WorldWideScience

Sample records for sources study design

  1. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  2. 5 MW pulsed spallation neutron source, Preconceptual design study

    International Nuclear Information System (INIS)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in ∼ 1 μsec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs

  3. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    Selby, D.L.; Bucholz, J.A.; Burnette, S.E.

    1995-12-01

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH 2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  4. Linac design study for an intense neutron-source driver

    International Nuclear Information System (INIS)

    Lynch, M.T.; Browman, A.; DeHaven, R.; Jameson, R.; Jason, A.; Neuschaefer, G.; Tallerico, P.; Regan, A.

    1993-01-01

    The 1-MW spallation-neutron source under design study at Los Alamos is driven by a linac-compressor-ring scheme that utilizes a large portion of the existing Los Alamos Meson Physics Facility (LAMPF) linac, as well as the facility infrastructure. The project is referred to as the National Center for Neutron Research (NCNR). A second phase of the proposal will upgrade the driver power to 5 MW. A description of the 1-MW scheme is given in this paper. In addition, the upgrade path to the substantial increase of beam power required for the 5 MW scenario is discussed

  5. Linac Coherent Light Source (LCLS) Design Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, Massimo

    1998-12-04

    The Stanford Linear Accelerator Center, in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. Starting in FY 1998, the first two-thirds of the SLAC linac will be used for injection into the B factory. This leaves the last one-third free for acceleration to 15 GeV. The LCLS takes advantage of this opportunity, opening the way for the next generation of synchrotron light sources with largely proven technology and cost effective methods. This proposal is consistent with the recommendations of the Report of the Basic Energy Sciences Advisory Committee (Synchrotron Radiation Light Source Working Group, October 18-19, 1997). The report recognizes that ''fourth-generation x-ray sources...will in all likelihood be based on the free electron laser concepts. If successful, this technology could yield improvements in brightness by many orders of magnitude.'' This Design Study, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac. Although this design is based on a consistent and feasible set of parameters, some components require more research and development to guarantee the performance. Given appropriate funding, this R and D phase can be completed in 2 years.

  6. Integrated source and channel encoded digital communication system design study

    Science.gov (United States)

    Alem, W. K.; Huth, G. K.; Simon, M. K.

    1978-01-01

    The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop.

  7. Linac Coherent Light Source (LCLS) design study report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 {angstrom}. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues.

  8. Linac Coherent Light Source (LCLS) design study report

    International Nuclear Information System (INIS)

    1998-04-01

    The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 angstrom. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues

  9. Study on designing of hexapole magnet of ECR ion source

    CERN Document Server

    Sun Liang Ting; Zhao Hong, Wei

    2004-01-01

    Detailed research has been done on the aspects of the design of a Halbach structure permanent hexapole, such as the permanent material adoption, the structure design, the dimension selection, etc. A possible method has been proposed to solve the problem of demagnetization in some magnetic blocks. By optimizing the geometry structure, the magnetic field in the working aperture is made to be the maximum for a certain condition. Some useful codes like POISSON, PERMAG, and TOSCA are used to simulate the sextuple magnetic field. Some useful plots are also presented.

  10. Conceptual source design and dosimetric feasibility study for intravascular treatment: a proposal for intensity modulated brachytherapy

    International Nuclear Information System (INIS)

    Kim, Si Yong; Han, Eun Young; Palta, Jatinder R.; Ha, Sung W.

    2003-01-01

    To propose a conceptual design of a novel source for intensity modulated brachytherapy. The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a 90 Sr/Y Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quarter of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. The preliminary hypothetical simulation and optimization results demonstrated the 87% difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7% by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter

  11. Conceptual source design and dosimetric feasibility study for intravascular treatment: a proposal for intensity modulated brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Yong; Han, Eun Young; Palta, Jatinder R. [College of Medicine, Florida Univ., Florida (United States); Ha, Sung W. [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2003-06-01

    To propose a conceptual design of a novel source for intensity modulated brachytherapy. The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a {sub 90}Sr/Y Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quarter of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. The preliminary hypothetical simulation and optimization results demonstrated the 87% difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7% by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter.

  12. Overview of recent studies and design changes for the FNAL magnetron ion source

    Science.gov (United States)

    Bollinger, D. S.; Sosa, A.

    2017-08-01

    This paper presents several studies and design changes that will eventually be implemented to the Fermi National Accelerator Laboratory (FNAL) magnetron ion source. The topics include tungsten cathode insert, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction. The studies were performed on the FNAL test stand described in [1], with the aim to improve source lifetime, stability, and reducing the amount of tuning needed.

  13. Overview of Recent Studies and Design Changes for the FNAL Magnetron Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, D. S. [Fermilab; Sosa, A. [Fermilab

    2016-09-06

    This paper will cover several studies and design changes that will eventually be implemented to the Fermi National Accelerator Laboratory (FNAL) magnetron ion source. The topics include tungsten cathode insert, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction. The studies were performed on the FNAL test stand described in [1], with the aim to improve source lifetime, stability, and reducing the amount of tuning needed.

  14. Design of intense neutron source for fusion material study and the role of universities

    International Nuclear Information System (INIS)

    Ishino, Shiori

    1993-01-01

    Need and requirement for the intense neutron source for fusion materials study have been discussed for many years. Recently, international climate has been becoming gradually maturing to consider this problem more seriously because of the recognition of crucial importance of solving materials problems for fusion energy development. The present symposium was designed to discuss the problems associated with the intense neutron source for material irradiation studies which will have a potential for the National Institute for Fusion Science to become one of the important future research areas. The symposium comprises five sessions; first, the role of materials research in fusion development strategies was discussed followed by a brief summary of current IFMIF (International Fusion Materials Irradiation Facility) activity. Despite the pressing need for intense fusion neutron source, currently available neutron sources are reactor or accelerator based sources of which FFTF and LASREF were discussed. Then, various concepts of intense neutron source candidates were presented including ESNIT, which are currently under design by JAERI. In the fourth session, discussions were made on the study of materials with the intense neutron source from the viewpoint of materials scientists and engineers as the user of the facility. This is followed by discussions on the role of universities from the two stand points, namely, fusion irradiation studies and fusion materials development. Finally summary discussions were made by the participants, indicating important role fundamental studies in universities for the full utilization of irradiation data and the need of pure 14 MeV neutron source for fundamental studies together with the intense surrogate neutron sources. (author)

  15. The COLOFOL trial: study design and comparison of the study population with the source cancer population

    Directory of Open Access Journals (Sweden)

    Hansdotter Andersson P

    2016-01-01

    eligible patients. However, a difference was noted in tumor location and stage distribution, with 5.6% more patients in the randomized group having colon cancer and 6.7% more patients having stage II disease. Conclusion: Patients in the two study arms were not only demographically similar, but also similar to nonincluded eligible patients, apart from stage and localization. The analyses will be stratified by these variables. Taken together, we conclude that our trial results will be robust and possible to extrapolate to the target population. Keywords: trial design, source population, colorectal cancer, follow-up

  16. Preliminary design study of an alternate heat source assembly for a Brayton isotope power system

    Science.gov (United States)

    Strumpf, H. J.

    1978-01-01

    Results are presented for a study of the preliminary design of an alternate heat source assembly (HSA) intended for use in the Brayton isotope power system (BIPS). The BIPS converts thermal energy emitted by a radioactive heat source into electrical energy by means of a closed Brayton cycle. A heat source heat exchanger configuration was selected and optimized. The design consists of a 10 turn helically wound Hastelloy X tube. Thermal analyses were performed for various operating conditions to ensure that post impact containment shell (PICS) temperatures remain within specified limits. These limits are essentially satisfied for all modes of operation except for the emergency cooling system for which the PICS temperatures are too high. Neon was found to be the best choice for a fill gas for auxiliary cooling system operation. Low cycle fatigue life, natural frequency, and dynamic loading requirements can be met with minor modifications to the existing HSA.

  17. Apixaban for treatment of embolic stroke of undetermined source (ATTICUS randomized trial): Rationale and study design.

    Science.gov (United States)

    Geisler, Tobias; Poli, Sven; Meisner, Christoph; Schreieck, Juergen; Zuern, Christine S; Nägele, Thomas; Brachmann, Johannes; Jung, Werner; Gahn, Georg; Schmid, Elisabeth; Bäezner, Hansjörg; Keller, Timea; Petzold, Gabor C; Schrickel, Jan-Wilko; Liman, Jan; Wachter, Rolf; Schön, Frauke; Schabet, Martin; Lindner, Alfred; Ludolph, Albert C; Kimmig, Hubert; Jander, Sebastian; Schlegel, Uwe; Gawaz, Meinrad; Ziemann, Ulf

    2017-12-01

    Rationale Optimal secondary prevention of embolic stroke of undetermined source is not established. The current standard in these patients is acetylsalicylic acid, despite high prevalence of yet undetected paroxysmal atrial fibrillation. Aim The ATTICUS randomized trial is designed to determine whether the factor Xa inhibitor apixaban administered within 7 days after embolic stroke of undetermined source, is superior to acetylsalicylic acid for prevention of new ischemic lesions documented by brain magnetic resonance imaging within 12 months after index stroke. Design Prospective, randomized, blinded, parallel-group, open-label, German multicenter phase III trial in approximately 500 patients with embolic stroke of undetermined source. A key inclusion criterion is the presence or the planned implantation of an insertable cardiac monitor. Patients are 1:1 randomized to apixaban or acetylsalicylic acid and treated for a 12-month period. It is an event-driven trial aiming for core-lab adjudicated primary outcome events. Study outcomes The primary outcome is the occurrence of at least one new ischemic lesion identified by axial T2-weighted FLAIR magnetic resonance imaging and/or axial DWI magnetic resonance imaging at 12 months when compared with the baseline magnetic resonance imaging. Key secondary outcomes are the combination of recurrent ischemic strokes, hemorrhagic strokes, systemic embolism; combination of MACE including recurrent stroke, myocardial infarction, and cardiovascular death and combination of major and clinically relevant non-major bleeding defined according to ISTH, and change of cognitive function and quality of life (EQ-5D, Stroke Impact Scale). Discussion Embolic stroke of undetermined source is caused by embolic disease and associated with a high risk of recurrent ischemic strokes and clinically silent cerebral ischemic lesions. ATTICUS will investigate the impact of atrial fibrillation detected by insertable cardiac monitor and the effects of

  18. 42: An Open-Source Simulation Tool for Study and Design of Spacecraft Attitude Control Systems

    Science.gov (United States)

    Stoneking, Eric

    2018-01-01

    Simulation is an important tool in the analysis and design of spacecraft attitude control systems. The speaker will discuss the simulation tool, called simply 42, that he has developed over the years to support his own work as an engineer in the Attitude Control Systems Engineering Branch at NASA Goddard Space Flight Center. 42 was intended from the outset to be high-fidelity and powerful, but also fast and easy to use. 42 is publicly available as open source since 2014. The speaker will describe some of 42's models and features, and discuss its applicability to studies ranging from early concept studies through the design cycle, integration, and operations. He will outline 42's architecture and share some thoughts on simulation development as a long-term project.

  19. Design studies for an advanced ECR ion source for multiply charged ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1994-01-01

    An innovative technique: for increasing ion source intensity is described which, in principle, could lead to significant advances in ECR ion source technology for multiply charged ion beam formation. The advanced concept design uses a minimum-B magnetic mirror geometry which consists of a multi-cusp, magnetic field, to assist in confining the plasma radially, a flat central field for tuning to the ECR resonant condition, and specially tailored min-or fields in the end zones to confine the plasma in the axial direction. The magnetic field is designed to achieve an axially symmetric plasma ''volume'' with constant mod-B, which extends over the length of the central field region. This design, which strongly contrasts w h the ECR ''surfaces'' characteristic of conventional ECR ion sources, results in dramatic increases in the absorption of RF power, thereby increasing the electron temperature and ''hot'' electron population within the ionization volume of the source

  20. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  1. The biological shield of a high-intensity spallation source: a monte Carlo design study

    International Nuclear Information System (INIS)

    Koprivnikar, I.; Schachinger, E.

    2004-01-01

    The design of high-intensity spallation sources requires the best possible estimates for the biological shield. The applicability of three-dimensional Monte Carlo simulation in the design of the biological shield of a spallation source will be discussed. In order to achieve reasonable computing times along with acceptable accuracy, biasing techniques are to be employed and it was the main purpose of this work to develop a strategy for an effective Monte Carlo simulation in shielding design. The most prominent MC computer codes, namely MCNPX and FLUKA99, have been applied to the same model spallation source (the European Spallation Source) and on the basis of the derived strategies, the design and characteristics of the target station shield are discussed. It is also the purpose of the paper to demonstrate the application of the developed strategy for the design of beam lines with their shielding using as an example the target-moderator-reflector complex of the ESS as the primary particle source. (author)

  2. Structural design study of a proton beam window for a 1-MW spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Teraoku, Takuji; Terada, Atsuhiko; Maekawa, Fujio; Meigo, Shin-ichiro; Kaminaga, Masanori; Ishikura, Syuichi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to manufacture, and the other, curved-type that has high stress resistivity. As a part of design study for the windows, evaluation of strength of structure and thermal hydraulic analysis were conducted. As a result, it was found that sufficient heat removal was assured with uniform water flow at the window, and stress caused by internal water pressure and thermal stress could be maintained below allowable stress values. Accordingly, it was confirmed that the proton beam window designs were feasible. (author)

  3. Multipurpose intense 14 MeV neutron source at Bratislava: Design study

    International Nuclear Information System (INIS)

    Pivarc, J.; Hlavac, S.; Kral, J.; Oblozinsky, P.; Ribansky, I.; Turzo, I.

    1980-05-01

    The present state of design of the multipurpose intense 14 MeV neutron source based on a D + ion beam and a metal tritide target is reported. It is essentially a 300 keV electrostatic air insulated accelerator capable to accelerate a deuterium ion beam up to 10 mA. With such a beam and a beam spot of 1 cm 2 , a neutron yield typically 10 12 n/s and a useful target lifetime of around 10 h are expected. Various users requirements are met by means of three beam lines: an intense, low current dc and a low current fast pulsed. The key components of the intense source section are the rotating target and the ion source. The rotating target is proposed, with respect of the heat dissipation and the removal of 3 kW/cm 2 , in continuous operation. A rotation speed up to 1100 rpm is considered. The ion source should deliver about 0.5 kW of extracted D + ion beam power. A duoplasmatron source with an electrostatic beam focusing system has been selected. Low current sections of the neutron source may operate with a high frequency ion source as well. The dc section for maximum yields around 10 10 n/s is designed with special regard to beam monitoring. The fast pulsed section should produce up to 1 ns compressible pulsed D + ion beam on a target spot with 5 MHz repetition rate. The report includes information about other components of the neutron source as a high voltage power supply, a vacuum system, beam transport, a diagnostic and control system and basic information about neutron source cells and radiation protection. (author)

  4. Thermal design study of a liquid hydrogen-cooled cold-neutron source

    International Nuclear Information System (INIS)

    Quach, D.; Aldredge, R.C.; Liu, H.B.; Richards, W.J.

    2007-01-01

    The use of both liquid hydrogen as a moderator and polycrystalline beryllium as a filter to enhance cold neutron flux at the UC Davis McClellan Nuclear Radiation Center has been studied. Although, more work is needed before an actual cold neutron source can be designed and built, the purpose of this preliminary study is to investigate the effects of liquid hydrogen and the thickness of a beryllium filter on the cold neutron flux generated. Liquid hydrogen is kept at 20 K, while the temperature of beryllium is assumed to be 77 K in this study. Results from Monte Carlo simulations show that adding a liquid hydrogen vessel around the beam tube can increase cold neutron flux by more than an order of magnitude. As the thickness of the liquid hydrogen layer increases up to about half an inch, the flux of cold neutrons also increases. Increasing the layer thickness to more than half an inch gives no significant enhancement of cold neutron flux. Although, the simulations show that the cold neutron flux is almost independent of the thickness of beryllium at 77 K, the fraction of cold neutrons does drop along the beam tube. This may be due to the fact that the beam tube is not shielded for neutrons coming directly from the reactor core. Further design studies are necessary for to achieve complete filtering of undesired neutrons. A simple comparison analysis based on heat transfer due to neutron scattering and gamma-ray heating shows that the beryllium filter has a larger rate of change of temperature and its temperature is higher. As a result heat will be transferred from beryllium to liquid hydrogen, so that keeping liquid hydrogen at the desired temperature will be the most important step in the cooling process

  5. Spallation neutron source moderator design

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Gabriel, T.A.; Johnson, J.O.

    1998-01-01

    This paper describes various aspects of the spallation neutron source (SNS) moderator design. Included are the effects of varying the moderator location, interaction effects between moderators, and the impact on neutron output when various reflector materials are used. Also included is a study of the neutron output from composite moderators, where it is found that a combination of liquid H 2 O and liquid H 2 can produce a spectrum very similar to liquid methane (L-CH 4 ). (orig.)

  6. Shielding design study for the JAERI/KEK spallation neutron source

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Teshigawara, Makoto; Konno, Chikara; Ikeda, Yujiro; Watanabe, Noboru

    2001-01-01

    Shielding design for the JAERI/KEK spallation neutron source was studied. Bulk shielding characteristics and optimization of a beam shutter were investigated by using Monte Carlo calculation code NMTC/JAM and MCNP with LA-150 neutron cross-section library. The following remarks were derived. (1) Neutron dose outside of the concrete shield at 6.6 m from the center is ∼10 μSv/hr regardless of angles with respect to the proton beam axis. The neutron dose can be reduced more than a factor of 30 by adding natural boron of 5 wt% in the concrete. (2) When a beam shutter position just outside the void vessel and the shutter length of 2 m are assumed, a shutter made of copper (1.7 m) with polyethylene (0.3 m) is the optimum in terms of shielding performance as well as cost merit. A shutter made of tungsten is not so effective. (3) Further studies are needed for optimization of beam shutter position. (author)

  7. Thermionic source design

    International Nuclear Information System (INIS)

    True, R.

    1988-01-01

    This paper describes codes and methods used to design high quality diode and gridded Pierce guns. Such guns are used in travelling wave tubes, klystrons, linear accelerators, free-electron lasers, and other E-beam devices. PC code TMLBMC is discussed. Either this code (or PRCGUN) can be used to obtain a preliminary gun design. Two methods useful in determining the electrode contours external to the beam (focus electrode and anode with hole) are presented. These are based on matching the fields along the beam edge and in the center of the Pierce gun. An analytic method, and a numerical method based on the solution of Laplace's equation (in combination with data from TMLBMC), are presented

  8. Source-circuit design overview

    Science.gov (United States)

    Ross, R. G., Jr.

    1983-01-01

    The source circuit is the fundamental electrical building block of a large central-station array; it consists of a series-parallel network of solar cells that develops full system voltage. The array field is generally made up of a large number of parallel source circuits. Source-circuit electrical configuration is driven by a number of design considerations, which must be considered simultaneously. Array fault tolerance and hot spot heating endurance are examined in detail.

  9. Use of alternative sources of energy: design study of photovoltaic based parking area lighting system

    International Nuclear Information System (INIS)

    Perraki, V.; Loucas, G.

    2000-01-01

    This study proposes the lighting of the parking area and the surrounding streets of the north west part of the University Campus of Patras, using an alternative source of energy, the photovoltaic energy. The sizing of the proposed system results to a reliable, autonomous system which covers the total of the energy needs without any maintenance. Although the energy produced is more expensive compared to the grid electricity nowadays, such solutions seem necessary and well promising for the future as the fuel reserves are limited. (authors)

  10. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbakhsh, Sina, E-mail: sinajahanbakhsh@gmail.com; Satir, Mert; Celik, Murat [Department of Mechanical Engineering, Bogazici University, Istanbul 34342 (Turkey)

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  11. Design parameters and source terms: Volume 3, Source terms

    International Nuclear Information System (INIS)

    1987-10-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository in Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites. 11 refs., 9 tabs

  12. Linac design for the European spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H. [Universitaet Postfach, Frankfurt am Main (Germany)

    1995-10-01

    A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.

  13. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    International Nuclear Information System (INIS)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.; Patterson, C. R; Hazak, G.; Frank, A.; Blackman, E. G.; Busquet, Michel

    2016-01-01

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.

  14. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.; Patterson, C. R [Climate and Space Science, University of Michigan, Ann Arbor, MI 48109 (United States); Hazak, G. [Physics Department, Nuclear Research Center-Negev (Israel); Frank, A.; Blackman, E. G. [Physics and Astronomy, University of Rochester, Rochester, NY 14611 (United States); Busquet, Michel, E-mail: rpdrake@umich.edu [ARTEP Incorporated, Ellicot City, MD 21042 (United States)

    2016-12-20

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.

  15. Students' Knowledge Sources and Knowledge Sharing in the Design Studio--An Exploratory Study

    Science.gov (United States)

    Chiu, Sheng-Hsiao

    2010-01-01

    Architectural design is a knowledge-intensive activity; however, students frequently lack sufficient knowledge when they practice design. Collaborative learning can supplement the students' insufficient expertise. Successful collaborative learning relies on knowledge sharing between students. This implies that the peers are a considerable design…

  16. Design options and sources of bias in time-to-pregnancy studies

    DEFF Research Database (Denmark)

    Olsen, Jørn

    1999-01-01

    on fecundity not only has to obtain information on waiting time, but also information on the importance of evaluation results. The use of contraceptive methods, the understanding of family planning, and behavioral changes driven by past reproductive experience are issues of importance for designing...

  17. Structural design study of a proton beam window for a 1-MW spallation neutron source

    CERN Document Server

    Teraoku, T; Ishikura, S; Kaminaga, M; Maekawa, F; Meigo, S I; Terada, A

    2003-01-01

    A 1-MW spallation neutron source aiming at materials and life science researches will be constructed under the JAERI-KEK High-intensity Proton Accelerator Project (J-PARC). A proton beam passes through a proton beam window, and be injected into a target of the neutron source. The proton beam window functions as a boundary wall between a high vacuum area in the proton beam line and a helium atmosphere at about atmospheric pressure in a helium vessel which contains the target and moderators. The proton beam window is cooled by light water because high heat-density is generated in the window material by interactions with the proton beam. Then, uniformity of the water flow is requested at the window to suppress a hot-spot that causes excessive thermal stress and cooling water boiling. Also, the window has to be strong enough in its structure for inner stress due to water pressure and thermal stress due to heat generation. In this report, we propose two types of proton beam windows; one flat-type that is easy to m...

  18. Integrated source and channel encoded digital communication system design study. [for space shuttles

    Science.gov (United States)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  19. Stomach emptiness in fishes: Sources of variation and study design implications

    Science.gov (United States)

    Vinson, M.R.; Angradi, T.R.

    2011-01-01

    This study summarizes fish stomach content data from 369,000 fish from 402 species in 1,096 collections and reports on the percentage of individuals with empty stomachs. The mean percentage of individuals with empty stomachs among all species, locations, habitats, seasons, regions, and collection methods was 26.4%. Mean percentage of individuals with empty stomachs varied significantly among fish collection gear types, taxonomic orders, trophic groups, feeding behaviors, and habitats, and with species length at maturity. Most of the variation in percentage of individuals with empty stomachs was explained by species length at maturity, fish collection gear type, and two autecological factors: trophic group (piscivore percentage of individuals with empty stomachs > non-piscivore percentage of individuals with empty stomachs) and feeding habitat (water column feeder percentage of individuals with empty stomachs > benthic feeder percentage of individuals with empty stomachs). After accounting for variation with fish length, the percentage of individuals with empty stomachs did not vary with the stomach removal collection method (dissection vs. gastric lavage), feeding time (diurnal or nocturnal), or time of collection (day or night). The percentage of individuals with empty stomachs was similar between fresh and saltwater fish, but differed within finer habitat classifications and appeared to follow a general prey availability or productivity gradient: percentage of individuals with empty stomachs of open ocean collections > estuary collections, lentic > lotic, and pelagic > littoral. Gear type (active or passive) was the most influential factor affecting the occurrence of empty stomachs that can be readily controlled by researchers.

  20. DESIGN OF ALTERNATIVE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    Popa Stefania

    2013-11-01

    Full Text Available By energy sources we understand technologies and materials used to obtain various forms of energy necessary for the development of society. These sources must be in adequate quantities and be conveniently exploited in terms of technical, economic and sustainable perspective. Alternative energy uses the inherent power of natural sources like wind, tides, the sun. Alternative energy is a term used for some energy sources and energy storage technologies. Generally it indicates energies that are nontraditional and have low impact to the environment. The alternative energy term is used in contrast with the term fossil fuel according to some sources, while other sources use it with the meaning of renewable energy purposes.

  1. A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan; Wei, Shaoqing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-06-15

    High charge state electron cyclotron resonance (ECR) ion source is important on the performance of heavy ion accelerators. In this paper, a low temperature superconductor (LTS) was used to make a hexapole coil for an 18-GHz ECR ion source. Several hexapole structures, including racetrack, graded racetrack, and saddle were implemented and analyzed for the hexapole-in-solenoid ECR ion source system. Under the appropriate radial confinement field, the smaller outer radius of hexapole can be better for the solenoid design. Saddle hexapole was selected by comparing the wire length, maximum outer radius of the hexapole, the Lorentz force at the end part of the hexapole and the maximum magnetic field in the coil. Based on saddle hexapole, a new design for hexapoles, the snake hexapole, was developed in this paper. By comparative analysis of the Lorentz force at the end part of the saddle and snake hexapoles, the snake hexapole is much better in the ECR ion source system. The suggested design for the ECR ion source with the snake hexapole is presented in this paper.

  2. Monte Carlo design study of a moderated {sup 252}Cf source for in vivo neutron activation analysis of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.G.; Natto, S.S.A.; Evans, C.J. [Swansea In Vivo Analysis and Cancer Research Group, Department of Physics, University of Wales, Swansea (United Kingdom); Ryde, S.J.S. [Swansea In Vivo Analysis and Cancer Research Group, Department of Medical Physics and Clinical Engineering, Singleton Hospital, Swansea (United Kingdom)

    1997-04-01

    The Monte Carlo computer code MCNP has been used to design a moderated 2{sup 52}Cf neutron source for in vivo neutron activation analysis of aluminium (Al) in the bones of the hand. The clinical motivation is the need to monitor l body burden in subjects with renal dysfunction, at risk of Al toxicity. The design involves the source positioned on the central axis at one end of a cylindrical deuterium oxide moderator. The moderator is surrounded by a graphite reflector, with the hand inserted at the end of the moderator opposing the source. For a 1 mg {sup 252}Cf source, 15 cm long x 20 cm radius moderator and 20 cm thick reflector, the estimated minimum detection limit is .5 mg Al for a 20 min irradiation, with an equivalent dose of 16.5 mSv to the hand. Increasing the moderator length and/or introducing a fast neutron filter (for example silicon) further reduces interference from fast-neutron-induced reactions on phosphorus in bone, at the expense of decreased fluence of the thermal neutrons which activate Al. Increased source strengths may be necessary to compensate for this decreased thermal fluence, or allow measurements to be made within an acceptable time limit for the comfort of the patient. (author)

  3. Conceptual design of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Sim, Cheul Muu; Park, K. N.; Choi, Y. H.

    2002-07-01

    The purpose of the cold source is to increase the available neutron flux delivered to instruments at wavelength 4 ∼ 12 A. The major engineering targets of this CNS facility is established for a reach out of very high gain factors in consideration with the cold neutron flux, moderator, circulation loop, heat load, a simplicity of the maintenance of the facility, safety in the operation of the facility against the hydrogen explosion and a layout of a minimum physical interference with the present facilities. The cold source project has been divided into 5 phases: (1) pre-conceptual (2) conceptual design (3) Testing (4) detailed design and procurement (5) installation and operation. Although there is sometime overlap between the phases, in general, they are sequential. The pre-conceptual design and concept design of KCNS has been performed on elaborations of PNPI Russia and review by Technicatome, Air Liquid, CILAS France. In the design of cold neutron source, the characteristics of cold moderators have been studied to obtain the maximum gain of cold neutron, and the analysis for radiation heat, design of hydrogen system, vacuum system and helium system have been performed. The possibility for materialization of the concept in the proposed conceptual design has been reviewed in view of securing safety and installing at HANARO. Above all, the thermosiphon system to remove heat by circulation of sub-cooled two phase hydrogen has been selected so that the whole device could be installed in the reactor pool with the reduced volume. In order to secure safety, hydrogen safety has been considered on protection to prevent from hydrogen-oxygen reaction at explosion of hydrogen-oxygen e in the containment. A lay out of the installation, a maintenance and quality assurance program and a localization are included in this report. Requirements of user, regulatory, safety, operation, maintenance should be considered to be revised for detailed design, testing, installation

  4. Design of a linear neutron source

    International Nuclear Information System (INIS)

    Buzarbaruah, N.; Dutta, N.J.; Bhardwaz, J.K.; Mohanty, S.R.

    2015-01-01

    Highlights: • This paper reports the design of a linear neutron source based on inertial electrostatic confinement fusion scheme. • The voltage and current that is to be applied to the grid is computed theoretically. • Neutron production rate is theoretically estimated and found to be of the order of 10 7 –10 8 neutrons/s. • Electric potential distribution and ion trajectories are studied using SIMION code. • Optimized condition for the inner grid transparency has been found out. - Abstract: In this paper, we present the design of a linear neutron source based on the concept of inertial electrostatic confinement fusion. The source mainly comprises of a concentric coaxial cylindrical grid assembly housed inside a double walled cylindrical vacuum chamber, a gas injection system, a high voltage feedthrough and a high voltage negative polarity power supply. The inner grid will be kept at a high negative potential with respect to the outer grid that will be grounded. The effect of grid transparency on electric potential distribution and ion trajectories has been studied using SIMION. A diffuse deuterium plasma will be initially created by making filament discharge and subsequently, on application of high negative voltage to the inner grid, deuterons will be accelerated towards the axis of the device. These deuterons will oscillate in the negative potential and consequently fuse in between the grids to produce neutrons. This source is expected to produce 10 7 –10 8 neutrons/s. The proposed linear neutron source will be operated both in the continuous and pulse modes and it will be utilized for a few near term applications namely fusion reactor material studies and explosive detection

  5. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    International Nuclear Information System (INIS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-01-01

    The radioactive isotope Californium-252 ( 252 Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D 2 O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252 Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D–T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252 Cf. To be viable, the 14 MeV D–T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2–5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered. - Highlights: • D–T generator neutron calibration field replacement for D 2 O-moderated 252 Cf. • Determination of representative nuclear power plant workplace neutron spectrum. • Simulations to assess moderating materials to soften 14

  6. The management of peripheral facial nerve palsy: "paresis" versus "paralysis" and sources of ambiguity in study designs.

    Science.gov (United States)

    Linder, Thomas E; Abdelkafy, Wael; Cavero-Vanek, Sandra

    2010-02-01

    Conservative management of idiopathic or herpetic acute peripheral facial palsy (herpes zoster oticus, HZO) often leads to a favorable outcome. However, recent multicenter studies have challenged the necessity of antivirals. Whereas large numbers of patients are required to reveal statistical differences in a disease with an overall positive outcome, surprisingly few studies differentiate between patients with paresis and paralysis. Analyzing our own prospective cohort of patients and reviewing the current literature on conservative treatment of Bell's palsy and HZO, we reveal the importance of initial baseline assessment of the disease course to predict the outcome and to validate the impact of medical treatment options. STUDY DESIGN AND DATA SOURCE: Prospective analysis of consecutive patients referred to 2 tertiary referral centers and research on the Cochrane Library for current updates of their previous reviews and search of MEDLINE (1976-2009) for randomized trials on conservative treatment of acute facial palsy were conducted. One hundred ninety-six patients with Bell's palsy or HZO were followed up prospectively until complete recovery or at least for 12 months. The numeric Fisch score (FS) was used to classify facial function, and patients were separated between incomplete palsy (=paresis) and complete paralysis. Electroneuronography (ENoG) was used to further subdivide patients with paralysis. The treatment protocol was independent of the ongoing investigation including prednisone and valacyclovir in most patients. A total of 250 previous studies on facial palsy outcome were evaluated regarding their distinction between different severity scores at baseline and its impact on treatment outcome. Trials not making the distinction between paresis and paralysis at baseline and with an insufficient follow-up of less than 12 months were excluded. In the Bell's and HZO paresis group, all except 1 patient recovered completely, most of them within 3 months

  7. Duopigatron ion source studies

    International Nuclear Information System (INIS)

    Bacon, F.M.; Bickes, R.W. Jr.; O'Hagan, J.B.

    1978-07-01

    Ion source performance characteristics consisting of total ion current, ion energy distribution, mass distribution, and ion current density distribution were measured for several models of a duopigatron. Variations on the duopigatron design involved plasma expansion cup material and dimensions, secondary cathode material, and interelectrode spacings. Of the designs tested, the one with a copper and molybdenum secondary cathode and a mild steel plasma expansion cup proved to give the best results. The ion current density distribution was peaked at the center of the plasma expansion cup and fell off to 80 percent of the peak value at the cup wall for a cup 15.2 mm deep. A total ion current of 180 mA consisting of 60 to 70 percent atomic ions was produced with an arc current of 20 A and source pressure of 9.3 Pa. More shallow cups produced a larger beam current and a more sharply peaked ion current density distribution. Typical ion energy distributions were bell-shaped curves with a peak 10 to 20 V below anode potential and with ion energies extending 30 to 40 V on either side of the peak

  8. Ion source design for industrial applications

    Science.gov (United States)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The more frequently used design techniques for the components of broad-beam electron bombardment ion sources are discussed. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, the cathodes, and the magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. A comparison is made between two-grid and three-grid optics. The designs presented are representative of current technology and are adaptable to a wide range of configurations.

  9. The Role of Oxidative Stress in Methamphetamine-induced Toxicity and Sources of Variation in the Design of Animal Studies.

    Science.gov (United States)

    McDonnell-Dowling, Kate; Kelly, John P

    2017-01-01

    The prevalence of methamphetamine (MA) use has increased in recent years. In order to assess how this drug produces its effects, both clinical and preclinical studies have recently begun to focus on oxidative stress as an important biochemical mechanism in mediating these effects. The purpose of this review is to illustrate the variation in the design of preclinical studies investigating MA exposure on oxidative stress parameters in animal models. The experimental variables investigated and summarised include MA drug treatment, measurements of oxidative stress and antioxidant treatments that ameliorate the harmful effects of MA. These preclinical studies differ greatly in their experimental design with respect to the dose of MA (ranging between 0.25 and 20 mg/kg), the dosing regime (acute, binge or chronic), the time of measurement of oxidative stress (0.5 h to 2 wks after last MA administration), the antioxidant system targeted and finally the use of antioxidants including the route of administration (i.p. or p.o.), the frequency of exposure and the time of exposure (preventative or therapeutic). The findings in this paper suggest that there is a large diversity among these studies and so the interpretation of these results is challenging. For this reason, the development of guidelines and how best to assess oxidative stress in animal models may be beneficial. The use of these simple recommendations mean that results will be more comparable between laboratories and that future results generated will give us a greater understanding of the contribution of this important biochemical mechanism and its implications for the clinical scenario.

  10. General-purpose heat source development. Phase II: conceptual designs

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.; Grinberg, I.M.; Hulbert, L.E.

    1978-11-01

    Basic geometric module shapes and fuel arrays were studied to determine how well they could be expected to meet the General Purpose Heat Source (GPHS) design requirements. Seven conceptual designs were selected, detailed drawings produced, and these seven concepts analyzed. Three of these design concepts were selected as GPHS Trial Designs to be reanalyzed in more detail and tested. The geometric studies leading to the selection of the seven conceptual designs, the analyses of these designs, and the selection of the three trial designs are discussed

  11. Thermal neutron source study

    International Nuclear Information System (INIS)

    Holden, T.M.

    1983-05-01

    The value of intense neutron beams for condensed matter research is discussed with emphasis on the complementary nature of steady state and pulsed neutron sources. A large body of information on neutron sources, both existing and planned, is then summarized under four major headings: fission reactors, electron accelerators with heavy metal targets, pulsed spallation sources and 'steady state' spallation sources. Although the cost of a spallation source is expected to exceed that of a fission reactor of the same flux by a factor of two, there are significant advantages for a spallation device such as the proposed Electronuclear Materials Test Facility (EMTF)

  12. General-purpose heat source development. Phase I: design requirements

    International Nuclear Information System (INIS)

    Snow, E.C.; Zocher, R.W.

    1978-09-01

    Studies have been performed to determine the necessary design requirements for a 238 PuO 2 General-Purpose Heat Source (GPHS). Systems and missions applications, as well as accident conditions, were considered. The results of these studies, along with the recommended GPHS design requirements, are given in this report

  13. Advanced Neutron Source enrichment study

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.R.

    1996-01-01

    A study has been performed of the impact on performance of using low-enriched uranium (20% 235 U) or medium-enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which was initially designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology

  14. Advanced Neutron Source radiological design criteria

    International Nuclear Information System (INIS)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design

  15. Advanced Neutron Source: The designer's perspective

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is a research facility based on a 350 MW beam reactor, to be brought into service at the Oak Ridge National Laboratory at the end of the century. The primary objective is to provide high-flux neutron beams and guides, with cold, thermal, hot, and ultra-cold neutrons, for research in many fields of science. Secondary objectives include isotopes production, materials irradiation and activation analysis. The design of the ANS is strongly influenced by the historical development of research and power reactor concepts, and of the regulatory infrastructure of the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). Current trends in reactor safety also impact the climate for the design of such a reactor

  16. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  17. Promising design options for the encapsulated nuclear heat source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Conway, L.; Carelli, M.D.; Dzodzo, M. [Westinghouse Science and Technology, Pittsburgh, PA (United States); Hossain, Q.; Brown, N.W. [Lawrence Livermore National Lab., CA (United States); Wade, D.C.; Sienick, J.J. [Argonne National Lab., IL (United States); Greenspan, E.; Kastenberg, W.E.; Saphier, D. [University of California Dept of Nuclear Engineering, Berkeley, CA (United States)

    2001-07-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  18. Promising design options for the encapsulated nuclear heat source reactor

    International Nuclear Information System (INIS)

    Conway, L.; Carelli, M.D.; Dzodzo, M.; Hossain, Q.; Brown, N.W.; Wade, D.C.; Sienick, J.J.; Greenspan, E.; Kastenberg, W.E.; Saphier, D.

    2001-01-01

    Promising design options for the Encapsulated Nuclear Heat Source (ENHS) liquid-metal cooled fast reactor were identified during the first year of the DOE NERI program sponsored feasibility study. Many opportunities for incorporation of innovations in design and fabrication were identified. Three of the innovations are hereby described: a novel IHX (intermediate heat exchanger) made of a relatively small number of rectangular channels, an ENHS module design featuring 100% natural circulation, and a novel conceptual design of core support and fuelling. As a result of the first year study the ENHS concept appears more practical and more promising than perceived at the outset of this study. (authors)

  19. Cold source economic study

    International Nuclear Information System (INIS)

    Fuster, Serge.

    1975-01-01

    This computer code is intended for the statement of the general economic balance resulting from using a given cold source. The balance includes the investments needed for constructing the various materials, and also production balances resulting from their utilization. The case of either using an open circuit condenser on sea or river, or using air cooling systems with closed circuits or as auxiliaries can be dealt with. The program can be used to optimize the characteristics of the various parts of the cold source. The performance of the various materials can be evaluated for a given situation from using very full, precise economic balances, these materials can also be classified according to their possible uses, the outer constraints being taken into account (limits for heat disposal into rivers or seas, water temperature, air temperature). Technical choices whose economic consequences are important have been such clarified [fr

  20. A novel design method for ground source heat pump

    Directory of Open Access Journals (Sweden)

    Dong Xing-Jie

    2014-01-01

    Full Text Available This paper proposes a novel design method for ground source heat pump. The ground source heat pump operation is controllable by using several parameters, such as the total meters of buried pipe, the space between wells, the thermal properties of soil, thermal resistance of the well, the initial temperature of soil, and annual dynamic load. By studying the effect of well number and well space, we conclude that with the increase of the well number, the inlet and outlet water temperatures decrease in summer and increase in winter, which enhance the efficiency of ground source heat pump. The well space slightly affects the water temperatures, but it affects the soil temperature to some extent. Also the ground source heat pump operations matching with cooling tower are investigated to achieve the thermal balance. This method greatly facilitates ground source heat pump design.

  1. Active Control of Fan Noise-Feasibility Study. Volume 2: Canceling Noise Source-Design of an Acoustic Plate Radiator Using Piezoceramic Actuators

    Science.gov (United States)

    Pla, F. G.; Rajiyah, H.

    1995-01-01

    The feasibility of using acoustic plate radiators powered by piezoceramic thin sheets as canceling sources for active control of aircraft engine fan noise is demonstrated. Analytical and numerical models of actuated beams and plates are developed and validated. An optimization study is performed to identify the optimum combination of design parameters that maximizes the plate volume velocity for a given resonance frequency. Fifteen plates with various plate and actuator sizes, thicknesses, and bonding layers were fabricated and tested using results from the optimization study. A maximum equivalent piston displacement of 0.39 mm was achieved with the optimized plate samples tested with only one actuator powered, corresponding to a plate deflection at the center of over 1 millimeter. This is very close to the deflection required for a full size engine application and represents a 160-fold improvement over previous work. Experimental results further show that performance is limited by the critical stress of the piezoceramic actuator and bonding layer rather than by the maximum moment available from the actuator. Design enhancements are described in detail that will lead to a flight-worthy acoustic plate radiator by minimizing actuator tensile stresses and reducing nonlinear effects. Finally, several adaptive tuning methods designed to increase the bandwidth of acoustic plate radiators are analyzed including passive, active, and semi-active approaches. The back chamber pressurization and volume variation methods are investigated experimentally and shown to be simple and effective ways to obtain substantial control over the resonance frequency of a plate radiator. This study shows that piezoceramic-based plate radiators can be a viable acoustic source for active control of aircraft engine fan noise.

