent range expansion. Colonization routes were bidirectional, with some species moving from the Indian Ocean to the Red Sea compared with expansion out of the Red Sea for other species. Main conclusions: We conclude that: (1) at least some Red Sea reef fauna survived multiple salinity crises; (2) endemism is higher in the Red Sea than previously reported; and (3) the Red Sea is an evolutionary incubator, occasionally contributing species to the adjacent Indian Ocean. The latter two conclusions - elevated endemism and species export - indicate a need for enhanced conservation priorities for the Red Sea. © 2013 Blackwell Publishing Ltd.

  5. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Soumya, M.; Vethamony, P.; Vijaykumar, K.; Nair, T.M.B.; Agarvadekar, Y.; Jyoti, K.; Sudheesh, K.; Luis, R.; Lobo, S.; Halmalkar, B.

    –173, 2015 www.ocean-sci.net/11/159/2015/ doi:10.5194/os-11-159-2015 © Author(s) 2015. CC Attribution 3.0 License. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean P. Mehra1, M. Soumya1, P. Vethamony1, K. Vijaykumar1, T.... Note: sea level data at Colombo, Kochi, Karachi, Chabahar, Jask, Masirah, Minocoy and Hanimaadhoo are downloaded from www.gloss-sealevel.org and are shown with red stars. (Time is in Indian standard time (IST).) land locations of India are provided...

  6. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability

    Science.gov (United States)

    Hui, Chang; Zheng, Xiao-Tong

    2018-01-01

    The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.

  7. A new dipole index of the salinity anomalies of the tropical Indian Ocean.

    Science.gov (United States)

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-04-07

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.

  8. Distribution, ecology and polymorphic behaviour of the genus Oxycephalus (Hyperiidea, Oxycephalidae) in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, K.K.C.

    There have been many controversies on the number of valid, species under Oxycephalus including the studies made from Indian waters. This is the first comprehensive account on the distribution of this genus covering the entire Indian Ocean through...

  9. Studying the Indian Ocean Ridge System: Agenda for the new century

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Iyer, S.D.; Banerjee, R.; Drolia, R.K.

    Studies on the Indian Ocean Ridge System, though sporadic, was aimed to map the complete IORS petrologically and tectonically. Three areas are placed for immediate investigation; one in the slow spreading Carlsberg Ridge area, the second, along...

  10. Benthic disturbance and monitoring experiment in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.

    Environmental impact assessment studies for deep-sea manganese nodule mining have been initiated in the Central indian Ocean Basin since 1995. As a part of the first phase for collecting the benthic baseline data, echosounding, subbottom profiling...

  11. Diagnosing the leading mode of interdecadal covariability between the Indian Ocean sea surface temperature and summer precipitation in southern China

    Science.gov (United States)

    Liu, Jingpeng; Ren, Hong-Li; Li, Weijing; Zuo, Jinqing

    2018-03-01

    Precipitation in southern China during boreal summer (June to August) shows a substantial interdecadal variability on the timescale longer than 8 years. In this study, based on the analysis of singular value decomposition, we diagnose the leading mode of interdecadal covariability between the observational precipitation in southern China and the sea surface temperature (SST) in the Indian Ocean. Results indicate that there exist a remarkable southern China zonal dipole (SCZD) pattern of interdecadal variability of summer precipitation and an interdecadal Indian Ocean basin mode (ID-IOBM) of SST. It is found that the SCZD is evidently covaried with the ID-IOBM, which may induce anomalous inter-hemispheric vertical circulation and atmospheric Kelvin waves. During the warm phase of the ID-IOBM, an enhanced lower-level convergence and upper-level divergence exist over the tropical Indian Ocean, which is a typical Gill-Matsuno-type response to the SST warming. Meanwhile, the accompanied upper-level outflow anomalies further converge over the Indo-China peninsula, resulting in a lower-level anticyclone that contributes to reduction of the eastward moisture transport from the Bay of Bengal to the west part of southern China. In addition, the Kelvin wave-like pattern, as a response of the warm ID-IOBM phase, further induces the lower-level anticyclonic anomaly over the South China Sea-Philippines. Such an anticyclonic circulation is favorable for more water vapor transport from the East China Sea into the east part of southern China. Therefore, the joint effects of the anomalous inter-hemispheric vertical circulation and the Kelvin wave-like pattern associated with the ID-IOBM may eventually play a key role in generating the SCZD pattern.

  12. Seasonal Variability of Salt Transports in the Northern Indian Ocean

    Science.gov (United States)

    D'Addezio, J. M.; Bulusu, S.

    2016-02-01

    Due to limited observational data in the Indian Ocean compared to other regions of the global ocean, past work on the Northern Indian Ocean (NIO) has relied heavily upon model analysis to study the variability of regional salinity advection caused by the monsoon seasons. With the launch of the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009 and the Aquarius SAC-D mission in 2011 (ended on June 7, 2011), remotely sensed, synoptic scale sea surface salinity (SSS) data is now readily available to study this dynamic region. The new observational data has allowed us to revisit the region to analyze seasonal variability of salinity advection in the NIO using several modeled products, the Aquarius and SMOS satellites, and Argo floats data. The model simulations include the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO2), European Centre for Medium-Range Weather Forecasts - Ocean Reanalysis System 4 (ECMWF-ORSA4), Simple Ocean Data Assimilation (SODA) Reanalysis, and HYbrid Coordinate Ocean Model (HYCOM). Our analyses of salinity at the surface and at depths up to 200 m, surface salt transport in the top 5 m layer, and depth-integrated salt transports revealed different salinity processes in the NIO that are dominantly related to the semi-annual monsoons. Aquarius and SMOS prove useful tools for observing this dynamic region, and reveal some aspects of SSS that Argo cannot resolve. Meridional depth-integrated salt transports using the modeled products along 6°N revealed dominant advective processes from the surface towards near-bottom depths. Finally, a difference in subsurface salinity stratification causes many of the modeled products to incorrectly estimate the magnitude and seasonality of NIO barrier layer thickness (BLT) when compared to the Argo solution. This problem is also evident in model output from the Seychelles-Chagos Thermocline Ridge (SCTR), a region with strong air-sea teleconnections with the Arabian Sea.

  13. Anomalous intraseasonal events in the thermocline ridge region of Southern Tropical Indian Ocean and their regional impacts

    Science.gov (United States)

    Jayakumar, A.; Gnanaseelan, C.

    2012-03-01

    The present study explores the mechanisms responsible for the strong intraseasonal cooling events in the Thermocline Ridge region of the southwestern Indian Ocean. Air sea interface and oceanic processes associated with Madden Julian Oscillation are studied using an Ocean General Circulation Model and satellite observations. Sensitivity experiments are designed to understand the ocean response to intraseasonal forcing with a special emphasis on 2002 cooling events, which recorded the strongest intraseasonal perturbations during the last well-observed decade. This event is characterized by anomalous Walker circulation over the tropical Indian Ocean and persistent intraseasonal heat flux anomaly for a longer duration than is typical for similar events (but without any favorable preconditioning of ocean basic state at the interannual timescale). The model heat budget analysis during 1996 to 2007 revealed an in-phase relationship between atmospheric fluxes associated with Madden Julian Oscillation and the subsurface oceanic processes during the intense cooling events of 2002. The strong convection, reduced shortwave radiation and increased evaporation have contributed to the upper ocean heat loss in addition to the slower propagation of active phase of convection, which supported the integration of longer duration of forcing. The sensitivity experiments revealed that dynamic response of ocean through entrainment at the intraseasonal timescale primarily controls the biological response during the event, with oceanic interannual variability playing a secondary role. This study further speculates the role of oceanic intraseasonal variability in the 2002 droughts over Indian subcontinent.

  14. Compartmental models for assessing the fishery production in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Parulekar, A.H.

    Compartmental models for assessing the fishery production in the Indian Ocean is discussed. The article examines the theoretical basis on which modern fishery sciences is built. The model shows that, large changes in energy flux from one pathway...

  15. South African southern ocean research programme

    CSIR Research Space (South Africa)

    SASCAR

    1987-01-01

    Full Text Available This document describes the South African National Antarctic Research Programme's (SANARP) physical, chemical and biological Southern Ocean research programme. The programme has three main components: ecological studies of the Prince Edward Islands...

  16. Bythaelurus vivaldii, a new deep-water catshark (Carcharhiniformes, Scyliorhinidae) from the northwestern Indian Ocean off Somalia.

    Science.gov (United States)

    Weigmann, Simon; Kaschner, Carina Julia

    2017-05-08

    A new very small deep-water catshark, Bythaelurus vivaldii, is described based on two female specimens caught off Somalia in the northwestern Indian Ocean during the German 'Valdivia' expedition in 1899. It is morphologically closest to the recently described B. bachi, which is the only other Bythaelurus species in the western Indian Ocean that shares a stout body of large specimens and the presence of oral papillae. It further resembles B. vivaldii in the broad mouth and broad posterior head, but differs in the presence of composite oral papillae and a higher diversity in dermal denticle morphology. Additionally, the new species differs from all congeners in the western Indian Ocean in a larger pre-second dorsal fin length, a longer head, a larger interdorsal space, a larger intergill length, a longer pectoral-fin posterior margin, a shorter caudal fin, an intermediate caudal fin preventral margin, and a larger internarial width. Furthermore, the second dorsal fin of the new species is smaller than in its congeners in the western Indian Ocean except for B. lutarius, which is easily distinguished by the slender body and virtual absence of oral papillae, as well as the aforementioned further characters. An updated key to all valid species of Bythaelurus is provided.

  17. Distribution and burial of organic carbon in sediments from the Indian Ocean upwelling region off Java and Sumatra, Indonesia

    Science.gov (United States)

    Baumgart, Anne; Jennerjahn, Tim; Mohtadi, Mahyar; Hebbeln, Dierk

    2010-03-01

    Sediments were sampled and oxygen profiles of the water column were determined in the Indian Ocean off west and south Indonesia in order to obtain information on the production, transformation, and accumulation of organic matter (OM). The stable carbon isotope composition (δ 13C org) in combination with C/N ratios depicts the almost exclusively marine origin of sedimentary organic matter in the entire study area. Maximum concentrations of organic carbon (C org) and nitrogen (N) of 3.0% and 0.31%, respectively, were observed in the northern Mentawai Basin and in the Savu and Lombok basins. Minimum δ 15N values of 3.7‰ were measured in the northern Mentawai Basin, whereas they varied around 5.4‰ at stations outside this region. Minimum bottom water oxygen concentrations of 1.1 mL L -1, corresponding to an oxygen saturation of 16.1%, indicate reduced ventilation of bottom water in the northern Mentawai Basin. This low bottom water oxygen reduces organic matter decomposition, which is demonstrated by the almost unaltered isotopic composition of nitrogen during early diagenesis. Maximum C org accumulation rates (CARs) were measured in the Lombok (10.4 g C m -2 yr -1) and northern Mentawai basins (5.2 g C m -2 yr -1). Upwelling-induced high productivity is responsible for the high CAR off East Java, Lombok, and Savu Basins, while a better OM preservation caused by reduced ventilation contributes to the high CAR observed in the northern Mentawai Basin. The interplay between primary production, remineralisation, and organic carbon burial determines the regional heterogeneity. CAR in the Indian Ocean upwelling region off Indonesia is lower than in the Peru and Chile upwellings, but in the same order of magnitude as in the Arabian Sea, the Benguela, and Gulf of California upwellings, and corresponds to 0.1-7.1% of the global ocean carbon burial. This demonstrates the relevance of the Indian Ocean margin off Indonesia for the global OM burial.

  18. Annual and interannual variation of precipitation over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Prasad, T.G.

    /month, and the lowest amplitudes are found in the western Indian Ocean, especially off the Arabian and east African coasts. The INSAT and GEOS Precipitation Index (GPI) rainfall estimates correlated reasonably well with the island rainfall data, with correlation...

  19. Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Foltz, G.R.; Vialard, J.; PraveenKumar, B.; McPhaden, M.J.

    from a long-term moored buoy are used in conjunction with satellite, in situ, and atmospheric reanalysis datasets to analyze the seasonal mixed layer heat balance in the thermocline ridge region of the southwestern tropical Indian Ocean. This region...

  20. Influence of Mascarene High and Indian Ocean dipole on East African extreme weather events

    Directory of Open Access Journals (Sweden)

    Ogwang Bob Alex

    2015-01-01

    Full Text Available Extreme weather and climate events such as floods and droughts are common in East Africa, causing huge socio-economic losses. This study links the east African October-December (OND rainfall, Indian Ocean Dipole (IOD and Mascarene High (MH.Correlation analysis is applied to quantify the relationship between the index of IOD (Dipole Mode Index (DMI and OND rainfall. Results show that there exists a significant correlation between OND rainfall and DMI, with a correlation coefficient of 0.6. During dry years, MH is observed to intensify and align itself in the southeast-northwest orientation, stretching up to the continent, which in turn inhibits the influx of moisture from Indian Ocean into East Africa. During wet years, MH weakens, shifts to the east and aligns itself in the zonal orientation. Moisture from Indian Ocean is freely transported into east Africa during wet years. Analysis of the drought and flood years with respect to the different variables including wind, velocity potential and divergence/ convergence revealed that the drought (flood years were characterized by divergence (convergence in the lower troposphere and convergence (divergence at the upper level, implying sinking (rising motion, especially over the western Indian Ocean and the study area. Convergence at low level gives rise to vertical stretching, whereas divergence results in vertical shrinking, which suppresses convection due to subsidence. Positive IOD (Negative IOD event results into flood (drought in the region. The evolution of these phenomena can thus be keenly observed for utilization in the update of seasonal forecasts.

  1. General circulation and tracers: studies in the Western Indian Ocean

    International Nuclear Information System (INIS)

    Jamous, Daniel

    1991-01-01

    The main question addressed in this thesis is how to best use the information obtained from hydro-biogeochemical tracer data, to study the oceanic general circulation in the Western Indian Ocean. First, a principal component analysis is performed on a historical data set. The tracers considered are temperature, salinity, density, oxygen, phosphate and silica. The method reduces the amount of data to be considered by a factor of 5. It reproduces correctly and efficiently the large-scale distributions of these oceanic properties. The analysed data are then used in a finite-difference nonlinear inverse model. The grid has a resolution of 4 deg. by 4 deg.. Dynamical as well as tracer conservation constraints are used. These constraints are well satisfied by the obtained solutions but the associated errors remain large. Additional constraints would be required in order to discuss the different solutions in more detail. Finally, a qualitative study is done on the deep distribution of helium-3. The data show several important features linked to hydrothermal input in the Gulf of Aden and on the Central Indian Ridge, and to the origin of water masses and deep circulation characteristics. However additional data are required in order to clarify the distribution of this tracer in other key areas. (author) [fr

  2. Distribution and origin of seamounts in the central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Das, P.; Iyer, S.D.; Kodagali, V.N.; Krishna, K.S.

    Approximately 200 seamounts of different dimensions have been identified, from multibeam bathymetry maps of the Central Indian Ocean Basin (CIOB) (9 degrees S to 16 degrees S and 72 degrees E to 80 degrees E), of which 61% form eight chains...

  3. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; Mc; Durand, F.; Muraleedharan, P.M.

    version: Geophys. Res. Lett., vol.40(21); 2013; 5740-5744 Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide I. Suresh1, J. Vialard2, M. Lengaigne2, W. Han3, J. McCreary4, F. Durand5, P.M. Muraleedharan1... reversing winds. These wind variations drive seasonal equatorial Kelvin and Rossby wave responses. The seasonal equatorial Kelvin waves propagate into the North Indian Ocean (hereafter NIO) as coastal Kelvin waves [McCreary et al., 1993]. As a result...

  4. South African Climates: Highlights From International Ocean Discovery Program Expedition 361

    Science.gov (United States)

    Hemming, S. R.; Hall, I. R.; LeVay, L.

    2016-12-01

    International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel, at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and the Cape Basin were targeted to reconstruct the history of the Greater Agulhas Current System over the past 5 Ma. The Agulhas Current transports 70 Sv of warm and saline surface waters from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. The main objectives of the expedition were to document the oceanographic properties of the Agulhas Current through tectonic and climatic changes during the Plio-Pleistocene, to determine the dynamics of the Indian-Atlantic gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, to address the influence of the Agulhas Current on African terrestrial climates and potential links to Human evolution. Additionally, the Expedition set out to fulfill the needs of the Ancillary Project Letter, consisting of high-resolution interstitial water samples that will, and to constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum. Here we highlight some of the expedition successes and show how it has made major strides toward fulfilling each of these objectives. The recovered sequences allowed complete spliced stratigraphic sections

  5. The Tsunami Geology of the Bay of Bengal Shores and the Predecessors of the 2004 Indian Ocean Event

    Science.gov (United States)

    Rajendran, C.; Rajendran, K.; Seshachalam, S.; Andrade, V.

    2010-12-01

    The 2004 Aceh-Andaman earthquake exceeded the known Indian Ocean precedents by its 1,300-km long fault rupture and the height and reach of its tsunami. Literature of the ancient Chola dynasty (AD 9-11 centuries) of south India and the archeological excavations allude to a sea flood that crippled the historic port at Kaveripattinam, a trading hub for Southeast Asia. Here, we combine a variety of data from the rupture zone as well as the distant shores to build a tsunami history of the Bay of Bengal. A compelling set of geological proxies of possible tsunami inundation include boulder beds of Car Nicobar Island in the south and the East Island in the northernmost Andaman, a subsided fossil mangrove forest near Port Blair and a washover sedimentation identified in the Kaveripattinam coast of Tamil Nadu, south India. We have developed an extensive chronology for these geological proxies, and we analyze them in conjunction with the historical information culled from different sources for major sea surges along the Bay of Bengal shores. The age data and the depositional characteristics of these geological proxies suggest four major tsunamis in the last 2000 years in the Bay of Bengal, including the 1881 Car Nicobar tsunami. Among these, the evidence for the event of 800-1200 cal yr BP is fairly well represented on both sides of the Bay of Bengal shores. Thus, we surmise that the 800-1000-year old tsunami mimics the transoceanic reach of the 2004 Indian Ocean and the age constraints also agree with the sea surge during the Chola period. We also obtained clues for a possible medieval tsunami from the islands occurred probably a few hundred years after the Chola tsunami, but its size cannot constrained, nor its source. The convergence of ages and the multiplicity of sites would suggest at least one full size predecessor of the 2004 event 1000-800 years ago.

