WorldWideScience

Sample records for source-sink population dynamics

  1. Phenotypic plasticity despite source-sink population dynamics in a long-lived perennial plant.

    Science.gov (United States)

    Anderson, Jill T; Sparks, Jed P; Geber, Monica A

    2010-11-01

    • Species that exhibit adaptive plasticity alter their phenotypes in response to environmental conditions, thereby maximizing fitness in heterogeneous landscapes. However, under demographic source-sink dynamics, selection should favor traits that enhance fitness in the source habitat at the expense of fitness in the marginal habitat. Consistent with source-sink dynamics, the perennial blueberry, Vaccinium elliottii (Ericaceae), shows substantially higher fitness and population sizes in dry upland forests than in flood-prone bottomland forests, and asymmetrical gene flow occurs from upland populations into bottomland populations. Here, we examined whether this species expresses plasticity to these distinct environments despite source-sink dynamics. • We assessed phenotypic responses to a complex environmental gradient in the field and to water stress in the glasshouse. • Contrary to expectations, V. elliottii exhibited a high degree of plasticity in foliar and root traits (specific leaf area, carbon isotope ratios, foliar nitrogen content, root : shoot ratio, root porosity and root architecture). • We propose that plasticity can be maintained in source-sink systems if it is favored within the source habitat and/or a phylogenetic artifact that is not costly. Additionally, plasticity could be advantageous if habitat-based differences in fitness result from incipient niche expansion. Our results illuminate the importance of evaluating phenotypic traits and fitness components across heterogeneous landscapes. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  2. Characterizing source-sink dynamics with genetic parentage assignments

    NARCIS (Netherlands)

    Peery, M. Zachariah; Beissinger, Steven R.; House, Roger F.; Berube, Martine; Hall, Laurie A.; Sellas, Anna; Palsboll, Per J.

    2008-01-01

    Source-sink dynamics have been suggested to characterize the population structure of many species, but the prevalence of source-sink systems in nature is uncertain because of inherent challenges in estimating migration rates among populations. Migration rates are often difficult to estimate directly

  3. Reconstructing source-sink dynamics in a population with a pelagic dispersal phase.

    Directory of Open Access Journals (Sweden)

    Kun Chen

    Full Text Available For many organisms, the reconstruction of source-sink dynamics is hampered by limited knowledge of the spatial assemblage of either the source or sink components or lack of information on the strength of the linkage for any source-sink pair. In the case of marine species with a pelagic dispersal phase, these problems may be mitigated through the use of particle drift simulations based on an ocean circulation model. However, when simulated particle trajectories do not intersect sampling sites, the corroboration of model drift simulations with field data is hampered. Here, we apply a new statistical approach for reconstructing source-sink dynamics that overcomes the aforementioned problems. Our research is motivated by the need for understanding observed changes in jellyfish distributions in the eastern Bering Sea since 1990. By contrasting the source-sink dynamics reconstructed with data from the pre-1990 period with that from the post-1990 period, it appears that changes in jellyfish distribution resulted from the combined effects of higher jellyfish productivity and longer dispersal of jellyfish resulting from a shift in the ocean circulation starting in 1991. A sensitivity analysis suggests that the source-sink reconstruction is robust to typical systematic and random errors in the ocean circulation model driving the particle drift simulations. The jellyfish analysis illustrates that new insights can be gained by studying structural changes in source-sink dynamics. The proposed approach is applicable for the spatial source-sink reconstruction of other species and even abiotic processes, such as sediment transport.

  4. Bounds on the dynamics of sink populations with noisy immigration.

    Science.gov (United States)

    Eager, Eric Alan; Guiver, Chris; Hodgson, Dave; Rebarber, Richard; Stott, Iain; Townley, Stuart

    2014-03-01

    Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Seasonal source-sink dynamics at the edge of a species' range

    Science.gov (United States)

    Kanda, L.L.; Fuller, T.K.; Sievert, P.R.; Kellogg, R.L.

    2009-01-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations. ?? 2009 by the Ecological Society of America.

  6. Seasonal source-sink dynamics at the edge of a species' range.

    Science.gov (United States)

    Kanda, L Leann; Fuller, Todd K; Sievert, Paul R; Kellogg, Robert L

    2009-06-01

    The roles of dispersal and population dynamics in determining species' range boundaries recently have received theoretical attention but little empirical work. Here we provide data on survival, reproduction, and movement for a Virginia opossum (Didelphis virginiana) population at a local distributional edge in central Massachusetts (USA). Most juvenile females that apparently exploited anthropogenic resources survived their first winter, whereas those using adjacent natural resources died of starvation. In spring, adult females recolonized natural areas. A life-table model suggests that a population exploiting anthropogenic resources may grow, acting as source to a geographically interlaced sink of opossums using only natural resources, and also providing emigrants for further range expansion to new human-dominated landscapes. In a geographical model, this source-sink dynamic is consistent with the local distribution identified through road-kill surveys. The Virginia opossum's exploitation of human resources likely ameliorates energetically restrictive winters and may explain both their local distribution and their northward expansion in unsuitable natural climatic regimes. Landscape heterogeneity, such as created by urbanization, may result in source-sink dynamics at highly localized scales. Differential fitness and individual dispersal movements within local populations are key to generating regional distributions, and thus species ranges, that exceed expectations.

  7. High population variability and source-sink dynamics in a solitary bee species.

    Science.gov (United States)

    Franzén, Markus; Nilsson, Sven G

    2013-06-01

    Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination.

  8. Population-level consequences of herbivory, changing climate, and source-sink dynamics on a long-lived invasive shrub.

    Science.gov (United States)

    van Klinken, R D; Pichancourt, J B

    2015-12-01

    Long-lived plant species are highly valued environmentally, economically, and socially, but can also cause substantial harm as invaders. Realistic demographic predictions can guide management decisions, and are particularly valuable for long-lived species where population response times can be long. Long-lived species are also challenging, given population dynamics can be affected by factors as diverse as herbivory, climate, and dispersal. We developed a matrix model to evaluate the effects of herbivory by a leaf-feeding biological control agent released in Australia against a long-lived invasive shrub (mesquite, Leguminoseae: Prosopis spp.). The stage-structured, density-dependent model used an annual time step and 10 climatically diverse years of field data. Mesquite population demography is sensitive to source-sink dynamics as most seeds are consumed and redistributed spatially by livestock. In addition, individual mesquite plants, because they are long lived, experience natural climate variation that cycles over decadal scales, as well as anthropogenic climate change. The model therefore explicitly considered the effects of both net dispersal and climate variation. Herbivory strongly regulated mesquite populations through reduced growth and fertility, but additional mortality of older plants will be required to reach management goals within a reasonable time frame. Growth and survival of seeds and seedlings were correlated with daily soil moisture. As a result, population dynamics were sensitive to rainfall scenario, but population response times were typically slow (20-800 years to reach equilibrium or extinction) due to adult longevity. Equilibrium population densities were expected to remain 5% higher, and be more dynamic, if historical multi-decadal climate patterns persist, the effect being dampened by herbivory suppressing seed production irrespective of preceding rainfall. Dense infestations were unlikely to form under a drier climate, and required net

  9. A new tool that links landscale connectivity and source-sink dynamics to population viability

    Science.gov (United States)

    The importance of connectivity and source-sink dynamics to conservation planning is widely appreciated. But the use of these concepts in practical applications such as the identification of critical habitat has been slowed because few models are designed to identify demographic s...

  10. The role of sink to source re-colonisation in the population dynamics of insects living in unstable habitats: an example of terrestrial chironomids

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Kindlmann, Pavel

    2001-01-01

    Roč. 93, - (2001), s. 50-58 ISSN 0030-1299 R&D Projects: GA ČR GA526/98/P156 Institutional research plan: CEZ:AV0Z6066911; CEZ:MSM 123100004 Keywords : population dynamic * metapopulations * source -sink population Subject RIV: EH - Ecology, Behaviour Impact factor: 2.499, year: 2001

  11. Intrinsic and extrinsic drivers of source-sink dynamics

    Science.gov (United States)

    1. Many factors affect the presence and exchange of individuals among subpopulations and influence not only the emergence, but the strength of ensuing source-sink dynamics within metapopulations, yet their relative contributions remain largely unexplored. 2. To help identify the...

  12. Endangered Butterflies as a Model System for Managing Source Sink Dynamics on Department of Defense Lands

    Science.gov (United States)

    used three species of endangered butterflies as a model system to rigorously investigate the source-sink dynamics of species being managed on military...lands. Butterflies have numerous advantages as models for source-sink dynamics , including rapid generation times and relatively limited dispersal, but...they are subject to the same processes that determine source-sink dynamics of longer-lived, more vagile taxa.1.2 Technical Approach: For two of our

  13. Identifying Greater Sage-Grouse source and sink habitats for conservation planning in an energy development landscape.

    Science.gov (United States)

    Kirol, Christopher P; Beck, Jeffrey L; Huzurbazar, Snehalata V; Holloran, Matthew J; Miller, Scott N

    2015-06-01

    Conserving a declining species that is facing many threats, including overlap of its habitats with energy extraction activities, depends upon identifying and prioritizing the value of the habitats that remain. In addition, habitat quality is often compromised when source habitats are lost or fragmented due to anthropogenic development. Our objective was to build an ecological model to classify and map habitat quality in terms of source or sink dynamics for Greater Sage-Grouse (Centrocercus urophasianus) in the Atlantic Rim Project Area (ARPA), a developing coalbed natural gas field in south-central Wyoming, USA. We used occurrence and survival modeling to evaluate relationships between environmental and anthropogenic variables at multiple spatial scales and for all female summer life stages, including nesting, brood-rearing, and non-brooding females. For each life stage, we created resource selection functions (RSFs). We weighted the RSFs and combined them to form a female summer occurrence map. We modeled survival also as a function of spatial variables for nest, brood, and adult female summer survival. Our survival-models were mapped as survival probability functions individually and then combined with fixed vital rates in a fitness metric model that, when mapped, predicted habitat productivity (productivity map). Our results demonstrate a suite of environmental and anthropogenic variables at multiple scales that were predictive of occurrence and survival. We created a source-sink map by overlaying our female summer occurrence map and productivity map to predict habitats contributing to population surpluses (source habitats) or deficits (sink habitat) and low-occurrence habitats on the landscape. The source-sink map predicted that of the Sage-Grouse habitat within the ARPA, 30% was primary source, 29% was secondary source, 4% was primary sink, 6% was secondary sink, and 31% was low occurrence. Our results provide evidence that energy development and avoidance of

  14. Demographic source-sink dynamics restrict local adaptation in Elliott's blueberry (Vaccinium elliottii).

    Science.gov (United States)

    Anderson, Jill T; Geber, Monica A

    2010-02-01

    In heterogeneous landscapes, divergent selection can favor the evolution of locally adapted ecotypes, especially when interhabitat gene flow is minimal. However, if habitats differ in size or quality, source-sink dynamics can shape evolutionary trajectories. Upland and bottomland forests of the southeastern USA differ in water table depth, light availability, edaphic conditions, and plant community. We conducted a multiyear reciprocal transplant experiment to test whether Elliott's blueberry (Vaccinium elliottii) is locally adapted to these contrasting environments. Additionally, we exposed seedlings and cuttings to prolonged drought and flooding in the greenhouse to assess fitness responses to abiotic stress. Contrary to predictions of local adaptation, V. elliottii families exhibited significantly higher survivorship and growth in upland than in bottomland forests and under drought than flooded conditions, regardless of habitat of origin. Neutral population differentiation was minimal, suggesting widespread interhabitat migration. Population density, reproductive output, and genetic diversity were all significantly greater in uplands than in bottomlands. These disparities likely result in asymmetric gene flow from uplands to bottomlands. Thus, adaptation to a marginal habitat can be constrained by small populations, limited fitness, and immigration from a benign habitat. Our study highlights the importance of demography and genetic diversity in the evolution of local (mal)adaptation.

  15. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach

    Directory of Open Access Journals (Sweden)

    Hyunseung Choo

    2009-03-01

    Full Text Available Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs. They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR that efficiently forwards (or relays data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  16. Sink-oriented Dynamic Location Service Protocol for Mobile Sinks with an Energy Efficient Grid-Based Approach.

    Science.gov (United States)

    Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung

    2009-01-01

    Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.

  17. Sinks without borders: Snowshoe hare dynamics in a complex landscape

    Science.gov (United States)

    Griffin, Paul C.; Mills, L. Scott

    2009-01-01

    A full understanding of population dynamics of wide-ranging animals should account for the effects that movement and habitat use have on individual contributions to population growth or decline. Quantifying the per-capita, habitat-specific contribution to population growth can clarify the value of different patch types, and help to differentiate population sources from population sinks. Snowshoe hares, Lepus americanus, routinely use various habitat types in the landscapes they inhabit in the contiguous US, where managing forests for high snowshoe hare density is a priority for conservation of Canada lynx, Lynx canadensis. We estimated density and demographic rates via mark–recapture live trapping and radio-telemetry within four forest stand structure (FSS) types at three study areas within heterogeneous managed forests in western Montana. We found support for known fate survival models with time-varying individual covariates representing the proportion of locations in each of the FSS types, with survival rates decreasing as use of open young and open mature FSS types increased. The per-capita contribution to overall population growth increased with use of the dense mature or dense young FSS types and decreased with use of the open young or open mature FSS types, and relatively high levels of immigration appear to be necessary to sustain hares in the open FSS types. Our results support a conceptual model for snowshoe hares in the southern range in which sink habitats (open areas) prevent the buildup of high hare densities. More broadly, we use this system to develop a novel approach to quantify demographic sources and sinks for animals making routine movements through complex fragmented landscapes.

  18. Source and sink nodes in absence seizures.

    Science.gov (United States)

    Rodrigues, Abner C; Machado, Birajara S; Caboclo, Luis Otavio S F; Fujita, Andre; Baccala, Luiz A; Sameshima, Koichi

    2016-08-01

    As opposed to focal epilepsy, absence seizures do not exhibit a clear seizure onset zone or focus since its ictal activity rapidly engages both brain hemispheres. Yet recent graph theoretical analysis applied to absence seizures EEG suggests the cortical focal presence, an unexpected feature for this type of epilepsy. In this study, we explore the characteristics of absence seizure by classifying the nodes as to their source/sink natures via weighted directed graph analysis based on connectivity direction and strength estimation using information partial directed coherence (iPDC). By segmenting the EEG signals into relatively short 5-sec-long time windows we studied the evolution of coupling strengths from both sink and source nodes, and the network dynamics of absence seizures in eight patients.

  19. Could residual oil from the Exxon Valdez spill create a long-term population "sink" for sea otters in Alaska?

    Science.gov (United States)

    Monson, Daniel H.; Doak, Daniel F.; Ballachey, Brenda E.; Bodkin, James L.

    2011-01-01

    Over 20 years ago, the Exxon Valdez oil tanker spilled 42 million L of crude oil into the waters of Prince William Sound, Alaska, USA. At the time of the spill, the sea otter (Enhydra lutris) population inhabiting the spill area suffered substantial acute injuries and loss. Subsequent research has resulted in one of the best-studied species responses to an oil spill in history. However, the question remains: Is the spill still influencing the Prince William Sound sea otter population? Here we fit time-varying population models to data for the sea otter population of western Prince William Sound to quantify the duration and extent of mortality effects from the spill. We hypothesize that the patchy nature of residual oil left in the environment has created a source-sink population dynamic. We fit models using the age distributions of both living and dying animals and estimates of sea otter population size to predict the number of sea otters in the hypothesized sink population and the number lost to this sink due to chronic exposure to residual oil. Our results suggest that the sink population has remained at just over 900 individuals (95% CI: 606-960) between 1990 and 2009, during which time prime-age survival remained 2-6% below pre-spill levels. This reduced survival led to chronic losses of ???900 animals over the past two decades, which is similar in magnitude to the number of sea otter deaths documented in western Prince William Sound during the acute phase of the spill. However, the unaffected source population appears to be counterbalancing these losses, with the model indicating that the sea otter population increased from ???2150 individuals in 1990 to nearly 3000 in 2009. The most optimistic interpretation of our results suggests that mortality effects dissipated between 2005 and 2007. Our results suggest that residual oil can affect wildlife populations on time scales much longer than previously believed and that cumulative chronic effects can be as

  20. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    Science.gov (United States)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  1. Zoonotic disease in a peripheral population: persistence and transmission of Leishmania major in a putative sink-source system in the Negev Highlands, Israel.

    Science.gov (United States)

    Berger, Ruti; Wasserberg, Gideon; Warburg, Alon; Orshan, Laor; Kotler, Burt P

    2014-08-01

    Populations at the edge of their geographic distributions are referred to as peripheral populations. Very little attention has been given to this topic in the context of persistence of infectious disease in natural populations. In this study, we examined this question using zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania major in the Negev Desert of Israel as a model system. Here, we suggest that the regional persistence of Phlebotomus papatasi populations and L. major transmission in the Sede Boqer region could be explained through processes akin to sink-source and/or mainland-island metapopulation dynamics. Given its potentially enzootically superior ecological conditions, we hypothesize that the Zin Valley ecotope constitutes the "mainland" or the "source" patch for the Sede Boqer area where L. major transmission is persistent and resistant to local extinctions (die-outs) whereas the local sand fly populations on the Zin Plateau ("island patch" or "sink patch") are more prone to local extinctions. Between 2007 and 2008, we trapped sand flies and sand rats in the two areas and compared sand fly abundance and L. major infection prevalence in both. In both 2007 and 2008, sand fly abundance was high and continuous in the Zin Wadi but low and discontinuous in the Zin Plateau. Infection prevalence of sand rats was significantly higher in the Wadi (13%) compared with the Zin Plateau (3%). Minimum infection rate in sand flies did not differ significantly between the two areas. Overall, our results are consistent with the premise that the Zin Valley population is relatively robust in terms of L. major transmission, whereas transmission is potentially more tenuous in the plateau. Understanding the biotic and abiotic processes enabling the persistence of L. major and other vector-borne diseases in peripheral disease foci is important for predicting the effect of anthropogenic land use and climate change.

  2. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-04-01

    Two distinct CO2 sink/source characteristics appeared from the compiled observed data 1984-2013 in the tropical Indonesian seas. The western part persistently emits CO2 to the atmosphere, while the eastern is rather dynamic which emits and absorbs smaller amount of CO2 to and from atmosphere, respectively. The segregation is proximal to the virtual Wallace line, where in the continental shelf is located. Lower salinity and higher silicate condition in the western part influenced the higher pCO2 condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year condition. Yet, during La Ninã, higher wind speed increases CO2 flux twice compared to Normal year. In the continental shelf area where CO2 sink area is found, 29 years data showed that pCO2 trend is increasing ±0.6-3.8 μatm/year. From this study, the overall areas have a significant source of CO2 of approximately 10 - 24 μatm.