  2. Design parameters and source terms: Volume 2, Source terms: Revision 0

    International Nuclear Information System (INIS)

    1987-10-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites. 2 tabs

  3. The Spallation Neutron Source accelerator system design

    Science.gov (United States)

    Henderson, S.; Abraham, W.; Aleksandrov, A.; Allen, C.; Alonso, J.; Anderson, D.; Arenius, D.; Arthur, T.; Assadi, S.; Ayers, J.; Bach, P.; Badea, V.; Battle, R.; Beebe-Wang, J.; Bergmann, B.; Bernardin, J.; Bhatia, T.; Billen, J.; Birke, T.; Bjorklund, E.; Blaskiewicz, M.; Blind, B.; Blokland, W.; Bookwalter, V.; Borovina, D.; Bowling, S.; Bradley, J.; Brantley, C.; Brennan, J.; Brodowski, J.; Brown, S.; Brown, R.; Bruce, D.; Bultman, N.; Cameron, P.; Campisi, I.; Casagrande, F.; Catalan-Lasheras, N.; Champion, M.; Champion, M.; Chen, Z.; Cheng, D.; Cho, Y.; Christensen, K.; Chu, C.; Cleaves, J.; Connolly, R.; Cote, T.; Cousineau, S.; Crandall, K.; Creel, J.; Crofford, M.; Cull, P.; Cutler, R.; Dabney, R.; Dalesio, L.; Daly, E.; Damm, R.; Danilov, V.; Davino, D.; Davis, K.; Dawson, C.; Day, L.; Deibele, C.; Delayen, J.; DeLong, J.; Demello, A.; DeVan, W.; Digennaro, R.; Dixon, K.; Dodson, G.; Doleans, M.; Doolittle, L.; Doss, J.; Drury, M.; Elliot, T.; Ellis, S.; Error, J.; Fazekas, J.; Fedotov, A.; Feng, P.; Fischer, J.; Fox, W.; Fuja, R.; Funk, W.; Galambos, J.; Ganni, V.; Garnett, R.; Geng, X.; Gentzlinger, R.; Giannella, M.; Gibson, P.; Gillis, R.; Gioia, J.; Gordon, J.; Gough, R.; Greer, J.; Gregory, W.; Gribble, R.; Grice, W.; Gurd, D.; Gurd, P.; Guthrie, A.; Hahn, H.; Hardek, T.; Hardekopf, R.; Harrison, J.; Hatfield, D.; He, P.; Hechler, M.; Heistermann, F.; Helus, S.; Hiatt, T.; Hicks, S.; Hill, J.; Hill, J.; Hoff, L.; Hoff, M.; Hogan, J.; Holding, M.; Holik, P.; Holmes, J.; Holtkamp, N.; Hovater, C.; Howell, M.; Hseuh, H.; Huhn, A.; Hunter, T.; Ilg, T.; Jackson, J.; Jain, A.; Jason, A.; Jeon, D.; Johnson, G.; Jones, A.; Joseph, S.; Justice, A.; Kang, Y.; Kasemir, K.; Keller, R.; Kersevan, R.; Kerstiens, D.; Kesselman, M.; Kim, S.; Kneisel, P.; Kravchuk, L.; Kuneli, T.; Kurennoy, S.; Kustom, R.; Kwon, S.; Ladd, P.; Lambiase, R.; Lee, Y. Y.; Leitner, M.; Leung, K.-N.; Lewis, S.; Liaw, C.; Lionberger, C.; Lo, C. C.; Long, C.; Ludewig, H.; Ludvig, J.; Luft, P.; Lynch, M.; Ma, H.; MacGill, R.; Macha, K.; Madre, B.; Mahler, G.; Mahoney, K.; Maines, J.; Mammosser, J.; Mann, T.; Marneris, I.; Marroquin, P.; Martineau, R.; Matsumoto, K.; McCarthy, M.; McChesney, C.; McGahern, W.; McGehee, P.; Meng, W.; Merz, B.; Meyer, R.; Meyer, R.; Miller, B.; Mitchell, R.; Mize, J.; Monroy, M.; Munro, J.; Murdoch, G.; Musson, J.; Nath, S.; Nelson, R.; Nelson, R.; O`Hara, J.; Olsen, D.; Oren, W.; Oshatz, D.; Owens, T.; Pai, C.; Papaphilippou, I.; Patterson, N.; Patterson, J.; Pearson, C.; Pelaia, T.; Pieck, M.; Piller, C.; Plawski, T.; Plum, M.; Pogge, J.; Power, J.; Powers, T.; Preble, J.; Prokop, M.; Pruyn, J.; Purcell, D.; Rank, J.; Raparia, D.; Ratti, A.; Reass, W.; Reece, K.; Rees, D.; Regan, A.; Regis, M.; Reijonen, J.; Rej, D.; Richards, D.; Richied, D.; Rode, C.; Rodriguez, W.; Rodriguez, M.; Rohlev, A.; Rose, C.; Roseberry, T.; Rowton, L.; Roybal, W.; Rust, K.; Salazer, G.; Sandberg, J.; Saunders, J.; Schenkel, T.; Schneider, W.; Schrage, D.; Schubert, J.; Severino, F.; Shafer, R.; Shea, T.; Shishlo, A.; Shoaee, H.; Sibley, C.; Sims, J.; Smee, S.; Smith, J.; Smith, K.; Spitz, R.; Staples, J.; Stein, P.; Stettler, M.; Stirbet, M.; Stockli, M.; Stone, W.; Stout, D.; Stovall, J.; Strelo, W.; Strong, H.; Sundelin, R.; Syversrud, D.; Szajbler, M.; Takeda, H.; Tallerico, P.; Tang, J.; Tanke, E.; Tepikian, S.; Thomae, R.; Thompson, D.; Thomson, D.; Thuot, M.; Treml, C.; Tsoupas, N.; Tuozzolo, J.; Tuzel, W.; Vassioutchenko, A.; Virostek, S.; Wallig, J.; Wanderer, P.; Wang, Y.; Wang, J. G.; Wangler, T.; Warren, D.; Wei, J.; Weiss, D.; Welton, R.; Weng, J.; Weng, W.-T.; Wezensky, M.; White, M.; Whitlatch, T.; Williams, D.; Williams, E.; Wilson, K.; Wiseman, M.; Wood, R.; Wright, P.; Wu, A.; Ybarrolaza, N.; Young, K.; Young, L.; Yourd, R.; Zachoszcz, A.; Zaltsman, A.; Zhang, S.; Zhang, W.; Zhang, Y.; Zhukov, A.

    2014-11-01

    The Spallation Neutron Source (SNS) was designed and constructed by a collaboration of six U.S. Department of Energy national laboratories. The SNS accelerator system consists of a 1 GeV linear accelerator and an accumulator ring providing 1.4 MW of proton beam power in microsecond-long beam pulses to a liquid mercury target for neutron production. The accelerator complex consists of a front-end negative hydrogen-ion injector system, an 87 MeV drift tube linear accelerator, a 186 MeV side-coupled linear accelerator, a 1 GeV superconducting linear accelerator, a 248-m circumference accumulator ring and associated beam transport lines. The accelerator complex is supported by ~100 high-power RF power systems, a 2 K cryogenic plant, ~400 DC and pulsed power supply systems, ~400 beam diagnostic devices and a distributed control system handling ~100,000 I/O signals. The beam dynamics design of the SNS accelerator is presented, as is the engineering design of the major accelerator subsystems.

  4. SLC polarized beam source electron optics design

    International Nuclear Information System (INIS)

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10 -11 -Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2 1/2-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs

  5. Optimal Ground Source Heat Pump System Design

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Metin [Environ Holdings Inc., Princeton, NJ (United States); Yavuzturk, Cy [Univ. of Hartford, West Hartford, CT (United States); Pinder, George [Univ. of Vermont, Burlington, VT (United States)

    2015-04-01

    Despite the facts that GSHPs first gained popularity as early as the 1940’s and they can achieve 30 to 60 percent in energy savings and carbon emission reductions relative to conventional HVAC systems, the use of geothermal energy in the U.S. has been less than 1 percent of the total energy consumption. The key barriers preventing this technically-mature technology from reaching its full commercial potential have been its high installation cost and limited consumer knowledge and trust in GSHP systems to deliver the technology in a cost-effective manner in the market place. Led by ENVIRON, with support from University Hartford and University of Vermont, the team developed and tested a software-based a decision making tool (‘OptGSHP’) for the least-cost design of ground-source heat pump (‘GSHP’) systems. OptGSHP combines state of the art optimization algorithms with GSHP-specific HVAC and groundwater flow and heat transport simulation. The particular strength of OptGSHP is in integrating heat transport due to groundwater flow into the design, which most of the GSHP designs do not get credit for and therefore are overdesigned.

  6. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH 2 ) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH 2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  7. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  8. Design and Construction of a Radiation Source of Extreme Flux

    OpenAIRE

    Valle Brozas, Francisco

    2017-01-01

    [EN]The present thesis consists of the design and construction of an X-ray source through the interaction of an ultra-intense laser with a solid and/or liquid target. Specifically, the laser technology suitable for this purpose has been investigated, the characteristics of the laser-matter interaction have been studied and possible applications of the generated X-radiation (and accelerated electrons) have been explored. Nowadays, the development of sources of ionizing radiation through la...

  9. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  10. Design parameters and source terms: Volume 2, Source terms: Revision 0

    International Nuclear Information System (INIS)

    1987-09-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan---Conceptual Design Report SCP-CDR. The previous study identifies the data needs for the Environmental Assessment effort for seven possible salt repository sites. Volume 2 contains tables of source terms

  11. Designing of RF ion source and the power sources system

    International Nuclear Information System (INIS)

    Rusdiyanto.

    1978-01-01

    An RF ion source prototype is being developed for the particle accelerator at the Gama Research Centre. Supply of the gas is fed into the plasma chamber by means of neadle valve system. Magnetic field strength of about 500 gauss is applied to the system to improve the ionization efficiency. Components and spare parts of the RF ion source are made based on locally available materials and are discussed in this report. (author)

  12. Usability of consumer-related information sources for design improvement

    NARCIS (Netherlands)

    Thiruvenkadam, G.; Brombacher, A.C.; Lu, Y.; Ouden, den P.H.

    2008-01-01

    In this paper we report the findings of a study intended to assess the usability of consumer related information sources in order to improve the design processes of innovative electronic products. Specifically, an evaluation is done of the quality and content of information that would help product

  13. DESIGNS MATTER: Delivering Information Sources for Tourism

    Directory of Open Access Journals (Sweden)

    Margie A. Nolasco

    2016-11-01

    Full Text Available Tourism has benefits not just for travelers, but also to the local economy. Since, Bicol Region has natural and cultural attractions; it is a potential travel destination in the country. Technology in delivering information sources played vital role for the success of the tourism industry in the Region. This allows travel enthusiasts to get more information about various tourist attractions. This paper analyzes the effectiveness of delivering information sources such as web advertisement and desktop publishing for tourist promotion in the Bicol Region. Specifically, it determined the status of tourism, and identified common forms of promotions for tourism development. The study adopted mixed method of research. This method was utilized to confirm and validate findings. Interviews and focus group discussions were used to gather data from the respondents of the selected Local Government Units, Department of Tourism, Travel Agencies and Hotel Agents in the Region. Based on the findings, of the total foreign visitors in the country, only 9.14% visited Bicol Region in 2014. That is why, domestic tourist showed high percentage against foreign visitors with 25.7%. Brochures with EZ maps as most commonly used desktop publishing materials and websites and social media for web advertisement. Thus, there is a need to reevaluate promotional activities by the DOT and other agencies. Adoption suggestive features for creative desktop publishing materials and web services should be considered to increase tourist visitors in the Region.

  14. Design parameters and source terms: Volume 1, Design parameters: Revision 0

    International Nuclear Information System (INIS)

    1987-10-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report by Stearns Catalytic Corporation (SCC), entitled ''Design Parameters and Source Terms for a Two-Phase Repository in Salt,'' 1985, to the level of the Site Characterization Plan - Conceptual Design Report. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible Salt Repository sites

  15. Logistics Sourcing Strategies in Supply Chain Design

    OpenAIRE

    Liu, Liwen

    2007-01-01

    A company's logistics sourcing strategy determines whether it structures and organizeslogistics within the company or company group or integrates logistics upstream and downstreamin the supply chain. First, three different types of logistics sourcing strategies in supply chaindesign are described and the theoretical background for the development of these strategies,including both transaction cost theory and network theory, is analyzed. Two special casesabout logistics sourcing strategy decis...

  16. Exploration of Deaf People's Health Information Sources and Techniques for Information Delivery in Cape Town: A Qualitative Study for the Design and Development of a Mobile Health App.

    Science.gov (United States)

    Chininthorn, Prangnat; Glaser, Meryl; Tucker, William David; Diehl, Jan Carel

    2016-11-11

    Many cultural and linguistic Deaf people in South Africa face disparity when accessing health information because of social and language barriers. The number of certified South African Sign Language interpreters (SASLIs) is also insufficient to meet the demand of the Deaf population in the country. Our research team, in collaboration with the Deaf communities in Cape Town, devised a mobile health app called SignSupport to bridge the communication gaps in health care contexts. We consequently plan to extend our work with a Health Knowledge Transfer System (HKTS) to provide Deaf people with accessible, understandable, and accurate health information. We conducted an explorative study to prepare the groundwork for the design and development of the system. To investigate the current modes of health information distributed to Deaf people in Cape Town, identify the health information sources Deaf people prefer and their reasons, and define effective techniques for delivering understandable information to generate the groundwork for the mobile health app development with and for Deaf people. A qualitative methodology using semistructured interviews with sensitizing tools was used in a community-based codesign setting. A total of 23 Deaf people and 10 health professionals participated in this study. Inductive and deductive coding was used for the analysis. Deaf people currently have access to 4 modes of health information distribution through: Deaf and other relevant organizations, hearing health professionals, personal interactions, and the mass media. Their preferred and accessible sources are those delivering information in signed language and with communication techniques that match Deaf people's communication needs. Accessible and accurate health information can be delivered to Deaf people by 3 effective techniques: using signed language including its dialects, through health drama with its combined techniques, and accompanying the information with pictures in

  17. Neutronic moderator design for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Charlton, L.A.; Barnes, J.M.; Johnson, J.O.; Gabriel, T.A.

    1998-01-01

    Neutronics analyses are now in progress to support the initial selection of moderator design parameters for the Spallation Neutron Source (SNS). The results of the initial optimization studies involving moderator poison plate location, moderator position, and premoderator performance for the target system are presented in this paper. Also presented is an initial study of the use of a composite moderator to produce a liquid methane like spectrum

  18. The Sources and Methods of Engineering Design Requirement

    DEFF Research Database (Denmark)

    Li, Xuemeng; Zhang, Zhinan; Ahmed-Kristensen, Saeema

    2014-01-01

    to be defined in a new context. This paper focuses on understanding the design requirement sources at the requirement elicitation phase. It aims at proposing an improved design requirement source classification considering emerging markets and presenting current methods for eliciting requirement for each source...

  19. Optimum study designs.

    Science.gov (United States)

    Gu, C; Rao, D C

    2001-01-01

    Because simplistic designs will lead to prohibitively large sample sizes, the optimization of genetic study designs is critical for successfully mapping genes for complex diseases. Creative designs are necessary for detecting and amplifying the usually weak signals for complex traits. Two important outcomes of a study design--power and resolution--are implicitly tied together by the principle of uncertainty. Overemphasis on either one may lead to suboptimal designs. To achieve optimality for a particular study, therefore, practical measures such as cost-effectiveness must be used to strike a balance between power and resolution. In this light, the myriad of factors involved in study design can be checked for their effects on the ultimate outcomes, and the popular existing designs can be sorted into building blocks that may be useful for particular situations. It is hoped that imaginative construction of novel designs using such building blocks will lead to enhanced efficiency in finding genes for complex human traits.

  20. Alternative Natural Energy Sources in Building Design.

    Science.gov (United States)

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  1. Pulsed neutron source cold moderators --- concepts, design and engineering

    International Nuclear Information System (INIS)

    Bauer, Guenter S.

    1997-01-01

    Moderator design for pulsed neutron sources is becoming more and more an interface area between source designers and instrument designers. Although there exists a high degree of flexibility, there are also physical and technical limitations. This paper aims at pointing out these limitations and examining ways to extend the current state of moderator technology in order to make the next generation neutron sources even more versatile and flexible tools for science in accordance with the users' requirements. (auth)

  2. Efficient Bayesian experimental design for contaminant source identification

    Science.gov (United States)

    Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng

    2015-01-01

    In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.

  3. Livermore intense neutron source: design concepts

    International Nuclear Information System (INIS)

    Davis, J.C.; Anderson, J.D.; Booth, R.; Logan, C.M.; Osher, J.E.

    1975-07-01

    The Lawrence Livermore laboratory proposes to build an irradiation facility containing several 14 MeV T(d,n) neutron sources for materials damage experimentation. A source strength of 4 x 10 13 n/s can be produced with 400 keV D + beam on the tritium in titanium target system now used on the Livermore Rotating Target Neutron Source (RTNS). To produce the desired source strength an accelerator which can deliver 150 mA of 400 keV D + ions must be built. For the target to remain within the time-temperature regime of the present system it must have a diameter of 46 cm and rotate at 5000 rpm. With a beam spot 1 cm fwhm the useful target lifetime is expected to be the 100 hours typical of the present system. A maximum flux of 1.5 x 10 13 n/cm 2 s will be attainable over a sample 1 mm thick by 8 mm in diameter. (U.S.)

  4. Design parameters and source terms: Volume 3, Source terms: Revision 0

    International Nuclear Information System (INIS)

    1987-09-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan /endash/ Conceptual Design Report, SCP-CDR. The previous unpublished SCC Study identifies the data needs for the Environmental Assessment effort for seven possible salt repository sites

  5. Cold neutron source conceptual designing for Tehran Research Reactor

    International Nuclear Information System (INIS)

    Khajvand, N.; Mirvakili, S.M.; Faghihi, F.

    2016-01-01

    Highlights: • Cold neutron source conceptual designing for Tehran research reactor is carried out. • Type and geometry of moderator and dimensions of cold neutron source are analyzed. • Liquid hydrogen with more ortho-concentration can be better option as moderator. - Abstract: A cold neutron source (CNS) conceptual designing for the Tehran Research Reactor (TRR) were carried out using MCNPX code. In this study, a horizontal beam tube of the core which has appropriate the highest thermal flux is selected and parametric analysis to choose the type and geometry of the moderator, and the required CNS dimensions for maximizing the cold neutron production was performed. In this design the moderator cell has a spherical annulus structure, and the cold neutron flux and its brightness are calculated together with the nuclear heat load of the CNS for a variety of materials including liquid hydrogen, liquid deuterium, and solid methane. Based on our study, liquid hydrogen with more ortho-concentration than para and solid methane are the best options.

  6. Source and LINAC3 studies

    CERN Document Server

    Bellodi, G

    2017-01-01

    In the framework of the LHC Ion Injector Upgrade pro-gramme (LIU), several activities have been carried out in2016 to improve the ion source and Linac3 performance,with the goal to increase the beam current routinely deliv-ered to LEIR. The extraction region of the GTS-LHC ionsource was upgraded with enlarged vacuum chamber aper-tures and the addition of an einzel lens, yielding highertransmission through the rest of the machine. Also, a seriesof experiments have been performed to study the effects ofdouble frequency mixing on the afterglow performance ofthe source after installation of a Travelling Wave Tube Am-plifier (TWTA) as secondary microwave source at variablefrequency. Measurements have been carried out at a dedi-cated oven test stand for better understanding of the ionsource performance. Finally, several MD sessions werededicated to the study and characterization of the strippingfoils, after evidence of degradation in time was discoveredin the 2015 run.

  7. Designing satisfaction studies

    DEFF Research Database (Denmark)

    Kristensen, Kai; Eskildsen, Jacob Kjær

    2007-01-01

    In the effect sampling method, presentation of researcher, the intro text, the order of questions in the questionnaire along with the number of categories in the rating scale is tested in relation to the design of satisfaction studies. Based on the analyses specific recommendations for designing...... satisfaction studies are given....

  8. 2D accelerator design for SITEX negative ion source

    International Nuclear Information System (INIS)

    Whealton, J.H.; Raridon, R.J.; McGaffey, R.W.; McCollough, D.H.; Stirling, W.L.; Dagenhart, W.K.

    1983-01-01

    Solving the Poisson-Vlasov equations where the magnetic field, B, is assumed constant, we optimize the optical system of a SITEX negative ion source in infinite slot geometry. Algorithms designed to solve the above equations were modified to include the curved emitter boundary data appropriate to a negative ion source. Other configurations relevant to negative ion sources are examined

  9. Open Source Radiation Hardened by Design Technology

    Science.gov (United States)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  10. Review of Sealed Source Designs and Manufacturing Techniques Affecting Disused Source Management

    International Nuclear Information System (INIS)

    2012-10-01

    This publication presents an investigation on the influence of the design and technical features of sealed radioactive sources (SRSs) on predisposal and disposal activities when the sources become disused. The publication also addresses whether design modifications could contribute to safer and/or more efficient management of disused sources without compromising the benefits provided by the use of the sealed sources. This technical publication aims to collect information on the most typical design features and manufacturing techniques of sealed radioactive sources and examines how they affect the safe management of disused sealed radioactive sources (DSRS). The publication also aims to assist source designers and manufacturers by discussing design features that are important from the waste management point of view. It has been identified that most SRS manufacturers use similar geometries and materials for their designs and apply improved and reliable manufacturing techniques e.g. double- encapsulation. These designs and manufacturing techniques have been proven over time to reduce contamination levels in fabrication and handling, and improve source integrity and longevity. The current source designs and materials ensure as well as possible that SRSs will maintain their integrity in use and when they become disused. No significant improvement options to current designs have been identified. However, some design considerations were identified as important to facilitate source retrieval, to increase the possibility of re-use and to ensure minimal contamination risk and radioactive waste generation at recycling. It was also concluded that legible identifying markings on a source are critical for DSRS management. The publication emphasizes the need for a common understanding of the radioactive source's recommended working life (RWL) for manufacturers and regulators. The conditions of use (COU) are important for the determination of RWL. A formal system for specification

  11. Shielding design of disposal container for disused sealed radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Hoon; Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of)

    2017-06-15

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised.

  12. Shielding design of disposal container for disused sealed radioactive source

    International Nuclear Information System (INIS)

    Kim, Suk Hoon; Kim, Ju Youl

    2017-01-01

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised

  13. Plasma source by microwaves: design description

    International Nuclear Information System (INIS)

    Camps, E.; Olea, O.; Andrade, R.; Anguiano, G.

    1992-03-01

    The design of a device for the formation of a plasma with densities of the order of 10 12 cm - 3 and low temperatures (T e ∼ 40 eV) is described. For such purpose it was carried out in the device a microwave discharge (f o = 2.45 GHz) in a resonator of high Q factor, immersed in a static external magnetic field. The device worked in the regime ω ce ≤ ω o /2 (ω ce - cyclotron frequency of the electrons, (ω o = 2 π f o ) where is possible the excitement of non lineal phenomena of waves transformation. (Author)

  14. A neutron source for IGISOL-JYFLTRAP: Design and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Mattera, A.; Pomp, S.; Lantz, M.; Rakopoulos, V.; Solders, A.; Al-Adili, A.; Passoth, E.; Prokofiev, A.V.; Andersson, P.; Hjalmarsson, A. [Uppsala University, BOX 516, Uppsala (Sweden); Bedogni, R.; Esposito, A.; Gentile, A. [INFN-LNF, Frascati (Italy); Bortot, D. [INFN-LNF, Frascati (Italy); Politecnico di Milano, Milano (Italy); Gomez-Ros, J.M. [INFN-LNF, Frascati (Italy); CIEMAT, Madrid (Spain); Introini, M.V.; Pola, A. [Politecnico di Milano, Milano (Italy); Gorelov, D.; Penttilae, H.; Moore, I.D.; Rinta-Antila, S.; Kolhinen, V.S.; Eronen, T. [University of Jyvaeskylae (Finland)

    2017-08-15

    A white neutron source based on the Be(p, nx) reaction for fission studies at the IGISOL-JYFLTRAP facility has been designed and tested. 30MeV protons impinge on a 5mm thick water-cooled beryllium disc. The source was designed to produce at least 10{sup 12} fast neutrons/s on a secondary fission target, in order to reach competitive production rates of fission products far from the valley of stability. The Monte Carlo codes MCNPX and FLUKA were used in the design phase to simulate the neutron energy spectra. Two experiments to characterise the neutron field were performed: the first was carried out at The Svedberg Laboratory in Uppsala (SE), using an Extended-Range Bonner Sphere Spectrometer and a liquid scintillator which used the time-of-flight (TOF) method to determine the energy of the neutrons; the second employed Thin-Film Breakdown Counters for the measurement of the TOF, and activation foils, at the IGISOL facility in Jyvaeskylae (FI). Design considerations and the results of the two characterisation measurements are presented, providing benchmarks for the simulations. (orig.)

  15. The role of designer expertise in source selection during product metaphor generation

    NARCIS (Netherlands)

    Cila, N.; Hekkert, P.P.M.; Visch, V.T.

    2012-01-01

    Metaphors have a communicative role in design that entails a transfer of meaning from an entity (i.e. source) to the designed product (i.e. target). In this paper, we investigate the effect of the expertise of designer on the accessibility of the sources that they employ in metaphors. In the study

  16. Design of the SPEAR 3 Light Source

    International Nuclear Information System (INIS)

    Hettel, Robert

    2003-01-01

    The venerable SPEAR storage ring will be replaced in 2003 with a modern, low emittance 3 GeV ring optimized for producing high flux and high brightness photon beams at the Stanford Synchrotron Radiation Laboratory. SPEAR 3 will have an emittance of 18 nmrad, reduced from 160 nm-rad, and a 500-mA beam current, increased from 100 mA. A water-cooled copper vacuum chamber will be thermally stable and, together with mode-damped RF cavities, will assure multibunch beam stability. Beam lines will see one to two orders of magnitude increase in beam flux density and brightness after they have been upgraded for the higher beam power. A 6-month ring installation is planned to minimize the impact on the SSRL user program. SPEAR 3 accelerator design and beam properties are reviewed

  17. Magnetic field design for a Penning ion source for a 200 keV electrostatic accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, A., E-mail: Atefeh.Fathi115@gmail.com [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Feghhi, S.A.H.; Sadati, S.M. [Radiation Applications Department, Shahid Beheshti University, G. C., Tehran (Iran, Islamic Republic of); Ebrahimibasabi, E. [Department of Physics, Shahrood University of Technology, 3619995161, Shahrood (Iran, Islamic Republic of)

    2017-04-01

    In this study, the structure of magnetic field for a Penning ion source has been designed and constructed with the use of permanent magnets. The ion source has been designed and constructed for a 200 keV electrostatic accelerator. With using CST Studio Suite, the magnetic field profile inside the ion source was simulated and an appropriate magnetic system was designed to improve particle confinement. Designed system consists of two ring magnets with 9 mm distance from each other around the anode. The ion source was constructed and the cylindrical magnet and designed magnetic system were tested on the ion source. The results showed that the ignition voltage for ion source with the designed magnetic system is almost 300 V lower than the ion source with the cylindrical magnet. Better particle confinement causes lower voltage discharge to occur.

  18. Design of laser source for electricity generation

    International Nuclear Information System (INIS)

    Nasrullah, K.; Mariun, N.; Yeak, J.

    2000-01-01

    New sources of energy are being investigated to meet socioeconomic needs and other trivialities. Systems employing nuclear, thermal, hydro, solar, volcano, tidal and wind power generation techniques already exist. This work describes our attempt to utilize the off-planet charge to store in super electrolytic batteries or super capacitors. The electrostatic charge on clouds can be shifted to earth through a conductive air plasma channel created by appropriate high power Q-switched and mode-locked laser. The pulsed laser may create a conducting path consisting of ionised air particles from earth to some upper atmosphere. An antenna connected to anode of the super cell or positive terminal of the super capacitor will accumulate and store this charge for future use. The cathode of the battery or negative terminal of the super capacitor may be connected to earth to complete the circuit. A large number of such series and parallel units constitute a super battery or super capacitor bank system that can be connected to the national grid through DC to AC converters (DAC) and step-up transformers. According to published data, the lightning strokes may consist of 10 - 40 strokes of 2 - 80 pts duration separated in time by 6 - 530 ms intervals. The total time elapsed in lightning strike may last as long as 1 second. Due to tropical dependence, further detailed work is required to be done on lightning regarding its temporal and spatial profiles to develop a reasonable model to explore transient charging characteristics of storage devices. Experimental work in respect of laser-inducted charge-shifting, transient charging capabilities of super storage batteries or super capacitors is underway. (Author)

  19. Preliminary design and off-design performance analysis of an Organic Rankine Cycle for geothermal sources

    International Nuclear Information System (INIS)

    Hu, Dongshuai; Li, Saili; Zheng, Ya; Wang, Jiangfeng; Dai, Yiping

    2015-01-01

    Highlights: • A method for preliminary design and performance prediction is established. • Preliminary data of radial inflow turbine and plate heat exchanger are obtained. • Off-design performance curves of critical components are researched. • Performance maps in sliding pressure operation are illustrated. - Abstract: Geothermal fluid of 90 °C and 10 kg/s can be exploited together with oil in Huabei Oilfield of China. Organic Rankine Cycle is regarded as a reasonable method to utilize these geothermal sources. This study conducts a detailed design and off-design performance analysis based on the preliminary design of turbines and heat exchangers. The radial inflow turbine and plate heat exchanger are selected in this paper. Sliding pressure operation is applied in the simulation and three parameters are considered: geothermal fluid mass flow rate, geothermal fluid temperature and condensing pressure. The results indicate that in all considered conditions the designed radial inflow turbine has smooth off-design performance and no choke or supersonic flow are found at the nozzle and rotor exit. The lager geothermal fluid mass flow rate, the higher geothermal fluid temperature and the lower condensing pressure contribute to the increase of cycle efficiency and net power. Performance maps are illustrated to make system meet different load requirements especially when the geothermal fluid temperature and condensing pressure deviate from the design condition. This model can be used to provide basic data for future detailed design, and predict off-design performance in the initial design phase

  20. Design parameters and source terms: Volume 1, Design parameters: Revision 0

    International Nuclear Information System (INIS)

    1987-09-01

    The Design Parameters and Source Terms Document was prepared in accordance with DOE request and to provide data for the environmental impact study to be performed in the future for the Deaf Smith County, Texas site for a nuclear waste repository in salt. This document updates a previous unpublished report to the level of the Site Characterization Plan - Conceptual Design Report, SCP-CDR. The previous unpublished SCC Study identified the data needs for the Environmental Assessment effort for seven possible salt repository sites

  1. SPFC bus design studies

    Energy Technology Data Exchange (ETDEWEB)

    Potter, L.; Reinkingh, J.

    1999-07-01

    This report presents the results of a study assessing the design options for a solid polymer fuel cell bus. Commercial and operation requirements, environmental and market drivers, and fuel processor modeling are examined. Power train specifications and detailed system design are investigated covering fuel cell system dynamic response, hybrid system size, fuel cell system start-up time, system specifications, and hybrid bus component dimensions and costs. (UK)

  2. Design of small ECR ion source for neutron generator

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Zu Xiulan; Yang Haisu; Xiong Riheng

    2003-01-01

    The principles, structures and characteristics of small ECR (Electron Cyclotron Resonance) ion source used in the neutron generator are introduced. The processes of the design and key technique and innovations are described. (authors)

  3. CopperCore, an Open Source IMS Learning Design Engine

    NARCIS (Netherlands)

    Vogten, Hubert

    2004-01-01

    The presentation gives an overview of the approach of the development programme of the OTEC department towards the development of Open Source. The CopperCore IMS Learning Design engine is described as an example of this approach.

  4. Designing a Language Study.

    Science.gov (United States)

    Brown, James Dean

    Some issues in the design of classroom research on second language teaching are discussed, with the intention of helping the researcher avoid conceptual pitfalls that may cripple the study later in the process. This begins with an examination of concerns in sampling, including definition of a population to be studied, alternative sampling…

  5. National synchrotron light source basic design and project status

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1981-01-01

    A summary description and the basic design parameters of the National Synchrotron Light Source, a facility for the generation of intense synchrotron radiation in the vuv and x-ray range is presented, the parameters of the sources are given, the presently planned facility beam lines are tabulated and the status of the project is indicated

  6. 40 CFR 63.821 - Designation of affected sources.

    Science.gov (United States)

    2010-07-01

    ...) National Emission Standards for the Printing and Publishing Industry § 63.821 Designation of affected... flexographic printing affected source. (7) Other presses are part of the printing and publishing industry...-flexographic presses are part of the printing and publishing industry source category, but are not part of the...

  7. Irradiator design with large-volume source cylinders

    International Nuclear Information System (INIS)

    Eichholz, G.G.; Craft, T.F.; Suh, D.Y.

    1985-01-01

    To provide for economic utilization of prospective vitrified cesium-137 waste elements, a study was conducted for a conceptual irradiator system based on these elements for the commercial sterilization of sewage sludge for land spreading as fertilizer. A literature study showed that dried sludge could be sterilized more efficiently than wet. Adequate destruction of E. coli in sludge could be obtained with radiation doses as low as 150 kR. However, a dose of about 1 megarad is generally regarded as mandatory. Two cesium waste concentrations had been proposed. The one incorporating lower concentrations of Cs-137 and a surface dose of 20 kR/h was insufficiently active. Work, therefore, concentrated on the more active source cylinders, which are 18 cm in diameter with a specific activity of 16 to 17 Ci/cc. The conceptual design envisages the dry sludge passing horizontally by a conveyor system, past two rows of source elements in a three-pass array. A computer program has been developed to produce isodose contours and to calculate integrated doses for various source-target configurations

  8. Design and production of activimeters verification sealed radioactive sources

    International Nuclear Information System (INIS)

    Serra, R.; Hernandez Rivero, A. T.; Oropesa, P.; Rapado, M.; Falcon, L.

    2006-01-01

    Measurement in a radionuclide calibrator (activimeter) of the doses to be administered to a patient for diagnosis or radiotherapeutic treatment is an essential element in Nuclear Medicine practice. To assure that patient will receive the optimal doses that guarantee the necessary quality of the image to be studied or optimum radiotherapeutic effect, the activity determination should fulfil established accuracy requirements. To this aim, the overall uncertainty in activity determination must not surpass a preestablished limit of about 10 % for the expanded uncertainty of the activity value (with a coverage factor k = 3). To have suitable equipment, periodically calibrated for specialized and authorized specialists and frequently verified in inter calibration periods to guarantee detection of any malfunctioning, are essential requirements to assure the compliance with the prescribed regulations and limiting values. This paper describes the design and production of two models of 137 Cs activimeters verification sealed radioactive sources elaborated with this aim at the Radionuclide Metrology Department of the Isotope Centre of Cuba. Taking into account the international experience in this field was defined 3 -10 MBq as convenient activity range, the 137 Cs as a suitable radionuclide, and a classification ISO/99/C22212 (ISO 2919:1999) for the sealed sources to be obtained. In designed and produced models the activity is bonded in a hydrogel copolymer obtained by gamma irradiation, in a 60 Co irradiator, of a mixture of a 137 Cs aqueous solution with an approximate activity of 5 MBq with two proper monomers (acrylamide and methacrylic acid). The density of obtained copolymer is similar to that of the radioactive solutions employed in nuclear medicine departments for diagnosis and therapy. The obtained sources have appropriate physical stability for a temperature range between 40 o C below zero and 80 o C, as well as for defined activity range. The stability of the

  9. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  10. Accelerator shield design of KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.

    2013-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total

  11. The Advanced Neutron Source design: A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Nuetron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MW th . Safety, and especially passive safety features, have been emphasized throughout the design process

  12. Studies and modeling of cold neutron sources

    International Nuclear Information System (INIS)

    Campioni, G.

    2004-11-01

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources

  13. PHARAO laser source flight model: Design and performances

    Energy Technology Data Exchange (ETDEWEB)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P. [Centre National d’Etudes Spatiales, 18 avenue Edouard Belin, 31400 Toulouse (France); Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S. [Sodern, 20 Avenue Descartes, 94451 Limeil-Brévannes (France); Laurent, Ph. [LNE-SYRTE, CNRS, UPMC, Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris (France)

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  14. The Spallation Neutron Source (SNS) conceptual design shielding analysis

    International Nuclear Information System (INIS)

    Johnson, J.O.; Odano, N.; Lillie, R.A.

    1998-03-01

    The shielding design is important for the construction of an intense high-energy accelerator facility like the proposed Spallation Neutron Source (SNS) due to its impact on conventional facility design, maintenance operations, and since the cost for the radiation shielding shares a considerable part of the total facility costs. A calculational strategy utilizing coupled high energy Monte Carlo calculations and multi-dimensional discrete ordinates calculations, along with semi-empirical calculations, was implemented to perform the conceptual design shielding assessment of the proposed SNS. Biological shields have been designed and assessed for the proton beam transport system and associated beam dumps, the target station, and the target service cell and general remote maintenance cell. Shielding requirements have been assessed with respect to weight, space, and dose-rate constraints for operating, shutdown, and accident conditions. A discussion of the proposed facility design, conceptual design shielding requirements calculational strategy, source terms, preliminary results and conclusions, and recommendations for additional analyses are presented

  15. The advanced neutron source design - A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MWth. Safety, and especially passive safety features, have been emphasized throughout the design process. The design also provides experimental facilities for neutron scattering and nuclear and fundamental physics research, transuranic and other isotope production, radiation effects research, and materials analysis. (author)

  16. The synthesis method for design of electron flow sources

    Science.gov (United States)

    Alexahin, Yu I.; Molodozhenzev, A. Yu

    1997-01-01

    The synthesis method to design a relativistic magnetically - focused beam source is described in this paper. It allows to find a shape of electrodes necessary to produce laminar space charge flows. Electron guns with shielded cathodes designed with this method were analyzed using the EGUN code. The obtained results have shown the coincidence of the synthesis and analysis calculations [1]. This method of electron gun calculation may be applied for immersed electron flows - of interest for the EBIS electron gun design.

  17. The design of the cold neutron source of the OPAL reactor

    International Nuclear Information System (INIS)

    Rechiman, L.M.; Bonetto, Fabian J.; Buscaglia, Gustavo C.

    2007-01-01

    The present work describes the conceptual design process of the first cold neutron source developed by INVAP for the nuclear research reactor OPAL. The analysis begins from the requirements given by the client and continues with the chosen solutions. Furthermore, we studied how impact in the design the fully illuminated constraint with the finite remote source model. (author) [es

  18. Electron accelerator shielding design of KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhao Peng; Gohar, Yousry [Argonne National Laboratory, Argonne (United States)

    2016-06-15

    The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose

  19. Electrode design and performance of the ORNL positive ion sources

    International Nuclear Information System (INIS)

    Whealton, J.H.; Gardner, W.L.; Haselton, H.H.

    1981-08-01

    The neutral beam development group at ORNL has designed, constructed, and shipped four 50-kV, 100-A sources to PPL to be used for neutral beam heating of the confined plasma on the PDX tokamak. These sources have higher current capability than scaled-down sources, and they are required to run for 0.5 s as opposed to the 0.3-s requirement for PLT and ISX-B sources. Due to an innovative electrode design, these higher power sources met these requirements and achieved a higher transmission efficiency - 76% of the total input power on target vs 60% for the original ISX-B and modified PLT sources or 40% for the original PLT sources. Using the same electrode design with a tetrode accelerating structure and a new, indirectly heated cathode, repeatable long pulse, high energy conditions of 70 kV, 7 A, 8 s, and 90 kV, 9 A, 5 s were achieved. Grid deformation calculations and Monte Carlo beam line gas deposition algorithms will be discussed. A direct-magnetic-electron-blocking, direct-recovery device is described, and theoretical considerations of it are discussed

  20. 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    1987-04-01

    During the past decade, synchrotron radiation emitted by circulating electron beams has come into wide use as a powerful, versatile source of x-rays for probing the structure of matter and for studying various physical processes. Several synchrotron radiation facilities with different designs and characteristics are now in regular operation throughout the world, with recent additions in this country being the 0.8-GeV and 2.5-GeV rings of NSLS at Brookhaven National Laboratory. However, none of the operating facilities has been designed to use a low-emittance, high-energy stored beam, together with modern undulator devices, to produce a large number of hard x-ray beams of extremely high brilliance. This document is a proposal to the Department of Energy to construct and operate high-energy synchrotron radiation facility at Argonne National Laboratory. We have now chosen to set the design energy of this facility at 7.0 GeV, with the capability to operate at up to 7.5 GeV

  1. Neutral beam source commercialization study. Final report

    International Nuclear Information System (INIS)

    King, H.J.

    1980-06-01

    The basic tasks of this Phase II project were to: generate a set of design drawings suitable for quantity production of sources of this design; fabricate a functional neutral beam source incorporating as many of the proposed design changes as proved feasible; and document the procedures and findings developed during the contract. These tasks have been accomplished and represent a demonstrated milestone in the industrialization of this complete device

  2. R I 800. A new cobalt-60 sealed source design

    International Nuclear Information System (INIS)

    Freijo, Jose L.; Gomez, Gonzalo

    2006-01-01

    The consolidation of the international market of Co-60 sources and the perspective of its growth has encouraged the development of new types of sealed sources. The model R I 800 is designed for activities up to 65 kCi and allows a large spectrum of capsules with different specific activities. During three years Dioxitek developed the process of fabrication and qualifications to comply the design requirements and succeeded in the product approval. Today, the initial lot at an industrial scale of R I 800 sources is under fabrication and a first partial shipment of 100 kCi to the United Kingdom was successfully carried out at the end of October 2005. The whole lot is for export. Due to the versatility of the R I 800 sealed sources it was possible to use as raw material 1 MCi of Co-60 imported from Russia, irradiated in Leningrad nuclear power plant. (author) [es

  3. Design of robust microlinacs for wide replacement of radioisotope sources

    Science.gov (United States)

    Smirnov, A. V.; Agustsson, R. A.; Boucher, S.; Harrison, M.; Junge, K.; Savin, E.; Smirnov, A. Yu

    2017-12-01

    To improve public security and prevent the diversion of radioactive material for Radiation Dispersion Devices, development of an inexpensive, portable, easy-to-manufacture linac system is very important. The bremsstrahlung X-rays produced by relativistic electron beam on a high-Z converter can mimic X-rays radiated from various radioactive sources. Here we consider development of two designs: one matching a Ir-192 source used in radiography with ∼1-1.3 MeV electrons, and another one Cs137 source using 3.5-4 MeV electrons that can be considered for borehole logging. Both designs use standing wave, high group velocity, cm- wave, accelerating structure. The logging tool conceptual design is based on KlyLac concept combining a klystron and linac operating in self-oscillating mode and sharing the same vacuum envelop, and electron beam.