  6. The Indian Ocean disaster: Tsunami physics and early warning dilemmas

    Science.gov (United States)

    Lomnitz, Cinna; Nilsen-Hofseth, Sara

    Understanding the physics of tsunamis may save lives, especially near the epicenter of a large earthquake where the danger is highest and early warning is least likely to be effective.Normal modes of Earth are standing waves of the Love (toroidal) or the Rayleigh (spheroidal) variety. The Indian Ocean tsunami may have been partly or wholly caused by low-order spheroidal modes of the Earth such as 0S2, 0S3, and 0S4, that may have excited a waveguide—a layer that confines and guides a propagating wave—in the ocean.

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from underway - surface observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from the SOUTHERN SURVEYOR in the Coral Sea, Indian Ocean and others from 2012-04-11 to 2012-07-25 (NODC Accession 0115295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115295 includes chemical, meteorological, physical and underway - surface data collected from SOUTHERN SURVEYOR in the Coral Sea, Indian Ocean, South...

  8. Temporal and spatial variability of phytoplankton pigment concentrations in the Indian Ocean, derived from the CZCS time series images

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available A total of 93 monthly global composite remotely sensed ocean color images from the Coastal Zone Color Scanner (CZCS on board the Nimbus-7 satellite were extracted for the Indian Ocean region (35ºN–55ºS; 30–120ºE to examine the seasonal variations in phytoplankton pigment concentrations, resulting from large-scale changes in physical oceanographic processes. The CZCS data sets were analyzed with the PC-SEAPAK software, and revealed large phytoplankton blooms in the northwest Arabian Sea and off the Somali coast. The blooms were triggered by wind-driven upwelling during the southwest monsoonal months of August and September. In the northern Arabian Sea, phytoplankton blooms, detected from January to March, appeared to be associated with nutrient enhancement resulting from winter convective mixing. In the Bay of Bengal, higher pigment concentrations were confined to the coastal regions but varied only marginally between seasons both in the coastal and offshore regions. Phytoplankton pigment concentrations were consistently low in the open Indian Ocean. Analysis of pigment concentrations extracted from the monthly-accumulated images revealed that the Arabian Sea sustained a greater biomass of phytoplankton compared with any other region of the Indian Ocean. Overall, the coastal regions of the Indian Ocean are richer in phytoplankton pigment than the open Indian Ocean. The number of images in individual areas was highly variable throughout the region due to varying cloud cover.

  9. The 50th Anniversary of the International Indian Ocean Expedition: An Update on Current Planning Efforts and Progress

    Science.gov (United States)

    Hood, Raleigh; D'Adamo, Nick; Burkill, Peter; Urban, Ed; Bhikajee, Mitrasen

    2014-05-01

    The International Indian Ocean Expedition (IIOE) was one of the greatest international, interdisciplinary oceanographic research efforts of all time. Planning for the IIOE began in 1959 and the project officially continued through 1965, with forty-six research vessels participating under fourteen different flags. The IIOE motivated an unprecedented number of hydrographic surveys (and repeat surveys) over the course of the expedition covering the entire Indian Ocean basin. And it was an interdisciplinary endeavor that embraced physical oceanography, chemical oceanography, meteorology, marine biology, marine geology and geophysics. The end of 2015 will mark the 50th Anniversary of the completion of the IIOE. In the 50 years since the IIOE three fundamental changes have taken place in ocean science. The first is the deployment of a broad suite of oceanographic sensors on satellites that have dramatically improved the characterization of both physical and biological oceanographic variability. The second is the emergence of new components of the ocean observing system, most notably remote sensing and Argo floats. And the third is the development of ocean modeling in all its facets from short-term forecasting to seasonal prediction to climate projections. These advances have revolutionized our understanding of the global oceans, including the Indian Ocean. Compared to the IIOE era, we now have the capacity to provide a much more integrated picture of the Indian Ocean, especially if these new technologies can be combined with targeted and well-coordinated in situ measurements. In this presentation we report on current efforts to motivate an IIOE 50th Anniversary Celebration (IIOE-2). We envision this IIOE-2 as a 5-year expedition and effort beginning in 2015 and continuing through to 2020. An important objective of our planning efforts is assessing ongoing and planned research activities in the Indian Ocean in the 2015 to 2020 time frame, with the goal of embracing and

  10. Tectonic setting of the Seychelles, Mascarene and Amirante Plateaus in the Western Equatorial Indian Ocean

    International Nuclear Information System (INIS)

    Mart, Y.

    1988-01-01

    A system of marine plateaus occurs in the western equatorial Indian Ocean, forming an arcuate series of wide and shallow banks with small islands in places. The oceanic basins that surround the Seychelles - Amirante region are of various ages and reflect a complex seafloor spreading pattern. The structural analysis of the Seychelle - Amirante - Mascarene region reflects the tectonic evolution of the western equatorial Indian Ocean. It is suggested that due to the seafloor spreading during a tectonic stage, the Seychelles continental block drifted southwestwards to collide with the oceanic crust of the Mascarene Basin, forming an elongated folded structure at first, and then a subduction zone. The morphological similarity, the lithological variability and the different origin of the Seychelles Bank, the Mascarene Plateau and the Amirante Arc emphasizes the significant convergent effects of various plate tectonic processes on the development of marine plateaus

  11. Delivery of halogenated very short-lived substances from the west Indian Ocean to the stratosphere during the Asian summer monsoon

    Directory of Open Access Journals (Sweden)

    A. Fiehn

    2017-06-01

    Full Text Available Halogenated very short-lived substances (VSLSs are naturally produced in the ocean and emitted to the atmosphere. When transported to the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise on RV Sonne in the subtropical and tropical west Indian Ocean in July and August 2014, we measured the VSLSs, methyl iodide (CH3I and for the first time bromoform (CHBr3 and dibromomethane (CH2Br2, in surface seawater and the marine atmosphere to derive their emission strengths. Using the Lagrangian particle dispersion model FLEXPART with ERA-Interim meteorological fields, we calculated the direct contribution of observed VSLS emissions to the stratospheric halogen burden during the Asian summer monsoon. Furthermore, we compare the in situ calculations with the interannual variability of transport from a larger area of the west Indian Ocean surface to the stratosphere for July 2000–2015. We found that the west Indian Ocean is a strong source for CHBr3 (910 pmol m−2 h−1, very strong source for CH2Br2 (930 pmol m−2 h−1, and an average source for CH3I (460 pmol m−2 h−1. The atmospheric transport from the tropical west Indian Ocean surface to the stratosphere experiences two main pathways. On very short timescales, especially relevant for the shortest-lived compound CH3I (3.5 days lifetime, convection above the Indian Ocean lifts oceanic air masses and VSLSs towards the tropopause. On a longer timescale, the Asian summer monsoon circulation transports oceanic VSLSs towards India and the Bay of Bengal, where they are lifted with the monsoon convection and reach stratospheric levels in the southeastern part of the Asian monsoon anticyclone. This transport pathway is more important for the longer-lived brominated compounds (17 and 150 days lifetime for CHBr3 and CH2Br2. The entrainment of CHBr3 and CH3I from the west Indian Ocean to the stratosphere during the

  12. Annual and seasonal mean buoyancy fluxes for the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.

    . The fluxes of heat and freshwater across the air-sea interface, and hence the surface buoyancy flux, show strong spatial and temporal variability. The Bay of Bengal and eastern equatorial Indian Ocean are characterized by a net freshwater gain due to heavy...

  13. Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system

    Science.gov (United States)

    Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.

    2014-04-01

    This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a

  14. Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DeBoyer Montegut, C.; Vialard, J.; Shenoi, S.S.C.; Shankar, D.; Durand, F.; Ethe, C.; Madec, G.

    A global Ocean General Circulation Model (OGCM) is used to investigate the mixed layer heat budget of the Northern Indian Ocean (NIO). The model is validated against observations and shows a fairly good agreement with mixed layer depth data...

  15. Evolution of Indian Ocean biases in the summer monsoon season hindcasts from the Met Office Global Seasonal Forecasting System GloSea5

    Science.gov (United States)

    Chevuturi, A.; Turner, A. G.; Woolnough, S. J.

    2016-12-01

    In this study we investigate the development of biases in the Indian Ocean region in summer hindcasts of the UK Met Office coupled initialised global seasonal forecasting system, GloSea5-GC2. Previous work has demonstrated the rapid evolution of strong monsoon circulation biases over India from seasonal forecasts initialised in early May, together with coupled strong easterly wind biases on the equator. We analyse a set of three springtime start dates for the 20-year hindcast period (1992-2011) and fifteen total ensemble members for each year. We use comparisons with a variety of observations to test the rate of evolving mean-state biases in the Arabian Sea, over India, and over the equatorial Indian Ocean. Biases are all shown to develop rapidly, particularly for the circulation bias over India that is connected to convection. These circulation biases later reach the surface and lead to responses in Arabian Sea SST in accordance with coastal and Ekman upwelling processes. We also assess the evolution of radiation and turbulent heat fluxes at the surface. Meanwhile at the equator, easterly biases in surface winds are shown to develop rapidly, consistent with an SST pattern that is consistent with positive-Indian Ocean dipole mean state conditions (warm western equatorial Indian Ocean, cold east). This bias develops consistent with coupled ocean-atmosphere exchanges and Bjerknes feedback. We hypothesize that lower tropospheric easterly wind biases developing in the equatorial region originate from the surface, and also that signals of the cold bias in the eastern equatorial Indian Ocean propagate to the Bay of Bengal via coastal Kelvin waves. Earlier work has shown the utility of wind-stress corrections in the Indian Ocean for correcting the easterly winds bias there and ultimately improving the evolution of the Indian Ocean Dipole. We identify and test this wind-stress correction technique in case study years from the hindcast period to see their impact on seasonal

  16. Emergence of melioidosis in the Indian Ocean region: Two new cases and a literature review.

    Directory of Open Access Journals (Sweden)

    Nicolas Allou

    2017-12-01

    Full Text Available Melioidosis is a disease caused by bacteria called B. pseudomallei. Infections can develop after contact with standing water. This disease can reach all the organs and especially the lungs. It is associated with a high mortality rate (up to 50%. Melioidosis is endemic in northern Australia and in Southeast Asia. Nevertheless, B. pseudomallei may be endemic in the Indian Ocean region and in Madagascar in particular, so clinicians and microbiologists should consider acute melioidosis as a differential diagnosis in the Indian Ocean region, in particular from Madagascar.

  17. The influence of Indian Ocean Dipole (IOD) on biogeochemistry of ...

    Indian Academy of Sciences (India)

    Positive SST anomalies (SSTA) were found in the Arabian Sea (0.4 to 1.8 ... Keywords. Indian Ocean Dipole; biogeochemistry; carbon; chlorophyll; Arabian Sea; models. ... mainly control the strength of this source (Sarma ... of the CO2 evasion at the air–water interface (70 ..... tive SSHA due to asymmetric effect of upwelling.

  18. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Flore Samaran

    Full Text Available Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four "acoustic populations" occur. Three of these are pygmy blue whale (B.m. brevicauda populations while the fourth is the Antarctic blue whale (B.m. intermedia. Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds.

  19. Recent predictors of Indian summer monsoon based on Indian and Pacific Ocean SST

    Science.gov (United States)

    Shahi, Namendra Kumar; Rai, Shailendra; Mishra, Nishant

    2018-02-01

    This study investigates the relationship between sea surface temperature (SST) of various geographical locations of Indian and Pacific Ocean with the Indian summer monsoon rainfall (ISMR) to identify possible predictors of ISMR. We identified eight SST predictors based on spatial patterns of correlation coefficients between ISMR and SST of the regions mentioned above during the time domain 1982-2013. The five multiple linear regression (MLR) models have been developed by these predictors in various combinations. The stability and performance of these MLR models are verified using cross-validation method and other statistical methods. The skill of forecast to predict observed ISMR from these MLR models is found to be substantially better based on various statistical verification measures. It is observed that the MLR models constructed using the combination of SST indices in tropical and extra tropical Indian and Pacific is able to predict ISMR accurately for almost all the years during the time domain of our study. We tried to propose the physical mechanism of the teleconnection through regression analysis with wind over Indian subcontinent and the eight predictors and the results are in the conformity with correlation coefficient analysis. The robustness of these models is seen by predicting the ISMR during recent independent years of 2014-2017 and found the model 5 is able to predict ISMR accurately in these years also.

  20. Secondary calcification of planktic foraminifera from the Indian sector of Southern ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mohan, R.; Shetye, S.; Tiwari, M.; AnilKumar, N.

    This study focused on planktic foraminifera in plankton tows and surface sediments from the western Indian sector of Southern Ocean in order to evaluate the potential foraminiferal secondary calcification and/or dissolution in the sediment...

  1. Relocation of earthquakes at southwestern Indian Ocean Ridge and its tectonic significance

    Science.gov (United States)

    Luo, W.; Zhao, M.; Haridhi, H.; Lee, C. S.; Qiu, X.; Zhang, J.

    2015-12-01

    The southwest Indian Ridge (SWIR) is a typical ultra-slow spreading ridge (Dick et al., 2003) and further plate boundary where the earthquakes often occurred. Due to the lack of the seismic stations in SWIR, positioning of earthquakes and micro-earthquakes is not accurate. The Ocean Bottom Seismometers (OBS) seismic experiment was carried out for the first time in the SWIR 49 ° 39 'E from Jan. to March, 2010 (Zhao et al., 2013). These deployed OBS also recorded the earthquakes' waveforms during the experiment. Two earthquakes occurred respectively in Feb. 7 and Feb. 9, 2010 with the same magnitude of 4.4 mb. These two earthquakes were relocated using the software HYPOSAT based on the spectrum analysis and band-pass (3-5 Hz) filtering and picking up the travel-times of Pn and Sn. Results of hypocentral determinations show that there location error is decreased significantly by joined OBS's recording data. This study do not only provide the experiences for the next step deploying long-term wide-band OBSs, but also deepen understanding of the structure of SWIR and clarify the nature of plate tectonic motivation. This research was granted by the Natural Science Foundation of China (41176053, 91028002, 91428204). Keywords: southwest Indian Ridge (SWIR), relocation of earthquakes, Ocean Bottom Seismometers (OBS), HYPOSAT References:[1] Dick, H. J. B., Lin J., Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405-412. [2] Zhao M. H., et al. 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39' E). Geochemistry Geophysics Geosystems, 14(10): 4544-4563.

  2. Insects of terrestrial origin over Indian Ocean during north-east monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Pathak, S.C.; Kulshrestha, V.; Choubey, A; Parulekar, A

    Airborne insects, carried by winds were trapped over the Indian Ocean (Latitude 14 degrees N to 4 degrees S; Longitude 60 degrees-76 degrees 34 minutes E), in the course of cruise 109, ORV Sagar Kanya (January 4-February 6, 1996). A total of 3...

  3. Population Genetic Status of the Western Indian Ocean: What do we ...

    African Journals Online (AJOL)

    The Western Indian Ocean (WIO) is faced with increasing evidence of degradation and effective management initiatives are needed to curtail the environmental decline. The management of the WIO region can therefore benefit from the information that population genetics can provide. Extensive literature searches revealed ...

  4. Search strategy in a complex and dynamic environment (the Indian Ocean case)

    Science.gov (United States)

    Loire, Sophie; Arbabi, Hassan; Clary, Patrick; Ivic, Stefan; Crnjaric-Zic, Nelida; Macesic, Senka; Crnkovic, Bojan; Mezic, Igor; UCSB Team; Rijeka Team

    2014-11-01

    The disappearance of Malaysia Airlines Flight 370 (MH370) in the early morning hours of 8 March 2014 has exposed the disconcerting lack of efficient methods for identifying where to look and how to look for missing objects in a complex and dynamic environment. The search area for plane debris is a remote part of the Indian Ocean. Searches, of the lawnmower type, have been unsuccessful so far. Lagrangian kinematics of mesoscale features are visible in hypergraph maps of the Indian Ocean surface currents. Without a precise knowledge of the crash site, these maps give an estimate of the time evolution of any initial distribution of plane debris and permits the design of a search strategy. The Dynamic Spectral Multiscale Coverage search algorithm is modified to search a spatial distribution of targets that is evolving with time following the dynamic of ocean surface currents. Trajectories are generated for multiple search agents such that their spatial coverage converges to the target distribution. Central to this DSMC algorithm is a metric for the ergodicity.

  5. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami.

    Science.gov (United States)

    Rubin, Charles M; Horton, Benjamin P; Sieh, Kerry; Pilarczyk, Jessica E; Daly, Patrick; Ismail, Nazli; Parnell, Andrew C

    2017-07-19

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here we present an extraordinary 7,400 year stratigraphic sequence of prehistoric tsunami deposits from a coastal cave in Aceh, Indonesia. This record demonstrates that at least 11 prehistoric tsunamis struck the Aceh coast between 7,400 and 2,900 years ago. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda megathrust ruptures as large as that of the 2004 Indian Ocean tsunami.

  6. The UNESCO-IOC framework – establishing an international early warning infrastructure in the Indian Ocean region

    Directory of Open Access Journals (Sweden)

    J. Lauterjung

    2010-12-01

    Full Text Available The Sumatra-Andaman earthquake with a magnitude of 9.3, and the subsequent destructive tsunami which caused more than 225 000 fatalities in the region of the Indian Ocean, happened on 26 December 2004. Less than one month later, the United Nations (UN World Conference on Disaster Reduction took place in Kobe, Japan to commemorate the 1995 Kobe earthquake. The importance of preparedness and awareness on regional, national and community levels with respect to natural disasters was discussed during this meeting, and resulted in the approval of the Hyogo Declaration on Disaster Reduction. Based on this declaration the UN mandated the Intergovernmental Oceanographic Commission (IOC of UNESCO (United Nations Education, Science and Cultural Organization, taking note of its over 40 years of successful coordination of the Pacific Tsunami Warning System (PTWC, to take on the international coordination of national early-warning efforts for the Indian Ocean and to guide the process of setting up a Regional Tsunami Early Warning System for the Indian Ocean.

