WorldWideScience

Sample records for sources nuclear energy

  1. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  2. Nuclear power, useful energy source

    International Nuclear Information System (INIS)

    Sorin, F.

    2003-01-01

    This article is a reprint of an article published in a newspaper named 'Liberation Champagne' from October 7, 2003. It makes a brief analysis of the future world energy needs, of the need to fight against the global warming and to find a substitution to fossil fuels on the way to depletion. The mankind has to face a contradictory problem: increasing the energy production and saving the fossil fuels. The only solution is to accelerate the development of nuclear energy and of renewable energy sources. This is also the only way to fulfill the Kyoto protocol commitments. Short paper. (J.S.)

  3. Nuclear energy versus other energy sources

    International Nuclear Information System (INIS)

    King, F.K.

    1994-01-01

    This paper deals with nuclear and other sources of energy as they relate to the production of electricity. It first examines the current role of electricity in the world and its means of production and how future economic growth, associated with growing populations striving for better living conditions, will lead to increased demands for new electricity generation. The second part of the paper deals with the health and environmental impacts of the major options for generating electricity likely to be used to meet this need, and how a comparative assessment of these impacts is important to understand the full implications of electricity generation planning decisions. 6 refs, 12 figs

  4. Nuclear Powerplant Safety: Source Terms. Nuclear Energy.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    There has been increased public interest in the potential effects of nuclear powerplant accidents since the Soviet reactor accident at Chernobyl. People have begun to look for more information about the amount of radioactivity that might be released into the environment as a result of such an accident. When this issue is discussed by people…

  5. Renewable energy sources and nuclear installations

    International Nuclear Information System (INIS)

    Hirschberg, S.; Bauer, Ch.; Burgherr, P.; Stucki, S.; Vogel, F.; Biollaz, S.; Schulz, T.; Durisch, W.; Hardegger, P.; Foskolos, K.; Meier, A.; Schenler, W.

    2005-02-01

    This comprehensive work report for the Swiss Federal Office of Energy (SFOE) made by the Paul Scherrer Institute PSI takes a look at work done in connection with the updating of the office's Energy Perspectives. In particular, the topic of electricity is reviewed in the light of pending important decisions in the area of nuclear energy and the newer renewable sources of energy. The report makes an attempt to estimate the effect on Swiss power production that the new renewables and new nuclear installations could have in the next 30-40 years and to what costs this could be done and which obstacles would have to overcome. The renewable energy sources include small hydro, wind, photovoltaics, solar thermal power plants, biogas, geothermal energy, wave-power and solar chemistry. The methods used include literature study and contacts with internal PSI experts on the various areas involved. The most important system characteristics were noted and learning curves for the various technologies were taken into account. Ecological and social factors were also considered

  6. Nuclear energy such as an alternative energy source

    International Nuclear Information System (INIS)

    Domingos, D.B.; Stecher, L.C.; Menzel, F.; Coelho, T.S.; Giariola, R.S

    2013-01-01

    Nuclear power is still an unknown subject to many and ends up being left out when it comes to alternative energy sources and environmental preservation. Unfamiliarity and the disclosures information that are not always correct end up not to show the public the true risks and benefits of this source. The strength of public opinion is the main barrier to the advancement of this technology. So, this paper aims to demystify the villain aspect of nuclear energy that could become a major source for power generation. For this, will be made a historical retrospective of the theories that enabled the field of nuclear fission, the authors and key points, such as will be described how nuclear fission reaction is produced, controlled and sustained and how energy is produced, will be also made an argument on key facts that lead public opinion to stand up against nuclear power, as the generation of radioactive waste and nuclear weapons. Are presented possible solutions beyond the learning and improvements resulting from the occurred accidents. After these analyzes was observed that, besides being a potentially clean source for power generation, it can be safe in order that the waste generated are already safely managed and intelligence groups also monitor terrorist groups, seeking to ensure global security in relation to nuclear weapons and, at the issue of accidents, each event has brought learning and became the nuclear industry today, one of the safest. (author)

  7. Nuclear energy such as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, D.B.; Stecher, L.C.; Menzel, F.; Coelho, T.S.; Giariola, R.S, E-mail: douglasborgesdomingos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear power is still an unknown subject to many and ends up being left out when it comes to alternative energy sources and environmental preservation. Unfamiliarity and the disclosures information that are not always correct end up not to show the public the true risks and benefits of this source. The strength of public opinion is the main barrier to the advancement of this technology. So, this paper aims to demystify the villain aspect of nuclear energy that could become a major source for power generation. For this, will be made a historical retrospective of the theories that enabled the field of nuclear fission, the authors and key points, such as will be described how nuclear fission reaction is produced, controlled and sustained and how energy is produced, will be also made an argument on key facts that lead public opinion to stand up against nuclear power, as the generation of radioactive waste and nuclear weapons. Are presented possible solutions beyond the learning and improvements resulting from the occurred accidents. After these analyzes was observed that, besides being a potentially clean source for power generation, it can be safe in order that the waste generated are already safely managed and intelligence groups also monitor terrorist groups, seeking to ensure global security in relation to nuclear weapons and, at the issue of accidents, each event has brought learning and became the nuclear industry today, one of the safest. (author)

  8. Solar energy versus nuclear energy as energy sources at the transition period

    International Nuclear Information System (INIS)

    Sastroamidjojo, MSA.

    Technical aspects and social aspects of nuclear power plants and solar energy system as energy sources, were comparatively evaluated. The evaluation proves that solar energy is better than nuclear energy. (SMN)

  9. The nuclear energy: an essential source of the energy package

    International Nuclear Information System (INIS)

    Ngo, Ch.

    2007-01-01

    In the framework of the energy consumption facing the environmental quality, the author presents the energy sources, used and possible. He shows the necessity to reduce the dependency towards the fossil fuels. He discusses the possibility of the CO 2 storage, the electric power use to decrease the CO 2 emissions. He then analyses the cogeneration alternative, the hybrid vehicles and the advantages of the nuclear energy. (A.L.B.)

  10. Energy sources and nuclear energy. Comparative analysis and ethical reflections

    International Nuclear Information System (INIS)

    Hoenraet, C.

    1999-01-01

    Under the authority of the episcopacy of Brugge in Belgium an independent working group Ethics and Nuclear Energy was set up. The purpose of the working group was to collect all the necessary information on existing energy sources and to carry out a comparative analysis of their impact on mankind and the environment. Also attention was paid to economical and social aspects. The results of the study are subjected to an ethical reflection. The book is aimed at politicians, teachers, journalists and every interested layman who wants to gain insight into the consequences of the use of nuclear energy and other energy sources. Based on the information in this book one should be able to objectively define one's position in future debates on this subject

  11. Comparing nuclear power with other energy sources

    International Nuclear Information System (INIS)

    Rey, Francisco C.

    2001-01-01

    The economics of electric generation of nuclear, hydro, oil and gas origin are compared. A similar comparison is also made from the health and environment standpoint for the fossil, nuclear, solar and wind generation. A risk assessment for energies of different origin is outlined and the significance of the greenhouse effect is emphasised. A comprehensive economic and environmental evaluation is recommended for the energy planning

  12. Nuclear power: an eco friendly energy source for sustainable development

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Singh, Om Pal

    2009-01-01

    When viewed from a large set of criteria such as abundance of energy resources, environmental impacts, low fuel inventory, quantum of waste generated and green house gas emissions, nuclear power can be considered as a large scale sustainable energy source. Among all energy sources, nuclear energy has perhaps the lowest impact on the environment, especially in relation to kilowatt-hr produced, because nuclear plants do not emit harmful gases and produce small quantity of waste. In other words, nuclear energy is the most environmental friendly electricity source. There are no significant adverse effects to water, land, habitat, species and air resources. The present paper discusses the sustainability and feasibility of nuclear power as an eco friendly energy source in the changing and challenging competitive power market. (author)

  13. The nuclear energy in the frame of the energy sources

    International Nuclear Information System (INIS)

    Bogas, J.

    2008-01-01

    This article analyses the different technological alternatives for addressing the energy challenges of our society (security of supply, competitiveness and sustain ability), emphasizing the need for nuclear energy to achieving those goals. Recently, the view of society about nuclear power has shifted from a position of outright hostility towards an acceptance still not totally defined. That is so, that people of environmentalism as the founders of Green peace James Love lock, Patrick Moore or the writer Gwyneth Cravens have said that nuclear energy is the option to produce energy that less increases CO 2 emissions, and that without it targets for reduction may not meet. (Author) 4 refs

  14. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    recovery system is also applicable to a fast reactor (FR) with a supercritical CO 2 gas turbine that achieves higher cycle efficiency than conventional sodium cooled FRs with steam turbines. The FR will eliminate problems of conventional FRs related to safety, plant maintenance, and construction costs. The FR consumes efficiently trans-uranium elements (TRU) produced in light water reactors as fuel and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. An Advanced Energy System (AES) with nuclear reactors as an energy source has been proposed which supply electricity and heat to cities. The AES has three objectives: 1. Save energy resources and reduce green house gas emissions, attaining total energy utilization efficiency higher than 85% through waste heat recovery and utilization. 2. Foster a recycling society that produces methane and methanol for fuel cells from waste products of cities and farms. 3. Consume TRU produced in LWRs as fuel for FRs, and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. References 1. Y. Kato, T. Nitawaki and K. Fujima, 'Zero Waste Heat Release Nuclear Cogeneration System, 'Proc. 2003 Intl. Congress on Advanced Nuclear Power Plants (ICAPP'03), Cordoba, Spain, May 4-7, 2003, Paper 3313. 2. Y. Kato, T. Nitawaki and Y. Muto, 'Medium Temperature Carbon Dioxide Gas Turbine Reactor, 'Nucl. Eng. Design, 230, pp. 195-207 (2004). 3. H. N. Tran and Y. Kato, 'New 2 37Np Burning Strategy in a Supercritical CO 2 Cooled Fast Reactor Core Attaining Zero Burnup Reactivity Loss,' Proc. American Nuclear Society's Topical Meeting on Reactor Physics (PHYSOR 2006), Vancouver, British Columbia, Canada, September 10-14, 2006

  15. Impacts of non-nuclear energy sources on the environment

    International Nuclear Information System (INIS)

    Tavkaya, E.

    2006-01-01

    Fossil fuels (i.e., petroleum, natural gas and coal) , which meet most of the world's energy demand today, are being depleted fast. Also, their combustion products are causing the global problems, such as the greenhouse effect, ozone layer depletion, acid rains and pollution, which are posing great danger for our environment and eventually for the life in our planet. If humankind is going to have a future on this planet, at least a high-technology future, with a significant population of several billions of humans continuing to inhabit the Earth, it is absolutely inevitable that we will have to find another energy source. Table 1: The environmental effects for some energy systems; SOURCES: Fossil fuels (petroleum, natural gas and coal) ENVIRONMENTAL EFFECTS : - Ozone layer depletion - Changes of atmospheric conditions - Decrease of air quality (Coal , petroleum) - Acid rains and destroy of forests (coal, petroleum ) - Pollution from toxic wastes (coal ash, slag and smoke hole gases) - Pollution of surface water - Seaside and sea pollutions (petroleum) - Terrain devolution - Large amount of fuel and transportation requirements - Sources depletion SOURCES: Hydroelectric ENVIRONMENTAL EFFECTS - Large area requirements - Population situation changes - Erosion and usage changes - Ecosystem changes and health effects - Disappearing of biological variety - Downfall of dams - Leave out of production SOURCES: Renewable (sun, wind, geothermal, biomass) ENVIRONMENTAL EFFECTS : - Decrease of air quality (geothermal, biomass) - Large area usage - Ecologic system changes - Fabrication effects (CO 2 effect due to production of photovoltaic cells that work with sun) - Noise (wind) SOURCES: Nuclear (All energy chain) ENVIRONMENTAL EFFECTS : - Radioactive oscillation because of serious reactor accident - Radiation of waste storage. In this study, the environmental effects for some energy systems are investigated with all details

  16. Nuclear power - an inland energy source, in a way. Nuclear electricity generation permits a balanced energy mix

    International Nuclear Information System (INIS)

    Kalthoff, B.

    1997-01-01

    The primary energy demand of Germany currently is met to more than 50 per cent by imports of crude oil, natural gas and coal, with crude oil imports representing by far the largest quota, due to minor inland resources. Nuclear power is the energy source that reduces the country's dependence on imports, so that, also thanks to the nuclear energy source, oil consumption in Germany could be cut back to half in the years from 1970 until 1995. Although nuclear fuels have to be imported, too, uranium resources are plenty, and fuel supplies in the nuclear fuel cycle are guaranteed, so that this energy source can be considered as a quasi inland energy source. (orig.) [de

  17. Nuclear fuel: sustainable source of energy or burden on society?

    International Nuclear Information System (INIS)

    Williams, T.; Klaiber, G.

    2007-01-01

    In the past, the question concerning the sustainability of a resource primarily addressed its finite nature. Accordingly, electricity production using renewable energies was clearly sustainable. Contrasting this are systems based on oil, gas, coal or uranium. However, from the perspective of 'neo-sustainability' being analyzed today, this assessment appears less clear-cut, especially in light of the definition of sustainability as provided by the Brundtland report. Nowadays, the depletion time of fuel resources is thus not the only significant aspect, but factors such as efficiency, ecofriendliness and social responsibility also figure in. The nuclear fuel supply is analyzed from a sustainability perspective. After a short description of the supply chain, each of the most important aspects of sustainability are related to the individual stages of the supply chain and evaluated. This method aims at answering the question concerning to what extent nuclear fuel is a sustainable source of energy. Although the recycling of fissile materials from reprocessing and the deployment of advanced reactors are key factors as regards the issue of sustainability, these topics are deliberately only touched on. The main focus lies on the sustainability of the nuclear fuel cycle as it is currently utilized in light water reactors, without discussing the subject of reprocessing. (orig.)

  18. Sustainability of nuclear energy in Mexico: comparison with other sources

    International Nuclear Information System (INIS)

    Martin-del-Campo, C.; Francois, J. L.

    2006-01-01

    Because of the importance of energy to sustainable development of Mexico, it is necessary to develop a tool which permits to make a comparative assessment of energy alternative options. This tool must take into a count their characteristics in terms of their economic, health, environmental and social impacts, both, positive and negative, local, regional and global. This paper describes a methodology to measure the sustainability of nuclear and other different sources for electricity generation. The first step consists on the search of common indicators to be compared. These indicators take into account the great variety of economic, social, and environmental impacts to be considered in the specific Mexican country. A total of fourteen indicators were considered grouped in three dimensions: economic, environmental and social. The second step is to obtain the values of all the indicators for each of the alternative options being compared. These values must be calculated taking into account the economic and technological characteristics of the country. The third step is to utilize an aggregation method to integrate all the indicators in an overall sustainable qualification. Fuzzy Logic was applied for the aggregation of indicators and was used to make sensitive analyses. Finally this paper presents the results for the case of the Mexican power system generation. The main result of the comparison is that nuclear energy in Mexico is an option more sustainable than gas, coal, and hydroelectric. Some sensitive analyses were also made to investigate the implication of the uncertainties in the indicator's values. Coal was in all cases the least sustainable option with largest environmental impacts. Wind energy was also included in a study case, the results of this assessment comparison showed that wind option in Mexico has an overall qualification very close to nuclear option when a backup power system is not included

  19. Energy sources

    International Nuclear Information System (INIS)

    Vajda, Gy.

    1998-01-01

    A comprehensive review is presented of the available sources of energy in the world is presented. About 80 percent of primary energy utilization is based on fossile fuels, and their dominant role is not expected to change in the foreseeable future. Data are given on petroleum, natural gas and coal based power production. The role and economic aspects of nuclear power are analyzed. A brief summary of renewable energy sources is presented. The future prospects of the world's energy resources are discussed, and the special position of Hungary regarding fossil, nuclear and renewable energy and the country's energy potential is evaluated. (R.P.)

  20. Nuclear fusion, an energy source of the future

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.

    1994-01-01

    The paper discusses the possibility to obtain energy by nuclear fusion. It deals successively with: The physical bases of nuclear fusion, research and development with a view to harnessing nuclear fusion, properties of a fusion reactor, and programme and timetable to economic exploitation. (orig./UA) [de

  1. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  2. Encapsulated nuclear heat source reactors for energy security

    International Nuclear Information System (INIS)

    Greenspan, E.; Susplugas, A.; Hong, S.G.; Monti, L.; Sumini, M.; Okawa, T.

    2006-01-01

    A spectrum of Encapsulated Nuclear Heat Source (ENHS) reactors have been conceptually designed over the last few years; they span a power range from 10 MWe to -200 MWe and consider a number of coolants and fuel types. Common features of all these designs include very long life cores - exceeding 20 effective full power years; nearly zero burnup reactivity swing; natural circulation; superb safety; autonomous load following capability; simplicity of operation and maintenance. ENHS reactors could be of particular interest for providing electricity, thermal energy and, possibly, desalinated water to communities that are not connected to a central electricity grid such as to many pacific islands and to remote communities in the mainland of different countries. ENHS reactors provide energy security by virtue of a couple of features: (1) Once an ENHS reactor is commissioned, the community has assured clean energy supply for at least 20 years without needing fuel supply. (2) The energy value of the fuel loaded (in the factory) in the ENHS module is preserved; what is needed for generating energy for additional 20+ years is to remove the fission products, add depleted uranium for makeup fuel, refabricate fuel rods and load into a new module. This fuel recycling is envisioned done by either the supplier country or by a regional or international fuel cycle centre. As the ENHS module is replaced at its entirety at the end of the core life - that is brought about by radiation damage, the ENHS plant life is likely to last for over 100 years. The above features also offer exceptional stability in the price of energy generated by the ENHS reactor. The reference ENHS design will be described followed by a brief description of the design options developed and a summary of their performance characteristics

  3. Case of nuclear and other sources of electric energy

    International Nuclear Information System (INIS)

    Tonnac, A. de

    1999-01-01

    This work is destined primarily to the FRAMATOME personnel and aim at endowing them with knowledge necessary to answer the usual questions raised by inquiring people. The booklet presents basic data, figures and arguments necessary in sustaining a discussion upon the nuclear energy controversial issues. These data are grouped around the following 13 issues: 1. Electric power in the world; 2. Production costs; 3. Resources and reserves; 4.Safety and nuclear accidents; 5. Accidents related to the energy production; 6. Health and radiation protection; 7. Environment and refuses; 8. Reprocessing; 9. Radioactive waste transportation; 10. Wastes; 11. Dismantling; 12; PWR and non-proliferation; 13. Public opinion and nuclear energy

  4. Renewable and nuclear sources of energy reduce the share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources reduce the share of fossil fuels.

  5. Renewable and nuclear sources of energy decreases of share of fossil fuels

    International Nuclear Information System (INIS)

    Koprda, V.

    2009-01-01

    In this paper author presents a statistical data use of nuclear energy, renewable sources and fossil fuels in the share of energy production in the Slovak Republic. It is stated that use of nuclear energy and renewable sources decreases of share of fossil fuels.

  6. Nuclear fusion - Inexhaustible source of energy for tomorrow

    International Nuclear Information System (INIS)

    Leiser, M.; Demchenko, V.

    1989-09-01

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues - scientific, technological, economic and environmental - which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4. (author). 11 refs, 4 figs, 1 tab

  7. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  8. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2009-01-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink(reg s ign), an extension of MATLAB(reg s ign), is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  9. Nuclear energy

    International Nuclear Information System (INIS)

    Reuss, Paul

    2012-01-01

    With simple and accessible explanations, this book presents the physical principles, the history and industrial developments of nuclear energy. More than 25 years after the Chernobyl accidents and few months only after the Fukushima one, it discusses the pros and cons of this energy source with its assets and its risks. (J.S.)

  10. The energy sources and nuclear energy - The point of view of the Belgian Catholic Church

    International Nuclear Information System (INIS)

    Hoenraet, Christian

    2000-01-01

    The problems related to the environment are reported regularly to the public by means of the newspapers, on radio and television. The story is the product of a journalistic process and in general does not bear much resemblance to the original event. The rate and type of reportage depend not only on the body of data available to the journalist but on the information sources the journalist chosen to use. The same story is reported in a positive or negative way. Finally people are overwhelmed by contradictory information and became uncertain or frightened. In order to provide the general public with objective information about nuclear energy in particular and to made a statement about the position of the Belgian Catholic Church concerning this matter, the results of the study were published in Dutch under the form of a book with the title 'The Energy Sources and Nuclear Energy - Comparative analysis and ethical thoughts written the same author. Thia paper is a short survey of the results of the study and to present the point of view of the Belgian Catholic Church in the energy debate

  11. Determination of activation level energy of nuclear isomers by calibration of microspectra of radioactive sources

    International Nuclear Information System (INIS)

    Veres, A.; Pavlicsek, I.

    1980-01-01

    Nuclear isomers with unknown activation level were irradiated by calibrated radioactive sources. The integral cross sections were calculated for different energies of the sources. The activation energy was given by values coinciding with each other within the limits of error. The method made the determination of the unknown level of 1180+-10 keV of 195 Pt nucleus possible. (author)

  12. Integral Fast Reactor: A future source of nuclear energy

    International Nuclear Information System (INIS)

    Southon, R.

    1993-01-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality

  13. Comparing nuclear power with other energy sources; Comparacion de la energia nuclear con otras fuentes energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Rey, Francisco C [Comision Nacional de Energia Atomica, General San Martin (Argentina). Centro Atomico Constituyentes

    2001-07-01

    The economics of electric generation of nuclear, hydro, oil and gas origin are compared. A similar comparison is also made from the health and environment standpoint for the fossil, nuclear, solar and wind generation. A risk assessment for energies of different origin is outlined and the significance of the greenhouse effect is emphasised. A comprehensive economic and environmental evaluation is recommended for the energy planning.

  14. 10 CFR 40.11 - Persons using source material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Persons using source material under certain Department of Energy and Nuclear Regulatory Commission contracts. 40.11 Section 40.11 Energy NUCLEAR REGULATORY... certain Department of Energy and Nuclear Regulatory Commission contracts. Except to the extent that...

  15. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2010-01-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  16. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  17. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  18. Nuclear and geothermal energy as a direct heat source

    International Nuclear Information System (INIS)

    Field, A.A.

    1976-01-01

    After some remarks on economic aspects, the swimming pool reactor simplified for the purpose of heat generation is described, the core of which supplies heat of 100-120 0 C for district heating. In this context, ways of storing waste heat are discussed. The alternative is pointed out that energy may be transferred by means of hydrogen. In conclusion, it is demonstrated on a French plant how geothermal water can be used directly via heat exchangers for district heating. (UA/LN) [de

  19. Assessment of nuclear energy cost competitiveness against alternative energy sources in Romania envisaging the long-term national energy sustainability

    International Nuclear Information System (INIS)

    Margeanu, C. A.

    2016-01-01

    The paper includes some of the results obtained by RATEN ICN Pitesti experts in the IAEA.s Collaborative Project INPRO-SYNERGIES. The case study proposed to evaluate and analyze the nuclear capacity development and increasing of its share in the national energy sector, envisaging the long term national and regional energy sustainability by keeping collaboration options open for the future while bringing solutions to short/medium-term challenges. The following technologies, considered as future competing technologies for electric energy generation in Romania, were selected: nuclear technology (represented by PHWR CANDU Units 3 and 4 - CANDU new, advanced HWR - Adv. HWR, and advanced PWR - Adv. PWR) and, as alternative energy sources, classical technology (represented by Coal-fired power plant using lignite fossil fuel, with carbon capture - Coal_new, and Gas-fired power plant operating on combined cycle, with carbon capture - Gas_new). The study included assessment of specific economic indicators, sensitivity analyses being performed on Levelised Unit Energy Cost (LUEC) variation due to different perturbations (e.g. discount rate, overnight costs, etc). Robustness indices (RI) of LUEC were also calculated by considering simultaneous variation of input parameters for the considered power plants. The economic analyses have been performed by using the IAEA.s NEST program. The study results confirmed that in Romania, under the national specific conditions defined, electricity produced by nuclear power plants is cost competitive against coal and gas fired power plants electricity. The highest impact of considered perturbations on LUEC has been observed for capital intensive technologies (nuclear technologies) comparatively with the classic power plants, especially for discount rate changes. (authors)

  20. Citizens’ preferences on nuclear and renewable energy sources: Evidence from Turkey

    International Nuclear Information System (INIS)

    Ertör-Akyazı, Pınar; Adaman, Fikret; Özkaynak, Begüm; Zenginobuz, Ünal

    2012-01-01

    Based on data from a face-to-face survey of 2422 residents from urban Turkey, this paper presents an analysis of citizens’ preferences in Turkey on nuclear and renewable energy sources. Findings indicate that opposition to nuclear power was strong, and only a small number of respondents endorsed it by listing it in their top two choices. Conversely, almost two-thirds of the sample endorsed investment in renewable energy sources (such as wind and solar), and only a small minority was opposed to it. Econometric analyses revealed that knowledge of the climate change problem was a common factor that explained endorsement of both nuclear and renewables. Yet, high levels of concern for the environment and a negative perception regarding its future differentiated the endorsers of renewables from those of nuclear energy. Endorsers of nuclear energy were found to be males who were knowledgeable about climate change and engaged in environmental issues, but less concerned about the environment, and optimistic about its future. Nuclear opponents, on the other hand, were found to be concerned about the environment, pessimistic about its future, and not fully relying on technology. - Highlights: ► We explore determinants of citizens’ preferences for renewable and nuclear energy. ► The analysis is based on a survey conducted in urban Turkey with 2422 respondents. ► Knowledge of climate change is a common factor of renewable and nuclear endorsement. ► Divergences relate to environmental concern and optimism, and reliance on technology. ► Energy conflicts emerge as complex and related to environmental values and attitudes.

  1. Nuclear energy ranks first as primary energy source in Europe in 2012

    International Nuclear Information System (INIS)

    Anon.

    2014-01-01

    According to the 2012 report of Eurostat, nuclear energy represents 30% of the production of primary energy in the member states of the E.U., renewable energies a little less than 20% and fossil energies a little more than 50%. In Europe the production of primary energy has been decreasing since 2001, from 940 million tonnes in 2001 to 794 million tonnes in 2012. In Europe the gross energy consumption has decreased in 24 member states to reach the level of 1995 year. In 2012 the E.U.'s dependence rate for energy was of 53% on average. Only Denmark was a net exporter of energy while the dependence rate for energy of the main E.U. energy consumers were: Germany (61%), Spain (73%), France (48%), United-Kingdom (42%) and Italy (81%). (A.C.)

  2. A historic look at the fears surrounding new energy sources and the nuclear debate

    International Nuclear Information System (INIS)

    Timbal-Duclaux, Louis

    1982-01-01

    The authors sets out to analyze some of the fears and opposition the use of new sources of energy has given rise to in the past. He then traces the historical background of the nuclear question and its various aspects (pacifism, ecology, etc.) [fr

  3. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  4. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  5. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  6. Nuclear power: tomorrow's energy source; Le nucleaire: une energie pour l'avenir

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  7. The encapsulated nuclear heat source reactor for proliferation-resistant nuclear energy

    International Nuclear Information System (INIS)

    Brown, N.W.; Hossain, Q.; Carelli, M.D.; Conway, L.; Dzodzo, M.; Greenspan, E.; Saphier, D.

    2001-01-01

    The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor concept. It is a fast neutron spectrum reactor cooled by Pb-Bi using natural circulation. It is designed for passive load following, for high level of passive safety, and for 15 years without refueling. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant across the reactor vessel wall by conduction-providing for an essentially sealed module that is easy to install and replace. Because the fuel is encapsulated within a heavy steel container throughout its life it provides a unique improvement to the proliferation resistance of the nuclear fuel cycle. This paper presents the innovative technology of the ENHS. (author)

  8. The 21st century nuclear park: A source of energy, water, food, and jobs

    International Nuclear Information System (INIS)

    Madia, W.J.

    2004-01-01

    The concept of a nuclear-powered agro-industrial complex, or 'nuplex', first advanced 40 years ago, provides an increasingly attractive means of addressing critical challenges in developing nations. The nuplex concept, updated for the 21st century, can serve as the basis for a nuclear park that provides a safe, environmentally friendly, and reliable source of energy at a cost comparable to other means of generation. This 21st century nuclear park can meet burgeoning demands for new sources of power and water, support the development of highly efficient agriculture to supply food to a growing world population, and offer employment at levels ranging from unskilled to highly skilled, thus creating opportunities for economic development and improving the quality of life in regions where it is deployed. (author)

  9. Presence of renewable sources of energy, cogeneration, energy efficiency and distributed generation in the International Nuclear Information System (INIS)

    International Nuclear Information System (INIS)

    Pares Ferrer, Marianela; Oviedo Rivero, Irayda; Gonzalez Garcia, Alejandro

    2011-01-01

    The International Nuclear Information System (INIS) it was created in 1970 by the International Atomic Energy Agency (OIEA) with the objective of propitiating the exchange of scientific information and technique on the peaceful uses of the energy atomic. INIS processes most of scientific literature and technique in engineering matters nuclear, safeguard and non proliferation and applications in agriculture and health that it generates in the world and it contributes to create a repository of nuclear information for present and future generations. Additionally it includes economic aspects and environmental of other energy sources that facilitate comparative studies for the taking of decisions. The database INIS, is its main informative product and it counts with more than 3 million registrations. One of the services that lends the Center of Administration of the Information and Development of the Energy (CUBAENERGIA), like center INIS in Cuba, is the search of information on the peaceful use of the science and nuclear technology in the Countries Members and the registration of information on their applications in Cuba. More recently, it extends this service to the Renewable Sources application of Energy in the country; as part of the works of administration of the information that it carries out for the National Group of Renewable Energy, Cogeneration, Saving and Energy Efficiency, created in the 2007 and coordinated by the MINBAS with the participation of institutions belonging to Organisms of the Administration Central of the State. In this work the results of a preliminary study are presented on the witnesses in the INIS of the Renewable Sources of Energy, the Cogeneration, Energy Efficiency, and the Distributed Generation. As well as of the application of metric tools to the opposing registrations for the case of the Distributed generation, that which allowed to characterize their historical evolution, the participation for countries in their development and

  10. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  11. Structure of production costs of different energy sources (fossile fuels and nuclear energy) (group 11)

    International Nuclear Information System (INIS)

    Girard, Ph.

    2002-01-01

    This article is the work of a group of students from the ''Ecole Nationale d'Administration'', they had to study the structure of the costs of the different energy sources. This analysis shows some common features between the energy sources. The cost is very dependent on the partial costs of technological constraints due to exploration, production, transport and distribution. For primary energies the market appears to be not very competitive, the price depends strongly on the market power of the operator and benefits are generally important. In France, taxes play a role to assure competitiveness of gas and coal against oil. Uranium fuel presents the lowest production and transformation costs at the same energy content. Transport costs are important for natural gas which implies a strong mutual dependence between gas producers and consumers. The irreplaceable use of oil in transport assures regular high revenues for oil companies. (A.C.)

  12. Power plant engineering for the use of fossil, regenerative and nuclear energy sources

    International Nuclear Information System (INIS)

    Strauss, K.

    1992-01-01

    Electrical power is the motor for technical advance and for the development of the standard of living in industrial countries. It has been provided for about 110 years on the industrial scale for general use by energy conversion in powerstations. This book gives the present state of technology for this and points out possible future developments. The author deals with the following aspects: Survey of available energy sources (fossil, regenerative, nuclear) the principles for the conversion of primary energy into electricity contamination of the environment resulting from energy conversion statements on the efficiency, availability of plant and costs. The reader can estimate the order of magnitude of energy and material flows and the dimensions of components and units from examples with answers. The book is intended for students and practical engineers in energy and powerstation technology. (orig.) With 210 figs [de

  13. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  14. Renewable energy sources and nuclear installations; Erneuerbare Energien und neue Nuklearanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, S.; Bauer, Ch.; Burgherr, P.; Stucki, S.; Vogel, F.; Biollaz, S.; Schulz, T.; Durisch, W.; Hardegger, P.; Foskolos, K.; Meier, A.; Schenler, W.

    2005-02-15

    This comprehensive work report for the Swiss Federal Office of Energy (SFOE) made by the Paul Scherrer Institute PSI takes a look at work done in connection with the updating of the office's Energy Perspectives. In particular, the topic of electricity is reviewed in the light of pending important decisions in the area of nuclear energy and the newer renewable sources of energy. The report makes an attempt to estimate the effect on Swiss power production that the new renewables and new nuclear installations could have in the next 30-40 years and to what costs this could be done and which obstacles would have to overcome. The renewable energy sources include small hydro, wind, photovoltaics, solar thermal power plants, biogas, geothermal energy, wave-power and solar chemistry. The methods used include literature study and contacts with internal PSI experts on the various areas involved. The most important system characteristics were noted and learning curves for the various technologies were taken into account. Ecological and social factors were also considered

  15. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  16. Reactor units for power supply to the Russian Arctic regions: Priority assessment of nuclear energy sources

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N.