  3. CO2 Sink/Source Characteristics in the Tropical Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.; Watanabe, A.; Nadaoka, K.; Adi, N. S.; Prayitno, H. B.; Suharsono, S.; Muchtar, M.; Triyulianti, I.; Setiawan, A.; Suratno, S.; Khasanah, E. N.

    2015-01-01

    Two distinct CO2 sink/source characteristics are found in the tropical Indonesian seas from the compilation of observed data for the period 1984-2013. The western region persistently emits CO2 to the atmosphere, whereas the eastern region is dynamic and acts either as a small source or sink of CO2 to the atmosphere, depending on sites. The segregation is proximal to the Makassar Strait, which is located over the continental shelf and is one of the main routes of the Indonesian Throughflow (ITF). Lower salinity and higher silicate were found in the western region, suggesting a terrestrial influence in this area. Temperature has a limited influence in controlling different CO2 sink/source characteristics in the west and east. However, an SST change of -2.0°C during La Niña events effectively reduces the pCO2 difference between the atmosphere and surface seawater by 50% compared to normal year conditions. During La Niña events, higher wind speeds double the CO2 flux from the ocean to the atmosphere compared to that of a normal year. In the continental shelf area where the CO2 sink area was found, data of over 29 years show that the seawater pCO2 increased by 0.6-3.8 μatm yr−1. Overall, the seawater pCO2 of the Indonesian Seas is supersaturated relative to the atmosphere by 15.9 ± 8.6 μatm and thus acts as a source of CO2 to the atmosphere. This article is protected by copyright. All rights reserved.

  4. CO2 Sink/Source Characteristics in the Tropical Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.

    2015-11-05

    Two distinct CO2 sink/source characteristics are found in the tropical Indonesian seas from the compilation of observed data for the period 1984-2013. The western region persistently emits CO2 to the atmosphere, whereas the eastern region is dynamic and acts either as a small source or sink of CO2 to the atmosphere, depending on sites. The segregation is proximal to the Makassar Strait, which is located over the continental shelf and is one of the main routes of the Indonesian Throughflow (ITF). Lower salinity and higher silicate were found in the western region, suggesting a terrestrial influence in this area. Temperature has a limited influence in controlling different CO2 sink/source characteristics in the west and east. However, an SST change of -2.0°C during La Niña events effectively reduces the pCO2 difference between the atmosphere and surface seawater by 50% compared to normal year conditions. During La Niña events, higher wind speeds double the CO2 flux from the ocean to the atmosphere compared to that of a normal year. In the continental shelf area where the CO2 sink area was found, data of over 29 years show that the seawater pCO2 increased by 0.6-3.8 μatm yr−1. Overall, the seawater pCO2 of the Indonesian Seas is supersaturated relative to the atmosphere by 15.9 ± 8.6 μatm and thus acts as a source of CO2 to the atmosphere. This article is protected by copyright. All rights reserved.

  5. Source-sink estimates of genetic introgression show influence of hatchery strays on wild chum salmon populations in Prince William Sound, Alaska.

    Directory of Open Access Journals (Sweden)

    James R Jasper

    Full Text Available The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta in Prince William Sound (PWS, Alaska, with 135 single nucleotide polymorphism (SNP markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960's for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964-1982 with frequencies in contemporary samples (2008-2010 and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.

  6. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.

    Science.gov (United States)

    Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit

    2018-02-13

    Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Non-uniform dispersion of the source-sink relationship alters wavefront curvature.

    Directory of Open Access Journals (Sweden)

    Lucia Romero

    Full Text Available The distribution of cellular source-sink relationships plays an important role in cardiac propagation. It can lead to conduction slowing and block as well as wave fractionation. It is of great interest to unravel the mechanisms underlying evolution in wavefront geometry. Our goal is to investigate the role of the source-sink relationship on wavefront geometry using computer simulations. We analyzed the role of variability in the microscopic source-sink relationship in driving changes in wavefront geometry. The electrophysiological activity of a homogeneous isotropic tissue was simulated using the ten Tusscher and Panfilov 2006 action potential model and the source-sink relationship was characterized using an improved version of the Romero et al. safety factor formulation (SFm2. Our simulations reveal that non-uniform dispersion of the cellular source-sink relationship (dispersion along the wavefront leads to alterations in curvature. To better understand the role of the source-sink relationship in the process of wave formation, the electrophysiological activity at the initiation of excitation waves in a 1D strand was examined and the source-sink relationship was characterized using the two recently updated safety factor formulations: the SFm2 and the Boyle-Vigmond (SFVB definitions. The electrophysiological activity at the initiation of excitation waves was intimately related to the SFm2 profiles, while the SFVB led to several counterintuitive observations. Importantly, with the SFm2 characterization, a critical source-sink relationship for initiation of excitation waves was identified, which was independent of the size of the electrode of excitation, membrane excitability, or tissue conductivity. In conclusion, our work suggests that non-uniform dispersion of the source-sink relationship alters wavefront curvature and a critical source-sink relationship profile separates wave expansion from collapse. Our study reinforces the idea that the

  8. Mapping sources, sinks, and connectivity using a simulation model of Northern Spotted Owls

    Science.gov (United States)

    This is a study of source-sink dynamics at a landscape scale. In conducting the study, we make use of a mature simulation model for the northern spotted owl (Strix occidentalis caurina) that was developed as part of the US Fish and Wildlife Service’s most recent recovery plannin...

  9. Quantifying the source-sink balance and carbohydrate content in three tomato cultivars

    Directory of Open Access Journals (Sweden)

    Tao eLi

    2015-06-01

    Full Text Available The effect of supplementary lighting on plant growth depends on the balance between assimilate production in source leaves and the overall capacity of the plants to use assimilates. This study aims at quantifying the source-sink balance and carbohydrate content of three tomato cultivars differing in fruit size, and to investigate to what extent the source/sink ratio correlates with the potential fruit size. Cultivars Komeett (large size, Capricia (medium size and Sunstream (small size, cherry tomato were grown at similar crop management as in commercial practice. Supplementary lighting was applied. Source strength was estimated from total plant growth rate using periodic destructive plant harvests in combination with the crop growth model TOMSIM. Sink strength was estimated from potential fruit growth rate which was determined from non-destructively measuring the fruit growth rate at non-limiting assimilate supply, growing only one fruit on each truss. Carbohydrate content in leaves and stems were periodically determined. During the early growth stage, ‘Komeett’ and ‘Capricia’ showed sink limitation and ‘Sunstream’ was close to sink limitation. Subsequently, during the fully fruiting stage all three cultivars were strongly source-limited as indicated by the low source/sink ratio (average source/sink ratio from 50 days after planting onwards was 0.17, 0.22 and 0.33 for ‘Komeett’, ‘Capricia’ and ‘Sunstream’, respectively. Carbohydrate content in leaves and stems increased linearly with the source/sink ratio. We conclude that under high irradiance tomato plants are sink-limited during their early growth stage, the level of sink limitation differs between cultivars but is not correlated with their potential fruit size. During the fully fruiting stage tomato plants are source-limited and the extent of source limitation of a cultivar is positively correlated with its potential fruit size.

  10. Carbon source-sink limitations differ between two species with contrasting growth strategies.

    Science.gov (United States)

    Burnett, Angela C; Rogers, Alistair; Rees, Mark; Osborne, Colin P

    2016-11-01

    Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2 ] indicating that source strength was near maximal at current [CO 2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2 ]. © 2016 John Wiley & Sons Ltd.

  11. Source-sink relationships in radish plant

    Directory of Open Access Journals (Sweden)

    Z. Starck

    2015-01-01

    Full Text Available The problem of source-sink relationships in di- and tetraploidal radish plants grown in. hydroponic cultures was investigated in two stages of their development: with intensively growing swollen hypocotyl and in the period of actively accumulating nutrients in the storage organ. It was found, that the proportion, between the mass of organs, their RGR and NAR was very similar in di- and tetraploidal populations, probably owing to a similar rate of photosynthesis and pattern of assimilates distribution. The high variability of swollen hypocotyls size is slightly correlated with the size of the whole aerial part and is not correlated with the rate of photosynthesis in leaves. Partial defoliation of radish plants did not affect the rate of photosynthesis of the remaining leaves. Only in the cotyledones the oldest donors of 14C-assimilates, a slight compensation of photosynthesis was reported. It may suggest, that the rate of photosynthesis in radish plants is not under the control of sink activity. The size of the storage organ have determined in some extent its attractive force and influenced the amount of 14C-assimilates exported from their donors. Translocation of photosynthates from the young, still growing leaves was conditioned mainly by their retention power. Therefore, in young radish plants cotyledons were the main donor of 14C-assimilates.

  12. Sources and sinks of carbon dioxide in the Arctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  13. Comparative analysis among the small RNA populations of source, sink and conductive tissues in two different plant-virus pathosystems.

    Science.gov (United States)

    Herranz, Mari Carmen; Navarro, Jose Antonio; Sommen, Evelien; Pallas, Vicente

    2015-02-22

    In plants, RNA silencing plays a fundamental role as defence mechanism against viruses. During last years deep-sequencing technology has allowed to analyze the sRNA profile of a large variety of virus-infected tissues. Nevertheless, the majority of these studies have been restricted to a unique tissue and no comparative analysis between phloem and source/sink tissues has been conducted. In the present work, we compared the sRNA populations of source, sink and conductive (phloem) tissues in two different plant virus pathosystems. We chose two cucurbit species infected with two viruses very different in genome organization and replication strategy; Melon necrotic spot virus (MNSV) and Prunus necrotic ringspot virus (PNRSV). Our findings showed, in both systems, an increase of the 21-nt total sRNAs together with a decrease of those with a size of 24-nt in all the infected tissues, except for the phloem where the ratio of 21/24-nt sRNA species remained constant. Comparing the vsRNAs, both PNRSV- and MNSV-infected plants share the same vsRNA size distribution in all the analyzed tissues. Similar accumulation levels of sense and antisense vsRNAs were observed in both systems except for roots that showed a prevalence of (+) vsRNAs in both pathosystems. Additionally, the presence of overrepresented discrete sites along the viral genome, hot spots, were identified and validated by stem-loop RT-PCR. Despite that in PNRSV-infected plants the presence of vsRNAs was scarce both viruses modulated the host sRNA profile. We compare for the first time the sRNA profile of four different tissues, including source, sink and conductive (phloem) tissues, in two plant-virus pathosystems. Our results indicate that antiviral silencing machinery in melon and cucumber acts mainly through DCL4. Upon infection, the total sRNA pattern in phloem remains unchanged in contrast to the rest of the analyzed tissues indicating a certain tissue-tropism to this polulation. Independently of the

  14. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. GEOSPATIAL ANALYSIS OF ATMOSPHERIC HAZE EFFECT BY SOURCE AND SINK LANDSCAPE

    Directory of Open Access Journals (Sweden)

    T. Yu

    2017-09-01

    Full Text Available Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents

  16. Geospatial Analysis of Atmospheric Haze Effect by Source and Sink Landscape

    Science.gov (United States)

    Yu, T.; Xu, K.; Yuan, Z.

    2017-09-01

    Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD) of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN) and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents atmospheric haze

  17. Dynamic sink assignment for efficient energy consumption in wireless sensor networks

    KAUST Repository

    Oikonomou, Konstantinos N.

    2012-04-01

    Efficient energy consumption is a challenging problem in wireless sensor networks (WSNs) and closely related to extending network lifetime. The usual way of tackling this issue for topologies with fixed link weight and fixed sink location, has been shown to be severely affected by the energy hole problem. In this paper, the energy consumption problem is initially studied for WSNs with fixed sink assignment and it is analytically shown that energy consumption is minimized when the sink is assigned to the node that is the solution of a suitably formulated 1-median problem. This motivates the introduction of a dynamic environment where link weights change based on the energy level and the aggregate traffic load of the adjacent nodes. Then, the sink is adaptively allowed to move among neighbor nodes, according to a scalable sink migration strategy. Simulation results support the analytical claims demonstrating energy consumption reduction and an additional network lifetime increment when migration is employed in the dynamic environment. © 2012 IEEE.

  18. Source-sink interaction: a century old concept under the light of modern molecular systems biology.

    Science.gov (United States)

    Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine

    2017-07-20

    Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Characteristics of sources and sinks of momentum in a turbulent boundary layer

    Science.gov (United States)

    Fiscaletti, D.; Ganapathisubramani, B.

    2018-05-01

    In turbulent boundary layers, the wall-normal gradient of the Reynolds shear stress identifies momentum sources and sinks (T =∂ [-u v ]/∂ y ). These motions can be physically interpreted in two ways: (1) as contributors to the turbulence term balancing the mean momentum equation, and (2) as regions of strong local interaction between velocity and vorticity fluctuations. In this paper, the space-time evolution of momentum sources and sinks is investigated in a turbulent boundary layer at the Reynolds number (Reτ) = 2700, with time-resolved planar particle image velocimetry in a plane along the streamwise and wall-normal directions. Wave number-frequency power spectra of T fluctuations reveal that the wave velocities of momentum sources and sinks tend to match the local streamwise velocity in proximity to the wall. However, as the distance from the wall increases, the wave velocities of the T events are slightly lower than the local streamwise velocities of the flow, which is also confirmed from the tracking in time of the intense momentum sources and sinks. This evidences that momentum sources and sinks are preferentially located in low-momentum regions of the flow. The spectral content of the T fluctuations is maximum at the wall, but it decreases monotonically as the distance from the wall grows. The relative spectral contributions of the different wavelengths remains unaltered at varying wall-normal locations. From autocorrelation coefficient maps, the characteristic streamwise and wall-normal extents of the T motions are respectively 60 and 40 wall units, independent of the wall distance. Both statistics and instantaneous visualizations show that momentum sources and sinks have a preferential tendency to be organized in positive-negative pairs in the wall-normal direction.

  20. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters.

    Science.gov (United States)

    Durand, Mickaël; Mainson, Dany; Porcheron, Benoît; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2018-03-01

    The regulation of source-to-sink sucrose transport is associated with AtSUC and AtSWEET sucrose transporters' gene expression changes in plants grown hydroponically under different physiological conditions. Source-to-sink transport of sucrose is one of the major determinants of plant growth. Whole-plant carbohydrates' partitioning requires the specific activity of membrane sugar transporters. In Arabidopsis thaliana plants, two families of transporters are involved in sucrose transport: AtSUCs and AtSWEETs. This study is focused on the comparison of sucrose transporter gene expression, soluble sugar and starch levels and long distance sucrose transport, in leaves and sink organs (mainly roots) in different physiological conditions (along the plant life cycle, during a diel cycle, and during an osmotic stress) in plants grown hydroponically. In leaves, the AtSUC2, AtSWEET11, and 12 genes known to be involved in phloem loading were highly expressed when sucrose export was high and reduced during osmotic stress. In roots, AtSUC1 was highly expressed and its expression profile in the different conditions tested suggests that it may play a role in sucrose unloading in roots and in root growth. The SWEET transporter genes AtSWEET12, 13, and 15 were found expressed in all organs at all stages studied, while differential expression was noticed for AtSWEET14 in roots, stems, and siliques and AtSWEET9, 10 expressions were only detected in stems and siliques. A role for these transporters in carbohydrate partitioning in different source-sink status is proposed, with a specific attention on carbon demand in roots. During development, despite trophic competition with others sinks, roots remained a significant sink, but during osmotic stress, the amount of translocated [U- 14 C]-sucrose decreased for rosettes and roots. Altogether, these results suggest that source-sink relationship may be linked with the regulation of sucrose transporter gene expression.

  1. Cougar survival and source-sink structure on Greater Yellowstone's Northern Range

    Science.gov (United States)

    Ruth, T.K.; Haroldson, M.A.; Murphy, K.M.; Buotte, P.C.; Hornocker, M.G.; Quigley, H.B.

    2011-01-01

    We studied survival and causes of mortality of radiocollared cougars (Puma concolor) on the Greater Yellowstone Northern Range (GYNR) prior to (1987–1994) and after wolf (Canis lupus) reintroduction (1998–2005) and evaluated temporal, spatial, and environmental factors that explain variation in adult, subadult, and kitten survival. Using Program MARK and multimodel inference, we modeled cougar survival based on demographic status, season, and landscape attributes. Our best models for adult and independent subadults indicated that females survived better than males and survival increased with age until cougars reached older ages. Lower elevations and increasing density of roads, particularly in areas open to cougar hunting north of Yellowstone National Park (YNP), increased mortality risks for cougars on the GYNR. Indices of ungulate biomass, cougar and wolf population size, winter severity, rainfall, and individual characteristics such as the presence of dependent young, age class, and use of Park or Wilderness were not important predictors of survival. Kitten survival increased with age, was lower during winter, increased with increasing minimum estimates of elk calf biomass, and increased with increasing density of adult male cougars. Using our best model, we mapped adult cougar survival on the GYNR landscape. Results of receiver operating characteristic (ROC) analysis indicated a good model fit for both female (area under the curve [AUC] = 0.81, 95%CI = 0.70–0.92, n = 35 locations) and male cougars (AUC = 0.84, 95%CI = 0.74–0.94, n = 49 locations) relative to hunter harvest locations in our study area. Using minimum estimates of survival necessary to sustain the study population, we developed a source-sink surface and we identify several measures that resource management agencies can take to enhance cougar population management based on a source-sink strategy.

  2. Changes in seed weight in response to different sources: sink ratio in oilseed rape

    Directory of Open Access Journals (Sweden)

    Francisco M Iglesias

    2014-06-01

    Full Text Available Little knowledge exists about the degree of source, sink and source: sink limitations on mean seed weight in oilseed rape (Brassica napus L.. The objective of this work was to analyze the nature and magnitude on seed weight response to assimilate availability during the effective seed-filling period in oilseed rape. Three Argentinean varieties, Eclipse, Impulse, and Master, were grown under field conditions, and at the beginning of the effective seed filling period, a broad range of source: sink manipulation combinations were produced. Source manipulations consisted of two incoming radiation (R level reductions: 0% (Rn and ~50% (Rs combined with three different sources: sink treatments were applied: C, control; PR, ~50% pod removal, and D, 100% defoliation. Rs significantly reduced yield (15% and MSW (12% with respect to Rn, without significant effects on the rest of the sub yield components. Source:sink manipulation treatments significantly affected all yield components. PR diminished yield by 29%, reducing ca. 40% seeds pl-1 by reductions pods pl-1 (41% with respect to Rn, whereas PR increased MSW by 19%, counterbalancing the reduction in seeds pl-1 and thereby in yield. When considering different seed positions along the main raceme, Rs reduced MSW by 12% independently of seed positions onto the raceme. On the contrary, PR increased MSW in average 17% with respect to C. Results reported here suggest that oilseed rape has source: sink co-limitation during the effective seed filling period, which is apparently higher than wheat and lower than maize.