  7. On Some Aspects of Precipitation over Tropical Indian Ocean Using Satellite Data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sreejith, O.P.

    The annual and inter-annual variability of precipitation over the tropical Indian Ocean is studied for the period 1979–1997, using satellite data from a variety of sensors. The Climate Prediction Center Merged Analysis Precipitation (CMAP...

  8. Annual mean statistics of the surface fluxes of the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Rao, L.V.G.

    MEAN STATISTICS OF THE SURFACE FLUXES OF THE TROPICAL INDIAN OCEAN (Research Note) M. R. RAMESH KUMAR and L. V. GANGADHARA RAO Physical Oceanography Division, National Institute of Oceanography, Dona Paula, 403004, Goa, India (Received in final...

  9. Indian Ocean dipole modulated wave climate of eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Anoop, T.R.; SanilKumar, V.; Shanas, P.R.; Glejin, J.; Amrutha, M.M.

    –378, 2016 www.ocean-sci.net/12/369/2016/ doi:10.5194/os-12-369-2016 © Author(s) 2016. CC Attribution 3.0 License. Indian Ocean Dipole modulated wave climate of eastern Arabian Sea T. R. Anoop1, V. Sanil Kumar1, P. R. Shanas1,2, J. Glejin1, and M. M. Amrutha1... are available on the website of the Japanese Agency of Marine–Earth Science and Technology (www.jamstec.go.jp). The tropical IO displays strong inter-annual climate vari- ability associated with the El Niño–Southern Oscillation (ENSO) and the IOD (Murtugudde et...

  10. The oceanic tides in the South Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    M. L. Genco

    Full Text Available The finite element ocean tide model of Le Provost and Vincent (1986 has been applied to the simulation of the M2 and K1 components over the South Atlantic Ocean. The discretisation of the domain, of the order of 200 km over the deep ocean, is refined down to 15 km along the coasts, such refinement enables wave propagation and damping over the continental shelves to be correctly solved. The marine boundary conditions, from Dakar to Natal, through the Drake passage and from South Africa to Antarctica, are deduced from in situ data and from Schwiderski's solution and then optimised following a procedure previously developed by the authors. The solutions presented are in very good agreement with in situ data: the root mean square deviations from a standard subset of 13 pelagic stations are 1.4 cm for M2 and 0.45 cm for K1, which is significantly better overall than solutions published to date in the literature. Zooms of the M2 solution are presented for the Falkland Archipelago, the Weddell Sea and the Patagonian Shelf. The first zoom allows detailing of the tidal structure around the Falklands and its interpretation in terms of a stationary trapped Kelvin wave system. The second zoom, over the Weddell Sea, reveals for the first time what must be the tidal signal under the permanent ice shelf and gives a solution over that sea which is generally in agreement with observations. The third zoom is over the complex Patagonian Shelf. This zoom illustrates the ability of the model to simulate the tides, even over this area, with a surprising level of realism, following purely hydrodynamic modelling procedures, within a global ocean tide model. Maps of maximum associated tidal currents are also given, as a first illustration of a by-product of these simulations.

  11. Thermal structure of the Western Indian Ocean during the southwest monsoon, 1983

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Sarma, M.S.S.; Rao, L.V.G.

    The thermal structure and the variability of heat content of the upper 400 m of the Western Indian Ocean were examined using the expendable bathythermograph (XBT) data collected onboard RV Sagar Kanya during July-August, 1983. Vertical displacement...

  12. Tropical Indian Ocean warming contributions to China winter climate trends since 1960

    Science.gov (United States)

    Wu, Qigang; Yao, Yonghong; Liu, Shizuo; Cao, DanDan; Cheng, Luyao; Hu, Haibo; Sun, Leng; Yao, Ying; Yang, Zhiqi; Gao, Xuxu; Schroeder, Steven R.

    2018-01-01

    This study investigates observed and modeled contributions of global sea surface temperature (SST) to China winter climate trends in 1960-2014, including increased precipitation, warming through about 1997, and cooling since then. Observations and Atmospheric Model Intercomparison Project (AMIP) simulations with prescribed historical SST and sea ice show that tropical Indian Ocean (TIO) warming and increasing rainfall causes diabatic heating that generates a tropospheric wave train with anticyclonic 500-hPa height anomaly centers in the TIO or equatorial western Pacific (TIWP) and northeastern Eurasia (EA) and a cyclonic anomaly over China, referred to as the TIWP-EA wave train. The cyclonic anomaly causes Indochina moisture convergence and southwesterly moist flow that enhances South China precipitation, while the northern anticyclone enhances cold surges, sometimes causing severe ice storms. AMIP simulations show a 1960-1997 China cooling trend by simulating increasing instead of decreasing Arctic 500-hPa heights that move the northern anticyclone into Siberia, but enlarge the cyclonic anomaly so it still simulates realistic China precipitation trend patterns. A separate idealized TIO SST warming simulation simulates the TIWP-EA feature more realistically with correct precipitation patterns and supports the TIWP-EA teleconnection as the primary mechanism for long-term increasing precipitation in South China since 1960. Coupled Model Intercomparison Project (CMIP) experiments simulate a reduced TIO SST warming trend and weak precipitation trends, so the TIWP-EA feature is absent and strong drying is simulated in South China for 1960-1997. These simulations highlight the need for accurately modeled SST to correctly attribute regional climate trends.

  13. Net community production in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.

    . On the other hand, Sarma [2004, Net community production in the Bay of Bengal: Oxygen mass balance approach, submitted to Bio- geochemistry, 2008] computed NCP using a regional model of oxygen mass balance in the NIO. Bates et al. [2006] also estimated NCP... using an inorganic carbon mass balance model for the entire Indian Ocean. This chapter combines the results obtained from direct measurements and models and aims at improving our understanding of processes con­ trolling NCP in the NIO...

  14. Propagation of Atlantic Ocean swells in the north Indian Ocean: A case study

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Vethamony, P.; Aboobacker, V.M.; Rashmi, R.

    An analysis of altimeter significant wave height data of May 2007 revealed the occurrence of an extreme weather event off southern tip of South Africa in the Atlantic Ocean, and generation of a series of very high swells at 40 degrees S...

  15. Anthropometric analysis of the hip joint in South Indian population using computed tomography

    Directory of Open Access Journals (Sweden)

    Vetrivel Chezian Sengodan

    2017-01-01

    Conclusion: This study indicates that there are significant differences in anthropometric parameters of proximal femur among the South Indian population compared with Western population. Even within the Indian population, the anthropometric parameters vary region to region.

  16. Weighted West, Focused on the Indian Ocean and Cooperating across the Indo-Pacific: The Indian Navy’s New Maritime Strategy, Capabilities, and Diplomacy

    Science.gov (United States)

    2017-02-01

    including New Delhi’s official response.10 Indians also worry about China’s infrastructure investments and cooperation with countries such as...China’s increased economic and infrastructure involvement among Indian Ocean states is not new, but it has increased and expanded in recent years...and foreign nationals from Yemen . The importance of HA/DR missions for the Indian Navy has increased over the past few years—and, with the emphasis

  17. International Ocean Discovery Program; Expedition 361 preliminary report; South African climates (Agulhas LGM density profile); 30 January-31 March 2016

    NARCIS (Netherlands)

    Hall, Ian R.; Hemming, Sidney R.; LeVay, Leah J.; Barker, Stephen R.; Berke, Melissa A.; Brentegani, Luna; Caley, Thibaut; Cartagena-Sierra, Alejandra; Charles, Christopher D.; Coenen, Jason J.; Crespin, Julien G.; Franzese, Allison M.; Gruetzner, Jens; Xibin, Han; Hins, Sophia K. V.; Jimenez Espejo, Francisco J.; Just, Janna; Koutsodendris, Andreas; Kubota, Kaoru; Lathika, Nambiyathodi; Norris, Richard D.; Pereira dos Santos, Thiago; Robinson, Rebecca; Rolison, John M.; Simon, Margit H.; Tangunan, Deborah; van der Lubbe, Jeroen (H,) J. L.; Yamane, Masako; Hucai, Zhang

    2016-01-01

    International Ocean Discovery Program (IODP) Expedition 361 drilled six sites on the southeast African margin and in the Indian-Atlantic ocean gateway, southwest Indian Ocean, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days

  18. Simulating the characteristics of tropical cyclones over the South West Indian Ocean using a Stretched-Grid Global Climate Model

    Science.gov (United States)

    Maoyi, Molulaqhooa L.; Abiodun, Babatunde J.; Prusa, Joseph M.; Veitch, Jennifer J.

    2018-03-01

    Tropical cyclones (TCs) are one of the most devastating natural phenomena. This study examines the capability of a global climate model with grid stretching (CAM-EULAG, hereafter CEU) in simulating the characteristics of TCs over the South West Indian Ocean (SWIO). In the study, CEU is applied with a variable increment global grid that has a fine horizontal grid resolution (0.5° × 0.5°) over the SWIO and coarser resolution (1° × 1°—2° × 2.25°) over the rest of the globe. The simulation is performed for the 11 years (1999-2010) and validated against the Joint Typhoon Warning Center (JTWC) best track data, global precipitation climatology project (GPCP) satellite data, and ERA-Interim (ERAINT) reanalysis. CEU gives a realistic simulation of the SWIO climate and shows some skill in simulating the spatial distribution of TC genesis locations and tracks over the basin. However, there are some discrepancies between the observed and simulated climatic features over the Mozambique channel (MC). Over MC, CEU simulates a substantial cyclonic feature that produces a higher number of TC than observed. The dynamical structure and intensities of the CEU TCs compare well with observation, though the model struggles to produce TCs with a deep pressure centre as low as the observed. The reanalysis has the same problem. The model captures the monthly variation of TC occurrence well but struggles to reproduce the interannual variation. The results of this study have application in improving and adopting CEU for seasonal forecasting over the SWIO.

  19. Western Indian Ocean Journal of Marine Science - Vol 9, No 1 (2010)

    African Journals Online (AJOL)

    Coastal Marine Pollution in Dar es Salaam (Tanzania) relative to Recommended Environmental Quality Targets for the Western Indian Ocean · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. JF Machiwa, 17-30 ...

  20. Monthly mean wind stress along the coast of the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Shenoi, S.S.C.; Antony, M.K.; Krishnakumar, V.

    Monthly-mean wind stress and its longshore and offshore components have been computed using the bulk aerodynamic method for each of a string of 36 two-degree-latitude by two-degree-longitude squares along the coast of the north Indian Ocean...

  1. The Indigo V Indian Ocean Expedition: a prototype for citizen microbial oceanography

    DEFF Research Database (Denmark)

    Lauro, Frederico; Senstius, Svend Jacob; Cullen, Jay

    2014-01-01

    Microbial Oceanography has long been an extremely expensive discipline, requiring ship time for sample collection and thereby economically constraining the number of samples collected. This is especially true for under-sampled water bodies such as the Indian Ocean. Specialised scientific equipmen...

  2. The impact of Indian Ocean high pressure system on rainfall and stream flow

    International Nuclear Information System (INIS)

    Rehman, S.; Nasir, H.; Zia, S.S.; Ansari, W.A.; Salam, K.; Tayyab, N.

    2012-01-01

    Centre of Action approach is very useful in getting insight of rainfall and stream flow variability of specific region. Hameed et al. showed that Inter-annual variability of Gulf Stream north wall is influenced by low Icelandic pressure system and has more statistically significant correlation than North Atlantic Oscillation (NAO) with longitude of Icelandic low. This study also aims to explore possible relationships between rainfall and stream flow in Collie river catchment in Southwest Western Australia (SWWA) with Indian Ocean high pressure dynamics. The relationship between rainfall and stream flow with Indian Ocean high pressure system have been investigated using correlation analysis for early winter season (MJJA), lag correlation for MJJA versus SOND rainfall and stream flow are also calculated and found significant at 95% confidence level. By investigating the relationship between COA indices with rainfall and stream flow over the period 1976-2008, significant correlations suggests that rainfall and stream flow in Collie river basin is strongly influenced by COA indices. Multiple correlations between rainfall and stream flow with Indian Ocean high pressure (IOHPS and IOHLN) is 0.7 and 0.6 respectively. Centers of Action (COA) indices explain 51% and 36% of rainfall and stream flow respectively. The correlation between rainfall and stream flow with IOHPS is -0.4 and -0.3 whereas, with IOHLN is -0.47 and -0.52 respectively. (author)

  3. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from POLARSTERN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2010-11-28 to 2011-02-05 (NODC Accession 0108155)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108155 includes discrete sample and profile data collected from POLARSTERN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans (>...

  4. Meridional overturning and large-scale circulation of the Indian Ocean

    Science.gov (United States)

    Ganachaud, Alexandre; Wunsch, Carl; Marotzke, Jochem; Toole, John

    2000-11-01

    The large scale Indian Ocean circulation is estimated from a global hydrographic inverse geostrophic box model with a focus on the meridional overturning circulation (MOC). The global model is based on selected recent World Ocean Circulation Experiment (WOCE) sections which in the Indian Basin consist of zonal sections at 32°S, 20°S and 8°S, and a section between Bali and Australia from the Java-Australia Dynamic Experiment (JADE). The circulation is required to conserve mass, salinity, heat, silica and "PO" (170PO4+O2). Near-conservation is imposed within layers bounded by neutral surfaces, while permitting advective and diffusive exchanges between the layers. Conceptually, the derived circulation is an estimate of the average circulation for the period 1987-1995. A deep inflow into the Indian Basin of 11±4 Sv is found, which is in the lower range of previous estimates, but consistent with conservation requirements and the global data set. The Indonesian Throughflow (ITF) is estimated at 15±5 Sv. The flow in the Mozambique Channel is of the same magnitude, implying a weak net flow between Madagascar and Australia. A net evaporation of -0.6±0.4 Sv is found between 32°S and 8°S, consistent with independent estimates. No net heat gain is found over the Indian Basin (0.1 ± 0.2PW north of 32°S) as a consequence of the large warm water influx from the ITF. Through the use of anomaly equations, the average dianeutral upwelling and diffusion between the sections are required and resolved, with values in the range 1-3×10-5 cm s-1 for the upwelling and 2-10 cm2 s-1 for the diffusivity.

  5. Climate trends across South Africa since 1980

    African Journals Online (AJOL)

    2018-04-03

    Apr 3, 2018 ... ISSN 1816-7950 (Online) = Water SA Vol. ... South Atlantic and Indian Ocean sea surface temperatures ... Understanding trends in climate can assist resource management and determine possible economic impacts. ... Reanalysis systems that augment ... future climate under rising greenhouse gases.

  6. Genetic Isolation among the Northwestern, Southwestern and Central-Eastern Indian Ocean Populations of the Pronghorn Spiny Lobster Panulirus penicillatus

    Directory of Open Access Journals (Sweden)

    Muhamad Fadry Abdullah

    2014-05-01

    Full Text Available The pronghorn spiny lobster Panulirus penicillatus is a highly valuable species which is widely distributed in Indo-West Pacific and Eastern Pacific regions. Mitochondrial DNA control region sequences (566–571 bp were determined to investigate the population genetic structure of this species in the Indian Ocean. In total, 236 adult individuals of Panulirus penicillatus were collected from five locations in the Indian Ocean region. Almost all individuals had a unique haplotype. Intrapopulation haplotype (h and nucleotide (π diversities were high for each locality, ranging from h = 0.9986–1.0000 and π = 0.031593–0.043441. We observed distinct genetic isolation of population located at the northwestern and southwestern edge of the species range. Gene flow was found within localities in the central and eastern region of the Indian Ocean, probably resulting from an extended planktonic larval stage and prevailing ocean currents.

  7. Intestinal helminths in lowland South American Indians: some evolutionary interpretations.

    Science.gov (United States)

    Confalonieri, U; Ferreira, L F; Araújo, A

    1991-12-01

    Data on intestinal parasite infections for South American Indians in prehistoric times as revealed by coprolite analysis are being used to support transoceanic migration routes from the Old World to the New World. These same findings on modern semi-isolated aborigines, considered persisting prehistoric patterns, are also of great importance as indicators of pre-Columbian peopling of South America. This is the case for the Lengua Indians from Paraguay, studied in the 1920s, and the Yanomami and the Salumã from Brazil, studied in the 1980s. The intestinal parasitic profile of these groups can be empirically associated with culture change, but no clear correlations with the population biology of their hosts can be made at present because of scarcity of data.

  8. Development of an Indian Ocean moored buoy array for climate studies

    Digital Repository Service at National Institute of Oceanography (India)

    McPhaden, M.J.; Kuroda, Y.; Murty, V.S.N.

    of measurements to societal benefit. Chief among the principles is the need to distributed data openly in a timely manner. There is a preference for communication of data in real time to make it available at climate analysis and prediction centers.... This is essential to demonstrate the value of IndOOS and capture the potential societal benefits. 1. Introduction The Indian Ocean is unique among the three tropical ocean basins in that it is blocked at 25°N by the Asian land mass. Seasonal heating over...

  9. Diversity and distribution of symbiodinium associated with seven common coral species in the Chagos Archipelago, central Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Sung-Yin Yang

    Full Text Available The Chagos Archipelago designated as a no-take marine protected area in 2010, lying about 500 km south of the Maldives in the Indian Ocean, has a high conservation priority, particularly because of its fast recovery from the ocean-wide massive coral mortality following the 1998 coral bleaching event. The aims of this study were to examine Symbiodinium diversity and distribution associated with scleractinian corals in five atolls of the Chagos Archipelago, spread over 10,000 km(2. Symbiodinium clade diversity in 262 samples of seven common coral species, Acropora muricata, Isopora palifera, Pocillopora damicornis, P. verrucosa, P. eydouxi, Seriatopora hystrix, and Stylophora pistillata were determined using PCR-SSCP of the ribosomal internal transcribed spacer 1 (ITS1, PCR-DDGE of ITS2, and phylogenetic analyses. The results indicated that Symbiodinium in clade C were the dominant symbiont group in the seven coral species. Our analysis revealed types of Symbiodinium clade C specific to coral species. Types C1 and C3 (with C3z and C3i variants were dominant in Acroporidae and C1 and C1c were the dominant types in Pocilloporidae. We also found 2 novel ITS2 types in S. hystrix and 1 novel ITS2 type of Symbiodinium in A. muricata. Some colonies of A. muricata and I. palifera were also associated with Symbiodinium A1. These results suggest that corals in the Chagos Archipelago host different assemblages of Symbiodinium types then their conspecifics from other locations in the Indian Ocean; and that future research will show whether these patterns in Symbiodinium genotypes may be due to local adaptation to specific conditions in the Chagos.