    2017-03-01

    Full Text Available Under conditions of competitiveness of small nuclear power plants (SNPP and feasibility of their use to supply power to remote and inaccessible regions the competition occurs between nuclear energy sources, which is caused by a wide range of proposals for solving the problem of power supply to different consumers in the decentralized area of the Russian Arctic power complex. The paper suggests a methodological approach for expert assessment of the priority of small power reactor units based on the application of the point system. The priority types of the reactor units have been determined based on evaluation of the unit's conformity to the following criteria: the level of referentiality and readiness degree of reactor units to implementation; duration of the fuel cycle, which largely determines an autonomy level of the nuclear energy source; the possibility of creating a modular block structure of SNPP; the maximum weight of a transported single equipment for the reactor unit; service life of the main equipment. Within the proposed methodological approach the authors have performed a preliminary ranking of the reactor units according to various criteria, which allows quantitatively determining relative difference and priority of the small nuclear power plants projects aimed at energy supply to the Russian Arctic. To assess the sensitivity of the ranking results to the parameters of the point system the authors have observed the five-point and ten-point scales under variations of importance (weights of different criteria. The paper presents the results of preliminary ranking, which have allowed distinguishing the following types of the reactor units in order of their priority: ABV-6E (ABV-6M, "Uniterm" and SVBR-10 in the energy range up to 20 MW; RITM-200 (RITM-200M, KLT-40S and SVBR-100 in the energy range above 20 MW.

  17. The Future of Nuclear Energy As a Primary Source for Clean Hydrogen Energy System in Developing Countries

    International Nuclear Information System (INIS)

    Ahmed, K.; Shaaban, H.

    2007-01-01

    The limited availability of fossil fuels compared to the increasing demand and the connected environmental questions have become topics of growing importance and international attention. Many other clean alternative sources of energy are available, but most of them are either relatively undeveloped technologically or are not yet fully utilized. Also, there is a need for a medium which can carry the produced energy to the consumer in a convenient and environmentally acceptable way. In this study, a fission reactor as a primary energy source with hydrogen as an energy carrier is suggested. An assessment of hydrogen production from nuclear energy is presented. A complete nuclear-electro-hydrogen energy system is proposed for a medium size city (population of 500,000). The whole energy requirement is assessed including residential, industrial and transportation energies. A preliminary economical and environmental impact study is performed on the proposed system. The presented work could be used as a nucleus for a feasibility study for applying this system in any newly established city

  18. The challenge to keep nuclear fusion alive as a future energy source

    International Nuclear Information System (INIS)

    D'haeseleer, W.D.

    1999-01-01

    Few people are preoccupied with the energy issue. Indeed, inflation-corrected energy prices (in euros) are currently lower than before the first oil crisis of 1973; the annual growth rate of primary-energy use in the industrialized world has diminished considerably compared to before 1970, and oil and gas production is characterized by increased exploration activity and a wider geographical spread. Nevertheless, there is a real energy issue. If the greenhouse effect turns out to be real, then mankind should at least slow down the consumption of fossil fuels. Given the fact that world energy consumption (especially by the developing countries) will rise in the future, and that nuclear fission power has become unpopular in the western world, the idea reigning in some circles to cope with this situation by total reliance on energy savings and renewable energy sources comes close to wishful thinking. A realistic analysis makes it clear that there will be a need for large workhorses for electricity generation to keep the overall electricity grid sufficiently robust. From a global and long-term perspective, the logical conclusion is the following: because mankind cannot count on the continued use of fossil fuels (due to the finiteness of the resources combined with the possible climate change effects), our generation has the responsibility to develop alternative energy sources for the distant future. Many parallel lines of research and development therefore need be pursued; because of the uncertainties with other alternative sources, it would be irresponsible to kill some of these development lines. This holds for renewable sources, the nuclear fission breeder, and for nuclear fusion. A major hurdle for the survival of long term energy research and development is the liberalization of the electricity market. Because of the revolutionary changes taking place, utilities concentrate on cost cutting and short-term survival. In addition, they are no longer supposed to take

  19. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Hyun Gook

    2015-01-01

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources

  20. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Directory of Open Access Journals (Sweden)

    Sang Hun Lee

    2015-06-01

    Full Text Available Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  1. Integrated societal risk assessment framework for nuclear power and renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hun; Kang, Hyun Gook [Dept. of Nuclear and Quantum Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-06-15

    Recently, the estimation of the social cost of energy sources has been emphasized as various novel energy options become feasible in addition to conventional ones. In particular, the social cost of introducing measures to protect power-distribution systems from power-source instability and the cost of accident-risk response for various power sources must be investigated. To account for these risk factors, an integrated societal risk assessment framework, based on power-uncertainty analysis and accident-consequence analysis, is proposed. In this study, we applied the proposed framework to nuclear power plants, solar photovoltaic systems, and wind-turbine generators. The required capacity of gas-turbine power plants to be used as backup power facilities to compensate for fluctuations in the power output from the main power source was estimated based on the performance indicators of each power source. The average individual health risk per terawatt-hours (TWh) of electricity produced by each power source was quantitatively estimated by assessing accident frequency and the consequences of specific accident scenarios based on the probabilistic risk assessment methodology. This study is expected to provide insight into integrated societal risk analysis, and can be used to estimate the social cost of various power sources.

  2. Knowledge Sources and Opinions of Prospective Social Studies Teachers about Possible Risk and Benefit Analysis: Nuclear Energy and Power Stations

    Science.gov (United States)

    Yazici, Hakki; Bulut, Ramazan; Yazici, Sibel

    2016-01-01

    In this study, it was aimed to determine the trust status of prospective social studies teachers regarding various knowledge sources related to nuclear energy and power stations regarded as a controversial socio-scientific issue and their perceptions on the possible risks and benefits of nuclear energy and power stations. Target population of the…

  3. Nuclear energy data

    International Nuclear Information System (INIS)

    2004-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional graphical information as compared with previous editions allowing a rapid comparison between capacity and requirements in the various phases of the nuclear fuel cycle. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  4. Nuclear energy

    International Nuclear Information System (INIS)

    Hesketh, Ross.

    1985-01-01

    The subject is treated under the headings: nuclear energy -what is it; fusion (principles; practice); fission (principles); reactor types and systems (fast (neutron) reactors as breeders; fast reactors; thermal reactors; graphite-moderated thermal reactors; the CANDU reactor; light water reactors - the BWR and the PWR); the nuclear fuel cycle (waste storage; fuel element manufacture; enrichment processes; uranium mining); safety and risk assessment; the nuclear power industry and the economy (regulating authorities; economics; advantages and disadvantages). (U.K.)

  5. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  6. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  7. Nuclear energy

    International Nuclear Information System (INIS)

    Hladky, S.

    1985-01-01

    This booklet appeared in a series on technical history. It tries to communicate some of the scientific, technical and social stresses, which have been connected with the application of nuclear energy since its discovery. The individual sections are concerned with the following subjects: the search for the 'smallest particles'; the atomic nucleus; nuclear fission; the 'Manhattan Project'; the time after this - from the euphoria of the 1950's via disillusionment and change of opinion to the state of nuclear energy at the start of the 1980's. The booklet contains many details and is generously illustrated. (HSCH) [de

  8. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  9. Risk knowledge and risk attitudes regarding nuclear energy sources in space

    International Nuclear Information System (INIS)

    Maharik, M.; Fischhoff, B.

    1993-01-01

    A series of four studies examined the relationship between how much people know about the risks of using nuclear energy sources in space and how they feel about the technology. The authors found that the more people know, the more favorable they are -- except for two groups of people selected from organizations with strong pro-industry or pro-environment positions. These results suggest that a technology will get a more favorable hearing if it can get its message out -- providing that it has a legitimate story to tell and that the situation has not become too polarized already. The limits to these conclusions are discussed. 19 refs., 3 figs., 1 tab

  10. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  11. Nuclear energy

    International Nuclear Information System (INIS)

    Panait, A.

    1994-01-01

    This is a general report presenting the section VII entitled Nuclear Power of the National Conference on Energy (CNE '94) held in Neptun, Romania, on 13-16 June 1994. The problems addressed were those relating to electric power produced by nuclear power plant, to heat secondary generation, to quality assurance, to safety, etc. A special attention was paid to the commissioning of the first Romanian nuclear power unit, the Cernavoda-1 reactor of CANDU type. The communications were grouped in four subsections. These were: 1. Quality assurance, nuclear safety, and environmental protection; 2. Nuclear power plant, commissioning, and operation; 3. Nuclear power plant inspection, maintenance, and repairs, heavy water technology; 4. Public opinion education. There were 22 reports, altogether

  12. Governmental interventions in the energy market. Study of the Dutch level playing field for fossil fuels, renewable sources, nuclear energy and energy conservation

    International Nuclear Information System (INIS)

    De Visser, E.; Winkel, T.; De Jager, D.; De Vos, R.; Blom, M.; Afman, M.

    2011-06-01

    This study has made an inventory of 53 governmental interventions in the Dutch energy market. Moreover, the consequences for the playing field for fossil fuels, renewable sources, nuclear energy and energy saving have been quantified. It shows that the government still stimulates the use of energy and fossil fuels more than it stimulates use of renewable energy sources. Policy that focuses on decreasing the price differences between sustainable and fossil should therefore focus on the phase-out of this support and subsequently on bridging the remaining financial gap. [nl

  13. Alternative energy sources

    International Nuclear Information System (INIS)

    Chapman, P.

    1978-01-01

    It is suggested that the development of alternative energy sources has made them more attractive than nuclear power, due to their characteristics, such as small scale and short lead times, moderate costs and minimal environmental impact. The objectives of energy policy are discussed in relation to forecasts of energy demand. Tables show (a) projected useful energy demands UK; (b) patterns of end-use of energy; (c) costs of heating fuels; (d) net present value of gas purchases; (e) useful-energy by end-use analysis; and (f) primary fuel summary 2025. The contributions of hydro, nuclear, waves, solar, oil, gas and coal are estimated to 2025. (U.K.)

  14. Nuclear energy

    International Nuclear Information System (INIS)

    Luxo, Armand.

    1977-01-01

    The reasons and conditions of utilizing nuclear power in developing countries are examined jointly with the present status and future uses already evaluated by some organizations. Some consequences are deduced in the human, financial scientific and technological fields, with provisional suggestions for preparing the nuclear industry development in these countries. As a conclusion trends are given to show how the industrialized countries having gained a long scientific and technological experience in nuclear energy can afford their assistance in this field, to developing countries [fr

  15. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  16. Nuclear power and other energy sources in the context of a smooth and practical social and economic development

    International Nuclear Information System (INIS)

    Sumitra, T.

    1996-01-01

    The dilemma on the adoption of nuclear energy for electricity generation has been going on for many years. On the one hand, nuclear energy is considered to be technically proven, relatively cheap and environmental friendly but concerns about the risk of a major accident and safe disposal of long-lived radioactive wastes are still controversial. On the other hand, the hope for cheap, clean and practical energy sources, such as renewable energy sources, is still alive and often cited as the real and only alternative to fossil fuels. This paper describes some arguments concerning all alternatives in the context of a smooth and practical social and economic development of a country. (author)

  17. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  18. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  19. The geometry of nuclear energy

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1992-01-01

    In a personal assessment of the ethics of nuclear energy, the author challenges some of the conventional wisdom surrounding the subject, and concludes that for many applications nuclear energy is the energy source of ethical choice

  20. Role of nuclear and other energy sources in the Cuban electricity grid

    International Nuclear Information System (INIS)

    Lopez, I.; Perez, D.

    2000-01-01

    Energy options to cover electricity demand in Cuba for next years are limited. Expected increase in the oil companion gas, domestic crude oil production and biomass co-generation can not cover the 3-4% growth of the electricity demand. An important option could be the conclusion of Juragua Nuclear Power Plant. The paper presents the country energy supply situation for electricity generation and how can be covered the electricity demand forecast until 2015. A short description of the methodology, to evaluate the expansion of the electricity system using DECADES tools is presented. Results of the optimal expansion plan considering the introduction of NPP in combination with increase in the use of renewable sources is analyzed in the framework of small country electricity grid from economical and environmental point of view. Finally, in the conclusions the paper shows the role of NPP to cover electricity demand and in the reduction of Greenhouse Gas emissions. The contribution of renewable energy sources to these objectives is also presented. (author)

  1. Renewable energy sources (promotion)

    International Nuclear Information System (INIS)

    Cook, F.

    1986-01-01

    Permission to present a Bill to establish an independent commission directly responsible for the research, development and demonstration of clean, renewable, alternative sources of energy (to nuclear energy) is requested. The paragraphs of the preamble to the Bill are summarized by the Member seeking permission. The main reason for promoting renewable energy sources is opposition to the nuclear industry. One objection was raised. However, permission was granted to present the Bill and it was read for the first time with a second reading ordered for 7 March 1986. The Bill itself is not reprinted but the permission and question are reported verbatim. (U.K.)

  2. Weighing the Risks of Nuclear Energy and Climate Change: Trust in Different Information Sources, Perceived Risks, and Willingness to Pay for Alternatives to Nuclear Power.

    Science.gov (United States)

    Vainio, Annukka; Paloniemi, Riikka; Varho, Vilja

    2017-03-01

    We examined how individuals perceive nuclear energy in the context of climate change mitigation and how their perceptions are associated with trust in different risk information sources. We analyzed the interrelationships between trust, perceived risk of nuclear power, climate change concern, perception of nuclear energy as an acceptable way to mitigate climate change, and willingness to pay (WTP) for alternatives to nuclear power. A nationwide survey (N = 967) collected in Finland was analyzed with structural equation modeling. The associations between trust and perceived risk of nuclear power, climate change concern, and perception of nuclear power as a way to mitigate climate change varied by the type of information source. Political party support and other background variables were associated with trust in different information sources. The effect of trust in information sources on WTP was mediated by perceived risks and benefits. The results will increase our understanding of how individuals perceive nuclear energy as a way to cut CO 2 emissions and the role of trust in different information sources in shaping nuclear risk perceptions and energy choices. © 2016 Society for Risk Analysis.

  3. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  4. Nuclear Physics Meets the Sources of the Ultra-High Energy Cosmic Rays.

    Science.gov (United States)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2017-07-07

    The determination of the injection composition of cosmic ray nuclei within astrophysical sources requires sufficiently accurate descriptions of the source physics and the propagation - apart from controlling astrophysical uncertainties. We therefore study the implications of nuclear data and models for cosmic ray astrophysics, which involves the photo-disintegration of nuclei up to iron in astrophysical environments. We demonstrate that the impact of nuclear model uncertainties is potentially larger in environments with non-thermal radiation fields than in the cosmic microwave background. We also study the impact of nuclear models on the nuclear cascade in a gamma-ray burst radiation field, simulated at a level of complexity comparable to the most precise cosmic ray propagation code. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions in cosmic ray sources and propagation.

  5. Energy sources and power plants

    International Nuclear Information System (INIS)

    Schulz, Detlef; Schulz, Karen

    2013-01-01

    Energy is obtained from various energy sources (coal, petroleum, natural gas, nuclear fuels, wind energy, solar energy, hydro power, biomass, geothermal energy). These differ in each case with respect to their availability, methods of their production and the required power plant technologies. As technologies of the future fuel cells and nuclear fusion are traded. [de

  6. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    2 1/2 years ago a consultation group was formed to help the Section for Social Questions of the Council of Churches in the Netherlands, to answer questions in the area of nuclear energy. During this time the character of the questions has changed considerably. In the beginning people spoke of fear and anxiety over the plans for the application of this new technical development but later this fear and anxiety turned to protest and opposition. This brochure has been produced to enlighten people and try and answer their alarm, by exploring the many facets of the problems. Some of these problems are already being deeply discussed by the public, others play no role in the forming of public opinion. The points of view of the churches over nuclear energy are not expressed, the brochure endeavours to express that nuclear energy problems are a concern for the churches. Technical and economic information and the most important social questions are discussed. (C.F.)

  7. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    Science.gov (United States)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  8. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    Science.gov (United States)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.

  9. Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories

    International Nuclear Information System (INIS)

    Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.

    2011-01-01

    A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2 , NO 3- , Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, bio-corrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions. (authors)

  10. Main influence factors on the final energy generation cost of a nuclear power plant in comparison with other energy sources

    International Nuclear Information System (INIS)

    Souza, J.A.M. de; Glardon, C.; Schmidt, R.M.

    1981-01-01

    The main factors in the construction and in the operation of nuclear power plants that affect the final energy generation cost are presented. The structure of the energy generation cost, of the nuclear fuel cost and the total investment are studied. (E.G.) [pt

  11. Potential of small nuclear reactors for future clean and safe energy sources

    International Nuclear Information System (INIS)

    Sekimoto, H.

    1992-01-01

    To cope with the various kinds of energy demands expected in the 21st century, it is necessary to explore the potential of small nuclear reactors and to find a way of promoting their introduction to society. The main goal of current research activities is 'the constitution of the self-consistent nuclear energy system'. These activities can be understood by realizing that the nuclear community is facing a turning point for its survival in the 21st century. Self-consistency can be manifested by investigating and developing the potential advantages of the nuclear fission reaction and lessening the potential disadvantages. The contributions in this volume discuss concepts of small reactors, applications of small reactors, and consistency with conventional energy supply systems

  12. Economics of seawater desalination with innovative nuclear reactors and other energy sources: the EURODESAL project

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2004-01-01

    This paper summarises our recent investigations undertaken as part of the EURODESAL project on nuclear desalination, which were carried out by a consortium of four EU and one Canadian, Industrials and two leading EU R and D organisations. Major results of the project, in particular of its economic evaluation work package as discussed in this paper, are: 1. A coherent demonstration of the technical feasibility of nuclear desalination through the development of technical principles for the optimum cogeneration of electricity and water and by exploring the unique capabilities of the innovative nuclear reactors and desalination technologies; verification that the integrated system design does not adversely affect nuclear reactor safety. 2. The development of codes and methods for an objective assessment of the competitiveness and sustainability of proposed solutions through comparison, in European conditions, with fossil and renewable energy based solutions. The results obtained so far seem to be quite encouraging as regards the economical viability of nuclear desalination options. Thus, for example, specific desalination costs ($/m 3 of desalted water) for nuclear systems such as the AP600 and the French PWR900 (reference base case), coupled to Multiple Effect Distillation (MED) or the Reverse Osmosis (RO) processes, are 30% to 60% lower than fossil energy based systems using pulverised coal and natural gas with combined cycle, at low discount rates and recommended fuel prices. Even in the most unfavourable scenarios for nuclear energy (discount rates = 10%, low fossil fuel prices) desalination costs with the nuclear options with the nuclear reactors are 7% to 15% lower, depending upon the desalination capacities. Furthermore, with the high performance coupling schemes developed by the EURODESAL partners, the specific desalination costs of nuclear systems are reduced by another 2% to 14%, even without system and design optimisation. (author)

  13. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  14. Risks of energy sources

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Pop-Jordanova, N.

    1989-09-01

    The paper is devoted to comparative health and environmental risks of different energy sources and their influence to public perception, social acceptability and decision-making. The technical heights of the risks, expressed in the number of fatalities of labor and public per unit energy output, from fossil, nuclear and renewable sources are analysed and compared. The complete energy cycle from mining to waste disposal, as well as the future trends, are taken into account. A comparison of the risks of different energy systems with the anticipated global and national energy shares by source is also presented. Furthermore, detailed studies of the non-technical dimensions of the energy risks are performed. Using a modified attitude-behaviour model, the cognitive structure underlying the positions towards different energy options is investigated. Estimating the diverse acting of the risk components, the consequent changes in the rank ordering of the energy sources are deduced. Finally, adding the psychological components nuclear reaches the highest place. In this respect, a unified multidimensional space for the representation of various technological risks is introduced. It affords a comparison of the risks not only by their technical height, but also by other characteristics (involuntary, fearfulness etc.). Finally, it was pointed out that in considering the risk characteristics and constraints, as well as the external fields, a system approach has to be used, taking into account the risks simultaneously with the benefits. 12 refs, 4 figs, 2 tabs

  15. Symposium on Nuclear Energy. Proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The energy problem poses a big challenge to a developing country like the Philippines. The development of renewable energy sources is not enough. Aware then of the limitations of these energy sources, in spite of arguments against nuclear energy we have no other recourse but to go nuclear. This symposium emphasizes the importance of energy development to attain the country's progress and discusses the pros and economics of nuclear power. (RTD)

  16. Energy sources

    International Nuclear Information System (INIS)

    Anon.

    1972-01-01

    A study carried out around 1970 on the world energy future is described. One method is based on world energy evaluations extrapolated to 1985 and 2000. The other one is prospective and tries to account for changes in life style and technology and relations with the developing countries [fr

  17. Perspectives for nuclear energy

    International Nuclear Information System (INIS)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G.

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes

  18. Nuclear energy in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, S.; Kharazyan, V.

    2000-01-01

    This summary represents an overview of the energy situation in Armenia and, in particular, the nuclear energy development during the last period of time. the energy sector of Armenia is one of the most developed economy branches of the country. The main sources of energy are oil products, natural gas, nuclear energy, hydropower, and coal. In the period of 1985-1988 the consumption of these energy resources varied between 12-13 million tons per year of oil equivalent. Imported energy sources accounted for 96% of the consumption. During the period 1993-1995 the consumption dropped to 3 million tons per year. Electricity in Armenia is produced by three thermal, one nuclear, and two major hydroelectric cascades together with a number small hydro units. The total installed capacity is 3558 MW. Nuclear energy in Armenia began its development during the late 1960's. Since the republic was not rich in natural reserves of primary energy sources and the only domestic source of energy was hydro resource, it was decided to build a nuclear power plant in Armenia. The Armenian Nuclear Power Plant (ANPP) Unit 1 was commissioned in 1996 and Unit 2 in 1980. The design of the ANPP was developed in 1968-1969 and was based on the project of Units 3 and 4 of the Novovoronezh NPP. Both units of the plant are equipped with reactors WWER-440 (V -270) type, which are also in use in some power stations in Russian Federation, Bulgaria, and Slovakia. Currently in Armenia, 36% of the total electricity production is nuclear power electricity. (authors)

  19. Nuclear Energy Data 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants declined in 2012 as a result of operational issues at some facilities and suspended operation at all but two reactors in Japan. Nuclear safety was further strengthened in 2012 following safety reviews prompted by the Fukushima Daiichi nuclear power plant accident. Governments committed to maintaining nuclear power in the energy mix pursued initiatives to increase nuclear generating capacity. In Turkey, plans were finalised for the construction of the first four reactors for commercial electricity production. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Statlinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link [fr

  20. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  1. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Wilmer, P.

    2004-01-01

    In common with many of the issues surrounding nuclear energy, there is some truth in the popular claim that nuclear energy is 'not economic', but this is far from being a universal truth. This paper puts forward the view that, overall, nuclear energy can be a competitive source of electricity and a realistic economic option for the future. (author)

  2. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  3. Alternative Energy Sources

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2012-01-01

    Alternative Energy Sources is designed to give the reader, a clear view of the role each form of alternative energy may play in supplying the energy needs of the human society in the near and intermediate future (20-50 years).   The two first chapters on energy demand and supply and environmental effects, set the tone as to why the widespread use of alternative energy is essential for the future of human society. The third chapter exposes the reader to the laws of energy conversion processes, as well as the limitations of converting one energy form to another. The sections on exergy give a succinct, quantitative background on the capability/potential of each energy source to produce power on a global scale. The fourth, fifth and sixth chapters are expositions of fission and fusion nuclear energy. The following five chapters (seventh to eleventh) include detailed descriptions of the most common renewable energy sources – wind, solar, geothermal, biomass, hydroelectric – and some of the less common sources...

  4. Nuclear Energy Data - 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants remained steady in 2013 despite the progressive shutdown of all reactors in Japan leading up to September and the permanent closure of six reactors in the OECD area. Governments committed to maintaining nuclear power in the energy mix advanced plans for increasing nuclear generating capacity, and progress was made in the development of deep geological repositories for spent nuclear fuel, with Finland expected to have the first such facility in operation in the early 2020's. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'StatLinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  5. Nuclear Energy Data - 2016

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projections of nuclear generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants increased slightly in 2015, by 0.2% and 0.1%, respectively. Two new units were connected to the grid in 2015, in Russia and Korea; two reactors returned to operation in Japan under the new regulatory regime; and seven reactors were officially shut down - five in Japan, one in Germany and one in the United Kingdom. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects progressing in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Stat Links'. For each Stat Link, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  6. Nuclear energy and nuclear technology

    International Nuclear Information System (INIS)

    Luescher, E.

    1982-01-01

    This book originated in the training courses for teachers of grammar- and secondary schools in Dillingen (Bavaria). The aim of these courses is to become informed about the latest state in one field of physics. The lectures are well-known experts in the respective fields. In the latest study (1980) of the National Academy of Sciences the experts came to the conclusion that without further development nuclear power plants the utilization of too much coal would become necessary and involve irreversible environmental damage (see chapter 6). There are two important obstacles impeding the further extension of nuclear energy. The first problem to be solved is the processing and storage of radioactive waste. This is a more technical task and can be treated in a satisfactory way. The second obstacle is less easy to take as the population has to be convinced that a nuclear power plant can be operated with almost unbelievable safety (see chapter 5) and be shut down safely in the case of incidents. The most promising possibility of controlled nuclear fusion as energy source is still many decades- if feasible at all- away from being performed (see chapter. 7). In the Soviet Union 25% of the electric energy production shall be proceed from nuclear power plants by the year 1990. (orig./GL) [de

  7. Nuclear energy and jobs

    International Nuclear Information System (INIS)

    Goldfinger, N.

    1976-01-01

    Mr. Goldfinger, Research Director of AFL-CIO, examines the problem of energy in general, nuclear in particular, and the employment relationship. The energy shortages in the U.S. and its dependence on oil are cited. Directly connected with this serious problem relating to energy are jobs, income, and living standards. If energy is not available, industries will be unable to expand to meet the needs of the growing population; and prices of goods will rise. From an evaluation of what experts have said, Mr. Goldfinger concludes that increased coal production and better coal technology cannot meet energy demands; so the sharp increase both in volume and as a percentage of total energy needed in the future will have to come from nuclear power. Development of alternative sources is necessary, he feels, and intense research on these is needed now. The employment impact in the nuclear energy scenario is analyzed according to the trades involved. It is estimated that 1.5 million jobs in the nuclear industry would be open by the year 2000 if nuclear is to provide one-fourth of energy supplies. The employment picture, assuming abandonment of nuclear energy, is then discussed

  8. Nuclear energy and information

    International Nuclear Information System (INIS)

    Chen Baisong

    1996-01-01

    The information tells us that since the first chain reaction discovery about 50 years ago up to now, there are more than 400 commercial nuclear power plants connected to electricity supply net works. The electricity supplied by nuclear power plants has exceeded 2000 TWH, which represents almost 17% of the total electricity generated in the world and this proportion is still increasing. The accumulated operating experience of nuclear power plants reach more than 6000 reactor-year. Quite high average life time energy availability factors demonstrate the good reliability of nuclear power plants. The present status of the electricity development in the world shows that nuclear power has become an imperative and exclusively realistic alternative energy source. All of these information demonstrate that nuclear power as a safe, clean and less cost power source has already been widely accepted in the world. In Asia and Pacific region, the fast development of economy provides a vast possibility for the development of nuclear power. In China, shortage of electricity has become the 'bottle neck' which retards the economic development nowadays. China has already drawn up the plan for the development of nuclear power. The information is of great significance to promote the development of nuclear power. It could be said that without information, nuclear power could not be smoothly introduced in any country or region. (J.P.N.)

  9. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  10. Nuclear energy: a reassessment

    International Nuclear Information System (INIS)

    McClure, J.A.; Nader, R.; Udall, M.K.; Walske, C.

    1980-01-01

    This edited transcript of a televised American Enterprise Institute Public Poicy Forum explores the role of nuclear technology in energy production in the US today. A panel made up of Senator James A. McClure, Ralph Nader, Representative Morris K. Udall, and Dr. Carl Walske and moderated by John Charles Daly examines the lessons learned from the accident at the Three Mile Island Nuclear Plant and the public attitudes toward nuclear energy, particularly in light of this accident. The experts discuss alternative energy sources, such as coal, gas, biomass, and solar power as well as conservation and more efficient use of present facilities. The issues of nuclear waste disposal and transport and US commitments to countries not self-sufficient in their energy needs are also explored

  11. Nuclear energy

    International Nuclear Information System (INIS)

    2007-01-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  12. Nuclear energy, the climate and nuclear disarmament

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    The main concern of Pugwash, with very good reason, is nuclear disarmament, but a negative attitude towards nuclear energy is not only futile, but counterproductive as it misses opportunities to appropriately influence its development. Since nuclear energy cannot be abandoned for ecological (decrease in greenhouse gases emission) and economic reasons as a long term energy source, then efforts should be devoted to make it safe from proliferation, which is possible from scientific and technological point of view

  13. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  14. Nuclear energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The film stresses that a drastic reduction in carbon dioxide emissions, mainly from the burning of fossil fuels, must be achieved to limit a dangerous concentration of greenhouse gases in the atmosphere. It compares the environmental costs of different energy sources, in particular the wastes of a coal-fired versus a nuclear plant, and mentions the measures taken to reinforce protection against the risk of nuclear accidents

  15. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    This brochure is intended as a contribution to a better and more general understanding of one of the most urgent problems of present society. Emphasis is laid on three issues that are always raised in the nuclear debate: 1) Fuel cycle, 2) environmental effects of nuclear power plants, 3) waste disposal problems. (GL) [de

  16. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  17. Nuclear physics meets the sources of the ultra-high energy cosmic rays

    International Nuclear Information System (INIS)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2016-07-01

    We study the implications of nuclear data and models for cosmic-ray astrophysics, which involves the photodisintegration of nuclei up to iron in astrophysical environments. We demonstrate that data on photo-absorption cross sections are sparse in that mass range by screening nuclear databases, such as EXFOR; these cross sections are needed to compute the photodisintegration rates. We also test the prediction power of models, such as TALYS, and find uncertainties of the order of a factor two. If however the radiation fields are strong enough such that the nuclear cascade in the astrophysical source can develop, we find that differences among different models average out -- unless there is a systematic offset in the interaction model. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions, supported by simulating the entire disintegration chain in a gamma-ray burst. We also point out that a first consistency check may be the measurement of the absorption cross section for different isobars.

  18. Nuclear physics meets the sources of the ultra-high energy cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Boncioli, Denise; Fedynitch, Anatoli; Winter, Walter

    2016-07-15

    We study the implications of nuclear data and models for cosmic-ray astrophysics, which involves the photodisintegration of nuclei up to iron in astrophysical environments. We demonstrate that data on photo-absorption cross sections are sparse in that mass range by screening nuclear databases, such as EXFOR; these cross sections are needed to compute the photodisintegration rates. We also test the prediction power of models, such as TALYS, and find uncertainties of the order of a factor two. If however the radiation fields are strong enough such that the nuclear cascade in the astrophysical source can develop, we find that differences among different models average out -- unless there is a systematic offset in the interaction model. We conclude with an isotope chart describing which information is in principle necessary to describe nuclear interactions, supported by simulating the entire disintegration chain in a gamma-ray burst. We also point out that a first consistency check may be the measurement of the absorption cross section for different isobars.

  19. Relative economic incentives for hydrogen from nuclear, renewable, and fossil energy sources

    International Nuclear Information System (INIS)

    Gorensek, Maximilian B.; Forsberg, Charles W.

    2009-01-01

    The specific hydrogen market determines the value of hydrogen from different sources. Each hydrogen production technology has its own distinct characteristics. For example, steam reforming of natural gas produces only hydrogen. In contrast, nuclear and solar hydrogen production facilities produce hydrogen together with oxygen as a by-product or co-product. For a user who needs both oxygen and hydrogen, the value of hydrogen from nuclear and solar plants is higher than that from a fossil plant because ''free'' oxygen is produced as a by-product. Six factors that impact the relative economics of fossil, nuclear, and solar hydrogen production to the customer are identified: oxygen by-product, avoidance of carbon dioxide emissions, hydrogen transport costs, storage costs, availability of low-cost heat, and institutional factors. These factors imply that different hydrogen production technologies will be competitive in different markets and that the first markets for nuclear and solar hydrogen will be those markets in which they have a unique competitive advantage. These secondary economic factors are described and quantified in terms of dollars per kilogram of hydrogen. (author)

  20. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  1. Lower-energy neutron sources for increasing the sensitivity of nuclear gages for measuring the water content of bulk materials

    International Nuclear Information System (INIS)

    Bailey, S.M.

    1977-01-01

    The sensitivity of a gage using a nuclear source for measuring the water content of bulk materials, such as plastic concrete, is increased by use of a lithium or fluorine neutron nuclear source. 3 figures

  2. Nuclear energy versus coal

    International Nuclear Information System (INIS)

    Storm van Leeuwen, J.W.

    1980-01-01

    An analysis is given of the consequences resulting from the Dutch government's decision to use both coal and uranium for electricity production. The energy yields are calculated for the total conversion processes, from the mine to the processing of waste and the demolition of the installations. The ecological aspects considered include the nature and quantity of the waste produced and its effect on the biosphere. The processing of waste is also considered here. Attention is given to the safety aspects of nuclear energy and the certainties and uncertainties attached to nuclear energy provision, including the value of risk-analyses. Employment opportunities, the economy, nuclear serfdom and other social aspects are discussed. The author concludes that both sources have grave disadvantages and that neither can become the energy carrier of the future. (C.F.)