  3. Whole-plant adjustments in coconut (Cocos nucifera) in response to sink-source imbalance.

    Science.gov (United States)

    Mialet-Serra, I; Clement-Vidal, A; Roupsard, O; Jourdan, C; Dingkuhn, M

    2008-08-01

    Coconut (Cocos nucifera L.) is a perennial tropical monocotyledon that produces fruit continuously. The physiological function of the large amounts of sucrose stored in coconut stems is unknown. To test the hypothesis that reserve storage and mobilization enable the crop to adjust to variable sink-source relationships at the scale of the whole plant, we investigated the dynamics of dry matter production, yield and yield components, and concentrations of nonstructural carbohydrate reserves in a coconut plantation on Vanuatu Island in the South Pacific. Two treatments were implemented continuously over 29 months (April 2002 to August 2004): 50% leaf pruning (to reduce the source) and 100% fruit and inflorescence pruning (to reduce the sink). The pruning treatments had little effect on carbohydrate reserves because they affected only petioles, not the main reserve pool in the stem. Both pruning treatments greatly reduced dry matter production of the reproductive compartment, but vegetative growth and development were negligibly affected by treatment and season. Leaf pruning increased radiation-use efficiency (RUE) initially, and fruit pruning greatly reduced RUE throughout the experiment. Changes in RUE were negatively correlated with leaflet soluble sugar concentration, indicating feedback inhibition of photosynthesis. We conclude that vegetative development and growth of coconut show little phenotypic plasticity, assimilate demand for growth being largely independent of a fluctuating assimilate supply. The resulting sink-source imbalances were partly compensated for by transitory reserves and, more importantly, by variable RUE in the short term, and by adjustment of fruit load in the long term. Possible physiological mechanisms are discussed, as well as modeling concepts that may be applied to coconut and similar tree crops.

  4. Systems biology derived source-sink mechanism of BMP gradient formation.

    Science.gov (United States)

    Zinski, Joseph; Bu, Ye; Wang, Xu; Dou, Wei; Umulis, David; Mullins, Mary C

    2017-08-09

    A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.

  5. Spatial distribution of carbon sources and sinks in Canada's forests

    International Nuclear Information System (INIS)

    Chen, Jing M.; Weimin, Ju; Liu, Jane; Cihlar, Josef; Chen, Wenjun

    2003-01-01

    Annual spatial distributions of carbon sources and sinks in Canada's forests at 1 km resolution are computed for the period from 1901 to 1998 using ecosystem models that integrate remote sensing images, gridded climate, soils and forest inventory data. GIS-based fire scar maps for most regions of Canada are used to develop a remote sensing algorithm for mapping and dating forest burned areas in the 25 yr prior to 1998. These mapped and dated burned areas are used in combination with inventory data to produce a complete image of forest stand age in 1998. Empirical NPP age relationships were used to simulate the annual variations of forest growth and carbon balance in 1 km pixels, each treated as a homogeneous forest stand. Annual CO 2 flux data from four sites were used for model validation. Averaged over the period 1990-1998, the carbon source and sink map for Canada's forests show the following features: (i) large spatial variations corresponding to the patchiness of recent fire scars and productive forests and (ii) a general south-to-north gradient of decreasing carbon sink strength and increasing source strength. This gradient results mostly from differential effects of temperature increase on growing season length, nutrient mineralization and heterotrophic respiration at different latitudes as well as from uneven nitrogen deposition. The results from the present study are compared with those of two previous studies. The comparison suggests that the overall positive effects of non-disturbance factors (climate, CO 2 and nitrogen) outweighed the effects of increased disturbances in the last two decades, making Canada's forests a carbon sink in the 1980s and 1990s. Comparisons of the modeled results with tower-based eddy covariance measurements of net ecosystem exchange at four forest stands indicate that the sink values from the present study may be underestimated

  6. Source to sink transport and regulation by environmental factors

    Directory of Open Access Journals (Sweden)

    Remi eLemoine

    2013-07-01

    Full Text Available Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air and soil pollutants and biotic (mutualistic and pathogenic microbes, viruses, aphids and parasitic plants factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favoured in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g. by callose deposition and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses… also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.

  7. Source-Sink Mismatch Causing Functional Conduction Block in Re-Entrant Ventricular Tachycardia.

    Science.gov (United States)

    Ciaccio, Edward J; Coromilas, James; Wit, Andrew L; Peters, Nicholas S; Garan, Hasan

    2018-01-01

    Ventricular tachycardia (VT) caused by a re-entrant circuit is a life-threatening arrhythmia that at present cannot always be treated adequately. A realistic model of re-entry would be helpful to accurately guide catheter ablation for interruption of the circuit. In this review, models of electrical activation wavefront propagation during onset and maintenance of re-entrant VT are discussed. In particular, the relationship between activation mapping and maps of transition in infarct border zone thickness, which results in source-sink mismatch, is considered in detail and supplemented with additional data. Based on source-sink mismatch, the re-entry isthmus can be modeled from its boundary properties. Isthmus boundary segments with large transitions in infarct border zone thickness have large source-sink mismatch, and functional block forms there during VT. These alternate with segments having lesser thickness change and therefore lesser source-sink mismatch, which act as gaps, or entrance and exit points, to the isthmus during VT. Besides post-infarction substrates, the source-sink model is likely applicable to other types of volumetric changes in the myocardial conducting medium, such as when there is presence of fibrosis or dissociation of muscle fibers. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves

    International Nuclear Information System (INIS)

    Plaut, Z.; Mayoral, M.L.; Reinhold, L.

    1987-01-01

    When seven crop species were grown under identical environmental conditions, decreased sink:source ratio led to a decreased photosynthetic rate within 1 to 3 days in Cucumis sativus L., Gossypium hirsutum L., and Raphanus sativus L., but not in Capsicum annuum L., Solanum melongena L., Phaseolus vulgaris L., or Ricinus communis L. The decrease was not associated with stomatal closure. In cotton and cucumbers, sink removal led to an increase in starch and sugar content, in glucose 6-phosphate and fructose 6-phosphate pools, and in the proportion of 14 C detected in sugar phosphates and UDPglucose following 14 CO 2 supply. When mannose was supplied to leaf discs to sequester cytoplasmic inorganic phosphate, promotion of starch synthesis, and inhibition of CO 2 fixation, were observed in control discs, but not in discs from treated plants. Phosphate buffer reduced starch synthesis in the latter, but not the former discs. The findings suggest that sink removal led to a decreased ratio inorganic phosphate:phosphorylated compounds. In beans 14 C in sugar phosphates increased following sink removal, but without sucrose accumulation, suggesting tighter feedback control of sugar level. Starch accumulated to higher levels than in the other plants, but CO 2 fixation rate was constant for several days

  9. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    Science.gov (United States)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the

  10. Using plant growth modeling to analyse C source-sink relations under drought: inter and intra specific comparison

    Directory of Open Access Journals (Sweden)

    Benoit ePallas

    2013-11-01

    Full Text Available The ability to assimilate C and allocate NSC (non structural carbohydrates to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation. This favors plant survival and recovery but not always agronomic performance as NSC are stored rather than used for growth due to a modified metabolism in source and sink leaves. Such interactions between plant C and water balance are complex and plant modeling can help analyzing their impact on plant phenotype. This paper addresses the impact of trade-offs between C sink and source activities and plant production under drought, combining experimental and modeling approaches. Two contrasted monocotyledonous species (rice, oil palm were studied. Experimentally, the sink limitation of plant growth under moderate drought was confirmed as well as the modifications in NSC metabolism in source and sink organs. Under severe stress, when C source became limiting, plant NSC concentration decreased. Two plant models dedicated to oil palm and rice morphogenesis were used to perform a sensitivity analysis and further explore how to optimize C sink and source drought sensitivity to maximize plant growth. Modeling results highlighted that optimal drought sensitivity depends both on drought type and species and that modeling is a great opportunity to analyse such complex processes. Further modeling needs and more generally the challenge of using models to support complex trait breeding are discussed.

  11. Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane.

    Science.gov (United States)

    McCormick, A J; Cramer, M D; Watt, D A

    2008-01-01

    In crops other than sugarcane there is good evidence that the size and activity of carbon sinks influence source activity via sugar-related regulation of the enzymes of photosynthesis, an effect that is partly mediated through coarse regulation of gene expression. In the current study, leaf shading treatments were used to perturb the source-sink balance in 12-month-old Saccharum spp. hybrid 'N19' (N19) by restricting source activity to a single mature leaf. Changes in leaf photosynthetic gas exchange variables and leaf and culm sugar concentrations were subsequently measured over a 14 d period. In addition, the changes in leaf gene response to the source-sink perturbation were measured by reverse northern hybridization analysis of an array of 128 expressed sequence tags (ESTs) related to photosynthetic and carbohydrate metabolism. Sucrose concentrations in immature culm tissue declined significantly over the duration of the shading treatment, while a 57 and 88% increase in the assimilation rate (A) and electron transport rate (ETR), respectively, was observed in the source leaf. Several genes (27) in the leaf displayed a >2-fold change in expression level, including the upregulation of several genes associated with C(4) photosynthesis, mitochondrial metabolism and sugar transport. Changes in gene expression levels of several genes, including Rubisco (EC 4.1.1.39) and hexokinase (HXK; EC 2.7.1.1), correlated with changes in photosynthesis and tissue sugar concentrations that occurred subsequent to the source-sink perturbation. These results are consistent with the notion that sink demand may limit source activity through a kinase-mediated sugar signalling mechanism that correlates to a decrease in source hexose concentrations, which, in turn, correlate with increased expression of genes involved in photosynthesis and metabolite transport. The signal feedback system reporting sink sufficiency and regulating source activity may be a potentially valuable target for

  12. Million Trees Los Angeles: Carbon dioxide sink or source?

    Science.gov (United States)

    E.G. McPherson; A. Kendall; S. Albers

    2015-01-01

    This study seeks to answer the question, 'Will the Million Trees LA (MTLA) programme be a CO2 sink or source?' Using surveys, interviews, field sampling and computer simulation of tree growth and survival over a 40-year period, we developed the first process-based life cycle inventory of CO2 for a large tree...

  13. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions.

    Science.gov (United States)

    Griffiths, Cara A; Paul, Matthew J; Foyer, Christine H

    2016-10-01

    Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilisation. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose availability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dialogue between source and sink tissues. In addition, we address how these systems can be tailored for crop improvement. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Forecasting lionfish sources and sinks in the Atlantic: are Gulf of Mexico reef fisheries at risk?

    Science.gov (United States)

    Johnston, Matthew W.; Bernard, Andrea M.; Shivji, Mahmood S.

    2017-03-01

    Invasive lionfish ( Pterois volitans/miles complex) now permeate the entire tropical western Atlantic, Caribbean Sea, and Gulf of Mexico, but lionfish abundance has been measured only in select locations in the field. Despite its rapid range expansion, a comprehensive meta-population analysis of lionfish `sources' and `sinks' and consequentially the invader's potential abundance and impacts on economically important, sympatric reef fishes have not been assessed. These data are urgently needed to spatially direct control efforts and to plan for and perhaps mitigate lionfish-caused damage. Here, we use a biophysical computer model to: (1) forecast larval lionfish sources and sinks that are also delineated as low to high lionfish `density zones' throughout their invaded range, and (2) assess the potential vulnerability of five grouper and snapper species— Epinephelus morio, Mycteroperca microlepis, Epinephelus flavolimbatus, Lutjanus campechanus, and Rhomboplites aurorubens—to lionfish within these density zones in the Gulf of Mexico. Our results suggest that the west Florida shelf and nearshore waters of Texas, USA, and Guyana, South America, function both as lionfish sources and sinks and should be a high priority for targeted lionfish control. Furthermore, of the five groupers and snappers studied, the high fishery value E. morio (red grouper) is the Gulf of Mexico species most at risk from lionfish. Lacking a comprehensive lionfish control policy, these risk exposure data inform managers where removals should be focused and demonstrate the risk to five sympatric native groupers and snappers in the Gulf of Mexico that may be susceptible to dense lionfish aggregations, should control efforts fail.

  15. Population genetics of the invasive ctenophore Mnemiopsis leidyi in Europe reveal source-sink dynamics and secondary dispersal to the Mediterranean Sea

    DEFF Research Database (Denmark)

    Bolte, Sören; Fuentes, Veronica; Haslob, Holger

    2013-01-01

    Repeated invasions of European waters by the ctenophore Mnemiopsis leidyi offer a unique opportunity to study population dynamics and dispersal in gelatinous zooplankton. Here we followed population establishment in two recently invaded areas, the North and Baltic Sea, and analysed changes...... maintained their allelic composition with virtually unchanged levels of genetic diversity and between-population differentiation. This demonstrates that gene flow between the two regions was limited and indicates successful reproduction in both areas. In contrast, at the eastern distribution limit...

  16. Source-to-sink transport of sugar and regulation by environmental factors.

    Science.gov (United States)

    Lemoine, Remi; La Camera, Sylvain; Atanassova, Rossitza; Dédaldéchamp, Fabienne; Allario, Thierry; Pourtau, Nathalie; Bonnemain, Jean-Louis; Laloi, Maryse; Coutos-Thévenot, Pierre; Maurousset, Laurence; Faucher, Mireille; Girousse, Christine; Lemonnier, Pauline; Parrilla, Jonathan; Durand, Mickael

    2013-01-01

    Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.

  17. Modelling of the influence of the vacancy source and sink activity and the stress state on diffusion in crystalline solids

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.

    2011-01-01

    Diffusion in solids is a well-known phenomenon that has many consequences in technology and material science. Modelling of diffusion-controlled processes requires both a reliable theory of diffusion and reliable kinetic coefficients, as well as other thermodynamic data. Often the classical Darken theory, valid for stress-free systems with ideal vacancy source and sink activity, is generalized to multicomponent systems with ideal vacancy source and sink activity. Nazarov and Gurov presented a theory for stress-free systems with no vacancy source and sink activity. Recently we published a general theory of diffusion that accounted for the role of non-ideal vacancy source and sink activity, as well as the stress state. Since diffusion theories are tested and diffusion coefficients measured usually on diffusion couples, this paper presents evolution equations based on that general theory for a diffusion couple. In the limit, the equations of the Darken theory and the Nazarov and Gurov theory are valid for ideal vacancy source and sink activity and no vacancy source and sink activity, respectively. Simulations for binary and ternary diffusion couples demonstrate the influence of the vacancy source and sink activity and the stress state on evolution of site fraction profiles of components and vacancies, and on the Kirkendall effect.

  18. Are gas exchange responses to resource limitation and defoliation linked to source:sink relationships?

    Science.gov (United States)

    Pinkard, E A; Eyles, A; O'Grady, A P

    2011-10-01

    Productivity of trees can be affected by limitations in resources such as water and nutrients, and herbivory. However, there is little understanding of their interactive effects on carbon uptake and growth. We hypothesized that: (1) in the absence of defoliation, photosynthetic rate and leaf respiration would be governed by limiting resource(s) and their impact on sink limitation; (2) photosynthetic responses to defoliation would be a consequence of changing source:sink relationships and increased availability of limiting resources; and (3) photosynthesis and leaf respiration would be adjusted in response to limiting resources and defoliation so that growth could be maintained. We tested these hypotheses by examining how leaf photosynthetic processes, respiration, carbohydrate concentrations and growth rates of Eucalyptus globulus were influenced by high or low water and nitrogen (N) availability, and/or defoliation. Photosynthesis of saplings grown with low water was primarily sink limited, whereas photosynthetic responses of saplings grown with low N were suggestive of source limitation. Defoliation resulted in source limitation. Net photosynthetic responses to defoliation were linked to the degree of resource availability, with the largest responses measured in treatments where saplings were ultimately source rather than sink limited. There was good evidence of acclimation to stress, enabling higher rates of C uptake than might otherwise have occurred. © 2011 Blackwell Publishing Ltd.

  19. A two-dimensional transient analytical solution for a ponded ditch drainage system under the influence of source/sink

    Science.gov (United States)

    Sarmah, Ratan; Tiwari, Shubham

    2018-03-01

    An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.

  20. Trends in the sources and sinks of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom; Raupach, Mike [GCP, Canberra, Australia; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Marland, Gregg [ORNL; Bopp, Laurent [National Center for Scientific Research, Gif-sur-Yvette, France; Ciais, Philippe [Laboratoire des Sciences du Climat et de l' Environement, France; Friedlingstein, Pierre [National Center for Scientific Research, Gif-sur-Yvette, France; Viovy, Nicolas [National Center for Scientific Research, Gif-sur-Yvette, France; Conway, T.J. [NOAA, Boulder, CO; Doney, Scott C. [Woods Hole Oceanographic Institution; Feely, R. A. [NOAA Pacific Marine Environmental Laboratory; Foster, Pru [University of Bristol, UK; House, Joanna I [University of Bristol, UK; Prentice, Colin I. [University of Bristol, UK; Gurney, Kevin [Purdue University; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Huntingford, Chris [Center for Ecology and Hydrology, Oxon, England; Levy, Peter E. [Center for Ecology and Hydrology, Midlothian, Scotland; Lomas, M. R. [University of Sheffield; Woodward, F. I. [University of Sheffield; Majkut, Joseph [Princeton University; Sarmiento, Jorge L. [Princeton University; Metzl, Nicolas [University of Paris; Ometto, Jean P [ORNL; Randerson, James T. [University of California, Irvine; Peters, Glen P [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Running, Steven [University of Montana, Missoula; Sitch, Stephen [University of Leeds, UK; Takahashi, Taro [Columbia University; Van der Werf, Guido [Universitate Amsterdam

    2009-12-01

    Efforts to control climate change require the stabilization of atmospheric CO2 concentrations. This can only be achieved through a drastic reduction of global CO2 emissions. Yet fossil fuel emissions increased by 29% between 2000 and 2008, in conjunction with increased contributions from emerging economies, from the production and international trade of goods and services, and from the use of coal as a fuel source. In contrast, emissions from land-use changes were nearly constant. Between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on average; the rest was absorbed by carbon sinks on land and in the oceans. In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO2 by the carbon sinks in response to climate change and variability. Changes in the CO2 sinks are highly uncertain, but they could have a significant influence on future atmospheric CO2 levels. It is therefore crucial to reduce the uncertainties.