  10. Highly variable recurrence of tsunamis in the 7,400 years before the 2004 Indian Ocean tsunami

    Science.gov (United States)

    Horton, B.; Rubin, C. M.; Sieh, K.; Jessica, P.; Daly, P.; Ismail, N.; Parnell, A. C.

    2017-12-01

    The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here, we identify coastal caves as a new depositional environment for reconstructing tsunami records and present a 5,000 year record of continuous tsunami deposits from a coastal cave in Sumatra, Indonesia which shows the irregular recurrence of 11 tsunamis between 7,400 and 2,900 years BP. The data demonstrates that the 2004 tsunami was just the latest in a sequence of devastating tsunamis stretching back to at least the early Holocene and suggests a high likelihood for future tsunamis in the Indian Ocean. The sedimentary record in the cave shows that ruptures of the Sunda megathrust vary between large (which generated the 2004 Indian Ocean tsunami) and smaller slip failures. The chronology of events suggests the recurrence of multiple smaller tsunamis within relatively short time periods, interrupted by long periods of strain accumulation followed by giant tsunamis. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. The very long dormant period suggests that the Sunda megathrust is capable of accumulating large slip deficits between earthquakes. Such a high slip rupture would produce a substantially larger earthquake than the 2004 event. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda Megathrust ruptures as large as that of 2004 Indian Ocean tsunami. The remarkable variability of recurrence suggests that regional hazard mitigation plans should be based upon the high likelihood of future destructive tsunami demonstrated by

  11. Intraseasonal SST-precipitation coupling during the Indian Summer Monsoon, and its modulation by the Indian Ocean Dipole

    Science.gov (United States)

    Jongaramrungruang, S.; Seo, H.; Ummenhofer, C.

    2016-02-01

    The Indian Summer Monsoon (ISM) plays a crucial role in shaping the large proportion of the total precipitation over the Indian subcontinent each year. The ISM rainfall exhibits a particularly strong intraseasonal variability, that has profound socioeconomic consequences, such as agricultural planning and flood preparation. However, our understanding of the variability on this time scale is still limited due to sparse data availability in the past. In this study, we used a combination of state-of-the-art high-resolution satellite estimate of rainfall, objectively analyzed surface flux, as well as atmospheric reanalysis product to investigate the nature of the ISM intraseasonal rainfall variability and how it varies year to year. The emphasis is placed on the Bay of Bengal (BoB) where the intraseasonal ocean-atmosphere coupling is most prominent. Results show that the maximum warming of SST leads the onset of heavy precipitation event by 3-5 days, and that surface heat flux and surface wind speed are weak prior to the rain but amplifies and peaks after the rain reaches its maximum. Furthermore, the Indian Ocean Dipole (IOD) significantly affects the observed intraseasonal SST-precipitation relationship. The pre-convection SST warming is stronger and more pronounced during the negative phase of the IOD, while the signal is weaker and less organized in the positive phase. This is explained by the column-integrated moisture budget analysis which reveals that, during the ISM heavy rainfall in the BoB, there is more moisture interchange in the form of enhanced vertical advection from the ocean to atmosphere in negative IOD years as compared to positive IOD years. Knowing the distinction of ISM variabilities during opposite phases of the IOD will help contribute to a more reliable prediction of ISM activities.

  12. Dissolved petroleum hydrocarbon concentrations in some regions of the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    SenGupta, R.; Qasim, S.Z.; Fondekar, S.P.; Topgi, R.S.

    Dissolved petroleum hydrocarbons were measured in some parts of the Northern Indian Ocean using UV bsorbance technique with a clean up step. The concentration of oil ranged from 0.6 to 26.5 mu gl. Higher values were recorded along the oil tanker...

  13. Wave climatology of the Indian Ocean derived from altimetry and wave model

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Rao, L.V.G.; Kumar, R.; Sarkar, A.; Mohan, M.; Sudheesh, K.; Karthikeyan, S.B.

    are found to be low compared to model values. As expected, central Indian Ocean region is found to have higher waves, generally swells, generated by strong winds prevailing over there in all seasons. In July, the entire Arabian Sea is under the influence...

  14. Macrobenthic standing stock in the nodule areas of Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pavithran, S.; Ingole, B.S.

    Diversity, distribution and standing stock of macrofauna in the nodule areas of Central Indian Ocean Basin (CIOB) were studied during April 2003. The density ranged between 22 to 132 no.m super(-2) (mean: 55 + or - 37 SD, n=25) and biomass ranged...

  15. Assessment of the Conservation Status of the Indian Ocean Humpback Dolphin (Sousa plumbea) Using the IUCN Red List Criteria.

    Science.gov (United States)

    Braulik, Gill T; Findlay, Ken; Cerchio, Salvatore; Baldwin, Robert

    2015-01-01

    Indian Ocean humpback dolphins (Sousa plumbea) are obligate shallow-water dolphins that occur exclusively in the near-shore waters of the Indian Ocean, from South Africa to the Bay of Bengal. They have a narrow habitat preference, restricted distribution and do not appear very abundant across any part of their range. There is no estimate of total species abundance; all populations that have been quantitatively evaluated have been small in size, usually fewer than 200 individuals. Fishing, dredging, land reclamation, construction blasting, port and harbour construction, pollution, boat traffic and other coastal development activities all occur, or are concentrated within, humpback dolphin habitat and threaten their survival. Although data are far from sufficient to make a rigorous quantitative assessment of population trends for this species, the scale of threats is large enough over a significant enough portion of the range to suspect or infer a decline of at least 50% over three generations, which qualifies it for listing on the IUCN Red List as Endangered. The issue primarily responsible is incidental mortality in fisheries, but the loss and degradation of habitat is likely a contributing factor. None of the threats have been adequately addressed in any part of the species' range, even though threat levels are increasing virtually everywhere. © 2015 Elsevier Ltd All rights reserved.

  16. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    Science.gov (United States)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2018-02-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the

  17. PRESSURE - WATER and Other Data from UNKNOWN From Indian Ocean from 19060101 to 19891231 (NODC Accession 9100054)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data in the Indian Ocean from ORSTOM (France); 26,000 profiles from years 1906 thru 1989. Most appear to be derived from bathythermographs,...

  18. Determination of vertical velocities in the equatorial part of the western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    Using steady state two-dimensional turbulent diffusion equations of salt and heat some important characteristics of vertical circulation in the equatorial part of the Indian Ocean have been evaluated and discussed. Upwelling and sinking velocities...

  19. New ichthyoliths from ferromanganese crusts and nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    Ferromanganese encrusted hardgrounds, their intraclasts and the nuclei of manganese nodules collected from the Central Indian Ocean basin have yielded plentiful numbers of ichthyoliths. Forty well-knon ichthyoliths, one new type and 35 new subtypes...

  20. Record of the Cretaceous magnetic quiet zone in the distal Bengal fan and its significance in understanding the evolutionary history of the northeastern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Subrahmanyam, V.; Sarma, K.V.L.N.S.; Desa, M.; Rao, M.M.M.; Subrahmanyam, C.

    was collected during the International Indian Ocean Expedition Programme and subsequent expeditions to unravel the evolutionary history of Indian Ocean, not much was known about the age and nature of the ocean floor of the Bengal Fan but for few speculations...

  1. Relevance of bacterioplankton abundance and production in the oligotrophic equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, V.; Rodrigues, V.; Ramaiah, N.; Paul, J.T.

    , in some regions heterotrophic bacterial respiration (Del Giorgio et al. 1997) and production (Ameryk et al. 2005) sometimes far exceed the primary photosynthetic production. Unlike the Atlantic or Pacific Oceans, the Indian Ocean is landlocked... of the Yellow Sea. Mar Ecol Prog Ser 115:181–190 Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosystem; a cross-system overview. Mar Ecol Prog Ser 43:1–10 Del Giorgio PA, Cole JJ, Cimbleris A (1997) Respiration rates...

  2. Validity of zooplankton biomass estimates and energy equivalent in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Parulekar, A.H.

    , as deduced from the data on biochemical composition and energy content, it is evident that zooplankton of the Indian Ocean contains on an average 2.7% organic carbon, rather than the widely quoted value of 6.5%. The biomass production in terms of organic...

  3. Seabed topography and distribution of manganese nodules in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Kodagali, V.N.

    in number in all the topographic environments. Mn/Fe ratio was least (2.2) for nodules from hill taps whereas it was maximum for those from the plains (4.4). Cu+Ni+Co compositioin varied antipathetically with nodule abundance in the Central Indian Ocean....

  4. Distinctive Features of Surface Winds over Indian Ocean Between Strong and Weak Indian Summer Monsoons: Implications With Respect To Regional Rainfall Change in India

    Science.gov (United States)

    Zheng, Y.; Bourassa, M. A.; Ali, M. M.

    2017-12-01

    This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.

  5. Cocos (Keeling) corals reveal 200 years of multidecadal modulation of southeast Indian Ocean hydrology by Indonesian throughflow

    NARCIS (Netherlands)

    Hennekam, R.; Zinke, J.; van Sebille, E.; ten Have, M.; Brummer, G.-J. A.; Reichart, G.-J.

    2018-01-01

    The only low latitude pathway of heat and salt from the Pacific Ocean to the Indian Ocean,known as Indonesian Throughflow (ITF), has been suggested to modulate Global Mean SurfaceTemperature (GMST) warming through redistribution of surface Pacific Ocean heat. ITF observations are onlyavailable since

  6. Not Just About the Science: Cold War Politics and the International Indian Ocean Expedition

    Science.gov (United States)

    Harper, K.

    2016-12-01

    The International Indian Ocean Expedition broke ground for a series of multi-national oceanographic expeditions starting in the late 1950s. In and of itself, it would have been historically significant—like the International Geophysical Year (1957-58)—for pulling together the international scientific community during the Cold War. However, US support for this and follow-on Indian Ocean expeditions were not just about the science; they were also about diplomacy, specifically efforts to bring non-aligned India into the US political orbit and out of the clutches of its Cold War enemy, the Soviet Union. This paper examines the behind-the-scenes efforts at the highest reaches of the US government to extract international political gain out of a large-scale scientific effort.

  7. Preface to: Indian Ocean biogeochemical processes and ecological variability

    Digital Repository Service at National Institute of Oceanography (India)

    Hood, R.R.; Naqvi, S.W.A.; Wiggert, J.D.

    monsoonal in fluence. The biogeochemical and ecological impacts of this complex physical forcing are not yet fully understood. The Indian Ocean is truly one of the last great frontiers of ocea- nographic research. In addition, it appears... to be particularly vulnerable to climate change and anthropogenic impacts, yet it has been more than a decade since the last coordinated international study of biogeochemical and ecological proc esses was undertaken in this region. To obtain a better un...

  8. Modulation of the Ganges-Brahmaputra River Plume by the Indian Ocean Dipole and Eddies Inferred From Satellite Observations

    Science.gov (United States)

    Fournier, S.; Vialard, J.; Lengaigne, M.; Lee, T.; Gierach, M. M.; Chaitanya, A. V. S.

    2017-12-01

    The Bay of Bengal receives large amounts of freshwater from the Ganga-Brahmaputra (GB) river during the summer monsoon. The resulting upper-ocean freshening influences seasonal rainfall, cyclones, and biological productivity. Sparse in situ observations and previous modeling studies suggest that the East India Coastal Current (EICC) transports these freshwaters southward after the monsoon as an approximately 200 km wide, 2,000 km long "river in the sea" along the East Indian coast. Sea surface salinity (SSS) from the Soil Moisture Active Passive (SMAP) satellite provides unprecedented views of this peculiar feature from intraseasonal to interannual timescales. SMAP SSS has a 0.83 correlation and 0.49 rms-difference to 0-5 m in situ measurements. SMAP and in stu data both indicate a SSS standard deviation of ˜0.7 to 1 away from the coast, that rises to 2 pss within 100 km of the coast, providing a very favorable signal-to-noise ratio in coastal areas. SMAP also captures the strong northern BoB, postmonsoon cross-shore SSS contrasts (˜10 pss) measured along ship transects. SMAP data are also consistent with previous modeling results that suggested a modulation of the EICC/GB plume southward extent by the Indian Ocean Dipole (IOD). Remote forcing associated with the negative Indian Ocean Dipole in the fall of 2016 indeed caused a stronger EICC and "river in the sea" that extended by approximately 800 km further south than that in 2015 (positive IOD year). The combination of SMAP and altimeter data shows eddies stirring the freshwater plume away from the coast.Plain Language SummaryThe Bay of Bengal receives large quantity of freshwater from the Ganges-Brahmaputra river during the monsoon. The resulting low-salinity sea surface has strong implications for the regional climate and living marine resources. In situ observations are too sparse to provide salinity maps in this basin, even every 3 months. In contrast, the SMAP satellite provides maps at 40 km resolution

  9. Evaporation-precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2)

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Samir; Parekh, Anant; Saha, Subodh Kumar; Dhakate, Ashish; Chaudhari, Hemantkumar S. [Indian Institute of Tropical Meteorology, Pune (India); Rahaman, Hasibur [Indian National Centre for Ocean Information Services, Hyderabad (India); Gairola, Rakesh Mohan [Space Applications Centre, ISRO, Ahmedabad (India)

    2012-11-15

    simulation comply the distinct feature of the observed mean annual cycle of evaporation and precipitation, but with the additive systematic bias over most of the region. El Nino and negative Indian Ocean Dipole (NIOD) seems to have much better control over the interannual variability of evaporation in the CFS simulation, contrary to the observation where El Nino and positive Indian Ocean Dipole (PIOD) has the larger say. Both El Nino and PIOD (La Nina and NIOD) have the negative (positive) influence on the basin wide evaporation with the exception over a limited region and this relation holds for the twain. The seasonal (JJA and SON) locking of El Nino and PIOD to evaporation and precipitation is displayed by the north-south and east-west asymmetric correlation pattern respectively and this is much perspicuous in the observation as compared to the CFS. The conjoined influence of El Nino and PIOD on evaporation (precipitation) reveals the dominance of PIOD (PIOD + El Nino) response in case of both the observation as well as the CFS. This study will lead a way forward to rectify the ubiquitous cold SST bias in the CFS simulation and help in establishing the credibility of the CFS in terms of seasonal predictability. (orig.)

  10. ENSO modulation of interannual variability of dust aerosols over the northwest Indian ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banerjee, P.; PrasannaKumar, S.

    Mineral dust is known to affect many aspects of the climate of the north Indian Ocean (IO) However, what controls its interannual variability over this region is largely unknown The authors study the mechanism controlling the interannual variability...

  11. Western Indian Ocean Journal of Marine Science - Vol 6, No 2 (2008)

    African Journals Online (AJOL)

    Western Indian Ocean Journal of Marine Science. ... Assessment of Heavy Metal Pollution in Sediment and Polychaete Worms from the Mzinga Creek and Ras Dege Mangrove Ecosystems, Dar es Salaam, Tanzania · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  12. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from RRS JAMES COOK in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2009-02-03 to 2009-03-03 (NODC Accession 0110379)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110379 includes discrete sample and profile data collected from RRS JAMES COOK in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans...

  13. [Helminthic fauna of commercial fishes from the Saya-de-Malya bank (Indian Ocean)].

    Science.gov (United States)

    Parukhin, A M

    1988-01-01

    The data on infestation of 8 species of commercial fishes from Saya-de-Malya bank (the Indian Ocean) are presented. 43 helminth species were identified: 10 Monogenea species, 18 trematode, 7 cestode and 8 nematode species. The mature worms are observed to be related to a certain host, whereas the nematode and cestode larvae have wide specificity. High infestation degree by Anisakis larvae is found in fishes, especially in Carangidae. At the bank area fishes are found to be free from Acanthocephala while those Acanthocephala are found in fishes from other areas of the Indian Ocean which may be attributed to the specific diet at the Saya-de-Malya bank. On the whole the helminth fauna of fishes examined at the Saya-de-Malya bank does not demonstrate the endemic pattern. The most specific helminth species were found in some fish species.

  14. An atlast of XBT thermal structures and TOPEX/POSEIDON sea surface heights in the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Ali, M.M.; Araligidad, N.; Shenoi, S.S.C.; Shum, C.K.; Yi, Y.

    the Indian XBT Program were used to plot the sub-surface thermal structures of the Indian Ocean for 1993 to 2003. Since these in situ measurements are just along the ship tracks, sea surface height observations from the TOPEX altimeter were also plotted over...

  15. Macrobenthic abundance in the vicinity of spreading ridge environment in Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.

    Macrofaunal communities of the Central Indian Ocean were evaluated for their composition, distribution, abundance and biomass. The fauna comprised of 24 major groups belonging to 15 phyla. The density of macrofauna varied from 30 to 1430 ind.m–2...

  16. Relationships between Indian summer monsoon rainfall and ice cover over selected oceanic regions

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.

    The variations in oceanic ice cover at selected polar regions during 1973 to 1987 have been analysed in relation to the seasonal Indian summer monsoon rainfall. The ice cover over the Arctic regions in June has negative relationship (correlation...