  3. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  4. Source driven breeding fission power reactors and the nuclear energy strategy

    International Nuclear Information System (INIS)

    Greenspan, E.

    The nuclear energy economy is facing severe difficulties associated with low utilization of uranium resources, safety, non-proliferation and environmental issues. Energy policy makers face the dilemma: commercialize LMFBRs immediately with the risk of negative economical, proliferation or other consequences, or continue with R and D programs that will provide the information needed for sounder decisions, but now taking the risk of running out of economically exploitable uranium ore resources. The development of hybrid reactors can provide an assurance against the latter risk and offers many interesting new options for the nuclear energy strategy. Being based on the technology of LWRs and HWRs, Light Water Hybrid Reactors (LWHR) provide a most natural link between the fission reactor technology of the present and the fusion power technology of the future. The investment in their development in excess of that required for the development of fusion power reactors is expected to be relatively small, thus making the development of LWHRs potentially a high benefit-to-cost ratio program. It is recommended that the fission and fusion communities will cooperate in hybrids R and D programs aimed at assessing the technological and economical viability of hybrid reactors as reliably and soon as possible. (author)

  5. Nuclear energy

    International Nuclear Information System (INIS)

    Lotter, A.C.

    1979-01-01

    The recent, terrifying threat of a major calamity at Pennsylvania's Three Mile Island power plant near Harrisburg reverberated across practically the whole of the civilised world. An almost incredible sequence of human and mechanical failures at this installation had stopped just short of disaster and had brought the unthinkable perilously close to happening. The accident had sprayed radioactive waste into the air and had led to the large scale evacuation of people from the endangered area, disrupted hundreds of thousands of lives and caused a crippling setback to the nuclear industry. In this article the author discusses the impact the Harrisburg incident has had on the nuclear industry

  6. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  7. Nuclear Energy

    International Nuclear Information System (INIS)

    1982-11-01

    A brief indication is given of the United Kingdom nuclear power programme including descriptions of the fission process, the Magnox, AGR and PWR type reactors, the recycling process, waste management and decommissioning, safety precautions, the prototype fast reactor at Dounreay, and the JET fusion experiment. (U.K.)

  8. Alternatives to nuclear energy

    International Nuclear Information System (INIS)

    Terrado, E.N.

    1981-01-01

    This article discusses several possibilities as alternatives to nuclear energy and their relevance to the Philippine case. The major present and future fuel alternatives to petroleum and nuclear energy are coal, geothermal heat, solar energy and hydrogen, the first two of which are being used. Different conversion technologies are also discussed for large scale electricity production namely solar thermal electric conversion (STC), photovoltaic electric power system (PEPS) and ocean thermal energy conversion (OTEC). Major environmental considerations affect the choice of energy sources and technologies. We have the problem of long term accumulation of radioactive waste in the case of nuclear energy; in geothermal and fossil-fuels carbon dioxide uranium and accumulation may cause disastrous consequences. With regard to Philippine option, the greatest considerations in selecting alternative energy options would be resources availability - both energy and financial and technology status. For the country's energy plan, coal and geothermal energy are expected to play a significant role. The country's coal resources are 1.4 billion metric tons. For geothermal energy, 25 volcanic centers were identified and has a potential equivalent to 2.5 x 10 6 million barrels of oil. Solar energy if harnessed, being in the sunbelt, averaging some 2000 hours a year could be an energy source. The present dilemma of the policy maker is whether national resources are better spent on large scale urban-based energy projects or whether those should be focused on small scale, rural oriented installations which produced benefits to the more numerous and poorer members of the population. (RTD)

  9. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  10. The modular pebble bed nuclear reactor - the preferred new sustainable energy source for electricity, hydrogen and potable water production?

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2003-01-01

    This paper describes a joint project of Massachusetts Institute of technology, Nu-Tec Inc. and Proto Power. The elegant simplicity of graphite moderated pebble bed reactor is the basis for the 'generation four' nuclear power plants. High Temperature Gas Cooled (HTGC) nuclear power plant have the potential to become the preferred base load sustainable energy source for the new millennium. The great attraction of these helium cooled 'Generation Four' nuclear plant can be summarised as follows: Factory assembly line production; Modularity and ease of delivery to site; High temperature Brayton Cycle ideally suited for cogeneration of electricity, potable water and hydrogen; Capital and operating costs competitive with hydrocarbon plant; Design is inherently meltdown proof and proliferation resistant

  11. Comparative assessment of nuclear power and other energy sources: the DECADES project

    International Nuclear Information System (INIS)

    Bennett, L.L.

    1996-01-01

    The environmental and health related impacts of different energy systems are emerging as significant issues. To promote international cooperation in this field, the inter-agency project on databases and methodologies for comparative assessment of different energy sources for electricity generation, called DECADES, was established at the end of 1992. In October 1995 was held the International Symposium on ''Electricity, Health and the Environment - Comparative Assessment in Support of Decision Making''. Through its programs and activities, the IAEA plays a leading role, in cooperation with other organizations, in the DECADES project, to examine areas in which international expertise and support can best be applied to assist national policy and decision makers in objectively and comprehensively assessing their energy systems and strategies

  12. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  13. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  14. Nuclear energy and radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1980-01-01

    Both the light water reactor and the Canadian heavy water reactor systems produce electricity cheaply and efficiently. They produce some fissionable byproducts, which can be recycled to extend energy sources many-fold. Besides the production of electrical power, the nuclear industry produces various radioistopes used for treatment of cancer, in diagnostic procedures in nuclear medicine, in ionization smoke detectors, and as radioactive tracers with various technological applications including the study of the mechanisms of life. The increment in environmental radiation levels resulting from operation of nuclear power reactors represents a very small fraction of the radiation levels to which we are all exposed from natural sources, and of the average radiation exposures resulting from diagnostic procedures in the healing arts. The total health hazard of the complete nuclear power cycle is generally agreed to be smaller than the hazards associated with the generation of an equal amount of electricity from most other currently available sources of energy. The hazards from energy production in terms of shortened life expectancy are much smaller in all cases than the resulting increase in health and life expectancy. (auth)

  15. Nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The Administrative Court of Braunschweig judges the Ordinance on Advance Funding of Repositories (EndlagervorausleistungsVO) to be void. The Hannover Regional Court passes a basic judgment concerning the Gorleben salt mine (repository) and an action for damages. The Federal Administrative Court dismisses actions against part-permits for the Hanau fuel element fabrication plant. The Koblenz Higher Administrative Court dismisses actions against a part-permit for the Muelheim-Kaerlich reactor. 31st Amendment of the German Criminal Code passed, involving amendments in environmental criminal code, defined in the 2nd amendment to the Act on Unlowful Practices Causing Damage to the Environment (UKG); here: Amendments to the law relating to the criminal code and penal provisions governing unlawful conduct in the operation of nuclear installations. (orig.) [de

  16. Nuclear energy and nuclear weapons

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1983-06-01

    We all want to prevent the use of nuclear weapons. The issue before us is how best to achieve this objective; more specifically, whether the peaceful applications of nuclear energy help or hinder, and to what extent. Many of us in the nuclear industry are working on these applications from a conviction that without peaceful nuclear energy the risk of nuclear war would be appreciably greater. Others, however, hold the opposite view. In discussing the subject, a necessary step in allaying fears is understanding some facts, and indeed facing up to some unpalatable facts. When the facts are assessed, and a balance struck, the conclusion is that peaceful nuclear energy is much more part of the solution to preventing nuclear war than it is part of the problem

  17. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  18. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  19. Can Slovakia to survive without nuclear energy? State and perspectives of nuclear energetics. Attitudes of public to nuclear energy

    International Nuclear Information System (INIS)

    Suchomel, J.; Murinova, S.

    2004-01-01

    In this presentation authors deals with the review of the state of nuclear energetics in the Slovak Republic. Perspectives of nuclear energy and renewable sources of energy as well as attitudes of public to nuclear energy are discussed

  20. Review of nuclear energy

    International Nuclear Information System (INIS)

    Mattila, L.; Anttila, M.; Pirilae, P.; Vuori, S.

    1997-05-01

    The report is an overview on the production of the nuclear energy all over the world. The amount of production at present and in future, availability of the nuclear fuel, development of nuclear technology, environmental and safety issues, radioactive waste management and commissioning of the plants and also the competitivity of nuclear energy compared with other energy forms are considered. (91 refs.)

  1. The nuclear energy debate

    International Nuclear Information System (INIS)

    Rippon, S.

    1976-01-01

    With reference to the public discussion which is taking place at the moment concerning the future of nuclear energy in the UK, the document from the Advisory Council on Research and Development for Fuel and Power and also the report of the Royal Commission on Environmental Pollution are considered. Although there have been many other projections of UK and world energy requirements prepared by many different organisations, few cover such a wide range of scenarios in such detail as the ACORD report. The Royal Commission report contains many reassuring findings on the more extreme claims of the worldwide anti-nuclear movement, but one cannot read it without gaining the impression that the nuclear option is the energy source they would most like to do without. It is felt that against this background, it would seem to be time for the power industry to stop defending nuclear energy as an acceptable necessity and rather promoting it as the best energy option. (U.K.)

  2. Nuclear energy: basics, present, future

    Directory of Open Access Journals (Sweden)

    Ricotti M. E

    2013-06-01

    Full Text Available The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  3. Social Institutions and Nuclear Energy

    Science.gov (United States)

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  4. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2007-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. One proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of bio-fuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. A large part of this paper follows chapters of the monograph 'L'energie de demain: technique, environnement, economie', EDP Sciences, 2005. (author)

  5. Workshop Report: International Workshop to Explore Synergies between Nuclear and Renewable Energy Sources as a Key Component in Developing Pathways to Decarbonization of the Energy Sector

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Boardman, Richard; Ruth, Mark; Lyons, Peter B.

    2016-01-01

    An international workshop was organized in June 2016 to explore synergies between nuclear and renewable energy sources. Synergies crossing electricity, transportation, and industrial sectors were the focus of the workshop, recognizing that deep decarbonization will require efforts that go far beyond the electricity sector alone. This report summarizes the key points made within each presentation and highlights outcomes that were arrived at in the discussions.

  6. Workshop Report: International Workshop to Explore Synergies between Nuclear and Renewable Energy Sources as a Key Component in Developing Pathways to Decarbonization of the Energy Sector

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lyons, Peter B. [Dept. of Energy (DOE), Washington DC (United States)

    2016-08-01

    An international workshop was organized in June 2016 to explore synergies between nuclear and renewable energy sources. Synergies crossing electricity, transportation, and industrial sectors were the focus of the workshop, recognizing that deep decarbonization will require efforts that go far beyond the electricity sector alone. This report summarizes the key points made within each presentation and highlights outcomes that were arrived at in the discussions.

  7. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  8. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2008-01-01

    The booklet provides and up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear or energy sector in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. In the booklet nuclear energy is described as part of the Finnish electricity market

  9. Climatic change and nuclear energy

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-08-01

    The data presented in the different chapters lead to show that nuclear energy ids not a sustainable energy sources for the following reasons: investments in nuclear energy account financing that lacks to energy efficiency programmes. The nuclear programmes have negative effects such the need of great electric network, the need of highly qualified personnel, the freezing of innovation in the fields of supply and demand, development of small performing units. The countries resort to nuclear energy are among the biggest carbon dioxide emitters, because big size nuclear power plants lead to stimulate electric power consumption instead of inducing its rational use. Nuclear energy produces only electric power then a part of needs concerns heat (or cold) and when it is taken into account nuclear energy loses its advantages to the profit of cogeneration installations. Finally nuclear energy is a dangerous energy source, difficult to control as the accident occurring at Tokai MURA showed it in 1998. The problem of radioactive wastes is not still solved and the nuclear proliferation constitutes one of the most important threat at the international level. (N.C.)

  10. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2006-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. On proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of biofuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. (author)

  11. Nuclear energy. Risk or advantage

    International Nuclear Information System (INIS)

    Boettiger, Helmut

    2011-01-01

    Nuclear energy is controversial. But what's all about really in the controversy? It's about more than safty or electricity prices. Nuclear energy is not only a technical or political question, but also a moral, a human. The discussion enter various rational and irrational arguments, beside straightforward arguments various misleading and mendacious exist. The present publication is comprehensively dedicated to the thema of nuclear energy - its pro and contra - and considers its risks and advantages. Thereby the sources of energy, the processes in the nuclear reactor, and the risk potentials (Harrisburg, Chernobyl, Fukushima) are illustratively and reproducibly presented. Extensively the text explains the forms of the radiation, its doses, and the tolerance of it. Also to the theme waste and final disposal an explaining chapter is dedicated and the question for the exit from nuclear energy elucidated. Finally the author appoints with the question ''How considers mankind nuclear energy world-wide'' the international comparison.

  12. Nuclear energy in Japan

    International Nuclear Information System (INIS)

    Guillemard, B.

    1978-01-01

    After having described the nuclear partners in Japan, the author analyzes the main aspects of Japan's nuclear energy: nuclear power plants construction program; developping of light water reactors; fuel cycle politics [fr

  13. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  14. Energy coupling of nuclear bursts in and above the ocean surface: source region calculations and experimental validation

    International Nuclear Information System (INIS)

    Clarke, D.B.; Harben, P.E.; Rock, D.W.; White, J.W.; Piacsek, A.

    1997-01-01

    In support of the Comprehensive Test Ban, research is under way on the long range propagation of signals from nuclear explosions in deep underwater sound (SOFAR) channel. Initially our work at LLNL on signals in the source region considered explosions in or above deep ocean. We studied the variation of wave properties and source region energy coupling as a function of height or depth of burst. Initial calculations on the CALE hydrodynamics code were linked at a few hundred milliseconds to a version of NRL's weak code, NPE, which solves the nonlinear progressive wave equation. The simulation of the wave propagation was carried down to 5000 m depth and out to 10,000 m range. We have completed ten such simulations at a variety of heights and depths below the ocean surface

  15. Nuclear energy data 2005

    CERN Document Server

    Publishing, OECD

    2005-01-01

    This 2005 edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers a projection horizon lengthened to 2025 for the first time.  It presents the reader with a comprehensive overview on the status and trends in nuclear electricity generation in OECD countries and in the various sectors of the nuclear fuel cycle.

  16. Nuclear energy basic knowledge

    International Nuclear Information System (INIS)

    Volkmer, Martin

    2013-11-01

    The following topics are dealt with: Atoms, nuclear decays and radioactivity, energy, nuclear fission and the chain reaction, controlled nuclear fission, nuclear power plants, safety installations in nuclear power plants, fuel supply and disposal, radiation measurement and radiation exposition of man. (HSI)

  17. Nuclear energy - some aspects

    International Nuclear Information System (INIS)

    Bandeira, Fausto de Paula Menezes

    2005-05-01

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy

  18. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  19. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  20. Hydrocarbons: source of energy

    International Nuclear Information System (INIS)

    Imarisio, G.; Frias, M.; Bemtgen, J.M.

    1989-01-01

    Hydrocarbons are at present the single most important source of energy, since they are the most versatile and widely used. It is expected that their importance will extend well into the next century and therefore it is essential to provide for all those improvements which will extend their availability and usefulness. The sub-programme ''Optimization of the production and utilization of hydrocarbons'' (within the Non-Nuclear Energy R and D Programme of the European Communities) is pursuing a number of R and D topics aimed at the above-mentioned results. It is implemented by means of shared-cost R and D contracts. At this first Seminar held in Lyon (France) from 21-23 September, 1988, all contractors of the sub-programme presented the state of progress of their R and D projects. These proceedings comprise all the papers presented at the Seminar. The section on oilfield exploration includes a report of work on the interpretation of nuclear logs by means of mathematical models. (author)

  1. New renewable energy sources

    International Nuclear Information System (INIS)

    2001-06-01

    This publication presents a review of the technological, economical and market status in the field of new renewable energy sources. It also deals briefly with the present use of energy, external conditions for new renewable energy sources and prospects for these energy sources in a future energy system. The renewable energy sources treated here are ''new'' in the sense that hydroelectric energy technology is excluded, being fully developed commercially. This publication updates a previous version, which was published in 1996. The main sections are: (1) Introduction, (2) Solar energy, (3) Bio energy, (4) Wind power, (5) Energy from the sea, (6) Hydrogen, (7) Other new renewable energy technologies and (8) New renewable s in the energy system of the future

  2. Public perceptions of the risks of an unfamiliar technology: The case of using nuclear energy sources for space missions

    International Nuclear Information System (INIS)

    Maharik, M.

    1992-01-01

    This thesis addresses the public perception of the risk of a technology not widely known to lay people. Its aims were (a) to characterize public perceptions of the risk of using nuclear energy in space and decisions related to this risk, and (b) to extend the mental model methodology to studying public perception of unfamiliar, risky technologies. A model of the physical processes capable of creating risks from using nuclear energy sources in space was first constructed. Then, knowledge and beliefs related to this topic were elicited from three different groups of people. The generality of the findings were examined in a constructive replication with environmentally-oriented people. The possibility of involving the public in decision-making processes related to engineering macro-design was then investigated. Finally, a communication regarding these risk processes was developed and evaluated in an experiment comparing it with communications produced by NASA. Recommendations related to the design and targeting of risk communication, and to public participation in decision making on using new and risky technologies, are derived

  3. Nuclear energy dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-15

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  4. Nuclear energy dictionary

    International Nuclear Information System (INIS)

    1978-03-01

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  5. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Villota, C. de

    2007-01-01

    Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)

  6. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  7. Nuclear energy applications - ethical considerations

    International Nuclear Information System (INIS)

    Hoermann, K.

    1980-01-01

    Following an Austrian referendum in 1978 which showed a small majority against operation of nuclear power stations, the economic penalties involved by this decision are qualitatively discussed, with emphasis on reduced standards of living. Religious considerations are examined and the difficulty of obtaining informed public opinion is stressed. Alternative sources of energy, including nuclear fusion, are briefly referred to. (G.M.E.)

  8. Nuclear energy for environmental protection

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1992-01-01

    In 1990 nuclear energy supplied about 17% of the total electric power produced in the world, what makes it the third most used power source after coal and hydropower. In this paper the advantages of using nuclear power for generating large quantities of electric power are presented

  9. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Dow, J.C.

    1989-01-01

    It was the risk of contamination of ships from the Pacific atmospheric atomic bomb tests in the 1940's that seems first to have set insurers thinking that a limited amount of cover would be a practical possibility if not a commercially-attractive proposition. One Chapter of this book traces the early, hesitant steps towards the evolution of ''nuclear insurance'', as it is usually called; a term of convenience rather than exactitude because it seems to suggest an entirely new branch of insurance with a status of its own like that of Marine, Life or Motor insurance. Insurance in the field of nuclear energy is more correctly regarded as the application of the usual, well-established forms of cover to unusual kinds of industrial plant, materials and liabilities, characterised by the peculiar dangers of radioactivity which have no parallel among the common hazards of industry and commerce. It had, and still has, the feature that individual insurance underwriters are none too keen to look upon nuclear risks as a potential source of good business and profit. Only by joining together in Syndicates or Pools have the members of the national insurance markets been able to make proper provision for nuclear risks; only by close international collaboration among the national Pools have the insurers of the world been able to assemble adequate capacity - though still, even after thirty years, not sufficient to provide complete coverage for a large nuclear installation. (author)

  10. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    Science.gov (United States)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.

    2017-03-01

    A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  11. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    International Nuclear Information System (INIS)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M.K.; Theint, A.M.M.; Tint, K.T.

    2017-01-01

    A new scanning system named “Vertex picker” has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  12. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the booklet is to provide an up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear energy or other energy sectors in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. Nuclear energy is described as part of the Finnish electricity market. (orig.)

  13. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  14. Planning for decommissioning of nuclear facilities - Nuclear as a semi-sustainable energy source, the views of younger stakeholders - 59222

    International Nuclear Information System (INIS)

    Lindskog, Staffan; Labor, Bea

    2012-01-01

    Document available in abstract form only. Full text of publication follows: It is planned that many nuclear facilities will be decommissioned in the near future. This challenge includes certified repositories for LLW and ILW, procedures for classification and free release, systems for transportation, planning activities, and liaison with the public. The last item can have a substantial impact on the efficiency of decommissioning projects. Insufficient dialogue with various stakeholder groups can be a factor that drives costs, whilst appropriate programs, means and environments for communication and knowledge transfer may facilitate the establishment of contemporary and comprehensive bases for decisions and thereby also enhance the possibility for consensus and thereby achieve feasible and sustainable solutions. The programs thus decided for the decommissioning of nuclear facilities and the management of the nuclear waste must then be communicated openly and constitute an integral part of the stakeholder related activities. The nuclear renaissance implies as well as calls for newer platforms for communications with the stakeholders. This communication must include how compliance with the Polluter Pays Principle (PPP) (and also preferably the Extended Polluter Responsibility, EPR) is to be achieved

  15. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  16. Nontraditional renewable energy sources

    International Nuclear Information System (INIS)

    Shpil'rajn, Eh.Eh.

    1997-01-01

    The paper considers the application possibilities of nontraditional renewable energy sources to generate electricity, estimates the potential of nontraditional sources using energy of Sun, wind, biomass, as well as, geothermal energy and presents the results of economical analysis of cost of electricity generated by solar electrical power plants, geothermal and electrical plants and facilities for power reprocessing of biomass. 1 tab

  17. Nuclear energy and environment

    International Nuclear Information System (INIS)

    Alves, R.N.

    1987-01-01

    A general view about the use of energy for brazilian development is presented. The international situation of the nuclear field and the pacific utilization of nuclear energy in Brazil are commented. The safety concepts used for reactor and nuclear facilities licensing, the environmental monitoring program and radiation protection program used in Brazil are described. (E.G.) [pt

  18. Nuclear energy data 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers projections lengthened to 2030 for the first time and information on the development of new centrifuge enrichment capacity in member countries. The compilation gives readers a comprehensive and easy-to-access overview of the current situation and expected trends in various sectors of the nuclear fuel cycle, providing authoritative information to policy makers, experts and academics working in the nuclear energy field

  19. Accelerator system of neutron spallation source for nuclear energy technology development

    International Nuclear Information System (INIS)

    Silakhuddin; Mulyaman, Maman

    2002-01-01

    High intensity proton accelerators are at present and developed for applications in neutron spallation sources. The advantages of this source are better safety factor, easy in controlling and spent fuel free. A study of conceptual design of required accelerator system has been carried out. Considering the required proton beam and feasibility in the development stages, a stepped linac system is an adequate choice for now

  20. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  1. Diversification of energy sources

    Science.gov (United States)

    1975-01-01

    The concept of energy source diversification was introduced as a substitution conservation action. The current status and philosophy behind a diversification program is presented in the context of a national energy policy. Advantages, disadvantages (constraints), and methods of implementation for diversification are discussed. The energy source systems for diversification are listed and an example impact assessment is outlined which deals with the water requirements of the specific energy systems.

  2. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  3. Nuclear issues in the Canadian energy context

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Participants holding a wide spectrum of views and representing the nuclear industry, churches, anti-nuclear groups, and the general public participated in sessions on the ethics of nuclear power, waste disposal, health and environmental effects of energy development, decision making and the regulatory process, and the economics of nuclear and other energy sources.

  4. Nuclear energy and society

    International Nuclear Information System (INIS)

    Bakacs, Istvan; Czeizel, Endre; Hajdu, Janos; Marx, Gyoergy.

    1984-01-01

    The text of a round-table discussion held on the occasion of the 50th anniversary of the discovery of neutron is given. The participants were the Chief Engineer of the Paks Nuclear Power Plant, the first nuclear power plant in Hungary started in November 1982, a geneticist treating the problems of genetic damages caused by nuclear and chemical effects, a nuclear physicist and a journalist interested in the social aspects of nuclear energy. They discussed the political, economical and social problems of nuclear energy in the context of its establishment in Hungary. (D.Gy.)

  5. Nuclear power: an essential energy

    International Nuclear Information System (INIS)

    Agnew, H.M.

    1980-01-01

    Dr. Agnew notes that the public fails to remember that the electric utilities and equipment manufacturers did not invent nuclear energy; they only choose whether or not to use it to generate power. The effort to regain world leadership in nuclear energy will require recognizing that the rest of the world needs it too. Opposition to the use of nuclear power has been politically effective, in spite of the need to move to a non-petroleum fuel base and without coming up with a viable alternative. The nuclear industry responded to the Three Mile Island accident by taking steps to improve reactor safety, but the industry continues to be threatened because of the suspended reprocessing and breeder programs. The industry must make a compelling case for energy independence to persuade the public that all energy sources, including nuclear, must be developed

  6. Nuclear power and energy planning

    International Nuclear Information System (INIS)

    Jones, P.

    1990-11-01

    With the rapid depletion of conventional energy sources such as coal and oil and the growing world demand for energy the question of how to provide the extra energy needed in the future is addressed. Relevant facts and figures are presented. Coal and oil have disadvantages as their burning contributes to the greenhouse gases and they will become scarcer and more expensive. Renewable sources such as wind and wave power can supply some but not all future energy requirements. The case made for nuclear power is that it is the only source which offers the long term prospect of meeting the growing world energy demand whilst keeping energy costs close to present levels and which does not add to atmospheric pollution. Reassurance as to the safety of nuclear power plants and the safe disposal of radioactive wastes is given. (UK)

  7. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  8. Germany bars nuclear energy

    International Nuclear Information System (INIS)

    Gaullier, V.

    1999-01-01

    Germany wants a future without nuclear energy, the different steps about the going out of nuclear programs are recalled. The real choice is either fossil energies with their unquestionable safety levels but with an increase of the greenhouse effect or nuclear energy with its safety concerns and waste management problems but without pollutant emission. The debate will have to be set in most European countries. (A.C.)

  9. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way it achieves this objective is to issue publications in various series. Two of these series are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III, paragraph A.6, of the IAEA Statute, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are primarily written in a regulatory style, and are binding on the IAEA for its own activities. The principal users are Member State regulatory bodies and other national authorities. The IAEA Nuclear Energy Series consists of reports designed to encourage and assist research on, and development and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia and politicians, among others. The information is presented in guides, reports on the status of technology and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The series complements the IAEA's safety standards, and provides detailed guidance, experience, good practices and examples on the five areas covered in the IAEA Nuclear Energy Series. The Nuclear Energy Basic Principles is the highest level publication in the IAEA Nuclear Energy Series and describes the rationale and vision for the peaceful uses of nuclear energy. It presents eight Basic Principles on which nuclear energy systems should be based to fulfil nuclear energy's potential to help meet growing global energy needs. The Nuclear Energy Series Objectives are the second level publications. They describe what needs to be

  10. Nuclear energy and society

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Shimooka, Hiroshi; Tanaka, Yasumasa; Fujii, Yasuhiko; Misima, Tsuyoshi

    2004-01-01

    Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent years, people's reliability to nuclear energy has significantly swayed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engaging in nuclear field. In order that nuclear energy is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for overcoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed. (J.P.N.)

  11. Alternative energy sources: ECC report

    International Nuclear Information System (INIS)

    Renwick, Lord; Stoddart, Lord; Lauderdale, Earl of

    1988-01-01

    The European Communities Committee Report on Alternative Energy Resources was debated. Six alternative energy sources were first described - wind power, biomass, geothermal energy, solar energy, wave and tidal power. Combined heat and power was also mentioned. General questions concerning alternative energy sources were then considered. In particular, their potential contribution to the energy demand was assessed. The evidence presented to the committee suggested that they would only make a small contribution in the near future and could not be considered as a substitute for coal and nuclear power. However, by the year 2030 it would be possible for 18% of the national electricity demand to be met by alternative energy sources. The economic and environmental issues were assessed briefly and the report's conclusions were summarized. An independent review of wave power was called for in view of conflicting evidence presented to the committee. The debate which followed lasted three hours and is reported verbatim. Other issues raised included energy conservation, public attitudes to energy, the environment, government and private funding of research and development of nuclear power, including fusion. (U.K.)

  12. Solar energy and nuclear power. Energy sources, environmental pollution and CO{sub 2} - problem; Solarenergie und Atomstrom. Energiequellen, Umweltbelastung und das CO{sub 2}-Problem

    Energy Technology Data Exchange (ETDEWEB)

    Metzner, H.

    1999-07-01

    In this volume the energy sources used today and possible alternatives like solar-, wind-, and hydro power, geothermal energy and renewable fuels are presented. The environmental pollution due to fossil fuel application (e.g. sulfur- and nitrogen oxides) as the use of nuclear power are discussed in detail. An extra chapter covers the CO2 problem (greenhouse effect, ice cover on earth, sea level, influence on plant growth and agricultural crop) as climatic forecasting. [German] In diesem Band werden die heute nutzbaren Energiequellen und die dazu moeglichen Alternativen wie Solarenergie, Wind-, und Wasserkraft, Erdwaerme und nachwachsende Rohstoffe aufgezeigt. Die Umweltbelastungen aus der Nutzung fossiler Brennstoffe (z.B. Schwefel- und Stickoxide) sowie der Kernenergie sind ausfuehrlich besprochen. Dem CO2-Problem (Treibhauseffekt, Eisbedeckung der Erde, Hoehe des Meeresspiegels, Auswirkungen auf Pflanzenwuchs und Agrarertraege) sowie den Klimaprognosen ist ein eigenes Kapitel gewidmet.

  13. Nuclear energy, radiation and environment

    International Nuclear Information System (INIS)

    Rajan, M.P.

    2013-01-01

    Over the past few decades, energy has been the subject of much debate. Energy is the backbone of technology and economic development. Today, most machines run on electricity and they are needed to make anything and everything. Hence, our energy requirements have spiraled in the years following the industrial revolution. This rapid increase in use of energy has created problems of demand and supply in addition to the environmental consciousness which picked momentum in last decades of 20 th century. The impending crisis the world over due to overuse of nonrenewable energy sources to reduce this gap shall soon lead to a situation for all concerned to take a prudent decision to tap other sources of energy, including relatively new renewable sources. Future economic growth crucially depends on the long-term availability of energy from sources that are affordable, accessible and environmentally friendly. The drive for more energy has had the happy consequences of spawning new technologies and improving earlier ones. Emphasis on renewable sources has resulted in viable harnessing of solar, wind and tidal energies. Even though these sources offer relatively clean energy, their potential to supply reliable energy in large scale in an economically viable way is limited. Nuclear energy offers a major source of commercial energy, which is economic, reliable and environmentally benign

  14. Will nuclear power be a competitive energy source in the future?

    International Nuclear Information System (INIS)

    Peter, U.; Staender, K.

    1995-01-01

    In order to safeguard the competitiveness of European manufacturers in the world market, a Franco-German project for the development of a PWR, the European Pressurized Water Reactor (EPR), has been established in 1992, including activities for harmonization of reactor safety strategies and criteria on a European level, and standardization of existing nuclear engineering guides and codes. The project task to be achieved in the two years ahead is to prove that the new reactor design will meet the licensing requirements of both countries, and will be a successful, competitive system. The two project partners agreed to define the economic efficiency of the new reactor design to be proven as soon as evidence is given that operation of the EPR plant in the medium load range is competitive with the operation of a new, imported coal-fired conventional power plant. A basic, design-based economic efficiency analysis is given showing that the required competitiveness is achieved beyond 5.500 operating hours at full load. Sensitivity analyses of the power generation costs reveal that the system's competitiveness may be jeopardized by conceivably least favourable, specific costs of plant operation, fuel, or maintenance in particular. (orig./HP) [de

  15. Renewable sources of energy

    International Nuclear Information System (INIS)

    Wojas, K.

    1996-01-01

    The author takes a look at causes of the present interest in the renewable, natural sources of energy. These are: the fuel deposits becoming exhausted, hazard to environment (especially carbon dioxide) and accessibility of these sources for under-developed countries. An interrelation is shown between these sources and the energy circulations connected with atmosphere and ocean systems. The chief ones from among them that are being used now are discussed, i.e. solar radiation, wind, water waves energy, tides, geothermal heat, and the like. Problems of conversion of the forms of these kinds of energy are also given a mention. (author)

  16. Nuclear energy significantly reduces carbon dioxide emissions

    International Nuclear Information System (INIS)

    Koprda, V.

    2006-01-01

    This article is devoted to nuclear energy, to its acceptability, compatibility and sustainability. Nuclear energy is non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy, radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously adjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  17. The future of nuclear energy

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Europe is one of the world leaders in nuclear technology advancement. The development of spent fuel reprocessing is but one example of this. This process continues today with the development by France and Germany of the European Pressurised-Water Reactor. Nuclear research and development work is continuing in Europe, and must be continued in the future, if Europe is to retain its world leadership position in the technological field and on the commercial front. If we look at the benefits, which nuclear energy has to offer, in economic and environmental terms, 1 support the view that nuclear is an energy source whose time has come again. This is not some fanciful notion or wishful thinking. There is clear evidence of greater long-term reliance on nuclear energy. Perhaps we do not see new nuclear plants springing up in Europe, but we do see ambitious nuclear power development programmes underway in places like China, Japan and Korea. Closer to home, Finland is seriously considering the construction of a new nuclear unit. Elsewhere, in Europe and the US, we see a growing trend towards nuclear plant life extension and plant upgrades geared towards higher production capacity. These are all signs that nuclear will be around for a long time to come and that nuclear will indeed have a future

  18. Present activities of the Nuclear Energy Commission in the field of safety of radiation sources and security of radioactive materials in Mongolia

    International Nuclear Information System (INIS)

    Oyuntulkhuur, N.