  4. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chamness, Michele A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maddalena, Randy L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, M. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-10-01

    -emitting and “conventional” materials as installed in newly constructed residential homes using both (1) highly controlled, short-term active samples to precisely characterize the building-related chemical emissions and building contents and (2) a week-long passive sample designed to capture the impact of occupant behavior and related activities on measured IAQ contaminant levels indoors. The combination of detailed short-term measurements with the home under controlled/consistent conditions during pre- and post-occupancy and the week-long passive sampling data provide the opportunity to begin to separate the different emission sources and help isolate and quantify variability in the monitored homes. Between April and August 2014, the research team performed pre-occupancy and post-occupancy sampling in one conventional home and two homes built with low-emitting materials that were generally consistent with EPA’s Indoor airPLUS guidelines. However, for a number of reasons, the full experimental plan was not implemented. The project was intended to continue for up to three years to asses long-term changes in IAQ but the project was limited to one calendar year. As a result, several of the primary research questions related to seasonal impacts and the long-term trends in IAQ could not be addressed. In addition, there were several unexpected issues related to recruiting, availability of home types, and difficulty coordinating with builders/realtors/homeowners. Several field monitoring issues also came up that provide “lessons learned” that led to improvements to the original monitoring plan. The project produced a good experimental plan that is expected to be be useful for future efforts collecting data to support answering these same or similar research questions.

  5. HFIR cold neutron source moderator vessel design analysis

    International Nuclear Information System (INIS)

    Chang, S.J.

    1998-04-01

    A cold neutron source capsule made of aluminum alloy is to be installed and located at the tip of one of the neutron beam tubes of the High Flux Isotope Reactor. Cold hydrogen liquid of temperature approximately 20 degree Kelvin and 15 bars pressure is designed to flow through the aluminum capsule that serves to chill and to moderate the incoming neutrons produced from the reactor core. The cold and low energy neutrons thus produced will be used as cold neutron sources for the diffraction experiments. The structural design calculation for the aluminum capsule is reported in this paper

  6. Note: Ion source design for ion trap systems

    Science.gov (United States)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  7. Reactor Core Design and Analysis for a Micronuclear Power Source

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2018-03-01

    Full Text Available Underwater vehicle is designed to ensure the security of country sea boundary, providing harsh requirements for its power system design. Conventional power sources, such as battery and Stirling engine, are featured with low power and short lifetime. Micronuclear reactor power source featured with higher power density and longer lifetime would strongly meet the demands of unmanned underwater vehicle power system. In this paper, a 2.4 MWt lithium heat pipe cooled reactor core is designed for micronuclear power source, which can be applied for underwater vehicles. The core features with small volume, high power density, long lifetime, and low noise level. Uranium nitride fuel with 70% enrichment and lithium heat pipes are adopted in the core. The reactivity is controlled by six control drums with B4C neutron absorber. Monte Carlo code MCNP is used for calculating the power distribution, characteristics of reactivity feedback, and core criticality safety. A code MCORE coupling MCNP and ORIGEN is used to analyze the burnup characteristics of the designed core. The results show that the core life is 14 years, and the core parameters satisfy the safety requirements. This work provides reference to the design and application of the micronuclear power source.

  8. Development of nuclear design criteria for neutron spallation sources

    Energy Technology Data Exchange (ETDEWEB)

    Sordo, F.; Abanades, A. [E.T.S. Industriales, Madrid Polytechnic University, UPM, J.Gutierrez Abascal, 2 -28006 Madrid (Spain)

    2008-07-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  9. Development of nuclear design criteria for neutron spallation sources

    International Nuclear Information System (INIS)

    Sordo, F.; Abanades, A.

    2008-01-01

    Spallation neutron sources allow obtaining high neutronic flux for many scientific and industrial applications. In recent years, several proposals have been made about its use, notably the European Spallation Source (ESS), the Japanese Spallation Source (JSNS) and the projects of Accelerator-Driven Subcritical reactors (ADS), particularly in the framework of EURATOM programs. Given their interest, it seems necessary to establish adequate design basis for guiding the engineering analysis and construction projects of this kind of installations. In this sense, all works done so far seek to obtain particular solutions to a particular design, but there has not been any general development to set up an engineering methodology in this field. In the integral design of a spallation source, all relevant physical processes that may influence its behaviour must be taken into account. Neutronic aspects (emitted neutrons and their spectrum, generation performance..), thermomechanical (energy deposition, cooling conditions, stress distribution..), radiological (spallation waste activity, activation reactions and residual heat) and material properties alteration due to irradiation (atomic displacements and gas generation) must all be considered. After analysing in a systematic manner the different options available in scientific literature, the main objective of this thesis was established as making a significant contribution to determine the limiting factors of the main aspects of spallation sources, its application range and the criteria for choosing optimal materials. To achieve this goal, a series of general simulations have been completed, covering all the relevant physical processes in the neutronic and thermal-mechanical field. Finally, the obtained criteria have been applied to the particular case of the design of the spallation source of subcritical reactors PDX-ADS and XT-ADS. These two designs, developed under the European R and D Framework Program, represent nowadays

  10. Seal design alternatives study

    International Nuclear Information System (INIS)

    Van Sambeek, L.L.; Luo, D.D.; Lin, M.S.; Ostrowski, W.; Oyenuga, D.

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information

  11. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  12. BNL feasibility studies of spallation neutron sources

    International Nuclear Information System (INIS)

    Lee, Y.Y.; Ruggiero, A.G.; Van Steenbergen, A.; Weng, W.T.

    1995-01-01

    This paper is the summary of conceptual design studies of a 5 MW Pulsed Spallation Neutron Source (PSNS) conducted by an interdepartmental study group at Brookhaven National Laboratory. The study was made of two periods. First, a scenario based on the use of a 600 MeV Linac followed by two fast-cycling 3.6 GeV Synchrotrons was investigated. Then, in a subsequent period, the attention of the study was directed toward an Accumulator scenario with two options: (1) a 1.25 GeV normal conducting Linac followed by two Accumulator Rings, and (2) a 2.4 GeV superconducting Linac followed by a single Accumulator Ring. The study did not make any reference to a specific site

  13. 40 CFR 63.100 - Applicability and designation of source.

    Science.gov (United States)

    2010-07-01

    ... Manufacturing Industry § 63.100 Applicability and designation of source. (a) This subpart provides applicability...), or accepted engineering practices. If the total annual HAP emissions for the plant site are annually... system will be replaced; (ii) A barrier fluid system will be installed; (iii) A new barrier fluid will be...

  14. Open-source intelligence and privacy by design

    NARCIS (Netherlands)

    Koops, B.J.; Hoepman, J.H.; Leenes, R.

    2013-01-01

    As demonstrated by other papers on this issue, open-source intelligence (OSINT) by state authorities poses challenges for privacy protection and intellectual-property enforcement. A possible strategy to address these challenges is to adapt the design of OSINT tools to embed normative requirements,

  15. Perceived Uncertainty Sources in Wind Power Plant Design

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-03

    This presentation for the Fourth Wind Energy Systems Engineering Workshop covers some of the uncertainties that still impact turbulent wind operation and how these affect design and structural reliability; identifies key sources and prioritization for R and D; and summarizes an analysis of current procedures, industry best practice, standards, and expert opinions.

  16. Beamline standard component designs for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

    1994-01-01

    The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings

  17. Design criteria for an uninterruptable power source (UPS)

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, S.S.N. [Nnamdi Azikiwe Univ. Awka (Nigeria). Dept. of Science Technology; Okeke, C.A. [Nnamdi Azikiwe Univ. Awka (Nigeria). Dept. of Science Technology; Mortune, B.U. [Nnamdi Azikiwe Univ. Awka (Nigeria). Dept. of Science Technology; Okeke, C.C. [Univ. of Nigeria, Nsukka (Nigeria). Dept. of Computer Science

    1997-05-01

    This paper on uninterruptible power source (UPS) is a result of an R and D project; it describes the components of a UPS system and reviews the design requirements necessary for its construction with low cost and ease of maintenance. (orig.)

  18. Design and safety aspects of the Cornell cold neutron source

    International Nuclear Information System (INIS)

    Ouellet, Carol G.; Clark, David D.

    1992-01-01

    The cold neutron beam facility at the Cornell University TRIGA Mark II reactor will begin operational testing in early 1993. It is designed to provide a low background subthermal neutron beam that is as free as possible of fast neutrons and gamma rays for applied research and graduate-level instruction. The Cornell cold neutron source differs from the more conventional types of cold sources in that it is inherently safer because it uses a safe handling material (mesitylene) as the moderator instead of hydrogen or methane, avoids the circulation of cryogenic fluids by removing heat from the system by conduction through a 99.99% pure copper rod attached to a cryogenic refrigerator, and is much smaller in its size and loads. The design details and potential hazards are described, where it is concluded that no credible accident involving the cold source could cause damage to the reactor or personnel, or cause release of radioactivity. (author)

  19. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    Science.gov (United States)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  20. Spallation neutron source target station design, development, and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Haines, J.R., E-mail: hainesjr@ornl.gov; McManamy, T.J.; Gabriel, T.A.; Battle, R.E.; Chipley, K.K.; Crabtree, J.A.; Jacobs, L.L.; Lousteau, D.C.; Rennich, M.J.; Riemer, B.W.

    2014-11-11

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  1. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    International Nuclear Information System (INIS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells

  2. Design of an intense positron source for linear colliders

    International Nuclear Information System (INIS)

    Ida, H.; Yamada, K.; Funahashi, Y.

    1994-01-01

    The Japan Linear Collider (JLC) requires an intense positron source of 8x10 11 particles per rf-pulse. A computer simulation reveals the possibility of such an intense positron source using 'conventional' technology. In order to relax the limitation of the incident electron energy density due to thermal stress in the converter target, the incident beam radius is enlarged within the range so as not to reduce the positron capture efficiency. A pre-damping ring and beam transport system to the pre-damping ring, which have a large transverse acceptance, play important roles for a high capture efficiency. A prototype positron source has been designed and installed at downstream of 1.54 GeV S-band linac in Accelerator Test Facility (ATF) in order to carry out experiments to develop the essential technology for JLC. The simulated results will be tested in experiments with the prototype positron source. (author)

  3. Design of a portable directional neutron source finder

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni

    2005-01-01

    An instrument that determines the direction of a remote existing neutron source has been designed. This instrument combines a polyethylene block and four 3 He counter tubes. The advantages of the instrument are portability and good angular resolution. The count from the detector was varied with the neutron incident angle due to the moderator. Using this characteristic, the direction of the neutron source can be measured precisely by revising the axis of the instrument so that the difference between the four detectors measurements is minimized. Consequently, the direction of the central axis of the instrument in which the response difference of the four detectors reaches a minimum indicates the direction of the neutron source. The practical use of the instrument was demonstrated by 252 Cf source irradiation experiment and MCNP simulation

  4. Final design of the beam source for the MITICA injector

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D., E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Boilson, D.; Graceffa, J.; Hemsworth, R. S. [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); and others

    2016-02-15

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  5. Fusion reactor design studies

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Santarius, J.F.

    1990-01-01

    This report discusses the following topics on the ARIES tokamak: systems; plasma power balance; impurity control and fusion ash removal; fusion product ripple loss; energy conversion; reactor fueling; first wall design; shield design; reactor safety; and fuel cost and resources

  6. Nippon Storm Study design

    Directory of Open Access Journals (Sweden)

    Takashi Kurita

    2012-10-01

    Full Text Available An understanding of the clinical aspects of electrical storm (E-storms in patients with implantable cardiac shock devices (ICSDs: ICDs or cardiac resynchronization therapy with defibrillator [CRT-D] may provide important information for clinical management of patients with ICSDs. The Nippon Storm Study was organized by the Japanese Heart Rhythm Society (JHRS and Japanese Society of Electrocardiology and was designed to prospectively collect a variety of data from patients with ICSDs, with a focus on the incidence of E-storms and clinical conditions for the occurrence of an E-storm. Forty main ICSD centers in Japan are participating in the present study. From 2002, the JHRS began to collect ICSD patient data using website registration (termed Japanese cardiac defibrillator therapy registration, or JCDTR. This investigation aims to collect data on and investigate the general parameters of patients with ICSDs, such as clinical backgrounds of the patients, purposes of implantation, complications during the implantation procedure, and incidence of appropriate and inappropriate therapies from the ICSD. The Nippon Storm Study was planned as a sub-study of the JCDTR with focus on E-storms. We aim to achieve registration of more than 1000 ICSD patients and complete follow-up data collection, with the assumption of a 5–10% incidence of E-storms during the 2-year follow-up.

  7. Inverse compton light source: a compact design proposal

    Energy Technology Data Exchange (ETDEWEB)

    Deitrick, Kirsten Elizabeth [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source was constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the

  8. BWID System Design Study

    International Nuclear Information System (INIS)

    O'Brien, M.C.; Rudin, M.J.; Morrison, J.L.; Richardson, J.G.

    1991-01-01

    The mission of the Buried Waste Integrated Demonstration (BWID) System Design Study is to identify and evaluate technology process options for the cradle-to-grave remediation of Transuranic (TRU)-Contaminated Waste Pits and Trenches buried at the Idaho National Engineering Laboratory (INEL). Emphasis is placed upon evaluating system configuration options and associated functional and operational requirements for retrieving and treating the buried wastes. A Performance-Based Technology Selection Filter was developed to evaluate the identified remediation systems and their enabling technologies based upon system requirements and quantification of technical Comprehensive Environmental Response, Compensation, and Liability (CERCLA) balancing criteria. Remediation systems will also be evaluated with respect to regulatory and institutional acceptance and cost-effectiveness

  9. Design, manufacture, and calibration of infrared radiometric blackbody sources

    International Nuclear Information System (INIS)

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 μm. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 μm, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following

  10. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan; Motamed, Mohammad; Tempone, Raul

    2016-01-01

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  11. Fast Bayesian optimal experimental design for seismic source inversion

    KAUST Repository

    Long, Quan

    2015-07-01

    We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem. © 2015 Elsevier B.V.

  12. Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    KAUST Repository

    Long, Quan

    2016-01-06

    We develop a fast method for optimally designing experiments [1] in the context of statistical seismic source inversion [2]. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by the elastic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the true parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem.

  13. Design of a 'two-ion-source' charge breeder with a dual frequency ECR ion source

    International Nuclear Information System (INIS)

    Naik, D.; Naik, V.; Chakrabarti, A.; Dechoudhury, S.; Nayak, S.K.; Pandey, H.K.; Nakagawa, T.

    2005-01-01

    A charge breeder, 'two-ion-source' has been designed which consists of a surface ionisation source followed by an ECR ion source working in two-frequency mode. In this system low charge state ion beam (1+)of radioactive atoms are obtained from the first ion source close to the target chamber and landed into the ECR where those are captured and become high charged state after undergoing a multi ionisation process. This beam dynamics design has been done to optimise the maximum possible transfer of 1 + beam from the first ion source into the ECR, its full capture within the ECR zone and design of an efficient dual frequency ECR. The results shows that 1 + beam of 100 nA and 1μA (A=100) are successfully transmitted and it's beam size at the centre of ECR zone are 12 mm and 21 mm respectively, which are very less than 65 mm width ECR zone of dual frequency ECR heating at 14 GHz and 10 GHz. (author)

  14. Final design of thermal diagnostic system in SPIDER ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2016-11-15

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  15. Final design of thermal diagnostic system in SPIDER ion source

    International Nuclear Information System (INIS)

    Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-01-01

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H"− production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  16. Design development of bellows for the DNB beam source

    International Nuclear Information System (INIS)

    Singh, Dhananjay Kumar; Venkata Nagaraju, M.; Joshi, Jaydeep; Patel, Hitesh; Yadav, Ashish; Pillai, Suraj; Singh, Mahendrajit; Bandyopadhyay, Mainak; Chakraborty, A.K.; Sharma, Dheeraj

    2017-01-01

    Establishing a procedure and mechanism for alignment of Ion beams in Neutral Beam (NB) sources for ITER like systems are complex due to large traversal distances (∼21 m) and restricted use of flexible elements into the system. For the beam source of DNB, movement requirements for beam alignment are the combination of tilting (±9mrad), rotation (±9mrad) and translation (±25mm). The present work describes the design development of a system composed of three single ply ‘Gimbal’ type bellow system, placed in series, in L-shaped hydraulic lines (size DN50, DN20 and DN15). The paper shall detail out the generation of initial requirements, transformation of movements at bellow locations, selection of bellows/combination of bellows, minimizing the induced movements by optimization of bellows location, estimation of movements through CEASAR II and the design compliance with respect to EJMA code

  17. Detail design of the beam source for the SPIDER experiment

    International Nuclear Information System (INIS)

    Marcuzzi, D.; Agostinetti, P.; Dalla Palma, M.; Degli Agostini, F.; Pavei, M.; Rizzolo, A.; Tollin, M.; Trevisan, L.

    2010-01-01

    The ITER Neutral Beam Test Facility (PRIMA-Padova Research on Injector Megavolt Accelerated) is planned to be built at Consorzio RFX (Padova, Italy). PRIMA includes two experimental devices: a full size plasma source with low voltage extraction called SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and a full size neutral beam injector at full beam power called MITICA (Megavolt ITER Injector Concept Advancement). SPIDER is the first experimental device to be built and operated, aiming at testing the extraction of a negative ion beam (made of H - and in a later stage D - ions) from an ITER size ion source. The main requirements of this experiment are a H - /D - current of approximately 70 A/50 A and an energy of 100 keV. This paper presents an overview of the SPIDER beam source design, with a particular focus on the main design choices, aiming at reaching the best compromise between physics, optics, thermo-mechanical, cooling, assembly and electrical requirements.

  18. Radiation studies in the antiproton source

    International Nuclear Information System (INIS)

    Church, M.

    1990-01-01

    Experiment E760 has a lead glass (Pb-G) calorimeter situated in the antiproton source tunnel in the accumulator ring at location A50. This location is exposed to radiation from several sources during antiproton stacking operations. A series of radiation studies has been performed over the last two years to determine the sources of this radiation and as a result, some shielding has been installed in the antiproton source in order to protect the lead glass from radiation damage

  19. Studies in Interior Design

    Science.gov (United States)

    Environ Planning Design, 1970

    1970-01-01

    Floor plans and photographs illustrate a description of the Samuel C. Williams Library at Stevens Institute of Technology, Hoboken, N.J. The unusual interior design allows students to take full advantage of the library's resources. (JW)

  20. Improved design of proton source and low energy beam transport line for European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell' università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  1. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  2. Failure: A Source of Progress in Maintenance and Design

    Science.gov (United States)

    Chaïb, R.; Taleb, M.; Benidir, M.; Verzea, I.; Bellaouar, A.

    This approach, allows using the failure as a source of progress in maintenance and design to detect the most critical components in equipment, to determine the priority order maintenance actions to lead and direct the exploitation procedure towards the most penalizing links in this equipment, even define the necessary changes and recommendations for future improvement. Thus, appreciate the pathological behaviour of the material and increase its availability, even increase its lifespan and improve its future design. In this context and in the light of these points, the failures are important in managing the maintenance function. Indeed, it has become important to understand the phenomena of failure and degradation of equipments in order to establish an appropriate maintenance policy for the rational use of mechanical components and move to the practice of proactive maintenance [1], do maintenance at the design [2].

  3. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world's best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world's best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using 64 Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet

  4. Design, commissioning and operation of the Swiss Light Source SLS

    International Nuclear Information System (INIS)

    Streun, Andreas

    2003-01-01

    The Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI) is the most recent 3rd generation light source coming to operation. It consists of a 12- TBA storage ring of 288 m circumference providing 5 nm rad emittance at 2.4 GeV, a novel type of full energy booster synchrotron and a 100 MeV linac. The initial four beamlines cover protein X-ray crystallography (PX), materials science (MS), surface and interface spectroscopy (SIS) and microscopy (SIM). We will review the project history, describe the design concepts of the accelerators and the technical subsystems, and report on the commissioning process and the status of operation by end of 2002. (author)

  5. Study of the 137Cs Stabilizer Source

    Directory of Open Access Journals (Sweden)

    GAO Yan;WANG Yan-ling;XU Zhi-jian;XU Liang;REN Chun-xia;TAN Xiao-ming;CUI Hong-qi

    2014-02-01

    Full Text Available The attenuation laws of the Cesium -137 γ-ray penetrating the ceramic core、stainless steel and tungsten steel were studied. The radioactivity of the 137Cs stabilizer source was determined through the surface dose rate of 137Cs stabilizer sources. In addition, the adsorption properties of the ceramic core were studied to improve the stability of the output rate, and established a production line. The application results showed that the output rate of ray source was accurate and was of a good consistency. At present, the source had been used in logging lithology, and achieved the realization of domestic product.

  6. Open source intelligence, open social intelligence and privacy by design

    OpenAIRE

    Casanovas, Pompeu; Royal Melbourne Institute of Technology (Austràlia). Centre for Applied Social Research

    2014-01-01

    Ponència presentada a European Conference on Social Intelligence (ECSI-2014) OSINT stands for Open Source Intelligence, (O)SI for (Open) Social Intelligence, PbD for Privacy by Design. The CAPER project has built an OSINT solution oriented to the prevention of organized crime. How to balance freedom and security? This position paper describes a way to embed the legal and ethical issues raised by the General Data Reform Package (GDRP) in Europe into this kind of surveillance platforms. It f...

  7. Reactivity studies on the advanced neutron source

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Redmond, E.L. II; Fletcher, C.D.

    1990-01-01

    An Advanced Neutron Source (ANS) with a peak thermal neutron flux of about 8.5 x 10 19 m -2 s -1 is being designed for condensed matter physics, materials science, isotope production, and fundamental physics research. The ANS is a new reactor-based research facility being planned by Oak Ridge National Laboratory (ORNL) to meet the need for an intense steady-state source of neutrons. The design effort is currently in the conceptual phase. A reference reactor design has been selected in order to examine the safety, performance, and costs associated with this one design. The ANS Project has an established, documented safety philosophy, and safety-related design criteria are currently being established. The purpose of this paper is to present analyses of safety aspects of the reference reactor design that are related to core reactivity events. These analyses include control rod worth, shutdown rod worth, heavy water voiding, neutron beam tube flooding, light water ingress, and single fuel element criticality. Understanding these safety aspects will allow us to make design modifications that improve the reactor safety and achieve the safety related design criteria. 8 refs., 3 tabs

  8. HYPER system design study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won S.; Han, Seok J.; Song, Tae Y. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-04-01

    KAERI is developing ADS, named HYPER for the transmutation of nuclear waste. HYPER is designed to produce 1000 MWth with the subcriticality of 0.97. HYPER adopts a hollow cylinder type metal fuel and require 1.0GeV, 16mA proton beams. Pb-Bi is used as coolant and the inlet and outlet temperatures are 340 deg C, 510 deg C, respectively. In addition, Pb-Bi coolant is used as spallation target also. HYPER is expected to incinerate about 380 kg of TRU a year, which is corresponding to the support ratio 5 {approx} 6. 23 refs., 50 figs., 31 tabs. (Author)

  9. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  10. Preliminary design of the advanced quantum beam source

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and γ-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries

  11. Lattice Study for the Taiwan Photon Source

    CERN Document Server

    Kuo, Chin-Cheng; Chen Chien Te; Luo, Gwo-Huei; Tsai, Hung-Jen; Wang, Min-Huey

    2005-01-01

    The feasibility study for the new 3.0~3.3 GeV Taiwan synchrotron light source, dubbed Taiwan Photon Source, was initiated in July, 2004. The goal is to construct a high performance light source with extremely bright X-ray in complementary to the existing 1.5 GeV light source in Taiwan. The ring circumference is 518.4 m and a 24-cell DBA lattice structure is chosen. The natural emittance with distributed dispersion is less than 2 nm-rad. A large booster ring of 499.2 m sharing the storage ring tunnel will be adopted.

  12. Selection of the optimum magnet design for the International Linear Collider positron source helical undulator

    Directory of Open Access Journals (Sweden)

    D. J. Scott

    2007-03-01

    Full Text Available A comparison of possible undulator designs for the International Linear Collider positron source has resulted in a superconducting bifilar wire design being selected. After a comprehensive paper study and fabrication of the two preeminent designs, the superconducting undulator was chosen instead of the permanent magnet alternative. This was because of its superior performance in terms of magnetic field strength and quality, operational flexibility, risk of radiation damage, ease in achieving the required vacuum, and cost. The superconducting undulator design will now be developed into a complete system design for the full 200 m long magnet that is required.

  13. Explaining Kansei design studies

    NARCIS (Netherlands)

    Levy, P.D.; Vakamori, S.; Yamanaka, T.

    2008-01-01

    Within the last thirty years, Kansei studies have become an important field of research in Japan. More recently, foreign researchers have become more and more interested in understating the approach, despite the difficulties related to the cultural dimension of Kansei and Kansei studies. The aim of

  14. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  15. The design of nuclear magnetic resonance programmable pulsed source based SOPC

    International Nuclear Information System (INIS)

    Zhang Qingshun; Zhang Yakun; Wang Wenli

    2012-01-01

    The design of pulse source in the equipment of pulsed Nuclear Magnetic Resonance is studied based on SOPC. The strong processing power of Nios Ⅱ embedded processor and the design flexibility of FPGA are fully used. The SOPC system is built. The overall design plan for the pulse source is described. The design of programmable multi-pulse generation logic user-defined components in the FPGA is introduced mainly. Part of the implementation program and the task logic simulation waveforms are presented. The pulse source has better application value because a clear, stable and good quality multi-pulse output waveform can be shown on the oscilloscope finally. The system software and hardware are easy to be modified and upgraded, meeting different application of pulsed NMR pulse sequence in variety of requirements. (authors)

  16. Advanced neutron source design: burnout heat flux correlation development

    International Nuclear Information System (INIS)

    Gambill, W.R.; Mochizuki, T.

    1988-01-01

    In the advanced neutron source reactor (ANSR) fuel element region, heat fluxes will be elevated. Early designs corresponded to average and estimated hot-spot fluxes of 11 to 12 and 21 to 22 MW/m 2 , respectively. Design changes under consideration may lower these values to ∼ 9 and 17 MW/m 1 . In either event, the development of a satisfactory burnout heat flux correlation is an important element among the many thermal-hydraulic design issues, since the critical power ratio will depend in part on its validity. Relatively little work in the area of subcooled-flow burnout has been published over the past 12 yr. The authors have compared seven burnout correlations and modifications therefore with several sets of experimental data, of which the most relevant to the ANS core are those referenced. The best overall agreement between the correlations tested and these data is currently provided by a modification of Thorgerson et al. correlation. The variable ranges of the experimental data are outlined and the results of the correlation comparisons are summarized

  17. Designing localized electromagnetic fields in a source-free space

    International Nuclear Information System (INIS)

    Borzdov, George N.

    2002-01-01

    An approach to characterizing and designing localized electromagnetic fields, based on the use of differentiable manifolds, differentiable mappings, and the group of rotation, is presented. By way of illustration, novel families of exact time-harmonic solutions to Maxwell's equations in the source-free space - localized fields defined by the rotation group - are obtained. The proposed approach provides a broad spectrum of tools to design localized fields, i.e., to build-in symmetry properties of oscillating electric and magnetic fields, to govern the distributions of their energy densities (both size and form of localization domains), and to set the structure of time-average energy fluxes. It is shown that localized fields can be combined as constructive elements to obtain a complex field structure with desirable properties, such as one-, two-, or three-dimensional field gratings. The proposed approach can be used in designing localized electromagnetic fields to govern motion and state of charged and neutral particles. As an example, motion of relativistic electrons in one-dimensional and three-dimensional field gratings is treated

  18. Statistical studies of powerful extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, J T

    1981-01-01

    This dissertation is mainly about the use of efficient statistical tests to study the properties of powerful extragalactic radio sources. Most of the analysis is based on subsets of a sample of 166 bright (3CR) sources selected at 178 MHz. The first chapter is introductory and it is followed by three on the misalignment and symmetry of double radio sources. The properties of nuclear components in extragalactic sources are discussed in the next chapter, using statistical tests which make efficient use of upper limits, often the only available information on the flux density from the nuclear component. Multifrequency observations of four 3CR sources are presented in the next chapter. The penultimate chapter is about the analysis of correlations involving more than two variables. The Spearman partial rank correlation coefficient is shown to be the most powerful test available which is based on non-parametric statistics. It is therefore used to study the dependences of the properties of sources on their size at constant redshift, and the results are interpreted in terms of source evolution. Correlations of source properties with luminosity and redshift are then examined.

  19. Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell

    International Nuclear Information System (INIS)

    Huang, Bi; Jian, Qifei; Luo, Lizhong; Zhao, Jing

    2017-01-01

    Highlights: • A novel heat recovery device was designed and tested. • Aiming at avoiding liquid slugging in cold areas. • Recovery of the waste energy of compressor housing. • Refrigerant is heated with the energy recovered before it is sucked into the compressor. • Requires no extra power while the recovery system is operating. - Abstract: A novel heat recovery device designed to recover the heat that is released from the outer surface of heat pump compressors, and to enhance the performance of heat pumps in cold areas was made and tested in this study. The novel heat recovery device consists of three fundamental units: a heat absorption unit, a heat emission unit and heat pipes. An amount of work focused on recovering the heat of compressors through oil system, but few studies concentrated on the housing. The main advantage of the heat recovery device is no need for extra energy consumption for its only driving force is the temperature difference between the compressor shell and the working fluid inside the suction line. The experimental results were obtained from a series of tests with a R410A air-source heat pump. Effects of the device are analyzed with respect of the suction temperature, temperature distribution among the housing, input power and exergy destruction. Moreover, the impact on the heating capacity is also discussed. Further, direction for improvement is also given based on the analysis.

  20. High intensity neutrino source superconducting solenoid cyrostat design

    Energy Technology Data Exchange (ETDEWEB)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  1. Status and design of the Advanced Photon Source control system

    International Nuclear Information System (INIS)

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-01-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  2. Long characteristics with piecewise linear sources designed for unstructured grids

    International Nuclear Information System (INIS)

    Pandya, Tara M.; Adams, Marvin L.; Hawkins, W. Daryl

    2011-01-01

    We present a method of long characteristics (MOC or LC) that employs a piece-wise linear (PWL) finite-element representation of the total source in each cell. PWL basis functions were designed to allow discontinuous finite-element methods (DFEMs) and characteristic methods to obtain accurate solutions in optically thick diffusive regions with polygonal (2D) or polyhedral (3D) cells. Our work is motivated by the following observations. Our PWL-LC should reproduce the excellent diffusion-limit behavior of the PWL DFEM but should be more accurate in streaming regions. As an LC method it also offer the potential for improved performance of transport sweeps on massively parallel architectures, because it allows face-based and track-based sweeps in addition to cell-based. We have implemented the two-dimensional (x, y) polygonal-cell version of this method in the parallel transport code PDT. The rectangular-grid results shown here demonstrate that the method with PWL sources is accurate for thick diffusive problems, for which methods with piece-wise constant or higher-order polynomial sources fail. Our results also demonstrate that the PWL-LC method is more accurate than the PWL-DFEM in streaming dominated steady-state problems. We discuss options for time discretization and present results from time-dependent problems that illustrate pros and cons of some options. Our results suggest that the most accurate solutions will be obtained via long characteristics in space and time but that less memory-intensive treatments can provide MOC solutions that are at least as robust and accurate as those obtained by PWL-DFEM. (author)

  3. Linac Coherent Light Source (LCLS) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, Heinz-Dieter

    2002-11-25

    The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R&D facility operating in the wavelength range 1.5-15 {angstrom}. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

  4. Design study of the compact ERL

    International Nuclear Information System (INIS)

    Hajima, Ryoichi; Nakamura, Norio; Sakanaka, Shogo; Kobayashi, Yukinori

    2008-02-01

    Energy-recovery linac (ERL) is a promising device for future X-ray light sources, which can produce coherent X-rays and femto-second X-ray pulses. In Japan, we have organized a collaboration team, consisting of the members of KEK, JAEA, ISSP and other laboratories, toward realization of future ERL light sources, and started R and D efforts to establish accelerator technologies relevant to the ERL light source. In order to demonstrate all the accelerator technologies working together, we have decided to build a small facility, the Compact ERL. This report presents a design study of the Compact ERL, which includes R and D issues for each accelerator component, studies on the beam dynamics, performance of the Compact ERL as a light source of THz and X-ray. (author)

  5. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  6. SLC polarized beam source ultra-high-vacuum design

    International Nuclear Information System (INIS)

    Lavine, T.L.; Clendenin, J.E.; Garwin, E.L.; Hoyt, E.W.; Hoyt, M.W.; Miller, R.H.; Nuttall, J.A.; Schultz, D.C.; Wright, D.

    1991-05-01

    This paper describes the design of the ultra-high vacuum system for the beam-line from the 160-kV polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10 -11 -Torr-range pressure for adequate quantum efficiency and longevity. The photo-cathode is illuminated by 3-nsec-long laser pulses. Photo-cathode maintenance and improvements require occasional substitution of guns with rapid restoration of UHV conditions. Differential pumping is crucial since the pressure in the injector is more than 10 times greater than the photocathode can tolerate, and since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line contains a differential pumping region isolated by a pair of valves. Exchange of guns requires venting only this isolated region which can be restored to UHV rapidly by baking. The differential pumping is performed by non-evaporable getters (NEGs) and an ion pump. 3 refs., 3 figs

  7. Implementation of Design Changes Towards a More Reliable, Hands-off Magnetron Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, A. [Fermilab; Bollinger, D. S. [Fermilab; Karns, P. R. [Fermilab; Tan, C. Y. [Fermilab

    2017-12-07

    As the main H- ion source for the accelerator complex, magnetron ion sources have been used at Fermilab since the 1970’s. At the offline test stand, new R&D is carried out to develop and upgrade the present magnetron-type sources of H- ions of up to 80 mA and 35 keV beam energy in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. In order to reduce the amount of tuning and monitoring of these ion sources, a new electronic system consisting of a current-regulated arc discharge modulator allow the ion source to run at a constant arc current for improved beam output and operation. A solenoid-type gas valve feeds H2 gas into the source precisely and independently of ambient temperature. This summary will cover several studies and design changes that have been tested and will eventually be implemented on the operational magnetron sources at Fermilab. Innovative results for this type of ion source include cathode geometries, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction, with the aim to improve source lifetime, stability, and reducing the amount of tuning needed. In this summary, I will highlight the advances made in ion sources at Fermilab and will outline the directions of the continuing R&D effort.

  8. Note: A new design for a low-temperature high-intensity helium beam source

    Science.gov (United States)

    Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.

    2013-02-01

    A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.

  9. Design and qualification testing of a strontium-90 fluoride heat source

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-12-01

    The Strontium Heat Source Development Program began at the Pacific Northwest Laboratory (PNL) in 1972 and is scheduled to be completed by the end of FY-1981. The program is currently funded by the US Department of Energy (DOE) By-Product Utilization Program. The primary objective of the program has been to develop the data and technology required to permit the licensing of power systems for terrestrial applications that utilize 90 SrF 2 -fueled radioisotope heat sources. A secondary objective of the program has been to design and qualification-test a general purpose 90 SrF 2 -fueled heat source. The effort expended in the design and testing of the heat source is described. Detailed information is included on: heat source design, licensing requirements, and qualification test requirements; the qualification test procedures; and the fabrication and testing of capsules of various materials. The results obtained in the qualification tests show that the outer capsule design proposed for the 90 SrF 2 heat source is capable of meeting current licensing requirements when Hastelloy S is used as the outer capsule material. The data also indicate that an outer capsule of Hastelloy C-4 would probably also meet licensing requirements, although Hastelloy S is the preferred material. Therefore, based on the results of this study, the general purpose 90 SrF 2 heat source will consist of a standard WESF Hastelloy C-276 inner capsule filled with 90 SrF 2 and a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for this study, the general purpose 90 SrF 2 heat a Hastelloy S outer capsule having a 2.375-in. inner diameter and 0.500-in. wall thickness. The end closures for the outer capsule will utilize an interlocking joint design requiring a 0.1-in. penetration closure weld

  10. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reynoso, Francisco J.; Manohar, Nivedh [Nuclear/Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Krishnan, Sunil [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cho, Sang Hyun, E-mail: scho@mdanderson.org [Department of Radiation Physics and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2014-10-15

    dependence of the photoelectron yield on the atomic number of source filter material, consistent with the macroscopic dose enhancement results. A similar trend was also shown in the so-called microscopic dose enhancement factor, for example, resulting in the maximum values of 138 and 119 for the titanium- and the stainless steel-encapsulated Yb-169 sources, respectively. Conclusions: The current results consistently show that the dose enhancement achievable from the Yb-169 source is closely related with the atomic number (Z) of source encapsulation material. While the observed range of improvement in the dose enhancement may be considered moderate after factoring all uncertainties in the MC results, the current study provides a reasonable support for the encapsulation of the Yb-core with lower-Z materials than stainless steel, for GNRT applications. Overall, the titanium capsule design can be favored over the aluminum or dual aluminum/titanium capsule designs, due to its superior structural integrity and improved safety during manufacturing and clinical use.

  11. Sourcing of internal auditing : An empirical study

    NARCIS (Netherlands)

    Speklé, R.F.; Elten, van H.J.; Kruis, A.

    2007-01-01

    This paper studies the factors associated with organizations’ internal audit sourcing decisions, building from a previous study by Widener and Selto (henceforth W&S) [Widener, S.K., Selto, F.H., 1999. Management control systems and boundaries of the firm: why do firms outsource internal audit

  12. Repository design sensitivity study: Engineering study report

    International Nuclear Information System (INIS)

    1987-01-01

    A preliminary sensitivity study of the salt repository design has been performed to identify critical site and design parameters to help guide future site characterization and design optimization activities. The study considered the SCP-conceptual design at the Deaf Smith County site in Texas with the horizontal waste package emplacement mode as the base case. Relative to this base case, parameter variations were compared. Limited studies were performed which considered the vertical emplacement mode geometry. The report presents the reference data base and design parameters on which the study was based (including the range of parameters that might be expected). Detailed descriptions of the numerical modeling methods and assumptions are included for the thermal, thermomechanical and hydrogeological analyses. The impacts of parameter variations on the sensitivity of the rock mass response are discussed. Recommendations are provided to help guide site characterization activities and advanced conceptual design optimization activities. 47 refs., 119 refs., 22 tabs

  13. The advanced neutron source facility: Safety philosophy and studies

    International Nuclear Information System (INIS)

    Greene, S.R.; Harrington, R.M.

    1988-01-01

    The Advanced Neutron Source (ANS) is currently the only new civilian nuclear reactor facility proposed for construction in the United States. Even though the thermal power of this research-oriented reactor is a relatively low 300 MW, the design will undoubtedly receive intense scrutiny before construction is allowed to proceed. Safety studies are already under way to ensure that the maximum degree of safety in incorporated into the design and that the design is acceptable to the Department of Energy (DOE) and can meet the Nuclear Regulatory Commission regulations. This document discusses these safety studies

  14. Grid system design on the plasma cathode electron source

    International Nuclear Information System (INIS)

    Agus Purwadi

    2014-01-01

    It has been designed the grid system on the Plasma Cathode Electron Source (PCES). Grid system with the electron emission hole of (15 x 60) cm 2 , the single aperture grid size of (0,5 x O,5) mm 2 and the grid wire diameter of 0,25 mm, will be used on the plasma generator chamber. If the sum of grid holes known and the value of electron emission current through every the grid hole known too then the total value of electron emission Current which emits from the plasma generator chamber can be determined It has been calculated the value of electron emission current I e as function of the grid radius r e =(0.28, 0.40, 0.49, 0.56, 0.63, 0.69) mm on the electron temperature of T e = 5 eV for varying of the value plasma electron densities n e = (10 15 , 10 16 , 10 17 , 10 18 ) m -3 . Also for the value of electron emission current fe as function of the grid radius r e = (0.28, 0.40, 0.49. 0.56, 0.63,0.69) mm on the electron density n e = 10 17 m -3 for varying of the value of plasma electron temperatures T e = (1, 2, 3, 4, 5) eV. electron emission current will be increase by increasing grid radius, electron temperature as well as plasma electron density. (author)

  15. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  16. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  17. Study designs may influence results

    DEFF Research Database (Denmark)

    Johansen, Christoffer; Schüz, Joachim; Andreasen, Anne-Marie Serena

    2017-01-01

    appeared to show an inverse association, whereas nested case-control and cohort studies showed no association. For allergies, the inverse association was observed irrespective of study design. We recommend that the questionnaire-based case-control design be placed lower in the hierarchy of studies...... for establishing cause-and-effect for diseases such as glioma. We suggest that a state-of-the-art case-control study should, as a minimum, be accompanied by extensive validation of the exposure assessment methods and the representativeness of the study sample with regard to the exposures of interest. Otherwise...

  18. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  19. GLOBAL SOURCING: A THEORETICAL STUDY ON TURKEY

    Directory of Open Access Journals (Sweden)

    Aytac GOKMEN

    2010-07-01

    Full Text Available Global sourcing is to source from the global market for goods and services across national boundaries in order to take advantage of the global efficiencies in the delivery of a product or service. Such efficiencies are consists of low cost skilled labor, low cost raw materials and other economic factors like tax breaks and deductions as well as low trade tariffs. When we assess the case regarding to Turkey, global sourcing is an effective device for some firms. The domestic firms in Turkey at various industries are inclined to global source finished or intermediate goods from the world markets, finish the production process in Turkey and export. Eventually, on the one hand the export volume of Turkey increases, but on the other hand the import of a considerable volume of finished or intermediate goods bring about a negative trade balance and loss of jobs in Turkey. Therefore, the objective of this study is to assess the concept of global sourcing transactions on Turkey resting on comprehensive publications.