  17. Oceanic and atmospheric conditions associated with the pentad rainfall over the southeastern peninsular India during the North-East Indian Monsoon season

    Science.gov (United States)

    Shanmugasundaram, Jothiganesh; Lee, Eungul

    2018-03-01

    The association of North-East Indian Monsoon rainfall (NEIMR) over the southeastern peninsular India with the oceanic and atmospheric conditions over the adjacent ocean regions at pentad time step (five days period) was investigated during the months of October to December for the period 1985-2014. The non-parametric correlation and composite analyses were carried out for the simultaneous and lagged time steps (up to four lags) of oceanic and atmospheric variables with pentad NEIMR. The results indicated that NEIMR was significantly correlated: 1) positively with both sea surface temperature (SST) led by 1-4 pentads (lag 1-4 time steps) and latent heat flux (LHF) during the simultaneous, lag 1 and 2 time steps over the equatorial western Indian Ocean, 2) positively with SST but negatively with LHF (less heat flux from ocean to atmosphere) during the same and all the lagged time steps over the Bay of Bengal. Consistently, during the wet NEIMR pentads over the southeastern peninsular India, SST significantly increased over the Bay of Bengal during all the time steps and the equatorial western Indian Ocean during the lag 2-4 time steps, while the LHF decreased over the Bay of Bengal (all time steps) and increased over the Indian Ocean (same, lag 1 and 2). The investigation on ocean-atmospheric interaction revealed that the enhanced LHF over the equatorial western Indian Ocean was related to increased atmospheric moisture demand and increased wind speed, whereas the reduced LHF over the Bay of Bengal was associated with decreased atmospheric moisture demand and decreased wind speed. The vertically integrated moisture flux and moisture transport vectors from 1000 to 850 hPa exhibited that the moisture was carried away from the equatorial western Indian Ocean to the strong moisture convergence regions of the Bay of Bengal during the same and lag 1 time steps of wet NEIMR pentads. Further, the moisture over the Bay of Bengal was transported to the southeastern peninsular

  18. Neurocysticercosos in South-Central America and the Indian Subcontinent: a comparative evaluation

    Directory of Open Access Journals (Sweden)

    Gagandeep Singh

    1997-09-01

    Full Text Available Neurocysticercosis is an important public health problem in South-Central America and South Asia. A review of the differences in epidemiological and clinical attributes of cysticercosis and taeniasis in South Central America and India, respectively, is undertaken in the present communication. Intestinal taeniasis is hyperendemic in several American countries. In comparison, the prevalence of Taenia solium infestation is lower in India. The clinical manifestations in several American neurocysticercosis series comprise epilepsy, intracranial hypertension and meningeal - racemose cysticercosis, in roughly equal proportions. An overwhelming majority of the Indian subjects present with seizures. The commonest pathological substrate of the disorder in Indian patients is the solitary parenchymal degenerating cyst. The reasons for the predominance of solitary forms in India, and of multilesional forms in South Central America are discussed. The magnitude of Taenia solium infestation and the frequency of pork consumption in a given population appear to influence the quantum of cyst load in affected individuals.

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The temporal and spatial variability of the various meteorological parameters over India and its different subregions is high. The Indian subcontinent is surrounded by the complex Himalayan topography in north and the vast oceans in the east, west and south. Such distributions have dominant influence over its climate and ...

  20. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2015-12-17 to 2016-01-13 (NCEI Accession 0157011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157011 includes chemical, discrete sample, physical and profile data collected from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean...

  1. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 1992-11-01 to 1992-12-08 (NODC Accession 0115024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115024 includes chemical, discrete sample, physical and profile data collected from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean...

  2. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian Throughflow

    Science.gov (United States)

    Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie

    2000-09-01

    The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.

  3. Inter-annual variability of sea surface temperature, wind speed and sea surface height anomaly over the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Pankajakshan, T.; Sathe, P.V.

    Being land-locked at the north, the Indian Ocean and its surrounding atmosphere behave in such a way that the ocean-atmosphere interaction over this domain is different from that over the other oceans, exhibiting a peculiar dynamics. The sparse data...

  4. Community-Specific BMI Cutoff Points for South Indian Females

    Directory of Open Access Journals (Sweden)

    K. B. Kishore Mohan

    2011-01-01

    Full Text Available Objective. To analyze multiparameters related to total body composition, with specific emphasis on obesity in South Indian females, in order to derive community-specific BMI cutoff points. Patients and Methods. A total number of 87 females (of age 37.33±13.12 years from South Indian Chennai urban population participated in this clinical study. Body composition analysis and anthropometric measurements were acquired after conducting careful clinical examination. Results. BMI demonstrated high significance when normal group (21.02±1.47 kg/m2 was compared with obese group (29.31±3.95 kg/m2, <0.0001. BFM displayed high significance when normal group (14.92±4.28 kg was compared with obese group (29.94 ± 8.1 kg, <0.0001. Conclusion. Community-specific BMI cutoffs are necessary to assess obesity in different ethnic groups, and relying on WHO-based universal BMI cutoff points would be a wrong strategy.

  5. Western Indian Ocean Journal of Marine Science - Vol 11, No 1 (2012)

    African Journals Online (AJOL)

    Using an ecosystem model to evaluate fisheries management options to mitigate climate change impacts in western Indian Ocean coral reefs · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Carlos Ruiz Sebastián, Tim R. McClanahan, 77-86 ...

  6. Western Indian Ocean Journal of Marine Science - Vol 10, No 1 (2011)

    African Journals Online (AJOL)

    Assessing Spatio-temporal Patterns of Groundwater Salinity in Small Coral Islands in the Western Indian Ocean · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. J-L Join, O Banton, J-C Comte, J Leze, F Massin, E Nicolini, 1-12 ...

  7. Indian Ocean Earthquake and Tsunamis: Food Aid Needs and the U.S. Response

    National Research Council Canada - National Science Library

    Hanrahan, Charles E

    2005-01-01

    ...) in Indonesia set off a series of large tsunamis across the Indian Ocean region. In all, 12 countries were hit by wave surges, with the brunt of the impact in coastal communities in Indonesia, the Maldives, Sri Lanka, and Thailand...

  8. In Search of Agency: South Indian Percussion in a Globalized India

    OpenAIRE

    Jones, Erica Suzanne

    2017-01-01

    South Indian classical (Karnatic) music and dance are essential representations of a globalized Indian identity and culture. They are emblematic of and perpetuate socio-cultural ideals of masculinity and femininity within nationalist and performance spaces. I examine the current performance space as a heritage tradition, revived and reclaimed in the 1940s-Nationalist Period. My dissertation focuses on the performance of gender within Karnatic music from a postcolonial decolonized perspective....

  9. Watermass structure in the western Indian Ocean: Part 1. Watermasses and their thermohaline indices

    Digital Repository Service at National Institute of Oceanography (India)

    Sastry, J.S.; Premchand, K.; Murty, C.S.

    The concept of "Indian Ocean Common Watermass" is introduced and its characteristics are defined. The temperature-salinity structures which would result when one, two or more watermasses of different temperature and salinity characteristics...

  10. Comparison between the Coastal Impacts of Cyclone Nargis and the Indian Ocean Tsunami

    Science.gov (United States)

    Fritz, H. M.; Blount, C.

    2009-12-01

    On 26 December 2004 a great earthquake with a moment magnitude of 9.3 occurred off the North tip of Sumatra, Indonesia. The Indian Ocean tsunami claimed 230,000 lives making it the deadliest in recorded history. Less than 4 years later tropical cyclone Nargis (Cat. 4) made landfall in Myanmar’s Ayeyarwady delta on 2 May 2008 causing the worst natural disaster in Myanmar’s recorded history. Official death toll estimates exceed 138,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. The Bay of Bengal counts seven tropical cyclones with death tolls in excess of 100,000 striking India and Bangladesh in the past 425 years, which highlights the difference in return periods between extreme cyclones and tsunamis. Damage estimates at over $10 billion made Nargis the most damaging cyclone ever recorded in the Indian Ocean. Although the two natural disasters are completely different in their generation mechanisms they both share massive coastal inundations as primary damage and death cause. While the damage patterns exhibit similarities the forcing differs. The primary tsunami impact is dominated by the runup of a few main waves washing rapidly ashore and inducing high lateral forces. On the contrary the tropical cyclone storm surge damage is the result of numerous storm waves continuously hitting the flooded structures on the elevated storm tide level. While coastal vegetation such as mangroves may be effective at reducing superimposed storm waves they are limited at reducing storm surge. Unfortunately, mangroves have been significantly cut for charcoal and land use as rice paddies in Myanmar due to rapid population growth and economic reasons, thereby increasing coastal vulnerability and land loss due to erosion (Figure 1). The period of a storm surge is typically an order of magnitude longer than the period of a tsunami resulting in significantly larger inundation distances along coastal plains and river deltas. The storm surge of cyclone Nargis

  11. A systematic health assessment of indian ocean bottlenose (Tursiops aduncus and indo-pacific humpback (Sousa plumbea dolphins incidentally caught in shark nets off the KwaZulu-Natal Coast, South Africa.

    Directory of Open Access Journals (Sweden)

    Emily P Lane

    Full Text Available Coastal dolphins are regarded as indicators of changes in coastal marine ecosystem health that could impact humans utilizing the marine environment for food or recreation. Necropsy and histology examinations were performed on 35 Indian Ocean bottlenose dolphins (Tursiops aduncus and five Indo-Pacific humpback dolphins (Sousa plumbea incidentally caught in shark nets off the KwaZulu-Natal coast, South Africa, between 2010 and 2012. Parasitic lesions included pneumonia (85%, abdominal and thoracic serositis (75%, gastroenteritis (70%, hepatitis (62%, and endometritis (42%. Parasitic species identified were Halocercus sp. (lung, Crassicauda sp. (skeletal muscle and Xenobalanus globicipitis (skin. Additional findings included bronchiolar epithelial mineralisation (83%, splenic filamentous tags (45%, non-suppurative meningoencephalitis (39%, and myocardial fibrosis (26%. No immunohistochemically positive reaction was present in lesions suggestive of dolphin morbillivirus, Toxoplasma gondii and Brucella spp. The first confirmed cases of lobomycosis and sarcocystosis in South African dolphins were documented. Most lesions were mild, and all animals were considered to be in good nutritional condition, based on blubber thickness and muscle mass. Apparent temporal changes in parasitic disease prevalence may indicate a change in the host/parasite interface. This study provided valuable baseline information on conditions affecting coastal dolphin populations in South Africa and, to our knowledge, constitutes the first reported systematic health assessment in incidentally caught dolphins in the Southern Hemisphere. Further research on temporal disease trends as well as disease pathophysiology and anthropogenic factors affecting these populations is needed.

  12. A Systematic Health Assessment of Indian Ocean Bottlenose (Tursiops aduncus) and Indo-Pacific Humpback (Sousa plumbea) Dolphins Incidentally Caught in Shark Nets off the KwaZulu-Natal Coast, South Africa

    Science.gov (United States)

    Lane, Emily P.; de Wet, Morné; Thompson, Peter; Siebert, Ursula; Wohlsein, Peter; Plön, Stephanie

    2014-01-01

    Coastal dolphins are regarded as indicators of changes in coastal marine ecosystem health that could impact humans utilizing the marine environment for food or recreation. Necropsy and histology examinations were performed on 35 Indian Ocean bottlenose dolphins (Tursiops aduncus) and five Indo-Pacific humpback dolphins (Sousa plumbea) incidentally caught in shark nets off the KwaZulu-Natal coast, South Africa, between 2010 and 2012. Parasitic lesions included pneumonia (85%), abdominal and thoracic serositis (75%), gastroenteritis (70%), hepatitis (62%), and endometritis (42%). Parasitic species identified were Halocercus sp. (lung), Crassicauda sp. (skeletal muscle) and Xenobalanus globicipitis (skin). Additional findings included bronchiolar epithelial mineralisation (83%), splenic filamentous tags (45%), non-suppurative meningoencephalitis (39%), and myocardial fibrosis (26%). No immunohistochemically positive reaction was present in lesions suggestive of dolphin morbillivirus, Toxoplasma gondii and Brucella spp. The first confirmed cases of lobomycosis and sarcocystosis in South African dolphins were documented. Most lesions were mild, and all animals were considered to be in good nutritional condition, based on blubber thickness and muscle mass. Apparent temporal changes in parasitic disease prevalence may indicate a change in the host/parasite interface. This study provided valuable baseline information on conditions affecting coastal dolphin populations in South Africa and, to our knowledge, constitutes the first reported systematic health assessment in incidentally caught dolphins in the Southern Hemisphere. Further research on temporal disease trends as well as disease pathophysiology and anthropogenic factors affecting these populations is needed. PMID:25203143

  13. Land-Sourced Pollution with an Emphasis on Domestic Sewage: Lessons from the Caribbean and Implications for Coastal Development on Indian Ocean and Pacific Coral Reefs

    Directory of Open Access Journals (Sweden)

    Andre DeGeorges

    2010-09-01

    Full Text Available This paper discusses land-sourced pollution with an emphasis on domestic sewage in the Caribbean in relation to similar issues in the Indian Ocean and Pacific. Starting on a large-scale in the 1980s, tropical Atlantic coastlines of Florida and Caribbean islands were over-developed to the point that traditional sewage treatment and disposal were inadequate to protect fragile coral reefs from eutrophication by land-sourced nutrient pollution. This pollution caused both ecological and public health problems. Coral reefs were smothered by macro-algae and died, becoming rapidly transformed into weedy algal lawns, which resulted in beach erosion, and loss of habitat that added to fisheries collapse previously caused by over-fishing. Barbados was one of the first countries to recognize this problem and to begin implementation of effective solutions. Eastern Africa, the Indian Ocean Islands, Pacific Islands, and South East Asia, are now starting to develop their coastlines for ecotourism, like the Caribbean was in the 1970s. Tourism is an important and increasing component of the economies of most tropical coastal areas. There are important lessons to be learned from this Caribbean experience for coastal zone planners, developers, engineers, coastal communities and decision makers in other parts of the world to assure that history does not repeat itself. Coral reef die-off from land-sourced pollution has been eclipsed as an issue since the ocean warming events of 1998, linked to global warming. Addressing ocean warming will take considerable international cooperation, but much of the land-sourced pollution issue, especially sewage, can be dealt with on a watershed by watershed basis by Indian Ocean and Pacific countries. Failure to solve this critical issue can adversely impact both coral reef and public health with dire economic consequences, and will prevent coral reef recovery from extreme high temperature events. Sewage treatment, disposal options

  14. Genomic admixture tracks pulses of economic activity over 2,000 years in the Indian Ocean trading network.

    Science.gov (United States)

    Brucato, Nicolas; Kusuma, Pradiptajati; Beaujard, Philippe; Sudoyo, Herawati; Cox, Murray P; Ricaut, François-Xavier

    2017-06-07

    The Indian Ocean has long been a hub of interacting human populations. Following land- and sea-based routes, trade drove cultural contacts between far-distant ethnic groups in Asia, India, the Middle East and Africa, creating one of the world's first proto-globalized environments. However, the extent to which population mixing was mediated by trade is poorly understood. Reconstructing admixture times from genomic data in 3,006 individuals from 187 regional populations reveals a close association between bouts of human migration and trade volumes during the last 2,000 years across the Indian Ocean trading system. Temporal oscillations in trading activity match phases of contraction and expansion in migration, with high water marks following the expansion of the Silk Roads in the 5 th century AD, the rise of maritime routes in the 11 th century and a drastic restructuring of the trade network following the arrival of Europeans in the 16 th century. The economic fluxes of the Indian Ocean trade network therefore directly shaped exchanges of genes, in addition to goods and concepts.

  15. The Southern Ocean and South Pacific Region

    OpenAIRE

    Kelleher, K.; Warnau, Michel; Failler, Pierre; Pecl, Gretta; Turley, Carol; Boeuf, Gilles; Laffoley, Dan; Parker, Laura; Gurney, Leigh

    2012-01-01

    The Region comprises three sub-regions (FAO Statistical Areas) with very different characteristics. The South Pacific includes the vast and virtually unpopulated Southern Ocean surrounding the Antarctic. It has the world’s largest fisheries off Peru and Chile and some of the world’s best managed fisheries in Australia and New Zealand. The Region has over 27% of the world’s ocean area and over 98% of the Region’s total area of 91 million km2 is ‘open ocean’. The Region contains less than 5% of...

  16. Moisture flux divergence over the tropical Indian Ocean using INSAT 1B data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Rao, L.V.G.

    /plain; charset=UTF-8 PROCEEDINGS OF THE TENTH ASIAN CONFERENCE ON REMOTE SENSING NOV. 23-29. 1989 KUAlA LUMPUR. MALAYSIA ACRS 1989 ASIAN CONFERENCE ON REMOTE SENSING .IM)~SroREFLUX DIVERGENCE OVER THE TROPICAL INDIAN OCEAN USING INSAT 18 DATA H. R...

  17. Latitudinal range of epiplanktonic Cahetognatha and Ostracoda in the western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.; Madhupratap, M.

    An account of the chaetognath and ostracod species obtained from zooplankton samples collected along a transect in the Western Indian Ocean between 9 degrees N-20 degrees S and 57 degrees 18'-68 degrees 43'E in January-February 1981 is given...

  18. Sensitivity experiments with an adaptation model of circulation of western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Shaji, C.; Rao, A.D.; Dube, S.K.

    circulation at 10 m depth is controlled by both wind stress and sea surface topography. Circulation at 50 m depth is mainly controlled by thermohaline forcing and sea surface topography. The current speed in the western tropical Indian Ocean is of the order...

  19. Biological oceanography across the Southern Indian Ocean – basinscale trends in the zooplankton community

    DEFF Research Database (Denmark)

    Jonasdottir, Sigrun; Nielsen, Torkel Gissel; Borg, Christian Marc Andersen

    2013-01-01

    We present a study on the protozooplankton 45 mm and copepods larger than 50 mm at a series of contrasting stations across the Southern Indian Ocean (SIO). Numerically, over 80% of the copepod community across the transect was less than 650 mm in size, dominated by nauplii, and smaller copepods...... stations. Secondary production was low (carbon specific egg production o0.14 d1) but typical for food limited oligotrophic oceans...

  20. Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-04-15

    Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)

  1. Warming of the Indian Ocean Threatens Eastern and Southern Africa, but could be Mitigated by Agricultural Development

    Science.gov (United States)

    Funk, Chris; Dettinger, Michael D.; Brown, Molly E.; Michaelsen, Joel C.; Verdin, James P.; Barlow, Mathew; Howell, Andrew

    2008-01-01

    Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high and declining per capita agricultural capacity retards progress towards Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation identify another problematic trend. Main growing season rainfall receipts have diminished by approximately 15% in food insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus late 20th century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling millions of undernourished people as a function of rainfall, population, cultivated area, seed and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people. On the other hand, modest increases in per capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability.

  2. Hydrothermal signature in ferromanganese oxide coatings on pumice from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.; Mascarenhas-Pereira, M.B.L.; Nath, B.N.