    2001-01-01

    The Radiation Safety Department of the Nuclear Energy Commission (NEC) is a regulatory body in Mongolia established in 1997. The paper gives a general overview of the main activities of the NEC on regulatory control of radiation sources in Mongolia. Mongolia declared itself a nuclear-weapon-free zone in 1992. Legal framework and waste management issues are described. The regulatory authority's co-operation with other agencies in radiation protection is also presented in this paper. (author)

  19. Development of nuclear battery using isotope sources

    International Nuclear Information System (INIS)

    Chang, Won Jun

    2004-02-01

    Until now, the development of the useful micro electromechanical systems has the problems because previous batteries (solar, chemical, etc) did not satisfy the requirements related to power supply. At this point of time, nuclear battery using isotope sources is rising the solution of this problem. Nuclear battery can provide superior out-put power and lifetime. So a new type of micro power source (nuclear battery) for micro electromechanical systems has been designed and analyzed. In this work, I designed the three parts, isotope source, conversion device, and shielding. I chose suitable sources, and designed semiconductor using the chosen isotope sources. Power is generated by radiation exciting electrons in the semiconductor depletion region. The efficiency of the nuclear battery depends upon the pn-junction. In this study the several conceptual nuclear batteries using radioactive materials are described with pn-junction. And for the safety, I designed the shielding to protect the environment by reducing the kinetic energy of beta particles

  20. Introduction to nuclear energy

    International Nuclear Information System (INIS)

    2004-01-01

    After some descriptions about atoms, fission and fusion, explanations are given about the functioning of a nuclear power plant. The safety with the different plans of emergency and factors that lead to a better nuclear safety are exposed, then comes a part for the environmental protection; the fuel cycle is tackled. Some historical aspects of nuclear energy finish this file. (N.C.)

  1. Molecular hydrogen: an energy source for bacterial activity in nuclear waste disposal

    International Nuclear Information System (INIS)

    Libert, M.; Esnault, L.

    2010-01-01

    Document available in extended abstract form only. Hydrogen is a common product of microbial metabolism, large number of bacteria are able to use it as energetic substrate in subsurface ecosystems. Moreover H 2 is known as one of the most energetic substrates for deep subsurface ecosystem. It could be produced in different ways mainly volcanic activity (basalts iron rich volcanic rocks) or natural radiolysis of water or even fermentation. The millimolar concentrations of H 2 observed in the ground waters are consistent with the activity of a large variety of hydrogen-oxidising bacteria as described in the following Table. Electron acceptors are identified as O 2 , CO 2 , NO 3 , SO 4 or Fe +++ . Aerobic, anaerobic, obligate and facultative autotrophs are included. Numerous of these bacteria are thermophilic bacteria. This bacterial activity leads to the production of methane, acetate, nitrogen, hydrogen sulphur or ferrous oxides. In anoxic environments, H 2 concentrations are governed by microbial metabolism. In most cases, H 2 producing microorganisms are thermodynamically controlled by the abundance of H 2 , and survive thanks to H 2 consumers, a metabolism called inter-species H 2 transfer. Metabolism of H 2 is catalysed by hydrogenase as cytoplasmic enzymes or membrane bound enzymes. Several situations of H 2 production will occur in nuclear waste repository: - Radiolysis of water. - Radiolysis of organic matter (such as bitumen, in case of B waste), H 2 production due to gamma radiolysis of bitumen is evaluated to 1 L H 2 /kg of bitumen /MGy. - Corrosion of metal containers (in deaerated solutions). Large amount of H 2 are predicted in some situations, and will select the development of hydrogen species. Then, aerobic hydrogen bacteria oxidising hydrogen could be found in basins containing irradiating waste, or during the oxic period of storage, denitrifying bacteria or sulfate reducing bacteria will develop near the bitumen waste. Groundwater of the Callovo

  2. Nuclear energy and security

    International Nuclear Information System (INIS)

    Blejwas, Thomas E.; Sanders, Thomas L.; Eagan, Robert J.; Baker, Arnold B.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity

  3. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  4. Nuclear energy in view

    International Nuclear Information System (INIS)

    1982-01-01

    This leaflet advertises the availability of the following from UKAEA: film and video titles (nuclear fuel cycle; energy for all; power from the atom; using radioactivity; fast reactor; energy - the nuclear option; principles of fission; radiation); slide-tape packs (16 titles); other information services. (U.K.)

  5. Nuclear energy in China

    International Nuclear Information System (INIS)

    Gourievidis, G.

    1984-01-01

    Having first outlined the main problems China must resolve in the field of energy supply, this paper presents the nuclear option trends established by the government, recalls the different stages in the nuclear Chinese development programme, achievements and projects. The organization of nuclear research and industry, as also the fuel cycle situation and uranium resources are then described. Finally, the international nuclear cooperation policy carried out by the chinese government and more particularly the agreement settled with France are presented [fr

  6. Nuclear energy, economy, ecology

    International Nuclear Information System (INIS)

    Stoffaes, C.

    1995-01-01

    As its operating role, its economic competitiveness and its technological control in the area of nuclear energy, the France has certainly to take initiatives in a nuclear renewal activity. The France is criticized in the world for its exclusive position about nuclear energy, but it is well situated to attract attention on the coal risks and particularly about its combustion for environment. (N.C.)

  7. Is nuclear energy justifiable?

    International Nuclear Information System (INIS)

    Roth, E.

    1988-01-01

    This is a comment on an article by Prof. Haerle a theologist, published earlier under the same heading, in which the use of nuclear energy is rejected for ethical reasons. The comment contents the claim mode by the first author that theologists, because they have general ethical competency, must needs have competency to decide on the fittest technique (of energy conversion) for satisfying, or potentially satisfying, the criteria of responsible action. Thus, an ethical comment on, for instance, nuclear energy is beyond the scope of the competency of the churches. One is only entitled as a private person to objecting to nuclear energy, not because of one's position in the church. (HSCH) [de

  8. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  9. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Separate abstracts are included for each of the papers presented concerning current technical and economical events in the nuclear field. Twelve papers have been abstracted and input to the data base. The ''international nuclear energy guide'' gives a general directory of the name, the address and the telephone number of the companies and bodies quoted in this guide; a chronology of the main events 1982. The administrative and professional organization, the nuclear courses and research centers in France are presented, as also the organization of protection and safety, and of nuclear fuel cycle. The firms concerned by the design and the construction of NSSS and the allied nuclear firms are also presented. The last part of this guide deals with the nuclear energy in the world: descriptive list of international organizations, and, the nuclear activities throughout the world (alphabetical order by countries) [fr

  10. Renewable energy sources and ecology

    International Nuclear Information System (INIS)

    Panajotova, Yu.

    1998-01-01

    The share of renewable energy sources (RES) in the world energy balance is estimated from 1-2 to 10% of the total primary energy sources consumption. In EU since 1990 until now the power energy production from these sources is growing continuously by over 3% annually. The features of the updated Environmental Strategy for Bulgaria (ESB) elaborated with the World Bank in 1994 are: increasing the energy efficiency; utilising RES; granting preference to the regional energy concept and establishing regional energy centres based on the EU experience. In ESB the basic priorities are linked with disease factors - pollutants as lead in the air and soils (from leaded petrol, resp. from metallurgical enterprises), dust particles in the air (from household heating, industry and thermo-electric power stations) and sulfur dioxide and other gases (also from energy sector and industry). There is consistent policy for harmonization of the Bulgarian standards with those of the WHO. Among the implemented projects preference is granting to ones concerning new energy saving technologies and RES. Bulgaria got an environmental protection law harmonized with the international legislation and adapted to the economic situation inflicted by the market economy transition. The development of RES needs high investment cost and has low efficiency factor compared to the classical methods of energy production. Implementation of Environmental Action Programme (EAP) in Bulgaria with an international co-operation includes: solid wastes management; water sources management; water pollution problems; soil degradation; transport and environment; nuclear safety and nuclear waste problems and full value utilization of the RES. The Ministry of Environment and local Authorities have to develop their policies and implementing them by a range of activities to identify pollution control strategies, to identify areas where the greatest environmental benefits can be achieved at least cost and to incorporate the

  11. Energy Outlook and Nuclear Energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mooneon; Kang, Jun-young; Song, Kiwon; Park, Hyun Sun; Park, Chang Kue [Pohang university of science and technology, Pohang (Korea, Republic of)

    2015-05-15

    China receives attention from the whole world as not only have they become a country spending the most energy in the world, but also the amount of energy they need is still increasing. Consequently, many problems related to environmental pollution have occurred in China. Recently, China agreed to reduce carbon emission in order to deal with this issue. Therefore, they need to find energy sources other than fossil fuel; the nuclear energy could be an alternative. In addition, it is considered to be a base load owing to its low fuel cost and continuation of electricity generation. In reality, the Chinese government is planning to build about 400 Nuclear Power Plants (NPPs) up to 2050. Therefore, it is expected that China will become a giant market in the nuclear industry. It could give us either chances to join the huge market or challenges to meet not merely nuclear fuel price crisis but competitors from China in the world nuclear power plant market. In any case, it is obvious that the energy policy of China would influence us significantly. Accordingly, we need appropriate prediction of the Chinese nuclear industry to cope with the challenges.

  12. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  13. The nuclear energy debate

    International Nuclear Information System (INIS)

    Hardy, D.

    1984-01-01

    We have not been able to obtain closure in the nuclear energy debate because the public perception of nuclear energy is out of sync with reality. The industry has not been about to deal with the concerns of those opposed to nuclear energy because its reaction has been to generate and disseminate more facts rather than dealing with the serious moral and ethical questions that are being asked. Nuclear proponents and opponents appeal to different moral communities, and those outside each community cannot concede that the other might be right. The Interfaith Program for Public Awareness of Nuclear Issues (IPPANI) has been formed, sponsored by members of the Jewish, Baha'i, Roman Catholic, United, and Anglican faiths, to provide for a balanced discussion of the ethical aspects of energy. (L.L.)

  14. The Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Alonso, A.

    2005-01-01

    Current nuclear energy represents 23.5% of the total electrical power available within the OECD countries. This is the energy offering the lowest costs to generate, it does not emit greenhouse-effect fumes nor does it contribute to global warming, however, it does generate radioactive and toxic waste which society perceives as an unacceptable risk. For this reason the development of new nuclear installation in Europe is at a stand still or moving backward. Truthful information and social participation in decisions is the best way to achieve the eradication of the social phobia produced by this energy source. (Author)

  15. Nuclear energy or 'black out'

    International Nuclear Information System (INIS)

    Lederhilger, F.

    1980-01-01

    The interdependence of various energy sources, including pumped storage hydro-power and imported and exported electrical energy is emphasised and the effects of the loss of 700 MW from the mothballed Zwentendorf nuclear power station are discussed. These effects are stated as increased costs of energy, as well as reduced security of supplies, leading to higher probability of supply interruption when several effects, such as oil shortage, electric import failure, technical breakdowns, cold winters and reduced hydropower supplies coincide with delays in power station construction. It is concluded that completion of the Zwentendorf nuclear power station is essential. (G.M.E.)

  16. Public perceptions of the risks of an unfamiliar technology: The case of using nuclear energy sources for space missions

    Science.gov (United States)

    Maharik, Michael

    This thesis addresses the public perception of the risk of a technology not widely known to laypeople. Its aims were (1) to characterize public perceptions of the risk of using nuclear energy in space and decisions related to this risk, and (2) to extend the 'mental model' methodology to studying public perception of unfamiliar, risky technologies. A model of the physical processes capable of creating risks from using nuclear energy sources in space was first constructed. Then, knowledge and beliefs related to this topic were elicited from three different groups of people. The generality of the findings was examined in a constructive replication with environmentally-oriented people. The possibility of involving the public in decision-making processes related to engineering macro-design was then investigated. Finally, a communication regarding these risk processes was developed and evaluated in an experiment comparing it with communications produced by NASA. Although they included large portions of the expert model, people's beliefs also had gaps and misconceptions. Respondents often used scientific terms without a clear understanding of what they meant. Respondents' mental models sometimes contained scattered and inconsistent entries. The impact of pre-existing mental models was clearly seen. Different groups of people had different patterns of knowledge and beliefs. Nevertheless, respondents expressed reasonable and coherent opinions on choices among engineering options. The CMU brochure, derived from the study of readers' existing mental models, provided a better risk communication tool than NASA's material, reflecting primarily experts' perspective. The better performance of subjects reading either brochure generally reflected adding knowledge on issues that they had not previously known, rather than correcting wrong beliefs. The communication study confirmed a hypothesis that improving knowledge on risk processes related to the use of a technology causes a more

  17. Nuclear Energy Literature Review

    International Nuclear Information System (INIS)

    Simic, Z.; Wastin, F.

    2016-01-01

    In the light of five years after a major accident at the Fukushima Daiichi nuclear power plant it is interesting to make nuclear energy related literature review. There is a number of accidents related reports from all major international institutions (like the IAEA and OECD NEA) and research organizations have drawn conclusions and lessons to learn from this terrible accident. These reports are the result of expert and scientific analyses carried out during these five years and they present ideal sources for both understanding what has happened and what can be learned in order to avoid and mitigate effects of such events in the future. From a wider perspective it is also interesting to analyze the impact on research and development (R and D) activities. This literature review is performed with hope to gain some useful insights from the analysis of the volume and topics in all research activities related to the Fukushima accident and nuclear energy (NE) altogether. This kind of review should at least provide an overview of trends and provide base for better planning of future activities. This paper analyzes the published NE related research of over more than 50 years with focus on three major nuclear accidents (TMI, Chernobyl and Fukushima). It has been performed using Scopus tools and database, and mainly focuses on statistics related to the subjects, countries, keywords and type of publishing. It also analyses how responsive is nuclear energy related R and D regarding the volume and subjects, and how is that research spread among most active countries. Nuclear power accidents influence increase and change of research. Both accidents, Chernobyl and Fukushima had maximum share in all nuclear power related papers at similar yearly level (9 percent in 1991 and 12 percent in 2015 respectively). TMI peaked at the 2.5 percent share in 1982. Engineering is the most frequent subjects for TMI and cumulative NE related publishing. Medicine and environmental science subjects

  18. Argentine nuclear energy standardization activities

    International Nuclear Information System (INIS)

    Boero, Norma; Corcuera, Roberto; Palacios, Tulio A.; Hey, Alfredo M.; Berte, G.; Trama, L.

    2004-01-01

    The International Organization for Standardization (ISO) has more than 200 Technical Committees that develop technical standards. During April 2004 took place in Buenos Aires the 14th Plenary of the ISO/TC 85 Nuclear Energy Committee. During this Plenary issues as Nuclear Terminology, Radiation Protection, Nuclear Fuels, Nuclear Reactors and Irradiation Dosimetry was dealt with. 105 International delegates and 45 National delegates (belonging to CNEA, ARN, NASA, INVAP, CONUAR, IONICS and other organizations) attended the meetings. During this meeting ISO/TC 85 changed its scope; the new scope of the Committee is 'Standardization in the fields of peaceful applications of nuclear energy and of the protection of individuals against all sources of ionizing radiations'. This work summarizes the most important advances and resolutions about the development of standards taken during this meeting as well as the main conclusions. (author) [es

  19. Nuclear energy from radioactive waste

    International Nuclear Information System (INIS)

    Schwarzenberg, M.

    1998-01-01

    The global energy demand is increasing. Sound forecasts indicate that by the year 2020 almost eight thousand million people will be living on our planet, and generating their demand for energy will require conversion of about 20 thousand million tonnes of coal equivalents a year. Against this background scenario, a new concept for energy generation elaborated by nuclear scientists at CERN attracts particular interest. The concept describing a new nuclear energy source and technology intends to meet the following principal requirements: create a new energy source that can be exploited in compliance with extremely stringent safety requirements; reduce the amount of long-lived radioactive waste; substantially reduce the size of required radwaste repositories; use easily available natural fuels that will not need isotopic separation; prevent the risk of proliferation of radioactive materials; process and reduce unwanted actinides as are generated by the operation of current breeder reactors; achieve high efficiency both in terms of technology and economics. (orig./CB) [de

  20. Alternate energy sources

    International Nuclear Information System (INIS)

    Stevens-Guille, P.D.

    1975-01-01

    The author highlights the interesting points made by the speeches during the conference on Energy and its Future in Southern Africa. He also draws attention to potential alternate energy sources such as power from tides, ocean waves, ocean temperature differences and geothermal power

  1. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    Knapp, V.

    2006-01-01

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  2. Axiology of nuclear energy

    International Nuclear Information System (INIS)

    Sawada, Tetsuo

    2003-01-01

    Nuclear energy was born in World War II and it has grown within the regime of Cold War. When the Cold War came to the end around early 1990 s, we who have benefited by the development of nuclear energy must have been challenged with a new tide of civilization change. Although it has not been so much closely questioned since then, such a new movement, that was submerging, abruptly manifested on September 11, 2001. Then, many of us realized that global circumstances, especially concerned with security, must have actually changed with the reordering of the world basic structures. This paper describes on the thoughts to reveal the cause and background of the event on September 11 with the linkage to nuclear energy development, or nuclear civilization in pursuit of the future regime of nuclear in harmonization with the global society in 21st century. (author)

  3. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  4. Environmentalists for nuclear energy

    International Nuclear Information System (INIS)

    Comby, B.

    2001-01-01

    Fossil fuels such as coal oil, and gas, massively pollute the Earth atmosphere (CO, CO 2 , SOX, NOX...), provoking acid rains and changing the global climate by increasing the greenhouse effect, while nuclear energy does not participate in these pollutions and presents well-founded environmental benefits. Renewable energies (solar, wind) not being able to deliver the amount of energy required by populations in developing and developed countries, nuclear energy is in fact the only clean and safe energy available to protect the planet during the 21 century. The first half of the book, titled The Atomic Paradox, describes in layman language the risks of nuclear power, its environmental impact, quality and safety standards, waste management, why a power reactor is not a bomb, energy alternatives, nuclear weapons, and other major global and environmental problems. In each case the major conclusions are framed for greater emphasis. Although examples are taken from the French nuclear power program, the conclusions are equally valid elsewhere. The second half of the book is titled Information on Nuclear Energy and the Environment and briefly provides a historical survey, an explanation of the different types of radiation, radioactivity, dose effects of radiation, Chernobyl, medical uses of radiation, accident precautions, as well as a glossary of terms and abbreviations and a bibliography. (author)

  5. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  6. A gloomy future for energy - can we afford nuclear energy

    International Nuclear Information System (INIS)

    Talmet, L.; Svensson, B.

    1977-01-01

    Should Sweden continue in the nuclear club or instead look for alternative sources of energy. The answer to this question is perhaps that nuclear energy will become too expensive. This, at least, is indicated by the rapid cost increases in the whole nuclear-fuel cycle in recent years. (H.E.G.)

  7. The nuclear energy policy challenges

    International Nuclear Information System (INIS)

    Hanne, H.

    2009-01-01

    At a time when the nuclear question mobilizes attentions and when a new cycle of debates about non-proliferation opens up, the author recalls the constraints and challenges of a nuclear power generation policy. After a brief history of the development of nuclear energy in France and in the rest of the world, the author presents the risks linked with this energy source (TMI and Chernobyl accidents), the particularities of the fuel cycle with its safety and security aspects, and the promises of some past and future reactor technologies (FBR's and fusion reactors). Then, the author stresses on the importance of investments in this domain as illustrated by the launching of new nuclear programs in France, UK, Italy, Finland and in the US, and by the willing of some emerging countries to develop this energy source (China, India, United Arab Emirates, Jordan..). Finally, nuclear energy must not be considered as a privilege of developed countries but should benefit to the rest of the world as well since it promotes economic development thanks to an abundant and cheap energy. (J.S.)

  8. Journalism and nuclear energy

    International Nuclear Information System (INIS)

    Mills, M.P.

    1987-01-01

    The question as to why nuclear energy is a point of friction between journalists and the expert community is discussed. The areas in which the two communities fail to communicate are highlighted and the opportunities that exist for improved nuclear journalism are identified briefly. (author)

  9. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  10. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  13. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  14. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  15. Nuclear energy in Europe

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A country by country study of nuclear energy in the various European countries: Austria, Belgium, Bulgaria, Czechoslovakia, Denmark, Federal German Republic, Finland, German Democratic Republic, Great Britain, Holland, Hungary, Italy, Poland, Rumania, Spain, Sweden, Switzerland, USSR and Yugoslavia [fr

  16. Desalting and Nuclear Energy

    Science.gov (United States)

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  17. That compromising nuclear energy

    International Nuclear Information System (INIS)

    Mink, E.

    1981-01-01

    This book discusses a wide range of aspects of nuclear energy and its problems. Social and ideological as well as more technical sides of the nuclear controversy are dealt with. The author argues that just more information on the subject cannot solve the problem anyhow, as technologists naively hold. Being a christian, the author believes that the Bible can show us a way out, even as to these energy problems. (G.J.P.)

  18. Risk communication: Nuclear energy

    International Nuclear Information System (INIS)

    Peters, H.P.

    1991-01-01

    The emphasis is put on communication processes, here in particular with regard to nuclear energy. Not so much dealt with are questions concerning political regulation, the constellation of power between those becoming active and risk perception by the population. Presented are individual arguments, political positions and decision-making processes. Dealt with in particular are safety philosophies, risk debates, and attempts to 'channel' all sides to the subject of nuclear energy. (DG) [de

  19. Deliberations about nuclear energy

    International Nuclear Information System (INIS)

    Boskma, P.; Smit, W.A.; Vries, G.H. de; Dijk, G. van; Groenewold, H.J.; Jelsma, J.; Tans, P.P.; Doorn, W. van

    1975-01-01

    This report is a discussion of points raised in three safety studies dealing with nuclear energy. It reviews the problems that must be faced in order to form a safe and practical energy policy with regard to health and the environment (potential hazards, biological effects and radiation dose norms), the proliferation of nuclear weapons, reactor accidents (including their causes, consequences and evacuation problems that arise), the fallout and contamination problems, and security (both reactor security and national security)

  20. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  1. Alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Ruiter, J P [N. V. Kema te Arnhem, NL

    1975-01-01

    A review of alternative energy sources is presented. Solar energy may be used by collecting the heat for direct use or by converting it to electricity. Flat-plate and concentrating collectors are described. Wind energy is an indirect form of solar energy, and has been used for many years in the Netherlands. Calculations of the efficiency of windmills, and of the useful available wind energy along the Netherlands' coastline, are provided. The conversion of organic waste to useable energy is described, including techniques of pyrolysis, combustion, and biological conversion. Tidal energy and ocean-thermal-gradient power plants are briefly described. Geothermal energy is a particularly attractive resource. The average temperature gradient is about 30/sup 0/C/km, ranging from 10/sup 0/C/km in South Africa to 150/sup 0/C/km in Italy. In the Netherlands it ranges from 20-50/sup 0/C/km. The various types of geothermal systems (steam, water, geopressured) are reviewed, and presently operating geothermal power plants are described. A comparison is made of the costs of various energy sources, and 27 references are provided.

  2. Nuclear energy in Korea

    International Nuclear Information System (INIS)

    Ahn, J.-H.

    2000-01-01

    The total electricity generated in 1998 was 215,300 GWh with 43,261 MWe of total installed capacity of electric power, while in 1978 when the first Nuclear Power Plant began operation it was 31,510 GWh with 6,916 MWe installed capacity. The share of nuclear power generation in 1998 increased up to 41.7%. Currently, 16 units of nuclear power are operating with an additional four units under construction. Nuclear power has contributed to enhancing energy security and supplying stable energy for Korea. The government's strong commitment to the nuclear power program together with a long-term national policy resulted in favorable conditions for KEPCO to manage the program and promote increasing levels of national participation in successive nuclear power projects. The role of nuclear power as a sustainable energy resource can not be emphasized enough with respect to global environmental issues. Increasing the share of nuclear power in the total installed capacity for electricity generation will undoubtedly play a very important role. (author)

  3. The attitude to nuclear energy in Georgia

    International Nuclear Information System (INIS)

    Saralidze, Z.

    2000-01-01

    Georgia, as a new independent state, is facing new problems regarding energy sources in the conditions of market economy. Great attention is given by the Government to search for various ways and versions to overcome the energy crisis. While nuclear energy may be an option for some reasons detailed in the paper, a nuclear power plant is not officially considered as an alternative. (author)

  4. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  5. Nuclear energy and the environment

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1980-01-01

    Chapters are presented concerning the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels; environmental impacts of nuclear power plants; non-radiological environmental implications of nuclear energy; radioactive releases from nuclear power plant accidents; environmental impact of reprocessing; nuclear waste disposal; fuel cycle; and the future of nuclear energy

  6. Nuclear energy terms

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy.

  7. Nuclear energy terms

    International Nuclear Information System (INIS)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy

  8. Potential of natural energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J D; Glanville, R; Gliddon, B J; Harrison, P L; Hotchkiss, R C; Hughes, E M; Swift-Hook, D T; Wright, J K

    1976-01-01

    Apart from fossil fuels and nuclear energy, five main alternative sources of power for electricity generation are: the sun, the wind, the waves, the tides, and the heat inside the earth. Each has been examined for its relevance to the energy situation in Britain and in particular to the CEGB's requirements as an electrical utility. None emerges from the analysis as directly competitive with nuclear power, provided that nuclear fulfills present expectations. As an insurance against unforeseen delays in the nuclear program, however, one or two of the options may well be worth closer consideration, particularly wave power, for which Britain is favorably placed. The best immediate prospect for using solar energy falls outside the province of the CEGB, in the area of domestic water heating. Wind power, despite the windiness of the British Isles, suffers in practice from a low load factor, which would greatly inflate the capital cost. Geothermal power in Britain, geologically one of the most stable parts of the world, appears to be available only at depths too great to be presently attractive for electricity generation. Finally, tidal power, although technically available in limited amounts, again suffers from high capital costs. (auth)

  9. Parliament and nuclear energy

    International Nuclear Information System (INIS)

    Laermann, K.H.

    1993-01-01

    The paper provides a historical review of the behaviour of Parliament in the discussion about utilizing nuclear energy. An analysis of the positions taken and reasons advanced so far is necessary, because it is only from its results that promising strategies appropriate to bring about a consensus can be derived. There is no doubt that it is a genuine task of the democratically legitimated bodies to strive for a consensus in energy policy, in particular nuclear energy, in the interest of the whole State, with the legislative, executive and economic bodies combining their efforts. The reservedness of Parliament is regrettable. At the moment, however, there is the positive effect of the discussion being revived. It should be conducted rationally in the joint interest of reaching a political consensus and, on that basis, a broad acceptance of nuclear energy utilization. (orig./HSCH) [de

  10. Nuclear energy and society

    International Nuclear Information System (INIS)

    Baiquni, A.

    1982-01-01

    A great deal of energy will be needed for industrial development. The risks of energy production can be either individual or social in nature. Individual risk occurs in different places and different times to individuals in a certain period of time. Social risk occurs to several people in a time. People tend to refuse a nuclear power plant because of its social risk. This attitude is based more on feelings than reason. In fact radiation from a nuclear power plant is only 0.15% while radiation from medical instruments and from the environment is 99%. From the safety, pollution effect, price, and uses point of view, it can be concluded that nuclear energy is the most appropriate energy to face the future of the nation. (RUW)

  11. World nuclear energy paths

    International Nuclear Information System (INIS)

    Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.

    1979-01-01

    In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand

  12. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  13. Society response to nuclear energy

    International Nuclear Information System (INIS)

    Santamaria, N. C.

    2007-01-01

    Energy demand in the world is growing increasingly, among other factors due to economic development. Every way of producing electricity has got their own drawbacks and has implicit environmental impact. Among all the energy sources, nuclear energy is the most polemic because of the way it is presented by the mass media. This aspect provokes controversy to occidental societies which reject this kind of energy with arguments normally based on a wrong and insufficient knowledge of the matter. The antinuclear discourse, promoted late in the seventies, has gone deeply into the collective social unconscious and has undermined public acceptance of nuclear energy due to the fact, deeply exploited by antinuclear groups, of linking nuclear energy with the atomic bombing of Hiroshima and Nagasaki. In this sense, it is important to mention that in Japan there was a profound resentment and opposition to nuclear energy, because the memory of the nuclear bombings was permanently alive. However when the Japanese government told its people that this energy was necessary to boost their industrial development, Japanese citizens in an unprecedented attitude of patriotism overcame their most antagonist feelings, in order to contribute to the industrial development of their country. The result was that most of them voted in favour. Presently Japan gets 30% of its energy by means of 56 nuclear power plants and 1 more is under construction. Antinuclear groups took as their best emblem the accident of Chernobyl to justify their opposition to the nuclear power plants. The manipulation of this accident has been one of the most shameful in the nuclear history. It is widely known among the experts that the reactor used in Chernobyl was a type of military plutonium converter with a positive temperature reactivity coefficient, which made very dangerous its functioning. Any nuclear regulatory commission in democratic and responsible countries would have never authorized the use of this reactor

  14. Freedom from nuclear energy myth

    International Nuclear Information System (INIS)

    Kim, Wonsik

    2001-09-01

    This book generalizes the history of nuclear energy with lots of myths. The contents of this book are a fundamental problem of nuclear power generation, the myth that nuclear energy is infinite energy, the myth that nuclear energy overcomes the crisis of oil, the myth that nuclear energy is cheap, safe and clean, the myth that nuclear fuel can be recycled, the myth that nuclear technology is superior and the future and present of nuclear energy problem related radiation waste and surplus of plutonium.

  15. Nuclear Energy in Romania

    International Nuclear Information System (INIS)

    Biro, L.

    2003-01-01

    The new energy approach towards nuclear, due to the growing political support at the beginning of this century, is the result of a complexity of economical, social, political and technological factors. The history of peaceful use of nuclear energy in Romania goes back 45 years. Considering the strategic importance of the energy sector in developing the national economy on sustainable basis, the sector evolution should be outlined through prognosis and strategies on different horizons of time, so that the development perspectives and the energy supply to be correctly estimated. This necessity is emphasized in the Governmental Program of the present administration, which takes into consideration Romanian Economic Strategy on medium term and also The Government Action Plan on 2000-2004, agreed with the European Commission. In order to implement the Governmental Program, the Ministry of Industries and Resources elaborates the National Energy Strategy. The Government Action Plan draw up the conclusion that Unit 2 from Cernavoda NPP must be finalized. This solution fits the least-cost energy development planning and answers to environment requirements. Romania became a Member State of the Agency in 1957. From the mid-1960s to the mid-1970s its technical co-operation program with the Agency covered mainly research in nuclear physics and some medical and other applications of radiation and isotopes. Since 1976, when the Romanian nuclear power program was embarking to use CANDU-type reactors, the Agency has supported mainly the activities related to the Cernavoda NPP. In the framework of the Romanian accession process to the European structures, CNCAN co-operates with European Commission for transposition of the communautaire acquis in the field of nuclear activities. Romania has had laws in place governing the regulation of nuclear activities since 1974. They were remained in force throughout and subsequent to the national constitutional changes started in 1989 until 1996

  16. Nuclear energy is promising

    International Nuclear Information System (INIS)

    Spitz, H.

    2000-02-01

    This document summarizes the different talks given by the participants to the winter meeting on nuclear energy which took place in Germany on January 27 and 28 2000. Representatives of the following companies and organisations attended the meeting: Deutsches Atomforum e.V., Bayernwerk AG, IG Bergau, Chemie und Energie, Siemens AG - energy production, VEBA AG and one public opinion poll institute. (J.S.)

  17. Conventional and unconventional energy sources for mankind

    International Nuclear Information System (INIS)

    Sethna, H.N.

    1981-01-01

    Plenty of industrial nations of the world is founded on the fact that only 1% of their energy requirement is met by muscle power, both of human and animal origin, while 99% comes mostly from fossil fuels. However, fossil fuels are not an eternal source and hence to conserve it, other sources must also be used. Availability of energy sources such as coal, biogas, solar energy, wind, tidal energy is examined and their draw-backs are pointed out. Another energy source i.e. nuclear energy can however substantially contribute to the energy scene. Fission reactors can contribute nearly 25% of the world energy requirements within two decades. Breeder reactors, if successfully developed, can meet the energy requirements of the world for few thousands of years. Fusion reactors, if successful for commercial exploitation, will form almost an inexhaustible source of energy. An added advantage is that they produce much less radioactive waste than that produced by fission reactors. (author)

  18. Questions and answers on nuclear energy

    International Nuclear Information System (INIS)

    1989-04-01

    Leading questions about nuclear power are posed. These include questions about how much extra radioactivity in the environments is due to the nuclear industry, the risk of a nuclear accident, radioactive wastes, nuclear power as a solution to the greenhouse effect, alternative energy sources, and the economics of nuclear power. The answers are presented from the view point of the authors, members of Greenpeace. A glossary, notes and references are included. (UK)

  19. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Ekener, H.