  20. Radiation shielding design of BNCT treatment room for D-T neutron source.

    Science.gov (United States)

    Pouryavi, Mehdi; Farhad Masoudi, S; Rahmani, Faezeh

    2015-05-01

    Recent studies have shown that D-T neutron generator can be used as a proper neutron source for Boron Neutron Capture Therapy (BNCT) of deep-seated brain tumors. In this paper, radiation shielding calculations have been conducted based on the computational method for designing a BNCT treatment room for a recent proposed D-T neutron source. By using the MCNP-4C code, the geometry of the treatment room has been designed and optimized in such a way that the equivalent dose rate out of the treatment room to be less than 0.5μSv/h for uncontrolled areas. The treatment room contains walls, monitoring window, maze and entrance door. According to the radiation protection viewpoint, dose rate results of out of the proposed room showed that using D-T neutron source for BNCT is safe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. {sup 103}Pd strings: Monte Carlo assessment of a new approach to brachytherapy source design

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, Mark J., E-mail: mark.j.rivard@gmail.com [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Reed, Joshua L.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-01-15

    Purpose: A new type of{sup 103}Pd source (CivaString and CivaThin by CivaTech Oncology, Inc.) is examined. The source contains {sup 103}Pd and Au radio-opaque marker(s), all contained within low-Z{sub eff} organic polymers that permit source flexibility. The CivaString source is available in lengths L of 10, 20, 30, 40, 50, and 60 mm, and referred to in the current study as CS10–CS60, respectively. A thinner design, CivaThin, has sources designated as CT10–CT60, respectively. The CivaString and CivaThin sources are 0.85 and 0.60 mm in diameter, respectively. The source design is novel and offers an opportunity to examine its interesting dosimetric properties in comparison to conventional {sup 103}Pd seeds. Methods: The MCNP5 radiation transport code was used to estimate air-kerma rate and dose rate distributions with polar and cylindrical coordinate systems. Doses in water and prostate tissue phantoms were compared to determine differences between the TG-43 formalism and realistic clinical circumstances. The influence of Ti encapsulation and 2.7 keV photons was examined. The accuracy of superposition of dose distributions from shorter sources to create longer source dose distributions was also assessed. Results: The normalized air-kerma rate was not highly dependent onL or the polar angle θ, with results being nearly identical between the CivaString and CivaThin sources for common L. The air-kerma strength was also weakly dependent on L. The uncertainty analysis established a standard uncertainty of 1.3% for the dose-rate constant Λ, where the largest contributors were μ{sub en}/ρ and μ/ρ. The Λ values decreased with increasing L, which was largely explained by differences in solid angle. The radial dose function did not substantially vary among the CivaString and CivaThin sources for r ≥ 1 cm. However, behavior for r < 1 cm indicated that the Au marker(s) shielded radiation for the sources having L = 10, 30, and 50 mm. The 2D anisotropy function

  2. Design of 6 Mev linear accelerator based pulsed thermal neutron source: FLUKA simulation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Patil, B.J., E-mail: bjp@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India); Chavan, S.T.; Pethe, S.N.; Krishnan, R. [SAMEER, IIT Powai Campus, Mumbai 400 076 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411 007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2012-01-15

    The 6 MeV LINAC based pulsed thermal neutron source has been designed for bulk materials analysis. The design was optimized by varying different parameters of the target and materials for each region using FLUKA code. The optimized design of thermal neutron source gives flux of 3 Multiplication-Sign 10{sup 6}ncm{sup -2}s{sup -1} with more than 80% of thermal neutrons and neutron to gamma ratio was 1 Multiplication-Sign 10{sup 4}ncm{sup -2}mR{sup -1}. The results of prototype experiment and simulation are found to be in good agreement with each other. - Highlights: Black-Right-Pointing-Pointer The optimized 6 eV linear accelerator based thermal neutron source using FLUKA simulation. Black-Right-Pointing-Pointer Beryllium as a photonuclear target and reflector, polyethylene as a filter and shield, graphite as a moderator. Black-Right-Pointing-Pointer Optimized pulsed thermal neutron source gives neutron flux of 3 Multiplication-Sign 10{sup 6} n cm{sup -2} s{sup -1}. Black-Right-Pointing-Pointer Results of the prototype experiment were compared with simulations and are found to be in good agreement. Black-Right-Pointing-Pointer This source can effectively be used for the study of bulk material analysis and activation products.

  3. A Study on Improvement of Algorithm for Source Term Evaluation

    International Nuclear Information System (INIS)

    Park, Jeong Ho; Park, Do Hyung; Lee, Jae Hee

    2010-03-01

    The program developed by KAERI for source term assessment of radwastes from the advanced nuclear fuel cycle consists of spent fuel database analysis module, spent fuel arising projection module, and automatic characterization module for radwastes from pyroprocess. To improve the algorithm adopted the developed program, following items were carried out: - development of an algorithm to decrease analysis time for spent fuel database - development of setup routine for a analysis procedure - improvement of interface for spent fuel arising projection module - optimization of data management algorithm needed for massive calculation to estimate source terms of radwastes from advanced fuel cycle The program developed through this study has a capability to perform source term estimation although several spent fuel assemblies with different fuel design, initial enrichment, irradiation history, discharge burnup, and cooling time are processed at the same time in the pyroprocess. It is expected that this program will be very useful for the design of unit process of pyroprocess and disposal system

  4. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  5. Data processing with microcode designed with source coding

    Science.gov (United States)

    McCoy, James A; Morrison, Steven E

    2013-05-07

    Programming for a data processor to execute a data processing application is provided using microcode source code. The microcode source code is assembled to produce microcode that includes digital microcode instructions with which to signal the data processor to execute the data processing application.

  6. How should the JAERI neutron source be designed?

    International Nuclear Information System (INIS)

    Watanabe, Noboru

    1996-01-01

    The importance of a next-generation neutron source in JAERI is discussed. The feasibility and the performances of three types of neutron sources, namely continuous wave spallation source (CWSS), long-pulse spallation source (LPSS) and short-pulse spallation source (SPSS), are compared based on a proposed JAERI accelerator, a superconducting (SC) proton linac (1-1.5 GeV, 25-16 mA in peak current, finally CW). How to realize one of the world's best neutron source using such a linac with a modest beam-current and what type of neutron source is the best for such a linac are the most important current problems. Since the accelerator is not favorable for LPSS due to a lower peak current and there exist serious technical problems for a CWSS target, a short-pulse spallation source would be the best candidate to realize a 5 MW-class SPSS like ESS, provided that the H - -injection to a compressor ring over a long pulse duration (>2 ms) is feasible. (author)

  7. Visual Design Principles: An Empirical Study of Design Lore

    Science.gov (United States)

    Kimball, Miles A.

    2013-01-01

    Many books, designers, and design educators talk about visual design principles such as balance, contrast, and alignment, but with little consistency. This study uses empirical methods to explore the lore surrounding design principles. The study took the form of two stages: a quantitative literature review to determine what design principles are…

  8. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  9. Studies and modeling of cold neutron sources; Etude et modelisation des sources froides de neutron

    Energy Technology Data Exchange (ETDEWEB)

    Campioni, G

    2004-11-15

    With the purpose of updating knowledge in the fields of cold neutron sources, the work of this thesis has been run according to the 3 following axes. First, the gathering of specific information forming the materials of this work. This set of knowledge covers the following fields: cold neutron, cross-sections for the different cold moderators, flux slowing down, different measurements of the cold flux and finally, issues in the thermal analysis of the problem. Secondly, the study and development of suitable computation tools. After an analysis of the problem, several tools have been planed, implemented and tested in the 3-dimensional radiation transport code Tripoli-4. In particular, a module of uncoupling, integrated in the official version of Tripoli-4, can perform Monte-Carlo parametric studies with a spare factor of Cpu time fetching 50 times. A module of coupling, simulating neutron guides, has also been developed and implemented in the Monte-Carlo code McStas. Thirdly, achieving a complete study for the validation of the installed calculation chain. These studies focus on 3 cold sources currently functioning: SP1 from Orphee reactor and 2 other sources (SFH and SFV) from the HFR at the Laue Langevin Institute. These studies give examples of problems and methods for the design of future cold sources.

  10. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  11. The mechanical design and simulation of a scaled H⁻ Penning ion source.

    Science.gov (United States)

    Rutter, T; Faircloth, D; Turner, D; Lawrie, S

    2016-02-01

    The existing ISIS Penning H(-) source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  12. The mechanical design and simulation of a scaled H- Penning ion source

    Science.gov (United States)

    Rutter, T.; Faircloth, D.; Turner, D.; Lawrie, S.

    2016-02-01

    The existing ISIS Penning H- source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  13. Design and Co-design of Project-organized Studies

    DEFF Research Database (Denmark)

    Nielsen, Jørgen Lerche; Andreasen, Lars Birch

    2014-01-01

    The chapter contributes to discussions on design processes in relation to education, presenting different notions of design research and demonstrating how professors and students are involved together in designing innovative and constructive study processes that can help foster students' engagement...

  14. Sealed source and device removal and consolidation feasibility study

    International Nuclear Information System (INIS)

    Ward, J.E.; Carter, J.G.; Meyers, R.L.

    1993-02-01

    The purpose of this study is to assess the feasibility of removing Greater-Than-Class C (GTCC) sealed sources from their containment device and consolidating them for transport to a storage or disposal facility. A sealed source is a sealed capsule containing a radioactive material that is placed in a device providing radioactive containment. It is used in the medical, industrial, research, and food-processing communities for calibrating, measuring, gauging, controlling processes, and testing. This feasibility study addresses the key operational, safety, regulatory, and financial requirements of the removal/consolidation process. This report discusses the process to receive, handle, repackage, and ship these sources to an interim or dedicated storage facility until a final disposal repository can be built and become operational (∼ c. 2010). The study identifies operational and facility requirements to perform this work. Hanford, other DOE facilities, and private hot-cell facilities were evaluated to determine which facilities could perform this work. The personnel needed, design and engineering, facility preparation, process waste disposal requirements, and regulatory compliance were evaluated to determine the cost to perform this work. Cost requirements for items that will have to meet future changing regulatory requirements for transportation, transportation container design and engineering, and disposal were not included in this study. The cost associated with in-process consolidation of the sealed sources reported in this study may have not been modified for inflation and were based on 1992 dollars. This study shows that sealed source consolidation is possible with minimal personnel exposure, and would reduce the risk of radioactive releases to the environment. An initial pilot-scale operation could evaluate the possible methods to reduce the cost and consolidate sources

  15. Design of a Solenoid Magnet for a Microwave Ion Source

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Dae Il

    2011-01-01

    A microwave ion source has many advantages, such as long-life time, low emittance, high brightness, and compactness. Also it is a big merit that 2.45GHz rf systems are easily available and inexpensive. Due to the reasons microwave ion sources are very attractive for industrial applications. But microwave ion sources need a solenoid magnet which is usually an electromagnet with a DC current power supply. The electromagnet solenoids of microwave ion sources can be installed in two methods. The first method is to use isolation transformer to supply electrical power to DC current power supply for the magnets. In this case the magnet is compact because it has the same potential with the extraction voltage. The second method is to put an electrical insulator, such as G10, between ion sources and magnets. In this case the solenoid magnet is bigger than one in the first method, especially for higher extraction voltage, because the space for the insulator is required. Permanent magnets can be a good candidate to make microwave ion source more compact. But it is difficult to control the magnetic field profile and the magnetic flux density for the permanent magnet solenoids. Due to the reason, in the case that the best performances in many operating conditions should be achieved by adjusting the profile and strength of the solenoid, electromagnet is better than permanent magnet. But in the case of industrial applications where operating conditions is usually fixed and the compactness is required, permanent magnet is better choice to build an ion source

  16. Design and simulation of an optimized e-linac based neutron source for BNCT research

    International Nuclear Information System (INIS)

    Durisi, E.; Alikaniotis, K.; Borla, O.; Bragato, F.; Costa, M.; Giannini, G.; Monti, V.; Visca, L.; Vivaldo, G.; Zanini, A.

    2015-01-01

    The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10"7 cm"−"2 s"−"1. This paper investigates possible Linac’s modifications and a new photo-converter design to rise the neutron flux above 5 10"7 cm"−"2 s"−"1, also reducing the gamma contamination. - Highlights: • Proposal of a mixed thermal and epithermal (named hyperthermal) neutron source based on medical high energy electron Linac. • Photo-neutron production via Giant Dipole Resonance on high Z materials. • MCNP4B-GN simulations to design the photo-converter geometry maximizing the hyperthermal neutron flux and minimizing the fast neutron and gamma contaminations. Hyperthermal neutron field suitable for BNCT preclinical research.

  17. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    International Nuclear Information System (INIS)

    Wu, Q.; Sun, L.T.; Cui, B.Q.; Lian, G.; Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M.; Liu, W.P.

    2016-01-01

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H + , 10 emA He + and 2.0 emA He 2+ beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  18. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, L.T., E-mail: sunlt@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, B.Q.; Lian, G. [China Institute of Atomic Energy, Beijing 102413 (China); Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.P. [China Institute of Atomic Energy, Beijing 102413 (China)

    2016-09-11

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H{sup +}, 10 emA He{sup +} and 2.0 emA He{sup 2+} beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  19. Thermal analyses for the design of the ITER-NBI arc driven ion source

    International Nuclear Information System (INIS)

    Anaclerio, G.; Peruzzo, S.; Dal Bello, S.; Palma, M.D.; Nocentini, R.; Zaccaria, P.

    2006-01-01

    The design of the first ITER NB Injector and the ITER NB Test Facility is presently in progress in the framework of EFDA contracts with the contribution of several European Associations. One of the components currently studied by Consorzio RFX Team is the arc driven negative ion source, which is designed to produce a D - beam of 40 A at 1 MeV for 3600 s pulses, generated in the ion source via a surface production process in a caesium-seeded arc discharge of 790 kW total power. This paper will focus in particular on the thermal analyses carried out in order to evaluate the thermal behaviour in nominal operating conditions of the main components of the ion source: the arc-chamber and the filament cassette assembly. The study is based on hydraulic, thermo-mechanical and thermo-electrical calculations performed by means of 2D and 3D finite element models, with inputs coming partly from the ITER reference design documentation and partly from the design review activities presently in progress. Moreover a complete modelling of all the components of the beam source assembly by means of new 3D CAD models was carried out to demonstrate the feasibility of the proposed design. For the arc chamber, an assessment of the cooling circuit has been performed and hydraulic analyses have been carried out to calculate water flow rates and pressures inside the cooling channels. Thermo-mechanical analyses have been carried out considering several load cases and different water flow rates. The maximum and average temperatures of the arc chamber walls have been calculated to verify the operational conditions and the fulfilment of physics requirements for the negative ion generation. For the filament cassette assembly, an assessment of the effectiveness of the cooling system has been carried out considering two different design solutions: the first based on the reference design, with a dedicated active cooling system integrated in the filament cassette; the other based on a simplified

  20. Subsurface flow constructed wetlands for the treatment of wastewater from different sources. Design and operation

    OpenAIRE

    Torrens Armengol, Antonina

    2016-01-01

    The aim of the thesis is to examine the viability of the subsurface constructed wetlands for the treatment of wastewater derived from three different sources (treatment ponds, pig farms and car wash facilities), and to evaluate the influence of design (size, type and depth of media, presence of Phragmites australis) and operational parameters (hydraulic load, dosing and feeding modes) on treatment efficiency and hydraulic behavior. Several studies were done in the framework of different ...

  1. Calculation of source term in spent PWR fuel assemblies for dry storage and shipping cask design

    International Nuclear Information System (INIS)

    Fernandez, J. L.; Lopez, J.

    1986-01-01

    Using the ORIGEN-2 Coda, the decay heat and neutron and photon sources for an irradiated PWR fuel element have been calculated. Also, parametric studies on the behaviour of the magnitudes with the burn-up, linear heat power and irradiation and cooling times were performed. Finally, a comparison between our results and other design calculations shows a good agreement and confirms the validity of the used method. (Author) 6 refs

  2. Design of the magnetic system of an ECR type ion source

    International Nuclear Information System (INIS)

    Camps C, E.; Munoz C, A.

    1990-05-01

    A computer program written with the purpose of studying the magnetic field produced by a linear system of n coils is shown. Based on this a four coils system is designed that was used in an ion source of Resonance Electron-cyclotron type (REC) that is sought to build. In turn, structure characteristics of the magnetic field proper for such purpose are discussed. (Author)

  3. Design and optimization of components and processes for plasma sources in advanced material treatments

    OpenAIRE

    Rotundo, Fabio

    2012-01-01

    The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, whi...

  4. Design of the compact permanent-magnet ECR ion source

    International Nuclear Information System (INIS)

    Park, J. Y.; Ahn, J. K.; Lee, H. S.; Won, M. S.; Lee, B. S.; Bae, J. S.; Bang, J. K.

    2009-01-01

    The Electron Cyclotron Resonance Ion Sources (ECRIS) for multiply charged ion beams keep regularly improving and expanding since the pioneer time of R. Geller and his coworkers about twenty years age. It has been widely utilized in a variety of research areas ranging from atomic and nuclear physics to material sciences. Because of the unique capability of producing highly charged ion beams, the ECR ion source has become increasingly popular in heavy-ion accelerators where the principle of acceleration sensitively depends on the charge-to-mass ratio (q=M) of the injected positive ion beam. The potential usages of beam based research development is still developing and there are plenty of rooms to be part of it. On the basis of ECR ion source technology, we will explore possible applications in the field of plasma technology, radiation technology, plastic deformation, adding more and new functionality by implantation, MEMS applications, developing new generation mass analysis system, fast neutron radiography system, etc

  5. Cylindrical IEC neutron source design for driven research reactor operation

    International Nuclear Information System (INIS)

    Miley, G.H.; Ulmen, B.; Amadio, G.; Leon, H.; Hora, H.

    2009-01-01

    A resurgence in nuclear power use is now underway worldwide. However, due many university research reactors shutdown, they must rely on using subcritical assemblies which employs a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The source is inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory. (author)

  6. EBTS: DESIGN AND EXPERIMENTAL STUDY

    International Nuclear Information System (INIS)

    PIKIN, A.; ALESSI, J.; BEEBE, E.; KPONOU, A.; PRELEC, K.; KUZNETSOV, G.; TIUNOV, M.

    2000-01-01

    Experimental study of the BNL Electron Beam Test Stand (EBTS), which is a prototype of the Relativistic Heavy Ion Collider (RHIC) Electron Beam Ion Source (EBIS), is currently underway. The basic physics and engineering aspects of a high current EBIS implemented in EBTS are outlined and construction of its main systems is presented. Efficient transmission of a 10 A electron beam through the ion trap has been achieved. Experimental results on generation of multiply charged ions with both continuous gas and external ion injection confirm stable operation of the ion trap

  7. Mechanical design of a pinger system for the LBNL Advanced Light Source Accelerator

    International Nuclear Information System (INIS)

    Thur, W.; Akre, J.; Gavidia, A.; Guigli, J.

    1997-05-01

    A fast magnet ''Pinger System'' has been designed for the Advanced Light Source 1.9 GeV electron Storage Ring. Intended for beam dynamics studies, its purpose is to provide a fast (< 600 ns) transverse magnetic field pulse to perturb the orbit of an electron bunch in a single turn. A key component is the special resistive-coated ceramic beam tube which is needed for fast magnetic field penetration. The evolution of the design concept is described, with emphasis on simplifications to provide an economical and mechanically robust device

  8. Preliminary design of GDT-based 14 MeV neutron source

    International Nuclear Information System (INIS)

    Du Hongfei; Chen Dehong; Wang Hui; Wang Fuqiong; Jiang Jieqiong; Wu Yican; Chen Yiping

    2012-01-01

    To meet the need of D-T fusion neutron source for fusion material testing, design goals were presented in this paper according to the international requirements of neutron source for fusion material testing. A preliminary design scheme of GDT-based 14 MeV neutron source was proposed, and a physics model of the neutron source was built based on progress of GDT experiments. Two preliminary design schemes (i. e. FDS-GDT1, FDS-GDT2) were designed; among which FDS-GDT2 can be used for fusion material testing with neutron first wall loading of 2 MW/m 2 . (authors)

  9. 40 CFR 61.110 - Applicability and designation of sources.

    Science.gov (United States)

    2010-07-01

    ... operate in benzene service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart. (b) The provisions of this subpart do not apply to sources...

  10. Sustainability in Open Source Software Commons: Lessons Learned from an Empirical Study of SourceForge Projects

    OpenAIRE

    Charles M. Schweik

    2013-01-01

    In this article, we summarize a five-year US National Science Foundation funded study designed to investigate the factors that lead some open source projects to ongoing collaborative success while many others become abandoned. Our primary interest was to conduct a study that was closely representative of the population of open source software projects in the world, rather than focus on the more-often studied, high-profile successful cases. After building a large database of projects (n=174,33...

  11. Vibration analysis of the photon shutter designed for the advanced photon source

    International Nuclear Information System (INIS)

    Wang, Z.; Shu, D.; Kuzay, T.M.

    1992-01-01

    The photon shutter is a critical component of the beamline front end for the 7 GeV Advanced Photon Source (APS) project, now under construction at Argonne National Laboratory (ANL). The shutter is designed to close in tens of milliseconds to absorb up to 10 kW heat load (with high heat flux). Our shutter design uses innovative enhanced heat transfer tubes to withstand the high heat load. Although designed to be light weight and compact, the very fast movement of the shutter gives rise to concern regarding vibration and dynamic sensitivity. To guarantee long-term functionality and reliability of the shutter, the dynamic behavior should be fully studied. In this paper, the natural frequency and transient dynamic analysis for the shutter during operation are presented. Through analysis of the vibration characteristics, as well as stress and deformation, several options in design were developed and compared, including selection of materials for the shutter and structural details

  12. Uncertainty sources in radiopharmaceuticals clinical studies

    International Nuclear Information System (INIS)

    Degenhardt, Aemilie Louize; Oliveira, Silvia Maria Velasques de

    2014-01-01

    The radiopharmaceuticals should be approved for consumption by evaluating their quality, safety and efficacy. Clinical studies are designed to verify the pharmacodynamics, pharmacological and clinical effects in humans and are required for assuring safety and efficacy. The Bayesian analysis has been used for clinical studies effectiveness evaluation. This work aims to identify uncertainties associated with the process of production of the radionuclide and radiopharmaceutical labelling as well as the radiopharmaceutical administration and scintigraphy images acquisition and processing. For the development of clinical studies in the country, the metrological chain shall assure the traceability of the surveys performed in all phases. (author)

  13. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  14. Design of the power sources for portable nuclear instruments

    International Nuclear Information System (INIS)

    Chen Wei; Fang Fang; Cui Yan; Cui Junliang; Zhou Wei

    2007-01-01

    How to charge for the portable equipments is always a topical subject aimed by people, the application of new type batteries and Battery Management brings great facility to people's life, the rechargeable battery for portable equipments is widely used in portable equipments, but the convenience of the charging power source is limited in special situation. This paper will discuss how to combining rechargeable battery with traditional alkaline batteries for charging the portable instruments. (authors)

  15. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  16. Photoemission studies using laboratory and synchrotron sources

    International Nuclear Information System (INIS)

    Phase, D.M.

    2012-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet soft and hard X-ray photons, are having great impact on physics, chemistry, biology materials science and other areas research. In particular synchrotron radiation has revolutionized photoelectron spectroscopy by enhancing its capabilities for investigating the electronic properties of solids. The first Indian synchrotron storage ring, Indus- 1 is in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (PES) beamline on this 450 MeV storage ring. A storage ring of this kind is most suitable for investigation in the energy range from few electron volts to around five hundred electron volts. In this lecture we will describe the details of PES beamline and its experimental station. Till date the different university users carried out photoemission measurements on variety of samples. Some of the spectra recorded by users will be presented in order to show the capability of this beamline. In the later part we will report a review of our recent research work carried out on dilute magnetic thin films using this beamline. (author)

  17. Preliminary Design of a Synchronized Narrow Bandwidth FEL for Taiwan Light Source

    CERN Document Server

    Keung Lau Wai; Ching Fan, Tai; Zone Hsiao Feng; Tung Hsu Kuo; Hwang, Ching Shiang; Cheng Kuo Chin; Huei Luo Guo; Jen Wang Duan; Ping Wang Jau; Huey Wang Min

    2004-01-01

    Design study of a narrow line-width, high power IR-FEL facility has been carried out at NSRRC. This machine is designed to synchronize with the U9 undulator radiation of Taiwan Light Source and therefore provide new opportunity for chemical dynamics and condensed matter research. It has been proposed to use a super-conducting linac to provide a 60 MeV high quality electron beam to drive a 2.5-10 microns FEL oscillator with U5 undulator. Operating this linac in energy recovery mode will also be considered as an option to improve overall system effeciency and reduce heat loss and radiation dosage at the beam dump. Performance requirements and outcomes from this preliminary design study will be reported.

  18. Spiral 2: preliminary design study

    International Nuclear Information System (INIS)

    2001-11-01

    The scientific council of GANIL asked to perform a comparative study on the production methods based on gamma induced fission and rapid-neutron induced fission concerning the nature and the intensity of the neutron-rich products. The production rate expected should be around 10 13 fissions per second. The study should include the implantation and the costs of the concerned accelerators. The scientific committee recommended also to study the possibility to re-inject the radioactive beams of SPIRAL-II in the cyclotrons available at GANIL in order to give access to an energy range from 1.7 to 100 MeV/nucleon. For that purpose, some study groups have been formed to evaluate the possibility of such a project in the different components: physics case, target-ion sources, drivers, post-acceleration and general infrastructure. The organization of the project study is given at the end of this report. The following report presents an overview of the study. Particularly the total costs have been assessed according to 3 options for the driver: 38.0*10 6 euros for a 40 MeV deuteron linac, 18.7*10 6 euros for a 45 MeV electron linac, and 29.1*10 6 euros for a 80 MeV deuteron cyclotron

  19. Spiral 2: preliminary design study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-15

    The scientific council of GANIL asked to perform a comparative study on the production methods based on gamma induced fission and rapid-neutron induced fission concerning the nature and the intensity of the neutron-rich products. The production rate expected should be around 10{sup 13} fissions per second. The study should include the implantation and the costs of the concerned accelerators. The scientific committee recommended also to study the possibility to re-inject the radioactive beams of SPIRAL-II in the cyclotrons available at GANIL in order to give access to an energy range from 1.7 to 100 MeV/nucleon. For that purpose, some study groups have been formed to evaluate the possibility of such a project in the different components: physics case, target-ion sources, drivers, post-acceleration and general infrastructure. The organization of the project study is given at the end of this report. The following report presents an overview of the study. Particularly the total costs have been assessed according to 3 options for the driver: 38.0*10{sup 6} euros for a 40 MeV deuteron linac, 18.7*10{sup 6} euros for a 45 MeV electron linac, and 29.1*10{sup 6} euros for a 80 MeV deuteron cyclotron.

  20. Monte Carlo simulation using MCNP4B for an optimal shielding design of a 252 Cf source

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    2001-01-01

    This study aim to investigate an optimum shielding design against neutrons and gamma-rays from a source of 252 Cf, using Monte Carlo simulation. The shielding materials studied were: borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP, version 4B, was used to design shielding for 252 Cf based neutron irradiator systems. By normalizing the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independents of the intensity of actual 252 Cf source. The results shown what the total dose equivalent rates were reduced significantly by the shielding system optimization. (author)

  1. Study and Design of Differential Microphone Arrays

    CERN Document Server

    Benesty, Jacob

    2013-01-01

    Microphone arrays have attracted a lot of interest over the last few decades since they have the potential to solve many important problems such as noise reduction/speech enhancement, source separation, dereverberation, spatial sound recording, and source localization/tracking, to name a few. However, the design and implementation of microphone arrays with beamforming algorithms is not a trivial task when it comes to processing broadband signals such as speech. Indeed, in most sensor arrangements, the beamformer tends to have a frequency-dependent response. One exception, perhaps, is the family of differential microphone arrays (DMAs) that have the promise to form frequency-independent responses. Moreover, they have the potential to attain high directional gains with small and compact apertures. As a result, this type of microphone arrays has drawn much research and development attention recently. This book is intended to provide a systematic study of DMAs from a signal processing perspective. The primary obj...

  2. New reversing freeform lens design method for LED uniform illumination with extended source and near field

    Science.gov (United States)

    Zhao, Zhili; Zhang, Honghai; Zheng, Huai; Liu, Sheng

    2018-03-01

    In light-emitting diode (LED) array illumination (e.g. LED backlighting), obtainment of high uniformity in the harsh condition of the large distance height ratio (DHR), extended source and near field is a key as well as challenging issue. In this study, we present a new reversing freeform lens design algorithm based on the illuminance distribution function (IDF) instead of the traditional light intensity distribution, which allows uniform LED illumination in the above mentioned harsh conditions. IDF of freeform lens can be obtained by the proposed mathematical method, considering the effects of large DHR, extended source and near field target at the same time. In order to prove the claims, a slim direct-lit LED backlighting with DHR equal to 4 is designed. In comparison with the traditional lenses, illuminance uniformity of LED backlighting with the new lens increases significantly from 0.45 to 0.84, and CV(RMSE) decreases dramatically from 0.24 to 0.03 in the harsh condition. Meanwhile, luminance uniformity of LED backlighting with the new lens is obtained as high as 0.92 at the condition of extended source and near field. This new method provides a practical and effective way to solve the problem of large DHR, extended source and near field for LED array illumination.

  3. Electronic system level design an open-source approach

    CERN Document Server

    Rigo, Sandro; Santos, Luiz

    2014-01-01

    This book devises ESL design from the pragmatic perspective of a SystemC-based representation by showing how to build and how to use ESL languages, models and tools. It includes TLM 2.0 and step-by-step examples; it also addresses power modeling.

  4. Design Evolution Study - Aging Options

    International Nuclear Information System (INIS)

    McDaniel, P.

    2002-01-01

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  5. [Saarland Growth Study: sampling design].

    Science.gov (United States)

    Danker-Hopfe, H; Zabransky, S

    2000-01-01

    The use of reference data to evaluate the physical development of children and adolescents is part of the daily routine in the paediatric ambulance. The construction of such reference data is based on the collection of extensive reference data. There are different kinds of reference data: cross sectional references, which are based on data collected from a big representative cross-sectional sample of the population, longitudinal references, which are based on follow-up surveys of usually smaller samples of individuals from birth to maturity, and mixed longitudinal references, which are a combination of longitudinal and cross-sectional reference data. The advantages and disadvantages of the different methods of data collection and the resulting reference data are discussed. The Saarland Growth Study was conducted for several reasons: growth processes are subject to secular changes, there are no specific reference data for children and adolescents from this part of the country and the growth charts in use in the paediatric praxis are possibly not appropriate any more. Therefore, the Saarland Growth Study served two purposes a) to create actual regional reference data and b) to create a database for future studies on secular trends in growth processes of children and adolescents from Saarland. The present contribution focusses on general remarks on the sampling design of (cross-sectional) growth surveys and its inferences for the design of the present study.

  6. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  7. Population studies of the unidentified EGRET sources

    Energy Technology Data Exchange (ETDEWEB)

    Siegal-Gaskins, J M [University of Chicago, Chicago, IL 60637 (United States); Pavlidou, V [University of Chicago, Chicago, IL 60637 (United States); Olinto, A V [University of Chicago, Chicago, IL 60637 (United States); Brown, C [University of Chicago, Chicago, IL 60637 (United States); Fields, B D [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-03-15

    The third EGRET catalog contains a large number of unidentified sources. Current data allows the intriguing possibility that some of these objects may represent a new class of yet undiscovered gamma-ray sources. By assuming that galaxies similar to the Milky Way host comparable populations of objects, we constrain the allowed Galactic abundance and distribution of various classes of gamma-ray sources using the EGRET data set. Furthermore, regardless of the nature of the unidentified sources, faint unresolved objects of the same class contribute to the observed diffuse gamma-ray background. We investigate the potential contribution of these unresolved sources to the extragalactic gamma-ray background.

  8. Population studies of the unidentified EGRET sources

    International Nuclear Information System (INIS)

    Siegal-Gaskins, J M; Pavlidou, V; Olinto, A V; Brown, C; Fields, B D

    2007-01-01

    The third EGRET catalog contains a large number of unidentified sources. Current data allows the intriguing possibility that some of these objects may represent a new class of yet undiscovered gamma-ray sources. By assuming that galaxies similar to the Milky Way host comparable populations of objects, we constrain the allowed Galactic abundance and distribution of various classes of gamma-ray sources using the EGRET data set. Furthermore, regardless of the nature of the unidentified sources, faint unresolved objects of the same class contribute to the observed diffuse gamma-ray background. We investigate the potential contribution of these unresolved sources to the extragalactic gamma-ray background

  9. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  10. Design of 1+ Ion Source Coupling First Design of the Resonant Ionization Laser Ion Source For the Multi-Mega Watt Target Station

    CERN Document Server

    A. Olivier-Kaiser, F. Le Blanc, C. Lau

    The realisation of next-generation ion sources suitable for the EURISOL multi-mega-watt (MMW) target station needs exhaustive studies and developments. An exhaustive review was carried out to evaluate the capability of the ion-sources to operate under the irradiation conditions of the MMW target station. In addition, selectivity must be taken into account to avoid the spread of unwanted radioactivity out of the target-ion-source system (TIS).These studies led to consider RILIS (Resonance Ionization Laser Ion Source) as the reference ion source for this target station.

  11. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  12. A compact hard X-ray source for medical imaging and biomolecular studies

    International Nuclear Information System (INIS)

    Cline, D.B.; Green, M.A.; Kolonko, J.

    1995-01-01

    There are a large number of synchrotron light sources in the world. However, these sources are designed for physics, chemistry, and engineering studies. To our knowledge, none have been optimized for either medical imaging or biomolecular studies. There are special needs for these applications. We present here a preliminary design of a very compact source, small enough for a hospital or a biomolecular laboratory, that is suitable for these applications. (orig.)

  13. Ultracold neutron source at the PULSTAR reactor: Engineering design and cryogenic testing

    Energy Technology Data Exchange (ETDEWEB)

    Korobkina, E., E-mail: ekorobk@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Box 7909, Raleigh, NC 27695 (United States); Medlin, G. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Wehring, B.; Hawari, A.I. [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Box 7909, Raleigh, NC 27695 (United States); Huffman, P.R.; Young, A.R. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Beaumont, B. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Palmquist, G. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States)

    2014-12-11

    Construction is completed and commissioning is in progress for an ultracold neutron (UCN) source at the PULSTAR reactor on the campus of North Carolina State University. The source utilizes two stages of neutron moderation, one in heavy water at room temperature and the other in solid methane at ∼40K, followed by a converter stage, solid deuterium at 5 K, that allows a single down scattering of cold neutrons to provide UCN. The UCN source rolls into the thermal column enclosure of the PULSTAR reactor, where neutrons will be delivered from a bare face of the reactor core by streaming through a graphite-lined assembly. The source infrastructure, i.e., graphite-lined assembly, heavy-water system, gas handling system, and helium liquefier cooling system, has been tested and all systems operate as predicted. The research program being considered for the PULSTAR UCN source includes the physics of UCN production, fundamental particle physics, and material surface studies of nanolayers containing hydrogen. In the present paper we report details of the engineering and cryogenic design of the facility as well as results of critical commissioning tests without neutrons.

  14. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  15. Design of the Advanced Light Source timing system

    International Nuclear Information System (INIS)

    Fahmie, M.

    1993-05-01

    The Advanced Light Source (ALS) is a third generation synchrotron radiation facility, and as such, has several unique timing requirements. Arbitrary Storage Ring filling patterns and high single bunch purity requirements demand a highly stable, low jitter timing system with the flexibility to reconfigure on a pulse-to-pulse basis. This modular system utilizes a highly linear Gauss Clock with ''on the fly'' programmable setpoints to track a free-running Booster ramping magnet and provides digitally programmable sequencing and delay for Electron Gun, Linac, Booster Ring, and Storage Ring RF, Pulsed Magnet, and Instrumentation systems. It has proven itself over the last year of accelerator operation to be reliable and rock solid

  16. Solar radiation data sources, applications, and network design

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    A prerequisite to considering solar energy projects is to determine the requirements for information about solar radiation to apply to possible projects. This report offers techniques to help the reader specify requirements in terms of solar radiation data and information currently available, describes the past and present programs to record and present information to be used for most requirements, presents courses of action to help the user meet his needs for information, lists sources of solar radiation data and presents the problems, costs, benefits and responsibilities of programs to acquire additional solar radiation data. Extensive background information is provided about solar radiation data and its use. Specialized information about recording, collecting, processing, storing and disseminating solar radiation data is given. Several Appendices are included which provide reference material for special situations.

  17. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  18. Dense granular Flows: a conceptual design of high-power neutron source

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2017-01-01

    Full Text Available A high-power neutron source system is very useful for multifunctional applications, such as material facilities for advanced nuclear power, space radiation studies, radiography and tomography. Here the idea of inclined dense granular flow is utilized and developed in a new conceptual design of a compact high-power target to produce a high-energy and high-flux neutron irradiation (the flux is up to 1015 n/cm2/s or even 1016. Comparing to the traditional solid and liquid heavy metal targets, this design has advantages in material choice, fluid stability, heat removal, etc. In this paper the natures of the granular flows in an inclined chute are investigated and preliminary experimental and numerical results are reported. Then the feasibility of this design is discussed.

  19. Design and construction of constant voltage and current regulated source with proper characteristics to be used in electronics laboratory designs

    International Nuclear Information System (INIS)

    Peon A, R.

    1978-01-01

    A regulated direct current feeding source was designed for the Nuclear Energy National Institute Electronics Labortory, with the following characteristics: a) voltage input 105-130V a.c. 50-60 Hz; b) voltage output 0.40 V d.c.; c) output current 0-2 Amp d.c.; d) load regulation 0.001%; e) line regulation 0.001%; f) ripple and noise 200 μ Vpp; g) temperature interval 3-60 0 C; h) stability 0.5%; i) output impedance as voltage source 0.01 ohms; j) transient response 50 μ seg. Besides of operating normally, that is as voltage source or current-source through the front controls, the source can be used and interconnected with one or other compatible sources (autoseries, autoparallel and programmed reference). The source will cost 70,000 pesos approximately. (author)

  20. Target designs for the Brookhaven National Laboratory 5-MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Powell, J.R.

    1996-01-01

    A feasibility study of a compact high power density target for a spallation neutron source was under-taken. The target arrangement consists primarily of heavy metal, with appropriate cooling passages. A high intensity proton beam of intermediate energy is directed at the target, where it interacts with the heavy metal nuclei. The subsequent spallation reactions produce several neutrons per proton resulting in an intense neutron source. The proton beam is assumed to havean energy of 5 MW, and to be cyclic with a repetition rate of 10Hz and 50Hz. The study was divided into two broad sections. First, an analysis of preliminary target designs was undertaken to ensure the overall feasibility of the concepts involved in the design and eventual construction of such a high power density target. Second, two proposed target designs, based on the first set of analyses, are investigated in more detail. Special care is taken to ensure that the neutron fluxes in the moderator are at the desired level no material compatibility problems exist,and the target is able to operate in a reliable and safe manner. Several target materials, coolant types, and target arrangements are investigated in the first section. The second section concentrates on a single target material and geometric arrangement. However, several structural material choices continue to be investigated with the aim of minimizing the effects of structural heating, and associated thermally induced stresses. In the final section the conclusions of this preliminary study are summarized

  1. Transitioning from Marketing-Oriented Design to User-Oriented Design: A Case Study

    Science.gov (United States)

    Laster, Shari; Stitz, Tammy; Bove, Frank J.; Wise, Casey

    2011-01-01

    The transition to a new architecture and design for an academic library Web site does not always proceed smoothly. In this case study, a library at a large research university hired an outside Web development contractor to create a new architecture and design for the university's Web site using dotCMS, an open-source content management system. The…

  2. The mechanical design and simulation of a scaled H{sup −} Penning ion source

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, T., E-mail: theo.rutter@stfc.ac.uk; Faircloth, D.; Turner, D.; Lawrie, S. [Rutherford Appleton Laboratory, Didcot OX110QX (United Kingdom)

    2016-02-15

    The existing ISIS Penning H{sup −} source is unable to produce the beam parameters required for the front end test stand and so a new, high duty factor, high brightness scaled source is being developed. This paper details first the development of an electrically biased aperture plate for the existing ISIS source and second, the design, simulation, and development of a prototype scaled source.

  3. Neutronic Design Calculations on Moderators for the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Murphy, D.B.

    1999-01-01

    The Spallation Neutron Source (SNS) to be built at the Oak Ridge National Laboratory will provide an intense source of neutrons for a large variety of experiments. It consists of a high-energy (1-GeV) and high-power (∼1-MW) proton accelerator, an accumulator ring, together with a target station and an experimental area. In the target itself, the proton beam will produce neutrons via the spallation process and these will be converted to low-energy ( 2 O moderators. Extensive engineering design work has been conducted on the moderator vessels. For our studies we have produced realistic neutronic representations of these moderators. We report on neutronic studies conducted on these representations of the moderators using Monte Carlo simulation techniques

  4. Design of a helicon plasma source for ion–ion plasma production

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N., E-mail: narayan.sharma@cppipr.res.in; Chakraborty, M.; Neog, N.K.; Bandyopadhyay, M.

    2017-04-15

    Highlights: • Development of a helicon plasma system to carry out ion–ion plasma studies in electronegative gases such as Hydrogen, Oxygen and Chlorine. • Determination of initial parameters of helicon plasma source for ion–ion plasma by using dispersion relation of bounded helicon waves. • Design and development of solenoid with magnetic field strength production capability of ∼ 600 G along the axis of the chamber. • Optimization of the chamber parameters using Helic codes and estimation of optimum attainable density. • Estimation of RF power requirements for various gases. - Abstract: A helicon plasma system is being designed and developed at CPP-IPR. The design parameters of the system are deduced from the dispersion relation of bounded helicon waves and the required magnetic fields are simulated by using Poisson Superfish code. The Helic code is used to simulate the power deposition profile for various conditions and to investigate the optimum values of chamber parameters for effective coupling of radio frequency (RF) power to plasma. The helicon source system is aimed at carrying out ion–ion plasma studies in electronegative gases such as Hydrogen, Oxygen and Chlorine. The system mainly consists of a source chamber in which helicon plasma will be produced by injecting RF power at a frequency of 13.56 MHz through a right helical antenna in presence of a DC magnetic field followed by an expansion chamber in which it is expected to produce negative ions along with the positive ions. Installation of the various parts of the system is in progress. The details of the design and development of the system is presented in this article.

  5. Optimal pulse modulator design criteria for plasma source ion implanters

    International Nuclear Information System (INIS)

    Reass, W.

    1993-01-01

    This paper describes what are believed to be the required characteristics of a high-voltage modulator for efficient and optimal ion deposition from the ''Plasma Source Ion Implantation'' (PSII) process. The PSII process is a method to chemically or physically alter and enhance surface properties of objects by placing them in a weakly ionized plasma and pulsing the object with a high negative voltage. The attracted ions implant themselves and form chemical bonds or are interstitially mixed with the base material. Present industrial uses of implanted objects tends to be for limited-production, high-value-added items. Traditional implanting hardware uses the typical low-current (ma) semiconductor ''raster scan'' implanters. The targets must also be manipulated to maintain a surface normal to the ion beam. The PSII method can provide ''bulk'' equipment processing on a large industrial scale. For the first generation equipment, currents are scaled from milliamps to hundreds of amps, voltages to -175kV, at kilohertz rep-rates, and high plasma ion densities

  6. HTS Insert Magnet Design Study

    CERN Document Server

    Devaux, M; Fleiter, J; Fazilleau, P; Lécrevisse, T; Pes, C; Rey, J-M; Rifflet, J-M; Sorbi, M; Stenvall, A; Tixador, P; Volpini, G

    2011-01-01

    Future accelerator magnets will need to reach higher field in the range of 20 T. This field level is very difficult to reach using only Low Temperature Superconductor materials whereas High Temperature Superconductors (HTS) provide interesting opportunities. High current densities and stress levels are needed to design such magnets. YBCO superconductor indeed carries large current densities under high magnetic field and provides good mechanical properties especially when produced using the IBAD approach. The HFM EUCARD program studies the design and the realization of an HTS insert of 6 T inside a Nb$_{3}$Sn dipole of 13T at 4.2 K. In the2HTS insert, engineering current densities higher than 250 MA/m under 19 T are required to fulfill the specifications. The stress level is also very severe. YBCO IBAD tapes theoretically meet these challenges from presented measurements. The insert protection is also a critical because HTS materials show low quench propagation velocities and the coupling with the Nb$_{3}$Sn m...