    Mineralogical and elemental analyses of 20 ferromanganese (FeMn)-coated pumice samples from the Central Indian Ocean Basin (CIOB) indicate that todorokite is the major mineral phase, whereas vernadite occurs only rarely. Based on major, trace...

  3. Preface to: Marine micropaleontological studies from the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Nigam, R.; Saraswat, R.

    -pollens, ostracodes, etc. The objective is to provide a comprehensive review of the developments in the oron. micropaleontological st~dies'throu~h ages, with examples from the northern Indian Ocean re,' Micropaleontological studies have experienced a sea-drift over... based foraminifera1 proxies for paleoclimatic/paleoceanographic reconstruction. The paper by Liilshy et al. provides the comprehensive details of the laboratory culture studies on benthic foraminifera carried out with the aim to refine field based...

  4. Mineralogy of polymetallic nodules and associated sediments from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P

    in montmorillonite, chlorite and illite, delta MnO sub(2) is the dominant mineral phase in the nodules of the southern Central Indian Ocean Basin. These nodules have a smooth surface texture, are relatively rich in Fe and Co, and are associated with pelagic clay...

  5. Phytoplankton community structure at the juncture of the Agulhas return front and subtropical front in the Indian Ocean sector of Southern Ocean: Bottom-up and top-down control

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, R.K.; George, J.V.; Soares, M.A.; Devi, A.; Anilkumar, N.; Roy, R.; Bhaskar, P.V.; Murukesh, N.; Achuthankutty, C.T.

    The juncture of the Agulhas Return Front (ARF) and Subtropical Front (STF) in the Indian Ocean sector of Southern Ocean (SO) is characterized by high mesoscale turbulence, which results in sporadic, short lived phytoplankton proliferation The biota...

  6. The origin of ferro-manganese oxide coated pumice from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Pearce, N.J.G.; Parthiban, G.; Smith, V.C.; Mudholkar, A.V.; Rao, N.R

    Pumice clasts, partially and fully coated with ferro-manganese oxide from the Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements; and glass and mineral grain chemistry to assess their possible source...

  7. Inter-relationship between nuclei and gross characteristics of manganese nodules, Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, C; Iyer, S.D.; Hazra, S.

    More than 200 samples of manganese nodules from the Central Indian Ocean Basin (CIOB) were studied for their different parameters. The study included various aspects such as morphology, texture, mineralogy, and composition of the nodules. The nuclei...

  8. Chaetognath community and their responses to varying environmental factors in the northern Indian ocean.

    Digital Repository Service at National Institute of Oceanography (India)

    Kusum, K.K.; Vineetha, G.; Raveendran, T.V.; Nair, V.R.; Muraleedharan, K.R.; Achuthankutty, C.T.; Joseph, T.

    The ecology of the chaetognath community and its relation to varying environmental factors were studied in the eastern half of the northern Indian Ocean. Analysis of data from two major oceanographic programmes performed over four decades apart...

  9. Aldehyde dehydrogenase polymorphism in North American, South American, and Mexican Indian populations.

    Science.gov (United States)

    Goedde, H W; Agarwal, D P; Harada, S; Rothhammer, F; Whittaker, J O; Lisker, R

    1986-01-01

    While about 40% of the South American Indian populations (Atacameños, Mapuche, Shuara) were found to be deficient in aldehyde dehydrogenase isozyme I (ALDH2 or E2), preliminary investigations showed very low incidence of isozyme deficiency among North American natives (Sioux, Navajo) and Mexican Indians (mestizo). Possible implications of such trait differences on cross-cultural behavioral response to alcohol drinking are discussed. PMID:3953578

  10. Tectonic reactivation in the Indian Ocean: Evidences from seamount morphology and manganese nodule characteristics

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Khadge, N.H.

    The Central Indian Ocean Basin (CIOB) was subjected to tectonic reactivation in geological past which is unusual for a basin occurring on an apparently single tectonic plate. ENE-WSW trending latitude parallel zone of reactivation across the central...

  11. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-01

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India (the Indo-Gangetic plain, central India, south India, and northwest India), southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Météorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest

  12. Calcareous nannoplankton assemblages across the Pliocene-Pleistocene transition in the southwestern Indian Ocean, IODP Site U1475

    Science.gov (United States)

    Cares, Z.; Farr, C. L.; LeVay, L.; Tangunan, D.; Brentegani, L.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 361 cored six sites along the greater Agulhas Current System to track its intensity through time and to better understand its role in global oceanic circulation and climate. One of the main scientific objectives of this expedition was to determine the dynamics of the Indian-Atlantic Ocean Gateway circulation during Pliocene-Pleistocene climate changes in association with changing wind fields and migrating ocean fronts. The Indian-Atlantic Ocean Gateway contains a pronounced oceanic frontal system, the position of which has the potential to influence global climate on millennial scales. Owing to the physical differences between the frontal zones, this region has complex biogeochemistry, changes in phytoplankton distribution, and variations in primary productivity. Site U1475 was cored on the Agulhas Plateau in the Southwestern Indian Ocean and recovered a complete sequence of calcareous ooze spanning the last 7 Ma. Previous studies at this locality have shown latitudinal migrations of the frontal zones over the past 350 kyr that resulted in prominent millennial shifts in primary production, biological pump efficiency, and microfossil assemblages that coincide with Antarctic climate variability. Here we present initial results comprised of calcareous nannoplankton assemblages in order to test if similar latitudinal frontal migrations occurred during the Pliocene-Pleistocene transition (PPT; 2.7 Ma). The calcareous nannoplankton assemblage shows an abundance increase of taxa associated with cooler water and higher primary production across the PPT interval. In addition to a change in species abudance, the Shannon diversity index drops notably across the transition, which is typical of nannoplankton communities in more productive regions. These data suggest that a long-term change in sea surface temperature and nutrient availability took place across the PPT, potentially linked to the northward migration of

  13. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge

    International Nuclear Information System (INIS)

    Michard, A.; Montigny, R.; Schlich, R.

    1986-01-01

    Rare earth element abundances and SR, Nd, Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR). Along the SEIR, the geochemical ''halo'' of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87 Sr/ 86 Sr=0.7028, 143 Nd/ 144 Nd=0.51304, 206 Pb/ 204 Pb=17.8) and the plume type St. Paul component (0.7036, 0.5129 and 18.7 respectively). The alignment of the lead isotope data is particularly good with age of 1.95+-0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kertguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206 Pb/ 204 Pb ratios which plots to the left of the geochron, rather high 208 Pb/ 204 Pb and 87 Sr/ 86 Sr ratios (17.4, 37.4, and 0.7031 respectively) a striking isotopic homogeneity, and variable LRE/HREE fractionation with (LA/S)sub(N) 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basalts have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust), and (c) a component with low μ, Low Sm/Nd, high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208 Pb/ 204 Pb and 87 Sr/ 86 Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area, including that for MORBs. (orig.)

  14. Geochemistry of the mantle beneath the Rodriguez Triple Junction and the South-East Indian Ridge

    Science.gov (United States)

    Michard, A.; Montigny, R.; Schlich, R.

    1986-05-01

    Rare earth element abundances and Sr, Nd. Pb isotope compositions have been measured on zero-age dredge samples from the Rodriguez Triple Junction (RTJ) and the South-East Indian Ridge (SEIR), Along the SEIR. the geochemical "halo" of the St. Paul hot spot has a half-width of about 400 km and the data may be fairly well accounted for by a binary mixing between an Indian MORB-type component ( 87Sr/ 86Sr = 0.7028. 143Nd/ 144Nd = 0.51304. 206Pb/ 204Pb = 17.8) and the plume-type St. Paul component (0.7036, 0.5129, and 18.7 respectively). The alignment of the lead isotope data is particularly good with an apparent age of 1.95 ± 0.13 Ga and Th/U source value of 3.94. One sample dredged on the ridge 60 km southeast of St. Paul bears a definite Kerguelen isotopic signature. The RTJ has distinctive geochemical properties which contrast with those of the adjacent ridge segments. Low 206Pb/ 204Pb ratios which plots to the left of the geochron, rather high 208Pb/ 204Pb and 87Sr/ 87Sr ratios (17.4. 37.4, and 0.7031 respectively), a striking isotopic homogeneity, and variable LREE/HREE fractionation with (La/Sm) N, = 0.3-0.8 make this triple junction an anomalous site. The geochemical properties of the Indian Ocean basats have been examined using a three-component mantle model involving (a) a normal MORB-type source though to represent the depleted upper mantle matrix, (b) an OIB-type source of uncertain parentage (recycled oceanic crust?), and (c) a component with low μ. low Sm/Nd. high Rb/Sr (time-averaged value) which is tentatively assigned to ancient hydrothermal and abyssal sediments recycled in the mantle. The high 208Pb/ 204Pb and 87Sr/ 86Sr ratios typical of the Dupal anomaly are likely due to the widespread distribution of this latter component in the basalt source from this area. including that for MORBs.

  15. Radiocarbon age of the recent deposits of the Indian Ocean western part (Seychelles)

    International Nuclear Information System (INIS)

    Svitoch, A.A.; Parunin, O.B.

    1988-01-01

    Mass radiocarbon dating according to Pleistocene precipitations of the islands of the Western Part of the Indian ocean is carried out. Time of formation of black-rock precipitations, low benches and island sandstones of low islands - middle-late Holocene - is established. Rocks of a reef complex are late Pleistocene. Relative concentration of dates according to various types of deposits points to the trustworthness and testifies about usefulness of radiocarbon analysis for stratigraphic and chronological separation of carbonate precipitations of islands of the equatorial zone of the ocean

  16. New insights into the geodiversity of the southeast Indian Ocean seafloor revealed by Malaysia Airlines flight MH370 search data

    Science.gov (United States)

    Picard, K.; Brooke, B. B.; Harris, P. T.; Siwabessy, J. P. W.; Coffin, M. F.; Tran, M.; Spinoccia, M.; Weales, J.; Macmillan-Lawler, M.; Sullivan, J.

    2017-12-01

    A large multibeam echo sounder (MBES) dataset (710, 000 km2, inclusive of transit data) was acquired in the SE Indian Ocean to assist the search for Malaysia Airlines Flight 370 (MH370). Here, we present the results of a geomorphic analysis of this new data and compare with the Global Seafloor Geomorphic Features Map (GSFM) that is based on coarser resolution satellite-derived bathymetry data. The analyses show that abyssal plains and basins are significantly more rugged than their representation in the GSFM, with a 20% increase in the extent of hills and mountains. The new model also reveals four times more seamounts than presented in the GSFM, suggesting a greater number of these features than previously estimated for the broader region and indeed globally. This is important considering the potential ecological significance of these high-relief structures. Analyses of the new data also enabled knolls, fans, valleys, canyons, troughs and holes to be identified, doubling the number of discrete features mapped and revealing the true geodiversity of the deep ocean in this area. This high-resolution mapping of the seafloor also provides new insights into the geological evolution of the region, both in terms of structural, tectonic, and sedimentary processes. For example, sub-parallel ridges extend over approximately 20% of the area mapped and their form and alignment provide valuable insight into Southeast Indian Ridge seafloor spreading processes. Rifting is recorded along the Broken Ridge - Diamantina Escarpment, with rift blocks and well-bedded sedimentary bedrock exposures discernible down to 2,400 m water depth. Ocean floor sedimentary processes are represented in sediment mass transport features, especially along and north of Broken Ridge, and pockmarks (the finest-scale features mapped) south of Diamantina Trench. The new MBES data highlight the complexity of the search area and serve to demonstrate how little we know about the 85-90% of the ocean floor that

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    pp 113-119. Relationship between chemical composition and magnetic susceptibility in sediment cores from Central Indian Ocean Basin · J N Pattan G Parthiban V K Banakar A Tomer M Kulkarni · More Details Abstract Fulltext PDF. Three sediment cores in a north–south transect (3°N to 13°S) from different sediment types ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Measurements of the concentration and size distribution of aerosol particles in the size-ranges of 0.5–20 m and 16–700 nm diameters were made during six fog episodes over the south Indian Ocean. Observations show that concentrations of particles of all sizes start decreasing 1–2 hours before the occurrence of fog.

  19. Dynamics of formation of ferromanganese nodules in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Ghosh, A.K.

    ., 2008). It is therefore interesting to examine and model the various factors that might influence the formation, growth and characters of nodules in the neighbouring sectors within the IONF (sector A to D, Fig. 2). The seafloor underlying... these sectors, originated from the Indian Ocean Ridge System (IORS), and is strikingly different from one sector to another. For example, the sectors A and C were formed during crustal stretching, and are characterised by a largely smooth seafloor...

  20. On the semi-diagnostic computation of climatological circulation in the western tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Rao, A.D.; Dube, S.K.; Bahulayan, N.

    and internal density field on the dynamical balance of circulation in the western tropical Indian Ocean is explained. The climatological temperature and salinity data used to drive the model is found to be hydrodynamically adjusted with surface wind, flow field...

  1. Morphological variations in the polymetallic nodules from selected stations in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.

    Polymetallic nodules from the Central Indian Ocean largely range in size from 2 to 6 cm. The smaller nodules (4 cm) are subspheroidal to spheroidal in shape and with the increase in size, nodules become more discoidal and elongated. The size...

  2. Calcite dissolution along a transect in the western tropical Indian Ocean: A multiproxy approach

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D.

    Three paleocarbonate ion proxies, size index, planktonic foraminifera shell weight, and calcite crystallinity, have been employed here to a set of core top samples from the western tropical Indian Ocean in the water depth ranges from 1086 to 4730 m...

  3. Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean

    Science.gov (United States)

    Slotnick, B. S.; Lauretano, V.; Backman, J.; Dickens, G. R.; Sluijs, A.; Lourens, L.

    2015-03-01

    Major variations in global carbon cycling occurred between 62 and 48 Ma, and these very likely related to changes in the total carbon inventory of the ocean-atmosphere system. Based on carbon cycle theory, variations in the mass of the ocean carbon should be reflected in contemporaneous global ocean carbonate accumulation on the seafloor and, thereby, the depth of the calcite compensation depth (CCD). To better constrain the cause and magnitude of these changes, the community needs early Paleogene carbon isotope and carbonate accumulation records from widely separated deep-sea sediment sections, especially including the Indian Ocean. Several CCD reconstructions for this time interval have been generated using scientific drill sites in the Atlantic and Pacific oceans; however, corresponding information from the Indian Ocean has been extremely limited. To assess the depth of the CCD and the potential for renewed scientific drilling of Paleogene sequences in the Indian Ocean, we examine lithologic, nannofossil, carbon isotope, and carbonate content records for late Paleocene - early Eocene sediments recovered at three sites spanning Ninetyeast Ridge: Deep Sea Drilling Project (DSDP) Sites 213 (deep, east), 214 (shallow, central), and 215 (deep, west). The disturbed, discontinuous sediment sections are not ideal, because they were recovered in single holes using rotary coring methods, but remain the best Paleogene sediments available from the central Indian Ocean. The δ13C records at Sites 213 and 215 are similar to those generated at several locations in the Atlantic and Pacific, including the prominent high in δ13C across the Paleocene carbon isotope maximum (PCIM) at Site 215, and the prominent low in δ13C across the early Eocene Climatic Optimum (EECO) at both Site 213 and Site 215. The Paleocene-Eocene thermal maximum (PETM) and the K/X event are found at Site 213 but not at Site 215, presumably because of coring gaps. Carbonate content at both Sites 213 and

  4. The Evolution of Indian and Pacific Ocean Denitrification and Nitrogen Dynamcs since the Miocene

    Science.gov (United States)

    Ravelo, A. C.; Carney, C.; Rosenthal, Y.; Holbourn, A.; Kulhanek, D. K.

    2017-12-01

    The feedbacks between geochemical cycles and physical climate change are poorly understood; however, there has been tremendous progress in developing coupled models to help predict the direction and strength of these feedbacks. As such, there is a need for more data to validate and test these models. To this end, the nitrogen (N) cycle, and its links to the biological pump and to climate, is an active area of paleoceanographic research. Using N isotope records, Robinson et al. (2014) showed that pelagic denitrification in the Indian and Pacific Oceans intensified as climate cooled and subsurface ventilation decreased since the Pliocene. They pointed out that a more ventilated warm Pliocene contrasts with glacial-interglacial patterns wherein more ventilation occurs during cold phases, indicating that different mechanisms may occur at different timescales. Our objective is to better understand the nature of the feedbacks between the oceanic N cycle and climate by focusing on the large dynamic range of conditions that occurred during and since the Miocene. We used new cores drilled during IODP Expedition 363 to generate bulk sediment N isotope records at three western tropical Pacific sites (U1486, U1488, U1490) and one southeastern tropical Indian Ocean site (U1482). We find that the N isotope trends since the Pliocene are in agreement with previous studies showing increasing denitrification as climate cooled. In the Miocene, the Indian Ocean record shows no long-term N isotope trend whereas the Pacific Ocean records show a trend that is roughly coupled to changes in global climate suggesting that pelagic denitrification in the Pacific was strongly influenced by greater ventilation during global warmth. However, there are notable deviations from this coupling during several intervals in the Miocene, and there are site-to-site differences in trends. These deviations and differences can be explained by changes in tropical productivity (e.g., late Miocene biogenic

  5. Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh.

    Science.gov (United States)

    Banu, Shahera; Guo, Yuming; Hu, Wenbiao; Dale, Pat; Mackenzie, John S; Mengersen, Kerrie; Tong, Shilu

    2015-11-05

    Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects.

  6. Shear velocity structure of the laterally heterogeneous crust and uppermost mantle beneath the Indian region

    Science.gov (United States)

    Mohan, G.; Rai, S. S.; Panza, G. F.

    1997-08-01

    The shear velocity structure of the Indian lithosphere is mapped by inverting regionalized Rayleigh wave group velocities in time periods of 15-60 s. The regionalized maps are used to subdivide the Indian plate into several geologic units and determine the variation of velocity with depth in each unit. The Hedgehog Monte Carlo technique is used to obtain the shear wave velocity structure for each geologic unit, revealing distinct velocity variations in the lower crust and uppermost mantle. The Indian shield has a high-velocity (4.4-4.6 km/s) upper mantle which, however, is slower than other shields in the world. The central Indian platform comprised of Proterozoic basins and cratons is marked by a distinct low-velocity (4.0-4.2 km/s) upper mantle. Lower crustal velocities in the Indian lithosphere generally range between 3.8 and 4.0 km/s with the oceanic segments and the sedimentary basins marked by marginally higher and lower velocities, respectively. A remarkable contrast is observed in upper mantle velocities between the northern and eastern convergence fronts of the Indian plate. The South Bruma region along the eastern subduction front of the Indian oceanic lithosphere shows significant velocity enhancement in the lower crust and upper mantle. High velocities (≈4.8 km/s) are also observed in the upper mantle beneath the Ninetyeast ridge in the northeastern Indian Ocean.