    1997-01-01

    It examines the technical, scientific and legal issues relating to the peaceful use of atomic energy in Turkey. The first fifteen chapters give a general overview of the atom and radioactivity; the chapters which follow this section are more technical and deal with the causes of nuclear accidents in reactors.A number of chapters cover legal issues, for example the conditions and procedures involved in the insurance market and the risks linked to operation of a nuclear power plant.The following subjects are examined in relation to nuclear insurance: risks during construction; fire during operation of the plants and other causes of accidents; risks due to the transport of radioactive materials and waste etc. The final chapters reproduce the principle legislative texts in force in Turkey in the field of nuclear energy, and also certain regulations which establish competent regulatory bodies

  20. September 11 and Nuclear Energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2002-01-01

    The terrible September 11 attacks have demonstrated the ability of international terrorists to carry out well-planned and complex operations that can kill thousands of citizens. The potential for biological, chemical and nuclear terrorism has increased and will remain as long as their underlying causes. Nuclear installations could be the targets, or the sources of materials usable for terrorism. Whilst thick containment buildings around nuclear reactors are unlikely to be breached, some installations, such as spent fuel pond are more vulnerable. The safety of nuclear installations must be reconsidered taking into account some new initiating events hitherto considered of very low probability. A resistance against nuclear power plant sabotage by terrorist group penetrating into reactor building, is a controversial topic. Measures against diversion of nuclear materials, which could be used in nuclear terrorism, must be reviewed. The danger of diversion from giant military stocks of highly enriched uranium and plutonium by far exceeds that from peaceful use of nuclear energy. Measures to neutralize these stocks, such as dilution of highly enriched uranium, should be speeded up and have a priority in public concern. As for the nuclear power stations, public should be informed about the recommendations of IAEA for better physical protection of nuclear materials prepared in 1999 (INFCIRC 225/Rev.4) and about Additional protocol to inadequate Convention on Physical Protection of Nuclear Materials from 1980, which is in a process of ratification. For acceptable nuclear future public must be aware that all required measures to eliminate unacceptable risks resulting from terrorist activity against nuclear installations will be undertaken. (author)

  1. Energy supply and nuclear energy

    International Nuclear Information System (INIS)

    Heitzer, H.

    1977-01-01

    The author emphasizes the necessity and importance of nuclear energy for the energy supply and stresses the point that it is extremely important to return to objective arguments instead of having emotional disputes. In this connection, it would be necessary for the ministries in question to have clear-cut political responsibility from which, under no circumstances, they may escape, and which they cannot pass on to the courts either. Within the framework of listing present problems, the author is concerned with the possibility of improved site planning, the introduction of a plan approval procedure and questions concerning immediately enforceable nuclear licences. He also deals with a proposal, repeatedly made, to improve nuclear licensing procedures on the one hand by introducing a project-free site-appointment procedure, and on the other hand by introducing a simplified licensing procedure for facilities of the same kind. Splitting the procedure into site and facility would make sense solely for the reason that in many cases the objections are, above all, directed against the site. (HP) [de

  2. Teachers and nuclear energy

    International Nuclear Information System (INIS)

    1994-01-01

    The aims of the seminar were: to exchange national experience in informing and assisting teachers in the nuclear field, and to determine the conditions for improving the effectiveness of these programmes; to develop an international understanding on the basic training and information requirements to assist secondary-school teachers in discussing nuclear energy in an appropriately wide and balanced context at school; to study the respective contributions of national authorities, industry and relevant institutes in this endeavour

  3. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The aim of this French-English bilingual Guide is to present a synthesis embracing all the aspects and all the implications of the development of nuclear energy by situating it both within the French administrative and professional framework and in the world context. Special attention has been paid to the protection of man and the environment and to safety and security problems; most of the other questions -technological, economic, industrial- which arise at all points in the nuclear cycle. Teaching and research are outlined and a special appendix is devoted to nuclear information [fr

  4. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    Kilpi, K.; Palmen, B.

    1983-01-01

    Finland currently generates about 40% of its electricity from nuclear power. This achievement of worldwide record magnitude is based on long-lasting efforts to build and maintain the competent infrastructure and close international cooperation required by this demanding technology. This booklet published by the Finnish Atomic Energy Commission gives an overview of nuclear energy and related organizations in Finland. It describes the utility companies and nuclear power production, the manufacturing industry and its export potential, research and educational activities and the legal framework and authorities for nuclear safety and administration. International cooperation has been essential for Finland in developing its nuclear energy capacity and appreciation is espressed to many countries and international organizations which have contributed to this. At the same time Finnish organizations are willing to share the experiences and know-how they have gained in building nuclear power in a small country. This is a road which will be followed by many other countries in the decades to come. It is hoped that this booklet will also help to open new channels of cooperation in such efforts

  5. French nuclear energy policy

    International Nuclear Information System (INIS)

    Ferrari, A.; Bertel, E.

    1980-11-01

    The French energy policy is supported by a lucid view of the situation of our country and the constraints linked to the international context. This statement implies, the definition of a French policy or energy production essentially based on national resources, uranium, and especially for long term, technical know how which allows using plutonium in breeder reactors. This policy implies an effort in R and D, and industrial development of nuclear field, both in reactor construction and at all levels of fuel cycle. This coherent scientific and financial effort has been pursued since the beginning of years 60, and has placed France among the first nuclear countries in the world. Now this effort enables the mastership of a strong nuclear industry capable to assure the energy future of the country [fr

  6. Nuclear energy and development

    International Nuclear Information System (INIS)

    1991-01-01

    Today, about 80 developing countries are using nuclear techniques in various sectors of their national economies. In the sector of industry, the radiation processing using gamma rays of high energy electrons has grown. While in the sector of health care, an estimated 10000 gamma cameras-imaging instruments are used in combination with radioisotopes in medical diagnosis. In the field of agriculture there is, nearly, 1000 crop varieties derived from radiaton-induced mutations which are grown worldwide. Furthermore and concerning the energy sector there is 417 nuclear power plants operating in 26 countries, accounting for just 16% of the world's total electricity production; the nuclear energy helped in developing and supporting a variety of sciences. 2 tabs

  7. Nuclear energy and civilization

    International Nuclear Information System (INIS)

    Soentono, S.

    1996-01-01

    The role of energy is indeed very important since without it there will be no living-things in this world. A country's ability to cultivate energy determines the levels of her civilization and wealth. Sufficient energy supply is needed for economic growth, industrialization, and modernization. In a modern civilization, the prosperity and security of a country depends more on the capability of her people rather than the wealth of her natural resources. Energy supplies the wealth, prosperity and security, and sufficient reliable continuous supply of energy secures the sustainable development. The energy supply to sustain the development has to improve the quality of life covering also the quality of environment to support the ever increasing demand of human race civilization. Energy has a closer relationship with civilization in a modern society and will have to become even closer in the future more civilized and more modern society. The utilization of nuclear energy has, however, some problems and challenges, e.g. misleading information and understanding which need serious efforts for public information, public relation, and public acceptance, and possible deviation of nuclear materials for non-peaceful uses which needs serious efforts for technological and administrative barriers, precaution, prevention, safety, physical protection, safeguard, and transparency. These require cooperation among nuclear community. The cooperation should be more pronounced by heterogeneous growing Asian countries to reach harmony for mutual benefits toward better civilization. (J.P.N.)

  8. Communication helps development of nuclear energy

    International Nuclear Information System (INIS)

    Kopriva, A.

    2007-01-01

    In mid-February more than 170 nuclear energy sector communicators from 24 countries all over the world met in Milan, Italy. This year, the whole agenda dealt with the already known phenomenon of nuclear energy sector renaissance and the need for construction of new nuclear power plants, as a clean source of electricity generation without greenhouse emissions, which forms inseparable part of the energy mix in the world. (author)

  9. Public awareness of nuclear energy

    International Nuclear Information System (INIS)

    Aykol, F.; Tanker, E.; Oezkan, R.; Atila, B.; Seckin, O.; Guerel, Z.; Aksu, M. L.

    2001-01-01

    The history of civilization is full of striking examples of nations which were not able to develop their technology either disappeared from the stage of the history or lost their independence and were forced to live under the domination of others. The major cause of the wars that caused the lives of millions of people in 20th century is, to possess the energy sources, which are the basis of social and economic development. Ataturk has shown a personal interest to energy issue saying t o be industrialized is a must for the development . The encouragement of industry act in 1927 stated t he most important priority of Turkey is the energy problem . For economic and social wealth, freeing the country from the dependency on other countries and solving the energy bottleneck, the Turkish media is to know the nuclear technology rather than being scared of it and realize that it is the integral part of the solution of the energy problem. In conclusion Turkey is to realize and do necessities of the nuclear era in order to catch a bright future. Due to these facts, this study aims to furnish the public with bare facts of nuclear energy and technology to eliminate the biased wiew regarding to nuclear technology

  10. Nuclear energy in our future

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1988-01-01

    Nuclear energy for electricity generation will extend its market portion in Europe in the coming decades because: 1) its economic and/or environment-relevant advantages compared with the fossil energy sources are so explicit that the latter will no longer be competitive; 2) the improvements of the system engineering, which are presently being implemented and are to be expected in the future, will enhance the safety facilities to the extent that accident risk will cease to be a decisive factor; 3) energy-saving effects or the use of solar energy will not provide an appropriate large scale alternative for coal and/or nuclear energy; 4) the problems of radioactive waste disposal will be definitely solved within the foreseeable future. Considering all the technological systems available the light water reactor will continue to dominate. The change to the breeder reactor is not yet under discussion because of the medium-term guaranteed uranium supply. The use of nuclear technology in the heating market will depend for the moment on the availability and cost of oil and gas development. In principle nuclear energy can play an important role also in this sector

  11. Nuclear energy + solar energy, why not?

    International Nuclear Information System (INIS)

    Hernandez C, I.; Nelson E, P.

    2016-09-01

    Clean energies such as nuclear and solar are part of the solution to the energy dependence that we face today and also help us to reduce the greenhouse gas emissions, thus avoiding a global average temperature increase that is irreversible and harmful to all living beings on the planet. Independently the nuclear and solar energies have had a great development in recent years, so in this work we set ourselves the task of creating a synergy between them. First, we conducted a survey of different people involved in the area of energy (energy efficiency, clean energy and renewable sources) in order to know if the area of which they are part influences with respect to the impression that they have of safety in terms of supply, return on investment and safety to the health and environment of another energy source for which we use a correlation analysis. With the results obtained we propose to use photo thermic solar energy as a support to reduce the frequency of accidents by station blackout and we perform the analysis of the combination using the methodology of Probabilistic Analysis of Security with the help of SAPHIRE 7 software to realize the event trees by station blackout of a nuclear power plant and faults for a photo-thermal solar plant. Finally, the decrease in the probability of station blackout from the proposed combination is quantified. The results were favorable to indicate that the probability of station blackout is reduced in half and that is why is suggested to continue studying the combination. (Author)

  12. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  13. New nuclear heat sources for district heating

    International Nuclear Information System (INIS)

    Lerouge, B.

    1975-01-01

    The means by which urban oil heating may be taken over by new energy sources, especially nuclear, are discussed. Several possibilities exist: pressurized water reactors for high powers, and low-temperature swimming-pool-type process-heat reactors for lower powers. Both these cases are discussed [fr

  14. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments.

  15. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Song, Ki Dong; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Kim, H. S.

    2000-12-01

    This study identified the role of nuclear energy in the following three major aspects. First of all, this study carried out cost effectiveness of nuclear as a CDM technology, which is one of means of GHG emission reduction in UNFCCC. Secondly, environmental externalities caused by air pollutants emitted by power options were estimated. The 'observed market behaviour' method and 'responses to hypothetical market' method were used to estimate objectively the environmental external costs by electric source, respectively. Finally, the role of nuclear power in securing electricity supply in a liberalized electricity market was analyzed. This study made efforts to investigate whether nuclear power generation with high investment cost could be favored in a liberalized market by using 'option value' analysis of investments

  16. Nuclear energy: debates and realities

    International Nuclear Information System (INIS)

    Barre, B.

    2011-01-01

    After 20 years of slow growth, the civil nuclear industry had started to strongly develop as a response to increasing oil scarcity and to the climate change threat. The Fukushima Daiichi accident has invited us to look at this energy source in a new light. In this new context, this book lifts the curtain on all scientifical, ecological or geopolitical aspects of a sector which make people fantasize about but which remains in reality poorly known. Without hiding the hot topics, like the problems of waste management and of nuclear accidents, the author makes the demonstration that the salvation of the Earth and of its climate involves with no doubt to resort to nuclear energy. (J.S.)

  17. Nuclear energy and communication

    International Nuclear Information System (INIS)

    1998-01-01

    This article contains information related to the support that the Latin-American countries have counted, from the International Atomic Energy Agency, for the development and application of the nuclear energy in different fields. In the particular case of Costa Rica, it mentions some projects included in the program ARCAL. The achievements reached in the year 1998 and the goals proposed for 1999-2000. (S. Grainger) [es

  18. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  19. Nuclear Energy Today - Second edition

    International Nuclear Information System (INIS)

    Alonso, Agustin; Nakoski, John; Lamarre, Greg; Vasquez-Maignan, Ximena; Dale, Beverly; Keppler, Jan; Taylor, Martin; Paillere, Henri; Cameron, Ron; Dujardin, Thierry; Gannon-Picot, Cynthia; Grandrieux, Delphine; Dery, Helene; Anglade-Constantin, Sylvia; Vuillaume, Fabienne

    2012-01-01

    Meeting the growing demand for energy, and electricity in particular, while addressing the need to curb greenhouse gas emissions and to ensure security of energy supply, is one of the most difficult challenges facing the world's economies. No single technology can respond to this challenge, and the solution which policy-makers are seeking lies in the diversification of energy sources. Although nuclear energy currently provides over 20% of electricity in the OECD area and does not emit any carbon dioxide during production, it continues to be seen by many as a controversial technology. Public concern remains over its safety and the management of radioactive waste, and financing such a capital-intensive technology is a complex issue. The role that nuclear power will play in the future depends on the answers to these questions, several of which are provided in this up-to-date review of the status of nuclear energy, as well as on the outcome of research and development on the nuclear fuel cycle and reactor technologies

  20. The role of nuclear energy in times of energy transition

    International Nuclear Information System (INIS)

    2012-01-01

    Since the reactor catastrophe in Fukushima, the risk of nuclear power has once again become more evident to the public and has also led to a rethinking of politics in Europe. Slogans like ''Nuclear Power, No Thanks!'', ''Get Out of Euratom'' are making more and more the rounds. The phase-out of nuclear energy is the topic that is increasingly provoking people to think. But how should one handle this? What role will nuclear energy play in a distant future? Central factors such as the economic viability of renewable energy sources and the environmental and social compatibility of production and distribution must be taken into account, while at the same time the reduction of pollutants and greenhouse gases must continue. If this is done without nuclear energy, is the rapid abandonment of nuclear energy even necessary or does nuclear energy generation have to be used as a temporary solution? (roessner)

  1. Hydrogen Production from Nuclear Energy

    Science.gov (United States)

    Walters, Leon; Wade, Dave

    2003-07-01

    During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.

  2. A theological view of nuclear energy

    International Nuclear Information System (INIS)

    Pollard, W.G.

    1982-01-01

    The author presents a theological perspective on nuclear power based on Israel's history, as revealed in the Hebrew Bible and the Alexandrian Greek Septuagint. Nuclear energy is described as God's energy choice for the whole of creation, which can be made as safe as traditional sources

  3. Nuclear energy in the hydrogen economy

    International Nuclear Information System (INIS)

    Bertel, E.; Lee, K.S.; Nordborg, C.

    2004-01-01

    In the framework of a sustainable development, the hydrogen economy is envisaged as an alternative scenario in substitution to the fossil fuels. After a presentation of the hydrogen economy advantages, the author analyzes the nuclear energy a a possible energy source for hydrogen production since nuclear reactors can produce both the heat and electricity required for it. (A.L.B.)

  4. Nuclear re-think [The case for nuclear energy

    International Nuclear Information System (INIS)

    Moore, P.

    2006-01-01

    In the early 1970s, Patrick Moore, a co-founder of Greenpeace, believed that nuclear energy was synonymous with nuclear holocaust. Thirty years on, his views have changed because nuclear energy is the only non-greenhouse-gas-emitting power source that can effectively replace fossil fuels while satisfying the world's increasing demand for energy. Today, 441 nuclear plants operating globally avoid the release of nearly 3 billion tonnes of CO 2 emissions annually-the equivalent of the exhaust from more than 428 million cars. Concerns associated with nuclear energy are discussed including costs of nuclear energy, safety of nuclear plants, radioactive waste management, vulnerability of nuclear plants to terrorist attacks and diversion of nuclear fuel for weaponization. It is concluded that nuclear energy is the best way to produce safe, clean, reliable baseload electricity, and will play a key role in achieving global energy security. With climate change at the top of the international agenda, we must all do our part to encourage a nuclear energy renaissance

  5. Vision of nuclear energy

    International Nuclear Information System (INIS)

    1987-01-01

    A study about the perspectives of nuclear energy, in Japan, for the next 40 years is shown. The present tendencies are analyzed as well as the importance that the subject adquires for the economy and the industry. At the same time, the parameters of the governmental, private and foreign participation are established in the frame of the technological development. The aim fixed for the year 2030 can be divided into; 1: from 1986 to 2010-development of the technology of nuclear fuel cycle already stablished and in process of maturity. The LWR technology will reach a very advanced stage. The fast breeder reactors (FBRs) will become commercially available, and the nuclear fuel cycle will reach its maturity in Japan; 2: from 2011 to 2030-commercial use of the FBRS and further advance in the nuclear fuel cycle. (M.E.L.) [es

  6. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. Nuclear generated hydrogen has important potential advantages over other sources that will be considered for a growing hydrogen share in a future world energy economy. Still, there are technical uncertainties in nuclear hydrogen processes that need to be addressed through a vigorous research and development effort. Safety issues as well as hydrogen storage and distribution are important areas of research to be undertaken to support a successful hydrogen economy in the future. The hydrogen economy is gaining higher visibility and stronger political support in several parts of the

  7. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  8. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  9. SOURCES OF ENERGY AND THE ENVIRONMENT

    OpenAIRE

    Spash, Clive L.; Young, A.

    1994-01-01

    Energy from fossil fuels have become dominant in the industrialised and industrialising economies of the world. However, fossil fuels are also recognised as heavily polluting and responsible for a range of modern environmental and health problems. Nuclear power is a similar conventional energy source in that it relies upon depletion of a limited stock resource and is associated with a range of social and environmental problems. However, the alternative energy sources relying upon flow reso...

  10. Department of Nuclear Energy

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activities of Department was engaged in the selected topics in nuclear fission reactor science and engineering. Present and future industry competitiveness, economic prosperity and living standards within the world are strongly dependent on maintaining the availability of energy at reasonable prices and with security of supply. Also, protection of man and the environment from the harmful effects of all uses of energy is an important element of the quality of life especially in Europe. It is unrealistic to assume that the technology for renewable (hydro, wind, solar and biomass) available within a 20-30 year perspective could provide the production capacity to replace present use of nuclear power and at the same time substantially reduce the use of fossil fuels, especially when considering that energy demand in industrialized countries can be expected to continue to increase even within a framework of overall energy conservation and continued improvement of efficiency in energy usage. In the area of nuclear fission, we continue support to maintain and develop the competence needed to ensure the safety of existing and future reactors and other nuclear installations. In addition support is given to explore the potential for improving present fission technology from a sustainable development point of view. The focus on advanced modelling of improved reactor and fuel cycle concepts, including supporting experimental research, with a view to improving the utilisation of the inherent energy content of uranium and other nuclear fuels, whilst at the same time reducing the amount of long-lived radioactive waste produced. A common scientific understanding of the frequently used concept of ''reasonable assurance of safety'' for the long-term, post-closure phase of repositories for spent fuel and high-level waste developed in order to ensure reasonably equivalent legal interpretations in environmental impact assessment and licensing procedures. Also, research is

  11. Nuclear primary energy carriers. Short version

    Energy Technology Data Exchange (ETDEWEB)

    Jaeck, W

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for Tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE program. With reference to the nuclear energy documentation activities of the Federal Government this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) 891 UA 892 ARA.

  12. Nuclear primary energy carriers. Pt. 1

    International Nuclear Information System (INIS)

    1978-04-01

    Basing on our present knowledge the following energy sources for energy supply must be taken into consideration in the long term: regenerative energy sources, fission energy gained by breeder reactors, nuclear fusion. While regenerative energy sources were treated at full length in the study 'Energy Sources for tomorrow' the present study specifies the other two energy options. The availability and the reliability of nuclear primary energy carrier supply is described in detail and the conversion systems available or still being developed are investigated with regard to their specific consumption of primary energy. Topical questions concerning the proliferation stability of the fuel cycles and techniques are subject to the INFCE programme. With reference to the nuclear energy documentation activities of the Federal Govenment this study is supposed to supply further fundamental material on nuclear primary energy carriers, consumption and readiness for application. Thus it will contribute to the question: 'Is nuclear energy an option which guarantees energy supply in the long term for the Federal Republic of Germany'. (orig.) [de

  13. Is nuclear energy acceptable

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Nuclear hazards are assessed as being unique only in the sense of their unfamiliarity, with future development of nuclear energy dependent on overcoming public fears. Economics is clearly in favor of properly operated nuclear energy facilities for long-term power generation. Risks arise over the potential for human error to permit improper operation and for an industry shutdown because of a reactor accident. Attempts to ascertain accident probabilities have revealed that emergency core cooling systems and containment are not simply parallel, but operate in series and provide more safety than was thought. Insurance liability, resting on the small probability of very costly damage, is felt to be best placed on the utility with the government providing ultimate protection in the event of a potentially bankrupting accident. Problems of nuclear waste handling and low-level release are felt to be solvable with present technology. Proliferation is felt to be a political problem that is incidental to power plants. Public concern is blamed on possible diversion of materials for weapons, unfamiliarity with radiation, and the demand for meticulous handling of materials and operations. Burner reactors are projected to phase out and be replaced by breeder reactors that are operated in physical isolation under strict security by a professional cadre aware of its responsibility. A restructuring of the nuclear industry is called for so that the generation of power can be insulated from the distribution and marketing functions. (13 references)

  14. Our global energy future and the role of nuclear energy

    International Nuclear Information System (INIS)

    Foster, J.S.

    1991-01-01

    An extension in the use of energy, on even a fairly moderate basis, will, for several decades at least, require the use of all our present energy sources at rates that are a natural extension of historical rates, trending toward maximum practicable exploitation for all but nuclear energy. Regardless of what happens with the fossil hydrocarbons nuclear energy will play a major role in the supply of energy. When the fossil hydrocarbons have run their course nuclear and possibly some solar energy, through the media of electricity, hydrogen and synthetic hydrocarbons, will provide the bulk of the world's controlled energy and in sufficient quantity to provide ample energy for all. The burning question, however, is what will happen in the next few decades. There is a wonderful opportunity for nuclear energy, as the world requirement for energy, and particularly electrical energy, grows

  15. West Europe without Nuclear Energy

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains basic conclusions of discussion if West Europe can exist without nuclear energy: 1. Presumptions for the nuclear energy removal 2. Regional and international consulting 3. Economic competition 4. Role of the nuclear energy 5. Situation in the energetic industry 6. Costs, safety and public relations 7. Energy policy

  16. Public communication and nuclear energy

    International Nuclear Information System (INIS)

    Cornado, A.

    2006-01-01

    The article tries to explain why on occasion the public's perception of nuclear is more negative than of any other form of electricity generation or issue related to this field, when in reality public opinion has been gradually losing interest in nuclear in recent years. In fact, we could say that as nuclear loses its interest, its presence in the media grows in relation to the environmental aspects of electricity generation, of which nuclear form a part. Of the accusations directed at the nuclear industry, probably the most frequent one concerns the lack of transparency and lack of information on its activities. This article shows how the nuclear sector is probably one that generates more and better information on its own business. However, the lack of social acceptance of this activity, and of the energy business in general, is recognized. To solve this, mention is made of the example of France and Finland, where a well planned communication policy, implemented on a sustained basis over time, and the invitation to society to take part in these issues have favored a substantial improvement of public acceptance of electric generation sources, and specifically the nuclear option. The article ends with some recommendations that could be applied to Spain. (Author)

  17. The new economics of nuclear energy

    International Nuclear Information System (INIS)

    Salian, Ramesh; Prasanna Kumar, N.

    2012-01-01

    With 15% of the world's population and an economic growth rate that increases the aspiration of its people to better quality of life, India has a voracious appetite for energy. Nuclear power is one of the options of providing safe, environmentally benign, reliable and economically competitive energy services. Nuclear power world over provides about 16% of electricity through 440 nuclear power plants with a total installed capacity of 361.582 GW (as of January 2004, IAEA PRIS data). Nuclear energy has traditionally played a small role in meeting India's energy requirements. Nuclear power makes up only 4,120 MW, constituting 2.6%, of the total electricity generation capacity. India is a power hungry nation and needs to switch over from its tremendous dependence on fossil fuels to alternative sources of energy like solar energy, bio energy and nuclear energy. Indian nuclear power plants have progressively attained excellent operation performances. However, the changing economic and geopolitical situation in the energy sector has made it imperative to emphasize the significance of nuclear energy in the future energy landscape of the country. The present paper discuss the importance, demand and supply pattern of nuclear energy and its economics. (author)

  18. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2004-12-01

    This study evaluated the role of nuclear energy in various aspects in order to provide a more comprehensive standard of judgement to the justification of the utilization of nuclear energy. Firstly, this study evaluated the economic value addition of nuclear power generation technology and Radio-Isotope(RI) technology quantitatively by using modified Input-Output table. Secondly, a comprehensive cost-benefit analysis of nuclear power generation was conducted with an effort to quantify the foreign exchange expenditure, the environmental damage cost during 1986-2015 for each scenario. Thirdly, the effect of the regulation of CO 2 emission on the Korean electric supply system was investigated. In more detail, an optimal composition of power plant mix by energy source was investigated, under the assumption of the CO 2 emission regulation at a certain level, by using MESSAGE model. Finally, the economic spillover effect from technology self-reliance of NSSS by Korea Atomic Energy Research Institute was evaluated. Both production spillover effect and value addition spillover effect were estimated by using Input-Output table

  19. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  20. Nuclear energy and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    1989-01-01

    A summary of the report dispatched in the middle of 1978 by the Atlantic Council of United States, organized by North American citizens, is presented. The report considers the relation between the production of nucleoelectric energy and the capacity of proliferation of nuclear weapons. The factors which affect the grade of proliferation risk represented by the use of nuclear energy in the world comparing this risk with the proliferation risks independently of nuclear energy, are examined. (M.C.K.) [pt

  1. Public acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Reis, J.S.B.

    1984-01-01

    Man, being unacquainted with the advantages of Nuclear Energy associates it with the manufacture of weaponry. However, the benefits of Nuclear Energy is received daily. In Brazil the public has not taken an anti-nuclear position; it is recognized that the Nuclear Plan exists exclusively for peaceful purposes and the authorities keep the community well informed. The Comision Nacional de Energia Nuclear along with the Instituto de Radioproteccion y Dosimetria, Instituto de Ingenieria Nuclear and the Instituto de Investigaciones Energeticas y Nucleares has developed in 27 years of existence, a gradual, accute and effective long term programme for the formation of potentially receptive opinion of Nuclear Energy. (Author)

  2. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    determined effort would be needed to achieve more significant near-term use. The timing and extent of this implementation will of course depend on the rate of escalation of fossil-fuel prices, the local availability of alternative energy sources, and the general level of public confidence in nuclear technology. This paper reviews the prospects for NPH systems. including the nature of the potential market, some of the promising NHP reactor design options of current interest, and Canadian and global experience. (author)

  3. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    effort would be needed to achieve more significant near-term use. The timing and extent of this implementation will of course depend on the rate of escalation of fossil-fuel prices, the local availability of alternative energy sources, and the general level of public confidence in nuclear technology. This paper reviews the prospects for NPH systems. including the nature of the potential market, some of the promising NHP reactor design options of current interest, and Canadian and global experience. (author)

  4. Nuclear Energy: Combating Climate Change

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Paillere, Henri; )

    2015-10-01

    Global electricity demand is expected to increase strongly over the coming decades, even assuming much improved end-use efficiency. Meeting this demand while drastically reducing CO 2 emissions from the electricity sector will be a major challenge. Given that the once-significant expectations placed on carbon capture and storage are rapidly diminishing, and given that hydropower resources are in limited supply, there are essentially only two options to de-carbonise an ever increasing electricity sector: nuclear power and renewable energy sources such as wind and solar PV. Of these two options, only nuclear provides firmly dispatchable base-load electricity, since the variability of wind and solar PV requires flexible back-up that is frequently provided by carbon-intensive peak-load plants. The declining marginal value of electricity production and the security of electricity supply are additional issues that must be taken into account. Nuclear power plants do, however, face challenges due to their large up-front capital costs, complex project management requirements and difficulties in siting. As technologies with high fixed costs, both nuclear power and renewables must respond to the challenge of acquiring long-term financing, since investments in capital-intensive low-carbon technologies are unlikely to be forthcoming in liberalised wholesale markets. In order to substantially de-carbonise the electricity systems of OECD countries, policy-makers must understand the similarities, differences and complementarities between nuclear and renewables in the design of future low-carbon electricity systems. The value of dispatchable low-carbon technologies, such as hydro and nuclear, for the safe and reliable functioning of electricity systems must also be recognised. Should the de-carbonisation of electricity sectors in the wake of COP 21 become a reality, nuclear power might well be the single most important source of electricity by 2050, thanks mainly to the

  5. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented

  6. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented.

  7. 10 CFR 39.53 - Energy compensation source.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is...

  8. Dictionary of the energy-producing industry. Nuclear and non-nuclear energy sources. Vol. 1. Fachwoerterbuch zur Energiewirtschaft. Nukleare und nichtnukleare Energietraeger. Bd. 1. Deutsch-Englisch/Englisch-Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Mannhardt, K H

    1981-01-01

    This technical dictionary, compiled in everyday practice, gives an outline of the terminology and phraseology of a modern field of engineering. Users should have some basic knowledge of the English language and also of engineering as well as access to standard-language dictionaries. Core subjects of the dictionary are nuclear power, reactor engineering, fusion technology, solar energy, wind energy, tidal energy, radiation protection, nuclear safety, coal gasification and coal liquefaction, cooperative agreements and managerial problems.

  9. A century of nuclear energy

    International Nuclear Information System (INIS)

    Hug, M.

    2009-01-01

    The author proposes a history of the French nuclear industry and nuclear energy since the Nobel prizes of 1903 and 1911. He describes and comments the context of the energy production sector before the development of the nuclear energy, the development of the institutional context, the successive and different nuclear technologies, the main characteristics of the French program at its beginning, the relationship between the nuclear energy and the public, the main accidents and lessons learned from them, the perspectives of evolution of nuclear energy

  10. The Brazilian Nuclear Energy Program

    International Nuclear Information System (INIS)

    Carvalho, H.G. de

    1980-01-01

    A survey is initially of the international-and national situation regarding energetic resources. The Brazilian Nuclear Energy Policy and the Brazilian Nuclear Program are dealt with, as well as the Nuclear Cooperation agreement signed with the Federal Republic of Germany. The situation of Brazil regarding Uranium and the main activities of the Brazilian Nuclear Energy Commission are also discussed [pt

  11. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  12. Nuclear energy and social impact

    International Nuclear Information System (INIS)

    Carpintero-Santamarsia, N.

    2010-01-01

    Economic development and population increase are boosting a new process of energy demand all around the world which implies also a protection of the environment and, consequently, the reduction of emissions of CO 2 , a challenge that has to be solved. Fossil fuels represent the cheapest costs in capital and have as common features that their exploitation is based on largely known technologies, having developed a big experience in construction, operation and maintenance. However they are big environment polluters. Nuclear energy fulfils three of the main objectives that should be pursued for a steady development: 1. It does not emit Greenhouse gases. 2. It is the cheapest produced energy. 3. It guarantees a security in its supply due to the fact, among others, that it is not conditioned by external factors. However, as any other energy source, nuclear power has its own drawbacks. Some are real and some are fictitious. For this reason it becomes necessary to improve the social image of this source of energy, so as to counteract the negative consequences of the antinuclear discourse, promoted late in the seventies that has permanently undermined public acceptance

  13. New nuclear projects in the world. Sustainable Nuclear Energy

    International Nuclear Information System (INIS)

    Leon, P. T.

    2011-01-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO 2 emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  14. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    1990-01-01

    TNC 90 focuses on nuclear energy technology. Some more basic or less central terms which were included in the previous glossary, TNC 55, have not been included in this version. About 1200 definitions in swedish included together with translations to english, german and french. The terms have been listed in alphabetical order. To make it easier to look up a certain term or terms that stand for related concepts the terms have been systematically arranged in a special index. (L.E.)

  15. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  16. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  17. Nuclear energy in Malaysia

    International Nuclear Information System (INIS)

    Jacob, F.X.