  1. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.

    Science.gov (United States)

    Li, Mai-He; Xiao, Wen-Fa; Shi, Peili; Wang, San-Gen; Zhong, Yong-De; Liu, Xing-Liang; Wang, Xiao-Dan; Cai, Xiao-Hu; Shi, Zuo-Min

    2008-10-01

    No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.

  2. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  3. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    Energy Technology Data Exchange (ETDEWEB)

    Canadell, J.G. [Global Carbon Project, CSIRO Marine and Atmospheric Research, GPO Box 3023, Canberra, ACT 2601 (Australia); Kirschbaum, M.U.F. [Environmental Biology Group, RSBS, Australian National University, GPO Box 475, Canberra, ACT 2601 (Australia); Kurz, W.A. [Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, BC V8Z 1M5 (Canada); Sanz, M.J. [Fundacion CEAM, Parque Tecnologico, Charles H. Darwin 14, 46980 Paterna, Valencia (Spain); Schlamadinger, B. [Joanneum Research, Elisabethstrasse 11, Graz A-8010 (Austria); Yamagata, Y. [Center for Global Environmental Research, National Institute of Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506 (Japan)

    2007-06-15

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system.

  4. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks

    International Nuclear Information System (INIS)

    Canadell, J.G.; Kirschbaum, M.U.F.; Kurz, W.A.; Sanz, M.J.; Schlamadinger, B.; Yamagata, Y.

    2007-01-01

    The capacity to partition natural, indirect, and direct human-induced effects on terrestrial carbon (C) sources and sinks is necessary to be able to predict future terrestrial C dynamics and thus their influence on atmospheric CO2 growth. However, it will take a number of years before we can better attribute quantitative estimates of the contribution of various C processes to the net C balance. In a policy context, factoring out natural and indirect human-induced effects on C sources and sinks from the direct human-induced influences, is seen as a requirement of a C accounting approach that establishes a clear and unambiguous connection between human activities and the assignment of C credits and debits. We present options for factoring out various groups of influences including climate variability, CO2 and N fertilization, and legacies from forest management. These are: (1) selecting longer accounting or measurement periods to reduce the effects of inter-annual variability; (2) correction of national inventories for inter-annual variability; (3) use of activity-based accounting and C response curves; (4) use of baseline scenarios or benchmarks at the national level; (5) stratification of the landscape into units with distinct average C stocks. Other, more sophisticated modeling approaches (e.g., demographic models in combination with forest inventories; process-based models) are possible options for future C accounting systems but their complexity and data requirements make their present adoption more difficult in an inclusive international C accounting system

  5. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Regulation Effects of Water and Nitrogen on the Source-Sink Relationship in Potato during the Tuber Bulking Stage

    Science.gov (United States)

    Li, Wenting; Xiong, Binglin; Wang, Shiwen; Deng, Xiping; Yin, Lina; Li, Hongbing

    2016-01-01

    The source-sink relationship determines crop yield, and it is largely regulated by water and nutrients in agricultural production. This has been widely investigated in cereals, but fewer studies have been conducted in root and tuber crops such as potato (Solanum tuberosum L.). The objective of this study was to investigate the source-sink relationship in potato and the regulation of water and nitrogen on the source-sink relationship during the tuber bulking stage. A pot experiment using virus-free plantlets of the Atlantic potato cultivar was conducted, using three water levels (50%, 70% and 90% of field capacity) and three nitrogen levels (0, 0.2, 0.4 g N∙kg−1 soil). The results showed that, under all water and nitrogen levels, plant source capacity were small at the end of the experiment, since photosynthetic activity in leaves were low and non-structural reserves in underground stems were completely remobilized. While at this time, there were very big differences in maximum and minimum tuber number and tuber weight, indicating that the sink tuber still had a large potential capacity to take in assimilates. These results suggest that the source-supplied assimilates were not sufficient enough to meet the demands of sink growth. Thus, we concluded that, unlike cereals, potato yield is more likely to be source-limited than sink-limited during the tuber bulking stage. Water and nitrogen are two key factors in potato production management. Our results showed that water level, nitrogen level and the interaction between water and nitrogen influence potato yield mainly through affecting source capacity via the net photosynthetic rate, total leaf area and leaf life span. Well-watered, sufficient nitrogen and well-watered combined with sufficient nitrogen increased yield mainly by enhancing the source capacity. Therefore, this suggests that increasing source capacity is more crucial to improve potato yield. PMID:26752657

  7. Seasonal inter-relationships in atmospheric methane and companion delta13C values: effects of sinks and sources

    Energy Technology Data Exchange (ETDEWEB)

    Lassey, K. R.; Mikaloff Fletcher, S. E. (NIWA, Wellington (New Zealand)), e-mail: k.lassey@niwa.co.nz; Allan, W. (Allan Planning and Research Ltd., Petone (New Zealand))

    2011-07-15

    Recent developments in applying carbon-isotope information to better understand regional and global methane budgets infer a strong role by a highly fractionating seasonal sink such as atomic chlorine. Specifically, OH as the predominant seasonal sink cannot account for the 'phase ellipses' based on observed seasonal cycles of methane mixing ratio and isotope ratio, delta13C. Although a strong role by atomic chlorine is inferred empirically, open questions remain about the interplay between sources and sinks in determining the properties of phase ellipses. This paper employs a simple didactic model of the seasonal cycling of atmospheric methane to understand such interplay. We demonstrate that a single seasonal sink and seasonal source act together to imprint anti-phase seasonalities on atmospheric methane and delta13C, which lead to phase ellipses that collapse onto a straight line with slope characteristic of that sink. This explains empirical findings of these anti-phase relationships in three-dimensional modelling studies. We also demonstrate that multiple seasonal sinks acting with a seasonal source can yield surprising properties for the phase ellipse that not only explain some features of phase ellipses reported in modelling studies but also have the potential to explain marked inter-annual variation in phase ellipses based on observation

  8. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.

    Science.gov (United States)

    Han, Changcai; Yang, Jinsheng

    2017-10-30

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.

  9. Coral reefs - sources or sinks of atmospheric CO[sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J R; Smith, S V; Reakakudla, M L [Hawaii University, Honolulu, HI (USA). Dept. of Oceanography

    1992-09-01

    Because the precipitation of calcium carbonate results in the sequestering of carbon, it frequently has been thought that coral reefs function as sinks of global atmospheric CO[sub 2]. However, the precipitation of calcium carbonate is accompanied by a shift of pH that results in the release of CO[sub 2]. This release of CO[sub 2] is less in buffered sea water than fresh water systems; nevertheless, coral reefs are sources, not sinks, of atmospheric carbon. Using estimated rates of coral reef carbonate production, we compute that coral reefs release 0.02 to 0.08 Gt C as CO[sub 2] annually. This is approximately 0.4% to 1.4% of the current anthropogenic CO[sub 2] production due to fossil fuel combustion.

  10. Dynamic sink assignment for efficient energy consumption in wireless sensor networks

    KAUST Repository

    Oikonomou, Konstantinos N.; Aissa, Sonia

    2012-01-01

    to the node that is the solution of a suitably formulated 1-median problem. This motivates the introduction of a dynamic environment where link weights change based on the energy level and the aggregate traffic load of the adjacent nodes. Then, the sink

  11. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions.

    Science.gov (United States)

    Watts, Joy E M; Schreier, Harold J; Lanska, Lauma; Hale, Michelle S

    2017-06-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens-singularly or in combination. These systems have been designated as "genetic hotspots" for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health.

  12. CO2 fluxes from a tropical neighborhood: sources and sinks

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Britter, R.; Norford, L.

    2011-12-01

    Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance method with emissions estimated by emissions factors and activity data for a residential neighborhood of Singapore, a highly populated and urbanized tropical city. The flux measurements were conducted during one year. No seasonal variability was found as a consequence of the constant climate conditions of tropical places; but a clear diurnal pattern with morning and late afternoon peaks in phase with the rush-hour traffic was observed. The magnitude of the fluxes throughout daylight hours is modulated by the urban vegetation, which is abundant in terms of biomass but not of land-cover (15%). Even though the carbon uptake by vegetation is significant, it does not exceed the anthropogenic emissions and the monitored district is a net CO2 source of 20.3 ton km-2 day-1 on average. The carbon uptake by vegetation is investigated as the difference between the estimated emissions and the measured fluxes during daytime.

  13. Population demographics of two local South Carolina mourning dove populations

    Science.gov (United States)

    McGowan, D.P.; Otis, D.L.

    1998-01-01

    The mourning dove (Zenaida macroura) call-count index had a significant (P 2,300 doves and examined >6,000 individuals during harvest bag checks. An age-specific band recovery model with time- and area-specific recovery rates, and constant survival rates, was chosen for estimation via Akaike's Information Criterion (AIC), likelihood ratio, and goodness-of-fit criteria. After-hatching-year (AHY) annual survival rate was 0.359 (SE = 0.056), and hatching-year (HY) annual survival rate was 0.118 (SE = 0.042). Average estimated recruitment per adult female into the prehunting season population was 3.40 (SE = 1.25) and 2.32 (SE = 0.46) for the 2 study areas. Our movement data support earlier hypotheses of nonmigratory breeding and harvested populations in South Carolina. Low survival rates and estimated population growth rate in the study areas may be representative only of small-scale areas that are heavily managed for dove hunting. Source-sink theory was used to develop a model of region-wide populations that is composed of source areas with positive growth rates and sink areas of declining growth. We suggest management of mourning doves in the Southeast might benefit from improved understanding of local population dynamics, as opposed to regional-scale population demographics.

  14. Natural dissolved organic matter dynamics in karstic aquifer: O'Leno Sink-Rise system, Florida, USA

    Science.gov (United States)

    Jin, J.; Zimmerman, A. R.

    2010-12-01

    Natural dissolved organic matter (NDOM) dynamics in karstic aquifer remain poorly understood due to the inaccessibility and heterogeneity of the subsurface. Because the Santa Fe River sinks into the Floridan Aquifer and emerges 6 km down gradient, the O'Leno Sink-Rise system in Northern Florida provides an ideal setting to study NDOM transformation in groundwater. Water samples were collected at both high and low temporal resolutions over 3 years from the River Sink, Rise, and a series of shallow and deep wells. Analyses of dissolved organic and inorganic carbon, stable isotopic, and spectrophotometry (excitation-emission matrix or EEM) show that reversals of hydrologic head gradient in the conduit and matrix are closely related to the delivery of NDOM to the aquifer. In addition, the relative influence of biotic and abiotic processes varies along spatiotemporal gradients; regions of the aquifer with greatest connectivity to surface water (new NDOM and terminal electron acceptor supply) see the most microbial transformation of NDOM, while those with least connectivity see relatively greater abiotic transformation of NDOM. A source water mixing model was established for the Sink-Rise system using Mg2+ and SO42- concentrations from three end-members identified as allogenic recharge, upwelling deep water, and shallow groundwater of the Upper Floridan Aquifer. Biogeochemical processes were quantified after accounting for changes that occurred due to source water mixing, according to the model. In addition to NDOM remineralization by subsurface microbes which occurred mostly during wet periods, adsorption of NDOM onto aquifer materials as well as release of NDOM from aquifer materials was also observed. During wet periods when DOC-rich conduit water entered the matrix, progressive NDOM remineralization was found along the preferential flow paths from the conduits into the matrices. Both biotic and abiotic NDOM transformation processes were found to control channel

  15. Predator transitory spillover induces trophic cascades in ecological sinks

    DEFF Research Database (Denmark)

    Casini, Michele; Blenckner, Thorsten; Möllmann, Christian

    2012-01-01

    Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross-sy...... in structuring natural systems. The integration of regional and local processes is central to predict species and ecosystem responses to future climate changes and ongoing anthropogenic disturbances......Understanding the effects of cross-system fluxes is fundamental in ecosystem ecology and biological conservation. Source-sink dynamics and spillover processes may link adjacent ecosystems by movement of organisms across system boundaries. However, effects of temporal variability in these cross......-system fluxes on a whole marine ecosystem structure have not yet been presented. Here we show, using 35 y of multitrophic data series from the Baltic Sea, that transitory spillover of the top-predator cod from its main distribution area produces cascading effects in the whole food web of an adjacent and semi...

  16. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Christensen, Tue; Andersen, Kim Allan; Klose, Andreas

    2013-01-01

    This paper considers a minimum-cost network flow problem in a bipartite graph with a single sink. The transportation costs exhibit a staircase cost structure because such types of transportation cost functions are often found in practice. We present a dynamic programming algorithm for solving...... this so-called single-sink, fixed-charge, multiple-choice transportation problem exactly. The method exploits heuristics and lower bounds to peg binary variables, improve bounds on flow variables, and reduce the state-space variable. In this way, the dynamic programming method is able to solve large...... instances with up to 10,000 nodes and 10 different transportation modes in a few seconds, much less time than required by a widely used mixed-integer programming solver and other methods proposed in the literature for this problem....

  17. The atmosphere as a source/sink of polychlorinated biphenyls to/from the Lower Duwamish Waterway Superfund site

    International Nuclear Information System (INIS)

    Apell, Jennifer N.; Gschwend, Philip M.

    2017-01-01

    Waterbodies polluted with polychlorinated biphenyls (PCBs) may cause the air in the surrounding area to become PCB-contaminated. Conversely, when a waterbody is located in or near an urban area, the deposition of atmospheric PCBs may act as a low-level, ongoing source of PCB contamination to that water. Distinguishing these situations is necessary to be protective of human populations and to guide efforts seeking to cleanup such aquatic ecosystems. To assess the situation at the Lower Duwamish Waterway (LDW) Superfund site, low-density polyethylene passive samplers were deployed in the summer of 2015 to quantify freely dissolved water and gaseous air concentrations of PCBs thereby enabling estimates of the direction and magnitude of air-water exchange of PCB congeners. For the sum of the 27 PCB congeners, average concentrations were 220 pg/m 3 (95% C.I.: 80–610) in the air and 320 pg/L (95% C.I.: 110–960) in the water. The sum of air-water exchange fluxes of these PCB congeners was estimated to be 68 ng/m 2 /day (95% C.I.: 30–148) into the lower atmosphere, contrasting with the reported wet and dry depositional flux of only 5.5 ng/m 2 /day (95% C.I.: 1–38) from the air into the water. Therefore, the atmosphere was ultimately a sink of PCBs from the LDW Superfund site, at least under 2015 summertime conditions. However, we conclude that air-water exchange of PCBs is likely only a minor sink of PCBs from the LDW and only a minor source of contamination to the region's local atmosphere. - Highlights: • Passive samplers were used to estimate air and water concentrations. • At this site, PCBs were being transported from the water into the local atmosphere. • Air-water exchange was likely only a minor sink of PCBs for the LDW site. • The LDW was likely only a minor source of PCBs to the local atmosphere. - Air-water exchange of PCBs from the LDW Superfund site, calculated using passive sampler data, was determined to be a minor sink of PCBs from

  18. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions

    Directory of Open Access Journals (Sweden)

    Joy E. M. Watts

    2017-06-01

    Full Text Available As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens—singularly or in combination. These systems have been designated as “genetic hotspots” for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health.

  19. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions

    Science.gov (United States)

    Watts, Joy E. M.; Schreier, Harold J.; Lanska, Lauma; Hale, Michelle S.

    2017-01-01

    As the human population increases there is an increasing reliance on aquaculture to supply a safe, reliable, and economic supply of food. Although food production is essential for a healthy population, an increasing threat to global human health is antimicrobial resistance. Extensive antibiotic resistant strains are now being detected; the spread of these strains could greatly reduce medical treatment options available and increase deaths from previously curable infections. Antibiotic resistance is widespread due in part to clinical overuse and misuse; however, the natural processes of horizontal gene transfer and mutation events that allow genetic exchange within microbial populations have been ongoing since ancient times. By their nature, aquaculture systems contain high numbers of diverse bacteria, which exist in combination with the current and past use of antibiotics, probiotics, prebiotics, and other treatment regimens—singularly or in combination. These systems have been designated as “genetic hotspots” for gene transfer. As our reliance on aquaculture grows, it is essential that we identify the sources and sinks of antimicrobial resistance, and monitor and analyse the transfer of antimicrobial resistance between the microbial community, the environment, and the farmed product, in order to better understand the implications to human and environmental health. PMID:28587172

  20. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids1[OPEN

    Science.gov (United States)

    Santiago, James P.; Tegeder, Mechthild

    2016-01-01

    Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446

  1. Quantifying the Sources and Sinks of Greenhouse Gases: What Does It Take to Satisfy Scientific and Decision-Making Needs?

    Science.gov (United States)

    Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.

    2014-12-01

    Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.

  2. Estimating sources, sinks and fluxes of reactive atmospheric compounds within a forest canopy

    Science.gov (United States)

    While few dispute the significance of within-canopy sources or sinks of reactive gaseous and particulate compounds, their estimation continues to be the subject of active research and debate. Reactive species undergo turbulent dispersion within an inhomogeneous flow field, and ma...

  3. Population dynamics

    Directory of Open Access Journals (Sweden)

    Cooch, E. G.

    2004-06-01

    recapture analysis with model estimates. The utility of combining sources of information into analysis of populations was the explicit subject of the other two papers. Gauthier & Lebreton (2004 draw on a long–term study of an Arctic–breeding Goose population, where both extensive mark–recapture, ring recovery, and census data are available. The primary goal is to use these various sources of information to to evaluate the effect of increased harvests on dynamics of the population. A number of methods are compared; most notably they describe an approach based on the Kalman filter which allows for different sources of information to be used in the same model, that is demographic data (i.e. transition matrix and census data (i.e. annual survey. They note that one advantage of this approach is that it attempts to minimize both uncertainties associated with the survey and demographic parameters based on the variance of each estimate. The final paper, by Brooks, King and Morgan (Brooks et al., 2004 extends the notion of the combining information in a common model further. They present a Bayesian analysis of joint ring–recovery and census data using a state–space model allowing for the fact that not all members of the population are directly observable. They then impose a Leslie–matrix–based model on the true population counts describing the natural birth–death and age transition processes. Using a Markov Chain Monte Carlo (MCMC approach (which eliminates the need for some of the standard assumption often invoked in use of a Kalman filter, Brooks and colleagues describe methods to combine information, including potentially relevant covariates that might explain some of the variation, within a larger framework that allows for discrimination (selection amongst alternative models. We submit that all of the papers presented in this session indicate clearly significant interest in approaches for combining data and modeling approaches. The Bayesian framework appears a natural

  4. Marine sediments as a sink, and contaminated sediments as a diffuse source of radionuclides

    International Nuclear Information System (INIS)

    Salbu, B.; Borretzen, P.