  7. Observed sea-level rise in the north Indian Ocean coasts during the past century

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    Content-Type text/plain; charset=UTF-8 91 Observed sea-level rise in the north Indian Ocean coasts during the past century A. S. Unnikrishnan National Institute of Oceanography, Dona Paula, Goa-403004 unni@nio.org Introduction Sea-level... rise is one of the good indicators of global warming. Rise in sea level occurs mainly through melting of glaciers, thermal expansion due to ocean warming and some other processes of relatively smaller magnitudes. Sea level rise is a global...

  8. Sub-seasonal prediction of significant wave heights over the Western Pacific and Indian Oceans, part II: The impact of ENSO and MJO

    Science.gov (United States)

    Shukla, Ravi P.; Kinter, James L.; Shin, Chul-Su

    2018-03-01

    This study evaluates the effect of El Niño and the Southern Oscillation (ENSO) and Madden Julian Oscillation (MJO) events on 14-day mean significant wave height (SWH) at 3 weeks lead time (Wk34) over the Western Pacific and Indian Oceans using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2). The WAVEWATCH-3 (WW3) model is forced with daily 10m-winds predicted by a modified version of CFSv2 that is initialized with multiple ocean analyses in both January and May for 1979-2008. A significant anomaly correlation of predicted and observed SWH anomalies (SWHA) at Wk34 lead-time is found over portions of the domain, including the central western Pacific, South China Sea (SCS), Bay of Bengal (BOB) and southern Indian Ocean (IO) in January cases, and over BOB, equatorial western Pacific, the Maritime Continent and southern IO in May cases. The model successfully predicts almost all the important features of the observed composite SWHA during El Niño events in January, including negative SWHA in the central IO where westerly wind anomalies act on an easterly mean state, and positive SWHA over the southern Ocean (SO) where westerly wind anomalies act on a westerly mean state. The model successfully predicts the sign and magnitude of SWHA at Wk34 lead-time in May over the BOB and SCS in composites of combined phases-2-3 and phases-6-7 of MJO. The observed leading mode of SWHA in May and the third mode of SWHA in January are influenced by the combined effects of ENSO and MJO. Based on spatial and temporal correlations, the spatial patterns of SWHA in the model at Wk34 in both January and May are in good agreement with the observations over the equatorial western Pacific, equatorial and southern IO, and SO.

  9. Temperature profile data from STD/CTD casts from the MELVILLE from the Indian Ocean for the International Decade of Ocean Exploration / Geochemical Ocean Section Study (IDOE/GEOSECS) project, 06 December 1977 to 21 April 1978 (NODC Accession 8200055)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity profile data were collected using STD/CTD casts from MELVILLE from the Indian Ocean from December 6, 1977 to April 21, 1978. Data were...

  10. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change

    Science.gov (United States)

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.

    2014-12-01

    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  11. Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model

    Science.gov (United States)

    Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant

    2018-03-01

    In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily

  12. Volcanic ash and its enigma: A case study from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.

    An ash layer occurs between 10-35 cm depth in sediment cores from the Central Indian Ocean basin. Morphology, major, trace and rare earth element composition of glass shards from the ash layer suggest that the Youngest Toba Tuff of ~74 ka from...

  13. Seasonal Variation of Diurnal Cycle of Rainfall in the Eastern Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pednekar, S.; Katsumata, M.; Antony, M.K.; Kuroda, Y.; Unnikrishnan, A.S.

    The diurnal cycle of rainfall over the eastern equatorial Indian Ocean is studied for the period 23rd October 2001 to 31st October 2003 using the hourly data from the Triton buoy positioned at 1.5°S and 90°E. An analysis of the active and weak...

  14. Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming

    Energy Technology Data Exchange (ETDEWEB)

    Hoerling, M.P.; Xu, T.; Bates, G.T. [Climate Diagnostics Center NOAA, Boulder, CO 80305-3328 (United States); Hurrell, J.W.; Phillips, A.S. [National Center for Atmospheric Research, Boulder, CO (United States)

    2004-09-01

    Ensembles of atmospheric general circulation model (AGCM) experiments are used in an effort to understand the boreal winter Northern Hemisphere (NH) extratropical climate response to the observed warming of tropical sea surface temperatures (SSTs) over the last half of the twentieth Century. Specifically, we inquire about the origins of unusual, if not unprecedented, changes in the wintertime North Atlantic and European climate that are well described by a linear trend in most indices of the North Atlantic Oscillation (NAO). The simulated NH atmospheric response to the linear trend component of tropic-wide SST change since 1950 projects strongly onto the positive polarity of the NAO and is a hemispheric pattern distinguished by decreased (increased) Arctic (middle latitude) sea level pressure. Progressive warming of the Indian Ocean is the principal contributor to this wintertime extratropical response, as shown through additional AGCM ensembles forced with only the SST trend in that sector. The Indian Ocean influence is further established through the reproducibility of results across three different models forced with identical, idealized patterns of the observed warming. Examination of the transient atmospheric adjustment to a sudden ''switch-on'' of an Indian Ocean SST anomaly reveals that the North Atlantic response is not consistent with linear theory and most likely involves synoptic eddy feedbacks associated with changes in the North Atlantic storm track. The tropical SST control exerted over twentieth century regional climate underlies the importance of determining the future course of tropical SST for regional climate change and its uncertainty. Better understanding of the extratropical responses to different, plausible trajectories of the tropical oceans is key to such efforts. (orig.)

  15. On the relationship between the early spring Indian Ocean's sea surface temperature (SST) and the Tibetan Plateau atmospheric heat source in summer

    Science.gov (United States)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Li, Yu; Jiang, Tingchen; San Liang, X.

    2018-05-01

    In this study, we evaluated the effects of springtime Indian Ocean's sea surface temperature (SST) on the Tibetan Plateau's role as atmospheric heat source (AHS) in summer. The SST data of the National Oceanic and Atmospheric Administration (NOAA), European Centre for Medium-Range Weather Forecasts (ECMWF) and the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) and the reanalysis data of the National Center for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) for 33 years (from 1979 to 2011) were used to analyze the relationship between the Indian Ocean SST and the Tibetan Plateau's AHS in summer, using the approaches that include correlation analysis, and lead-lag analysis. Our results show that some certain strong oceanic SSTs affect the summer plateau heat, specially finding that the early spring SSTs of the Indian Ocean significantly affect the plateau's ability to serve as a heat source in summer. Moreover, the anomalous atmospheric circulation and transport of water vapor are related to the Plateau heat variation.

  16. Spirits of the Air: Birds and American Indians in the South

    Directory of Open Access Journals (Sweden)

    E. N. Anderson

    2010-08-01

    Full Text Available Review of Spirits of the Air: Birds and American Indians in the South. Shepard Krech III. 2009. University of Georgia Press, Athens. Pp. 245, copiously illustrated. $44.95 (hardbound. ISBN-13 978-0-8203-2815-7.

  17. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    Science.gov (United States)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  18. 33 CFR 162.65 - All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary...

    Science.gov (United States)

    2010-07-01

    ... Atlantic Ocean south of Chesapeake Bay and all waterways tributary to the Gulf of Mexico east and south of... All waterways tributary to the Atlantic Ocean south of Chesapeake Bay and all waterways tributary to..., which are tributary to or connected by other waterways with the Atlantic Ocean south of Chesapeake Bay...

  19. Biological production in the Indian Ocean upwelling zones - Part 1: refined estimation via the use of a variable compensation depth in ocean carbon models

    Science.gov (United States)

    Geethalekshmi Sreeush, Mohanan; Valsala, Vinu; Pentakota, Sreenivas; Venkata Siva Rama Prasad, Koneru; Murtugudde, Raghu

    2018-04-01

    Biological modelling approach adopted by the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP-II) provided amazingly simple but surprisingly accurate rendition of the annual mean carbon cycle for the global ocean. Nonetheless, OCMIP models are known to have seasonal biases which are typically attributed to their bulk parameterisation of compensation depth. Utilising the criteria of surface Chl a-based attenuation of solar radiation and the minimum solar radiation required for production, we have proposed a new parameterisation for a spatially and temporally varying compensation depth which captures the seasonality in the production zone reasonably well. This new parameterisation is shown to improve the seasonality of CO2 fluxes, surface ocean pCO2, biological export and new production in the major upwelling zones of the Indian Ocean. The seasonally varying compensation depth enriches the nutrient concentration in the upper ocean yielding more faithful biological exports which in turn leads to accurate seasonality in the carbon cycle. The export production strengthens by ˜ 70 % over the western Arabian Sea during the monsoon period and achieves a good balance between export and new production in the model. This underscores the importance of having a seasonal balance in the model export and new productions for a better representation of the seasonality of the carbon cycle over upwelling regions. The study also implies that both the biological and solubility pumps play an important role in the Indian Ocean upwelling zones.

  20. Physical properties, morphology and petrological characteristics of pumices from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.; Ilangovan, D.

    About 400 pumice clasts collected from the Central Indian Ocean Basin (CIOB) were studied for their morphology and classified based on their shape and size. A majority of the samples range between less than 1 cm and 36 cm and in the Zinggs shape...

  1. Thermal structure and flow patterns around Seychelles group of Islands (Indian Ocean) during austral autumn

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; RameshBabu, V.; RameshKumar, M.R.

    Properties of thermal structure in the upper 750 m around the Seychelles group of islands in the Indian Ocean, based on Expendable Bathythermograph (XBT) data collected in March 1984, are presented along with the inferred flow patterns...

  2. New sites of Australasian microtektites in the central Indian Ocean: Implications for the location and size of source crater

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Mahale, V.P.; Kodagali, V.N.

    Fifteen new Australasian microtektite sites have been identified along a transect roughly N-S in the central Indian Ocean. These locations, in addition to the existing 46 sites, total to 61 microtektite sites in the oceans. We carried out regression...

  3. Temperature profile data from profiling drifter in the Indian, Southern, and Pacific Ocean (NODC Accession 9700028)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using the ALACE (Autonomous LAgrangian Circulation Explorer), which is a profiling drifter in the Indian, Southern, and...

  4. Multiple environments: South Indian children’s environmental subjectivities in formation

    NARCIS (Netherlands)

    de Hoop, E.

    2017-01-01

    This article explores the formation of South Indian children’s (11–15 years old) environmental subjectivities based on five months of qualitative fieldwork with children in their school and non-school lives. By doing so, this paper aims to widen the scope of the existing literature on children’s

  5. Marine aerosol distribution and variability over the pristine Southern Indian Ocean

    Science.gov (United States)

    Mallet, Paul-Étienne; Pujol, Olivier; Brioude, Jérôme; Evan, Stéphanie; Jensen, Andrew

    2018-06-01

    This paper presents an 8-year (2005-2012 inclusive) study of the marine aerosol distribution and variability over the Southern Indian Ocean, precisely in the area { 10 °S - 40 °S ; 50 °E - 110 °E } which has been identified as one of the most pristine regions of the globe. A large dataset consisting of satellite data (POLDER, CALIOP), AERONET measurements at Saint-Denis (French Réunion Island) and model reanalysis (MACC), has been used. In spite of a positive bias of about 0.05 between the AOD (aerosol optical depth) given by POLDER and MACC on one hand and the AOD measured by AERONET on the other, consistent results for aerosol distribution and variability over the area considered have been obtained. First, aerosols are mainly confined below 2km asl (above sea level) and are dominated by sea salt, especially in the center of the area of interest, with AOD ≤ 0 . 1. This zone is the most pristine and is associated with the position of the Mascarene anticyclone. There, the direct radiative effect is assessed around - 9 Wm-2 at the top of the atmosphere and probability density functions of the AOD s are leptokurtic lognormal functions without any significant seasonal variation. It is also suggested that the Madden-Jullian oscillation impacts sea salt emissions in the northern part of the area considered by modifying the state of the ocean surface. Finally, this area is surrounded in the northeast and the southwest by seasonal Australian and South African intrusions (AOD > 0.1) ; throughout the year, the ITCZ seems to limit continental contaminations from Asia. Due to the long period of time considered (almost a decade), this paper completes and strengthens results of studies based on observations performed during previous specific field campaigns.

  6. A Smart Climatology of Evaporation Duct Height and Surface Radar Propagation in the Indian Ocean

    National Research Council Canada - National Science Library

    Twigg, Katherine L

    2007-01-01

    .... We have used existing, civilian, dynamically balanced reanalysis data, for 1970 to 2006, and a state-of-the-art ED model, to produce a spatially and temporally refined EDH climatology for the Indian Ocean (10) and nearby seas...

  7. AMS 14 C dating controlled records of monsoon and Indonesian throughflow variability from the eastern Indian Ocean of the past 32,000 years

    Science.gov (United States)

    Li, Z. Y.; Chen, M. T.; Shi, X.; Liu, S.; Wang, H.

    2015-12-01

    Zi-Ye Li a, Min-Te Chen b, Hou-Jie Wang a, Sheng-Fa Liu c, Xue-Fa Shi ca College of Marine Geosciences, Ocean University of China, Qingdao 266100, P.R. Chinab Institute of Applied Geosciences, National Taiwan Ocean University, Keelung, Taiwan 20224, ROCc First Institute of Oceanography, SOA, Qingdao 266100, P.R. China Indonesian throughflow (ITF) is one of the most important currents responsible for transporting heat and moisture from the western Pacific to the Indian Oceans. The ITF is also well-known as effectively in modulating the global climate change with the interactions among ENSO and Asian monsoons. Here we present an AMS 14C dating controlled sea surface temperature (SST) record from core SO184-10043 (07°18.57'S, 105°03.53'E), which was retrieved from 2171m water depth at a north-south depression located at the southeastern offshore area of Sumatera in the eastern Indian Ocean. Based on our high-resolution SST using Mg/Ca analyses based on planktonic foraminifera shells of Globigerinoides ruber and alkenone index, U k'37-SST, oxygen isotope stratigraphy, and AMC 14C age-controls, our records show that, during the past 32,000 years, the SSTs were decreased which imply weaker ITF during Marine Isotope Stage (MIS) 2 and 3. The weaker UTF may respond to strengthened northeast monsoon during the boreal winter. During 21 to 15ka, the southeast monsoon had been stronger and the northeast monsoon was relatively weaker. During 15 to 8ka, rapid sea level rising may allow the opening of the gateways in the Makassar Strait and Lombok Strait that may have further strengthened the ITF. During the early Holocene, the northeast and southeast monsoons seem to be both strengthened. We will discuss the implications of the hydrographic variability and their age uncertainties in this paper during the meeting.

  8. BAROMETRIC PRESSURE and Other Data from UNKNOWN and Other Platforms From Indian Ocean from 19910701 to 19940222 (NODC Accession 9400142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD) and other data were collected in the Indian Ocean. Data were collected from Ship BARUNA JAYA I. The data were collected...

  9. CO sub(2) and N sub(2) O fluxes from the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Narvekar, P.V.; Naqvi, S.W.A.; DileepKumar, M.

    and the deep water concentrations signify quantities of N sub(2)O to be consumed within the sediments. The northern Indian Ocean as a source of CO sub(2) to the atmosphere is poorly quantified. The N sub(2)O data indicate that the vertical diffusion coefficient...

  10. Genetic species identification and population structure of Halophila (Hydrocharitaceae) from the Western Pacific to the Eastern Indian Ocean.

    Science.gov (United States)

    Nguyen, Vy X; Detcharoen, Matsapume; Tuntiprapas, Piyalap; Soe-Htun, U; Sidik, Japar B; Harah, Muta Z; Prathep, Anchana; Papenbrock, Jutta

    2014-04-30

    The Indo-Pacific region has the largest number of seagrass species worldwide and this region is considered as the origin of the Hydrocharitaceae. Halophila ovalis and its closely-related species belonging to the Hydrocharitaceae are well-known as a complex taxonomic challenge mainly due to their high morphological plasticity. The relationship of genetic differentiation and geographic barriers of H. ovalis radiation was not much studied in this region. Are there misidentifications between H. ovalis and its closely related species? Does any taxonomic uncertainty among different populations of H. ovalis persist? Is there any genetic differentiation among populations in the Western Pacific and the Eastern Indian Ocean, which are separated by the Thai-Malay peninsula? Genetic markers can be used to characterize and identify individuals or species and will be used to answer these questions. Phylogenetic analyses of the nuclear ribosomal internal transcribed spacer region based on materials collected from 17 populations in the Western Pacific and the Eastern Indian Ocean showed that some specimens identified as H. ovalis belonged to the H. major clade, also supported by morphological data. Evolutionary divergence between the two clades is between 0.033 and 0.038, much higher than the evolutionary divergence among H. ovalis populations. Eight haplotypes were found; none of the haplotypes from the Western Pacific is found in India and vice versa. Analysis of genetic diversity based on microsatellite analysis revealed that the genetic diversity in the Western Pacific is higher than in the Eastern Indian Ocean. The unrooted neighbor-joining tree among 14 populations from the Western Pacific and the Eastern Indian Ocean showed six groups. The Mantel test results revealed a significant correlation between genetic and geographic distances among populations. Results from band-based and allele frequency-based approaches from Amplified Fragment Length Polymorphism showed that all

  11. Surface currents in the equatorial Indian Ocean during spring and fall - An altimetry based analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Somayajulu, Y.K.

    This communication presents the results of a study aimed at investigating the nature and variability of surface currents in the equatorial Indian Ocean between 5 degrees N and 5 degrees S during spring and fall seasons. Geostrophic surface currents...

  12. Size, surface texture, chemical composition and mineralogy interrelations in ferromanganese nodules of central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K; Pattan, J.N.; Jauhari, P.

    Fiftyseven ferromanganese nodules, classified into 3 size class (4,4-6 and 6-8 cm diam.), from the siliceous sediments of central Indian Ocean were analysed for transition metals and representative sample from each size class for mineralogy. Smaller...