  7. 280 GHz Gyro-BWO design study: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    This report summarizes the results of a design study of a 280 GHz Gyro-BWO tunable source. The purpose of this study is to identify and propose viable design alternatives for any significant technological risk associated with building an operational BWO system. The tunable Gyro-BWO system will have three major components: a Gyro-BWO microwave tube, a superconducting magnet, and a power supply/modulator. The design tasks for this study in order of decreasing importance are: design and specification of the superconducting magnet; preliminary design and layout of a Gyro-BWO microwave tube; and specification for the power supply/modulator. 2 refs., 4 figs

  8. Solar-assisted ground-source heat pump system design and case study%太阳能辅助地埋管地源热泵系统设计及实例分析

    Institute of Scientific and Technical Information of China (English)

    季永明; 端木琳; 李祥立

    2017-01-01

    Presents an improved method to determine the solar collector area of the solar-assisted ground-source heat pump system based on the heat balance method.For a commercial building in Dalian,proposes the design scheme of a solar-assisted ground-source heat pump system.Simulates the operating parameters of the system by TRNSYS,and the results show that,on the basis of ensuring the heating capacity of the building,the system guarantees the average temperature of the thermal storage soil which contains the ground heat exchanger periodic and consistent change,and the COP of the heat pump is improved significantly compared with that of the system without solar collectors in winter.%基于热平衡法提出了确定太阳能辅助地埋管地源热泵系统中太阳能集热器面积的方法.针对大连地区一公共建筑,提出了太阳能辅助地埋管地源热泵系统设计方案.采用TRNSYS软件对该系统运行参数进行了仿真模拟,结果显示,在保证建筑供热量的基础上,系统能长期保证热泵源侧换热器所在蓄热土壤平均温度呈周期性一致变化,且冬季热泵机组COP较无集热器工况显著提高.

  9. Analysis of phase velocity designing on superconducting section of proton Linac for spallation neutron source

    International Nuclear Information System (INIS)

    Ouyang Huafu; Xu Taoguang; Yu Qingchang; Guan Xialing; Luo Zihua

    2001-01-01

    A preliminary design of superconducting section of proton linac for spallation neutron source is made, which includes the design and optimization of the cavity shape and the architecture design of the superconducting section. In addition, the choice of the cell number of the superconducting cavity, the value of the geometric β G , the optimization principles of cavity and the beam dynamic properties are discussed

  10. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    International Nuclear Information System (INIS)

    Delferriere, O.; De Menezes, D.

    2004-01-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D + extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D + ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H + beam emittance will be compared with experimental measurements

  11. The Design of a Fire Source in Scale-Model Experiments with Smoke Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Brohus, Henrik; la Cour-Harbo, H.

    2004-01-01

    The paper describes the design of a fire and a smoke source for scale-model experiments with smoke ventilation. It is only possible to work with scale-model experiments where the Reynolds number is reduced compared to full scale, and it is demonstrated that special attention to the fire source...... (heat and smoke source) may improve the possibility of obtaining Reynolds number independent solutions with a fully developed flow. The paper shows scale-model experiments for the Ofenegg tunnel case. Design of a fire source for experiments with smoke ventilation in a large room and smoke movement...

  12. Off-design performance analysis of Kalina cycle for low temperature geothermal source

    International Nuclear Information System (INIS)

    Li, Hang; Hu, Dongshuai; Wang, Mingkun; Dai, Yiping

    2016-01-01

    Highlights: • The off-design performance analysis of Kalina cycle is conducted. • The off-design models are established. • The genetic algorithm is used in the design phase. • The sliding pressure control strategy is applied. - Abstract: Low temperature geothermal sources with brilliant prospects have attracted more and more people’s attention. Kalina cycle system using ammonia water as working fluid could exploit geothermal energy effectively. In this paper, the quantitative analysis of off-design performance of Kalina cycle for the low temperature geothermal source is conducted. The off-design models including turbine, pump and heat exchangers are established preliminarily. Genetic algorithm is used to maximize the net power output and determine the thermodynamic parameters in the design phase. The sliding pressure control strategy applied widely in existing Rankine cycle power plants is adopted to response to the variations of geothermal source mass flow rate ratio (70–120%), geothermal source temperature (116–128 °C) and heat sink temperature (0–35 °C). In the off-design research scopes, the guidance for pump rotational speed adjustment is listed to provide some reference for off-design operation of geothermal power plants. The required adjustment rate of pump rotational speed is more sensitive to per unit geothermal source temperature than per unit heat sink temperature. Influence of the heat sink variation is greater than that of the geothermal source variation on the ranges of net power output and thermal efficiency.

  13. Moderators for the design of a cold neutron source for the RA 3 reactor

    International Nuclear Information System (INIS)

    Cantargi, F; Sbaffoni, M; Granada, R

    2004-01-01

    The cold neutron production of hydrogenous materials was studied, taking into account their radiation resistance, for the conceptual design of a cold neutron source for the RA-3 reactor.Low spontaneous release of chemical energy was found in mesitylene.Libraries for hidrogen in mesitylene were generated using the NJOY nuclear processing system and the resulting cross sections were compared with experimental data.Good agreement between measurements and calculations was found in those cases where data are available.New calculations using the RA-3 geometry and these validated libraries will be performed [es

  14. Design of laser-aided diagnostics for the negative hydrogen ion source SPIDER

    International Nuclear Information System (INIS)

    Pasqualotto, R

    2012-01-01

    ITER nuclear fusion experiment requires additional heating via neutral beams by means of two injectors, delivering 16.5 MW each, up to one hour. This power level results from the neutralization of negative deuterium ions generated by an RF source and accelerated to 1 MeV. Such specifications have never been simultaneously achieved so far and therefore a test facility is being constructed at Consorzio RFX, to demonstrate the feasibility of a prototype neutral beam injector. The facility will host two experimental devices: SPIDER, a 100 kV negative hydrogen/deuterium RF source, full size prototype of the ITER source, and MITICA, a prototype of the full ITER injector. SPIDER will be devoted to optimize the extracted negative ion current density and its spatial uniformity and to minimize the co-extracted electron current. Negative hydrogen is mainly produced by conversion of hydrogen particles at the cesium coated surface of the plasma grid. The interplay of these two species is fundamental to understand and optimize the source performance. Two laser-aided diagnostics play an important role in measuring the negative hydrogen and cesium density: cavity ring down spectroscopy and laser absorption spectroscopy. Cavity ring down spectroscopy will use the photo-detachment process to measure the absolute line-of-sight integrated negative ion density in the extraction region of the source. Laser absorption spectroscopy will be employed to measure the line integrated neutral cesium density, allowing to study the cesium distribution in the source volume, during both the plasma and the vacuum phases. In this paper, the design of the laser-aided diagnostic systems on SPIDER is presented, supported by a review of results obtained in other operating experiments.

  15. Studies of the infrared source CRL 2688

    International Nuclear Information System (INIS)

    Ney, E.P.; Merrill, K.M.; Becklin, E.E.; Neugebauer, G.; Wynn-Williams, C.G.

    1975-01-01

    Infrared, optical, and radio observations are descirbed of a newly discovered galactic infrared source. Most of the radiation comes from 1/sup double-prime/./sub /5 diameter infrared source at a temperature of about 150 K, but some visible emission in the form of a symmetrical highly polarized reflection nebulosity is also seen. The object could represent either a very early or a very late stage in stellar evolution

  16. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    Science.gov (United States)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  17. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  18. Low activation diagnostic equipment design studies

    International Nuclear Information System (INIS)

    Hopkins, G.R.; Cheng, E.T.; Fisher, R.K.

    1985-01-01

    The low activation fusion concept has been applied to the diagnostic equipment in a fusion reactor. The components where fabrication from low activation materials is feasible have been identified. Other systems where higher activation elements are required can have their activation reduced by design approaches which include shielding and operation only in low flux regions of the reactor. Some components will not operate in a high flux so activation is not a major concern. This low activation diagnostic equipment study completes a series of low activation studies where all the components in a fusion power reactor have now been evaluated. It is concluded that a completely low activation fusion reactor is feasible with all components meeting the functional requirements. This provides an environmentally benign energy source with a high confidence level in meeting safety criteria in operation, maintenance and waste disposal

  19. Modeling and Design of High-Efficiency Single-Photon Sources

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Per Kær; Mørk, Jesper

    2013-01-01

    be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed......Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable, and the source should...

  20. Design and simulation of ion optics for ion sources for production of singly charged ions

    Science.gov (United States)

    Zelenak, A.; Bogomolov, S. L.

    2004-05-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.

  1. Design and simulation of ion optics for ion sources for production of singly charged ions

    International Nuclear Information System (INIS)

    Zelenak, A.; Bogomolov, S.L.

    2004-01-01

    During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments

  2. Design and numerical simulation of the electromagnetic field of linear anode layer ion source

    International Nuclear Information System (INIS)

    Wang Lisheng; Tang Deli; Cheng Changming

    2006-01-01

    The principle of anode layer ion source for etching, pre-cleaning and ion beam assisted deposition was described. The influence of the magnetic field on the performance of anode layer ion source was analyzed. Design of the magnetic loop for the linear anode layer ion source was given. The electromagnetic field distribution of the ion source was simulated by means of ANSYS code and the simulation results were in agreement with experimental ones. The numerical simulation results of the electromagnetic field are useful for improving the anode layer ion source. (authors)

  3. Design of a neutrino source based on beta beams

    Directory of Open Access Journals (Sweden)

    E. Wildner

    2014-07-01

    Full Text Available “Beta beams” produce collimated pure electron (antineutrino beams by accelerating beta active ions to high energies and having them decay in a racetrack shaped storage ring of 7 km circumference, the decay ring. EUROnu beta beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, but will also constrain the physics performance. The isotope pair of choice for the beta beam is ^{6}He and ^{18}Ne. However, before the EUROnu studies one of the required isotopes, ^{18}Ne, could not be produced in rates that satisfy the needs for physics of the beta beam. Therefore, studies of alternative beta emitters, ^{8}Li and ^{8}B, with properties interesting for a beta beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the ^{8}Li and ^{8}B isotopes. This production ring, the injection linac and the target system have been evaluated. Measurements of the cross section of the reactions to produce the beta beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the yields of ^{8}Li and ^{8}B, using the production ring for production of ^{8}Li and ^{8}B, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the ^{18}Ne isotope has been developed and tested giving good production rates. A 60 GHz ECRIS prototype, the first in the world, was developed and tested for ion production with contributions from EUROnu. The decay ring lattices for the ^{8}Li and ^{8}B have been developed and the lattice for ^{6}He and ^{18}Ne has been optimized to ensure the high intensity ion beam stability.

  4. Design and implementation of low-Q diffractometers at spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P.

    1993-01-01

    Low-Q diffractometers at spallation sources that use time of flight methods have been successfully implemented at several facilities, including the Los Alamos Neutron Scattering Center. The proposal to build new, more powerful, advanced spallation sources using advanced moderator concepts will provide luminosity greater than 20 times the brightest spallation source available today. These developments provide opportunity and challenge to expand the capabilities of present instruments with new designs. The authors review the use of time of flight for low-Q measurements and introduce new designs to extend the capabilities of present-day instruments. They introduce Monte Carlo methods to optimize design and simulate the performance of these instruments. The expected performance of the new instruments are compared to present day pulsed source- and reactor-based small-angle neutron scattering instruments. They review some of the new developments that will be needed to use the power of brighter sources effectively

  5. Thermal-hydraulic design concept of the solid-target system of spallation neutron source

    International Nuclear Information System (INIS)

    Tanaka, F.; Hibiki, T.; Saito, Y.; Takeda, T.; Mishima, K.

    2001-01-01

    In relation to thermal-hydraulic design of the N-Arena solid-target system of the JHF project, heat transfer experiments were performed to obtain experimental data systematically on heat transfer coefficient and CHF for vertical upward and horizontal flows in a thin rectangular channel simulating a coolant channel of the proposed spallation neutron source. Thermal-hydraulic correlations which can be used for design calculations were proposed based on the obtained data. Finally tentative results of feasibility study on maximum beam power which could be attained with a solid target were presented. The result indicated that the condition for the onset of nucleate boiling is the most significant limiting factor to the maximum beam power. (author)

  6. Mechanical design of SXLS [Superconducting X-ray Lithography Source] radio-frequency cavity

    International Nuclear Information System (INIS)

    Mortazavi, P.; Sharma, S.; Keane, J.; Thomas, M.

    1989-01-01

    This paper presents the mechanical design of a Radio-Frequency (RF) cavity to be used on a compact storage ring for Superconducting X-ray Lithography Source (SXLS). Various design features of this cavity are discussed, including basic geometrical configuration, structural design, initial and operational tuning, vacuum multipactoring, power window, and damping of higher order modes. A second application of this cavity design for beam life extension in an existing storage ring is also described. 2 refs., 6 figs

  7. Mechanical design of SXLS (Superconducting X-ray Lithography Source) radio-frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, P.; Sharma, S.; Keane, J.; Thomas, M.

    1989-01-01

    This paper presents the mechanical design of a Radio-Frequency (RF) cavity to be used on a compact storage ring for Superconducting X-ray Lithography Source (SXLS). Various design features of this cavity are discussed, including basic geometrical configuration, structural design, initial and operational tuning, vacuum multipactoring, power window, and damping of higher order modes. A second application of this cavity design for beam life extension in an existing storage ring is also described. 2 refs., 6 figs.

  8. Design and Optimisation Strategies of Nonlinear Dynamics for Diffraction Limited Synchrotron Light Source

    CERN Document Server

    Bartolini, R.

    2016-01-01

    This paper introduces the most recent achievements in the control of nonlinear dynamics in electron synchrotron light sources, with special attention to diffraction limited storage rings. Guidelines for the design and optimization of the magnetic lattice are reviewed and discussed.

  9. Design of the 'half-size' ITER neutral beam source for the test facility ELISE

    International Nuclear Information System (INIS)

    Heinemann, B.; Falter, H.; Fantz, U.; Franzen, P.; Froeschle, M.; Gutser, R.; Kraus, W.; Nocentini, R.; Riedl, R.; Speth, E.; Staebler, A.; Wuenderlich, D.; Agostinetti, P.; Jiang, T.

    2009-01-01

    In 2007 the radio frequency driven negative hydrogen ion source developed at IPP in Garching was chosen by the ITER board as the new reference source for the ITER neutral beam system. In order to support the design and the commissioning and operating phases of the ITER test facilities ISTF and NBTF in Padua, IPP is presently constructing a new test facility ELISE (Extraction from a Large Ion Source Experiment). ELISE will be operated with the so-called 'half-size ITER source' which is an intermediate step between the present small IPP RF sources (1/8 ITER size) and the full size ITER source. The source will have approximately the width but only half the height of the ITER source. The modular concept with 4 drivers will allow an easy extrapolation to the full ITER size with 8 drivers. Pulsed beam extraction and acceleration up to 60 kV (corresponding to pre-acceleration voltage of SINGAP) is foreseen. The aim of the design of the ELISE source and extraction system was to be as close as possible to the ITER design; it has however some modifications allowing a better diagnostic access as well as more flexibility for exploring open questions. Therefore one major difference compared to the source of ITER, NBTF or ISTF is the possible operation in air. Specific requirements for RF sources as found on IPP test facilities BATMAN and MANITU are implemented [A. Staebler, et al., Development of a RF-driven ion source for the ITER NBI system, SOFT Conference 2008, Fusion Engineering and Design, 84 (2009) 265-268].

  10. Third order mode laser diode: design of a twin photon source

    International Nuclear Information System (INIS)

    Ducci, S.; Berger, V.; Rossi, A. de; Ortiz, V.; Calligaro, M.; Vinter, B.; Nagle, J.; Berger, V.

    2004-01-01

    We demonstrate the lasing action on a third order waveguide mode in a laser diode. The AlGaAs heterostructure has been designed to achieve a parametric emission of photons pairs through modal phase matching. This device is very compact and does not generate coupling loss between the laser source and the non-linear waveguide. It is the first step on the way to design a twin photon micro-source. (A.C.)

  11. Design and modelling of a novel compact power cycle for low temperature heat sources

    DEFF Research Database (Denmark)

    Wronski, Jorrit; Skovrup, Morten Juel; Elmegaard, Brian

    2012-01-01

    Power cycles for the efficient use of low temperature heat sources experience increasing attention. This paper describes an alternative cycle design that offers potential advantages in terms of heat source exploitation. A concept for a reciprocating expander is presented that performs both, work ...

  12. Design of the LC+trap filter for a current source rectifier

    DEFF Research Database (Denmark)

    Min, Huang; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    This paper investigates an LC + trap filter for current source converters to improve the switching harmonic attenuation. The resonant frequency characteristics of the filter of current source rectifier are analyzed. A filter design procedure is proposed based on the input power factor, filter...

  13. Protecting count queries in study design.

    Science.gov (United States)

    Vinterbo, Staal A; Sarwate, Anand D; Boxwala, Aziz A

    2012-01-01

    Today's clinical research institutions provide tools for researchers to query their data warehouses for counts of patients. To protect patient privacy, counts are perturbed before reporting; this compromises their utility for increased privacy. The goal of this study is to extend current query answer systems to guarantee a quantifiable level of privacy and allow users to tailor perturbations to maximize the usefulness according to their needs. A perturbation mechanism was designed in which users are given options with respect to scale and direction of the perturbation. The mechanism translates the true count, user preferences, and a privacy level within administrator-specified bounds into a probability distribution from which the perturbed count is drawn. Users can significantly impact the scale and direction of the count perturbation and can receive more accurate final cohort estimates. Strong and semantically meaningful differential privacy is guaranteed, providing for a unified privacy accounting system that can support role-based trust levels. This study provides an open source web-enabled tool to investigate visually and numerically the interaction between system parameters, including required privacy level and user preference settings. Quantifying privacy allows system administrators to provide users with a privacy budget and to monitor its expenditure, enabling users to control the inevitable loss of utility. While current measures of privacy are conservative, this system can take advantage of future advances in privacy measurement. The system provides new ways of trading off privacy and utility that are not provided in current study design systems.

  14. Choosing the Energy Sources Needed for Utilities in the Design and Refurbishment of Buildings

    Directory of Open Access Journals (Sweden)

    Pavel Atănăsoae

    2018-03-01

    Full Text Available This paper presents a method for choosing the energy sources that are needed for the following building utilities following building: lighting, domestic hot water, heating, ventilation, and air conditioning. The novelty of this paper consists of applying the concept of the energy hub and considering the cost of carbon dioxide emissions when selecting the available energy sources in the building’s location. The criterion for selecting the energy sources is the minimum overall cost of all forms of energy that are consumed in the building over its estimated lifetime. In order to estimate the overall costs, it is necessary to know the power that is installed and provided by the energy production technologies that are inside the building, as well as the capacity of energy that is required from outside energy sources. An office building that was proposed for refurbishment has been investigated as a case study. In the paper, we have analysed four scenarios. The results indicate that more favourable alternative solutions can be obtained compared to the traditional scenario (Scenario 4—heat and electricity by public utility networks. The overall costs are 46.17% (212,671 EUR lower in Scenario 1, 25.35% (116,770 EUR lower in Scenario 2, and 10.89% (50,150 EUR lower in Scenario 3. Additionally, the carbon dioxide emissions are 22.98% (49 tonnes CO2/year lower in Scenario 1 and 8.91% (19 tonnes CO2/year lower in Scenario 2. Thus, renewable energy sources can occupy a growing share of the total energy consumption of the building. The proposed algorithm can be used for both the refurbishment of existing buildings and the design of new buildings.

  15. Feasibility study of a 1-MW pulsed spallation source

    International Nuclear Information System (INIS)

    Cho, Y.; Chae, Y.C.; Crosbie, E.

    1995-01-01

    A feasibility study of a 1-MW pulsed spallation source based on a rapidly cycling proton synchrotron (RCS) has been completed. The facility consists of a 400-MeV HP - linac, a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV, and two neutron-generating target stations. The design time-averaged current of the accelerator system is 0.5 mA, or 1.04x1014 protons per pulse. The linac system consists of an H - ion source, a 2-MeV RFQ, a 70-MeV DTL and a 330-MeV CCL. Transverse phase space painting to achieve a Kapchinskij-Vladimirskij (K-V) distribution of the injected particles in the RCS is accomplished by charge exchange injection and programming of the closed orbit during injection. The synchrotron lattice uses FODO cells of ∼90 degrees phase advance. Dispersion-free straight sections are obtained by using a missing magnet scheme. Synchrotron magnets are powered by a dual-frequency resonant circuit that excites the magnets at a 20-Hz rate and de-excites them at a 60-Hz rate, resulting in an effective rate of 30 Hz, and reducing the required peak rf voltage by 1/3. A key feature, of the design of this accelerator system is that beam losses are from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented

  16. Survey of injury sources for a trampoline with equipment hazards designed out.

    Science.gov (United States)

    Eager, David; Scarrott, Carl; Nixon, Jim; Alexander, Keith

    2012-07-01

    In Australia, trampolines contribute approximately one-quarter of all childhood play-equipment injuries. The purpose of this study was to gather and evaluate injury data from a nontraditional, 'soft-edged', consumer trampoline in which the equipment injury sources have been designed out. A survey was undertaken in Queensland and New South Wales. The manufacturer of the nontraditional trampoline provided the University of Technology, Sydney, with their Australian customer database. Injury data were gathered in a pilot study by phone interview, then in a full study through an email survey. Results from 3817 respondents were compared with earlier Australian and US data from traditional trampolines gathered from emergency departments.   A significantly lower proportion of the injuries caused by falling off or striking the equipment was found for this new design when compared with traditional trampolines both in Australia and in the USA. The age of children being injured on trampolines in Australia was found to be markedly lower than in North America. This research indicates that with appropriate design the more severe injuries on traditional trampolines can be significantly reduced. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  17. Advances on ELIC Design Studies

    International Nuclear Information System (INIS)

    Bogacz, S. Alex; Bogacz, S.; Chevtsov, P.; Derbenev, Ya.; Evtushenko, P.; Krafft, G.; Hutton, A.; Li, R.; Merminga, L.; Musson, J.; Yunn, B.; Zhang, Y.; Sayed, H.; Qiang, J.

    2008-01-01

    A conceptual design of a ring-ring electron-ion collider based on CEBAF with a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 has been proposed at JLab to fulfill science requirements. Here, we summarize design progress including collider ring and interaction region optics with chromatic aberration compensation. Electron polarization in the Figure-8 ring, stacking of ion beams in an accumulator-cooler ring, beam-beam simulations and a faster kicker for the circulator electron cooler ring are also discussed

  18. Positron annihilation lifetime spectroscopy source correction determination: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Gurmeet S.; Keeble, David J., E-mail: d.j.keeble@dundee.ac.uk

    2016-02-01

    Positron annihilation lifetime spectroscopy (PALS) can provide sensitive detection and identification of vacancy-related point defects in materials. These measurements are normally performed using a positron source supported, and enclosed by, a thin foil. Annihilation events from this source arrangement must be quantified and are normally subtracted from the spectrum before analysis of the material lifetime components proceeds. Here simulated PALS spectra reproducing source correction evaluation experiments have been systematically fitted and analysed using the packages PALSfit and MELT. Simulations were performed assuming a single lifetime material, and for a material with two lifetime components. Source correction terms representing a directly deposited source and various foil supported sources were added. It is shown that in principle these source terms can be extracted from suitably designed experiments, but that fitting a number of independent, nominally identical, spectra is recommended.

  19. Studies of electron cyclotron resonance ion source plasma physics

    International Nuclear Information System (INIS)

    Tarvainen, O.

    2005-01-01

    This thesis consists of an introduction to the plasma physics of electron cyclotron resonance ion sources (ECRIS) and a review of the results obtained by the author and co-workers including discussion of related work by others. The thesis begins with a theoretical discussion dealing with plasma physics relevant for the production of highly charged ions in ECR ion source plasmas. This is followed by an overview of different techniques, such as gas mixing and double frequency heating, that can be used to improve the performance of this type of ion source. The experimental part of the work consists of studies related to ECRIS plasma physics. The effect of the gas mixing technique on the production efficiency of different ion beams was studied with both gaseous and solid materials. It was observed that gas mixing improves the confinement of the heavier element while the confinement of the lighter element is reduced. When the effect of gas mixing on MIVOC-plasmas was studied with several mixing gases it was observed that applying this technique can reduce the inevitable carbon contamination by a significant factor. In order to understand the different plasma processes taking place in ECRIS plasmas, a series of plasma potential and emittance measurements was carried out. An instrument, which can be used to measure the plasma potential in a single measurement without disturbing the plasma, was developed for this work. Studying the plasma potential of ECR ion sources is important not only because it helps to understand different plasma processes, but also because the information can be used as an input parameter for beam transport simulations and ion source extraction design. The experiments performed have revealed clear dependencies of the plasma potential on certain source parameters such as the amount of carbon contamination accumulated on the walls of the plasma chamber during a MIVOC-run. It was also observed that gas mixing affects not only the production efficiency

  20. Development of dose calculation program (DBADOSE) incorporating alternative source term due to design basis accident

    International Nuclear Information System (INIS)

    Bae, Young Jig; Nam, Ki Mun; Lee, Yu Jong; Chung, Chan Young

    2003-01-01

    Source terms presented in TID-14844 and Regulatory Guide 1.4 have been used for radiological analysis of design basis accidents for licensing existing pressurized water reactor (PWR). However, more realistic and physically-based source term based on results of study and experiments for about 30 years after the publication of TID-14844 was developed and presented in NUREG-1465 published by U.S NRC in 1995. In addition, ICRP has revised dose concepts and criteria through the publication of ICRP-9, 26, 60 and recommended effective dose concepts rather than critical organ concept since the publication of ICRP-26. Accordingly, multipurpose computer program called DBADOSE incorporating alternative source terms in NUREG-1465 and effective dose concepts in ICRP-60 was developed. Comparison of results of DBADOSE with those of POSTDBA and STARDOSE was performed and verified and no significant difference and inaccuracy were found. DBADOSE will be used to evaluate accidental doses for licensing application according to the domestic laws that are expected to be revised in the near future

  1. Sources of Safety Data and Statistical Strategies for Design and Analysis: Clinical Trials.

    Science.gov (United States)

    Zink, Richard C; Marchenko, Olga; Sanchez-Kam, Matilde; Ma, Haijun; Jiang, Qi

    2018-03-01

    There has been an increased emphasis on the proactive and comprehensive evaluation of safety endpoints to ensure patient well-being throughout the medical product life cycle. In fact, depending on the severity of the underlying disease, it is important to plan for a comprehensive safety evaluation at the start of any development program. Statisticians should be intimately involved in this process and contribute their expertise to study design, safety data collection, analysis, reporting (including data visualization), and interpretation. In this manuscript, we review the challenges associated with the analysis of safety endpoints and describe the safety data that are available to influence the design and analysis of premarket clinical trials. We share our recommendations for the statistical and graphical methodologies necessary to appropriately analyze, report, and interpret safety outcomes, and we discuss the advantages and disadvantages of safety data obtained from clinical trials compared to other sources. Clinical trials are an important source of safety data that contribute to the totality of safety information available to generate evidence for regulators, sponsors, payers, physicians, and patients. This work is a result of the efforts of the American Statistical Association Biopharmaceutical Section Safety Working Group.

  2. Preliminary design of bellows for the DNB beam source by EJMA and FE linear analysis

    International Nuclear Information System (INIS)

    Trapasiya, Shobhit; Muvvala, Venkata Nagaraju; Rambilas, P.; Gangadharan, Roopesh; Rotti, Chandramouli; Chakraborty, Arun Kumar; Sharma, Dheeraj Kumar

    2015-01-01

    In piping system, U-shaped Bellows are widely used among flexible elements. In general, bellows are typically design for Fatigue behavior according to the EJMA standard based on empirically generated fatigue curves. The present work proposes a methodology in the design of bellows by design by analyses and validates its design by EJMA standard. A linear FE approach is chosen to in line with the EJMA standard. The proposed methodology is benchmarked with the available literatures. The same practice is implemented in the preliminary design of a U-shaped bellows in the water line circuits of DNB beam source. DNB Beam Source is a negative ion source-based neutral beam generator for ITER operates at 100KV. The beam divergence (intrinsic) and magnetic fields from ITER torus causes deflection of beams. This calls for beam optic alignment, which are assured by BS Movement mechanism system. To accomplish the above movement requirements, bellows, which is a stringent of its kind (± 22 mm axial, ± 45 mm lateral within 400mm available space with single ply), is designed between the beam source and possible rigid interface-cooling lines coming from HVB. The paper describes right from conceptual stage to preliminary design. Optimization tools are adopted in the selecting bellow dimensions using MATLAB. At the end a coordinated approach between FE based assessment (in ANSYS) and widely applied code, EJMA is implemented for the validation of design and found FE approach is a very conservative than later in the present case. (author)

  3. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  4. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  5. Design and dosimetry of a novel 90y beta source to prevent restenosis after angioplasty

    International Nuclear Information System (INIS)

    Mueck, Konrad; Schmidt, Werner; Wexberg, Paul; Goerz, Walter; Maurer, Gerald; Gottsauner-Wolf, Michael

    2000-01-01

    Purpose: Post-dilatation irradiation of the vessel wall is currently under investigation for prevention of restenosis after balloon dilatation. For the irradiation, special sources were designed for animal experiments which would give equivalent irradiation conditions and doses to the vessel wall that would later be employed for human application. Methods and Materials: For the planned irradiations, a specially designed yttrium-wire of 0.45-mm diameter coated with a thin shrink tube to prevent contamination was deployed. Several leakage tests applied before and after application proved that the irradiation source was leakproof. Dosimetry was performed by using 0.1-mm-thick thermoluminescent dosimeters (TLD-100) calibrated against a primary standard. A shielding transport and application container was designed to facilitate the handling of the source during use, while reducing exposure of the medical personnel. Results: The designed source proves to be flexible for the insertion into proximal coronary vessels, and positioning at the site of stenosis. It provides an optimum protection of the animal and requires little radiation protection efforts on behalf of the medical staff. Dosimetric calculations and measurements showed that a centering of the source inside the vessel could be achieved with a maximum deviation of 50% between maximum and average dose levels. Conclusion: A yttrium-90 beta brachytherapy source was designed which provides high flexibility within proximal coronary arteries, ensures an adequate centering inside the artery, and provides irradiation conditions to the vessel wall of the experimental animal comparable to the application inside a human artery

  6. The Role of External Knowledge Sources and Organizational Design in the Process of Opportunity Exploitation

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Lyngsie, Jacob; A. Zahra, Shaker

    involving 536 Danish firms shows that the use of external knowledge sources is positively associated with opportunity exploitation, but the strength of this association is significantly influenced by organizational designs that enable the firm to access external knowledge during the process of exploiting......Research highlights the role of external knowledge sources in the recognition of strategic opportunities, but is less forthcoming with respect to the role of such sources during the process of exploiting or realizing opportunities. We build on the knowledge-based view to propose that realizing...... opportunities often involves significant interactions with external knowledge sources. Organizational design can facilitate a firm’s interactions with these sources, while achieving coordination among organizational members engaged in opportunity exploitation. Our analysis of a double-respondent survey...

  7. The Role of External Knowledge Sources and Organizational Design in the Process of Opportunity Exploitation

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Lyngsie, Jacob; Zahra, Shaker A.

    2013-01-01

    involving 536 Danish firms shows that the use of external knowledge sources is positively associated with opportunity exploitation, but the strength of this association is significantly influenced by organizational designs that enable the firm to access external knowledge during the process of exploiting......Research highlights the role of external knowledge sources in the recognition of strategic opportunities but is less forthcoming with respect to the role of such sources during the process of exploiting or realizing opportunities. We build on the knowledge-based view to propose that realizing...... opportunities often involves significant interactions with external knowledge sources. Organizational design can facilitate a firm's interactions with these sources, while achieving coordination among organizational members engaged in opportunity exploitation. Our analysis of a double-respondent survey...

  8. Detailed design of the RF source for the 1 MV neutral beam test facility

    International Nuclear Information System (INIS)

    Marcuzzi, D.; Palma, M. Dalla; Pavei, M.; Heinemann, B.; Kraus, W.; Riedl, R.

    2009-01-01

    In the framework of the EU activities for the development of the Neutral Beam Injector for ITER, the detailed design of the Radio Frequency (RF) driven negative ion source to be installed in the 1 MV ITER Neutral Beam Test Facility (NBTF) has been carried out. Results coming from ongoing R and D on IPP test beds [A. Staebler et al., Development of a RF-Driven Ion Source for the ITER NBI System, this conference] and the design of the new ELISE facility [B. Heinemann et al., Design of the Half-Size ITER Neutral Beam Source Test Facility ELISE, this conference] brought several modifications to the solution based on the previous design. An assessment was carried out regarding the Back-Streaming positive Ions (BSI+) that impinge on the back plates of the ion source and cause high and localized heat loads. This led to the redesign of most heated components to increase cooling, and to different choices for the plasma facing materials to reduce the effects of sputtering. The design of the electric circuit, gas supply and the other auxiliary systems has been optimized. Integration with other components of the beam source has been revised, with regards to the interfaces with the supporting structure, the plasma grid and the flexible connections. In the paper the design will be presented in detail, as well as the results of the analyses performed for the thermo-mechanical verification of the components.

  9. A New ECR Ion Source for Nuclear Astrophysics Studies

    Science.gov (United States)

    Cesaratto, John M.

    2008-10-01

    The Laboratory for Experimental Nuclear Astrophysics (LENA) is a low energy facility designed to study nuclear reactions of astrophysical interest at energies which are important for nucleosysthesis. In general, these reactions have extremely small cross sections, requiring intense beams and efficient detection systems. Recently, a new, high intensity electron-cyclotron-resonance (ECR) ion source has been constructed (based on a design by Wills et al.[1]), which represents a substantial improvement in the capabilities of LENA. Beam is extracted from an ECR plasma excited at 2.45 GHz and confined by an array of permanent magnets. It has produced H^+ beams in excess of 1 mA on target over the energy range 100 - 200 keV, which greatly increases our ability to measure small cross sections. Initial measurements will focus on the ^23Na(p,γ)^24Mg reaction, which is of interest in a variety of astrophysical scenarios. The present uncertainty in the rate of this reaction is the result of an unobserved resonance expected at Elab =144 keV, which should be detectable using beams from the new ECR source. In collaboration with Arthur E. Champagne and Thomas B. Clegg, University of North Carolina, Chapel Hill and TUNL. [3pt] [1] J. S. C. Wills et al., Rev. Sci. Instrum. 69, 65 (1999).

  10. Studies on the method of producing radiographic 170Tm source

    International Nuclear Information System (INIS)

    Maeda, Sho

    1976-08-01

    A method of producing radiographic 170 Tm source has been studied, including target preparation, neutron irradiation, handling of the irradiated target in the hot cell and source capsules. On the basis of the results, practical 170 Tm radiographic sources (29 -- 49Ci, with pellets 3mm in diameter and 3mm long) were produced in trial by neutron irradiation with the JMTR. (auth.)

  11. Technology Learning Activities. Design Brief--Measuring Inaccessible Distances. Alternative Energy Sources: Designing a Wind Powered Generator. Alternative Energy Sources: Designing a Hot Dog Heater Using Solar Energy.

    Science.gov (United States)

    Technology Teacher, 1991

    1991-01-01

    These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)

  12. MASHUP SCHEME DESIGN OF MAP TILES USING LIGHTWEIGHT OPEN SOURCE WEBGIS PLATFORM

    Directory of Open Access Journals (Sweden)

    T. Hu

    2018-04-01

    Full Text Available To address the difficulty involved when using existing commercial Geographic Information System platforms to integrate multi-source image data fusion, this research proposes the loading of multi-source local tile data based on CesiumJS and examines the tile data organization mechanisms and spatial reference differences of the CesiumJS platform, as well as various tile data sources, such as Google maps, Map World, and Bing maps. Two types of tile data loading schemes have been designed for the mashup of tiles, the single data source loading scheme and the multi-data source loading scheme. The multi-sources of digital map tiles used in this paper cover two different but mainstream spatial references, the WGS84 coordinate system and the Web Mercator coordinate system. According to the experimental results, the single data source loading scheme and the multi-data source loading scheme with the same spatial coordinate system showed favorable visualization effects; however, the multi-data source loading scheme was prone to lead to tile image deformation when loading multi-source tile data with different spatial references. The resulting method provides a low cost and highly flexible solution for small and medium-scale GIS programs and has a certain potential for practical application values. The problem of deformation during the transition of different spatial references is an important topic for further research.

  13. Selection and design of ion sources for use at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Haynes, D.L.; Mills, G.D.; Olsen, D.K.

    1994-01-01

    The Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory will use the 25 MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility. The choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. Although direct-extraction negative ion sources are clearly desirable, the ion formation efficiencies are often too low for practical consideration; for this situation, positive ion sources, in combination with charge exchange, are the logical choice. The high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the facility because of its low emittance, relatively high ionization efficiencies, and species versatility, and because it has been engineered for remote installation, removal, and servicing as required for safe handling in a high-radiation-level ISOL facility. The source will be primarily used to generate ion beams from elements with intermediate to low electron affinities. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are under design consideration for generating radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report

  14. Vacuum system design for a superconducting X-ray lithography light source

    International Nuclear Information System (INIS)

    Schuchman, J.C.

    1990-01-01

    A superconducting electron storage ring for X-ray lithography (SXLS) is to be built at Brookhaven National Laboratory (BNL). The goal is to design and construct a light source specifically dedicated to X-ray lithography production and which would be used as a prototype in a technology transfer to American industry. The machine will be built in two phases: phase I, a low energy ring (200 MeV, 500 mA) using all room temperature magnets which will be used primarily for low energy injection studies. Phase II will be a full energy machine (690 MeV, 500 mA) where the room temperature 180 0 dipole magnets of phase I will be replaced with superconducting magnets. The machine, with a racetrack shape and a circumference of 8.5 m, is designed to be portable and replaceable as a single unit. This paper will discuss the vacuum system design for both phases; i.e. gas desorption, warm bore vs cold bore, ion trapping, clearing electrodes, and diagnostic instrumentation. (author)

  15. Front end designs for the 7-GeV advanced photon source

    International Nuclear Information System (INIS)

    Shu, D.; Barraza, J.; Sanchez, T.; Nielsen, R.W.; Collins, J.T.; Kuzay, T.M.

    1992-01-01

    The conceptual designs for the insertion device (ID) and bending magnet (BM) front ends have been completed for the 7-GeV Advanced Photon Source (APS) under construction at Argonne National Laboratory. These designs satisfy the generic front end functions. However, the high power and high heat fluxes imposed by the X-ray sources of the 7-GeV APS have presented various design engineering challenges for the front end. Consideration of such challenges and their solutions have led to novel and advanced features including modularized systems, enhanced heat transfer concepts in the fixed mask and the photon shutter designs, a radiation safety philosophy based on multiple photon shutters for a fail-safe operation, a sub-micron resolution beam position monitor for beam monitoring and ring feedback information, and minimal beam filtering concepts to deliver maximized beam power and spectra to the experimenters. The criteria and special features of the front end design are discussed in this paper

  16. Neutronic design studies for an unattended, low power reactor

    International Nuclear Information System (INIS)

    Palmer, R.G.; Durkee, J.W. Jr.

    1986-01-01

    The Los Alamos National Laboratory is involved in the design and demonstrations of a small, long-lived nuclear heat and electric power source for potential applications at remote sites where alternate fossil energy systems would not be cost effective. This paper describes the neutronic design analysis that was performed to arrive at two conceptual designs, one using thermoelectric conversion, the other using an organic Rankine cycle. To meet the design objectives and constraints a number of scoping and optimization studies were carried out. The results of calculations of control worths, temperature coefficients of reactivity and fuel depletion effects are reported

  17. Design of an Acceleration / Deceleration Lens System for Ion Beam Focusing Emerging from Penning Ion Source

    International Nuclear Information System (INIS)

    El-Khabeary, H.