    1997-01-01

    Full text: Marine sediments may act as a sink for radionuclides originating from atmospheric fallout (e.g. Chernobyl accident), for radionuclides in discharges from nuclear installations (e.g. Sellafield, UK) for river transported radionuclides, and radionuclides released from nuclear waste dumped at sea (e.g. fjords at Novaya Zemlya). In order to assess short and long term consequences of radionuclides entering the marine ecosystem, the role of sediments as a relatively permanent sink and the potential for contaminated sediments to act as a diffuse source should be focused. The retention of radionuclides in sediments will depend on the source term, i.e. the physico-chemical forms of radionuclides entering the system and on interactions with various sediment components. Radionuclides associated with particles or aggregating polymers are removed from the water phase by sedimentation, while sorption to surface sediment layers is of relevance for ionic radionuclide species including negatively charged colloids. With time, transformation processes will influence the mobility of radionuclides in sediments. The diffusion into mineral lattices will increase fixation, while the influence of for instance red/ox conditions and bio-erosion may mobilize radionuclides originally fixed in radioactive particles. Thus, information of radionuclides species, surface interactions, transformation processes and kinetics is essential for reducing the uncertainties in marine transfer models. Dynamic model experiments where chemically well defined tracers are added to a sea water-marine sediment system are useful for providing information on time dependent interactions and distribution coefficients. When combined with sequential extraction techniques, information on mobility and rate of fixation is subsequently attained. In the present work experimental results from the Irish Sea and the Kara Sea will be discussed

  5. Tropical Wetlands as Carbon Sinks

    Science.gov (United States)

    Jones, M. B.; Saunders, M.

    2007-12-01

    This presentation focuses on the tropical wetlands of sub-Saharan Africa. These are an understudied ecosystem in which large emergent grasses and sedges normally dominate and which have the potential to sequester significant amounts of carbon. Measurements of Net Primary Production of these wetlands show that they are some of the highest values recorded for any ecosystem. We have used eddy covariance to measure Net Ecosystem Exchange of pristine and disturbed wetlands and show that pristine systems can have sink strengths as strong as tropical forests while disturbed systems that have been reclaimed for agricultural purposes have a very much reduced carbon sink activity and may be net carbon sources. The management issues surrounding the use of these wetlands illustrate a direct conflict between the production of food crops for the local population and the maintenance of carbon sequestration as an ecosystem service.

  6. Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations

    Directory of Open Access Journals (Sweden)

    Hardstaff Joanne L

    2012-06-01

    Full Text Available Abstract Background The persistence of bovine TB (bTB in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles. The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. Results The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6–8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. Conclusions External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to

  7. Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations.

    Science.gov (United States)

    Hardstaff, Joanne L; Bulling, Mark T; Marion, Glenn; Hutchings, Michael R; White, Piran C L

    2012-06-27

    The persistence of bovine TB (bTB) in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles). The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6-8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to reduce bTB in badgers include efforts to minimise such

  8. Salt Marshes as Sources and Sinks of Silica

    Science.gov (United States)

    Carey, J.; Fulweiler, R. W.

    2014-12-01

    The role of salt marshes in controlling silica exchange between terrestrial and marine environments is unclear. In some studies, large quantities of dissolved silica (DSi) appear to be exported from marshes via tidal exchange, potentially fueling future diatom production in adjacent waters. In contrast, other studies report insignificant DSi export and found instead that salt marshes appeared to be Si sinks. Further, few studies examine salt marsh Si export in relation to inorganic nitrogen (DIN) and phosphorus (DIP). We address these uncertainties by quantifying net fluxes of DSi and biogenic Si (BSi), as well as DIN and DIP during the spring and summer in a relatively undisturbed southern New England salt marsh (Narragansett Bay, USA). Our data demonstrates that during the spring, when estuarine waters are deplete in DSi, the marsh serves as a net sink of BSi (132 mol h-1) and a source of DSi (31 mol h-1) to the estuary. The spring DIN:DSi ratios of ebbing water were more than five times lower than flood waters. Most importantly, the DSi export rates (6.5 x103 mol d-1 km-2) are an order of magnitude larger than the export by rivers in the region (115 mol d-1 km-2), indicating the marsh tidal exchange is vital in supplying the Si necessary for spring diatom blooms in the estuary. Conversely, during the summer the marsh served as a net Si sink, importing on average 59 mol DSi h-1 and 39 mol BSi h-1. These data highlight that the role of salt marshes in silica cycling appears to have a strong seasonality. We hypothesize that net import of Si increases the residence time of Si in estuarine systems, providing an important and previously over-looked ecosystem service. In the absence of salt marshes, ~5.1 x 104 kmol of Si would be exported from this system during the growing season, possibly decreasing Si availability and altering phytoplankton species composition in the estuary.

  9. Source-sink relationships in two soybean cultivars with indeterminate growth under water deficit

    Directory of Open Access Journals (Sweden)

    Alexandre José da Silva

    Full Text Available Abstract Water deficit is a major factor limiting crop yield in rainfed areas. We hypothesized that under water deficit the decrease of photosynthetic production stimulates: carbohydrate remobilization from leaves, stems and roots to reproductive organs; and decreasing flowering intensity and pod development. The present work aims to study the effect of water deficit during bloom and grain pod-filling stages in two indeterminate soybean cultivar, Vtop and Nidera. The following physiological parameters were evaluated by means of daily CO2 assimilation rate (Ai, dynamic of carbohydrates in tissues, plant growth, grain yield and yield components. The study was conducted in a greenhouse with plants sown in tanks of 0.5 m3. Regardless of the phenological phase, water deficit reduced Ai, plant growth and number of pods and seeds per plant. The fact that grain yield was less affected by water deficit at bloom than at grain pod-filling stage was attributed to larger seeds found at bloom. In both treatments, a sharp reduction on carbohydrate content was found in leaves, stem and roots at the beginning of pod formation. The high amounts of carbohydrates remobilized for seed growth, along with the high values of Ai observed in well-watered plants, indicate that grain yield of soybeans is source rather than sink limited. On the other hand, in water deficit treatments, a new stimulus for carbohydrate storage was found in the leaves and stem at the beginning of grain maturity, suggesting that grain yield was limited by sink capacity.

  10. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    Science.gov (United States)

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  11. Viscoelastic Fluid over a Stretching Sheet with Electromagnetic Effects and Nonuniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2010-01-01

    Full Text Available A magnetic hydrodynamic (MHD of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric number E1 couple with magnetic parameter M to represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values of f''(0 and θ'(0 have been carried out. The parameter Pr, E1, or Ec can increase the heat transfer effects, but the parameter M or A* may decrease the heat transfer effects.

  12. Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field

    Science.gov (United States)

    An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles. This model was applied to quantify in-canopy air-s...

  13. Recovery based on plot experiments is a poor predictor of landscape-level population impacts of agricultural pesticides

    DEFF Research Database (Denmark)

    Topping, Christopher John; Kjær, Lene; Hommen, Udo

    2014-01-01

    Current EU regulatory risk assessment allows application of pesticides provided that recovery of non-target arthropods in-crop occurs within a year. Despite long-established theory of source sink dynamics, risk assessment ignores depletion of surrounding populations and typical field trials are r...

  14. High angle grain boundaries as sources or sinks for point defects

    Energy Technology Data Exchange (ETDEWEB)

    Balluffi, R.W.

    1979-09-01

    A secondary grain boundary dislocation climb model for high angle grain boundaries as sources/sinks for point defects is described in the light of recent advances in our knowledge of grain boundary structure. Experimental results are reviewed and are then compared with the expected behavior of the proposed model. Reasonably good consistency is found at the level of our present understanding of the subject. However, several gaps in our present knowledge still exist, and these are identified and discussed briefly.

  15. Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska.

    Science.gov (United States)

    Sveinbjörnsson, Bjartmar; Smith, Matthew; Traustason, Tumi; Ruess, Roger W; Sullivan, Patrick F

    2010-08-01

    Two opposing hypotheses have been presented to explain reduced tree growth at the treeline, compared with growth in lower elevation or lower latitude forests: the carbon source and sink limitation hypotheses. The former states that treeline trees have an unfavorable carbon balance and cannot support growth of the magnitude observed at lower elevations or latitudes, while the latter argues that treeline trees have an adequate carbon supply, but that cold temperatures directly limit growth. In this study, we examined the relative importance of source and sink limitation in forest and treeline white spruce (Picea glauca) in three mountain ranges from southern to northern Alaska. We related seasonal changes in needle nonstructural carbohydrate (NSC) content with branch extension growth, an approach we argue is more powerful than using needle NSC concentration. Branch extension growth in the southernmost Chugach Mountains was much greater than in the White Mountains and the Brooks Range. Trees in the Chugach Mountains showed a greater seasonal decline in needle NSC content than trees in the other mountain ranges, and the seasonal change in NSC was correlated with site-level branch growth across mountain ranges. There was no evidence of a consistent difference in branch growth between the forest and treeline sites, which differ in elevation by approximately 100 m. Our results point to a continuum between source and sink limitation of growth, with high-elevation trees in northern and interior Alaska showing greater evidence of sink limitation, and those in southern Alaska showing greater potential for source limitation.

  16. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.

    Science.gov (United States)

    Anbar, A D; Yung, Y L; Chavez, F P

    1996-03-01

    The oceans play an important role in the geochemical cycle of methyl bromide (CH3Br), the major carrier of O3-destroying bromine to the stratosphere. The quantity of CH3Br produced annually in seawater is comparable to the amount entering the atmosphere each year from natural and anthropogenic sources. The production mechanism is unknown but may be biological. Most of this CH3Br is consumed in situ by hydrolysis or reaction with chloride. The size of the fraction which escapes to the atmosphere is poorly constrained; measurements in seawater and the atmosphere have been used to justify both a large oceanic CH3Br flux to the atmosphere and a small net ocean sink. Since the consumption reactions are extremely temperature-sensitive, small temperature variations have large effects on the CH3Br concentration in seawater, and therefore on the exchange between the atmosphere and the ocean. The net CH3Br flux is also sensitive to variations in the rate of CH3Br production. We have quantified these effects using a simple steady state mass balance model. When CH3Br production rates are linearly scaled with seawater chlorophyll content, this model reproduces the latitudinal variations in marine CH3Br concentrations observed in the east Pacific Ocean by Singh et al. [1983] and by Lobert et al. [1995]. The apparent correlation of CH3Br production with primary production explains the discrepancies between the two observational studies, strengthening recent suggestions that the open ocean is a small net sink for atmospheric CH3Br, rather than a large net source. The Southern Ocean is implicated as a possible large net source of CH3Br to the atmosphere. Since our model indicates that both the direction and magnitude of CH3Br exchange between the atmosphere and ocean are extremely sensitive to temperature and marine productivity, and since the rate of CH3Br production in the oceans is comparable to the rate at which this compound is introduced to the atmosphere, even small

  17. Source-to-Sink: An Earth/Mars Comparison of Boundary Conditions for Eolian Dune Systems

    OpenAIRE

    Kocurek, Gary; Ewing, Ryan C.

    2012-01-01

    Eolian dune fields on Earth and Mars evolve as complex systems within a set of boundary conditions. A source-to-sink comparison indicates that although differences exist in sediment production and transport, the systems largely converge at the dune-flow and pattern-development levels, but again differ in modes of accumulation and preservation. On Earth, where winds frequently exceed threshold speeds, dune fields are sourced primarily through deflation of subaqueous deposits as these sediments...

  18. Convective heat transfer enhancement by diamond shaped micro-protruded patterns for heat sinks: Thermal fluid dynamic investigation and novel optimization methodology

    International Nuclear Information System (INIS)

    Ventola, Luigi; Dialameh, Masoud; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • A novel methodology for optimal design of patterned heat sink surfaces is proposed. • Heat transfer enhancement by patterned surfaces is measured experimentally. • Role of fluid dynamics and geometrical scales on heat transfer is clarified. - Abstract: In the present work, micro-protruded patterns on flush mounted heat sinks for convective heat transfer enhancement are investigated and a novel methodology for thermal optimization is proposed. Patterned heat sinks are experimentally characterized in fully turbulent regime, and the role played by geometrical parameters and fluid dynamic scales is discussed. A methodology specifically suited for micro-protruded pattern optimization is designed, leading to 73% enhancement in thermal performance respect to commercially available heat sinks, at fixed costs. This work is expected to introduce a new methodological approach for a more systematic and efficient development of solutions for electronics cooling.

  19. A Greedy Scanning Data Collection Strategy for Large-Scale Wireless Sensor Networks with a Mobile Sink.

    Science.gov (United States)

    Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J P C

    2016-09-06

    Mobile sink is widely used for data collection in wireless sensor networks. It can avoid 'hot spot' problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios.

  20. From sink to source: Regional variation in U.S. forest carbon futures.

    Science.gov (United States)

    Wear, David N; Coulston, John W

    2015-11-12

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

  1. Use of the Stable Nitrogen Isotope to Reveal the Source-Sink Regulation of Nitrogen Uptake and Remobilization during Grain Filling Phase in Maize.

    Directory of Open Access Journals (Sweden)

    Lan Yang

    Full Text Available Although the remobilization of vegetative nitrogen (N and post-silking N both contribute to grain N in maize (Zea mays L., their regulation by grain sink strength is poorly understood. Here we use 15N labeling to analyze the dynamic behaviors of both pre- and post-silking N in relation to source and sink manipulation in maize plants. The results showed that the remobilization of pre-silking N started immediately after silking and the remobilized pre-silking N had a greater contribution to grain N during early grain filling, with post-silking N importance increasing during the later filling stage. The amount of post-silking N uptake was largely driven by post-silking dry matter accumulation in both grain as well as vegetative organs. Prevention of pollination during silking had less effect on post-silking N uptake, as a consequence of compensatory growth of stems, husk + cob and roots. Also, leaves continuously export N even though grain sink was removed. The remobilization efficiency of N in the leaf and stem increased with increasing grain yield (hence N requirement. It is suggested that the remobilization of N in the leaf is controlled by sink strength but not the leaf per se. Enhancing post-silking N uptake rather than N remobilization is more likely to increase grain N accumulation.

  2. Thiourea, a ROS scavenger, regulates source-to-sink relationship to enhance crop yield and oil content in Brassica juncea (L..

    Directory of Open Access Journals (Sweden)

    Manish Pandey

    Full Text Available In the present agricultural scenario, the major thrust is to increase crop productivity so as to ensure sustainability. In an earlier study, foliar application of thiourea (TU; a non physiological thiol based ROS scavenger has been demonstrated to enhance the stress tolerance and yield of different crops under field condition. Towards this endeavor, present work deals with the effect of TU on photosynthetic efficiency and source-to-sink relationship of Indian mustard (Brassica juncea for understanding its mode of action. The application of TU increased the efficiency of both PSI and PSII photosystems and vegetative growth of plant. The comparative analysis of sucrose to starch ratio and expression level of sugar transporters confirmed the higher source and sink strength in response to TU treatment. The biochemical evidence in support of this was derived from higher activities of sucrose phosphate synthase and fructose-1,6-bis-phosphatase at source; and sucrose synthase and different classes of invertases at both source and sink. This indicated an overall increase in photoassimilate level at sink. An additional contribution through pod photosynthesis was confirmed through the analysis of phosphoenol pyruvate carboxylase enzyme activity and level of organic acids. The increased photoassimilate level was also co-ordinated with acetyl coA carboxylase mediated oil biosynthesis. All these changes were ultimately reflected in the form of 10 and 20% increase in total yield and oil content, respectively under TU treatment as compared to control. Additionally, no change was observed in oil composition of seeds derived from TU treated plants. The study thus signifies the co-ordinated regulation of key steps of photosynthesis and source-to-sink relationship through the external application of TU resulting in increased crop yield and oil content.

  3. Comparison of atmospheric CO2 mole fractions and source-sink characteristics at four WMO/GAW stations in China

    Science.gov (United States)

    Cheng, Siyang; Zhou, Lingxi; Tans, Pieter P.; An, Xingqin; Liu, Yunsong

    2018-05-01

    As CO2 is a primary driving factor of climate change, the mole fraction and source-sink characteristics of atmospheric CO2 over China are constantly inferred from multi-source and multi-site data. In this paper, we compared ground-based CO2 measurements with satellite retrievals and investigated the source-sink regional representativeness at China's four WMO/GAW stations. The results indicate that, firstly, atmospheric CO2 mole fractions from ground-based sampling measurement and Greenhouse Gases Observing Satellite (GOSAT) products reveal similar seasonal variation. The seasonal amplitude of the column-averaged CO2 mole fractions is smaller than that of the ground-based CO2 at all stations. The extrema of the seasonal cycle of ground-based and column CO2 mole fractions are basically synchronous except a slight phase delay at Lin'an (LAN) station. For the two-year average, the column CO2 is lower than ground-based CO2, and both of them reveal the lowest CO2 mole fraction at Waliguan (WLG) station. The lowest (∼4 ppm) and largest (∼8 ppm) differences between the column and ground-based CO2 appear at WLG and Longfengshan (LFS) stations, respectively. The CO2 mole fraction and its difference between GOSAT and ground-based measurement are smaller in summer than in winter. The differences of summer column CO2 among these stations are also much smaller than their ground-based counterparts. In winter, the maximum of ground-based CO2 mole fractions and the greatest difference between the two (ground-based and column) datasets appear at the LFS station. Secondly, the representative areas of the monthly CO2 background mole fractions at each station were found by employing footprints and emissions. Smaller representative areas appeared at Shangdianzi (SDZ) and LFS, whereas larger ones were seen at WLG and LAN. The representative areas in summer are larger than those in winter at WLG and SDZ, but the situation is opposite at LAN and LFS. The representative areas for the

  4. Source-to-sink cycling of aeolian sediment in the north polar region of Mars

    Science.gov (United States)

    Ewing, R. C.; Kocurek, G.