  13. Barrier spit recovery following the 2004 Indian Ocean tsunami at Pakarang Cape, southwest Thailand

    Science.gov (United States)

    Koiwa, Naoto; Takahashi, Mio; Sugisawa, Shuhei; Ito, Akifumi; Matsumoto, Hide-aki; Tanavud, Charlchai; Goto, Kazuhisa

    2018-04-01

    The 2004 Indian Ocean tsunami had notable impacts on coastal landforms. Temporal change in topography by coastal erosion and subsequent formation of a new barrier spit on the nearshore of Pakrang Cape, southeastern Thailand, had been monitored for 10 years since 2005 based on field measurement using satellite images, high-resolution differential GPS, and/or handy GPS. Monitored topography data show that a barrier island was formed offshore from the cape several months after the tsunami event through progradation of multiple elongated gravelly beach ridges and washover fan composed of coral gravels. Subsequently, the barrier spit expanded to the open sea. The progradation and expansion were supported by supply of a large amount of coral debris produced by the tsunami waves. These observations provide useful data to elucidate processes of change in coastal landforms after a tsunami event. The 2004 Indian Ocean tsunami played an important role in barrier spit evolution over a period of at least a decade.

  14. FOREWORD: Radio and Antenna Days of the Indian Ocean (RADIO 2012)

    Science.gov (United States)

    Monebhurrun, Vikass; Lesselier, Dominique

    2013-04-01

    It was an honor and a great pleasure for all those involved in its organization to welcome the participants to the 'Radio and Antenna Days of the Indian Ocean' (RADIO 2012) international conference that was held from 24th to 27th September 2012 at the Sugar Beach Resort, Wolmar, Flic-en-Flac, Mauritius. RADIO 2012 is the first of a series of conferences that is to be regularly organized in the Indian Ocean region. The aim is to discuss recent developments, theories and practical applications covering the whole scope of radio-frequency engineering, including radio waves, antennas, propagation, and electromagnetic compatibility. Following discussions with engineers and scientists from the countries of the Indian Ocean as well as from other parts of the world, a need was felt for the organization of such an international event in this region. The Island of Mauritius, worldwide known for its white sandy beaches and pleasant tropical atmosphere, provided an excellent environment for the organization of the 1st RADIO international conference. The Local Organizing Committee consisted of scientists from SUPELEC, the University of Mauritius, and the University of Technology, Mauritius. Various members of staff of the University of Mauritius provided help for the organization of the conference. The International Union of Radio Science (URSI) made available technical and financial sponsorship for partial support of young scientists. A number of companies also supported RADIO 2012 ('Platinum': GSMA, ICTA & MMF, 'Gold': CST & FEKO). The event itself was organized in a premier hotel on Mauritius. In this foreword, we would like to take the opportunity again to thank all the people, institutions and companies that made the event such a success. More than 120 abstracts were submitted to the conference and were peer-reviewed by an international scientific committee. RADIO 2012 overall featured six oral sessions, one poster session and two workshops. Three internationally recognized

  15. Seychelles coral record of changes in sea surface temperature bimodality in the western Indian Ocean from the Mid-Holocene to the present

    Science.gov (United States)

    Zinke, J.; Pfeiffer, M.; Park, W.; Schneider, B.; Reuning, L.; Dullo, W.-Chr.; Camoin, G. F.; Mangini, A.; Schroeder-Ritzrau, A.; Garbe-Schönberg, D.; Davies, G. R.

    2014-08-01

    We report fossil coral records from the Seychelles comprising individual time slices of 14-20 sclerochronological years between 2 and 6.2 kyr BP to reconstruct changes in the seasonal cycle of western Indian Ocean sea surface temperature (SST) compared to the present (1990-2003). These reconstructions allowed us to link changes in the SST bimodality to orbital changes, which were causing a reorganization of the seasonal insolation pattern. Our results reveal the lowest seasonal SST range in the Mid-Holocene (6.2-5.2 kyr BP) and around 2 kyr BP, while the highest range is observed around 4.6 kyr BP and between 1990 and 2003. The season of maximum temperature shifts from austral spring (September to November) to austral autumn (March to May), following changes in seasonal insolation over the past 6 kyr. However, the changes in SST bimodality do not linearly follow the insolation seasonality. For example, the 5.2 and 6.2 kyr BP corals show only subtle SST differences in austral spring and autumn. We use paleoclimate simulations of a fully coupled atmosphere-ocean general circulation model to compare with proxy data for the Mid-Holocene around 6 kyr BP. The model results show that in the Mid-Holocene the austral winter and spring seasons in the western Indian Ocean were warmer while austral summer was cooler. This is qualitatively consistent with the coral data from 6.2 to 5.2 kyr BP, which shows a similar reduction in the seasonal amplitude compared to the present day. However, the pattern of the seasonal SST cycle in the model appears to follow the changes in insolation more directly than indicated by the corals. Our results highlight the importance of ocean-atmosphere interactions for Indian Ocean SST seasonality throughout the Holocene. In order to understand Holocene climate variability in the countries surrounding the Indian Ocean, we need a much more comprehensive analysis of seasonally resolved archives from the tropical Indian Ocean. Insolation data alone only

  16. Early (pre–8 Ma) fault activity and temporal strain accumulation in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Bull, J.M.; Scrutton, R.A.

    -reflection profiles within the central Indian Ocean demonstrate that compressional activity started much earlier than previously thought, at around 15.4-13.9 Ma. From reconstructions of fault activity histories, it is shown that 12% of the total reverse fault...

  17. Temperature profile data from XBT and BT casts in the North/South Pacific Ocean and North/South Atlantic Ocean from NOAA Ship RESEARCHER and other platforms from 1987-04-02 to 1987-11-24 (NODC Accession 8800007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in the North/South Pacific Ocean and North/South...

  18. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development.

    Science.gov (United States)

    Funk, Chris; Dettinger, Michael D; Michaelsen, Joel C; Verdin, James P; Brown, Molly E; Barlow, Mathew; Hoell, Andrew

    2008-08-12

    Since 1980, the number of undernourished people in eastern and southern Africa has more than doubled. Rural development stalled and rural poverty expanded during the 1990s. Population growth remains very high, and declining per-capita agricultural capacity retards progress toward Millennium Development goals. Analyses of in situ station data and satellite observations of precipitation have identified another problematic trend: main growing-season rainfall receipts have diminished by approximately 15% in food-insecure countries clustered along the western rim of the Indian Ocean. Occurring during the main growing seasons in poor countries dependent on rain-fed agriculture, these declines are societally dangerous. Will they persist or intensify? Tracing moisture deficits upstream to an anthropogenically warming Indian Ocean leads us to conclude that further rainfall declines are likely. We present analyses suggesting that warming in the central Indian Ocean disrupts onshore moisture transports, reducing continental rainfall. Thus, late 20th-century anthropogenic Indian Ocean warming has probably already produced societally dangerous climate change by creating drought and social disruption in some of the world's most fragile food economies. We quantify the potential impacts of the observed precipitation and agricultural capacity trends by modeling "millions of undernourished people" as a function of rainfall, population, cultivated area, seed, and fertilizer use. Persistence of current tendencies may result in a 50% increase in undernourished people by 2030. On the other hand, modest increases in per-capita agricultural productivity could more than offset the observed precipitation declines. Investing in agricultural development can help mitigate climate change while decreasing rural poverty and vulnerability.

  19. Deep circulation in the Indian and Pacific Oceans and its implication for the dumping of low-level radioactive waste

    International Nuclear Information System (INIS)

    Harries, J.R.

    1980-06-01

    The complexity of ocean transport processes has meant that the limits for the dumping of low-activity radioactive wastes have had to be based on very simplified models of the oceans. This report discusses the models used to determine dumping limits and contrasts them with the known ocean circulation patterns. The deep circulations of the Indian and Pacific Oceans are reviewed to provide a basis for estimating the possible destinations and likely transit times for dissolved material released at the ocean floor

  20. Synthetic aperture radar for maritime domain awareness: Ship detection in a South African context

    CSIR Research Space (South Africa)

    Schwegmann, CP

    2014-10-01

    Full Text Available , people, cargo, and vessels and other conveyances,” (DoD 2005). Each country is required to monitor its own Exclusive Economic Zone (EEZ) for actions that may negatively affect the country’s environment, commerce or security... covers a larger area than its land and it is positioned at a maritime choke point in that it is surrounded by three oceans – the Indian, South Atlantic and Southern Ocean. In this way the improvement of South Africa’s own MDA is important to ensure...

  1. Seasonal variability of the vertical fluxes of Globigerina bulloides (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of Globigerina bulloides (D...

  2. Climatology and Landfall of Tropical Cyclones in the South- West ...

    African Journals Online (AJOL)

    Abstract—The climatology of cyclone formation and behaviour in the South-West Indian Ocean, including landfall in Mozambique and Madagascar, has been investigated. The records used were obtained by merging track data from the Joint Typhoon Warning Centre with data from La Reunion – Regional Specialised ...

  3. The diversity and biogeography of Western Indian Ocean reef-building corals.

    Directory of Open Access Journals (Sweden)

    David Obura

    Full Text Available This study assesses the biogeographic classification of the Western Indian Ocean (WIO on the basis of the species diversity and distribution of reef-building corals. Twenty one locations were sampled between 2002 and 2011. Presence/absence of scleractinian corals was noted on SCUBA, with the aid of underwater digital photographs and reference publications for species identification. Sampling effort varied from 7 to 37 samples per location, with 15 to 45 minutes per dive allocated to species observations, depending on the logistics on each trip. Species presence/absence was analyzed using the Bray-Curtis similarity coefficient, followed by cluster analysis and multi-dimensional scaling. Total (asymptotic species number per location was estimated using the Michaelis-Menten equation. Three hundred and sixty nine coral species were named with stable identifications and used for analysis. At the location level, estimated maximum species richness ranged from 297 (Nacala, Mozambique to 174 (Farquhar, Seychelles. Locations in the northern Mozambique Channel had the highest diversity and similarity, forming a core region defined by its unique oceanography of variable meso-scale eddies that confer high connectivity within this region. A distinction between mainland and island fauna was not found; instead, diversity decreased radially from the northern Mozambique Channel. The Chagos archipelago was closely related to the northern Mozambique Channel region, and analysis of hard coral data in the IUCN Red List found Chagos to be more closely related to the WIO than to the Maldives, India and Sri Lanka. Diversity patterns were consistent with primary oceanographic drivers in the WIO, reflecting inflow of the South Equatorial Current, maintenance of high diversity in the northern Mozambique Channel, and export from this central region to the north and south, and to the Seychelles and Mascarene islands.

  4. Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sengupta, D.; Raj, B.; Shenoi, S.S.C.

    ]); monthly evaporation from the Southampton Oceanography Centre (SOC) data (Josey et al. [1998]), and monthly 2openbulletby 2openbulletsurface currents in the tropical Indian Ocean, based on 1985-2002 trajecto- ries of drogued WOCE drifters (Shenoi et al..., Deep-Sea Re- search II, 50, 2111?2127, 2003. Josey, S. A., E. C. Kent, and P. K. Taylor, The Southampton Oceanography Centre (SOC) Ocean - Atmosphere Heat, Mo- mentum and Freshwater Flux Atlas, Tech. Rep. 6, Southamp- ton Oceanography Centre, 1998...

  5. The genus Litophyton Forskål, 1775 (Octocorallia, Alcyonacea, Nephtheidae) in the Red Sea and the western Indian Ocean

    Science.gov (United States)

    van Ofwegen, Leen P.

    2016-01-01

    Abstract The Litophyton species of the Red Sea and the western Indian Ocean are revised, which includes species previously belonging to the genus Nephthea, which is synonymized with Litophyton. A neotype for both Litophyton arboreum, the type species of Litophyton, and Nephthea chabrolii, the type species of Nephthea, are designated. The new species Litophyton curvum sp. n. is described and depicted, and a key to all Litophyton species is provided. Of the 26 species previously described from the western Indian Ocean and Red Sea, 13 species are considered valid and 13 have been synonymized or placed in other genera. PMID:27103869

  6. The Indian Monsoon

    Indian Academy of Sciences (India)

    Pacific Oceans, on subseasonal scales of a few days and on an interannual scale. ... over the Indian monsoon zone2 (Figure 3) during the summer monsoon .... each 500 km ×500 km grid over the equatorial Indian Ocean, Bay of Bengal and ...

  7. Pseudofaults and associated seamounts in the conjugate Arabian and Eastern Somali basins, NW Indian Ocean- New constraints from high-resolution satellite-derived gravity data

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Chaubey, A.K.; Mishra, A.; Kumar, S.; Rajawat, A.S.

    due to rifting between Seychelles and Laxmi Ridge-India and subsequent sea- floor spreading along paleo-Carlsberg Ridge since the Paleocene (magnetic Chron 28n, �63 Ma). The evolution of these two large conjugate ocean basins (Fig. 2) was dominated... by two major geo- Indian Ocean (Morgan, 1981; Duncan and Hargr the Indian plate moved over it. These tectonic e found impact on both the evolving conjugate o result, structural and tectonic elements of the ba Earlier studies suggest that oceanic...

  8. Himalayan sedimentary pulses recorded by silicate detritus within a ferromanganese crust from the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Galy, A.; Sukumaran, N.P.; Parthiban, G.; Volvaiker, A.Y.

    A Central Indian Ocean deep-water seamount hydrogenous ferromanganese crust (SS663-Crust) contains variable (7-23%) amounts of detrital material (silicate-detritus). Taking into account the growth rate of the authigenic component, the accumulation...

  9. Seasonal variability of the vertical fluxes of Globigerina bulloides (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of Globigerina bulloides (D'Orbigny...

  10. Mixed layer depth and thermocline climatology of the Arabian Sea and western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.; Bahulayan, N.

    A band of zonally oriented ridge of mixed layer depth and thermocline base extending from African Coast to the Central Indian Ocean is observed between 5 degrees S and 10 degrees S throughout hte year. Mixed layer depth and thermocline base deepen...

  11. Oceanographic profile temperature, salinity and pressure measurements collected using moored buoy in the Indian Ocean from 2001-2006 (NODC Accession 0002733)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity measurements in the Equatorial Indian from 2001 to 2006 from the TRITON (TRIANGLE TRANS-OCEAN BUOY NETWORK); JAPAN AGENCY FOR MARINE-EARTH...

  12. Temperature profile data from EBT casts in the Indian Ocean from 13 February 1986 to 01 January 1989 (NODC Accession 0000210)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using EBT casts in the Indian Ocean from the MYS OSTROVSKOGO, IGNAT PAVLYUCHENKOV, ZVEZDA AZOVA, and KARA-DAG from February...

  13. Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals.

    Science.gov (United States)

    Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Ikehara, Minoru; Kato, Yasuhiro

    2017-09-12

    Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene-Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations.

  14. Aerosol properties over the Indian Ocean Experiment (INDOEX) campaign area retrieved from ATSR-2

    NARCIS (Netherlands)

    Robles-Gonzalez, C.; Leeuw, G.de; Decae, R.; Kusmierczyk-Michulec, J.T.; Stammes, P.

    2006-01-01

    Aerosol retrieved algorithms for ATSR-2 have been applied over land and water using data from the Indian Ocean Experiment (INDOEX) Intensive Field Phase (IFP) in February and March 1999. The goal was the extension of the ATSR-2 algorithms, developed for application over the U.S. east coast and

  15. Crocodiles count on it: Regulation of discharge to Lake St Lucia Estuary by a South African peatland

    NARCIS (Netherlands)

    Price, J. S.; Grundling, P.; Grootjans, A.

    2010-01-01

    The Mfabeni mire is located within the iSimangaliso Wetland Park in north-eastern KwaZulu-Natal Province on the Indian Ocean sea-board of South Africa. This mire complex includes open peatland with occurrences of sedge communities, Sphagnum (rare in South Africa), and swamp forest which is common in

  16. Temperature profile data collected using BT and XBT casts in the North/South Atlantic Ocean and North/South Pacific Ocean from NOAA Ship RESEARCHER and other platforms from 1987-05-20 to 1992-04-19 (NODC Accession 9200105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER and other platforms in the North/South Atlantic Ocean and North/South...

  17. Insights into the genetic structure and diversity of 38 South Asian Indians from deep whole-genome sequencing.

    Science.gov (United States)

    Wong, Lai-Ping; Lai, Jason Kuan-Han; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Cheng, Anthony Youzhi; Pillai, Nisha Esakimuthu; Liu, Xuanyao; Xu, Wenting; Chen, Peng; Foo, Jia-Nee; Tan, Linda Wei-Lin; Koo, Seok-Hwee; Soong, Richie; Wenk, Markus Rene; Lim, Wei-Yen; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2014-05-01

    South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP). The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP). SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal) identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.

  18. Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves

    Science.gov (United States)

    2017-05-09

    USA, 2Naval Research Laboratory, Ocean Dynamics and Prediction Branch, Stennis Space Center, Hancock County, Mississippi, USA, 3Department of Physics ...IO and predominantly located south of the equator. The intraseasonal currents associated with downwelling ER waves act on the temperature gradient to...yield warm anomalies in the western IO, even in the presence of cooling by surface fluxes. The SST gradient is unique to the western IO and likely

  19. Near-equatorial convective regimes over the Indian Ocean as revealed by synergistic analysis of satellite observations.

    Digital Repository Service at National Institute of Oceanography (India)

    Levy, G.; Geiss, A.; RameshKumar, M.R.

    We examine the organization and temporal evolution of deep convection in relation to the low level flow over the Indian Ocean by a synergistic analysis of several satellite datasets for wind, rainfall, Outgoing Longwave Radiation (OLR) and cloud...

  20. Remarks on the sea level records of the north Indian ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    variability in the tide gauge records along the coasts of the north Indian Ocean A. S. Unnikrishnan National Institute of Oceanography, Dona Paula, Goa, India 403004 e-mail: unni@nio.org Introduction Global sea-level rise has been relatively well... studied by making use of the coastal tide gauge data that are available (Woodworth and Player, 2003) through the Permanent Service for Mean Sea Level (PSMSL). However, studies on regional sea level rise have not gathered momentum, similar to those on a...