    2007-01-01

    In this study, design of the deceleration lens system has been done by using SIMION 3D version 7.0 computer program. A parallel beam of singly charged argon ions of diameter 2. mm with energy of 5 KeV emerging from Penning ion source was started at a distance of 140 mm before entering the Einzel lens system (three cylinder electrodes ). In order to design this deceleration lens system, two and three cylinder lenses with different parameters are studied. Ion beam emittance as a function of the gap width of the deceleration lens system has been studied for singly charged argon ion trajectories. Influence of the deceleration voltage applied on the deceleration electrode with different voltages of the four electrodes on the ion beam emittance has been investigated with gap widths of 3, 7, 9, 11 and 15 nun. The deceleration lens system was also used as an acceleration lens system by changing and optimising the voltage on each electrode of the deceleration lens system and of the intermediate electrode of the Einzel lens

  18. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  19. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  20. Optimum source/drain overlap design for 16 nm high-k/metal gate MOSFETs

    International Nuclear Information System (INIS)

    Jang, Junyong; Lim, Towoo; Kim, Youngmin

    2009-01-01

    We explore a source/drain (S/D) design for a 16 nm MOSFET utilizing a replacement process for a high-k gate dielectric and metal gate electrode integration. Using TCAD simulation, a trade-off study between series resistance and overlap capacitance is carried out for a high-k dielectric surrounding gate structure, which results from the replacement process. An optimum S/D overlap to gate for the high-k surrounding gate structure is found to be different from the conventional gate structure, i.e. 0∼1 nm underlap is preferred for the surround high-k gate structure while 1∼2 nm overlap for the conventional gate one

  1. Cost-Efficient and sustainable deployment of renewable energy sources towards the 20% target by 2020, and beyond. D3.3. Off Shore wind energy - Case study of cooperation mechanisms design

    Energy Technology Data Exchange (ETDEWEB)

    Klinge Jacobsen, H.; Pade Hansen, L.-L. [Technical Univ. of Denmark. DTU Management Engineering, Roskilde (Denmark); Jansen, J. [ECN, Petten (Netherlands)

    2012-10-15

    Denmark is projected to have by 2020 a large excess potential for offshore wind capacity in the North Sea at shallow and near to the coast locations. The Netherlands on the other hand has low and expensive RES potentials for its 2020 RES target obligations. Therefore offshore wind potentials in Denmark constitute a possible cost reduction for the Netherlands in meeting its 2020 RES target. This case study examines a large amount of 2 GW offshore wind capacity in the Danish North Sea area. Cooperation unfolds in a joint project type with state to state negotiation and settlement. Different timing and implementation options are described with the possibility to implement a series of 200 MW joint projects with negotiation for each separate phase. The case study is focusing on the area around Horns Rev, where wind conditions are good, the distance to shore is 20-30 km and water depth is around 25 m. With these conditions the cost level will be around 12 c Euro/kWh and that is at least a 3 c Euro/kWh cost advantage to the expansion with offshore wind in the Netherlands. Joint project cooperation is a simple form of cooperation that does not involve a restructuring of national support schemes and legislator changes that can take a long time to implement and affect a lot of entities in the host country. Projects are negotiated between the host and the user country, with the major task to settle a transfer price for the credits transferred in 2020. The design of cooperation assigns the entire project risk to the host country as the host is the party that enters into the contract with the investors in renewable energy capacity. This case study identifies the main barriers for the joint project cooperation and concludes that the main barriers to cooperation between Denmark and the Netherlands is the missing detailed knowledge on the penalty for non-compliance with the 2020 targets, and the lack of post 2020 targets in the EU policy. The missing knowledge on the penalty may

  2. Design of γ measurement system of neutron source strength standard with a manganese sulphate bath method

    International Nuclear Information System (INIS)

    Wang Xiaoqiong; Wang Pan; Chen Mingchi; Zhang Hui

    2010-01-01

    It mostly introduced the hardware and software design and test of Measurement System of Neutron Source Strength Standard with a Manganese Sulphate Bath Method. Hardware of system mainly contains six modules named detector, high voltage source, head amplifier, main amplifier, single channel pulse-amplitude analyzer and data acquisition system. The software program of system data acquisition is made up of four functional modules: user login, parameter setting, data collection, and data saving. (authors)

  3. A novel design for sap flux data acquisition in large research plots using open source components

    Science.gov (United States)

    Hawthorne, D. A.; Oishi, A. C.

    2017-12-01

    Sap flux sensors are a widely-used tool for estimating in-situ, tree-level transpiration rates. These probes are installed in the stems of multiple trees within a study area and are typically left in place throughout the year. Sensors vary in their design and theory of operation, but all require electrical power for a heating element and produce at least one analog signal that must be digitized for storage. There are two topologies traditionally adopted to energize these sensors and gather the data from them. In one, a single data logger and power source are used. Dedicated cables radiate out from the logger to supply power to each of the probes and retrieve analog signals. In the other layout, a standalone data logger is located at each monitored tree. Batteries must then be distributed throughout the plot to service these loggers. We present a hybrid solution based on industrial control systems that employs a central data logger and battery, but co-locates digitizing hardware with the sensors at each tree. Each hardware node is able to communicate and share power over wire links with neighboring nodes. The resulting network provides a fault-tolerant path between the logger and each sensor. The approach is optimized to limit disturbance of the study plot, protect signal integrity and to enhance system reliability. This open-source implementation is built on the Arduino micro-controller system and employs RS485 and Modbus communications protocols. It is supported by laptop based management software coded in Python. The system is designed to be readily fabricated and programmed by non-experts. It works with a variety of sap-flux measurement techniques and it is able to interface to additional environmental sensors.

  4. Recycler ring conceptual design study

    International Nuclear Information System (INIS)

    Jackson, G.

    1995-01-01

    The Tevatron Collider provides the highest center of mass energy collisions in the world. To fully exploit this unique tool, Fermilab is committed to a program of accelerator upgrades for the purpose of increasing the Collider luminosity. Over the past 7 years the luminosity has been increased from a peak of 1.6x10 30 cm -2 sec -1 in 1989 to over 3x10 31 cm -2 sec -1 during 1995. The Main Injector will supply a larger flux of protons for antiproton production and more intense proton bunches for use in the Collider, and this is expected to increase the peak luminosity to close to 1x10 32 cm -2 sec -1 . Further increases in luminosity will require additional upgrades to the Fermilab accelerator complex. This report documents the design of a new fixed-energy storage ring to be placed in the Main Injector tunnel which will provide an initial factor of 2 increase to 2x10 32 cm -2 sec -1 , and ultimately provide the basis for an additional order of magnitude luminosity increase up to 1x10 33 cm -2 sec -1

  5. Vehicle systems design optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  6. Sources of variation in primary care clinical workflow: implications for the design of cognitive support.

    Science.gov (United States)

    Militello, Laura G; Arbuckle, Nicole B; Saleem, Jason J; Patterson, Emily; Flanagan, Mindy; Haggstrom, David; Doebbeling, Bradley N

    2014-03-01

    This article identifies sources of variation in clinical workflow and implications for the design and implementation of electronic clinical decision support. Sources of variation in workflow were identified via rapid ethnographic observation, focus groups, and interviews across a total of eight medical centers in both the Veterans Health Administration and academic medical centers nationally regarded as leaders in developing and using clinical decision support. Data were reviewed for types of variability within the social and technical subsystems and the external environment as described in the sociotechnical systems theory. Two researchers independently identified examples of variation and their sources, and then met with each other to discuss them until consensus was reached. Sources of variation were categorized as environmental (clinic staffing and clinic pace), social (perception of health information technology and real-time use with patients), or technical (computer access and information access). Examples of sources of variation within each of the categories are described and discussed in terms of impact on clinical workflow. As technologies are implemented, barriers to use become visible over time as users struggle to adapt workflow and work practices to accommodate new technologies. Each source of variability identified has implications for the effective design and implementation of useful health information technology. Accommodating moderate variability in workflow is anticipated to avoid brittle and inflexible workflow designs, while also avoiding unnecessary complexity for implementers and users.

  7. Safety regulation for the design approval of special form radioactive sources

    International Nuclear Information System (INIS)

    Cho, Woon-Kap

    2009-01-01

    Several kinds of special form radioactive sources for industrial, medical applications are being produced in Korea. Special form radioactive sources should meet strict safety requirements specified in the domestic safety regulations and the design of the sources should be certified by the regulatory authority, the Ministry of Education, Science and Technology (MEST). Several safety tests such as impact, percussion, heating, and leak tests are performed on the sources according to the domestic regulations and the international safety standards such as ANSI N542-1977 and ISO 2919-1999(E). As a regulatory expert body, Korea Institute of Nuclear Safety (KINS) assesses various types of application documents, such as safety analysis report, quality assurance program, and other documents evidencing fulfillment of requirements for design approval of the special form radioactive sources, submitted by a legal person who intends to produce special form radioactive sources and then reports the assessment result to MEST. A design approval certificate is issued to the applicant by MEST on the basis of a technical evaluation report presented by KINS.

  8. PUREX source Aggregate Area management study report

    International Nuclear Information System (INIS)

    1993-03-01

    This report presents the results of an aggregate area management study (AAMS) for the PUREX Plant Aggregate Area in the 200 Areas of the US Department of Energy (DOE)Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past-practice investigations

  9. Advanced design of positive-ion sources for neutral-beam applications

    International Nuclear Information System (INIS)

    Marguerat, E.F.; Haselton, H.H.; Menon, M.M.; Schechter, D.E.; Stirling, W.L.; Tsai, C.C.

    1982-01-01

    The APIS ion source is being developed to meet a goal of producing ion beams of less than or equal to 200 keV, 100 A, with 10-30-s pulse lengths. In a continuing effort to advance the state of the art and to produce long pulse ion beams, APIS ion sources with grid dimensions of 10 x 25 cm, 13 x 43 cm, and 16 x 48 cm are being developed. In the past year, the 10- x 25-cm ion source has been operated to produce ion beams in excess of 100 keV for many seconds pulse length. An advanced design concept is being pursued with the primary objectives to improve radiation protection, reduce fabrication costs, and simplify maintenance. The source magnetic sheild will be designed as a vacuum enclosure to house all source components. The electrical insulation requirements of energy recovery are also considered. Because of the frequent maintenance requirements, the electron emitter assembly will be designed with a remote handling capability. A new accelerator design which incorporates the necessary neutron shielding and associated steering gimbal system is also described

  10. DEMO port plug design and integration studies

    Science.gov (United States)

    Grossetti, G.; Boccaccini, L. V.; Cismondi, F.; Del Nevo, A.; Fischer, U.; Franke, T.; Granucci, G.; Hernández, F.; Mozzillo, R.; Strauß, D.; Tran, M. Q.; Vaccaro, A.; Villari, R.

    2017-11-01

    The EUROfusion Consortium established in 2014 and composed by European Fusion Laboratories, and in particular the Power Plant Physics and Technology department aims to develop a conceptual design for the Fusion DEMOnstration Power Plant, DEMO. With respect to present experimental machines and ITER, the main goals of DEMO are to produce electricity continuously for a period of about 2 h, with a net electrical power output of a few hundreds of MW, and to allow tritium self-sufficient breeding with an adequately high margin in order to guarantee its planned operational schedule, including all planned maintenance intervals. This will eliminate the need to import tritium fuel from external sources during operations. In order to achieve these goals, extensive engineering efforts as well as physics studies are required to develop a design that can ensure a high level of plant reliability and availability. In particular, interfaces between systems must be addressed at a very early phase of the project, in order to proceed consistently. In this paper we present a preliminary design and integration study, based on physics assessments for the EU DEMO1 Baseline 2015 with an aspect ratio of 3.1 and 18 toroidal field coils, for the DEMO port plugs. These aim to host systems like electron cyclotron heating launchers currently developed within the Work Package Heating and Current Drive that need an external radial access to the plasma and through in-vessel systems like the breeder blanket. A similar approach shown here could be in principle followed by other systems, e.g. other heating and current drive systems or diagnostics. The work addresses the interfaces between the port plug and the blanket considering the helium-cooled pebble bed and the water cooled lithium lead which are two of four breeding blanket concepts under investigation in Europe within the Power Plant Physics and Technology Programme: the required openings will be evaluated in terms of their impact onto the

  11. Interconnected High-Voltage Pulsed-Power Converters System Design for H− Ion Sources

    CERN Document Server

    Aguglia, D

    2014-01-01

    This paper presents the design and experimental validations of a system of three new high-voltage (HV) pulsedpower converters for the H− sources. The system requires three pulsed voltages (50, 40, and 25 kV to ground) at 2-Hz repetition rate, for 700 μs of usable flat-top. The solution presents ripplefree output voltages and minimal stored energy to protect the ion source from the consequences of arc events. Experimental results on the final full-scale prototype are presented. In case of short-circuit events, the maximal energy delivered to the source is in the Joule range. HV flat-top stability of 1% is experimentally achieved with a simple Proportional-Integral- Derivative regulation and preliminary tuned H− source (e.g., radio frequency control, gas injection, and so forth). The system is running since more than a year with no power converter failures and damage to the source.

  12. Design of the compact ECR ion source for heavy-ion therapy

    International Nuclear Information System (INIS)

    Muramatsu, M.; Kitagawa, A.; Sato, S.; Sato, Y.; Yamada, S.; Hattori, T.; Shibuya, S.

    1999-01-01

    Heavy ion cancer treatment is successfully being done at the Heavy Ion Medical Accelerator in Chiba (HIMAC). Design philosophy for the ion sources for medical facilities are as follows: sufficient beam intensity, a few hundred eμA; long lifetime with good stability; easy operation and easy maintenance; and compactness. In order to develop such source for future heavy-ion facilities, we have tested compact electron cyclotron resonance (ECR) ion sources using permanent magnets both for axial and radial confinement of hot electrons. Since the yield of C 2+ ion in the firstly-developed source (2.45 GHz ECR) was 15 eμA and far below the medical requirement (-150 eμA for the HIMAC), a new source has been proposed, having the frequency of 10 GHz. The extracted intensity of C 4+ (and C 2+ ) ions is expected to be higher than 200 eμA. (author)

  13. Design and tests of a package for the transport of radioactive sources

    International Nuclear Information System (INIS)

    Santos, Paulo de Oliveira

    2011-01-01

    The Type A package was designed for transportation of seven cobalt-60 sources with total activity of 1 GBq. The shield thickness to accomplish the dose rate and the transport index established by the radioactive transport regulation was calculated by the code MCNP (Monte Carlo N-Particle Transport Code Version 5). The sealed cobalt-60 sources were tested for leakages. according to the regulation ISO 9978:1992 (E). The package was tested according to regulation Radioactive Material Transport CNEN. The leakage tests results pf the sources, and the package tests demonstrate that the transport can be safe performed from the CDTN to the steelmaking industries

  14. Physics Analyses in the Design of the HFIR Cold Neutron Source

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1999-01-01

    Physics analyses have been performed to characterize the performance of the cold neutron source to be installed in the High Flux Isotope Reactor at the Oak Ridge National Laboratory in the near future. This paper provides a description of the physics models developed, and the resulting analyses that have been performed to support the design of the cold source. These analyses have provided important parametric performance information, such as cold neutron brightness down the beam tube and the various component heat loads, that have been used to develop the reference cold source concept

  15. Development of design of a radioisotope switchable neutron source and new portable detector of smuggling

    International Nuclear Information System (INIS)

    Meskhi, L.; Kurdadze, L.

    2010-01-01

    Development of simple and cheap radioisotope switchable neutron source for application in the portable device of detecting of smuggling is presented. Detailed calculations (Monte-Carlo modeling) for the purpose of optimization of a design of the source and the detector module are carried out. The sufficient an yield of neutrons, about 2 o 105 n/s provides the source with the sizes of approx 25 x 25 x 60 mm 3. Results of simulation of scanning smuggling areas (polyethylene 10 x 10 x 5 cm 3) behind the thick steel wall (1.2 cm) gave the relation of signal/ background 7-8

  16. Note: The design of thin gap chamber simulation signal source based on field programmable gate array

    International Nuclear Information System (INIS)

    Hu, Kun; Wang, Xu; Li, Feng; Jin, Ge; Lu, Houbing; Liang, Futian

    2015-01-01

    The Thin Gap Chamber (TGC) is an important part of ATLAS detector and LHC accelerator. Targeting the feature of the output signal of TGC detector, we have designed a simulation signal source. The core of the design is based on field programmable gate array, randomly outputting 256-channel simulation signals. The signal is generated by true random number generator. The source of randomness originates from the timing jitter in ring oscillators. The experimental results show that the random number is uniform in histogram, and the whole system has high reliability

  17. Designing display primaries with currently available light sources for UHDTV wide-gamut system colorimetry.

    Science.gov (United States)

    Masaoka, Kenichiro; Nishida, Yukihiro; Sugawara, Masayuki

    2014-08-11

    The wide-gamut system colorimetry has been standardized for ultra-high definition television (UHDTV). The chromaticities of the primaries are designed to lie on the spectral locus to cover major standard system colorimetries and real object colors. Although monochromatic light sources are required for a display to perfectly fulfill the system colorimetry, highly saturated emission colors using recent quantum dot technology may effectively achieve the wide gamut. This paper presents simulation results on the chromaticities of highly saturated non-monochromatic light sources and gamut coverage of real object colors to be considered in designing wide-gamut displays with color filters for the UHDTV.

  18. Irradiation Pattern Analysis for Designing Light Sources-Based on Light Emitting Diodes

    International Nuclear Information System (INIS)

    Rojas, E.; Stolik, S.; La Rosa, J. de; Valor, A.

    2016-01-01

    Nowadays it is possible to design light sources with a specific irradiation pattern for many applications. Light Emitting Diodes present features like high luminous efficiency, durability, reliability, flexibility, among others as the result of its rapid development. In this paper the analysis of the irradiation pattern of the light emitting diodes is presented. The approximation of these irradiation patterns to both, a Lambertian, as well as a Gaussian functions for the design of light sources is proposed. Finally, the obtained results and the functionality of bringing the irradiation pattern of the light emitting diodes to these functions are discussed. (Author)

  19. Target station design for a 1 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Russell, G.J.; Baker, G.D.; Brewton, R.J.

    1993-01-01

    Target stations are vital components of the 1 MW, next generation spallation neutron source proposed for LANSCE. By and large, target stations design determines the overall performance of the facility. Many traditional concepts will probably have to be rethought, and many new concepts will have to be put forward to meet the 1 MW challenge. This article gives a brief overview of the proposed neutron spallation source from the target station viewpoint, as well as the general philosophy adopted for the design of the LANSCE-II target stations. Some of the saliant concepts and features envisioned for LANSCE-II are briefly described

  20. 42 CFR 456.244 - Data sources for studies.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Data sources for studies. 456.244 Section 456.244 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES...: Medical Care Evaluation Studies § 456.244 Data sources for studies. Data that the committee uses to...

  1. 42 CFR 456.144 - Data sources for studies.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Data sources for studies. 456.144 Section 456.144 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Care Evaluation Studies § 456.144 Data sources for studies. Data that the committee uses to perform...

  2. TLEP design study forges ahead

    CERN Multimedia

    Alain Blondel & Mike Koratzinos

    2013-01-01

    As the Future Circular Collider (FCC) study is launched, one of its component parts, TLEP, enjoys a successful workshop at CERN. The FCC study looks at all options for a future circular collider with the emphasis on a hadron machine with TLEP as a possible intermediate step.   The poster of the sixth TLEP workshop that took place at CERN. Japanese artist Kazuya Akimoto kindly agreed to the use of one of his works as the basis for the poster’s backdrop. October 16 to 18 saw a three-day workshop on TLEP, the sixth in the series. The workshop took place at CERN and was well attended, informative and stimulating. To name just one of the influential people present, Herwig Schopper, ex-Director General of CERN and instrumental in the approval, construction and success of LEP, was among the participants. But what exactly is TLEP? The name was, somehow serendipitously, coined from future lepton collider option studies and stands for triple-LEP, a machine three times the size of LEP. But th...

  3. Semiworks source aggregate area management study report

    International Nuclear Information System (INIS)

    1993-05-01

    This report presents the results of an aggregate area management study (AAMS) for the Semi-Works Aggregate Area in the 200 Areas of the US Department of Energy (DOE) . Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations WD and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment storage, or disposal (TSD) closure activities with CERCLA and RCRA past-practice investigations. This approach is described and justified in The Hanford Federal Facility Agreement and Consent Order Change Package. This strategy provides new concepts for: accelerating decision-malting by maximizing the use of existing data consistent with data quality objectives (DQOs); and undertaking expedited response actions (ERAS) and/or interim remedial measures (IRMs), as appropriate, to either remove threats to human health and welfare and the environment, or to reduce risk by reducing toxicity, mobility, or volume of contaminants

  4. Exploratory Shaft Facility design basis study report

    International Nuclear Information System (INIS)

    Langstaff, A.L.

    1987-01-01

    The Design Basis Study is a scoping/sizing study that evaluated the items concerning the Exploratory Shaft Facility Design including design basis values for water and methane inflow; flexibility of the design to support potential changes in program direction; cost and schedule impacts that could result if the design were changed to comply with gassy mine regulations; and cost, schedule, advantages and disadvantages of a larger second shaft. Recommendations are proposed concerning water and methane inflow values, facility layout, second shaft size, ventilation, and gassy mine requirements. 75 refs., 3 figs., 7 tabs

  5. Collective design in 3D printing: A large scale empirical study of designs, designers and evolution

    DEFF Research Database (Denmark)

    Özkil, Ali Gürcan

    2017-01-01

    This paper provides an empirical study of a collective design platform (Thingiverse); with the aim of understanding the phenomenon and investigating how designs concurrently evolve through the large and complex network of designers. The case study is based on the meta-data collected from 158 489 ...

  6. Design of acoustic logging signal source of imitation based on field programmable gate array

    International Nuclear Information System (INIS)

    Zhang, K; Ju, X D; Lu, J Q; Men, B Y

    2014-01-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes. (paper)

  7. Design of acoustic logging signal source of imitation based on field programmable gate array

    Science.gov (United States)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2014-08-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes.

  8. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  9. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  10. Open-Source Data and the Study of Homicide.

    Science.gov (United States)

    Parkin, William S; Gruenewald, Jeff

    2015-07-20

    To date, no discussion has taken place in the social sciences as to the appropriateness of using open-source data to augment, or replace, official data sources in homicide research. The purpose of this article is to examine whether open-source data have the potential to be used as a valid and reliable data source in testing theory and studying homicide. Official and open-source homicide data were collected as a case study in a single jurisdiction over a 1-year period. The data sets were compared to determine whether open-sources could recreate the population of homicides and variable responses collected in official data. Open-source data were able to replicate the population of homicides identified in the official data. Also, for every variable measured, the open-sources captured as much, or more, of the information presented in the official data. Also, variables not available in official data, but potentially useful for testing theory, were identified in open-sources. The results of the case study show that open-source data are potentially as effective as official data in identifying individual- and situational-level characteristics, provide access to variables not found in official homicide data, and offer geographic data that can be used to link macro-level characteristics to homicide events. © The Author(s) 2015.

  11. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    Science.gov (United States)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  12. Experimental Study on Various Solar Still Designs

    OpenAIRE

    T. Arunkumar; K. Vinothkumar; Amimul Ahsan; R. Jayaprakash; Sanjay Kumar

    2012-01-01

    Humankind has depended for ages on underground water reservoirs for its fresh water needs. But these sources do not always prove to be useful due to the presence of excessive salinity in the water. In this paper, the fabrication of seven solar still designs such as spherical solar still, pyramid solar still, hemispherical solar still, double basin glass solar still, concentrator coupled single slope solar still, tubular solar still and tubular solar still coupled with pyramid solar still and ...

  13. The low power miniature neutron source reactors: Design, safety and applications

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, M.; Bezboruah, T.; Johri, M.; Akaho, E.H.K.

    2006-04-01

    The Chinese Miniature Neutron Source Reactor (MNSR) is a low power research reactor with maximum thermal neutron flux of 1 x 10 12 n.cm -2 .s -1 in one of its inner irradiation channels and thermal power of approximately 30kW. The MNSR is designed based on the Canadian SLOWPOKE reactor and is one of the smallest commercial research reactors presently available in the world. Its commercial versions currently in operation in China, Ghana, Iran, Nigeria, Pakistan and Syria, is considered as an excellent tool for Neutron Activation Analysis (NAA), training of Scientist, and Engineers in nuclear science and technology and small scale radioisotope production. The paper highlights the basic design and theory of the commercial MNSR, its safety features, applications and advantages over the Chinese Prototype. The experimental flux characteristics determined in this work and in similar studies by other authors reveal that the commercial MNSR has more flux stability, longer life span, higher negative temperature coefficient of reactivity and low under-moderation compared to its prototype in China. The result shows that the facility is safe for reactor physics experiments, teaching and training of students and also ideal for application of NAA for the determination of elemental composition of biological and environmental samples. It can also be a useful tool for geochemical and soil fertility mapping. (author)

  14. Design and Fabrication of a Single Cusp Magnetic Field Type Hydrogen ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Su Hun

    1996-02-15

    A single-cusp type hydrogen ion source has been designed and fabricated. In order to increase the efficiency of the plasma production, a single-cusp type magnet circuit and an electrostatic reflector were installed. The Poission Group Code was used to predict the distribution of magnetic field in the plasma chamber. In order to design the accel.-decel. extraction part for forming the ion beam with low emmitance and high current density, EGUN code was used. The results of calculation show that the configuration of plasma electrode strongly affects the beam quality and the deceleration electrode only functions the repression of the electron stream. When the plasma-accel potential is -20kV and an accel.-decel. potential is 1kV, the calculated extraction current, normalized emittance and perveance are 20.6mA, 1.28x 10{sup -7} m {center_dot} rad and 7.87 x 10{sup -9}A {center_dot} V{sup -3/2}, respectively. This study on the improvement of beam quality and the achievement of high ion beam current will contribute to the analysis of fusion plasma and the research on the surface physics.

  15. Design and Fabrication of a Single Cusp Magnetic Field Type Hydrogen ion Source

    International Nuclear Information System (INIS)

    Kim, Su Hun

    1996-02-01

    A single-cusp type hydrogen ion source has been designed and fabricated. In order to increase the efficiency of the plasma production, a single-cusp type magnet circuit and an electrostatic reflector were installed. The Poission Group Code was used to predict the distribution of magnetic field in the plasma chamber. In order to design the accel.-decel. extraction part for forming the ion beam with low emmitance and high current density, EGUN code was used. The results of calculation show that the configuration of plasma electrode strongly affects the beam quality and the deceleration electrode only functions the repression of the electron stream. When the plasma-accel potential is -20kV and an accel.-decel. potential is 1kV, the calculated extraction current, normalized emittance and perveance are 20.6mA, 1.28x 10 -7 m · rad and 7.87 x 10 -9 A · V -3/2 , respectively. This study on the improvement of beam quality and the achievement of high ion beam current will contribute to the analysis of fusion plasma and the research on the surface physics

  16. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2015-01-01

    A 1 GeV H - injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H - beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  17. Design of a higher harmonic RF system for the Advanced Light Source

    CERN Document Server

    Byrd, J M; De Santis, S; Kosta, S; Lo, C C; Plate, D; Rimmer, R A; Franks, M

    2000-01-01

    We report on the design and fabrication of a third harmonic radiofrequency (RF) system for the Advanced Light Source (ALS) to be used for lengthening the bunch and increasing the Touschek-dominated beam lifetime. We plan to install five single-cell 1.5 GHz copper RF cavities in one-half of an ALS straight section with a predicted increase in the lifetime by a factor of 3. Each RF cell is designed to sustain a maximum voltage of 125 kV with a power dissipation of 5 kW. We present measurements made on an aluminum cavity model characterizing the RF properties of cavity such as the cavity R/Q and higher-order modes (HOMs). In particular, resonances in the cavity tuners were studied in order to avoid heating of the tuner bellows. Initial measurements of the copper cavities indicate a Q value of 21 000, resulting in a shunt impedance of 1.69 M OMEGA per cell

  18. Open Source Software and Design-Based Research Symbiosis in Developing 3D Virtual Learning Environments: Examples from the iSocial Project

    Science.gov (United States)

    Schmidt, Matthew; Galyen, Krista; Laffey, James; Babiuch, Ryan; Schmidt, Carla

    2014-01-01

    Design-based research (DBR) and open source software are both acknowledged as potentially productive ways for advancing learning technologies. These approaches have practical benefits for the design and development process and for building and leveraging community to augment and sustain design and development. This report presents a case study of…

  19. Computer aided extractor design for the RIG 10 high intensity ion source

    International Nuclear Information System (INIS)

    Tanzer, F.; Haeuser, J.; Eppel, D.

    1980-01-01

    The paper discusses recent progress of the rf-ion source RIG 10, and describes a computer code for the simulation of the ion trajectories. The RIG 10 is designed for current densities of some 300 mA/cm 2 , and will be used for the production of neutral. (orig.)

  20. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  1. Improvements of the magnetic field design for SPIDER and MITICA negative ion beam sources

    International Nuclear Information System (INIS)

    Chitarin, G.; Agostinetti, P.; Aprile, D.; Marconato, N.; Veltri, P.

    2015-01-01

    The design of the magnetic field configuration in the SPIDER and MITICA negative ion beam sources has evolved considerably during the past four years. This evolution was driven by three factors: 1) the experimental results of the large RF-driven ion sources at IPP, which have provided valuable indications on the optimal magnetic configurations for reliable RF plasma source operation and for large negative ion current extraction, 2) the comprehensive beam optics and heat load simulations, which showed that the magnetic field configuration in the accelerator is crucial for keeping the heat load due to electrons on the accelerator grids within tolerable limits, without compromising the optics of the negative ion beam in the foreseen operating scenarios, 3) the progress of the detailed mechanical design of the accelerator, which stimulated the evaluation of different solutions for the correction of beamlet deflections of various origin and for beamlet aiming. On this basis, new requirements and solution concepts for the magnetic field configuration in the SPIDER and MITICA beam sources have been progressively introduced and updated until the design converged. The paper presents how these concepts have been integrated into a final design solution based on a horizontal “long-range” field (few mT) in combination with a “local” vertical field of some tens of mT on the acceleration grids

  2. Thermo-mechanical design of the extraction grids for RF negative ion source at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Liu, Kaifeng, E-mail: kfliuhust@hust.edu.cn; Li, Dong; Mei, Zhiyuan; Zhang, Zhe; Chen, Dezhi

    2017-01-15

    Highlights: • An extraction system with cooling channels has been designed for HUST negative ion source. • Corresponding heat loads onto three grids has been used in thermo-mechanical analysis. • The analysis results could be very useful for driving the engineering design. - Abstract: Huazhong University of Science and Technology (HUST) is developing a small radio frequency negative ion source experimental setup to promote research on neutral beam injection ion sources. The extraction system for the negative ion source is the key component to obtain the negative ions. The extraction system is composed of three grids: the plasma grid, the extraction grid and the grounded grid. Each grid is impacted by different heat loads. As the grids have to fulfil specific requirements regarding ion extraction, beam optics, and thermo-mechanical issues, grid cooling systems have been included for ensuring reliable operation. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids. Finite element calculations have been carried out to analyse the temperature and deformation of the grids under heat loads using the fluid dynamics code CFX. Based on these results, the cooling circuit design and cooling parameters are optimised to satisfy the grid requirements.

  3. Off-design performance analysis of organic Rankine cycle using real operation data from a heat source plant

    International Nuclear Information System (INIS)

    Kim, In Seop; Kim, Tong Seop; Lee, Jong Jun

    2017-01-01

    Highlights: • ORC systems driven by waste or residual heat from a combined cycle cogeneration plant were analyzed. • An off-design analysis model was developed and validated with commercial ORC data. • A procedure to predict the actual variation of ORC performance using the off-design model was set up. • The importance of using long-term operation data of the heat source plant was demonstrated. - Abstract: There has been increasing demand for cogeneration power plants, which provides high energy utilization. Research on upgrading power plant performance is also being actively pursued. The organic Rankine cycle (ORC) can operate with mid- and low-temperature heat sources and is suitable for enhancing performance of existing power plants. In this study, an off-design analysis model for the ORC was developed, which is driven by waste heat or residual heat from a combined cycle cogeneration plant. The applied heat sources are the exhaust gas from the heat recovery steam generator (Case 1) and waste heat from a heat storage unit (Case 2). Optimal design points of the ORC were selected based on the design heat source condition of each case. Then, the available ORC power output for each case was predicted using actual long-term plant operation data and a validated off-design analysis model. The ORC capacity of Case 2 was almost two times larger than that of Case 1. The predicted average electricity generation of both cases was less than the design output. The results of this paper reveal the importance of both the prediction of electricity generation using actual plant operation data and the need for optimal ORC system sizing.

  4. Sustainability in Open Source Software Commons: Lessons Learned from an Empirical Study of SourceForge Projects

    Directory of Open Access Journals (Sweden)

    Charles M. Schweik

    2013-01-01

    Full Text Available In this article, we summarize a five-year US National Science Foundation funded study designed to investigate the factors that lead some open source projects to ongoing collaborative success while many others become abandoned. Our primary interest was to conduct a study that was closely representative of the population of open source software projects in the world, rather than focus on the more-often studied, high-profile successful cases. After building a large database of projects (n=174,333 and implementing a major survey of open source developers (n=1403, we were able to conduct statistical analyses to investigate over forty theoretically-based testable hypotheses. Our data firmly support what we call the conventional theory of open source software, showing that projects start small, and, in successful cases, grow slightly larger in terms of team size. We describe the “virtuous circle” supporting conventional wisdom of open source collaboration that comes out of this analysis, and we discuss two other interesting findings related to developer motivations and how team members find each other. Each of these findings is related to the sustainability of these projects.

  5. Study and realisation of an ion source obtained by electronic bombardment - experimentation with phosphorus

    International Nuclear Information System (INIS)

    Schneider, Philippe

    1979-01-01

    This research thesis reports the study and development of an ion source by electronic bombardment. In order to solve some practical difficulties (cathode destruction, source instability, and so on), the design of each component has been very careful, notably for the electron gun. The author first briefly discusses the exiting ionisation processes, gives a list of ion which can be produced, with a focus on phosphorus for which the ionisation cross section is defined and assessed. After an assessment of different ionisation processes, and an indication of performance of the best existing sources, the author explains the choice for a totally different process. In the second part, he describes the experimental device, and particularly the electron gun as its design has been an important part of this research work. The source operation is described and its characteristics and performance are studied. Finally, the author outlines that some improvements are still possible to obtain a totally exploitable source [fr

  6. Physical models and primary design of reactor based slow positron source at CMRR

    Science.gov (United States)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  7. Open Source and Design Thinking at NASA: A Vision for Future Software

    Science.gov (United States)

    Trimble, Jay

    2017-01-01

    NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.

  8. Basic design of the HANARO cold neutron source using MCNP code

    International Nuclear Information System (INIS)

    Yu, Yeong Jin; Lee, Kye Hong; Kim, Young Jin; Hwang, Dong Gil

    2005-01-01

    The design of the Cold Neutron Source (CNS) for the HANARO research reactor is on progress. The CNS produces neutrons in the low energy range less than 5meV using liquid hydrogen at around 21.6 K as the moderator. The primary goal for the CNS design is to maximize the cold neutron flux with wavelengths of around 2 ∼ 12 A and to minimize the nuclear heat load. In this paper, the basic design of the HANARO CNS is described

  9. Mobile Variable Depth Sampling System Design Study

    International Nuclear Information System (INIS)

    BOGER, R.M.

    2000-01-01

    A design study is presented for a mobile, variable depth sampling system (MVDSS) that will support the treatment and immobilization of Hanford LAW and HLW. The sampler can be deployed in a 4-inch tank riser and has a design that is based on requirements identified in the Level 2 Specification (latest revision). The waste feed sequence for the MVDSS is based on Phase 1, Case 3S6 waste feed sequence. Technical information is also presented that supports the design study

  10. Mobile Variable Depth Sampling System Design Study

    Energy Technology Data Exchange (ETDEWEB)

    BOGER, R.M.

    2000-08-25

    A design study is presented for a mobile, variable depth sampling system (MVDSS) that will support the treatment and immobilization of Hanford LAW and HLW. The sampler can be deployed in a 4-inch tank riser and has a design that is based on requirements identified in the Level 2 Specification (latest revision). The waste feed sequence for the MVDSS is based on Phase 1, Case 3S6 waste feed sequence. Technical information is also presented that supports the design study.

  11. WWC Study Review Guide: Group Design Studies

    Science.gov (United States)

    What Works Clearinghouse, 2018

    2018-01-01

    Underlying all What Works Clearinghouse (WWC) products are WWC Study Review Guides, which are intended for use by WWC certified reviewers to assess studies against the WWC evidence standards. As part of an ongoing effort to increase transparency, promote collaboration, and encourage widespread use of the WWC standards, the Institute of Education…

  12. Beam dynamics design of an SP-FEL compact THz source

    International Nuclear Information System (INIS)

    Dai Dongdong; Dai Zhimin

    2010-01-01

    In recent years, people are looking for a new compact THz source with high emission power, one potential choice is to build small accelerator with Smith-Purcell radiation. The main difficulty is how to obtain high quality electron beam. In this paper, the beam dynamics design of a compact THz source is presented. The electron beam is produced by an electron gun and compressed by permanent magnets. The electron gun is similar to the Shanghai EBIT, but permanent magnets are used, instead of the superconducting magnets in Shanghai EBIT. With this design, we can reduce the size and cost of the whole device. Poisson/Pandira was employed to simulate and optimize the magnetic field. Egun was used to simulate the beam trajectories from the electron gun to the collector. Within 2 centimeters around the center of longitudinal magnetic field, the calculation showed that the beam satisfies to our design aim. (authors)

  13. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  14. Design of long pulse/steady state negative hydrogen ion sources for fusion applications

    International Nuclear Information System (INIS)

    Prelec, K.

    1980-01-01

    By using parameters of ion sources when operating in a pulsed mode and without cooling (pulse length 2 . For the range of cathode power densities between 0.2 kW/cm 2 and 1 Kw/cm 2 , nucleated boiling has to be used for heat removal; below 0.2 kW/cm 2 water flow cooling suffices. Although this source should deliver 0.3 to 0.5 A of H - ions in a steady state operation and at full power, the other source, which has a magnetron geometry, is more promising. The latter incorporates two new features compared to first designs, geometrical focusing of fast, primary negative hydrogen ions from the cathode into the extraction slit, and a wider discharge gap in the back of the source. These two changes have resulted in an improvement of the power and gas efficiencies by a factor of 3 to 4 and in a reduction of the cathode power density by an order of magnitude. The source has water cooling for all the electrodes, because maximum power densities will not be higher than 0.2 kW/cm 2 . Very recently a modification of this magnetron source is being considered; it consists of plasma injection into the source from a hollow cathode discharge

  15. Multisource inverse-geometry CT. Part II. X-ray source design and prototype

    Energy Technology Data Exchange (ETDEWEB)

    Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun [GE Global Research, Niskayuna, New York 12309 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Lounsberry, Brian [Healthcare Science Technology, GE Healthcare, West Milwaukee, Wisconsin 53219 (United States)

    2016-08-15

    Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent

  16. Passivity-based design of robust passive damping for LCL-filtered voltage source converters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    Passive damping is proven as a robust stabilizing technique for LCL-filtered voltage source converters. However, conventional design methods of passive dampers are based on the passive components only, while the inherent damping effect of time delay in the digital control system is overlooked....... In this paper, a frequency-domain passivity-based design approach is proposed, where the passive dampers are designed to eliminate the negative real part of the converter output admittance with closed-loop current control, rather than shaping the LCL-filter itself. Thus, the influence of time delay...... in the current control is included, which allows a relaxed design of the passive damper with the reduced power loss and improved stability robustness against grid parameters variations. Design procedures of two commonly used passive dampers with LCL-filtered VSCs are illustrated. Experimental results validate...

  17. Paired split-plot designs of multireader multicase studies.

    Science.gov (United States)

    Chen, Weijie; Gong, Qi; Gallas, Brandon D

    2018-07-01

    The widely used multireader multicase ROC study design for comparing imaging modalities is the fully crossed (FC) design: every reader reads every case of both modalities. We investigate paired split-plot (PSP) designs that may allow for reduced cost and increased flexibility compared with the FC design. In the PSP design, case images from two modalities are read by the same readers, thereby the readings are paired across modalities. However, within each modality, not every reader reads every case. Instead, both the readers and the cases are partitioned into a fixed number of groups and each group of readers reads its own group of cases-a split-plot design. Using a [Formula: see text]-statistic based variance analysis for AUC (i.e., area under the ROC curve), we show analytically that precision can be gained by the PSP design as compared with the FC design with the same number of readers and readings. Equivalently, we show that the PSP design can achieve the same statistical power as the FC design with a reduced number of readings. The trade-off for the increased precision in the PSP design is the cost of collecting a larger number of truth-verified patient cases than the FC design. This means that one can trade-off between different sources of cost and choose a least burdensome design. We provide a validation study to show the iMRMC software can be reliably used for analyzing data from both FC and PSP designs. Finally, we demonstrate the advantages of the PSP design with a reader study comparing full-field digital mammography with screen-film mammography.

  18. Assessment as a Barrier in Developing Design Expertise: Interior Design Student Perceptions of Meanings and Sources of Grades

    Science.gov (United States)

    Smith, Kennon M.

    2013-01-01

    This article reports on a portion of a larger qualitative study focused on a group of interior design students' perceptions of their educational experiences. Twelve interior design students enrolled in their final studio course participated in interviews intended to elicit their perceptions of key barriers encountered during their undergraduate…

  19. Comparative Analysis Study of Open Source GIS in Malaysia

    International Nuclear Information System (INIS)

    Rasid, Muhammad Zamir Abdul; Kamis, Naddia; Halim, Mohd Khuizham Abd

    2014-01-01

    Open source origin might appear like a major prospective change which is qualified to deliver in various industries and also competing means in developing countries. The leading purpose of this research study is to basically discover the degree of adopting Open Source Software (OSS) that is connected with Geographic Information System (GIS) application within Malaysia. It was derived based on inadequate awareness with regards to the origin ideas or even on account of techie deficiencies in the open origin instruments. This particular research has been carried out based on two significant stages; the first stage involved a survey questionnaire: to evaluate the awareness and acceptance level based on the comparison feedback regarding OSS and commercial GIS. This particular survey was conducted among three groups of candidates: government servant, university students and lecturers, as well as individual. The approaches of measuring awareness in this research were based on a comprehending signal plus a notion signal for each survey questions. These kinds of signs had been designed throughout the analysis in order to supply a measurable and also a descriptive signal to produce the final result. The second stage involved an interview session with a major organization that carries out available origin internet GIS; the Federal Department of Town and Country Planning Peninsular Malaysia (JPBD). The impact of this preliminary study was to understand the particular viewpoint of different groups of people on the available origin, and also their insufficient awareness with regards to origin ideas as well as likelihood may be significant root of adopting level connected with available origin options

  20. Design and fabrication of a large rectangular magnetic cusp plasma source for high intensity neutral beam injectors

    International Nuclear Information System (INIS)

    Biagi, L.A.; Berkner, K.H.; Ehlers, K.W.; Paterson, J.A.; Porter, J.R.

    1979-11-01

    The design and fabrication techniques for a large, rectangular magnetic bucket plasma source are described. This source is compatible with the accelerator structures for the TFTR and DIII neutral-beam systems

  1. Some design aspects of transuranic field studies

    International Nuclear Information System (INIS)

    Gilbert, R.O.; Eberhardt, L.L.

    1977-01-01

    In this paper, we discuss some design aspects of transuranic field studies. Some of the principal steps in the design of such studies are given and illustrated using examples. This is followed by a review of sampling designs that have been used at nuclear detonation and safety-shot sites on the Nevada Test Site and elsewhere for estimating spatial pattern and total amounts in soil. Some design aspects of ecosystem-type transuranic studies for estimating total amounts as well as movement of transuranics between ecosystem components are also discussed. Acceptance sampling using either attributes or measurements is considered as a possible approach for deciding whether to clean up a contaminated site. Three general guidelines for the design of efficient transuranic studies are presented

  2. ACSYNT inner loop flight control design study

    Science.gov (United States)

    Bortins, Richard; Sorensen, John A.