    2012-12-01

    Aeolian sand dunes are prominent features on the landscapes of Earth, Mars, Venus and Titan and sedimentary deposits interpreted as aeolian in origin are found in the rock records of Earth and Mars. The widespread occurrence of aeolian dunes on the surface of these worlds and within their deep-time depositional records suggests that aeolian systems are and likely have been a default depositional environment for the Solar System. Within an aeolian source-to-sink context, we hypothesize that planet-specific boundary conditions strongly impact production, transport, accumulation and preservation of aeolian sediment, whereas dunes and dune-field patterns remain largely similar. This hypothesis is explored within the north polar region of Mars, which hosts the most extensive aeolian dune fields and aeolian sedimentary deposits yet recognized on Mars and appears to be a region of dynamic source-to-sink cycling of aeolian sediments. The Planum Boreum Cavi Unit rests beneath north polar ice cap of Mars and is composed of several hundred meters of niveo-aeolian dune cross-stratification. The overall architecture of the unit consists of sets of preserved dune topography with an upward increase in the abundance of ice. Dune sets are defined by stabilized, polygonally fractured bounding surfaces, erosional bounding surfaces and typical internal lee foresets made of sediment and ice. The accumulation of the Cavi Unit is interpreted as occurring through freezing and serves as an example of a cold temperature boundary condition on aeolian sediment accumulation. Preservation of the Cavi Unit arises because of deposition of the overlying ice cap and contrasts with preservation of aeolian sediment on Earth, which is largely driven by eustasy and tectonics. The Cavi Unit is thought to be one source of sediment for the north polar Olympia Undae Dune Field. The region of Olympia Undae near the Cavi Unit shows a reticulate dune field pattern composed of two sets of nearly orthogonal

  5. The forest as a historic source and sink for carbon dioxide; Skogen som historisk kaella respektive saenka foer koldioxid

    Energy Technology Data Exchange (ETDEWEB)

    Kander, A [Lund Univ. (Sweden). Dept. of Economic History

    1996-06-01

    The aim of the present project is to quantify the changes in the growing stock of timber between 1800 and 1985 in order to find out under which periods and to what extent the forest has served as a source resp. sink for carbon dioxide. These data are compared to the carbon dioxide emissions from combustion of fossil fuels under the same period. Another goal of the project is to find the order of magnitude of the effect of other potential sinks and sources for carbon dioxide. 32 refs, 9 figs, 1 tab

  6. Diagnosing Soil Moisture Anomalies and Neglected Soil Moisture Source/Sink Processes via a Thermal Infrared-based Two-Source Energy Balance Model

    Science.gov (United States)

    Hain, C.; Crow, W. T.; Anderson, M. C.; Yilmaz, M. T.

    2014-12-01

    Atmospheric processes, especially those that occur in the surface and boundary layer, are significantly impacted by soil moisture (SM). Due to the observational gaps in the ground-based monitoring of SM, methodologies have been developed to monitor SM from satellite platforms. While many have focused on microwave methods, observations of thermal infrared land surface temperature (LST) also provides a means of providing SM information. One particular TIR SM method exploits surface flux predictions retrieved from the Atmosphere Land Exchange Inverse (ALEXI) model. ALEXI uses a time-differential measurement of morning LST rise to diagnose the partitioning of net radiation into surface energy fluxes. Here an analysis will be presented to study relationships between three SM products during a multi-year period (2000-2013) from an active/passive microwave dataset (ECV), a TIR-based model (ALEXI), and a land surface model (Noah) over the CONUS. Additionally, all three will be compared against in-situ SM observations from the North American Soil Moisture Database. The second analysis will focus on the use of ALEXI towards diagnosing SM source/sink processes. Traditional soil water balance modeling is based on one-dimensional (vertical-only) water flow, free drainage at the bottom of the soil column, and neglecting ancillary inputs due to processes such as irrigation. However, recent work has highlighted the importance of secondary water source (e.g., irrigation, groundwater extraction, inland wetlands, lateral flows) and sink (e.g., tile drainage in agricultural areas) processes on the partitioning of evaporative and sensible heat fluxes. ALEXI offers a top-down approach for mapping areas where SM source/sink processes have a significant impact on the surface energy balance. Here we present an index, ASSET, that is based on comparisons between ALEXI latent heat flux (LE) estimates and LE predicted by a free-drainage prognostic LSM lacking irrigation, groundwater and tile

  7. Mesoscale inversion of carbon sources and sinks

    International Nuclear Information System (INIS)

    Lauvaux, T.

    2008-01-01

    Inverse methods at large scales are used to infer the spatial variability of carbon sources and sinks over the continents but their uncertainties remain large. Atmospheric concentrations integrate the surface flux variability but atmospheric transport models at low resolution are not able to simulate properly the local atmospheric dynamics at the measurement sites. However, the inverse estimates are more representative of the large spatial heterogeneity of the ecosystems compared to direct flux measurements. Top-down and bottom-up methods that aim at quantifying the carbon exchanges between the surface and the atmosphere correspond to different scales and are not easily comparable. During this phD, a mesoscale inverse system was developed to correct carbon fluxes at 8 km resolution. The high resolution transport model MesoNH was used to simulate accurately the variability of the atmospheric concentrations, which allowed us to reduce the uncertainty of the retrieved fluxes. All the measurements used here were observed during the intensive regional campaign CERES of May and June 2005, during which several instrumented towers measured CO 2 concentrations and fluxes in the South West of France. Airborne measurements allowed us to observe concentrations at high altitude but also CO 2 surface fluxes over large parts of the domain. First, the capacity of the inverse system to correct the CO 2 fluxes was estimated using pseudo-data experiments. The largest fraction of the concentration variability was attributed to regional surface fluxes over an area of about 300 km around the site locations depending on the meteorological conditions. Second, an ensemble of simulations allowed us to define the spatial and temporal structures of the transport errors. Finally, the inverse fluxes at 8 km resolution were compared to direct flux measurements. The inverse system has been validated in space and time and showed an improvement of the first guess fluxes from a vegetation model

  8. Acetone in the atmosphere: Distribution, sources, and sinks

    Science.gov (United States)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  9. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Rauff Lind Christensen, Tue; Klose, Andreas; Andersen, Kim Allan

    important aspects of supplier selection, an important application of the SSFCTP, this does not reflect the real life situation. First, transportation costs faced by many companies are in fact piecewise linear. Secondly, when suppliers offer discounts, either incremental or all-unit discounts, such savings......The Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem (SSFCMCTP) is a problem with versatile applications. This problem is a generalization of the Single-Sink, Fixed-Charge Transportation Problem (SSFCTP), which has a fixed-charge, linear cost structure. However, in at least two...... are neglected in the SSFCTP. The SSFCMCTP overcome this problem by incorporating a staircase cost structure in the cost function instead of the usual one used in SSFCTP. We present a dynamic programming algorithm for the resulting problem. To enhance the performance of the generic algorithm a number...

  10. Carbon trading and carbon taxation: how to consider biotic sources and sinks

    International Nuclear Information System (INIS)

    Madlener, Reinhard; Schlamadinger, Bernhard

    1999-01-01

    The Kyoto Protocol (KP) to the UNFCCC includes land-use change and forestry in the carbon accounting process, limited to afforestation, reforestation and deforestation since 1990, and explicitly provides for the option of using a variety of flexibility mechanisms to meet the greenhouse gas (GHG) reduction targets stipulated in a more cost-efficient manner. Domestically, different countries might adopt different approaches to achieve their emission reduction objectives, such as carbon trading or carbon taxation, and it is not clear to date what the implications for bioenergy use, forestry, and land-use change can be expected to be. With respect to national GHG emissions trading, the main issues studied in this paper are: Should trading of fossil fuel emissions allowances be coupled with trading of biotic credits and debits? Should credits for carbon sequestration in forests be auctioned or grandfathered? Should there be a distinction between a carbon permit issued for an additional biotic sink and those issued for fossil fuel carbon emissions? Is there a difference for biotic carbon sinks and sources between one-time permits and permits that allow a continued release of GHG over some pre-specified time? Should permits be issued only for the carbon-stock changes that count under the KP? With respect to national carbon taxation schemes, two questions are investigated: Should a tax credit be given for afforestation/reforestation (and a tax debit for deforestation)? Should tax credits also be given for projects that sequester carbon but do not count under the KP (such as forest protection rather than forest management)? For both schemes a crucial point is that by the formulation chosen in the KP two different classes of forest are created (i.e. those counted and those not counted under the KP), so that the implications for land prices might be significant. From a conceptual point of view this paper addresses the above-mentioned questions and contrasts some of the major

  11. How Reservoirs Alter DOM Amount and Composition: Sources, Sinks, and Transformations

    Science.gov (United States)

    Kraus, T. E.; Bergamaschi, B. A.; Hernes, P. J.; Doctor, D. H.; Kendall, C.; Losee, R. F.; Downing, B. D.

    2011-12-01

    Reservoirs are critical components of many water supply systems as they allow the storage of water when supply exceeds demand. However, during water storage biogeochemical processes can alter both the amount and composition of dissolved organic matter (DOM), which can in turn affect water quality. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also relevant as they affect DOM reactivity (e.g. persistence in the environment, removability during coagulation treatment, and potential to form toxic compounds during drinking water treatment). The composition of the DOM pool also provides information about the DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir (SLR), a large off-stream impoundment of the California State Water Project. We used an array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, optical properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C NMR. There were periods when the reservoir was i) a net source of DOM due to the predominance of algal production (summer), ii) a net sink due to the predominance of degradation (fall/winter), and iii) balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0-3.6 mg C/L), substantial changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Results suggest reservoirs have the potential to reduce DOM amount and reactivity via degradative processes, however, these benefits can be decreased or even negated by the production of algal-derived DOM.

  12. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks

    International Nuclear Information System (INIS)

    House, J.I.; Prentice, I.C.; Heimann, M.; Ramankutty, N.

    2003-01-01

    The magnitude and location of terrestrial carbon sources and sinks remains subject to large uncertainties. Estimates of terrestrial CO 2 fluxes from ground-based inventory measurements typically find less carbon uptake than inverse model calculations based on atmospheric CO 2 measurements, while a wide range of results have been obtained using models of different types. However, when full account is taken of the processes, pools, time scales and geographic areas being measured, the different approaches can be understood as complementary rather than inconsistent, and can provide insight as to the contribution of various processes to the terrestrial carbon budget. For example, quantitative differences between atmospheric inversion model estimates and forest inventory estimates in northern extratropical regions suggest that carbon fluxes to soils (often not accounted for in inventories), and into non-forest vegetation, may account for about half of the terrestrial uptake. A consensus of inventory and inverse methods indicates that, in the 1980s, northern extratropical land regions were a large net sink of carbon, and the tropics were approximately neutral (albeit with high uncertainty around the central estimate of zero net flux). The terrestrial flux in southern extratropical regions was small. Book-keeping model studies of the impacts of land-use change indicated a large source in the tropics and almost zero net flux for most northern extratropical regions; similar land use change impacts were also recently obtained using process-based models. The difference between book-keeping land-use change model studies and inversions or inventories was previously interpreted as a 'missing' terrestrial carbon uptake. Land-use change studies do not account for environmental or many management effects (which are implicitly included in inventory and inversion methods). Process-based model studies have quantified the impacts of CO 2 fertilisation and climate change in addition to

  13. Design and implementation of a 3-A source and sink linear regulator for bus terminators

    International Nuclear Information System (INIS)

    Li Yanming; Wen Changbao; Wen Limin; Mao Xiangyu

    2012-01-01

    According to the requirements of the bus terminal regulator, a linear regulator with 3-A source-sink current ability is presented. The use of the NMOS pass transistor and load current feedback technique enhances the system current ability and response speed. The method of adaptive zero compensation realizes loop stability over the whole load range for either source or sink loop. Furthermore, the transconductance matching technique reduces the shoot-through current through the output stage to less than 3 μA. The regulator has been fabricated with a 0.6-μm 30 V BCD process successfully, and the area size is about 1 mm 2 . With a 20 μF output capacitor, the maximum transient output-voltage variation is within 3.5% of the output voltage with load step changes of ±2 A/1 μs. At the load range of ±3 A, the variation of output voltage is less than ±15 mV.

  14. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China

    Directory of Open Access Journals (Sweden)

    F. Jiang

    2013-08-01

    Full Text Available In this study, we establish a nested atmospheric inversion system with a focus on China using the Bayesian method. The global surface is separated into 43 regions based on the 22 TransCom large regions, with 13 small regions in China. Monthly CO2 concentrations from 130 GlobalView sites and 3 additional China sites are used in this system. The core component of this system is an atmospheric transport matrix, which is created using the TM5 model with a horizontal resolution of 3° × 2°. The net carbon fluxes over the 43 global land and ocean regions are inverted for the period from 2002 to 2008. The inverted global terrestrial carbon sinks mainly occur in boreal Asia, South and Southeast Asia, eastern America and southern South America. Most China areas appear to be carbon sinks, with strongest carbon sinks located in Northeast China. From 2002 to 2008, the global terrestrial carbon sink has an increasing trend, with the lowest carbon sink in 2002. The inter-annual variation (IAV of the land sinks shows remarkable correlation with the El Niño Southern Oscillation (ENSO. The terrestrial carbon sinks in China also show an increasing trend. However, the IAV in China is not the same as that of the globe. There is relatively stronger land sink in 2002, lowest sink in 2006, and strongest sink in 2007 in China. This IAV could be reasonably explained with the IAVs of temperature and precipitation in China. The mean global and China terrestrial carbon sinks over the period 2002–2008 are −3.20 ± 0.63 and −0.28 ± 0.18 PgC yr−1, respectively. Considering the carbon emissions in the form of reactive biogenic volatile organic compounds (BVOCs and from the import of wood and food, we further estimate that China's land sink is about −0.31 PgC yr−1.

  15. How reservoirs alter drinking water quality: Organic matter sources, sinks, and transformations

    Science.gov (United States)

    Kraus, Tamara E.C.; Bergamaschi, Brian A.; Hernes, Peter J.; Doctor, Daniel H.; Kendall, Carol; Downing, Bryan D.; Losee, Richard F.

    2011-01-01

    Within reservoirs, production, transformation, and loss of dissolved organic matter (DOM) occur simultaneously. While the balance between production and loss determines whether a reservoir is a net sink or source of DOM, changes in chemical composition are also important because they affect DOM reactivity with respect to disinfection by-product (DBP) formation. The composition of the DOM pool also provides insight into DOM sources and processing, which can inform reservoir management. We examined the concentration and composition of DOM in San Luis Reservoir, a large off-stream impoundment of the California State Water Project. We used a wide array of DOM chemical tracers including dissolved organic carbon (DOC) concentration, trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively), absorbance properties, isotopic composition, lignin phenol content, and structural groupings determined by 13C nuclear magnetic resonance (NMR). There were periods when the reservoir was a net source of DOC due to the predominance of algal production (summer), a net sink due to the predominance of degradation (fall–winter), and balanced between production and consumption (spring). Despite only moderate variation in bulk DOC concentration (3.0–3.6 mg C/L), changes in DOM composition indicated that terrestrial-derived material entering the reservoir was being degraded and replaced by aquatic-derived DOM produced within the reservoir. Substantial changes in the propensity of the DOM pool to form THMs and HAAs illustrate that the DBP precursor pool was not directly coupled to bulk DOC concentration and indicate that algal production is an important source of DBP precursors. Results suggest reservoirs have the potential to attenuate DOM amount and reactivity with respect to DBP precursors via degradative processes; however, these benefits can be decreased or even negated by the production of algal-derived DOM.

  16. A metacommunity perspective on source-sink dynamics and management: the Baltic Sea as a case study

    DEFF Research Database (Denmark)

    Lindegren, Martin; Andersen, Ken Haste; Casini, Michele

    2014-01-01

    ) produces an increase in neighboring sink habitats, but a decline of prey species in response to increased predation. Our approach provides valuable insight concerning metacommunity-structuring of marine fish and may serve as an important tool for implementing sustainable management strategies under...

  17. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    Science.gov (United States)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  18. Recent trends and drivers of regional sources and sinks of carbon dioxide

    Science.gov (United States)

    Sitch, S.; Friedlingstein, P.; Gruber, N.; Jones, S. D.; Murray-Tortarolo, G.; Ahlström, A.; Doney, S. C.; Graven, H.; Heinze, C.; Huntingford, C.; Levis, S.; Levy, P. E.; Lomas, M.; Poulter, B.; Viovy, N.; Zaehle, S.; Zeng, N.; Arneth, A.; Bonan, G.; Bopp, L.; Canadell, J. G.; Chevallier, F.; Ciais, P.; Ellis, R.; Gloor, M.; Peylin, P.; Piao, S. L.; Le Quéré, C.; Smith, B.; Zhu, Z.; Myneni, R.

    2015-02-01

    The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990-2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990-2009, the DGVMs simulate a mean global land carbon sink of -2.4 ± 0.7 Pg C yr-1 with a small significant trend of -0.06 ± 0.03 Pg C yr-2 (increasing sink). Over the more limited period 1990-2004, the ocean models simulate a mean ocean sink of -2.2 ± 0.2 Pg C yr-1 with a trend in the net C uptake that is indistinguishable from zero (-0.01 ± 0.02 Pg C yr-2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of -0.02 ± 0.01 Pg C yr-2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr-2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr-2 - primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (-0.04 ± 0.01 Pg C yr-2), with almost no trend over the northern land region

  19. Transfer, sources and sinks for major and trace elements in urban and rural areas

    International Nuclear Information System (INIS)

    Schnetger, B.; Brumsack, H.J.; Heinrichs, H.

    1996-01-01

    Spider webs and air filter samples from 11 German cities were analyzed for major and trace elements to determine the composition of urban particulates. Model calculation was used for the estimation of the sources (fraction of components with decreasing importance): tire abrasion, diesel soot, tar, material from the earth crust and brick abrasion, concrete abrasion, sulfur, gasoline soot, cement production, hard coal ash, lignite fly ash, steel production, waste incineration, sea spray, oil combustion, brake abrasion. Heavy metals in city dust are mostly related to traffic and industrial high temperature processes. The most important sink for the metals and acids of polluted air masses was found to be the forested areas of mountains exposed to the main wind direction. High enrichment of heavy metals and low pH values in the top soils of such areas (Harz Mountain, Germany) were found. From previously (now damaged) forested areas an acid front moves downward. Metals from the top soils were dissolved by this process. In the investigated area precipitation of the released metals takes place in the lakes and a drinking water reservoir. These sinks again become a source when acidification increases. (author)

  20. Sinking bubbles in stout beers

    Science.gov (United States)

    Lee, W. T.; Kaar, S.; O'Brien, S. B. G.

    2018-04-01

    A surprising phenomenon witnessed by many is the sinking bubbles seen in a settling pint of stout beer. Bubbles are less dense than the surrounding fluid so how does this happen? Previous work has shown that the explanation lies in a circulation of fluid promoted by the tilted sides of the glass. However, this work has relied heavily on computational fluid dynamics (CFD) simulations. Here, we show that the phenomenon of sinking bubbles can be predicted using a simple analytic model. To make the model analytically tractable, we work in the limit of small bubbles and consider a simplified geometry. The model confirms both the existence of sinking bubbles and the previously proposed mechanism.