    1996-01-01

    The Malaysian Vision 2020 envisages doubling of the its economy every ten years for the next three decades. The Second Outline Perspective plan 1991-2000 (OPP2), also known as the National Development Policy (NDP) will set the pace to enable Malaysia to become a fully developed nation by the year 2020. The Malaysian economy is targeted to grow at 7 percent per annum in the decade of OPP2. In view of the targets set under Vision 2020, it is important to ensure that energy does not become a constraint to growth, and this sector develops in a least cost basis. Energy is crucial for industrialization and no modern industrial state can function without it. The paper presents a description of the main utilities in the country. Their installed capacities, maximum demand, generation mix and customers served are discussed. The electricity demand forecast till the year 2020 is presented. The paper presents this for 4 scenarios - a low growth, business as usual scenario, a moderate growth, business as usual scenario, a moderate growth, energy efficient scenario and a targeted growth, energy efficient scenario. The energy resources in the country is described together with its energy policy. The country's four-fuel policy is elaborated with the various options discussed. The environmental and pricing policies with regards to energy is also briefly given. Finally the nuclear option is presented in this context of the country's energy policy. The country had undertaken various studies for the nuclear option. These studies are given in the paper. The purpose of these studies and what the government decided is also discussed. Finally the prospects for the nuclear option in the future for the country is discussed. It is concluded that while, for the present, the nuclear option is not considered by the government, this may not be so in the future. The various reasons for this is given and the paper concludes that it may be prudent to keep this option under constant review. (J.P.N.)

  18. Nuclear Energy Has To Communicate

    Energy Technology Data Exchange (ETDEWEB)

    Bararu, Corina [Nuclearelectrica, 65 Polona St., Bucharest (Romania)

    2008-07-01

    member of such an organization. On the other side, people should acknowledge the sources of the electricity that they use in their day to day lives and this should also be one of the objectives of the communication strategy. The paper will present not only the theoretical aspects of the implementation of such communication strategies - internal and external - but it will also try to make real propositions for a real case - Nuclearelectrica. In Romania, nuclear energy hasn't been promoted as much, neither to the public, nor to the organization, and, as the market is being liberalized, there have to be taken immediate measures in both aspects. (authors)

  19. Nuclear Energy Has To Communicate

    International Nuclear Information System (INIS)

    Bararu, Corina

    2008-01-01

    member of such an organization. On the other side, people should acknowledge the sources of the electricity that they use in their day to day lives and this should also be one of the objectives of the communication strategy. The paper will present not only the theoretical aspects of the implementation of such communication strategies - internal and external - but it will also try to make real propositions for a real case - Nuclearelectrica. In Romania, nuclear energy hasn't been promoted as much, neither to the public, nor to the organization, and, as the market is being liberalized, there have to be taken immediate measures in both aspects. (authors)

  20. Nuclear Energy Has To Communicate

    Energy Technology Data Exchange (ETDEWEB)

    Bararu, Corina [Nuclearelectrica, 65 Polona St., Bucharest (Romania)

    2008-07-01

    a member of such an organization. On the other side, people should acknowledge the sources of the electricity that they use in their day to day lives and this should also be one of the objectives of the communication strategy. The paper will present not only the theoretical aspects of the implementation of such communication strategies - internal and external - but it will also try to make real propositions for a real case - Nuclearelectrica. In Romania, nuclear energy hasn't been promoted as much, neither to the public, nor to the organization, and, as the market is being liberalized, there have to be taken immediate measures in both aspects. (authors)

  1. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  2. Dictionary of nuclear energy termination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-15

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  3. Dictionary of nuclear energy termination

    International Nuclear Information System (INIS)

    1983-04-01

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  4. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  5. Worldwide energy prospects and nuclear contribution

    International Nuclear Information System (INIS)

    1999-04-01

    With a growing up worldwide population and a better standard of living, the global energy consumption will rise. The CO 2 emissions will increase too because of todays share of fossil fuels in the energy sources. This paper analyzes the possible contribution of nuclear energy in this context: economical and environmental aspects, political aspects (distribution of energy resources, energy dependence), energy efficiency, reduction of CO 2 emissions. (J.S.)

  6. Alternatives sources of energy in the Czech energy mix

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Lisy; Marek, Balas; Zdenek, Skala

    2010-09-15

    The paper features a basic outline of the situation in the energy sector of the Czech Republic. It brings information about the current state of the country's energy mix and indicative targets of the State Energy Policy. Though coal and nuclear energy will remain the country's energy staples, great stress is also put on the growth of share of renewable and alternative energy sources. Out of these, the greatest potential in the Czech Republic is that of biomass and waste. To make the use of these sources cost-effective, it is necessary to put stress on heat and power cogeneration.

  7. Nuclear energy prospects to 2000

    International Nuclear Information System (INIS)

    1982-01-01

    This report describes the potential and trends of electricity use in OECD-countries as the main parameter of nuclear power development, including oil displacement and future generation mix, gives a most recent assessment of nuclear power growth to the year 2000, deals with supply and demand considerations covering the whole fuel cycle, assesses the impact of the nuclear contribution on the overall energy situation according to three energy scenarios and the consequences of a possible nuclear shortfall, and finally reviews other factors influencing nuclear energy growth such as security of supply, economics of nuclear power production as wells as public and utility confidence in nuclear power

  8. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B.

    2006-12-01

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics

  9. Economic Analysis of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B

    2006-12-15

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics.

  10. Nuclear energy: a necessary option

    International Nuclear Information System (INIS)

    Robles N, A. G.; Ramirez S, J. R.; Esquivel E, J.

    2017-09-01

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO 2eq as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO 2eq and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  11. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  12. DESIGN OF ALTERNATIVE ENERGY SOURCES

    Directory of Open Access Journals (Sweden)

    Popa Stefania

    2013-11-01

    Full Text Available By energy sources we understand technologies and materials used to obtain various forms of energy necessary for the development of society. These sources must be in adequate quantities and be conveniently exploited in terms of technical, economic and sustainable perspective. Alternative energy uses the inherent power of natural sources like wind, tides, the sun. Alternative energy is a term used for some energy sources and energy storage technologies. Generally it indicates energies that are nontraditional and have low impact to the environment. The alternative energy term is used in contrast with the term fossil fuel according to some sources, while other sources use it with the meaning of renewable energy purposes.

  13. Development of nuclear energy in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, A.A.; Galstyan, A.A.

    2010-01-01

    This paper presents an attempt to depict the situation in the Armenian Nuclear Energy Sector with the particular focusing on its further development. Basing on the energy independence and national security strategy principles, the Government of Armenia made a decision to construct a new nuclear unit in the Republic to replace Unit 2 of the Armenian NPP after its decommissioning. The paper shows that the only acceptable way of electricity generation in Armenia is the combined operation of thermal power plants and new nuclear unit, with the use of domestic renewable energy sources. This will allow to cover the Republic's energy demand and to export the excess electricity to the neighboring countries

  14. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  15. Questions about the future of the nuclear energy

    International Nuclear Information System (INIS)

    2001-12-01

    The nuclear energy became a society subject much debated. This analysis discusses in three chapters the different interrogations concerning the nuclear energy: the comparison between the different energy sources to justify the preservation of the nuclear energy in France and in the world, the compatibility of the nuclear energy with the different socio-economic choices as the main condition of its development, and the role of the Government to transform the energy policy on the society choice. (A.L.B.)

  16. Inevitability of nuclear energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1997-01-01

    The Indian atomic energy programme that has been launched in the late 1940s, with the courageous vision of Homi Bhabha, had made remarkable progress during the fifties, sixties and till the mid-seventies, leading to the establishment of a comprehensive base of nuclear science, technology and engineering, and the setting up of nuclear power stations. After the Pokharan experiment in 1974, the programme had to face a hostile attitude from the Western powers, with the stoppage of flow of technology and equipment from the West. The programme had shown the resilience to face the challenge, and march ahead, developing a range of indigenous capabilities both within the Department and in the Indian industry, though with a certain loss in the momentum. The successful design, construction and operation of the 100 Mw(t) research reactor Dhruva in Trombay, and the successful commissioning of the Fast Breeder Test Reactor in Kalpakkam, with a unique plutonium-uranium carbide fuel of Indian design, are significant capability demonstrations in the latter phase. On the power front, the twin-unit power stations at Narora (UP) and Kakrapar (Gujarat) have shown excellent performance, with respect to plant availability and capacity factor. This article presents an assessment of the progress achieved so far, amidst the difficulties encountered. Factors accounting for the apparently slow pace of growth are discussed, and the public concerns regarding nuclear safety and safety regulations are also addressed. In a situation where acute power shortages have become a fact of life, and difficulties can be foreseen in the development of coal and hydel resources (which are also limited in extent), the importance of pursuing the nuclear energy option is re-iterated. The need for unstinted government support to the program at this stage is also emphasized. (author)

  17. Nuclear energy and independence

    International Nuclear Information System (INIS)

    Rotblat, J.

    1978-01-01

    The pro-nuclear lobby in the United Kingdom won its battle. The Report on the Windscale Inquiry strongly endorsed the application by British Nuclear Fuels (a company owned by the government) to set up a plant to reprocess spent oxide fuels from thermal reactors; a motion in Parliament to postpone a decision was heavily defeated. The Windscale Inquiry was an attempt to settle in a civilized manner what has been tried in other countries by demonstrations and violence. In this exercise, a High Court Judge was given the task of assessing an enormous mass of highly complex technical and medical material, as well as economic, social, and political arguments. The outcome is bitterly disappointing to the objectors, all of whose arguments were rejected. Although the question of whether Britain should embark on a fast breeder reactor program was specifically excluded from the Inquiry, it clearly had a bearing on it. A decision not to proceed with the reprocessing plant would have made a fast breeder program impossible; indeed, the Report argues that such a decision would involve throwing away large indigenous energy resources, a manifest advocacy of the fast breeder. Other arguments for the decision to go ahead with the reprocessing plant included the need to keep the nuclear industry alive, and the profit which Britain will make in processing fuels from other countries, particularly Japan. The author comments further on present UK policy, taking a dissenting view, and then comments on the paper, Nuclear Energy and the Freedom of the West, by A.D. Sakharov

  18. Man, environment and nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Gardan, J

    1978-10-01

    The acceptability of nuclear fission as energy source is governed by three factors, economic, ecological and sociological. the economic context the gradual exhaustion of fossil fuels is a result of ever-increasing demands. The biological risk concept which determines the acceptable industrial application level is the second factor to be considered. The danger of radioactive contamination is almost unexistent except in the accident hypothesis, and power stations are built with excessive safeguards against hypothetical accidents. The idea of systematic processing of all working effluent to reduce radioactive waste discharge by several orders of magnitude is being examined. The only serious problems seem to be the disposal of radioactive wastes and the plutonium non-proliferation question bound up with breeder reactors. Whereas vitrification offers some solution to the radioactive waste conditioning problem, responsibility for the proliferation of nuclear weapons rests with the human conscience alone. The development of nuclear power stations over several decades seems to present no inacceptable danger and offers the best compromise betweengrowth and minimum risk requirements. The third factor to be accounted for is the opposition displayed by a fraction of the population to the development of nuclear energy for peaceful applications.

  19. Man, environment and nuclear energy

    International Nuclear Information System (INIS)

    Gardan, Jacques.

    1978-10-01

    The acceptability of nuclear fission as energy source is governed by three factors, economic, ecological and sociological. It is necessary to account first for the economic context and for the state of natural resources: gradual exhaustion of fossil fuels as a result of ever-increasing demands. The biological risk concept which determines the acceptable industrial application level is the second factor to be considered. The danger of radioactive contamination is almost inexistent except in the accident hypothesis, and power stations are built with excessive safeguards against hypothetical accidents. The idea of systematic processing of all working effluent to reduce radioactive waste discharge by several orders of magnitude (zero release principle) is being examined. At present, the waste discharge levels are always well below the limits set by the CIPR and present no danger to the population. The only serious problems seem to be the disposal of radioactive wastes and the plutonium non-proliferation question bound up with breeder reactors. Whereas vitrification, the new 'Synroc' process, offer some solution to the radioactive waste conditioning problem, responsibility for the proliferation of nuclear weapons rests with the human conscience alone. The development of nuclear power stations over several decades seems to present no inacceptable danger and offers the best compromise between growth and minimum risk requirements. The third factor to be accounted for is the opposition displayed by a fraction of the population to the development of nuclear energy for peaceful applications [fr

  20. Can we live without nuclear energy?

    International Nuclear Information System (INIS)

    Lipphardt, G.

    1987-01-01

    Demands for a withdrawal of nuclear energy are usually based on alleged safety deficiencies of nuclear power plants. Renewable energy sources, electricity saving and heat-power coupling should make possible the replacement of nuclear power plants. But are solar and wind energy sources real alternatives, by which electricity can be generated cheaply and sufficiently? Or could the energy problem be solved by saving energy without lowering our standard of living and narrowing the development of our industry? Must we instead burn expensive and rare fossil fuels that also have many disadvantages? For the chemical industries of the Federal Republic of Germany and Switzerland who are very large electricity consumers these are essential questions, on which their future competitiveness depends. The question naturally then arises whether our nuclear power plants are really so unsafe that we are obliged to accept solutions that are far from ideal. The present technical and economical article tries to answer these questions. 22 refs., 9 figs., 1 tab

  1. Nuclear energy and society Russian dimension

    International Nuclear Information System (INIS)

    Gagarinski, A.Yu.

    2010-01-01

    Since the very beginning of its brief history, nuclear energy was doomed to public attention - because of its first application. For 50 years of existence it failed to become one of traditional energy technologies, which the society would assess on the basis of its actual advantages (such as energy efficiency, resource availability and environmental acceptability). Nuclear weapons and crisis of confidence resulting from severe accidents have both formed the attitude to nuclear. This paper considers the basic antinuclear arguments, such as proliferation, waste and severe accidents. The current status of relations between nuclear energy and the public is still close (not only in Russia, but also in almost all European countries) to this state of politicization of nuclear and constant irrational fear radiation causes among people. Nevertheless, the positive trend in the attitude towards nuclear energy is obvious, both in Russia and in the world. In 2006, the long-expected 'new nuclear energy policy' (with returned budgetary financing of the new nuclear build) was announced in Russia at the highest governmental level. After that the worldwide recognition of the need to develop nuclear energy was only growing. The scale of global energy development is so large that all sources capable of making a contribution will find their demand. In the same time, public opinion in the world inseparably connects the issue of energy security with measures to combat climate changes. The '2 deg. C problem', if solvable at all, could be addressed only by simultaneous implementation of all possible emission reduction measures (including carbon-free energy technologies) on an unprecedented scale. Emission-free nuclear energy can actually become a system capable of sustainable and prompt development. This paper considers the issues, which could hamper nuclear development and negatively impact the public attitude towards nuclear. (authors)

  2. Low Energy Nuclear Reactions?

    CERN Multimedia

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  3. Desalination and nuclear energy

    International Nuclear Information System (INIS)

    Romeijn, A.A.

    1992-01-01

    The techniques for fresh water production from seawater have matured and capacities have increased considerably over the past decades. It is feasible to combine seawater desalination with the generation of electricity since power stations can provide energy and low grade heat during off peak periods for the purpose of fresh water production. A dual purpose installation, combining a seawater desalination facility with a light water reactor power generation station promises interesting possibilities. The case in South Africa, where nuclear power stations are most economically sited far from the inland coal fields, is discussed. 1 ill

  4. Ethics and Nuclear Energy

    International Nuclear Information System (INIS)

    Nezic, N.; Dodig, D.

    2000-01-01

    Should the scientist be a morally unbiased person? This is the eternal question asked by many great thinkers interested in science. The answer is hard to find. Scientists are expected to take into consideration the consequences of their actions before they actually start ot act. Sometimes they have to make certain sacrifices in order to help mankind. Unfortunately, we are witnesses of some intelligent, but inhuman and selfish people carrying out their even most destructive ideas. In this paper the relation between scientists and experts in the field of nuclear energy and the public will be discussed. (author)

  5. Nuclear energy data 1993

    International Nuclear Information System (INIS)

    1994-01-01

    A questionnaire on Electricity generation, Nuclear Power and Fuel Cycle Data is distributed annually to OECD Member countries. In the questionnaire of January 1993, countries were asked to provide historical data for 1991 and 1992 and most likely projections up to the year 2010. The replies to the questionnaire or the results of the discussions between national correspondents and the Secretariat are presented in this Booklet. The Secretariat has, in some cases, referred to IEA's electricity related data and IAEA's nuclear plant data. Where data were still unavailable, the Secretariat made estimates based on information from other sources. The total capacity of those plants connected to the grid, under construction and firmly committed in 1992 was 289.3 GWe but, based both on questionnaire replies and Secretariat estimates, is expected to rise to 318.0 GWe in 2010 despite an allowance of 20.2 GWe to be taken out of service. The electricity generation and production data for fuel cycle services refer to these facilities located within the country, and thus exclude imports. The fuel cycle requirements, however, refer to the amounts of fuel cycle materials and services necessary for national nuclear programmes. 11 tabs., 6 figs

  6. Energy controversy: the role of nuclear power

    International Nuclear Information System (INIS)

    Schmidt, F.H.; Bodansky, D.

    1975-02-01

    The objective of the paper presented is to show that nuclear fission power is the best, and maybe the only, alternative source of energy. It is written for a wide range of readers, including non-scientists and scientists who are not particularly informed on the issues involved. The first question considered concerns man's need for energy; it is concluded that conservation measures alone cannot suffice. Next, the earth's energy sources are examined, and the extent of each is estimated in the simple context of the length of time it could last at present use rates. Only nuclear fission, nuclear fusion, and solar energy can provide for future time scales commensurate with man's historic past, while avoiding the possibility of catastrophic social upheaval. Fusion and solar energy are rejected on technological grounds because the world energy problem is so pressing that one cannot gamble on hopes for future technological breakthroughs. Thus, only nuclear fission meets the twin criteria of technological feasibility and adequate resource base. Each of the controversial issues surrounding nuclear fission energy is examined in some detail. The conclusion is reached that none is serious, and that nuclear fission offers by far the best energy source from environmental, economic, longevity, and overall safety standpoints

  7. Nuclear energy - a professional assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments.

  8. Nuclear energy - a professional assessment

    International Nuclear Information System (INIS)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments. (U.K.)

  9. Climatic impact of alternative energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J

    1979-01-01

    Detailed evaluations have suggested that the order of magnitude of energy demand 50 yr from the present will be 25-40 TW compared with about 8 TW at the present day. Environmental impacts are discussed of three energy-supply sources that could be developed on a large-enough scale to satisfy a demand of this magnitude: solar and nuclear energy and fossil fuels. 14 refs.

  10. Unused energy sources inducing minimal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Voss, A [Inst. fur Reaktorentwicklung, Kernforschungsanlage Julich GmbH, German Federal Republic

    1974-01-01

    The contribution of hydroelectricity to the growing worldwide energy demand is not expected to exceed 6%. As the largest amount of hydroelectric potential is located in developing nations, it will find its greatest development outside the currently industrialized sphere. The potential of 60 GW ascribed to tidal and geothermal energy is a negligible quantity. Solar energy represents an essentially inexhaustible source, but technological problems will preclude any major contribution from it during this century. The environmental problems caused by these 'new' energy sources are different from those engendered by fossil and nuclear power plants, but they are not negligible. It is irresponsible and misleading to describe them as pollution-free.

  11. Enhancement of the Public Acceptance of Nuclear Energy

    International Nuclear Information System (INIS)

    Song, K. C.; Jeong, S. M.; Noh, T. W.

    2010-02-01

    To enhance the public acceptance of nuclear energy in Korea we translate the 'The Power to Save the World - The Truth about Nuclear Energy' written by the American novelist Gwyneth Cravens into Korean. 'Power to Save the World' is an eloquent, convincing argument for nuclear power as a safe energy source and an essential deterrent to global warming. To promote national power by keeping nuclear industry healthy, we need to supply the variety of material which enhances the public acceptance of nuclear energy

  12. Present Status of Nuclear Energy

    Czech Academy of Sciences Publication Activity Database

    Wagner, Vladimír

    2013-01-01

    Roč. 2013, SI (2013), s. 89-94 ISSN 0375-8842. [European Nuclear Forum. Praha, 12.05.2013-13.05.2013] Institutional support: RVO:61389005 Keywords : nuclear energy * nuclear reactors * electricity production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  13. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  14. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  15. Speaking of nuclear energy

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1992-01-01

    At the 1989 International Atomic Energy Agency (IAEA) General Conference, the Japanese Government pledged an extra-budgetary contribution for a three-year enhanced public information programme. On this basis the programme was developed centering on a series of two-day regional media seminars. It was determined that these seminars were to be informative and educational, and provide balanced, honest background material on the subject of nuclear energy. The speakers chosen were a mix of IAEA and outside experts from around the world. About 500 participants from 20 countries took part over the initial three years of the programme. This document contains a selection of speeches and topics that, is believed, captured the essence of the information presented during the regional seminars

  16. Topical subjects of nuclear energy

    International Nuclear Information System (INIS)

    Baumgaertel, G.; Borsch, P.; Halaszovich, S.; Laser, M.; Paschke, M.; Richter, B.; Stein, G.; Stippler, R.; Wagner, H.J.

    1990-01-01

    The report supplements and extends basic information contained in the seminar report 'Use and risk of nuclear energy' (Juel-Conf-17). The contributions deal with nuclear waste management, measures to avoid the misuse of nuclear fuels, and the properties and use of plutonium. As against the last edition, the subject 'Energy and environment' has been added. (orig.) [de

  17. Communication techniques and nuclear energy

    International Nuclear Information System (INIS)

    Carpintero Santamaria, N.

    2005-01-01

    The paper presents some thoughts on several factors related to nuclear energy and the way they are presented by the mass media, usually provoking controversy to the Spanish society and thus, undermining public acceptance. Some possibilities for boosting nuclear energy among public opinion are suggested, emphasizing the fact that nuclear power is essential because it is both ecologically and economically sound. (Author)

  18. Education of nuclear energy specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    1999-01-01

    Preparation system of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. Post-graduates students usually continue studies at Obninsk Nuclear Energy Institute in Russia. Many western countries like Sweden, Finland and US is providing assistance in education of Lithuanian specialists. Many of them were trained in these countries

  19. Nuclear energy and the public

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1994-01-01

    This paper is the opening speech from a national seminar on the uses for nuclear energy in everyday life. The speaker, the public information director for the International Atomic Energy Agency (IAEA), stresses the peaceful uses of nuclear energy. He points out that used for peaceful purposes, and prudently, nuclear energy applications have, tremendous benefits to offer mankind in both the industrial world and developing nations

  20. Quantum nuclear pasta and nuclear symmetry energy

    Science.gov (United States)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  1. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1988-01-01

    Nuclear technology brings the chance to provide an essential long term contribution to the energy supply of the world population and to use the raw materials uranium and thorium which have no other use. The use of nuclear energy is ethically justifiable providing certain simple fundamental rules for the design of nuclear facilities are observed. Such rules were clearly violated before the reactor accident at Chernobyl. They are, however, observed in our existing nuclear power plants. Compared with other energy systems nuclear energy has, with the exception of natural gas, the lowest risk. The consideration of the ethical justification of nuclear energy must also include the question of withdrawal. A withdrawal would have considerable social consequences for the industrial nations as well as for the developing countries. The problem of spreading alarm (and concern) by the opponents of nuclear energy should also be included in the ethical justification. 8 refs., 2 figs

  2. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    Ott, K.O.; Spinrad, B.I.

    1985-01-01

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  3. Nuclear energy in the world

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter reports the nuclear energy beginning in the world including a chronology of the atomic bomb birth, the annual growth rate of electronuclear energy in the world, a comparison of energy production in thermoelectric bases

  4. U Y 105 standard use of non sealed radioactive sources in nuclear medicine: approve for Industry energy and Mining Ministry 28/6/2002 Resolution

    International Nuclear Information System (INIS)

    2002-01-01

    Establish minimal requirements radiological safety for use non sealed radioactive sources in nuclear medicine.The present standard is used in operation or nuclear medicine practices using non sealed radioactive sources with diagnostic and therapeutic purposes in vivo and in vitro

  5. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1987-01-01

    Nuclear technology offers the chance to make an extremely long term contribution to the energy supply of the earth. The use of nuclear energy is ethically justifiable, provided that several fundamental rules are obeyed during the technical design of nuclear installations. Such fundamental rules were unequivocally violated in the nuclear power plant Chernobyl. They are, however, fulfilled in the existing Swiss nuclear power plants. Improvements are possible in new nuclear power plants. Compared to other usable energy systems nuclear energy is second only to natural gas in minimal risk per generated energy unit. The question of ethical justification also may rightly be asked of the non-use of nuclear energy. The socially weakest members of the Swiss population would suffer most under a renunciation of nuclear energy. Future prospects for the developing countries would deteriorate considerably with a renunciation by industrial nations of nuclear energy. The widely spread fear concerning the nuclear energy in the population is a consequence of non-objective discussion. 8 refs., 2 figs

  6. Renewable Energy Sources Brno '93

    International Nuclear Information System (INIS)

    1993-01-01

    The proceedings contain 27 contributions dealing with unconventional energy sources. The numbers of contributions in the individual classes of topics indicate that interest has mostly concentrated on the direct utilization of solar energy, whereas wind energy, hydroelectric energy and geothermal energy receive less attention and the use of biomass is at the margin of interest. (J.B.)

  7. Nuclear energy for a sustainable development

    International Nuclear Information System (INIS)

    Guerrini, B.; Oriolo, F.

    2001-01-01

    Nuclear power currently produces over 628 M tep of the generated energy in 1997 avoiding about 1978 Mt of CO 2 emission and gives a significant contribution to reducing greenhouse gas emission. The competitive position of nuclear power might be strengthened, if market forces or government policy were able to give energy security and to control greenhouse gas, relying upon market mechanism and including environmental costs in economic analysis. In this case, taking into account the entire up-stream and down-stream chains for electricity generation, it can be seen that the greenhouse emission from nuclear plants, is lower than that of renewable energy chains. This paper investigates the potential role of nuclear power in global energy supply up to 2020 and analyzes the opportunities and the challenges for research, governments and nuclear industries of a broad nuclear power development in response to environmental concerns. The authors think that nuclear energy will have to compete in the same framework and under the same conditions as all other energy sources and so analyze the possibility of re-launching nuclear energy: it will have to couple nuclear safety and economic competitiveness [it

  8. Nuclear energy in Canada: the CANDU system

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1979-10-01

    Nuclear electricity in Canada is generated by CANDU nuclear power stations. The CANDU reactor - a unique Canadian design - is fuelled by natural uranium and moderated by heavy water. The system has consistently outperformed other comparable nuclear power systems in the western world, and has an outstanding record of reliability, safety and economy. As a source of energy it provides the opportunity for decreasing our dependence on dwindling supplies of conventional fossil fuels. (auth)

  9. Renewable energy sources. Erneuerbare Energien

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    To judge future trends in work on the exploitation of renewable energy sources for overall energy supply, it is necessary to know the following: the rules that nature abides by, the principles of technical exploitation of these energies, and the basic data for the current state of development. The above information is compiled in this publication for those renewable energy sources on which topical discussion centres: solar radiation and wind. For the remaining renowable energy sources (e.g. biomass, tidal power, geothermal energy), some examples of use are mentioned and advanced literature is indicated. (orig./HSCH).

  10. The nuclear energy in France

    International Nuclear Information System (INIS)

    Pedroso, L.J.

    1983-01-01

    An overview of the nuclear energy in France is done. The great centers and the great research lines of the French nuclear program, as well as its present status and prospects for the future are presented. (EG) [pt

  11. Nuclear energy and greenhouse effect

    International Nuclear Information System (INIS)

    Strub, R.A.

    1991-01-01

    The contribution of nuclear power plants against the greenhouse effects is evaluated, not only nuclear energy is unable to fight greenhouse effect increase but long life wastes endanger environment. 8 refs

  12. Nuclear energy and public acceptance

    International Nuclear Information System (INIS)

    El Osery, I.A.

    1988-01-01

    The soundness of use of nuclear energy in electric energy generation has received public concern due to the public highly exaggerated fear of nuclear power. It is the purpose of this paper to clear up some issues of public misunderstanding of nuclear power. Those of most importance are the unjustified fears about safety of nuclear power plants and the misunderstanding of nuclear risks and fears of nuclear power plants environmental impact. The paper is addressed to the public and aims at clarifying these issues in simple, correct, and convincing terms in such a way that links the gap between the scientists of nuclear energy and the general public; this gap which the media has failed to cover and failed to convey honestly and correctly the scientific facts about nuclear energy from the scientists standards to the public

  13. Present market for nuclear energy

    International Nuclear Information System (INIS)

    Marzo, M.A.S.

    1987-01-01

    The present market for nuclear energy is present since nuclear production and electric power generation to the utilization of radioisotopes in medicine and biology. Some data about the main world suppliers to this market are shown. (E.G.) [pt

  14. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  15. Nuclear energy and natural environment. Information seminar

    International Nuclear Information System (INIS)

    1994-01-01

    The material of the Jadwisin 93' seminar is the collection 20 of 19 articles discussing aspects of the subject of nuclear energy and natural environment. The lectures were presented at six sessions: 1) Nuclear energy applications in medicine, agriculture, industry, food preservation and protection of the environment; 2) Nuclear power in the world; 3) Public attitudes towards different energy options, the example of Sweden; 4) Nuclear power in neighbouring countries; 5) Radiation and human health; 6) Radioactive waste management and potential serious radiological hazards. The general conclusion of the seminar can be as follows. In some cases the nuclear power is a source of environment pollution but very often nuclear techniques are now used and certainly more often in the future will be used for environment and human health protection

  16. Global Warming; Can Nuclear Energy Help?

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    Kyoto conference is setting the targets and limits for CO 2 emission. In the same time energy consumption is increasing, especially in developing world. If developing countries attain even a moderate fraction of energy consumption of developed countries, this will lead into large increase of total CO 2 emission, unless there is a strong increase of energy production by CO 2 non-emitting sources. Of two major candidates, solar and nuclear energy, the second is technically and economically much closer to ability to accomplish the task. The requirements for a large scale use of nuclear energy and the role of IAEA are discussed. (author)

  17. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  18. Nuclear energy - more expensive than you think

    International Nuclear Information System (INIS)

    Damveld, H.; Boer, J.

    1981-01-01

    This article critically reviews the underlying presuppositions of a recent publication by G.A. de Boer, which compared the costs of generating electricity from coal and from uranium and which concluded that uranium was the cheaper source. The authors indicate that uncertainties exist in the costs of nuclear energy and they suggest that de Boer used presuppositions that were favourable to nuclear energy, thus underestimating the total associated costs. (C.F.)

  19. Compact, self-regulating nuclear power source

    International Nuclear Information System (INIS)

    Peterson, Otis G.; Kimpland, Robert H.

    2008-01-01

    An inherently safe nuclear power source has been designed, that is self-stabilizing and requires no moving mechanical components. Unlike conventional designs, the proposed reactor is self-regulating through the inherent properties of uranium hydride, which serves as a combination fuel and moderator. The temperature driven mobility of the hydrogen contained in the hydride will control the nuclear activity. If the core temperature increases over the set point, the hydrogen is driven out of the core, the moderation drops and the power production decreases. If the temperature drops, the hydrogen returns and the process is reversed. Thus the design is inherently fail-safe and requires only minimal human oversight. The compact nature and inherent safety opens the possibility for low-cost mass production and operation of the reactors. This design has the capability to dramatically alter the manner in which nuclear energy is harnessed for commercial use. (author)

  20. On the Costs of Nuclear Energy

    International Nuclear Information System (INIS)

    Cintra do Prado, L.

    1966-01-01

    In considering the use of nuclear energy as a primary source of electricity the important thing is not that it should be ''cheap'' in absolute terms but that it should be competitive, that is to say that the cost of nuclear electricity should be produced at a cost comparable with or less than that of electricity generated by conventional sources - hydroelectric plants or thermo-plants based on coal, natural gas or oil. If energy is vital to a country's development one must be prepared to pay what it is worth; the problem is to obtain the energy at the lowest possible cost

  1. Ultimate Choice for Energy: The Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Metin Yıldırım*

    2007-06-01

    Full Text Available Increases in the prices of oil, hard coal and natural gas, emergence of Russia as a not reliable resource for the natural and the developments in the security of the energy supply again have been started the nuclear energy as a hotly debated issue in the world. This is also a sensitive topic among the opponents and proponents of the nuclear energy in Turkey. Nuclear energy is very important since it provides about 17 % of the electric energy in the world and is used in industry and medical area. However, Turkey has not declared any policy about this yet, because of the worries about the environmental reasons and has not gained any progress about nuclear energy. First of all, Turkey must use her geothermal, hydropower, hard coal, solar and wind energies. Otherwise, Turkey may find herself in a competition with her neighboring countries

  2. For a rational energy transition based on nuclear energy

    International Nuclear Information System (INIS)

    Chalmin, Philippe

    2014-06-01

    After having recalled the meaning of the concept of energy transition, and stated that this concept is a fuzzy one, this paper addresses the issue of the future of energy through the concept of Energy returned on Energy invested (EROI). It discusses this approach by outlining that energy is the initial driver of economy, and by showing that only hydroelectricity, coal, nuclear and wind energy have a sufficient return rate, and that shale gas is an energy source for the short and medium term. Then, based on data related to world energy resources and consumption, to electric power production from various sources, to pollution health impacts, to electricity prices for industries and for households, it discusses the sustainability of the energy mix regarding energy reserves, health issues, and economic issues. Some examples (Spain, Germany) illustrate economic problems faced by some renewable energies. Finally, the authors outline that, thanks to its nuclear policy, France is the western country which is the most committed in energy transition. Some proposals are made to support nuclear energy, to reduce the use of fossil energies, to launch an ambitious research policy (on energy storage, on photovoltaic energy, on CO 2 hydrogenation, on hydrogen as a fuel), in favour of energy mixes decided at national levels in Europe

  3. Nuclear energy in Turkey. Recent developments

    International Nuclear Information System (INIS)

    Alper, Z.