    1993-01-01

    The NASA Ames Research Center developed the Aircraft Synthesis (ACSYNT) computer program to synthesize conceptual future aircraft designs and to evaluate critical performance metrics early in the design process before significant resources are committed and cost decisions made. ACSYNT uses steady-state performance metrics, such as aircraft range, payload, and fuel consumption, and static performance metrics, such as the control authority required for the takeoff rotation and for landing with an engine out, to evaluate conceptual aircraft designs. It can also optimize designs with respect to selected criteria and constraints. Many modern aircraft have stability provided by the flight control system rather than by the airframe. This may allow the aircraft designer to increase combat agility, or decrease trim drag, for increased range and payload. This strategy requires concurrent design of the airframe and the flight control system, making trade-offs of performance and dynamics during the earliest stages of design. ACSYNT presently lacks means to implement flight control system designs but research is being done to add methods for predicting rotational degrees of freedom and control effector performance. A software module to compute and analyze the dynamics of the aircraft and to compute feedback gains and analyze closed loop dynamics is required. The data gained from these analyses can then be fed back to the aircraft design process so that the effects of the flight control system and the airframe on aircraft performance can be included as design metrics. This report presents results of a feasibility study and the initial design work to add an inner loop flight control system (ILFCS) design capability to the stability and control module in ACSYNT. The overall objective is to provide a capability for concurrent design of the aircraft and its flight control system, and enable concept designers to improve performance by exploiting the interrelationships between

  3. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    International Nuclear Information System (INIS)

    Chen, Z.; Gautier, C.; Hemez, F.; Bultman, N.K.

    2000-01-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  4. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Z. Chen; C. Gautier; F. Hemez; N. K. Bultman

    2000-02-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  5. Thermal-hydraulic criteria for the APT tungsten neutron source design

    International Nuclear Information System (INIS)

    Pasamehmetoglu, K.

    1998-03-01

    This report presents the thermal-hydraulic design criteria (THDC) developed for the tungsten neutron source (TNS). The THDC are developed for the normal operations, operational transients, and design-basis accidents. The requirements of the safety analyses are incorporated into the design criteria, consistent with the integrated safety management and the safety-by-design philosophy implemented throughout the APT design process. The phenomenology limiting the thermal-hydraulic design and the confidence level requirements for each limit are discussed. The overall philosophy of the uncertainty analyses and the confidence level requirements also are presented. Different sets of criteria are developed for normal operations, operational transients, anticipated accidents, unlikely accidents, extremely unlikely accidents, and accidents during TNS replacement. In general, the philosophy is to use the strictest criteria for the high-frequency events. The criteria is relaxed as the event frequencies become smaller. The THDC must be considered as a guide for the design philosophy and not as a hard limit. When achievable, design margins greater than those required by the THDC must be used. However, if a specific event sequence cannot meet the THDC, expensive design changes are not necessary if the single event sequence results in sufficient margin to safety criteria and does not challenge the plant availability or investment protection considerations

  6. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I

    2006-01-15

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year.

  7. The linear lattice design of an advanced VUV/SXR photon source for Daresbury

    International Nuclear Information System (INIS)

    Clarke, J.A.; Corlett, J.N.; Poole, M.W.; Smith, S.L.; Suller, V.P.; Welbourne, L.A.

    1992-01-01

    The linear lattice design of an advanced synchrotron radiation source in the VUV/SXR region, optimised to produce undulator radiation with high brilliance over the range 5-1000 eV, is discussed. The photon source is based on a 10 cell double bend achromat which will operate over the range 0.5-1.2 GeV. The linear lattice properties over the total available working region are presented for this structure. It is demonstrated that the circular lattice can be extended to a racetrack configuration by the inclusion of two long matched straights with free lengths of over 15 m each. (author) 8 refs.; 5 figs.; 1 tab

  8. An Open Source Rapid Computer Aided Control System Design Toolchain Using Scilab, Scicos and RTAI Linux

    Science.gov (United States)

    Bouchpan-Lerust-Juéry, L.

    2007-08-01

    Current and next generation on-board computer systems tend to implement real-time embedded control applications (e.g. Attitude and Orbit Control Subsystem (AOCS), Packet Utililization Standard (PUS), spacecraft autonomy . . . ) which must meet high standards of Reliability and Predictability as well as Safety. All these requirements require a considerable amount of effort and cost for Space Sofware Industry. This paper, in a first part, presents a free Open Source integrated solution to develop RTAI applications from analysis, design, simulation and direct implementation using code generation based on Open Source and in its second part summarises this suggested approach, its results and the conclusion for further work.

  9. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I.

    2006-01-01

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year

  10. Design of a setup for {sup 252}Cf neutron source for storage and analysis purpose

    Energy Technology Data Exchange (ETDEWEB)

    Hei, Daqian [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Zhuang, Haocheng [Xi’an Middle School of Shanxi Province, Xi’an 710000 (China); Jia, Wenbao, E-mail: jiawenbao@163.com [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China); Cheng, Can; Jiang, Zhou; Wang, Hongtao [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Chen, Da [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China)

    2016-11-01

    {sup 252}Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg {sup 252}Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  11. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    International Nuclear Information System (INIS)

    Stohr, J.

    2011-01-01

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only

  12. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Stohr, J

    2011-11-16

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that

  13. Design evolution and verification of the general-purpose heat source

    International Nuclear Information System (INIS)

    Schock, A.

    The General-Purpose Heat Source (GPHS) is a radioisotope heat source for use in space power systems. It employs a modular design, to make it adaptable to a wide range of energy conversion systems and power levels. Each 250 W module is completely autonomous, with its own passive safety provisions to prevent fuel release under all abort modes, including atmospheric reentry and earth impact. Prior development tests had demonstrated good impact survival as long as the iridium fuel capsules retained their ductility. This requires high impact temperatures, typically above 900 0 C and reasonably fine grain size, which in turn requires avoidance of excessive operating temperatures and reentry temperatures. These three requirements - on operating, reentry, and impact temperatures - are in mutual conflict, since thermal design changes to improve any one of these temperatures tend to worsen one or both of the others. This conflict creates a difficult design problem, which for a time threatened the success of the program. The present paper describes how this problem was overcome by successive design revisions, supplemented by thermal analyses and confirmatory vibration and impact tests; and how this may be achieved while raising the specific power of the GPHS to 83 W/lb, a 50% improvement over previously flown radioisotope heat sources

  14. Emotion impairs extrinsic source memory--An ERP study.

    Science.gov (United States)

    Mao, Xinrui; You, Yuqi; Li, Wen; Guo, Chunyan

    2015-09-01

    Substantial advancements in understanding emotional modulation of item memory notwithstanding, controversies remain as to how emotion influences source memory. Using an emotional extrinsic source memory paradigm combined with remember/know judgments and two key event-related potentials (ERPs)-the FN400 (a frontal potential at 300-500 ms related to familiarity) and the LPC (a later parietal potential at 500-700 ms related to recollection), our research investigated the impact of emotion on extrinsic source memory and the underlying processes. We varied a semantic prompt (either "people" or "scene") preceding a study item to manipulate the extrinsic source. Behavioral data indicated a significant effect of emotion on "remember" responses to extrinsic source details, suggesting impaired recollection-based source memory in emotional (both positive and negative) relative to neutral conditions. In parallel, differential FN400 and LPC amplitudes (correctly remembered - incorrectly remembered sources) revealed emotion-related interference, suggesting impaired familiarity and recollection memory of extrinsic sources associated with positive or negative items. These findings thus lend support to the notion of emotion-induced memory trade off: while enhancing memory of central items and intrinsic/integral source details, emotion nevertheless disrupts memory of peripheral contextual details, potentially impairing both familiarity and recollection. Importantly, that positive and negative items result in comparable memory impairment suggests that arousal (vs. affective valence) plays a critical role in modulating dynamic interactions among automatic and elaborate processes involved in memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Analysis, Design and Implementation of an Embedded Realtime Sound Source Localization System Based on Beamforming Theory

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2009-12-01

    Full Text Available This project is intended to analyze, design and implement a realtime sound source localization system by using a mobile robot as the media. The implementated system uses 2 microphones as the sensors, Arduino Duemilanove microcontroller system with ATMega328p as the microprocessor, two permanent magnet DC motors as the actuators for the mobile robot and a servo motor as the actuator to rotate the webcam directing to the location of the sound source, and a laptop/PC as the simulation and display media. In order to achieve the objective of finding the position of a specific sound source, beamforming theory is applied to the system. Once the location of the sound source is detected and determined, the choice is either the mobile robot will adjust its position according to the direction of the sound source or only webcam will rotate in the direction of the incoming sound simulating the use of this system in a video conference. The integrated system has been tested and the results show the system could localize in realtime a sound source placed randomly on a half circle area (0 - 1800 with a radius of 0.3m - 3m, assuming the system is the center point of the circle. Due to low ADC and processor speed, achievable best angular resolution is still limited to 25o.

  16. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  17. Cryostat design case studies, principles and engineering

    CERN Document Server

    2016-01-01

    This book enables the reader to learn the fundamental and applied aspects of practical cryostat design by examining previous design choices and resulting cryostat performance. Through a series of extended case studies the book presents an overview of existing cryostat design covering a wide range of cryostat types and applications, including the magnet cryostats that comprise the majority of the Large Hadron Collider at CERN, space-borne cryostats containing sensors operating below 1 K, and large cryogenic liquid storage vessels. It starts with an introductory section on the principles of cryostat design including practical data and equations. This section is followed by a series of case studies on existing cryostats, describing the specific requirements of the cryostat, the challenges involved and the design choices made along with the resulting performance of the cryostat. The cryostat examples used in the studies are chosen to cover a broad range of cryostat applications and the authors of each case are ...

  18. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  19. Feasibility study of broadband efficient ''water window'' source

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang Weihua; Endo, Akira; Li Bowen; Dunne, Padraig; O'Sullivan, Gerry

    2012-01-01

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  20. Preliminary 2D design study for A ampersand PCT

    International Nuclear Information System (INIS)

    Keto, E.; Azevedo, S.; Roberson, P.

    1995-03-01

    Lawrence Livermore National Laboratory is currently designing and constructing a tomographic scanner to obtain the most accurate possible assays of radioactivity in barrels of nuclear waste in a limited amount of time. This study demonstrates a method to explore different designs using laboratory experiments and numerical simulations. In particular, we examine the trade-off between spatial resolution and signal-to-noise. The simulations are conducted in two dimensions as a preliminary study for three dimensional imaging. We find that the optimal design is entirely dependent on the expected source sizes and activities. For nuclear waste barrels, preliminary results indicate that collimators with widths of 1 to 3 inch and aspect ratios of 5:1 to 10:1 should perform well. This type of study will be repeated in 3D in more detail to optimize the final design

  1. Radiotracer and Sealed Source Applications in Sediment Transport Studies

    International Nuclear Information System (INIS)

    2014-01-01

    The investigation of sediment transport in seas and rivers is crucial for civil engineering and littoral protection and management. Coastlines and seabeds are dynamic regions, with sediments undergoing periods of erosion, transport, sedimentation and consolidation. The main causes for erosion in beaches include storms and human actions such as the construction of seawalls, jetties and the dredging of stream mouths. Each of these human actions disrupts the natural flow of sand. Current policies and practices are accelerating the beach erosion process. However, there are viable options available to mitigate this damage and to provide for sustainable coastlines. Radioactive methods can help in investigating sediment dynamics, providing important parameters for better designing, maintaining and optimizing civil engineering structures. Radioisotopes as tracers and sealed sources have been useful and often irreplaceable tools for sediment transport studies. The training course material is based on lecture notes and practical works delivered by many experts in IAEA supported activities. Lectures and case studies were reviewed by a number of specialists in this field

  2. Sources of International Courts' Legitimacy: A comparative study

    DEFF Research Database (Denmark)

    Godzimirska, Zuzanna; Creamer, Cosette

    Despite ample scholarship on the legitimacy of international legal institutions, existing studies on international courts (ICs) tend to adopt normative or deductive approaches to specify their legitimacy and assess its effects. Very few adopt empirical or inductive approaches and examine the reas......Despite ample scholarship on the legitimacy of international legal institutions, existing studies on international courts (ICs) tend to adopt normative or deductive approaches to specify their legitimacy and assess its effects. Very few adopt empirical or inductive approaches and examine...... of supply-side factors— the features, roles and practices of a court—in assessing its legitimacy, we argue that demand-side factors—namely the characteristics of the evaluating state—also largely determine the sources of an IC’s legitimacy. To support and illustrate this argument, we examine statements...... of members on the operation of three ICs with different institutional designs and roles: the International Court of Justice, the International Criminal Court, and the Appellate Body of the World Trade Organization. We employ supervised learning methods of text classification to identify statements...

  3. FED/INTOR reactor design studies

    International Nuclear Information System (INIS)

    Brown, T.G.; Cramer, B.A.; Davisson, J.P.; Kunselman, M.H.; Reiersen, W.T.; Sager, P.H.; Strickler, D.J.

    1982-03-01

    Upon completing the design studies identified in this report, an overall assessment of the design options is made that will form the bases to define the configuration of the next major Tokamak device. The TF coil size will be defined, along with the vacuum boundary, the PF coil arrangement, and the torus configuration. After the configuration is established, an overall performance and cost re-assessment should be made to finally trade off device performance with machine capital and operating costs to establish a reactor design point for a given set of design requirements

  4. Nuclear-Powered GPS Spacecraft Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Bernard

    1977-05-01

    This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude version is also considered.

  5. Flight Path Recovery System (FPRS) design study

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented.

  6. Flight Path Recovery System (FPRS) design study

    International Nuclear Information System (INIS)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented

  7. Light ion source studies with a magnetically insulated extraction diode

    International Nuclear Information System (INIS)

    Struckman, C.K.

    1992-01-01

    Light ion sources are currently being studied to assess their ability to drive an inertial confinement fusion reactor. The author has produced a high purity, 1MV, 300A/cm 2 lithium beam using a 200cm 2 extraction geometry, magnetically insulated ion diode. The lithium source was an AC glow discharge cleaned, LiF/Al film active anode. The active anode plasma was formed after 50KA of current was shunted through the anode film for 20ns. The stoichiometry of the resulting ion beam was 65% Li + , 20% Al +2 , and 15% H + . Without the glow discharge cleaning, the ion beam was over 55% hydrogen and only 20% Li + . At the time of the diode's design, extraction diodes were producing poor ion beams: their current efficiency was only 60-70%, and their extracted ion current was radially nonuniform. This diode was the first high efficiency extraction diode, and produced over 200KA of ions with 80-90% ion current efficiency. In addition, by varying the tilt of the applied magnetic field, it was possible to show that the ion current density could be made independent of radius. Since the author was unable to make a Li + beam with a passive anode, he installed an active anode that used an external current to vaporize a thin metal film on the anode surface. Poor beam purity was the most serious problem with active anodes. In order to remove impurities, especially the hydrogen contamination, the author cleaned the anodes with a glow discharge. Al film anodes were cleaned with a 110mA, 33W DC glow discharge, and the LiF/Al film anodes were cleaned with an equivalent AC discharge. The results obtained and a model for the mechanism behind the cleaning process are throughly discussed

  8. Design of a quasi-isochronous storage ring for THz light source

    International Nuclear Information System (INIS)

    Zhu Jiapeng; Xu Hongliang; Feng Guangyao; Lan Jieqin

    2012-01-01

    A quasi-isochronous storage ring is designed by manipulating lattice parameters to introduce a negative dispersion function to the dispersion section. This quasi-isochronous storage ring is designed for a THz synchrotron radiation source. The simulation of the optics function and beam emittance shows its feasibility, and the tracing result of particles indicates that the designed ring has a good particle dynamic aperture. In addition, a three-dimensional model of the vacuum chamber used for photon radiation in the quasi-isochronous mode is also designed. The eigenmodes of the chamber are simulated, and characteristic parameters such as quality factor, power loss and characteristic impedance are also calculated. The result shows that the vacuum chamber has little effect on the circulating beam. (authors)

  9. Mirror mounts designed for the Advanced Photon Source SRI-CAT

    International Nuclear Information System (INIS)

    Shu, D.; Benson, C.; Chang, J.; Barraza, J.; Kuzay, T.M.; Alp, E.E.; Sturhahn, W.; Lai, B.; McNulty, I.; Randall, K.; Srajer, G.; Xu, Z.; Yun, W.

    1997-01-01

    Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National Laboratory, has many advantages. [Yun et al., Rev. Sci. Instrum. 67(9)(1996)CD-ROM] A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows us to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper. copyright 1997 American Institute of Physics

  10. Mirror mounts designed for the Advanced Photon Source SRI-CAT

    International Nuclear Information System (INIS)

    Shu, D.; Benson, C.; Chang, J.; Barraza, J.; Kuzay, T. M.; Alp, E. E.; Sturhahn, W.; Lai, B.; McNulty, I.; Randall, K.; Srajer, G.; Xu, Z.; Yun, W.

    1997-01-01

    Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National Laboratory, has many advantages. [Yun et al., Rev. Sci. Instrum. 67(9)(1996)CD-ROM] A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows us to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper

  11. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs

  12. Design specific joint optimization of masks and sources on a very large scale

    Science.gov (United States)

    Lai, K.; Gabrani, M.; Demaris, D.; Casati, N.; Torres, A.; Sarkar, S.; Strenski, P.; Bagheri, S.; Scarpazza, D.; Rosenbluth, A. E.; Melville, D. O.; Wächter, A.; Lee, J.; Austel, V.; Szeto-Millstone, M.; Tian, K.; Barahona, F.; Inoue, T.; Sakamoto, M.

    2011-04-01

    Joint optimization (JO) of source and mask together is known to produce better SMO solutions than sequential optimization of the source and the mask. However, large scale JO problems are very difficult to solve because the global impact of the source variables causes an enormous number of mask variables to be coupled together. This work presents innovation that minimize this runtime bottleneck. The proposed SMO parallelization algorithm allows separate mask regions to be processed efficiently across multiple CPUs in a high performance computing (HPC) environment, despite the fact that a truly joint optimization is being carried out with source variables that interact across the entire mask. Building on this engine a progressive deletion (PD) method was developed that can directly compute "binding constructs" for the optimization, i.e. our method can essentially determine the particular feature content which limits the process window attainable by the optimum source. This method allows us to minimize the uncertainty inherent to different clustering/ranking methods in seeking an overall optimum source that results from the use of heuristic metrics. An objective benchmarking of the effectiveness of different pattern sampling methods was performed during postoptimization analysis. The PD serves as a golden standard for us to develop optimum pattern clustering/ranking algorithms. With this work, it is shown that it is not necessary to exhaustively optimize the entire mask together with the source in order to identify these binding clips. If the number of clips to be optimized exceeds the practical limit of the parallel SMO engine one can starts with a pattern selection step to achieve high clip count compression before SMO. With this LSSO capability one can address the challenging problem of layout-specific design, or improve the technology source as cell layouts and sample layouts replace lithography test structures in the development cycle.

  13. Performance of a 250 kW Organic Rankine Cycle System for Off-Design Heat Source Conditions

    Directory of Open Access Journals (Sweden)

    Ben-Ran Fu

    2014-06-01

    Full Text Available An organic Rankine cycle system comprised of a preheater, evaporator, condenser, turbine, generator, and pump was used to study its off-design performance and the operational control strategy. R245fa was used as the working fluid. Under the design conditions, the net power output is 243 kW and the system thermal efficiency is 9.5%. For an off-design heat source flow rate (mW, the operating pressure was controlled to meet the condition that the R245fa reached the liquid and vapor saturation states at the outlet of the preheater and the evaporator, respectively. The analytical results demonstrated that the operating pressure increased with increasing mW; a higher mW yielded better heat transfer performance of the preheater and required a smaller evaporator heat capacity, and the net power output and system thermal efficiency increased with increasing mW. For the range of mW studied here, the net power output increased by 64.0% while the total heat transfer rate increased by only 9.2%. In summary, off-design operation of the system was examined for a heat source flow rate which varied by –39.0% to +78.0% from the designed rate, resulting in –29.2% to +16.0% and –25.3% to +12.6% variations in the net power output and system thermal efficiency, respectively.

  14. Engagement as a source of positive consumer behaviour: a study ...

    African Journals Online (AJOL)

    Engagement as a source of positive consumer behaviour: a study amongst South African football fans. ... Remember me ... Further, the potential of fan engagement as a predictor of positive consumer behaviours (match attendance and ...

  15. Design and study of the performance of a Raman lidar model, combining a pulsed laser source and a holographic grating double monochromator; Realisation et etudes des performances d'une maquette de lidar Raman combinant une source laser impulsionnelle et un double monochromateur a reseaux holographiques

    Energy Technology Data Exchange (ETDEWEB)

    Nacass, Philippe

    1976-03-16

    The various techniques for the analysis of air constituents are studied briefly to help design an apparatus for detecting, localizing, identifying and measuring atmospheric pollution. The optical methods known under the name of Lidar (Light direction and ranging) appear to give good qualitative and quantitative results since they do not involve any sampling of the observed medium. Amongst these methods, the Raman laser back-scattering in which the characteristic frequency of a molecule can be isolated from those of the other constituents of air is studied in more details. The design and realization, based on the conclusions of this study, and the measurements of the performance of a Raman Lidar preliminary model are then described. Its originality lies in the use of holographic grating monochromators and the overall simplicity of operation of the system. Using this system, it was possible to make in-situ Raman back-scattering measurements on N{sub 2}, O{sub 2}, H{sub 2}O in the atmosphere and on large concentrations of CO{sub 2} at distances between 30 and 40 m, which give a reasonable estimate of the sensitivity and of the range of a full scale, more performing final design. (author) [French] En vue de la realisation d'un dispositif permettant la detection, la localisation, l'identification et le dosage a distance de la pollution atmospherique, les differentes techniques d'analyse des constituants de l'air sont etudiees rapidement. Les methodes optiques appelees Lidar (Light Detection And Ranging) paraissent les plus adaptees pour des mesures qualitatives et quantitatives, car elles ne necessitent pas de prelevement du milieu observe. Parmi ces methodes, la retrodiffusion Raman Laser, qui permet d'isoler la frequence propre caracteristique d'une molecule sans interference avec les autres constituants de l'air est etudiee plus en details. La realisation, basee sur les conclusions de cette etude, puis la mesure des performances d'une maquette preliminaire de Lidar

  16. Cross-Layer Design of Source Rate Control and Congestion Control for Wireless Video Streaming

    Directory of Open Access Journals (Sweden)

    Peng Zhu

    2007-01-01

    Full Text Available Cross-layer design has been used in streaming video over the wireless channels to optimize the overall system performance. In this paper, we extend our previous work on joint design of source rate control and congestion control for video streaming over the wired channel, and propose a cross-layer design approach for wireless video streaming. First, we extend the QoS-aware congestion control mechanism (TFRCC proposed in our previous work to the wireless scenario, and provide a detailed discussion about how to enhance the overall performance in terms of rate smoothness and responsiveness of the transport protocol. Then, we extend our previous joint design work to the wireless scenario, and a thorough performance evaluation is conducted to investigate its performance. Simulation results show that by cross-layer design of source rate control at application layer and congestion control at transport layer, and by taking advantage of the MAC layer information, our approach can avoid the throughput degradation caused by wireless link error, and better support the QoS requirements of the application. Thus, the playback quality is significantly improved, while good performance of the transport protocol is still preserved.

  17. Synchrotron radiation shielding design for the Brockhouse sector at the Canadian light source

    International Nuclear Information System (INIS)

    Bassey, Bassey; Moreno, Beatriz; Gomez, Ariel; Ahmed, Asm Sabbir; Ullrich, Doug; Chapman, Dean

    2014-01-01

    At the Canadian Light Source (CLS), the plans for the construction of three beamlines under the Brockhouse Project are underway. The beamlines, to be classified under the CLS Phase III beamlines, will comprise of a wiggler and an undulator, and will be dedicated to x-ray diffraction and scattering experiments. The energy range of these beamlines will be 7–22 keV (low energy wiggler beamline), 20–94 keV (high energy wiggler beamline), and 5–21 keV (undulator beamline). The beamlines will have a total of five hutches. Presented is the shielding design against target scattered white and monochromatic synchrotron radiations for these beamlines. The shielding design is based on: scatter target material-water, dose object-anthropomorphic phantom of the adult human (anteroposterior-AP geometry), and shielding thicknesses of steel and lead that will drop the radiation leakage from the hutches to below 0.5 μSv/h. - Highlights: • The Brockhouse project will add 3 new beamlines at the Canadian Light Source (CLS). • The shielding design against synchrotron radiation was required for these beamlines. • We have completed the required shielding design. • Our design will reduce radiation leakage to <0.5 μSv/h; CLS requires 1.0 μSv/h

  18. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  19. Two new planar coil designs for a high pressure radio frequency plasma source

    Science.gov (United States)

    Munsat, T.; Hooke, W. M.; Bozeman, S. P.; Washburn, S.

    1995-04-01

    Two planar coil designs for a high pressure rf plasma source are investigated using spectroscopic techniques and circuit analysis. In an Ar plasma a truncated version of the commonly used ``spiral'' coil is found to produce improvements in peak electron density of 20% over the full version. A coil with figure-8 geometry is found to move plasma inhomogeneities off of center and produce electron densities comparable to the spiral coils. Both of these characteristics are advantageous in industrial applications. Coil design characteristics for favorable power coupling are also determined, including the necessity of closed hydrodynamic plasma loops and the drawback of closely situated antiparallel coil currents.

  20. Single Phase Current-Source Active Rectifier for Traction: Control System Design and Practical Problems

    Directory of Open Access Journals (Sweden)

    Jan Michalik

    2006-01-01

    Full Text Available This research has been motivated by industrial demand for single phase current-source active rectifier dedicated for reconstruction of older types of dc machine locomotives. This paper presents converters control structure design and simulations. The proposed converter control is based on the mathematical model and due to possible interaction with railway signaling and required low switching frequency employs synchronous PWM. The simulation results are verified by experimental tests performed on designed laboratory prototype of power of 7kVA

  1. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S

    2007-04-15

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method.

  2. Detailed Design of Cooling Water System for Cold Neutron Source in HANARO

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Choi, Jung Woon; Kim, Y. K.; Wu, S. I.; Lee, Y. S.

    2007-04-01

    To make cold neutron, a cryogenic refrigerator is necessary to transform moderator into cryogenic state so, thermal neutron is changed into cold neutron through heat transfer with moderator. A cryogenic refrigerator mainly consists of two apparatus, a helium compressor and a cold box which needs supply of cooling water. Therefore, cooling water system is essential to operate of cryogenic refrigerator normally. This report is mainly focused on the detailed design of the cooling water system for the HANARO cold neutron source, and describes design requirement, calculation, specification of equipment and water treatment method

  3. A double-multilayer monochromator using a modular design for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Yun, W.; Lai, B.; Barraza, J.; Kuzay, T.M.

    1994-01-01

    A novel double-multilayer monochromator has been designed for the Advanced Photon Source X-ray undulator beamline at Argonne National Laboratory. The monochromator consists of two ultra high-vacuum (UHV) compatible modular vessels, each with a sine-bar driving structure and a water-cooled multilayer holder. A high precision Y-Z stage is used to provide compensating motion for the second multilayer from outside the vacuum chamber so that the monochromator can fix the output monochromatic beam direction and angle during the energy scan in a narrow range. The design details for this monochromator are presented in this paper

  4. Design status of an intense 14 MeV neutron source for cancer therapy

    CERN Document Server

    Yao, Z E; Cheng, S W; Jia, W B

    2002-01-01

    Design and development of an intense 14 MeV neutron source for cancer therapy is in progress at the Institute of Nuclear Research of Lanzhou University. The neutrons from the T(d,n) sup 4 He reaction are produced by bombarding a rotating titanium tritide target with a 40 mA deuteron beam at 600 keV. The designed neutron yield is 8x10 sup 1 sup 2 n/s and the maximum dose rate at a 100 cm source-to-skin distance is 25 cGy/min. The HV terminal, accelerating column and HV power supply are enclosed inside a stainless steel pressure vessel containing 6 atm SF sub 6 gas to provide the electrical insulation.

  5. CHINA SPALLATION NEUTRON SOURCE PROJECT: DESIGN ITERATIONS AND R AND D STATUS

    International Nuclear Information System (INIS)

    WEI, J.

    2006-01-01

    The China Spallation Neutron Source (CSNS) is an accelerator based high power project currently under preparation in China. The accelerator complex is based on an H - linear accelerator and a rapid cycling proton synchrotron. During the past year, the design of most accelerator systems went through major iterations, and initial research and developments were started on the prototyping of several key components. This paper summarizes major activities of the past year

  6. Some novel design features of the LBL metal vapor vacuum arc ion sources

    International Nuclear Information System (INIS)

    MacGill, R.A.; Brown, I.G.; Galvin, J.E.

    1990-01-01

    The family of MEVVA (metal vapor vacuum arc) high current metal ion sources developed at LBL over the past several years has grown to include a number of different source versions with a wide range of some of the design and operational parameters. The MicroMEVVA source is a particularly compact version, about 2 cm diam and 10 cm long, while the MEVVA IV weighs some 30 kG. MEVVAs IV and V incorporate multiple cathode assemblies (16 and 18 separate cathodes, respectively), and the operating cathode can be switched rapidly and without downtime. The new MEVVA V embodiment is quite compact considering its broad beam (10 cm), high voltage (100 kV), and multiple cathode features. The large-area extractor grids used in MEVVA V were fabricated using a particularly simple technique, and they are clamped into position and can thus be changed simply and quickly. The electrical system used to drive the arc is particularly simple and incorporates several attractive features. In this article we review and describe a number of the mechanical and electrical design features that have been developed for these sources

  7. Studying Design Engineers Use Of Information Systems

    DEFF Research Database (Denmark)

    Restrepo-Giraldo, John Dairo

    2006-01-01

    Studying information usage by design engineers involves considering technical, social, cognitive and volitional factors. This makes it challenging, especially for researchers without a cognitive psychology background. This paper presents a summary of key findings in researching information use...

  8. Design, conception, and metrology of Extreme Ultraviolet multilayers mirrors resistant environments of space and EUV sources

    International Nuclear Information System (INIS)

    Hecquet, Ch.

    2009-03-01

    The Extreme Ultraviolet Spectrum (EUV) wavelengths, which range between 13 nm and 40 nm, have many applications in science and technology. These have been developed for example in plasma physics (high order harmonics sources, X ray lasers). The work presented is about the design, the fabrication and the metrology of periodic multilayer mirrors. The main motivation of this study is to establish a cycle of development taking into account both the optical properties of reflective coatings (reflectivity, spectral selectivity, attenuation) and their behaviour under various environments. To improve the spectral selectivity, new multilayer periodic structures have been developed. They are characterized by a bimodal reflectance profile with adjustable attenuation. The effect of environment on the stability of performance is especially critical for the optical collection. The addition of material barriers has stabilized the performance of the peak reflectivity for over 200 h at 400 C deg. and it reduces the influence of other factors of instability on the reflectance. In addition, all structures have been fabricated successfully and evaluated in severe environments. (author)

  9. Absolute measurement of LDR brachytherapy source emitted power: Instrument design and initial measurements.

    Science.gov (United States)

    Malin, Martha J; Palmer, Benjamin R; DeWerd, Larry A

    2016-02-01

    Energy-based source strength metrics may find use with model-based dose calculation algorithms, but no instruments exist that can measure the energy emitted from low-dose rate (LDR) sources. This work developed a calorimetric technique for measuring the power emitted from encapsulated low-dose rate, photon-emitting brachytherapy sources. This quantity is called emitted power (EP). The measurement methodology, instrument design and performance, and EP measurements made with the calorimeter are presented in this work. A calorimeter operating with a liquid helium thermal sink was developed to measure EP from LDR brachytherapy sources. The calorimeter employed an electrical substitution technique to determine the power emitted from the source. The calorimeter's performance and thermal system were characterized. EP measurements were made using four (125)I sources with air-kerma strengths ranging from 2.3 to 5.6 U and corresponding EPs of 0.39-0.79 μW, respectively. Three Best Medical 2301 sources and one Oncura 6711 source were measured. EP was also computed by converting measured air-kerma strengths to EPs through Monte Carlo-derived conversion factors. The measured EP and derived EPs were compared to determine the accuracy of the calorimeter measurement technique. The calorimeter had a noise floor of 1-3 nW and a repeatability of 30-60 nW. The calorimeter was stable to within 5 nW over a 12 h measurement window. All measured values agreed with derived EPs to within 10%, with three of the four sources agreeing to within 4%. Calorimeter measurements had uncertainties ranging from 2.6% to 4.5% at the k = 1 level. The values of the derived EPs had uncertainties ranging from 2.9% to 3.6% at the k = 1 level. A calorimeter capable of measuring the EP from LDR sources has been developed and validated for (125)I sources with EPs between 0.43 and 0.79 μW.

  10. Application of source biasing technique for energy efficient DECODER circuit design: memory array application

    Science.gov (United States)

    Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav

    2018-04-01

    Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.

  11. Conceptual Design of a 14-MeV D-T Neutron Source for Material Inspection

    International Nuclear Information System (INIS)

    Kim, Jin-Choon; Oh, Byung-Hoon

    2007-01-01

    There is a worldwide need for the efficient inspection of cargo containers at airports, seaports and border crossings. And there is also a growing need for nondestructive inspection of metal objects such as airplane parts. The limitations of X-ray systems for the detection of explosives, drugs, and thick metal structures have stimulated interest in neutron radiograph or tomography. The weak link in such applications is the neutron source. The ideal neutron source should provide a high intensity, high-energy for sufficient penetration and activation, a reliable long-term operation, and a monoenergetic neutron beam. In this paper, we describe a conceptual design of a DT fusion neutron source (monoenergetic 14 MeV neutron generator) which satisfies the fore-mentioned requirements. The current design is based upon the actually proven system using the drive-in target principle. The design is versatile enough to accommodate various applications, ranging from material inspection and explosive interrogation to medical probing and cancer treatment

  12. Feasibility study on X-ray source with pinhole imaging method

    International Nuclear Information System (INIS)

    Qiu Rui; Li Junli

    2007-01-01

    In order to verify the feasibility of study on X-ray source with pinhole imaging method, and optimize the design of X-ray pinhole imaging system, an X-ray pinhole imaging equipment was set up. The change of image due to the change of the position and intensity of X-ray source was estimated with mathematical method and validated with experiment. The results show that the change of the spot position and gray of the spot is linearly related with the change of the position and intensity of X-ray source, so it is feasible to study X-ray source with pinhole imaging method in this application. The results provide some references for the design of X-ray pinhole imaging system. (authors)

  13. Experimental study of adsorption chiller driven by variable heat source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China); Wu, J.Y. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-05-15

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed. (author)

  14. Experimental study of adsorption chiller driven by variable heat source

    International Nuclear Information System (INIS)

    Wang, D.C.; Wang, Y.J.; Zhang, J.P.; Tian, X.L.; Wu, J.Y.

    2008-01-01

    A silica gel-water adsorption chiller has been developed in recent years and has been applied in an air conditioning system driven by solar energy. The heat source used to drive the adsorption chiller is variable at any moment because the solar radiation intensity or the waste heat from engines varies frequently. An adsorption cooling system may be badly impacted by a variable heat source with temperature variations in a large range. In this work, a silica gel-water adsorption chiller driven by a variable heat source is experimentally studied. The influences of the variable heat source on the performance of the chiller are analyzed, especially for a continuous temperature increase process and a continuous temperature decrease process of the heat source. As an example, the dynamic characteristics of the heat source are also analyzed when solar energy is taken as the heat source of the adsorption chiller. According to the experimental results for the adsorption chiller and the characteristics of the heat source from solar energy, control strategies of the adsorption chiller driven by solar energy are proposed

  15. Design of power supply system for the prototype RF-driven negative ion source for neutral beam injection application

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Caichao; Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Wei, Jianglong, E-mail: jlwei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xie, Yahong; Xu, Yongjian; Liang, Lizhen; Chen, Shiyong; Liu, Sheng; Liu, Zhimin; Xie, Yuanlai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    Highlights: • A supporting power supply system was designed in details for a RF-driven prototype negative ion source at ASIPP. • The RF power supply for plasma generation adopts an all-solid-state power supply structure. • The extraction grid power supply adopts the pulse step modulator (PSM) technology. - Abstract: In order to study the generation and extraction of negative ions for neutral beam injection application, a prototype RF-driven negative ion source and the corresponding test bed are under construction at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The target of the negative ion source is extracting a negation ion beam of 350 A/m{sup 2} for 3600 s plasma duration and 100 s beam duration. According to the required parameters of test bed, the design of power supply system is put forward for earlier study. In this paper, the performance requirements and design schemes of RF power supply for plasma generation, impedance matching network, bias voltage power supply, and extraction voltage power supply for negative beam extraction are introduced in details. The schemes provide a reference for the construction of power supply system and lay a foundation for the next phase of experimental operation.

  16. Conceptual design of facilities and systems for cold neutron source in HANARO

    International Nuclear Information System (INIS)

    Kim, Y. K.; Jung, H. S.; Wu, S. I.; Ahn, S. H.; Park, Y. C.; Cho, Y. G.; Ryu, J. S.; Kim, Y. J.

    2004-05-01

    The systems and facilities for the HANARO cold neutron source consist of hydrogen handling system, vacuum system, gas blanket system, helium refrigeration system and electrical and instrumentation and control system. The overriding safety goal in the system design is to prevent the escape of hydrogen from the system boundary or the ingress of air into the hydrogen boundary. Of primary concern is the release of hydrogen (or intrusion of oxygen) into an area where any subsequent reaction could possibly result in damage to the reactor building or safety systems or components, as well as jeopardize personnel safety. It has been an general rule that all aspects of the system design were based on the demonstrated technology of long standing world-wide. In some cases, other options are also suggested for the flexibility of independent review process. This report hopefully serves as basis for the coming detail design and engineering. This report is mainly concentrated on the conceptual system design performed during the first project year. It includes the key safety design requirements in the beginning, followed by the description of the preliminary system design. At the rear part, building layout and equipment arrangement are briefly introduced for easy understanding of the whole pictures. The design status for the In-Pool Assembly including safety analysis and neutron guide and instruments will be discussed in another report

  17. Vibration considerations in the design of the Advanced Photon Source at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jendrzejczyk, J.A.; Wambsganss, M.W.

    1991-01-01

    The Advanced Photon Source (APS), a new synchrotron radiation facility being built at Argonne National Laboratory, will provide the world's most brilliant X-ray beams for research in a wide range of technical fields. Successful operation of the APS requires an extremely stable positron closed orbit. Vibration of the storage ring quadrupole magnets, even in the submicron range, can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth, which results in degraded performance. This paper presents an overview of the technical approach used to minimize vibration response, beginning at the conceptual stage, through design and construction, and on to successful operation. Acceptance criteria relating to maximum allowable quadrupole magnet vibration are discussed. Soil properties are used to determine resonant frequencies of foundations and to predict attenuation characteristics. Two sources are considered to have the potential to excite the foundation: far-field sources, which are produced external to the facility, and near-field sources, which are produced within the facility. Measurements of ambient ground motion, monitored to determine far- field excitation, are presented. Ambient vibration was measured at several operating facilities within Argonne to gain insight on typical near-field excitation sources. Discussion covers the dynamic response characteristics of a prototypic magnet support structure to various excitations, including ambient floor motion, coolant flow, and magnet power. 19 refs., 10 figs., 5 tabs.

  18. Vibration considerations in the design of the Advanced Photon Source at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.

    1991-01-01

    The Advanced Photon Source (APS), a new synchrotron radiation facility being built at Argonne National Laboratory, will provide the world's most brilliant X-ray beams for research in a wide range of technical fields. Successful operation of the APS requires an extremely stable positron closed orbit. Vibration of the storage ring quadrupole magnets, even in the submicron range, can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth, which results in degraded performance. This paper presents an overview of the technical approach used to minimize vibration response, beginning at the conceptual stage, through design and construction, and on to successful operation. Acceptance criteria relating to maximum allowable quadrupole magnet vibration are discussed. Soil properties are used to determine resonant frequencies of foundations and to predict attenuation characteristics. Two sources are considered to have the potential to excite the foundation: far-field sources, which are produced external to the facility, and near-field sources, which are produced within the facility. Measurements of ambient ground motion, monitored to determine far- field excitation, are presented. Ambient vibration was measured at several operating facilities within Argonne to gain insight on typical near-field excitation sources. Discussion covers the dynamic response characteristics of a prototypic magnet support structure to various excitations, including ambient floor motion, coolant flow, and magnet power. 19 refs., 10 figs., 5 tabs

  19. Interactive design computation : A case study on quantum design paradigm

    NARCIS (Netherlands)

    Feng, H.

    2013-01-01

    The ever-increasing complexity of design processes fosters novel design computation models to be employed in architectural research and design in order to facilitate accurate data processing and refined decision making. These computation models have enabled designers to work with complex geometry

  20. Rhetorical Design Studies: The Art of Making Design Choices Explicit

    DEFF Research Database (Denmark)

    Halstrøm, Per L.

    2017-01-01

    Design has the potential to affect the situations we are in, the choices we make and the beliefs we live by. Being such an affective field, one might expect that canonized design thinking models and methods would be much concerned with how designers can discover arguments for their design choices...

  1. 7-GeV advanced photon source beamline initiative: Conceptual design report

    International Nuclear Information System (INIS)

    1993-05-01

    The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R ampersand D plans for the Beamline Initiative activities and provides the cost estimates for the required R ampersand D

  2. Exploring an innovation project as source of change in organization design

    DEFF Research Database (Denmark)

    Brix, Jacob; Peters, Lois S.

    2015-01-01

    This study builds new empirically based theory on how the processing of an innovation project with a high degree of uncertainty induces change in key components in organization design. By using an embedded case study as our research strategy and organisation design theory as our analytical lens, we...

  3. Comparative studies of energy sources in gynecologic laparoscopy.

    Science.gov (United States)

    Law, Kenneth S K; Lyons, Stephen D

    2013-01-01

    Energy sources incorporating "vessel sealing" capabilities are being increasingly used in gynecologic laparoscopic surgery although conventional monopolar and bipolar electrosurgery remain popular. The preference for one device over another is based on a combination of factors, including the surgeon's subjective experience, availability, and cost. Although comparative clinical studies and meta-analyses of laparoscopic energy sources have reported small but statistically significant differences in volumes of blood loss, the clinical significance of such small volumes is questionable. The overall usefulness of the various energy sources available will depend on a number of factors including vessel burst pressure and seal time, lateral thermal spread, and smoke production. Animal studies and laboratory-based trials are useful in providing a controlled environment to investigate such parameters. At present, there is insufficient evidence to support the use of one energy source over another. Copyright © 2013 AAGL. All rights reserved.