  1. Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review

    Science.gov (United States)

    Douglas, Thomas A.; Jones, Miriam C.; Hiemstra, Christopher A.

    2014-01-01

    Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in this area for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape process changes over the next 20 to 50 years. This provides a major challenge for predicting how the interplay between land management activities and impacts of climate warming will affect carbon sources and sinks in Interior Alaska. To assist land managers in adapting and managing for potential changes in the Interior Alaska carbon cycle we developed this review paper incorporating an overview of the climate, ecosystem processes, vegetation types, and soil regimes in Interior Alaska with a focus on ramifications for the carbon cycle. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to support policy and land management decisions on how to best manage carbon sources and sinks in Interior Alaska. To support this we have surveyed relevant peer reviewed estimates of carbon stocks in aboveground and belowground biomass for Interior Alaska boreal ecosystems. We have also summarized methane and carbon dioxide fluxes from the same ecosystems. These data have been converted into the same units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance including how compounding disturbances can affect the boreal system. Finally, we provide

  2. Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea

    Science.gov (United States)

    Huang, S.; Conte, M. H.

    2009-01-01

    Elemental composition of the particle flux at the Oceanic Flux Program (OFP) time-series site off Bermuda was measured from January 2002 to March 2005. Eighteen elements (Mg, Al, Si, P, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba and Pb) in sediment trap material from 500, 1500 and 3200 m depths were quantified using fusion-HR-ICPMS. Positive Matrix Factorization (PMF) was used to elucidate sources, elemental associations and processes that affect geochemical behavior in the water column. Results provide evidence for intense elemental cycling between the sinking flux material and the dissolved and suspended pools within mesopelagic and bathypelagic waters. Biological processing and remineralization rapidly deplete the sinking flux material in organic matter and associated elements (N, P, Cd, Zn) between 500 and 1500 m depth. Suspended particle aggregation, authigenic mineral precipitation, and chemical scavenging enriches the flux material in lithogenic minerals, barite and redox sensitive elements (Mn, Co, V, Fe). A large increase in the flux of lithogenic elements is observed with depth and confirms that the northeast Sargasso is a significant sink for advected continental materials, likely supplied via Gulf Stream circulation. PMF resolved major sources that contribute to sinking flux at all depths (carbonate, high-Mg carbonate, opal, organic matter, lithogenic material, and barite) as well as additional depth-specific elemental associations that contribute about half of the compositional variability in the flux. PMF solutions indicate close geochemical associations of barite-opal, Cd-P, Zn-Co, Zn-Pb and redox sensitive elements in the sinking flux material at 500 m depth. Major reorganizations of element associations occur as labile carrier phases break down and elements redistribute among new carrier phases deeper in the water column. Factor scores show strong covariation and similar temporal phasing among the three trap depths and indicate a tight

  3. Identifying the source, transport path and sinks of sewage derived organic matter

    International Nuclear Information System (INIS)

    Mudge, Stephen M.; Duce, Caroline E.

    2005-01-01

    Since sewage discharges can significantly contribute to the contaminant loadings in coastal areas, it is important to identify sources, pathways and environmental sinks. Sterol and fatty alcohol biomarkers were quantified in source materials, suspended sediments and settling matter from the Ria Formosa Lagoon. Simple ratios between key biomarkers including 5β-coprostanol, cholesterol and epi-coprostanol were able to identify the sewage sources and effected deposition sites. Multivariate methods (PCA) were used to identify co-varying sites. PLS analysis using the sewage discharge as the signature indicated ∼ 25% of the variance in the sites could be predicted by the sewage signature. A new source of sewage derived organic matter was found with a high sewage predictable signature. The suspended sediments had relatively low sewage signatures as the material was diluted with other organic matter from in situ production. From a management viewpoint, PLS provides a useful tool in identifying the pathways and accumulation sites for such contaminants. - Multivariate statistical analysis was used to identify pathways and accumulation sites for contaminants in coastal waters

  4. Energies and carbon sinks

    International Nuclear Information System (INIS)

    Riedacker, A.

    2002-01-01

    The Kyoto Protocol puts a lot of emphasis on carbon sinks. This emphasis almost obliterates the other potential contributions of biomass in the fight against climatic changes and toward sustainable development. Biomass represents an infinite supply of renewable energy sources which do not increase the levels of carbon in the atmosphere, contribute to energy savings resulting from the use of wood rather than other materials, the sustainable management of soils, the fight against drought, agroforestry from which the production of foods depends, the mitigating of certain extreme climatic occurrences and the protection of dams from increased silting. The industrial revolution contributed to the increase in greenhouse gas emissions. When discussing some of the finer points of the Kyoto Protocol, the focus was placed on carbon sinks. The author indicates that the biomass cycle had to be considered, both in situ and ex situ. Details to this effect are provided, and a section dealing with greenhouse gases other than carbon must be taken into account. The rural environment must be considered globally. The author indicates that in the future, the emissions resulting from the transportation of agricultural products will have to be considered. Within the realm of the policies on sustainable development, the fight against climatic change represents only one aspect. In arid and semi-arid regions, one must take into account meeting the energy needs of the populations, the fight against drought and the preservation of biodiversity. The planting of trees offers multiple advantages apart from being a carbon sink: roughage, wood for burning, protection of soils, etc. A few examples are provided. 8 refs., 3 figs

  5. Polystyrene plastic: a source and sink for polycyclic aromatic hydrocarbons in the marine environment.

    Science.gov (United States)

    Rochman, Chelsea M; Manzano, Carlos; Hentschel, Brian T; Simonich, Staci L Massey; Hoh, Eunha

    2013-12-17

    Polycyclic aromatic hydrocarbons (PAHs) on virgin polystyrene (PS) and PS marine debris led us to examine PS as a source and sink for PAHs in the marine environment. At two locations in San Diego Bay, we measured sorption of PAHs to PS pellets, sampling at 0, 1, 3, 6, 9, and 12 months. We detected 25 PAHs using a new analytical method with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Several congeners were detected on samples before deployment. After deployment, some concentrations decreased (1,3-dimethylnaphthalene and 2,6-methylnaphthalene), while most increased [2-methylanthracene and all parent PAHs (PPAHs), except fluorene and fluoranthene], suggesting that PS debris is a source and sink for PAHs. When sorbed concentrations of PPAHs on PS are compared to the five most common polymers [polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP)], PS sorbed greater concentrations than PP, PET, and PVC, similar to HDPE and LDPE. Most strikingly, at 0 months, PPAHs on PS ranged from 8 to 200 times greater than on PET, HDPE, PVC, LDPE, and PP. The combination of greater PAHs in virgin pellets and large sorption suggests that PS may pose a greater risk of exposure to PAHs upon ingestion.

  6. Australia's CO2 geological storage potential and matching of emission sources to potential sinks

    International Nuclear Information System (INIS)

    Bradshaw, J.; Bradshaw, B.E.; Wilson, P.; Spencer, L.; Allinson, G.; Nguyen, V.

    2004-01-01

    Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) have completed an analysis of the potential for the geological storage of CO 2 . The geological analysis assessed over 100 potential environmentally sustainable sites for CO 2 injection (ESSCIs) by applying a deterministic risk assessment based on the five factors of: storage capacity, injectivity potential, site details, containment and natural resources. Utilising a risked storage capacity suggests that at a regional scale Australia has a CO 2 storage potential in excess of 1600 years of current annual total net emissions. Whilst this estimate does give an idea of the enormous magnitude of the geological storage potential of CO 2 in Australia, it does not account for various factors that are evident in source to sink matching. If preferences due to source to sink matching are incorporated, and an assumption is made that some economic imperative will apply to encourage geological storage of CO 2 , then a more realistic analysis can be derived. In such a case, Australia may have the potential to store a maximum of 25% of our total annual net emissions, or approximately 100-115 Mt CO 2 per year. (author)

  7. Application of Source-Sink Landscape Influence Values to Commuter Traffic: A Case Study of Xiamen Island

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-12-01

    Full Text Available Landscape patterns are closely related to ecological processes. Different spatial scales and research methods may lead to different results. Therefore, it is crucial to choose suitable research methods when studying different landscape patterns and ecological processes. In the present study, the methods of source-sink landscape theory were applied to the interactions between urban landscape characteristics and commuter traffic behavior around the arterial roads in Xiamen Island. After classification of land use types using remote sensing images from the IKONOS satellite and ArcGIS software (ESRI, Redlands, CA, USA, the landscape patterns of areas surrounding arterial roads (within 1 km were evaluated using source-sink landscape influence (SLI. The results showed that Xiamen Island’s urban expressway had the highest SLI value (0.191, followed by the state highways (0.067, the provincial highways (0.030, and the county roads (0.025. When considering all road types, the correlation between a road’s SLI value and its commuter traffic flow was 0.684. This result was explained by three observations: (1 The contribution of the core area of each landscape pattern to traffic flow was positively correlated with the traffic flow. (2 Areas surrounding the urban expressway and the state highways had lower values for Shannon’s diversity index, indicating that these areas had a lower degree of landscape fragmentation. (3 The landscape patterns surrounding the urban expressway and the state highways were more concentrated and complex than those around other road types. The application of source-sink landscape pattern theory allows for researchers to integrate the relationships between landscape patterns surrounding roads and commuter traffic flow on those roads and to analyze the reasons for these relationships.

  8. Sources and sinks of diversification and conservation priorities for the Mexican tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Judith X Becerra

    Full Text Available Elucidating the geographical history of diversification is critical for inferring where future diversification may occur and thus could be a valuable aid in determining conservation priorities. However, it has been difficult to recognize areas with a higher likelihood of promoting diversification. We reconstructed centres of origin of lineages and identified areas in the Mexican tropical dry forest that have been important centres of diversification (sources and areas where species are maintained but where diversification is less likely to occur (diversity sinks. We used a molecular phylogeny of the genus Bursera, a dominant member of the forest, along with information on current species distributions. Results indicate that vast areas of the forest have historically functioned as diversity sinks, generating few or no extant Bursera lineages. Only a few areas have functioned as major engines of diversification. Long-term preservation of biodiversity may be promoted by incorporation of such knowledge in decision-making.

  9. Primary sink and source of geogenic arsenic in sedimentary aquifers in the southern Choushui River alluvial fan, Taiwan

    International Nuclear Information System (INIS)

    Lu, Kuang-Liang; Liu, Chen-Wuing; Wang, Sheng-Wei; Jang, Cheng-Shin; Lin, Kao-Hung; Liao, Vivian Hsiu-Chuan; Liao, Chung-Min; Chang, Fi-John

    2010-01-01

    This work characterized the sink and source/mobility of As in the As-affected sedimentary aquifers of the southern Choushui River alluvial fan, central Taiwan. Major mineral phases and chemical components were determined by XRD and X-ray photoelectron spectroscopy (XPS). The partitioning of As and Fe among cores were determined by sequential extraction. Based on XPS results, the primary forms of Fe were hematite, goethite and magnetite. Sequential extraction data and the XRF analysis indicated that Fe oxyhydroxides and sulfides were likely to be the major sinks of As, particularly in the distal-fan. Furthermore, Fe oxyhydroxides retained higher As contents than As-bearing sulfides. The reductive dissolution of Fe oxyhydroxides, which accompanied high levels of HCO 3 - and NH 4 + concentrations, was likely the principal release mechanism of As into groundwater in this area. The dual roles of Fe oxyhydroxides which are governed by the local redox condition act as a sink and source in the aquifer. Ionic replacement by PO 4 3- and HCO 3 - along with seasonal water table fluctuation, caused by monsoons and excessive pumping, contributed specific parts of As in the groundwater. The findings can be used to account for the inconsistency between Fe and As concentrations observed in groundwater.

  10. Resilience in Source to Sink Systems: A Millennial Record of Watershed Responses to Disturbance in Loon Lake, Umpqua River Basin, Oregon

    Science.gov (United States)

    Guerrero, F. J.; Richardson, K.; Hatten, J. A.

    2017-12-01

    Small mountainous watersheds are disproportionate sources of particulate organic matter (POM) to long-term sinks like lake bottoms and the ocean. Thus, alterations in sediment routing resulting from disturbances (e.g. earthquakes, fires, and timber harvesting) have profound consequences on watershed's (biogeochemical) resilience. The assessment of these biogeochemical impacts is complicated by the episodic signal propagation along these source-to-sink systems and therefore is seldom attempted. We report on a 1500-year record of historical changes in Loon Lake, a local sedimentary sink (1.2 km2) for a 230 km2 watershed in the Oregon Coast Range. Particle size distributions and POM elemental composition (C, N) were sampled at high temporal resolution ( 3 years). Stable isotopic composition and lignin biomarkers were sampled with varying temporal resolution depending on the period analyzed: 1939-2013 (3-year resolution); 515-1939 (15-year resolution). Disturbance history in Loon Lake catchment is recorded as a sequence of event beds deposited in sharp contrast within a matrix of background sedimentation. At least 8 out of 23 event beds were associated with >8.2 magnitude earthquakes (including the 9.0 megathrust earthquake in 1700). Forest fires in 1770 and 1890 were also recorded as event beds. After 1939, event beds record the impacts of landscape destabilization due to the interaction between intense storms and timber harvesting. At the onset of each event, %C, %N, and C:N ratios increased reflecting the input of coarse POM from surficial soil horizons. Top layers bracketing event beds are rich in clays and have low %C, suggesting a deep-soil sediment source. Isotopic signatures (i.e. δ13C, δ15N) confirm the allochthony of sediment inputs during events and lignin biomarkers suggest a replacement of riparian inputs by a strong gymnosperm signal, particularly after 1945. Thus, event beds record changes in the relative importance of different sediment sources within

  11. Source/sink patterns of disturbance and cross-scale mismatches in a panarchy of social-ecological landscapes

    Science.gov (United States)

    Nicola Zaccarelli; Irene Petrosillo; Giovanni Zurlini; Kurt H. Riitters

    2008-01-01

    Land-use change is one of the major factors affecting global environmental change and represents a primary human effect on natural systems. Taking into account the scales and patterns of human land uses as source/sink disturbance systems, we describe a framework to characterize and interpret the spatial patterns of disturbances along a continuum of scales in a panarchy...

  12. Dual character of Sundarban estuary as a source and sink of CO2 during summer: an investigation of spatial dynamics.

    Science.gov (United States)

    Akhand, Anirban; Chanda, Abhra; Dutta, Sachinandan; Manna, Sudip; Sanyal, Pranabes; Hazra, Sugata; Rao, K H; Dadhwal, V K

    2013-08-01

    A comprehensive attempt has been made to evaluate the diurnal and spatial pattern of CO2 exchange between the atmosphere and water along the estuarine track of Indian Sundarbans during the two summer months, April and May, 2011. Rigorous field observations were carried out which included the hourly measurements of total alkalinity, pH, fugacity of CO2 in ambient air and water surface, dissolved oxygen, and chlorophyll a. The estuarine water was found rich in total alkalinity and was oversaturated with CO2 throughout the diurnal cycle in the two stations situated at the inner and middle estuary, respectively, whereas an entirely reverse situation was observed in the outer fringes. The fugacity of CO2 in water ranged from 152 to 657 μatm during the study period. The percentage of over-saturation in inner and middle estuary varied from 103 to 168 and 103 to 176 %, respectively, whereas the degree of under-saturation in the outer estuary lied between 40 and 99 %. Chlorophyll a concentrations were found higher in the outer estuary (12.3 ± 2.2 mg m(-3)) compared to the middle (6.4 ± 0.6 mg m(-3)) and inner parts (1.6 ± 0.2 mg m(-3)), followed by a similar decreasing pattern in nutrient availability from the outer to inner estuary. The sampling stations situated at the inner and middle estuary acted as a net source of 29.69 and 23.62 mg CO2 m(-2) day(-1), respectively, whereas the outer station behaved as a net sink of -33.37 mg CO2 m(-2) day(-1). The study of primary production and community respiration further supports the heterotrophic nature of the estuary in the inner region while the outer periphery was marked by dominant autotrophic character. These contrasting results are in parity with the source characters of many inner estuaries and sinking characters of the outer estuaries situated at the distal continental shelf areas.

  13. The effect of glyphosate on import into a sink leaf of sugar beet

    International Nuclear Information System (INIS)

    Shieh, Wenjang; Geiger, D.R.

    1990-01-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying 14 CO 2 to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying 14 C were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves

  14. A necessary condition for dispersal driven growth of populations with discrete patch dynamics.

    Science.gov (United States)

    Guiver, Chris; Packman, David; Townley, Stuart

    2017-07-07

    We revisit the question of when can dispersal-induced coupling between discrete sink populations cause overall population growth? Such a phenomenon is called dispersal driven growth and provides a simple explanation of how dispersal can allow populations to persist across discrete, spatially heterogeneous, environments even when individual patches are adverse or unfavourable. For two classes of mathematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to both discrete- and continuous-time models. The theory is illustrated with examples and both biological and mathematical conclusions are drawn. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Sources and sinks of Earth's ring current populations

    Science.gov (United States)

    Mauk, B.

    2017-12-01

    Processes that modify and transport current-carrying particles into and out of Earth's ring current regions are overviewed and discussed here with a focus on outstanding mysteries and uncertainties. Examples of such mysteries include the following. Some modeling and observational approaches point to a need for storm-time enhancements in the global electric field configuration to help bring magnetotail populations into the inner magnetosphere. And yet, electric field measurements from several missions, most recently the Van Allen Probes, suggest that only highly transient enhancements occur in critical regions that connect the outer and inner regions. Global enhancements appear to be internally generated rather than necessarily being driven from the outside. Another sample mystery involves the processes that give rise to the sometimes initial prompt recovery of the magnetic storm indice DST, given that loss processes traditionally invoked are likely too slow. Wave losses, such as those engendered by Electromagnetic Ion Cyclotron (EMIC) waves, may be responsible, but observational support for such a solution is lacking. These and other uncertainties are discussed with a goal of addressing how they might be addressed with the present great constellation of Earth-orbiting spacecraft, most recently joined by MMS and Arase (ERG).