    2014-01-01

    Full text : The global demand for electricity is rapidly increasing. There is growing uncertainty in regard to the supply and prices of oil and natural gas. These considerations have opened new prospects for the development of nuclear energy on a global state. Despite the negative impact of the Fukushima Daichi accident, still some countries are considering or have expressed interest in developing nuclear power programmes. As the country using nuclear technology is primarily responsible for safety and as operational safety cannot be out sourced, building of sound safety expertise and strong safety culture is an essential precondition for the country introducing nuclear technology. Turkey's energy policy is naturally focused on the security, sustainability and competitiveness of energy supply. It is designed to sustain targeted economic and social growth in the long run. Turkey remains resolutely committed to the goal of ensuring safe, secure and peaceful utilization of nuclear energy

  4. What people really think about nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-03-15

    Nuclear power is a reliable, baseload, low-carbon energy source that can contribute to the fight against climate change. It is also competitive and can help reduce energy dependency. It is vital that politicians take the lead and implement bold decisions regarding the energy mix. Developments in Finland and the UK show that if the political decision to include nuclear in the energy mix is taken and information is communicated in an open, inclusive and democratic way, people tend to become more favourable to nuclear power. The March 2011 accident at the Fukushima-Daiichi nuclear plant in Japan had an impact on public opinion towards nuclear power. Yet the results of opinion polls carried out throughout Europe after the accident show that opinion is polarised and country specific.

  5. U.S. Department Of Energy's nuclear engineering education research: highlights of recent and current research-I. 6. Radioisotope Power Sources for MEMS Devices

    International Nuclear Information System (INIS)

    Blanchard, James P.

    2001-01-01

    Micro-electromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an onboard power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. Four methods of incorporating radioactive material into the MEMS devices have been studied. These are (a) use of an external, solid source; (b) use of a liquid source; (c) plating of the source into a prefabricated device; and (d) incorporation of microspheres containing tritium. In approach (c), electro-less plating is used to deposit 63 Ni into an MEMS device. A standard recipe for electro-less plating of nickel is used. In approach (d), we obtained glass microspheres that contain 6 Li and irradiated them in the University of Wisconsin Nuclear Reactor to produce tritium. Using this procedure, we can produce activities of up to 12.8 mCi/g for each hour of irradiation. Our first battery incorporates a liquid 63 Ni source into a micro-machined pn-junction battery. The initial design has 13 micro-machined channels in a silicon substrate. The channels are employed to hold the liquid source and to increase the surface area, which is important because the current generated by the battery is proportional to the junction area. To measure the performance of our three-dimensional pn-junction in the presence of a radioactive source, we placed 8 μl (64 μCi) of liquid source inside the channels and then covered it with a black box to shield it from the light. Figure 1 displays the I-V curves for this battery measured at 30 min, 2 h, and 16 h after

  6. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation.

  7. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H.

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation

  8. Should we embrace nuclear energy?

    International Nuclear Information System (INIS)

    Nolch, Guy

    2006-01-01

    During his recent tour of North America, Australian Prime Minister John Howard called for a 'full-blooded debate' about the place of nuclear power in the nation's energy mix. 'I have a very open mind on the development of nuclear energy in my own country,' he said. Treasurer Peter Costello said that only economic arguments precluded Australia's move to nuclear energy. 'If it becomes commercial, we should have it,' he said on 23 May. But in reality the 'debate' had already been adjudicated. Three days later the Australian Nuclear Science and Technology Organisation (ANSTO) presented Science Minister Julie Bishop with a report that delivered Costello's economic justification for nuclear power

  9. Man is overcharged by nuclear energy

    International Nuclear Information System (INIS)

    Hauff, V.

    1986-01-01

    The author states four points against nuclear power: 1. Although the probability of a catastrophic accident is very low, the consequences will be enormous. 2. Extension of the nuclear power generation worldwide will increase the danger of proliferation of nuclear weapons. 3. Decommissioning of nuclear power plants and disposal of nuclear waste will be a problem for many generations. 4. Protection of nuclear facilities may lead to the eventual abandonment of the civil rights assured by law. The author gives priority to energy conservation; he states that an 80% utilization factor is achievable in cogeneration and district heating. He agress with C.F. Weizsaecker on the long-term relevance of solar energy as the main energy source, which would also help to reduce the CO 2 problem (heat-up of the earth atmosphere, destruction of tropical forests). Energy supply without nuclear power plants would also provide new jobs, since there is no energy source as capital-intensive and low in staff requirements as nuclear power. (GL) [de

  10. French public opinion and nuclear energy

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2016-01-01

    Since the beginning of the year French media have dealt with a lot of negative information concerning nuclear industry: the dire financial situation of AREVA, the questioning about the state of the pressure vessel of the Flamanville EPR or the EDF and Chinese investments in the british Hinkley point project. All these issues have impacted the opinion of the French people about nuclear energy: more people are against nuclear energy but nuclear accident appears to be only the tenth source of concern after unemployment (first) and terrorism. The debate about the energetic transition that will lead to the decrease of the nuclear share in the production of electricity marks the end of a political consensus in favour of the atom. Solar energy is the favorite energy source, more than 55% of the population wish solar energy to achieve a bigger share in the 15 next years while only 32% wish the same thing for wind energy. For most people nuclear energy appears to be necessary to complement renewable energies for at least the next 15-30 years. (A.C.)

  11. Perspectives for nuclear energy; Perspectives pour l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Baugnet, J -M; Abderrahim, H A; Dekeyser, J; Meskens, G

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes.

  12. Energy situation and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, M R [Reactor and Neutron physics Department Nuclear Research Center A.E., Cairo (Egypt)

    1997-12-31

    A brief general review is given concerning the requirements of power throughout history with an indication to the world capital reserves of energy. The energy released from the conversion of mass in chemical and nuclear processes is also discussed with comparative analysis between conventional fuel fired plant and nuclear power plant having the same energy output. The advantages and disadvantages arising from having a nuclear power programme are also discussed. 1 fig.

  13. Nuclear energy, understand the future

    International Nuclear Information System (INIS)

    Bauquis, P.R.; Barre, B.

    2006-01-01

    In spite of its first use for military needs, the nuclear became a substitution energy, especially for the electric power production. For many scientist the nuclear seems to be the main part to the world energy supply in an economic growth context, provided the radioactive wastes problems is solved. From the military origins to the electric power generation, this book explains the technical economical and political aspects of the nuclear energy. (A.L.B.)

  14. Use of nuclear energy and land warming

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Jose Alberto Maia; Sordi, Gian Maria Agostino Angelo; Frazao, Selma Violato; Zago, Franco Raphael do Carmo [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], E-mail: blosspriester@gmail.com, E-mail: gmsordi@ipen.br, E-mail: selma.violato@terra.com.br, E-mail: fzago@ipen.br

    2007-07-01

    The world is facing an energy requirement that hardly will be covered by renewable sources actually researched. Though there is almost unanimity in the scientific community about the fact that nuclear energy is still a better option to replace oil and coal, environmental restrictions go on vigorous. And consequently, this non-consensus on nuclear energy benefits, greenhouse effect and weakening of ozone layer go on causing the land warming. In Brazil, nuclear plants are competitive and are capable to produce energy in a safe way, thus contributing to the stabilization of the national electric system and to the expansion of installed capacity and as alternative source of energy and applications for peaceful purposes, preserving the environment and planet inhabitants. (author)

  15. Nuclear energy in the future

    International Nuclear Information System (INIS)

    Chaussade, J.P.

    1994-01-01

    Nuclear energy plays a major role in the French economy because of the lack of fossil fuels on the French territory. About 75% of the French electric power is of nuclear origin. This paper gives an analysis of the French public attitude about nuclear energy and the methods used by the nuclear industrialists to better the electro-nuclear image. Communication, advertising and transparency are the best attitudes for a suitable public information and are necessary to reduce the public anxiety after the Chernobyl accident. Television advertising, magazines and organized visits of nuclear installations have allowed to explain the interest of nuclear energy in the environmental reduction of pollutants. However, public information must include the topic about nuclear wastes to remain credible. (J.S.)

  16. Dictionary of the energy-producing industry. Nuclear and non-nuclear energy sources. Vol. 2. Fachwoerterbuch zur Energiewirtschaft. Nukleare und nichtnukleare Energietraeger. - Dictionnaire technique de l'economie energetique. Sources d'energie nucleaire et autre que nucleaire. Bd. 2. Allemand-Francais/Francais-Allemand

    Energy Technology Data Exchange (ETDEWEB)

    Mannhardt, K H

    1981-01-01

    This technical dictionary, compiled in everyday practice, gives an outline of the terminology and phraseology of a modern field of engineering. Users should have some basic knowledge of the French language and also of engineering as well as access to standard-language dictionaries. Core subjects of the dictionary are nuclear power, reactor engineering, fusion technology, solar energy, wind energy, tidal energy, radiation protection, nuclear safety, coal gasification and coal liquefaction, cooperative agreements and managerial problems.

  17. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  18. Nuclear energy: a vital energy choice

    International Nuclear Information System (INIS)

    Pecqueur, Michel

    1980-01-01

    Speaking from the platform of the XIIIth annual session of the International Atomic Energy Agency, at New Delhi, AEC managing director Michel Pecqueur made a solemn appeal to the world community for the decisions which are needed on energy. The present energy crisis can lead the world to a recession and be a factor in grave troubles for peace and balance in the world. The crisis cannot be resolved without accrued recourse to the use of nuclear energy. Two essential themes were outlined: the development of nuclear energy in the world, and the increased reduction of proliferation risks. In concluding, he expressed the hop that with a greater effort in information media, the nuclear fact-of-life would be better accepted by the general public in future, for it is there that lies a brake which may hinder nuclear energy development [fr

  19. Economics of alternative energy sources

    International Nuclear Information System (INIS)

    Ryle, M.

    1977-01-01

    It is stated that an important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a programme which does not seem feasible. By incorporating relatively cheap short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy should become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance. (author)

  20. Economics of alternative energy sources.

    Science.gov (United States)

    Ryle, M

    1977-05-12

    An important part of the oil and natural gas at present consumed in the UK is used for the heating of buildings, a demand which shows large diurnal, day-to-day and annual fluctuations. The replacement of this energy by nuclear-generated electricity, as at present envisaged, would require the construction of some 250 GW of additional capacity by the end of the century, a progamme which does not seem feasible. By incorporating relatively cheap, short term storage in the form of low-grade heat, the generating capacity required to fulfil peak demand could be reduced by more than 50%. As soon as such storage is provided, however, other sources of energy become viable and attractive alternatives, and the UK is well situated to make use of wind, wave, and tidal power. It seems likely that the value of North Sea oil/gas reserves as feedstock to the chemical industry will rise sufficiently to make an early reduction in their consumption as fuel of great economic importance.

  1. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    In this presentation author deals with production a consumption of electricity in the Finland. New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  2. Does nuclear energy save global environment?

    International Nuclear Information System (INIS)

    Matsui, Kazuaki

    2006-01-01

    Since the ecological footprint analysis in 1970s suggested changing consumption patterns and overpopulation concerns, energy policy such as energy conservation and use of renewable energy has become of prime importance. Several results of the long-term energy demand and supply analysis in 2050 or 2100 to reduce drastically carbon dioxide emission as a measure against global warming, showed the necessity of nuclear power deployment as well as maximum efforts to save energy, exploitation of the separation and disposal of carbon dioxide, and shifting energy sources to fuels that emit less greenhouse gases or non-fossil fuels. As a promising means to contribute to long-term energy supply, nuclear power generation is expected with improving safety, economic efficiency, environmental adaptability, and nuclear proliferation resistance of the technologies. (T.Tanaka)

  3. Going nuclear. Some implications of the introduction of nuclear energy as the basic primary energy supply of a developped society

    International Nuclear Information System (INIS)

    Haefele, W.; Sassin, W.

    1975-01-01

    On the basis of nuclear energy as primary energy source, the future development potentialities of secondary energies are considered; these energy forms are coal gaseification, process heat for industrial uses and district heating, and mainly hydrogen production which represents 60% of the future secondary energy demands. By using decision tree method, the eventuality of using nuclear energy as unique energy source is examined, and the successive options implied in this approach are analyzed [fr

  4. Nuclear energy education scenario around the world

    International Nuclear Information System (INIS)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane

    2013-01-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  5. Nuclear energy education scenario around the world

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane, E-mail: praroberta@uol.com.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  6. Nuclear Hybrid Energy Systems: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.B. Sitton; S.J. Yoon; C. Stoots

    2014-07-01

    With growing demand of energy and costs of the fossil fuels, coupled with the environmental concerns have resulted in an increased interest in alternative energy sources. Nuclear hybrid energy systems (NHES) are being considered which incorporates renewable energy sources such as solar and wind energy combined with nuclear reactor and energy storage to meet the peak hours demand imposed on the grid, along with providing process heat for other potential industrial applications. This concept could potentially satisfy various energy demands and improve reliability, robustness and resilience for the entire system as a whole, along with economic and net efficiency gains. This paper provides a brief understanding of potential NHES system and architecture along with the challenges

  7. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  8. Cost and prices of electricity. Fossil fuels, nuclear power and renewable energy sources in comparison; Kosten und Preise fuer Strom. Fossile, Atomstrom und Erneuerbare Energien im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Muehlenhoff, Joerg

    2011-09-15

    Consumers of electricity pay for production, transport and distribution as well as for taxes and dues. Electricity rates depend on various influencing factors, e.g. different fuel and capital cost of the power plants and the ratio of supply and demand in the electricity stock markets. End user electricity rats also include taxes and dues as well as the cost of power transmission. The publication presents background information on the formation of electricity rates in Germany. In a second step, the different cost factors of fossil fuels, nuclear power and renewable energy sources are compared. In particular, the external cost is gone into which often tends to be neglected in the electricity markets.

  9. Monitoring the energy scale of KATRIN with conversion electrons of a solid {sup 83m}Kr source as nuclear standard

    Energy Technology Data Exchange (ETDEWEB)

    Schloesser, Klaus [IKP, Karlsruher Institut fuer Technologie (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    For KATRIN to be able to achieve the desired sensitivity of 200 meV/c{sup 2} for the effective electron neutrino mass, it is of crucial importance that the energy scale of the main spectrometer (18.6 keV) is under control within +/-60 mV at any given time over the planned measurement time of approximately 5 years. Besides conventional high voltage dividers and high precision volt meters, a nuclear standard will be deployed additionally in a separate spectrometer of MAC-E filter type. The filter electrodes of both spectrometers are connected galvanically. For permanent and continuous monitoring an easy to use ion implanted source containing the noble gas {sup 83m}Kr was developed and qualified for HV monitoring at the ppm level in the 30 kV regime. This talk presents the methods applied and the achievements made.

  10. Health evaluation of energy-generating sources

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The American Medical Association's House of Delegates, at its December 1976 Clinical Convention, requested that an evaluation be made of the health hazards of nuclear, fossil, and alternative energy-generating sources, for employees of energy-producing facilities as well as for the general population. This report is a summary evaluation of such hazards prepared in response to that request. This report, which was adopted by the House of Delegates on June 21, 1978, appears here in a revised and corrected version

  11. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1974--August 31, 1975

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Wentworth, R.A.; Cady, K.B.

    1975-01-01

    Results are reported from a study of the biological effects of radiation from mock plutonium power sources in dogs and a study of the feasibility of a tissue heat sink for waste heat from such sources in calves. It is also designed to evaluate effects of heat and radiation from plutonium sources in calves. The work is part of a program to evaluate the use of plutonium as a power source for an artificial heart device. A total of 60 dogs have been implanted with mock plutonium sources (producing a similar radiation flux as plutonium but having no associated heat) at levels of from 1 to 70 times the expected radiation flux from a 30 watt plutonium source. Results up to 4.5 years after implantation indicate that mammals may be able to tolerate the radiation flux from such sources. Results in calves indicate that 30 watts of additional endogenous heat can be dissipated to a connective tissue covered heat exchanger with a surface area of 494 cm 2 providing a heat flux of 0.06 watts/cm 2 . (U.S.)

  12. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    Science.gov (United States)

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. Copyright © 2010 Health Physics Society

  13. Nuclear energy in Switzerland after Chernobyl - theses of SVA

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In its theses on nuclear energy after Chernobyl, the Swiss Association for Atomic Energy (SVA) - in which all Swiss organizations promoting the safe use of nuclear energy co-operate - has summarized the most important arguments for further peaceful uses of atomic energy. The SVA theses will contribute to an evaluation of riks associated with nuclear energy in the discusssions of future energy sources following Chernobyl

  14. 76 FR 67717 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2011-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear...: [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  15. 77 FR 26274 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2012-05-03

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  16. 78 FR 70932 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2013-11-27

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee (NEAC...

  17. 75 FR 67351 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear... [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  18. 75 FR 13269 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  19. Geologic sources of energy

    Science.gov (United States)

    Bundtzen, Thomas K.; Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.

    2017-01-01

    This chapter describes the exploration, development, and geologic setting of petroleum resources (including tar sands), coal resources (including coalbed methane), and geothermal energy resources of the Northern Cordillera.For petroleum resources, the chapter describes: (1) the history of petroleum development and production, first for Alaska and then for the Canadian Cordillera; and (2) generalized basin analysis geologic settings for the six major petroleum basins that are illustrated in summary maps and cross sections. Subsequent sections of the chapter describe the nature and geologic setting of tar sand resources, geothermal energy resources, and coal resources. The area distribution of the energy resources of the region are depicted in the Energy Resources Map that has multiple layers that can be displayed in various arrangements. Employing this map in a separate window while reading the text will be greatly beneficial. Many geographic names are employed in the descriptions throughout this chapter. While reading this chapter, viewing the Geographic Regions Layer of the Energy Resources Map, as needed, will be valuable.

  20. Nuclear energy in question

    International Nuclear Information System (INIS)

    Simon, D.N.; Carvalho, J.F. de; Goldemberg, J.; Menezes, L.C.; Rosa, L.P.; Oliveira, R.G. de.

    1981-01-01

    The basic requirements demanded for the physical protection of nuclear operational units, is established. These units can be, production, utilization, processing, reprocessing, handling, transport or storage of materials of interesting to Brazilian Nuclear Program. (E.G.) [pt

  1. Expert judgment for nuclear energy

    International Nuclear Information System (INIS)

    Choi, Young Sung; Lee, Sun Ho; Lee, Byong Whi

    2000-01-01

    Public perception on nuclear energy is much influenced by subjective impressions mostly formed through sensational and dramatic news of mass media or anti-nuclear groups. However, nuclear experts, those who have more relevant knowledge and information about nuclear energy, may have reasonable opinion based on scientific facts or inferences. Thus their opinion and consensus should be examined and taken into account during the process of nuclear energy policy formulation. For the purpose of eliciting experts' opinion, the web-based on-line survey system (eBOSS) was developed. Using the survey system, experts' views on nuclear energy were tallied, analyzed and compared with the public's. Based on the survey results, the paper suggests some recommendations about the future direction of the public information program in Korea

  2. Nuclear energy promise or peril?

    International Nuclear Information System (INIS)

    Van der Zwaan, B.C.C.; Hill, C.R.; Ripka, G.

    1999-01-01

    Nuclear energy will inevitably become an important worldwide issue in the 21. century. The authors are authorities in their own fields and their contributions have been read, discussed and criticized by a wide, international group of experts. The today status of nuclear power is exposed, the authors weigh the pros and cons of nuclear energy. In a near future nuclear energy could play a major role in preventing climate change and atmospheric pollution. The main challenges that put at risk nuclear energy are: nuclear safety, radiation protection, the management of radioactive wastes, the problem of plutonium stocks and the risk of proliferation. For each of these open questions, a specialist makes a precise survey of the situation

  3. Nuclear: an energy in territories

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2016-01-01

    After having briefly outlined that introducing a relationship between geography and nuclear energy is a quite recent approach, and by often quoting a researcher (Teva Meyer) specialised in Swedish energy issues, the author briefly discusses how nuclear energy structures territories through meshing and 'polarisation' effects, and economic and social impacts. He also discusses whether territories then become dependent on nuclear activity, what happens when a nuclear plant stops, how the existence of a nuclear plant becomes an identity market for a territory, and how material flows also deal with geography. In the last part, the author notices that in Germany, nuclear industry is considered as an industry like any other one. He finally outlines that geography could be useful to achieve energy transition

  4. Nuclear energy facing the future

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In conjunction with the 25th anniversary of the establishment of the IAEA, the contribution that nuclear energy can make to future world energy requirements is discussed and nuclear power generation statistics examined with especial reference to data on capacity and outages. (U.K.)

  5. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  6. Non conventional energy sources and energy conservation

    International Nuclear Information System (INIS)

    Bueno M, F.

    1995-01-01

    Geographically speaking, Mexico is in an enviable position. Sun, water, biomass and geothermal fields main non conventional energy sources with commercial applications, are presents and in some cases plentiful in national territory. Moreover the coastal tidal power which is in research stage in several countries. Non conventional energy sources are an alternative which allow us to reduce the consumption of hydrocarbons or any other type of primary energetic, are not by oneself choices for the energy conservation, but energy replacements. At the beginning of this year, CONAE created the Direction of Non conventional Energy Sources, which main objective is to promote and impulse programs inclined towards the application of systems based in renewable energy sources. The research centers represent a technological and consultative support for the CONAE. They have an infrastructure developed along several years of continuous work. The non conventional energy sources will be a reality at the same time that their cost be equal or lower than the cost for the traditional generating systems. CONAE (National Commission for Energy Conservation). (Author)

  7. Development of nuclear energy and nuclear policy in China

    International Nuclear Information System (INIS)

    You Deliang

    1993-11-01

    Status of nuclear power development in China, nuclear policy and nuclear power programme are described. Issues regarding nuclear fuel cycle system, radioactive waste management and international cooperation in the field of peaceful use of nuclear energy are discussed

  8. Nuclear Energy in Perspective

    International Nuclear Information System (INIS)

    1989-01-01

    This report provides the interested non-specialist reader with insights on five major issues associated with nuclear power generation: nuclear development and economics, protection of man and the environment, power plant safety, radioactive waste management and compensation for damage from a nuclear accident

  9. Nuclear energy - myth and reality

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael C. [Illinois Dept. of Nuclear Safety, IL (United States). Emergency Planning Section

    1997-12-31

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world`s political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  10. Nuclear energy - myth and reality

    International Nuclear Information System (INIS)

    Sinclair, Michael C.

    1997-01-01

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world's political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  11. Nuclear energy: considerations about nuclear trade

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de.

    1988-01-01

    A general view of historical aspects of nuclear energy and the arrangements to assure its use for peaceful purposes are presented. Then the internal character of nuclear energy in a juride context is demonstrated; some consideration about the international organizations and conventions and the Brazilian Legislation in the nuclear area are examined. It also deals with the political aspects of nuclear trade and the function of IAEA in this are. Furthermore the restrictions imposed by Non-Proliferation Treaty-NPT, the objectures of the Tlatelolco Treaty and ''London Club'' guidelines. Afterwards the bilateral cooperation under taken by countries and its agreements are discussed. Besides some aspects of agreements made between United States, France Germany and Brazil are discussed [pt

  12. Open discussions on nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    In the first part, economic prospects in the world and in the European Community and their repercussions on energy demand are examined. Supply structure and growth scenari are outlined. Present and potential contribution of nuclear energy to energy supply is developed. The pros and cons are given. In the second part is examined how the production and use of various form of energy including nuclear energy, can affect health and the environment, with special reference to waste of all kinds. Safety problems and risk of accidents are examined in both non nuclear and nuclear sectors. Prospects for a low energy society and economic and social implications of the use of new forms of energy are also discussed

  13. Matching energy sources to demand

    International Nuclear Information System (INIS)

    Hendry, A.

    1979-01-01

    Diagrams show the current pattern of energy usage in Scotland; primary energy inputs; the various classes of user; the disposition of input energy in terms of useful and waste energy; an energy flow diagram showing the proportions of primary fuels taken by the various user groups and the proportions of useful energy derived by each. Within the S.S.E.B. area, installed capacity and maximum demand are shown for the present and projected future to the year 2000. A possible energy flow diagram for Scotland in 1996 is shown. The more efficient use of energy is discussed, with particular reference to the use of electricity. The primary energy inputs considered are oil, coal, nuclear, hydro and gas. (U.K.)

  14. Nuclear energy and international cooperation

    International Nuclear Information System (INIS)

    Oshima, Keiichi

    1981-01-01

    There is no need to emphasize that nuclear energy cannot be developed without international cooperation at either the industrial or the academic level. In the meanwhile, there have been some marked political, economic and social changes in recent years which are posing constraints to the international cooperation in nuclear energy. The problems and constraints impeding nuclear power programs cannot be overcome by only one nation; international cooperation with common efforts to solve the problems is essential. Nuclear energy is different from fossil energy resources in that it is highly technology-intensive while others are resource-intensive. International cooperation in technology has an entirely different importance in the field of nuclear energy. Educational institutions will play a role in a new era of the international cooperation. (Mori, K.)

  15. Nuclear energy; Le nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  16. Electrical energy supply with permanent energy sources

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    It can be shown that there are no chances for solar and wind power plants in Northern Europe when estimating the investment costs and the floor space required. However, the decentralized utilization of the plants which is likely to become very interesting in a few years shows other results. As a complete annual balance by traditional stores would cause a considerably uneconomic increase of the investment costs supplementary energy sources are inevitable. The author points out how the various primary energy sources in question can be utilized and combined with each other. He describes the converters for the permanent (regenerative) energy sources, the available electrochemical stores and their application as well as the fundamental structures of the energy supply systems. Finally some advice is given regarding the recycling of energy and the operation by the consumers.

  17. Low Energy Nuclear Reactions: 2007 Update

    Science.gov (United States)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  18. Mean energy polarized neutron source

    International Nuclear Information System (INIS)

    Aleshin, V.A.; Zaika, N.I.; Kolotyj, V.V.; Prokopenko, V.S.; Semenov, V.S.

    1988-01-01

    Physical bases and realization scheme of a pulsed source of polarized neutrons with the energy of up to 75 MeV are described. The source comprises polarized deuteron source, transport line, low-energy ion and axial injector to the accelerator, U-240 isochronous cyclotron, targets for polarized neutron production, accelerated deuteron transport line and flight bases. The pulsed source of fast neutrons with the energy of up to 75 MeV can provide for highly polarized neutron beams with the intensity by 2-3 orders higher than in the most perfect source of this range which allows one to perform various experiments with high efficiency and energy resolution. 9 refs.; 1 fig

  19. Biological effects of implanted nuclear energy sources for artificial heart devices. Final report, September 1, 1968-May 31, 1979

    International Nuclear Information System (INIS)

    Kallfelz, F.A.

    1981-04-01

    This work involved a study of the biological effects of radiation from mock 30 watt plutonium-238 power sources in dogs. Dogs were implanted with radiation sources producing neutron and gamma radiation fluxes similar to that of plutonium-238, but having no associated heat, at levels of 1, 5, 15, and 70 times the radiation flux expected from a 30 watt plutonium-238 source. Times of observation varied from 0.25 to 8.0 years depending on experimental design or individual circumstances e.g. premature death from radiation related or non-radiation related causes. A number of clinico-pathologic determinations were performed on each dog at monthly intervals beginning five months before implantation and continuing until termination. Complete necropsy examinations were performed on all animals at termination. Very few abnormalities were observed in the clinical parameters measured except in the highest radiation flux groups (15X and 70X). The sperm count of males in the 15X and 70X groups demonstrated a rapid decrease with time. In the 5X group a gradual decrease in sperm count occurred with increasing time, while 1X males did not differ in sperm counts from controls. With the exception of one 15X dog which remained in the study for 6.5 years, all animals in the 15X and 70X groups were terminated at early time periods due to deterioration at the implant site characterized by abscessation and, not infrequently, tumor formation. The incidence of neoplasia increased with radiation source size. The results suggested that, although no statistically significant increases in tumor incidence were noted among groups, the incidence of neoplasia observed at autopsy tended to increase with increasing source size and radiation dose

  20. Energy, the environment and nuclear power

    International Nuclear Information System (INIS)

    Hodgson, Peter E.

    2005-01-01

    The paper describes the author's view on the environmental problems and nuclear power. The world demand for energy has increased rapidly due to the increase of population and the overall rise in living standards, resulting in many signs that the world is experiencing a growing shortage of energy and continuing need for flexible planning and the search for new sources. Fossil fuels are polluting the atmosphere, leading to climate change, acid rain and global warming. This has led many countries to look again at nuclear power. For the widespread opposition to nuclear power, the author lists up the fear of nuclear weapons, the fear of nuclear radiations including reprocessing plants as well as natural radioactivity and cosmic rays, the fear about the safety of nuclear reactors, and production of large amount of radioactive wastes. The author compares various energy sources, and insists that there is a strong reluctance to face the truth, as Governments knowing that nuclear power is politically so unpopular would not advocate the construction of new nuclear stations. (S. Ohno)

  1. Nuclear energy : member survey provides basis for common ground

    International Nuclear Information System (INIS)

    Hartley, Rolfe

    2006-01-01

    There is a lot of misinformation to the general public about the nuclear energy and renewable energy and also the greenhouse effect is just as controversial. There is a need to educate general public that nuclear is a low greenhouse energy source. There are other energy sources, such as solar, wind, hydro and geothermal. The most important aspect is the effective management of these sources

  2. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  3. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1975--August 31, 1976

    International Nuclear Information System (INIS)

    Kallfelz, F.A.; Wentworth, R.A.; Cady, K.B.

    1976-01-01

    A total of sixty dogs were implanted with radioisotope-powered artificial heart systems producing radiation fluxes similar to that of plutonium-238, but having no associated heat, at levels of from one to seventy times the radiation flux expected from a 30-watt plutonium-238 source. Results from studies lasting up to 6 years after implantation indicate that these animals, and by inference human beings, may be able to tolerate the radiation flux from 30-watt 238 Pu power sources. Results of heat dissipation studies in calves indicate that it may be possible to induce a vascularized connective tissue capsule sufficient to dissipate 30 watts of additional heat from a surface area of approximately 500 cm sq., allowing a heat flux of 0.06 watts per cm sq

  4. Public acceptance of nuclear energy in Mexico

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Palacios, Javier; Gomez, Armando

    2008-01-01

    One of the main constraints to adopt a nuclear program is the public acceptance. In Mexico, at least, it lacks of an adequate promotion of its benefits and challenges. A big stigma for nuclear electricity production is the association with nuclear weapons, along with myths and misconceptions and bad information about nuclear energy. Mexico has adopted an energy policy to diversify the electricity sources and nuclear energy is among the alternatives to achieve this goal because current studies show that is a safe and a competitive option from an economical point of view. Public opinion plays a very important role in the policy decision making to adopt the deployment of new reactor units; therefore it is necessary to define communication strategies to promote nuclear energy. The current study is an investigation to learn what is the perception and positioning about nuclear energy as a starting point to define the way to improve public acceptance. The national assessment carry on here is divided in two parts, the first one is a qualitative study to know knowledge level, associations and nuclear perception, identifying controversy items and expectations about advantages and disadvantages to define the adequate question to be used in the second part, which is a quantitative study that shows the acceptance of nuclear energy at national level and in particular in two sites that are suitable to deploy new nuclear reactors. From the results of this study some communication and persuasion strategies to improve public perception are defined and they could be used as part of a nuclear program. (author)

  5. Outlook for nuclear fission energy

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1978-01-01

    The electric utility industry has made a substantial commitment to nuclear power. The industrial capability to produce nuclear plants is large and well established. Nevertheless, nuclear energy in the United States is at the crossroad, and the direction it will take is not at all assured. The postponements, cancellations, and lack of orders for new plants over the past three years raise some serious questions about the future. The present problems of nuclear energy are primarily nontechnical in nature. If the nontechnical issues can be resolved, the future for nuclear looks bright indeed. The LWR and other converters could provide strong competition for coal and other electric power options for a half century or more. If development goals are met, the nuclear breeder offers the prospect of a very large supply of energy at stabilized prices over a time span of centuries

  6. Nuclear power and other energy

    International Nuclear Information System (INIS)

    Doederlein, J.M.

    1975-01-01

    A comparison is made between nuclear power plants, gas-fuelled thermal power plants and oil-fired thermal power plants with respect to health factors, economy, environment and resource exploitation, with special reference to the choice of power source to supplement Norwegian hydroelectric power. Resource considerations point clearly to nuclear power, but, while nuclear power has an overall economic advantage, the present economic situation makes its heavy capital investment a disadvantage. It is maintained that nuclear power represents a smaller environmental threat than oil or gas power. Finally, statistics are given showing that nuclear power involves smaller fatality risks for the population than many other hazards accepted without question. (JIW)

  7. Assessment on health and energy sources

    International Nuclear Information System (INIS)

    Acket, C.; Yvon, M.