  4. Earthquake Source Spectral Study beyond the Omega-Square Model

    Science.gov (United States)

    Uchide, T.; Imanishi, K.

    2017-12-01

    Earthquake source spectra have been used for characterizing earthquake source processes quantitatively and, at the same time, simply, so that we can analyze the source spectra for many earthquakes, especially for small earthquakes, at once and compare them each other. A standard model for the source spectra is the omega-square model, which has the flat spectrum and the falloff inversely proportional to the square of frequencies at low and high frequencies, respectively, which are bordered by a corner frequency. The corner frequency has often been converted to the stress drop under the assumption of circular crack models. However, recent studies claimed the existence of another corner frequency [Denolle and Shearer, 2016; Uchide and Imanishi, 2016] thanks to the recent development of seismic networks. We have found that many earthquakes in areas other than the area studied by Uchide and Imanishi [2016] also have source spectra deviating from the omega-square model. Another part of the earthquake spectra we now focus on is the falloff rate at high frequencies, which will affect the seismic energy estimation [e.g., Hirano and Yagi, 2017]. In June, 2016, we deployed seven velocity seismometers in the northern Ibaraki prefecture, where the shallow crustal seismicity mainly with normal-faulting events was activated by the 2011 Tohoku-oki earthquake. We have recorded seismograms at 1000 samples per second and at a short distance from the source, so that we can investigate the high-frequency components of the earthquake source spectra. Although we are still in the stage of discovery and confirmation of the deviation from the standard omega-square model, the update of the earthquake source spectrum model will help us systematically extract more information on the earthquake source process.

  5. An Open-Source Tool Set Enabling Analog-Digital-Software Co-Design

    Directory of Open Access Journals (Sweden)

    Michelle Collins

    2016-02-01

    Full Text Available This paper presents an analog-digital hardware-software co-design environment for simulating and programming reconfigurable systems. The tool simulates, designs, as well as enables experimental measurements after compiling to configurable systems in the same integrated design tool framework. High level software in Scilab/Xcos (open-source programs similar to MATLAB/Simulink that converts the high-level block description by the user to blif format (sci2blif, which acts as an input to the modified VPR tool, including the code v p r 2 s w c s , encoding the specific platform through specific architecture files, resulting in a targetable switch list on the resulting configurable analog–digital system. The resulting tool uses an analog and mixed-signal library of components, enabling users and future researchers access to the basic analog operations/computations that are possible.

  6. Design and Control of Parallel Three Phase Voltage Source Inverters in Low Voltage AC Microgrid

    Directory of Open Access Journals (Sweden)

    El Hassane Margoum

    2017-01-01

    Full Text Available Design and hierarchical control of three phase parallel Voltage Source Inverters are developed in this paper. The control scheme is based on synchronous reference frame and consists of primary and secondary control levels. The primary control consists of the droop control and the virtual output impedance loops. This control level is designed to share the active and reactive power correctly between the connected VSIs in order to avoid the undesired circulating current and overload of the connected VSIs. The secondary control is designed to clear the magnitude and the frequency deviations caused by the primary control. The control structure is validated through dynamics simulations.The obtained results demonstrate the effectiveness of the control structure.

  7. Mechanical design and development of a high power target system for the SLC Positron Source

    International Nuclear Information System (INIS)

    Reuter, E.; Mansour, D.; Porter, T.; Sax, W.; Szumillo, A.

    1991-12-01

    In order to bring the SLC Positron Source luminosity up to design specifications, the previous (stationary) positron target had to be replaced with a version which could reliably dissipate the higher power levels and cyclic pulsed thermal stresses of the high intensity 33GeV electron beam. In addition to this basic requirement, the new target system had to meet SLAC's specifications for Ultra High Vacuum, be remotely controllable, ''radiation hard,'' and designed in such a way that it could be removed and replaced quickly and easily with minimum personnel exposure to radiation. It was also desirable to integrate the target and collection components into a compact, easily manufacturable, and easily maintainable module. This paper briefly summarize the mechanical design and development of the new modular target system, its associated controls and software, alignment, and the quick removal system. Operational experience gained with the new system over the first running cycle is also summarized

  8. Design of integral shutters for the beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Chang, J.; Shu, D.; Nian, H.L.; Kuzay, T.M.; Job, P.K.

    1994-01-01

    An integral shutter is a device that integrates a white-beam stop, monochromatic-beam (mono-beam) shutters, a safety stop, and a collimator into one assembly to save space in the photon beamline. Various integral shutters have been developed as standard components for the beamlines at the Advanced Photon Source. The integral shutters are designed to be operated in white-beam mode or mono-beam mode. With regard to safety, each mode of operation is secured by locking certain devices in their up or down positions. Some of the components of the integral shutters share designs similar to the front-end shutters or fixed masks. Design details of the integral shutters are presented

  9. Improving the analysis of designed studies by combining statistical modelling with study design information

    NARCIS (Netherlands)

    Thissen, U.; Wopereis, S.; Berg, S.A.A. van den; Bobeldijk, I.; Kleemann, R.; Kooistra, T.; Dijk, K.W. van; Ommen, B. van; Smilde, A.K.

    2009-01-01

    Background: In the fields of life sciences, so-called designed studies are used for studying complex biological systems. The data derived from these studies comply with a study design aimed at generating relevant information while diminishing unwanted variation (noise). Knowledge about the study

  10. PM10 source apportionment study in Pleasant Valley, Nevada

    International Nuclear Information System (INIS)

    Egami, R.T.; Chow, J.C.; Watson, J.G.; DeLong, T.

    1990-01-01

    A source apportionment study was conducted between March 18 and April 4, 1988, at Pleasant Valley, Nevada, to evaluate air pollutant concentrations to which community residents were exposed and the source contributions to those pollutants. Daily PM 10 samples were taken for chemical speciation of 40 trace elements, ions, and organic and elemental carbon. This paper reports that the objectives of this case study are: to determine the emissions source composition of the potential upwind source, a geothermal plant; to measure the ambient particulate concentration and its chemical characteristics in Pleasant Valley; and to estimate the contributions of different emissions sources to PM 10 . The study found that: particulate emissions from the geothermal cooling-tower plume consisted primarily of sulfate, ammonia, chloride, and trace elements; no significant quantities of toxic inorganic species were found in the ambient air; ambient PM 10 concentrations in Pleasant Valley were within Federal standards; and source contribution to PM 10 were approximately 60% geological material; 20% motor vehicle exhaust; and 10% cooling-tower plume

  11. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  12. Engineering study for ISSTRS design concept

    Energy Technology Data Exchange (ETDEWEB)

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  13. Extrap conceptual fusion reactor design study

    International Nuclear Information System (INIS)

    Eninger, J.E; Lehnert, B.

    1987-12-01

    A study has recently been initiated to asses the fusion reactor potential of the Extrap concept. A reactor model is defined that fulfills certain economic and environmental criteria. This model is applied to Extrap and a reference reactor is outlined. The design is optimized by varying parameters subject to both physics and engineering constraints. Several design options are examined and key engineering issues are identified and addressed. Some preliminary results and conclusions of this work are summarized. (authors)

  14. Design study of laser fusion rocket

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Shoyama, Hidetoshi; Kanda, Yukinori

    1991-01-01

    A design study was made on a rocket powered by laser fusion. Dependence of its flight performance on target gain, driver repetition rate and fuel composition was analyzed to obtain optimal design parameters of the laser fusion rocket. The results indicate that the laser fusion rocket fueled with DT or D 3 He has the potential advantages over other propulsion systems such as fission rocket for interplanetary travel. (author)

  15. Distribution Network Design--literature study based

    OpenAIRE

    LI, ANG

    2012-01-01

    The focus of this research is companies' outbound distribution network design in supply chain management. Within the present competitive market, it is a fundamental importance for companies to achieve high level business performance with an effective supply chain. Outbound distribution network design as an important part in supply chain management, to a large extent decides whether companies can fulfill customers' requirement or not. Therefore, such a study is important for manufacturers and ...

  16. Schematic representation of case study research designs.

    Science.gov (United States)

    Rosenberg, John P; Yates, Patsy M

    2007-11-01

    The paper is a report of a study to demonstrate how the use of schematics can provide procedural clarity and promote rigour in the conduct of case study research. Case study research is a methodologically flexible approach to research design that focuses on a particular case - whether an individual, a collective or a phenomenon of interest. It is known as the 'study of the particular' for its thorough investigation of particular, real-life situations and is gaining increased attention in nursing and social research. However, the methodological flexibility it offers can leave the novice researcher uncertain of suitable procedural steps required to ensure methodological rigour. This article provides a real example of a case study research design that utilizes schematic representation drawn from a doctoral study of the integration of health promotion principles and practices into a palliative care organization. The issues discussed are: (1) the definition and application of case study research design; (2) the application of schematics in research; (3) the procedural steps and their contribution to the maintenance of rigour; and (4) the benefits and risks of schematics in case study research. The inclusion of visual representations of design with accompanying explanatory text is recommended in reporting case study research methods.

  17. A pulsed source neutron reflectometer for surface studies

    International Nuclear Information System (INIS)

    Penfold, J.; Williams, W.G.

    1985-05-01

    A design for a neutron reflectometer for surface studies to be constructed at the SNS is presented. Examples of its use to study problems in surface chemistry, surface magnetism and low dimensional structures are highlighted. (author)

  18. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  19. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  20. Sustainable Design Approach: A case study of BIM use

    Science.gov (United States)

    Abdelhameed, Wael

    2017-11-01

    Achieving sustainable design in areas such as energy-efficient design depends largely on the accuracy of the analysis performed after the design is completed with all its components and material details. There are different analysis approaches and methods that predict relevant values and metrics such as U value, energy use and energy savings. Although certain differences in the accuracy of these approaches and methods have been recorded, this research paper does not focus on such matter, where determining the reason for discrepancies between those approaches and methods is difficult, because all error sources act simultaneously. The research paper rather introduces an approach through which BIM, building information modelling, can be utilised during the initial phases of the designing process, by analysing the values and metrics of sustainable design before going into the design details of a building. Managing all of the project drawings in a single file, BIM -building information modelling- is well known as one digital platform that offers a multidisciplinary detailed design -AEC model (Barison and Santos, 2010, Welle et.al., 2011). The paper presents in general BIM use in the early phases of the design process, in order to achieve certain required areas of sustainable design. The paper proceeds to introduce BIM use in specific areas such as site selection, wind velocity and building orientation, in terms of reaching the farther possible sustainable solution. In the initial phases of designing, material details and building components are not fully specified or selected yet. The designer usually focuses on zoning, topology, circulations, and other design requirements. The proposed approach employs the strategies and analysis of BIM use during those initial design phases in order to have the analysis and results of each solution or alternative design. The stakeholders and designers would have a better effective decision making process with a full clarity of each

  1. 7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report

    International Nuclear Information System (INIS)

    1992-12-01

    In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R ampersand D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R ampersand D

  2. Open-Source Medical Devices (OSMD) Design of a Small Animal Radiotherapy System

    Science.gov (United States)

    Prajapati, S.; Mackie, T. R.; Jeraj, R.

    2014-03-01

    Open-Source Medical Devices (OSMD) was initiated with the goal of facilitating medical research by developing medical technologies including both hardware and software on an open-source platform. Our first project was to develop an integrated imaging and radiotherapy device for small animals that includes computed tomography (CT), positron emission tomography (PET) and radiation therapy (RT) modalities for which technical specifications were defined in the first OSMD conference held in Madison, Wisconsin, USA in December 2011. This paper specifically focuses on the development of a small animal RT (micro-RT) system by designing a binary micro multileaf collimator (bmMLC) and a small animal treatment planning system (SATPS) to enable intensity modulated RT (IMRT). Both hardware and software projects are currently under development and their current progresses are described. After the development, both bmMLC and TPS will be validated and commissioned for a micro-RT system. Both hardware design and software development will be open-sourced after completion.

  3. Simulation study on ion extraction from ECR ion sources

    International Nuclear Information System (INIS)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1993-07-01

    In order to study beam optics of NIRS-ECR ion source used in HIMAC, EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1-D and 2-D sheath theories are used respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source (in INS, Univ. of Tokyo) are presented in this paper, exhibiting an agreement with the experimental results. Some preliminary suggestions on the upgrading the extraction systems of these sources are also proposed. (author)

  4. Simulation study on ion extraction from ECR ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S.; Kitagawa, A.; Yamada, S.

    1993-07-01

    In order to study beam optics of NIRS-ECR ion source used in HIMAC, EGUN code has been modified to make it capable of modeling ion extraction from a plasma. Two versions of the modified code are worked out with two different methods in which 1-D and 2-D sheath theories are used respectively. Convergence problem of the strong nonlinear self-consistent equations is investigated. Simulations on NIRS-ECR ion source and HYPER-ECR ion source (in INS, Univ. of Tokyo) are presented in this paper, exhibiting an agreement with the experimental results. Some preliminary suggestions on the upgrading the extraction systems of these sources are also proposed. (author).

  5. Study of extragalactic sources with H.E.S.S

    International Nuclear Information System (INIS)

    Giebels, Berrie

    2007-01-01

    The field of Very High Energy (VHE) γ-ray emitting extragalactic sources has considerably evolved since the new generation of atmospheric Cerenkov telescopes (ACT) of improved sensitivity, such as H.E.S.S. array and the MAGIC ACT, have started operating. This has led to a wealth of new clues about emission mechanisms at high energy through the discovery of new sources, more accurate spectra and temporal studies of sources known previously, and simultaneous multi-wavelength (MWL) campaigns since broad band variability is a key phenomenon to the underlying physical mechanisms at play. The fact that some of these new sources are located at redshifts close to z ∼ 0.2 makes them powerful probes of the Extragalactic Background Light (EBL) through the attenuation of γ-rays above 100 GeV

  6. Good research practices for comparative effectiveness research: approaches to mitigate bias and confounding in the design of nonrandomized studies of treatment effects using secondary data sources: the International Society for Pharmacoeconomics and Outcomes Research Good Research Practices for Retrospective Database Analysis Task Force Report--Part II.

    Science.gov (United States)

    Cox, Emily; Martin, Bradley C; Van Staa, Tjeerd; Garbe, Edeltraut; Siebert, Uwe; Johnson, Michael L

    2009-01-01

    The goal of comparative effectiveness analysis is to examine the relationship between two variables, treatment, or exposure and effectiveness or outcome. Unlike data obtained through randomized controlled trials, researchers face greater challenges with causal inference with observational studies. Recognizing these challenges, a task force was formed to develop a guidance document on methodological approaches to addresses these biases. The task force was commissioned and a Chair was selected by the International Society for Pharmacoeconomics and Outcomes Research Board of Directors in October 2007. This report, the second of three reported in this issue of the Journal, discusses the inherent biases when using secondary data sources for comparative effectiveness analysis and provides methodological recommendations to help mitigate these biases. The task force report provides recommendations and tools for researchers to mitigate threats to validity from bias and confounding in measurement of exposure and outcome. Recommendations on design of study included: the need for data analysis plan with causal diagrams; detailed attention to classification bias in definition of exposure and clinical outcome; careful and appropriate use of restriction; extreme care to identify and control for confounding factors, including time-dependent confounding. Design of nonrandomized studies of comparative effectiveness face several daunting issues, including measurement of exposure and outcome challenged by misclassification and confounding. Use of causal diagrams and restriction are two techniques that can improve the theoretical basis for analyzing treatment effects in study populations of more homogeneity, with reduced loss of generalizability.

  7. ASPUN: design for an Argonne super-intense pulsed neutron source

    International Nuclear Information System (INIS)

    Khoe, T.K.; Kustom, R.L.

    1983-01-01

    Argonne pioneered the pulsed spallation neutron source with the ZING-P and IPNS-I concepts. IPNS-I is now a reliable and actively used source for pulsed spallation neutrons. The accelerator is a 500-MeV, 8 to 9 μa, 30-Hz rapid-cycling proton synchrotron. Other proton spallation sources are now in operation or in construction. These include KENS-I at the National Laboratory for High Energy Physics in Japan, the WNR/PSR at Los Alamos National Laboratory in the USA, and the SNS at the Rutherford Appleton Laboratory in England. Newer and bolder concepts are being developed for more-intense pulsed spallation neutron sources. These include SNQ at the KFA Laboratory in Juelich, Germany, ASTOR at the Swiss Institute for Nuclear Physics in Switzerland, and ASPUN, the Argonne concept. ASPUN is based on the Fixed-Field Alternating Gradient concept. The design goal is to provide a time-averaged beam of 3.5 ma at 1100 MeV on a spallation target in intense bursts, 100 to 200 nanoseconds long, at a repetition rate of no more than 60 to 85 Hz

  8. Experimental design of a waste glass study

    International Nuclear Information System (INIS)

    Piepel, G.F.; Redgate, P.E.; Hrma, P.

    1995-04-01

    A Composition Variation Study (CVS) is being performed to support a future high-level waste glass plant at Hanford. A total of 147 glasses, covering a broad region of compositions melting at approximately 1150 degrees C, were tested in five statistically designed experimental phases. This paper focuses on the goals, strategies, and techniques used in designing the five phases. The overall strategy was to investigate glass compositions on the boundary and interior of an experimental region defined by single- component, multiple-component, and property constraints. Statistical optimal experimental design techniques were used to cover various subregions of the experimental region in each phase. Empirical mixture models for glass properties (as functions of glass composition) from previous phases wee used in designing subsequent CVS phases

  9. ISAMBARD: an open-source computational environment for biomolecular analysis, modelling and design.

    Science.gov (United States)

    Wood, Christopher W; Heal, Jack W; Thomson, Andrew R; Bartlett, Gail J; Ibarra, Amaurys Á; Brady, R Leo; Sessions, Richard B; Woolfson, Derek N

    2017-10-01

    The rational design of biomolecules is becoming a reality. However, further computational tools are needed to facilitate and accelerate this, and to make it accessible to more users. Here we introduce ISAMBARD, a tool for structural analysis, model building and rational design of biomolecules. ISAMBARD is open-source, modular, computationally scalable and intuitive to use. These features allow non-experts to explore biomolecular design in silico. ISAMBARD addresses a standing issue in protein design, namely, how to introduce backbone variability in a controlled manner. This is achieved through the generalization of tools for parametric modelling, describing the overall shape of proteins geometrically, and without input from experimentally determined structures. This will allow backbone conformations for entire folds and assemblies not observed in nature to be generated de novo, that is, to access the 'dark matter of protein-fold space'. We anticipate that ISAMBARD will find broad applications in biomolecular design, biotechnology and synthetic biology. A current stable build can be downloaded from the python package index (https://pypi.python.org/pypi/isambard/) with development builds available on GitHub (https://github.com/woolfson-group/) along with documentation, tutorial material and all the scripts used to generate the data described in this paper. d.n.woolfson@bristol.ac.uk or chris.wood@bristol.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  10. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  11. Harnessing Alternative Energy Sources to Enhance the Design of a Wave Generator

    Science.gov (United States)

    Bravo, A.

    2017-12-01

    Wave energy has the power to replace a non-renewable source of electricity for a home near the ocean. I built a small-scale wave generator capable of producing approximately 5 volts of electricity. The generator is an array of 16 small generators, each consisting of 200 feet of copper wire, 12 magnets, and a buoy. I tested my design in the Pacific Ocean and was able to power a string of lights I had attached to the generator. While the waves in the ocean moved my buoys, my design was powered by the vertical motion of the waves. My generator was hit with significant horizontal wave motion, and I realized I wasn't taking advantage of that direction of motion. To make my generator produce more electricity, I experimented with capturing the energy of the horizontal motion of water and incorporated that into my generator design. My generator, installed in the ocean, is also exposed to sun and wind, and I am exploring the potential of solar and wind energy collection in my design to increase the electricity output. Once I have maximized my electricity output, I would like to explore scaling up my design.

  12. Design considerations for neutron activation and neutron source strength monitors for ITER

    International Nuclear Information System (INIS)

    Barnes, C.W.; Jassby, D.L.; LeMunyan, G.; Roquemore, A.L.

    1997-01-01

    The International Thermonuclear Experimental Reactor will require highly accurate measurements of fusion power production in time, space, and energy. Spectrometers in the neutron camera could do it all, but experience has taught us that multiple methods with redundancy and complementary uncertainties are needed. Previously, conceptual designs have been presented for time-integrated neutron activation and time-dependent neutron source strength monitors, both of which will be important parts of the integrated suite of neutron diagnostics for this purpose. The primary goals of the neutron activation system are: to maintain a robust relative measure of fusion energy production with stability and wide dynamic range; to enable an accurate absolute calibration of fusion power using neutronic techniques as successfully demonstrated on JET and TFTR; and to provide a flexible system for materials testing. The greatest difficulty is that the irradiation locations need to be close to plasma with a wide field of view. The routing of the pneumatic system is difficult because of minimum radius of curvature requirements and because of the careful need for containment of the tritium and activated air. The neutron source strength system needs to provide real-time source strength vs. time with ∼1 ms resolution and wide dynamic range in a robust and reliable manner with the capability to be absolutely calibrated by in-situ neutron sources as done on TFTR, JT-60U, and JET. In this paper a more detailed look at the expected neutron flux field around ITER is folded into a more complete design of the fission chamber system

  13. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  14. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  15. A comparative study of two shovel designs.

    Science.gov (United States)

    Degani, A; Asfour, S S; Waly, S M; Koshy, J G

    1993-10-01

    In the present study a modified shovel design with two perpendicular shafts is presented. This modified, two-shaft shovel was compared with a regular shovel. The modified shovel was evaluated and tested in a controlled laboratory environment using surface electromyography recorded from the lumbar paraspinal muscles. The new shovel design was also tested in a field study using ratings of perceived exertion. The results indicate that there was a significant reduction in EMG values of the lumbar paraspinal muscles and a consistent reduction in perceived exertion ratings while the modified shovel was being used for removing dirt in digging trenches up to 90 cm in depth.

  16. Conceptual design study of IFMIF target system

    International Nuclear Information System (INIS)

    Kato, Y.; Nakamura, H.; Ida, M.; Maekawa, H.; Katsuta, H.; Hua, T.; Cevolani, S.

    1997-01-01

    IFMIF-CDA (International Fusion Materials Irradiation Facility - Conceptual Design Activity) had been carried out during 1995 and 1996, under the auspices of the IEA. The mission of this facility is to provide an accelerator based deuterium-lithium (D-Li) neutron source to test the candidate materials of radiation - resistant and low - activation materials up to about a full lifetime of anticipated use in fusion energy reactors. The neutrons of about 14 MeV are obtained by the stripping reaction of the deuteron of Max. 40 MeV with target lithium. Total deuteron beam current is about 250 mA and beam footprint is 20 cm x 5 cm on the free surface of lithium jet. In this report general characteristics of the target lithium system and the results of thermal and flow analysis for the target lithium jet are described. (author)

  17. STUDIES OF SHADING LEVELS AND NUTRITION SOURCES ON GROWTH, YIELD

    Directory of Open Access Journals (Sweden)

    Edi Purwanto

    2011-10-01

    Full Text Available Growth and biochemical content of medicinal crops are influenced by agroecosystems characteristics . The objective of this research was to determine the optimum shading level and type of fertilizer as sources of nutrition on the growth, yield, and andrographolide content of sambiloto. The experiment used Split Plot Design with basic design of Randomized Complete Block Design arranged with two treatment factors, with three replications. The first factor as the main plot was shading levels, namely without shading, 25% shading, 50% shading, and 75% shading. The second factor as the sub plot was sources of nutrition reprented by type of fertilizer, namely NPK fertilizer, cow stable fertilizer, and compost fertilizer. The result of research indicated that shading level and the kind of nutrition influenced some growth and yield variables such as number of leaves, number of branches, plant height, plant dry weight and simplisia weight, and andrographolide content. Interaction of shading level at 25% and straw compost fertilizer performed best in growth characteristics, while the highest andrographolide content resulted from the treatment combination of 50% shading level and straw compost fertilizer.

  18. Langmuir probe studies on a RF ion source for NBI

    International Nuclear Information System (INIS)

    McNeely, P.; Heineman, B.; Kraus, W.; Riedl, R.; Speth, E.; Vollmer, O.

    2001-01-01

    IPP Garching has been developing a RF ion source for H - production. In order to improve the data quality a new scanning probe system with passive RF compensation has been installed on the Type VI ion source on the BATMAN test stand. Using this probe, measurements have been carried out to study changes to the plasma parameters (electron density, electron temperature, and plasma potential) due to variation in the source operating conditions. The data were collected at a source pressure of 0.5 Pa and with 60±5 kW applied RF power. Presented are some of the results of these measurements, focusing on the effect of: argon seeding, addition of Cs to the source, and the newly added Faraday screen. The electron density behaves in a fashion that agrees with the theory of ambipolar diffusion. Typically there is little change to the average electron energy observed regardless of which effect is considered. The plasma potential shows the most significant changes with external source conditions, both in value for all cases and shape when the Faraday screen was added

  19. Review of SFR In-Vessel Radiological Source Term Studies

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Lee, Yong Bum

    2008-10-01

    An effort has been made in this study to search for and review the literatures in public domain on the studies of the phenomena related to the release of radionuclides and aerosols to the reactor containment of the sodium fast reactor (SFR) plants (i.e., in-vessel source term), made in Japan and Europe including France, Germany and UK over the last few decades. Review work is focused on the experimental programs to investigate the phenomena related to determining the source terms, with a brief review on supporting analytical models and computer programs. In this report, the research programs conducted to investigate the CDA (core disruptive accident) bubble behavior in the sodium pool for determining 'primary' or 'instantaneous' source term are first introduced. The studies performed to determine 'delayed source term' are then described, including the various stages of phenomena and processes: fission product (FP) release from fuel , evaporation release from the surface of the pool, iodine mass transfer from fission gas bubble, FP deposition , and aerosol release from core-concrete interaction. The research programs to investigate the release and transport of FPs and aerosols in the reactor containment (i.e., in-containment source term) are not described in this report

  20. Study of two different radioactive sources for prostate brachytherapy treatment

    International Nuclear Information System (INIS)

    Pereira Neves, Lucio; Perini, Ana Paula; Souza Santos, William de; Caldas, Linda V.E.; Belinato, Walmir

    2015-01-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a 192 Ir and a 125 I radioactive sources. The 192 Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The 125 I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of 125 I and one of 192 Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the 192 Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the 125 I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  1. Study of two different radioactive sources for prostate brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil); Souza Santos, William de; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, IPENCNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil)

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  2. Study of an hybrid positron source using channeling for CLIC

    CERN Document Server

    Dadoun, O; Chehab, R; Poirier, F; Rinolfi, L; Strakhovenko, V; Variola, A; Vivoli, A

    2009-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten radiator. With the tungsten crystal oriented on its axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. In this note the optimization of the positron yield and the peak energy deposition density in the amorphous target are studied according to the distance between the crystal and the amorphous targets, the primary electron energy and the amorphous target thickness.

  3. Design, development and integration of a large scale multiple source X-ray computed tomography system

    International Nuclear Information System (INIS)

    Malcolm, Andrew A.; Liu, Tong; Ng, Ivan Kee Beng; Teng, Wei Yuen; Yap, Tsi Tung; Wan, Siew Ping; Kong, Chun Jeng

    2013-01-01

    X-ray Computed Tomography (CT) allows visualisation of the physical structures in the interior of an object without physically opening or cutting it. This technology supports a wide range of applications in the non-destructive testing, failure analysis or performance evaluation of industrial products and components. Of the numerous factors that influence the performance characteristics of an X-ray CT system the energy level in the X-ray spectrum to be used is one of the most significant. The ability of the X-ray beam to penetrate a given thickness of a specific material is directly related to the maximum available energy level in the beam. Higher energy levels allow penetration of thicker components made of more dense materials. In response to local industry demand and in support of on-going research activity in the area of 3D X-ray imaging for industrial inspection the Singapore Institute of Manufacturing Technology (SIMTech) engaged in the design, development and integration of large scale multiple source X-ray computed tomography system based on X-ray sources operating at higher energies than previously available in the Institute. The system consists of a large area direct digital X-ray detector (410 x 410 mm), a multiple-axis manipulator system, a 225 kV open tube microfocus X-ray source and a 450 kV closed tube millifocus X-ray source. The 225 kV X-ray source can be operated in either transmission or reflection mode. The body of the 6-axis manipulator system is fabricated from heavy-duty steel onto which high precision linear and rotary motors have been mounted in order to achieve high accuracy, stability and repeatability. A source-detector distance of up to 2.5 m can be achieved. The system is controlled by a proprietary X-ray CT operating system developed by SIMTech. The system currently can accommodate samples up to 0.5 x 0.5 x 0.5 m in size with weight up to 50 kg. These specifications will be increased to 1.0 x 1.0 x 1.0 m and 100 kg in future

  4. Technical design report of spallation neutron source facility in J-PARC

    International Nuclear Information System (INIS)

    Sakamoto, Shinichi

    2012-02-01

    One of the experimental facilities in Japan Proton Accelerator Research Complex (J-PARC) is the Materials and Life Science Experimental Facility (MLF), where high-intensity neutron beams are used as powerful probes for basic research on materials and life science, as well as research and development in industrial engineering. Neutrons are generated with nuclear spallation reaction by bombarding a mercury target with high-intensity proton beams. The neutrons are slowed down with supercritical hydrogen moderators and then extracted as beams to each experimental apparatus. The principal design of the spallation neutron source is compiled in this comprehensive report. (author)

  5. The design of 28 GHz ECR Ion Source for the Compact Linear Accelerator in Korea

    International Nuclear Information System (INIS)

    MiSook, Won; ByoungSeob, Lee; JinYong, Park; DongJun Park; JongPil, Kim; JongSeong, Bae; JungKeum, Ahn; SonJong, Wang; Nakagawa, T.

    2012-01-01

    The construction of a compact linear accelerator is in progress by Korea Basic Science Institute. The main capability of this facility is the production of multiply ionized metal clusters and the generation more intense beams of highly charged ions for material, medical and nuclear physical research. To produce the intense beam of highly charged ions, we will construct an Electron Cyclotron Resonance Ion Source (ECRIS) using 28 GHz microwaves. For this ECRIS, the design of a superconducting magnet, microwave inlet, beam extraction and plasma chamber was completed. Also we are constructing a superconducting magnet system. In this poster, we will report the current status of development of our 28 GHz ECRIS. (authors)

  6. The Design and Performance of the Spallation Neutron Source Low-Level RF Control System

    CERN Document Server

    Champion, M; Kasemir, K; Ma, H; Piller, C

    2004-01-01

    The Spallation Neutron Source linear accelerator low-level RF control system has been developed within a collaboration of Lawrence Berkeley, Los Alamos, and Oak Ridge national laboratories. Three distinct generations of the system, described in a previous publication [1], have been used to support beam commissioning at Oak Ridge. The third generation system went into production in early 2004, with installation in the coupled-cavity and superconducting linacs to span the remainder of the year. The final design of this system will be presented along with results of performance measurements.

  7. Development of a chip-based ingroove microplasma source: Design, characterization, and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuemei; Meng, Fanying; Yuan, Xin; Yan, Yanyue; Zhao, Zhongjun; Duan, Yixiang, E-mail: yduan@scu.edu.cn [Research Center of Analytical Instrumentation, College of Chemistry and College of Life Science Sichuan University, Chengdu (China); Tang, Jie [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics of CAS, Xi' an (China)

    2014-03-10

    A chip-based ingroove microplasma source was designed for molecular emission spectrometry by using a space-confined direct current duct in air. The voltage-current characteristics of different size generators, emission spectroscopy of argon were discussed, respectively. It is found that the emission intensity of excited Ar and N{sub 2} approaches its maximum near the cathode, while OH and O peaks most likely appear close to the anode. The electron density, electronic excitation temperature, rotational temperature, and vibrational temperature of the argon plasma were also calculated. More importantly, the chip-based ingroove microplasma shows much better stability compared with its counterparts.

  8. Data Visualization with Flash Builder Designing RIA and AIR Applications with Remote Data Sources

    CERN Document Server

    Rocchi, Cesare

    2011-01-01

    Design and create functional applications that interact with remote data sources. You get a thorough introduction to the latest Flash Builder tools learning how you can use the built-in wizards, MXML or pure ActionScript 3 to build information-rich applications for the browser or AIR applications. Hand's on tutorials guide you through each iteration including building user interaction, charting, incorporating audio and video, customizing the UI; and a code repository provides re-usable code that you can modify and deploy in your own applications. *Hand's o

  9. The reversed-field-pinch (RFP) fusion neutron source: A conceptual design

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Werley, K.A.

    1989-01-01

    The conceptual design of an ohmically heated, reversed-field pinch (RFP) operating at ∼5-MW/m 2 steady-state DT fusion neutron wall loading and ∼124-MW total fusion power is presented. These results are useful in projecting the development of a cost effective, low input power (∼206 MW) source of DT neutrons for large-volume (∼10 m 3 ), high-fluence (3.4 MW yr/m 2 ) fusion nuclear materials and technology testing. 19 refs., 15 figs., 9 tabs

  10. A study of γ-ray source for the transmutation

    International Nuclear Information System (INIS)

    Nomura, Masahiro; Takahashi, Hiroshi.

    1996-07-01

    PNC is developing high power CW electron linac for various applications, those are the transmutation of the fission products, Free Electron Laser (FEL), the positron source and so on. Especially, the transmutation by the electron linac has been studied for several years. As the results, high flux and high energy γ-ray (∼15 MeV) is required, one of the big problems is that plenty of transmutation energy is needed and the narrow γ-ray energy spectrum can reduce the transmutation energy. The γ-rays can be produced by synchrotron radiation, FEL and laser compton scattering. Those methods were described briefly and compared. As a result, the laser compton scattering is one of the good methods to produce high energy γ-ray. However the cross section between electron and photon is small and the scattered photon energy spectrum is not so narrow that the transmutation energy is reduced drastically. To enhance the interaction between electron and photon, the super cavity is proposed. And some experiments are in progress. To reduce the transmutation energy, scattered electron must be reused by the storage ring. If the scattered electrons are not used for producing γ-ray, the efficiency is less than 1%. In our system, the efficiency can be increased to 20% by reusing scattered electrons. But this efficiency is still low. To increase the efficiency, the RF bucket must be enlarged. If the momentans compaction factor α can be reduced, the RF bucket can be enlarged. And the storage ring must be designed to have small value of the α. The electron energy dependency of efficiency is investigated, too. In short word, it is difficult to increase the efficiency drastically by changing electron energy. This work was conducted as a part of the collaboration work between PNC and BNL. (author)

  11. Core design and fuel management studies

    International Nuclear Information System (INIS)

    Min, Byung Joo; Chan, P.

    1997-06-01

    The design target for the CANDU 9 requires a 20% increase in electrical power output from an existing 480-channel CANDU core. Assuming a net electrical output of 861 MW(e) for a natural uranium fuelled Bruce-B/Darlington reactor in a warm water site, the net electrical output of the reference CANDU 9 reactor would be 1033 MW(e). This report documents the result of the physics studies for the design of the CANDU 9 480/SEU core. The results of the core design and fuel management studies of the CANDU 9 480/SEU reactor indicated that up to 1033 MW(e) output can be achieved in a 480-channel CANDU core by using SEU core can easily be maintained indefinitely using an automated refuelling program. Fuel performance evaluation based on the data of the 500 FPDs refuelling simulation concluded that SEU fuel failure is not expected. (author). 2 tabs., 38 figs., 5 refs

  12. Application of central composite design to optimize the amount of carbon source and prebiotics for Bifidobacterium bifidum BB01

    Directory of Open Access Journals (Sweden)

    Shu Guowei

    2016-06-01

    Full Text Available The objective of the present study was to obtain the optimum proportion of the carbon source and prebiotics for Bifidobacterium bifidum BB01 by the central composite design (CCD. The effect of carbon source (lactose and two prebiotics (inulin and fructooligosaccharides on the BB01 were observed by measuring the OD600 value, pH value and the viable counts at 18h. The final optimized concentrations of carbon source and prebiotics were: lactose 1.6%, inulin 0.26%, and fructooligosaccharides 0.22%. The result indicates that the growth of B. bifidum BB01 shows an significant increase in the optimized culture medium (p < 0.05, the OD600 value reached 1.434 at 18h, which increased 6.58% compared to the control. And the viable counts of B. bifidum BB01 increased 24.36% and reached (2.17±0.06 ×109cfu/mL. The results show that the optimization of the carbon source and prebiotics using CCD in this study is workable and necessary.

  13. Designs for mechanical circulatory support device studies.

    Science.gov (United States)

    Neaton, James D; Normand, Sharon-Lise; Gelijns, Annetine; Starling, Randall C; Mann, Douglas L; Konstam, Marvin A

    2007-02-01

    There is increased interest in mechanical circulatory support devices (MCSDs), such as implantable left ventricular assist devices (LVADs), as "destination" therapy for patients with advanced heart failure. Because patient availability to evaluate these devices is limited and randomized trials have been slow in enrolling patients, a workshop was convened to consider designs for MCSD development including alternatives to randomized trials. A workshop was jointly planned by the Heart Failure Society of America and the US Food and Drug Administration and was convened in March 2006. One of the panels was asked to review different designs for evaluating new MCSDs. Randomized trials have many advantages over studies with no controls or with nonrandomized concurrent or historical controls. These advantages include the elimination of bias in the assignment of treatments and the balancing, on average, of known and unknown baseline covariates that influence response. These advantages of randomization are particularly important for studies in which the treatments may not differ from one another by a large amount (eg, a head-to-head study of an approved LVAD with a new LVAD). However, researchers have found it difficult to recruit patients to randomized studies because the number of clinical sites that can carry out the studies is not large. Also, there is a reluctance to randomize patients when the control device is considered technologically inferior. Thus ways of improving the design of randomized trials were discussed, and the advantages and disadvantages of alternative designs were considered. The panel concluded that designs should include a randomized component. Randomized designs might be improved by allowing the control device to be chosen before randomization, by first conducting smaller vanguard studies, and by allowing crossovers in trials with optimal medical management controls. With use of data from completed trials, other databases, and registries, alternative

  14. Challenges and design solutions of the liquid hydrogen circuit at the European Spallation Source

    Energy Technology Data Exchange (ETDEWEB)

    Gallimore, S.; Nilsson, P.; Sabbagh, P.; Takibayev, A.; Weisend II, J. G. [European Spallation Source ESS AB, SE-22100 Lund (Sweden); Beßler, Y. [Forschungzentrum Jülich, Jülich (Germany); Klaus, M. [Technische Universität Dresden, Dresden (Germany)

    2014-01-29

    The European Spallation Source (ESS), Lund, Sweden will be a 5MW long-pulse neutron spallation research facility and will enable new opportunities for researchers in the fields of life sciences, energy, environmental technology, cultural heritage and fundamental physics. Neutrons are produced by accelerating a high-energy proton beam into a rotating helium-cooled tungsten target. These neutrons pass through moderators to reduce their energy to an appropriate range (< 5 meV for cold neutrons); two of which will use liquid hydrogen at 17 K as the moderating and cooling medium. There are several technical challenges to overcome in the design of a robust system that will operate under such conditions, not least the 20 kW of deposited heat. These challenges and the associated design solutions will be detailed in this paper.

  15. Standards and the design of the advanced photon source control system

    International Nuclear Information System (INIS)

    McDowell, W.P.; Knott, M.J.; Lenkszus, F.R.

    1992-01-01

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. (J.P.N.)

  16. Custom chipset and compact module design for a 75–110 GHz laboratory signal source

    International Nuclear Information System (INIS)

    Morgan, Matthew A; Boyd, Tod A; Castro, Jason J

    2016-01-01

    We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers. (paper)

  17. Blahut-Arimoto algorithm and code design for action-dependent source coding problems

    DEFF Research Database (Denmark)

    Trillingsgaard, Kasper Fløe; Simeone, Osvaldo; Popovski, Petar

    2013-01-01

    The source coding problem with action-dependent side information at the decoder has recently been introduced to model data acquisition in resource-constrained systems. In this paper, an efficient Blahut-Arimoto-type algorithm for the numerical computation of the rate-distortion-cost function...... for this problem is proposed. Moreover, a simplified two-stage code structure based on multiplexing is put forth, whereby the first stage encodes the actions and the second stage is composed of an array of classical Wyner-Ziv codes, one for each action. Leveraging this structure, specific coding/decoding...... strategies are designed based on LDGM codes and message passing. Through numerical examples, the proposed code design is shown to achieve performance close to the rate-distortion-cost function....

  18. Design of absorption system water-ammonia by using solar radiation as thermal source

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Eduardo J. Cidade; Souza, Luiz Guilherme Meira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Tecnlogia. Dept. de Engenharia Mecanica], E-mails: educanti@gmail.com, lguilherme@dem.ufrn.br

    2010-07-01

    An absorption refrigeration system with the single effect of par ammonia water with 1.758 kW (1 / 2 RT) cooling capacity was designed. The system was operating under conditions of 5 degree C evaporation and 45 degree C condensation temperature. The absorption system has a heat exchanger to improve performance. The heat source is the cylinder parabolic solar concentrator (CPC). The design of the concentrator was estimated based on experimental data of the pilot plant built in the Solar Energy Laboratory, Federal University of Rio Grande do Norte. The thermodynamic model with heat and mass transfer was made to the project areas of heat exchange (absorber) and consequent construction of the system. The rectifying column was modeling assuming that liquid is in equilibrium with the vapor state in all plate. The results should show the dimensions of the compact and allows a future assessment of the operational cost. (author)

  19. Design and application of CVD diamond windows for x-rays at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Jaski, Y.; Cookson, D.

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

  20. Detail design and manufacturing result of the HANARO cold neutron source moderator cell

    International Nuclear Information System (INIS)

    Hwang, Dong Gil; Han, Young Soo; Kim, Soo Sung; Lee, Kye Hong; Kim, Young Jin

    2005-01-01

    Moderator cell which is on the process of developing is the core of the Cold Neutron Source(CNS) and operates at cryogenic of 20K and made of aluminum. When infer from experience in all nuclear reactors that use moderator cell, Aluminum has a proper nature to use at cryogenic that use hydrogen. And a lot of data was already published for the Aluminum characters which are in the investigative state. Because performance of moderator cell is getting better when thickness is thinner, moderator was designed to double cylinder type of thin plate style. Aluminum is excellent both manufacturing and welding. If the plate is less than 3.0mm, manufacturing and welding are difficult. Because of this, after making a moderator cell, manufacture and integrity are evaluated. In this paper, detailed design of moderator cell and manufacturing result are described