    2013-01-01

    After having recalled some issues related to the prevention of environmental health risks and mentioned in the preparation of the debate on energy transition in France, this document gathers actual objective elements for an assessment of health impact of the different energy sources. It discusses the impacts on health (mortality, sicknesses and diseases) of fossil fuels (coal and its wastes, gas), of renewable energies, of nuclear energy. For this last one, the document outlines the lack of documentation for various topics, discusses some results published on the dose impact of nuclear operation, and comment the issue of waste storage. It also recalls the main accidents (Three Mile Island, Chernobyl, and Fukushima) and some of the known and assessed impacts. The third part proposes comparisons between the different energy sources in terms of deadly accidents, of pollution and greenhouse effect (current and late mortality), of released radioactivity (release sources and collective dose). In conclusion, the authors outline that the impact on health of environmental risks must be one of the essential issues for the definition of energy policy, and discuss the resulting implications. Various data are provided in appendix: energy in France and in the world, origins of radioactivity

  8. Nuclear Energy and European Union

    International Nuclear Information System (INIS)

    Picamal, B.

    2010-01-01

    The interest shown by the European Institutions in the energy debates, in which the nuclear energy is included as a key component within the energy mix, is obvious. Climate change and energy supply have pushed some countries to publicly express their interest for developing the nuclear energy. These positions are however in contradiction with some others within the European Union which are a lot more critical towards this type of energy and where face-out policies still prevail. Despite the fact that the use of the nuclear energy will remain within the competence of each Member State, the European Union will continue to play a prominent role in the development of an energy strategy based on a low carbon economy. (Author)

  9. Nuclear energy - the future climate

    International Nuclear Information System (INIS)

    Ash, Eric Sir

    2000-01-01

    In June 1999, a report entitled Nuclear Energy-The Future Climate was published and was the result of a collaboration between the Royal Society and the Royal Academy of Engineering. The report was the work of a group of nine people, made up of scientists, engineers and an economist, whose purpose was to attempt a new and objective look at the total energy scene and specifically the future role of nuclear energy. This paper discusses the findings of that report. (author)

  10. Nuclear energy: potentiality and implications

    International Nuclear Information System (INIS)

    Bahgat, Gawdat

    2008-01-01

    After a discussion about a broad definition of energy security and about the main challenges facing a potential nuclear renaissance, the article analyses how the European Union and the United States have addressed these challenges. There is no doubt that nuclear power will remain an important component of global energy mix, but it should not be seen as a panacea to the flows in the global energy markets [it

  11. Nuclear energy: a reasonable choice?

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2011-01-01

    While nuclear energy appears today as a powerful and carbon-free energy, it generates at the same time doubts and apprehension in the general public. Are these fears justified? Is France the most advanced country in the nuclear domain? Should we fear a Chernobyl-like accident in France? Is any irradiation dangerous? What would be the consequences of a terror attack against a reactor? Will nuclear energy be powerful enough to take up the energy reserves challenge? Will the waste management and the nuclear facilities dismantlement be extremely expensive in comparison with the electricity production costs? Do we know how to manage nuclear wastes on the long-term? This book tries to supply some relevant arguments in order to let the reader answering these questions himself and making his own opinion on this topic. (J.S.)

  12. Informing parliamentarians on nuclear energy

    International Nuclear Information System (INIS)

    1995-01-01

    This publication contains a selection of the papers presented at an international seminar on informing parliamentarians in the nuclear field. This seminar has been organized by the OECD Nuclear Energy Agency to respond to important information needs. As a matter of fact, providing clear and accurate information to decision-makers is a key element that contributes to the quality of work for legislation for a safe use of nuclear energy. The sessions dealt with : meeting the information needs of parliamentarians and other elected representatives on nuclear energy questions, actors and their respective roles in the information process, means and tools for communicating information on nuclear energy, case studies in communication with elected officials. Abstracts have been prepared for all of the papers in this volume. (TEC)

  13. Nuclear energy: From swords to ploughshares

    International Nuclear Information System (INIS)

    Knapp, V.

    1999-01-01

    There cannot be any doubt that the promise of nuclear energy is one of the greatest offered to man. For an overpopulated and exhausted Earth, salvation is in energy, to feed the population through energy intensive agriculture, to reuse resources by recycling. Modern transport, communications, housing and so on, everything which constitutes the standard of living of the developed world, can be very directly translated into energy. Although the relationship between the artefact and the energy required to produce it can be more or less efficient, it cannot be circumvented. So, unless the right to develop and enjoy higher standards of living be denied to the underdeveloped billions of the world, much more energy will be needed in future. However, already we are facing the limits in expansion of energy consumption. A greenhouse effect and the related climate changes demand that a brake be put on the use of fossil fuels. So what are the prospects? Scientifically speaking they are excellent. There are two inexhaustible energy sources on which to build the future development; solar energy and nuclear energy. The case of solar energy is a straightforward one, at least in principle. It is the case of solving technical problems to make it economically attractive and competitive. When and if this is achieved there will be no political barriers to its massive use. The case of nuclear energy carries enormous political problems, because of the undeniable connection between the peaceful use and the possibility of military abuse of nuclear technology. Although the promise of nuclear energy is enormous, correspondingly great are the preconditions for its safe large scale use. However, if these preconditions are also conducive to a better, more united world, then it is worthwhile to work in that direction. Nuclear energy should be considered neither from the narrow technical point of view, nor from the point of view which neglects the needs and rights of the large part of humanity

  14. Radiation versus radiation: nuclear energy in perspective

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1989-01-01

    This paper seeks to provide a proper perspective on radiation exposures from nuclear energy. Instead of comparing these exposures with other pollutants, natural and man-made, it assesses the radiation doses that result from the human environment and from the entire fuel cycle associated with nuclear generated electricity. It explores radiation versus radiation, not only in terms of absolute levels but, more importantly, of the enormous variability characterizing many radiation sources. The quantitative findings and their implications are meant to contribute to a balanced understanding of the radiological impact of nuclear energy, and so to help to bridge the information gap that is perceived to exist on this issue. The 1988 Unscear report and its seven scientific annexes provide an authoritative and dispassionate factual basis for examining radiation levels from all sources, natural and man-made. It is the main source for this paper. (author)

  15. Nuclear energy, future of ecology?

    International Nuclear Information System (INIS)

    Comby, B.

    1995-01-01

    This work can surprise; because it is said that nuclear energy is the only one that will allow to satisfy the energy needs of the planet by reducing the pollution. It gives answers on: Chernobyl accident, the existence of natural radioactivity, the comparison between natural radioactivity and medical, military and industrial irradiation, the pollution of our environment, the petroleum whom reserves are going to decrease, the advantages of the 'clever' nuclear and the disadvantages of the 'dustbin' nuclear, why some of ecologists are favourable to the nuclear, the effects of radiations on health, the foods irradiation, the wastes processing and the future of our planet. (N.C.)

  16. Nuclear energy: the European way

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The dossier published in this issue deals with the present and future situation of nuclear energy in Europe. What could be the trends of the nuclear development in the Europe of tomorrows. That global question is answered by pointing out the different data related to the present state of european nuclear programmes. Such an overview is followed by a serie of articles dealing with definite items: the actions implemented by the European Communities Commission: the electricity market and EDF policy in the field of european electric grids; the trends of nuclear cycle industry and the perfecting of the future european nuclear reactor

  17. Energy from nuclear reactors

    International Nuclear Information System (INIS)

    Hospe, J.

    1977-01-01

    This VDI-Nachrichten series has the target to provide a technical-objective basis for the discussion of the pros and cons of nuclear power. The first part deals with LWR-type reactors which so far have prevailed in nuclear power generation. (orig.) [de

  18. Alternate energy sources

    International Nuclear Information System (INIS)

    Andrei, L.

    1996-01-01

    The paper is a pleading in favor of hydroelectric power which in Romania originated more than 100 y ago. The hydroelectric potential of this country amounts to about 40 TWh / year. The hydroelectric yield is currently 15.5 TWh / year, 11.5 TWh / year of which being supplied by the Danube Power Plants. The hydroelectric power has a number of advantages: it is renewable, can be stocked and distributed according to the daily, weekly or seasonal energy demand, the energetic output is 82-89 %, if the project is carefully worked out the hydroelectric system has a small environmental impact, the service life can reach over 80 years, while the maintaining and operation costs are low. Some drawbacks are listed: the problems related to the population relocation, the environmental effects, especially the forest clearing, salt enrichment of affected soils. Arguments are presented from the economic point of view, backed up by ecological and technological advantages in favor of developing the micro hydroelectric power facilities

  19. Sources of high energy particles obtained with intense lasers for applications in nuclear physics; Sources de particules de hautes energies obtenues avec des lasers intenses pour applications a la physique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Gerbaux, M

    2007-12-15

    This experimental study concerns the characterization of the beams of electrons and protons with energies above a few MeV produced in the interaction of an ultra-intense (10{sup 19} W/cm{sup 2}) laser beam with a 10 {mu}m thick solid target. This work was issued in the framework to use these beams in nuclear physics experiments. It was hence necessary to know quantitatively the characteristics of these particle beams. Laser accelerated particle beams have very different characteristics from conventional ones produced in accelerators, especially on account of their transience and intensity as well as their continuous energy distribution. These properties make their characterization complex and led us to develop methods combining measurements with diodes spectrometers, radiochromic films, nuclear activation of chosen materials and Monte-Carlo simulations. These methods have been employed on 2 different facilities but with similar characteristics for the study of the electron beams as a function of the target material. The angular aperture of the electron beam appears to be strongly dependent on the atomic number of the target. An experiment was also carried out to characterize at each shot the proton beam produced with the LULI 100 TW laser facility. This experiment also proved the possibility to induce nuclear reactions in plasma and to measure quantitatively the reaction rate in order to scale an experiment on the perturbation of the nucleus electronic-shells coupling via a strong electromagnetic field due to the laser. (author)

  20. Dictionary of the energy-producing industry. Nuclear and non-nuclear energy sources. Vol. 3. Fachwoerterbuch zur Energiewirtschaft. Nukleare und nichtnukleare Energietraeger. - Diccionario tecnico de terminos de la industria de energia. Recursos energeticos nucleares y no nucleares. Bd. 3. Aleman-Espanol/Espanol-Aleman

    Energy Technology Data Exchange (ETDEWEB)

    Mannhardt, K H

    1981-01-01

    This technical dictionary, compiled in everyday practice, gives an outline of the terminology and phraseology of a modern field of engineering. Users should have some basic knowledge of the Spanish language and also of engineering as well as access to standard-language dictionaries. Core subjects of the dictionary are nuclear power, reactor engineering, fusion technology, solar energy, wind energy, tidal energy, radiation protection, nuclear safety, coal gasification and coal liquefaction, cooperative agreements and managerial problems.

  1. Sources, availability and costs of future energy

    International Nuclear Information System (INIS)

    Hart, R.G.

    1977-08-01

    An attempt is made to put the future energy scene in perspective by quantitatively examining energy resources, energy utilization and energy costs. Available data on resources show that conventional oil and gas are in short supply and that alternative energy sources are going to have to replace oil and gas in the not too distant future. Cost/applications assessments indicate that a mix of energy sources are likely to best meet our energy needs of the future. Hydro, nuclear and coal are all practical alternatives for meeting electrical needs and electricity is a practical alternative for space heating. Coal appears to be the most practical alternative for meeting much of the industrial energy need and frontier oil or oil from the tar sands appear to be the most practical alternatives for meeting the transportation need. Solar energy shows promise of meeting some of the space heating load in Canada if economical energy storage systems can be developed. The general conclusion is that the basic energy problem is energy conversion. (author)

  2. 78 FR 76599 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2013-12-18

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy..., General Services Administration, notice is hereby given that the Nuclear Energy Advisory Committee (NEAC... to the Department of Energy's Office of Nuclear Energy on complex science and technical issues that...

  3. Survey lecture on renewable energy sources. [In German

    Energy Technology Data Exchange (ETDEWEB)

    Meliss, M

    1977-01-01

    The essay deals with utilizable regenerative energy sources: geothermal energy, tidal energy, solar energy, running water energy, and wind energy. Tests for the development of these sources have been carried out, but only one of them has a considerable share in meeting the energy demand--that gained from running water. The others are only of regional importance (geothermal energy, tidal energy) or have lost the importance they once had (wind energy, biochemical energy in the form of wood). The latest discussions about the restrictions on fossil and nuclear energy sources and the environmental effects of the technologies necessary for their utilization have increased the interest in the ''inexhaustible'' energy sources. This is why the author outlines the possible importance of renewable energy sources.

  4. Looking for alternative energy sources.

    Science.gov (United States)

    Gross, Michael

    2012-02-21

    With unrest in oil-exporting countries, backlashes against biofuels and photovoltaics, and a nuclear incident in Japan, the year 2011 rattled confidence in future energy supplies. The search for alternatives is all the more urgent, but some of the solutions investigated hark back to fossil fuels that we can't afford to burn.

  5. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Gonzalez Jimenez, A.

    2002-01-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO 2 emissions. (Author)

  6. Nuclear energy safety - new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Julio Cezar; Fonseca, Renato Alves da, E-mail: jrausch@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  7. Nuclear energy has a future

    International Nuclear Information System (INIS)

    Sorin, F.

    2012-01-01

    Nuclear energy appears to be a main asset to France in the context of the worldwide economic slump. Nuclear power provides a cheap electricity that spares the buying power of households and increases the competitiveness of French enterprises. Nuclear industry with major companies like EDF, AREVA and CEA and 450 small and medium-sized enterprises, represents a core resistant to industrial decline. Nuclear industry is a good provider of work and globally it represents 2% of all the jobs in France. Concerning the trade balance, nuclear power plays twice; first by exporting equipment and services for a value of 7 billions euros a year and secondly by sparing the cost of energy imports that would be necessary if nuclear power was not here which is estimated to 20 billions euros a year. (A.C.)

  8. Nuclear energy safety - new challenges

    International Nuclear Information System (INIS)

    Rausch, Julio Cezar; Fonseca, Renato Alves da

    2011-01-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  9. Nuclear energy safety - new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Julio Cezar; Fonseca, Renato Alves da, E-mail: jrausch@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  10. Nuclear energy in the 21st century. Address at Joint IAEA/CNNC seminar on 21st century nuclear energy development in China, 23 May 1997 Beijing

    International Nuclear Information System (INIS)

    Blix, H.

    1997-05-01

    The address discusses the following issues: the increasing demand for energy; the energy efficiency factor; the role of oil and gas; fossil fuels and environment; share of renewable in the future; evolution toward higher density energy sources; factors influencing the choice of the nuclear option; new generations of nuclear power plants; waste management; nuclear safety; strengthening safeguards; nuclear power and nuclear weapons

  11. Nuclear energy - status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, Hans-Holger; MacDonald, Alan

    2007-07-01

    Rising expectations best characterize the current prospects of nuclear power in a world that is confronted with a burgeoning demand for energy, higher energy prices, energy supply security concerns and growing environmental pressures. It appears that the inherent economic and environmental benefits of the technology and its excellent performance record over the last twenty years are beginning to tilt the balance of political opinion and public acceptance in favour of nuclear power. Nuclear power is a cost-effective supply-side technology for mitigating climate change and can make a substantial contribution to climate protection. This paper reviews the current status of nuclear power and its fuel cycle and provides an outlook on where nuclear power may be headed in the short-to-medium run (20 to 40 years from now). (auth)

  12. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Kim, S. S.; Lee, M. K.; Moon, K. H.; Nam, J. H.; Noh, B. C.; Kim, H. R.

    2008-12-01

    The concerns on the global warming issues in the international community are bringing about a paradigm shift in the national economy including energy technology development. In this connection, the green growth mainly utilizing green technology, which emits low carbon, is being initiated by many advanced countries including Korea. The objective of the study is to evaluate the contribution to the national economy from nuclear energy attributable to the characteristics of green technology, to which nuclear energy belongs. The study covers the role of nuclear in addressing climate change issues, the proper share of nuclear in the electricity sector, the cost analyses of decommissioning and radioactive waste management, and the analysis on the economic performance of nuclear R and D including cost benefit analysis

  13. Energy sources for the future

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, J.L.; Cloutier, R.J. (eds.)

    1977-04-01

    The symposium program was designed for college faculty members who are teaching or plan to teach energy courses at their educational institutions. Lectures were presented on socio-economic aspects of energy development, fusion reactors, solar energy, coal-fired power plants, nuclear power, radioactive waste disposal, and radiation hazards. A separate abstract was prepared for each of 16 of the 18 papers presented; two papers were processed earlier: Residential Energy Use Alternatives to the Year 2000, by Eric Hurst (EAPA 2:257; ERA 1:25978) and The Long-Term Prospects for Solar Energy, by W. G. Pollard (EAPA 3:1008). Fourteen of the papers are included in Energy Abstracts for Policy Analysis. (EAPA).

  14. Nuclear energy discussion in Switzerland

    International Nuclear Information System (INIS)

    Brupbacher, F.

    1989-01-01

    As regards the subject of nuclear power, Switzerland is no better off than Germany or the Benelux nations. In particular, Swiss people do not have superior insight or more general agreement in their views as to nuclear energy use. With reference to the whole nation, advocates and opponents of nuclear power currently are about equal in number; hence decisions are blocked the same as elsewhere. (orig.) [de

  15. Energy policy, the energy price fallacy and the role of nuclear energy in the UK

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1978-01-01

    The widely held belief that the world energy problem will be solved by rising prices - closing the energy gap by reducing demand and bringing in new, large, previously overcostly energy sources is rejected by the author who feels that high prices are the problem and not the solution. It is argued that supply and demand will be brought into balance at some price, and the objective of energy policy should be to make it as low as possible, by concentrating on the exploitation of large, low-cost energy sources. The role of nuclear energy in this discussion is considered with respect to three specific points: the currently identified reserves of low-cost uranium, if used in fast reactors, represent an energy source greater than all other energy sources put together; nuclear power is the cheapest, safest and cleanest way of producing electricity; and electricity production accounts for a very large part of total primary energy consumption. (U.K.)

  16. Political aspects of nuclear energy

    International Nuclear Information System (INIS)

    Kiener, E.

    1989-01-01

    In Switzerland as in other countries public opinion on nuclear energy has drastically changed with time. Surveys show that a majority at present favours abandoning nuclear energy in Switzerland, but does not consider feasible an immediate switchover to other forms of energy. The behaviour is contradictory because increasingly more electric power is used, even after Chernobyl. The resistence has many facets. The debate is largely focused on the question of future technological and economic development. Nuclear energy also became the scapegoat for a development of the last few decades it has not been responsible for (destruction of the environment, waste of natural resources). For the sake of the environment and future economic development, the continued use of nuclear energy has to be ensured. This calls for great efforts in order to convince the people that nuclear power is an essential and logical part of our energy supply. In this process, the fear of a nuclear energy and the unease about industrial society must not be dismissed as irrelevant. (orig.)

  17. Nuclear energy demon

    International Nuclear Information System (INIS)

    Ruckdeschel, W.

    1980-01-01

    The German nuclear power plants (here Grafenrheinfeld, Isar) dispose of large-scale provisions echeloned in depth against release of activity due to incidents. According to human judgement environmental risks can be excluded. The direct risk is explained in the Rasmussen-study and in the German Risk Study Nuclear Power Plants. The Inhaber-study represents an important contribution to the risk assessment. (DG) [de

  18. Nuclear energy in metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Jirak, Z; Malik, J; Vrba, J

    1976-01-01

    The present power situation and its estimated development with a view to metallurgy is presented. The possibilities of the development of Czechoslovak metallurgy are described with regard to conventional fuels and to nuclear power applications. The programme of the use of nuclear power in countries with a highly developed metallurgical industry, such as Japan, the FRG, etc., is presented and the technical pre-requisites for the use of nuclear power in metallurgy, namely the use of high temperature reactors and their incorporation in nuclear metallurgical complexes are discussed. The problems are indicated of the selection of suitable materials for high temperature reactors and the experience is described with the operation of such equipment. The results are given of the analysis of 10 variants of the model of a nuclear metallurgical complex manufacturing 1000 tons of sponge iron per day and having four main technological circuits (the helium circuit, the steam circuit, the reduction gas circuit and the cycle of metallurgical processes). An estimate is given of the capital costs of building a high temperature reactor, a power plant and a metallurgical complex with the reactor. The costs are also given of steel and power production in a nuclear metallurgical complex.

  19. Energy stake and nuclear risks

    International Nuclear Information System (INIS)

    Bugnion, F.

    1980-01-01

    The political bias against nuclear power stations is countered by quotations from different sources concerning dangers due to other sources of power, including coal and oil. The comparison indicates the relatively low rate of mortalities associated with nuclear power generation. To this is added the advantage of using isotopes in medical treatment while scarcity of oil is going to rise together with the price. The constraints of Western opinion with respect to nuclear power programming is contrasted with Communist-block unrestrained and huge building of power stations. (I.G.)

  20. Nuclear energy: salvaging the atomic age

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1979-01-01

    The history of atomic power is reviewed from the first chain reaction in Chicago in 1942 to the worst-to-date accident at the Three Mile Island power plant in March, 1979. While media coverage during the Three Mile Island incident made the public aware of some reactor hardware and radiation hazards, Weinberg suggests that an acceptable nuclear future should have six characteristics: increased physical isolation of reactors, further technical improvements, separation of generation and distribution, professionalization of the nuclear cadre, heightened security, and public education about the hazards of radiation. Weinberg feels the question of low-level radiation effects to be critical to public acceptance of nuclear energy. Since the effects (if any) are so rarely seen because exposures are so small, the issue may be beyond the ability of science to decipher. Weinberg again explains his reference to nuclear energy as a Faustian Bargain: ''...nuclear energy, that miraculous and quite unsuspected source of energy, demands an unprecedented degree of expertise, attention to detail, and social stability. In return, man has, in the breeder reactor, an inexhaustible energy source.''

  1. Nuclear energy: the way ahead

    International Nuclear Information System (INIS)

    Fells, I.

    1981-01-01

    The biggest task facing the nuclear power industry is one of educating public and politicians in such a way that a balanced critical approach to the risks and benefits of nuclear power replaces the uninformed emotional response. Only then, the author believes, can political decision-makers, reflecting public response, develop acceptable energy strategies. (author)

  2. Quality assurance of nuclear energy

    International Nuclear Information System (INIS)

    1994-12-01

    It consists of 14 chapters, which are outline of quality assurance of nuclear energy, standard of quality assurance, business quality assurance, design quality assurance, purchase quality assurance, production quality assurance, a test warranty operation warranty, maintenance warranty, manufacture of nuclear power fuel warranty, computer software warranty, research and development warranty and quality audit.

  3. Nuclear energy in the Eighties

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1981-01-01

    The article gives a summarizing prognosis on possible developments in the utilization of nuclear energy during the next 10 years. The main concerns are the uranium supply, nuclear reactor industry, the breeding reactor, the fuel cycle, and the public opinion. (UA) [de

  4. Attitude to nuclear energy problems

    International Nuclear Information System (INIS)

    Danzmann, H.J.

    1975-01-01

    Two methods are dealt with which show the dialectic shrewdness of some of the active nuclear energy opponents in their attempt to influence opinions. By means of examples of quotations from lectures of recognized scientists (v. Weizsaecker, Teller, Heisenberg, Winnacker) which are torn out of their context, the public are deliberately misled by a few demagogic nuclear power critics. (HP/LH) [de

  5. Benefits of using nuclear energy

    International Nuclear Information System (INIS)

    Lira, Elda Vilaca

    2015-01-01

    The purpose of this work is to present, especially for high school students, the benefits of the use of nuclear energy, promoting a deeper knowledge of this technology, encouraging critical thinking of students and society around them

  6. Coal and nuclear power: Illinois' energy future

    International Nuclear Information System (INIS)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations

  7. Nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1990-01-01

    The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, and acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical. (author)

  8. Nuclear power prospects in the context of energy trends

    International Nuclear Information System (INIS)

    Bertel, E.; Wilmer, P.

    2000-01-01

    In order to put the prospects for nuclear energy development into perspective, a brief presentation is given of the overall trends in energy demand and supply world-wide. Key issues and factors affecting energy policies and choices between alternative sources are highlighted with emphasis on the electricity sector which is the main market for nuclear energy in short and medium terms. The role that nuclear energy could play in future energy mixes and challenges for nuclear energy development are elaborated. This presentation is based on statistical data and analytical work published by OECD Nuclear Energy Agency, as well as by other authoritative international sources such as International Energy Agency (IEA), the World Energy Council (WEC), and the International Institute of Applied Systems Analysis (ILASA)

  9. Nuclear energy and the public

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Over two thirds of the population (68%) believe that nuclear energy is necessary to secure the supply of power. This is one of the results of a representative poll conducted by the Demoscopic Institute Allensbach on behalf of the Nuclear Energy Information Circle of the German Atom Forum. 78% of the population are of the opinion that the power supply is secure for the next 20 years. The significance of nuclear power in today's power supply is, however, grossly underestimated. For example 30% of respondents put the number of nuclear power plants in the Federal Republic at four at the most. Many more people than one year ago are now convinced of the environmental compatibility of nuclear power plants. The public debate on nuclear energy is generally judged critically by politicians, journalists and experts: factual and emotional. 54% of the population and 71% of politicians interviewed regard the question of nuclear energy utilisation as a predominantly political decision. Questioned was a representative sample of the population which included politicians, journalists, scientists and energy economists. The results, which were presented at a press conference in Bonn by the economist Renate Koecher, are reviewed. (orig.) [de

  10. The energy yield of nuclear energy

    International Nuclear Information System (INIS)

    Smith, Ph.B.

    1983-01-01

    In this paper, a comparison is made between the energy produced in a nuclear cycle in a light-water reactor without recycling of plutonium or uranium on the one hand and the energy stored into the system to realize this energy production on the other. Only empirical data are used, which means that some energy costs are omitted because no empirical data were available (e.g. energy needed to waste processing and waste disposal). The following steps are taken into account: production and processing of ores, conversion and enrichment of fuels, construction and shutdown of the reactor itself. (Auth.)

  11. The future of nuclear energy in Europe

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Are concerns about global warming of the Earth's atmosphere going to rekindle interest in nuclear power and in building new nuclear power plants in Europe? As a consequence of the discussions about the climate, the use of nuclear power as an important energy source is currently being re-evaluated, finds Dr. Wolf-J. Schmidt-Kuester, Secretary General of FORATOM, the European Atomic Forum, headquartered in Brussels. In his article, he argues that a renaissance of nuclear power will be possible also in Europe once politics supports resuming an unbiased discussion of all topics associated with the energy problem. Europe must face two problems in the energy sector for which solutions must be found: the growing dependence on fossil energy resources, and the need to curb greenhouse gas emissions, especially those of carbon dioxide. Nuclear power is already making a sizable contribution towards the solution of these problems, but its future potential has hardly been tapped. Public acceptance of nuclear power shows that the intention to opt out of the peaceful uses of nuclear power is not based on an identical attitude of the public, but is motivated politically, finding only little public support, as in the cases of Sweden and Germany. (orig.) [de

  12. Nuclear energy: obstacles and promises

    International Nuclear Information System (INIS)

    Bacher, P.

    2003-01-01

    Nuclear energy has distinctive merits (sustainable resources, low costs, no greenhouse gases) but its development must overcome serious hurdles (fear of accidents, radio-phobia, waste management). The large unit size of present-day reactors is compatible only with large electrical grids, and involves a high capital cost. Taking into account these different factors, the paper outlines how nuclear energy may contribute to the reduction of greenhouse gases, and which are the most promising developments. (author)

  13. Religious organizations debate nuclear energy

    International Nuclear Information System (INIS)

    Dowell, T.

    1984-08-01

    This paper reviews the history of the religious debate on nuclear energy over the last thirty years. In the 1950s, religious statements recognized the peaceful uses of atomic energy as a blessing from God and called upon world leaders to promote its use. Nuclear energy programmes were launched in this decade. In the 1960s, there was still religious approval of nuclear energy, but questions about ethics arose. It was not until the 1970s, after the oil crisis, that serious questioning and criticism of nuclear energy emerged. This was particularly true in the United States, where the majority of statements originated - especially in 1979, the year of the Three Mile Island accident. Around this time, the World Council of Churches developed the concept of the just, participatory and sustainable society. The meaning and use of these terms in the nuclear energy debate is examined. This paper also compares the balanced debate of the World Council with the case against the plutonium economy prepared by the National Council of the Churches of Christ in the USA. Three religious statements from the 1980s are examined. A United Church of Canada resolution, critical of nuclear energy, is compared with a favourable report from the Methodist Church in England. Both use similar values: in one case, justice, participation and sustainability; in the other case, concern for others, participation and stewardship. There are not many Catholic statements on nuclear energy. One which is cautious and favourable is examined in detail. It is concluded that the use of concepts of justice, participation and sustainability (or their equivalents) has not clarified the nuclear debate

  14. The nuclear energy and the others sources; La energia nuclear y el resto de las fuentes: el tema de la seguridad

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, E.

    2008-07-01

    Safety is the priority in the nuclear industry actions. For the design and during the construction or the exploitation, including the decommissioning, the fundamental objective is not to produce any damage to the people or the environment. In the same way, the radioactive waste management technologies give the right solution to treatment and storage of them. The Regulatory Organisations of each country warranties with its vigilance the safety objectives. A network of international organisation, public and private, support the experiences exchange, the normative harmonisation and the management, searching the excellence and best practices. (Author)

  15. Can renewable energy sources satiate Slovakia's future energy needs?

    Energy Technology Data Exchange (ETDEWEB)

    Tomis, Igor; Koval, Peter; Janicek, Frantisek; Darula, Ivan

    2010-09-15

    The paper examines the options for replacing the current energy mix of non-renewable, conventional energy sources solely with renewable sources in the long term within the context of the Slovak environment, possibly combined with nuclear energy in the 50-year horizon. Vital needs are outlined in household energy consumption and energy consumption for industrial and transportation purposes to fulfil in order for Slovakia to become independent of foreign sources in energy supplies.

  16. Nuclear energy in the oils sands

    International Nuclear Information System (INIS)

    Arsenault, J.E.

    2014-01-01

    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  17. Nuclear energy in the oils sands

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E.

    2014-09-15

    The major Canadian oil sands are located in Alberta and Saskatchewan, with most production from the strata along the Athabasca River in Alberta. The economically recoverable oil sands reserves are estimated to be 168 billion barrels which at a current production rate of 1.8 million barrels per day (2012), are projected to last a very long time. Canada has been blessed with vast energy resources which make it potentially energy-independent and able to provide significant exports but there are concerns that their development cannot be managed in a wholly acceptable manner. Comparable concerns have been applied to nuclear energy in the past and in recent times to the oil sands. The technologies associated with these energy sources have always been controversial because they are at the confluence of economics and politics where finding a balance between risk and reward is difficult. So it should be no surprise that when these technologies get linked together in certain proposals their prospect for success is doubly difficult. The possible use of nuclear energy for production of oil from the oil sands dates back to the late 1950s, when an experiment to mine the oil by detonating an underground nuclear device was proposed. It was predicted that the heat and pressure released from such a device would create a large cavern into which oil would flow, and from where it would be pumped to the surface. Almost at the same time, oil sands research using conventional sources of energy had culminated with the development of practical refining processes, essentially those still in use today. These methods require large amounts of heat energy in the form of hot water and steam. In this century nuclear energy was proposed as the source for the heat required by the oil sands production processes. To date neither of these nuclear proposals for oil sands projects have been successful, because the economic and political balance could not be struck. (author)

  18. Interviews and discussions on nuclear energy

    International Nuclear Information System (INIS)

    Matthoefer, H.

    1976-01-01

    Mr. Hans Matthoefer, Federal Minister for Research and Technology, has commented on the problems occurring in connection with the peaceful utilization of nuclear energy in several interviews during the past months. The present pocketbook contains a summary of these talks and interviews classified into the following main subjects: dialogue with citizens on nuclear energy, energy sources and energy saving, environment and energy, energy and economic development. The answers given by Federal Minister Matthoefer make the aims of the research and technology policy of the Federal Republic clear: Promotion of the efficiency of economy in order to be able to participate in the international competition, but not at the expense of the environment and of the population. (orig./HP) [de

  19. Department of Energy Nuclear Energy Standards Program

    International Nuclear Information System (INIS)

    Silver, E.G.

    1980-01-01

    The policy with respect to the development and use of standards in the Department of Energy (DOE) programs concerned with maintaining and developing the nuclear option for the civilian sector (both in the form of the currently used light water reactors and for advanced concepts including the Liquid Metal Fast Breeder Reactor), is embodied in a Nuclear Standards Policy, issued in 1978, whose perspectives and philosophy are discussed

  20. Energy sources for future. Change to a sustainable energy system

    International Nuclear Information System (INIS)

    Morris, C.

    2005-01-01

    Can Germany give up gasoline and power from coal or nuclear energy and how much does it cost? The book does away with all common misunderstandings due to renewable energy sources and describes a compatible model for a sustainable energy mixing in future. Nevertheless fossil fuels are not denounced but seen as a platform for the advanced system. The author explains first why objections to renewable energy sources base on bad information, and pursues quite an other argumentation as such authors emphasizing the potential of these energy sources. Than he shows in detail the possibility of the optimal energy mixing for biomass, solar power, wind power, geothermal energy, hydropower and energy efficiency. The environment will reward us for this and instead buying expensive resources from foreign countries we will create work places at home. The number of big power plants - taking into account safety risks - will decrease and small units of on-site power generation feeded with this renewable sources will play more and more an important role. (GL) [de