  16. Continuous Time Dynamic Contraflow Models and Algorithms

    Directory of Open Access Journals (Sweden)

    Urmila Pyakurel

    2016-01-01

    Full Text Available The research on evacuation planning problem is promoted by the very challenging emergency issues due to large scale natural or man-created disasters. It is the process of shifting the maximum number of evacuees from the disastrous areas to the safe destinations as quickly and efficiently as possible. Contraflow is a widely accepted model for good solution of evacuation planning problem. It increases the outbound road capacity by reversing the direction of roads towards the safe destination. The continuous dynamic contraflow problem sends the maximum number of flow as a flow rate from the source to the sink in every moment of time unit. We propose the mathematical model for the continuous dynamic contraflow problem. We present efficient algorithms to solve the maximum continuous dynamic contraflow and quickest continuous contraflow problems on single source single sink arbitrary networks and continuous earliest arrival contraflow problem on single source single sink series-parallel networks with undefined supply and demand. We also introduce an approximation solution for continuous earliest arrival contraflow problem on two-terminal arbitrary networks.

  17. Thermosphere as a sink of magnetospheric energy - a review of recent observations of dynamics

    International Nuclear Information System (INIS)

    Killeen, T.L.

    1985-01-01

    It is pointed out that the past few years have seen an unprecedented influx of new experimental information on the dynamics of the neutral upper atmosphere of the earth. Vector wind measurements provide new information for studies of the thermospheric response to magnetospheric forcing. This response occurs through the medium of convecting ionospheric ions set into motion by electric fields of magnetospheric origin. The ultimate sink for much of the energy and momentum coming from the magnetosphere is the neutral thermosphere whose dynamics have, in the past, received far less attention than their ionospheric counterpart because of basic experimental limitations. In this paper, a review is provided of the progress made in the last few years on the basis of the Dynamics Explorer neutral wind observations, taking into account the coupling between the magnetosphere and the thermosphere via the ionosphere. 26 references

  18. Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait

    Science.gov (United States)

    Horng, Chorng-Shern; Huh, Chih-An

    2011-09-01

    Different lithologies between Taiwan and southeastern China lead to diverse mineralogical composition for weathering products derived from the two shores of the Taiwan Strait. Pyrrhotite and magnetite are respectively the dominant magnetic minerals associated with fluvial sediments from western Taiwan and southeastern China. While magnetite commonly co-exists with pyrrhotite in sediments sourced from Taiwan, pyrrhotite has not been found in sediments sourced from mainland China. Associated with such a distinction are vast differences in magnetic properties, including magnetic susceptibility (χ), SIRM, HIRM and the S-ratio, which can be used to study the provenances of sediments in the Taiwan Strait and adjoining marginal seas. Based on any two of these parameters, the magnetic characteristics of much of the Taiwan Strait sediment can be explained using a two-endmember mixing model. Source-to-sink dispersal of sediments in the Taiwan Strait can then be traced from the distribution of these parameters. The results not only corroborate an earlier study based on radionuclides and particle size distribution ( Huh et al., 2011) but reveal more diagnostic details. Besides spatial distribution based on a large number (216) of surface sediments, we also analyzed temporal variation of magnetic properties in six well-dated cores collected at key sites along the sediment source-to-sink pathways. From profiles of these parameters in cores from the middle of the northern Taiwan Strait, it is calculated that sediment supply from Taiwan has increased substantially in the past five decades, which may very well be related to accelerated land use and increased frequency of intense rainfalls in Taiwan during the same period. The approach described in this work may be extended to other source-to-sink systems around the world and through time, especially the mountainous islands fringing the Pacific and Indian Oceans in southeastern Asia. As with Taiwan, these islands have high

  19. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance

    International Nuclear Information System (INIS)

    Yang Hong; Xing Yangping; Xie Ping; Ni Leyi; Rong Kewen

    2008-01-01

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO 2 and CH 4 causing a net release of CO 2 and CH 4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO 2 and CH 4 ) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. - Due to high primary production, substantive allochthonous carbon inputs and intensive anthropogenic acitivity, subtropical, eutrophic Lake Donghu is a great carbon sink

  20. Dynamic assessments of population exposure to urban greenspace using multi-source big data.

    Science.gov (United States)

    Song, Yimeng; Huang, Bo; Cai, Jixuan; Chen, Bin

    2018-09-01

    A growing body of evidence has proven that urban greenspace is beneficial to improve people's physical and mental health. However, knowledge of population exposure to urban greenspace across different spatiotemporal scales remains unclear. Moreover, the majority of existing environmental assessments are unable to quantify how residents enjoy their ambient greenspace during their daily life. To deal with this challenge, we proposed a dynamic method to assess urban greenspace exposure with the integration of mobile-phone locating-request (MPL) data and high-spatial-resolution remote sensing images. This method was further applied to 30 major cities in China by assessing cities' dynamic greenspace exposure levels based on residents' surrounding areas with different buffer scales (0.5km, 1km, and 1.5km). Results showed that regarding residents' 0.5-km surrounding environment, Wenzhou and Hangzhou were found to be with the greenest exposure experience, whereas Zhengzhou and Tangshan were the least ones. The obvious diurnal and daily variations of population exposure to their surrounding greenspace were also identified to be highly correlated with the distribution pattern of urban greenspace and the dynamics of human mobility. Compared with two common measurements of urban greenspace (green coverage rate and green area per capita), the developed method integrated the dynamics of population distribution and geographic locations of urban greenspace into the exposure assessment, thereby presenting a more reasonable way to assess population exposure to urban greenspace. Additionally, this dynamic framework could hold potential utilities in supporting urban planning studies and environmental health studies and advancing our understanding of the magnitude of population exposure to greenspace at different spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Application of Source-Sink Landscape Influence Values to Commuter Traffic: A Case Study of Xiamen Island

    OpenAIRE

    Tong Wu; Lina Tang; Huaxiang Chen; Ziyan Wang; Quanyi Qiu

    2017-01-01

    Landscape patterns are closely related to ecological processes. Different spatial scales and research methods may lead to different results. Therefore, it is crucial to choose suitable research methods when studying different landscape patterns and ecological processes. In the present study, the methods of source-sink landscape theory were applied to the interactions between urban landscape characteristics and commuter traffic behavior around the arterial roads in Xiamen Island. After classif...

  2. Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates

    Directory of Open Access Journals (Sweden)

    M. H. Iversen

    2010-09-01

    Full Text Available Recent observations have shown that fluxes of ballast minerals (calcium carbonate, opal, and lithogenic material and organic carbon fluxes are closely correlated in the bathypelagic zones of the ocean. Hence it has been hypothesized that incorporation of biogenic minerals within marine aggregates could either protect the organic matter from decomposition and/or increase the sinking velocity via ballasting of the aggregates. Here we present the first combined data on size, sinking velocity, carbon-specific respiration rate, and composition measured directly in three aggregate types; Emiliania huxleyi aggregates (carbonate ballasted, Skeletonema costatum aggregates (opal ballasted, and aggregates made from a mix of both E. huxleyi and S. costatum (carbonate and opal ballasted. Overall average carbon-specific respiration rate was ~0.13 d−1 and did not vary with aggregate type and size. Ballasting from carbonate resulted in 2- to 2.5-fold higher sinking velocities than those of aggregates ballasted by opal. We compiled literature data on carbon-specific respiration rate and sinking velocity measured in aggregates of different composition and sources. Compiled carbon-specific respiration rates (including this study vary between 0.08 d−1 and 0.20 d−1. Sinking velocity increases with increasing aggregate size within homogeneous sources of aggregates. When compared across different particle and aggregate sources, however, sinking velocity appeared to be independent of particle or aggregate size. The carbon-specific respiration rate per meter settled varied between 0.0002 m−1 and 0.0030 m−1, and decreased with increasing aggregate size. It was lower for calcite ballasted aggregates as compared to that of similar sized opal ballasted aggregates.

  3. Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis

    KAUST Repository

    Wesselmann, Marlene; Gonzá lez-Wangü emert, Mercedes; Serrã o, Ester A.; Engelen, Aschwin H.; Renault, Lionel; Garcí a-March, José R.; Duarte, Carlos M.; Hendriks, Iris E.

    2018-01-01

    For marine meta-populations with source-sink dynamics knowledge about genetic connectivity is important to conserve biodiversity and design marine protected areas (MPAs). We evaluate connectivity of a Mediterranean sessile species, Pinna nobilis. To address a large geographical scale, partial sequences of cytochrome oxidase I (COI, 590 bp) were used to evaluate phylogeographical patterns in the Western Mediterranean, and in the whole basin using overlapping sequences from the literature (243 bp). Additionally, we combined (1) larval trajectories based on oceanographic currents and early life-history traits and (2) 10 highly polymorphic microsatellite loci collected in the Western Mediterranean. COI results provided evidence for high diversity and low inter-population differentiation. Microsatellite genotypes showed increasing genetic differentiation with oceanographic transport time (isolation by oceanographic distance (IBD) set by marine currents). Genetic differentiation was detected between Banyuls and Murcia and between Murcia and Mallorca. However, no genetic break was detected between the Balearic populations and the mainland. Migration rates together with numerical Lagrangian simulations showed that (i) the Ebro Delta is a larval source for the Balearic populations (ii) Alicante is a sink population, accumulating allelic diversity from nearby populations. The inferred connectivity can be applied in the development of MPA networks in the Western Mediterranean.

  4. Genetic and oceanographic tools reveal high population connectivity and diversity in the endangered pen shell Pinna nobilis

    KAUST Repository

    Wesselmann, Marlene

    2018-03-13

    For marine meta-populations with source-sink dynamics knowledge about genetic connectivity is important to conserve biodiversity and design marine protected areas (MPAs). We evaluate connectivity of a Mediterranean sessile species, Pinna nobilis. To address a large geographical scale, partial sequences of cytochrome oxidase I (COI, 590 bp) were used to evaluate phylogeographical patterns in the Western Mediterranean, and in the whole basin using overlapping sequences from the literature (243 bp). Additionally, we combined (1) larval trajectories based on oceanographic currents and early life-history traits and (2) 10 highly polymorphic microsatellite loci collected in the Western Mediterranean. COI results provided evidence for high diversity and low inter-population differentiation. Microsatellite genotypes showed increasing genetic differentiation with oceanographic transport time (isolation by oceanographic distance (IBD) set by marine currents). Genetic differentiation was detected between Banyuls and Murcia and between Murcia and Mallorca. However, no genetic break was detected between the Balearic populations and the mainland. Migration rates together with numerical Lagrangian simulations showed that (i) the Ebro Delta is a larval source for the Balearic populations (ii) Alicante is a sink population, accumulating allelic diversity from nearby populations. The inferred connectivity can be applied in the development of MPA networks in the Western Mediterranean.

  5. Photosynthate supply and utilization in alfalfa: a developmental shift from a source to a sink limitation of photosynthesis

    International Nuclear Information System (INIS)

    Baysdorfer, C.; Bassham, J.A.

    1985-01-01

    Long-term carbon dioxide enrichment, 14 CO 2 feeding, and partial defoliation were employed as probes to investigate source/sink limitations of photosynthesis during the development of symbiotically grown alfalfa. In the mature crop, long-term CO 2 enrichment does not affect the rates of net photosynthesis, relative growth, 14 C export to nonphotosynthetic organs, or the rates of 14 C label incorporation into leaf sucrose, starch, or malate. The rate of glycolate labeling is, however, substantially reduced under these conditions. When the mature crop was partially defoliated, a considerable increase in net photosynthesis occurred in the remaining leaves. In the seedling crop, long-term CO 2 enrichment increased dry matter accumulation, primarily as a result of increases in leaf starch content. Although the higher rates of starch synthesis are not maintained, the growth enhancement of the enriched plants persisted throughout the experimental period. These results imply a source limitation of seedling photosynthesis and a sink limitation of photosynthesis in more mature plants. Consequently, both the supply and the utilization of photosynthate may limit seasonal photosynthesis in alfalfa

  6. How phosphorus limitation can control climatic gas sources and sinks

    Science.gov (United States)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-04-01

    Since the 1950's, anthropogenic activities severely increased river nutrient loads in European coastal areas. Subsequent implementation of nutrient reduction policies have considerably reduced phosphorus (P) loads from mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorous (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on the importance of phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 70% due to DOP uptake in limiting DIP conditions. Consequently, simulated DMS emissions double while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake. At the end of the simulated period (late 2000's), the net direction of air-sea CO2 annual flux, changed from a source to a sink for atmospheric CO2 in response to use of DOP and increase of primary production.

  7. Understanding sources, sinks, and transport of marine debris

    Science.gov (United States)

    Law, Kara Lavender; Maximenko, Nikolai

    2011-07-01

    Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.

  8. Modelling recolonization of second-growth forest stands by the north american red squirrel Tamiasciurus hudsonicus.

    Science.gov (United States)

    Nyquist, B; Tyson, R; Larsen, K

    2007-05-01

    In this paper, we present a model for source-sink population dynamics where the locations of source and sink habitats change over time. We do this in the context of the population dynamics of the North American red squirrel, Tamiasciurus hudsonicus, within a forest environment subject to harvesting and regrowth. Harvested patches of forest are initially sinks, then eventually become source habitat again as the forest regrows. At the same time, each harvested patch is gradually recolonized by squirrels from other forest patches. We are interested in the interaction of forest harvesting dynamics with squirrel population dynamics. This depends on the harvesting schedule, and on the choices squirrels make when deciding whether to settle in a mature forest patch or in a recently harvested patch. We find that the time it takes for a second-growth forest patch to be recolonized at the mature forest level is longer than the time required for the habitat quality to be restored to the mature forest level. We also notice that recolonization pressure decreases squirrel populations in neighbouring patches. The connectivity between forest patches and the cutting schedule used also affect the time course of recolonization and steady-state population levels.

  9. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    Science.gov (United States)

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo

    2010-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.

  10. Estimation of Carbon Sink in Surface Carbonate Rocks of Guangxi Province by Using Remote Sensing Images

    Science.gov (United States)

    Jia, B.; Zhou, G.; Wang, H.; Yue, T.; Huang, W.

    2018-04-01

    Studies of the imbalance of source sinks in the carbon cycle show that CO2 absorbed during rock weathering is part of the "miss carbon" of the global carbon cycle. The carbon sink contribution of carbonate rocks obviously plays a very important role in the absorption of atmospheric CO2. Estimation of carbon sinks in karst dynamic system of Guangxi province has great significance for further understanding of global karst carbon cycle and global climate research. This paper quotes the rock data from Tao Xiaodong's paper, which is obtained using RS and GIS techniques. At the same time, the dissolution rate model studied by Zhou Guoqing and others was used to estimate the dissolution rate of carbonate rocks in Guangxi Province. Finally, the CO2 content consumed by carbonate karstification in Guangxi Province was 1342910.447 t a-1. The results obtained are in the same order of magnitude as the CO2 content consumed by carbonate rock karstification in Guangxi Province calculated by Tao Xiaodong.

  11. Computer-extended series for a source/sink driven gas centrifuge

    International Nuclear Information System (INIS)

    Berger, M.H.

    1987-01-01

    We have reformulated the general problem of internal flow in a modern high speed gas centrifuge with sources and sinks in such a way as to obtain new, simple, rigorous closed form analytical solutions. Both symmetric and antisymmetric drives lead us to an ordinary differential equation in place of the usual inhomogeneous Onsager partial differential equation. Owing to the difficulties of exactly solving this sixth order, inhomogeneous, variable coefficient ordinary differential equation we appeal to the power of perturbation theory and techniques. Two extreme parameter regimes are identified, the so-called semi-long bowl approximation and a new short bowl approximation. Only the former class of problems is treated here. The long bowl solution for axial drive is the correct leading order term, just as for pure thermal drive. New 0(1) results are derived for radial, drag and heat drives in two dimensions. Then regular asymptotic, even ordered power series expansions for the flow field are carried out on the computer to O (epsilon 4 ) using MACSYMA. These approximations are valid for values of epsilon near unity. In the spirit of Van Dyke, one can carry out this expansion process, in theory, to apparently arbitrary order for arbitrary but finite decay length ratio. Curiously, the flows induced by axial and radial forces are proportional for asymptotically large source scale heights, chi*. Corresponding isotope separation integral parameters will be given in a companion paper. (author)

  12. Dynamics of phytoplankton blooms in turbulent vortex cells

    DEFF Research Database (Denmark)

    Lindemann, Christian; Visser, Andre; Mariani, Patrizio

    2017-01-01

    the effects of turbulent transport on the phytoplankton population growth and its spatial structure in a vertical two-dimensional vortex flow field. In particular, we focus on how turbulent flow velocities and sinking influence phytoplankton growth and biomass aggregation. Our results indicate that conditions...... can be maintained with increasing turbulent flow velocities, allowing the apparently counter-intuitive persistence of fast sinking phytoplankton populations in highly turbulent and deep mixed layers. These dynamics demonstrate the role of considering advective transport within a turbulent vortex...

  13. A unified framework for modelling sediment fate from source to sink and its interactions with reef systems over geological times.

    Science.gov (United States)

    Salles, Tristan; Ding, Xuesong; Webster, Jody M; Vila-Concejo, Ana; Brocard, Gilles; Pall, Jodie

    2018-03-27

    Understanding the effects of climatic variability on sediment dynamics is hindered by limited ability of current models to simulate long-term evolution of sediment transfer from source to sink and associated morphological changes. We present a new approach based on a reduced-complexity model which computes over geological time: sediment transport from landmasses to coasts, reworking of marine sediments by longshore currents, and development of coral reef systems. Our framework links together the main sedimentary processes driving mixed siliciclastic-carbonate system dynamics. It offers a methodology for objective and quantitative sediment fate estimations over regional and millennial time-scales. A simulation of the Holocene evolution of the Great Barrier Reef shows: (1) how high sediment loads from catchments erosion prevented coral growth during the early transgression phase and favoured sediment gravity-flows in the deepest parts of the northern region basin floor (prior to 8 ka before present (BP)); (2) how the fine balance between climate, sea-level, and margin physiography enabled coral reefs to thrive under limited shelf sedimentation rates after ~6 ka BP; and, (3) how since 3 ka BP, with the decrease of accommodation space, reduced of vertical growth led to the lateral extension of reefs consistent with available observational data.

  14. Assessment of carbon dioxide sink/source in the oceanic areas: the results of 1982-84 investigation. Final technical report

    International Nuclear Information System (INIS)

    Takahashi, T.; Chipman, D.W.; Smethie, W. Jr.; Goddard, J.; Trumbore, S.; Mathieu, G.G.; Sutherland, S.

    1985-07-01

    The oceanic CO 2 sink/source relationships over the tropical Atlantic Ocean, the eastern North and South Pacific Ocean, and the Ross Sea were investigated. The net CO 2 flux across the air-sea interface over these areas was estimated. Measurements of the Kr-85 in atmospheric samples collected over the central Pacific along the 155 0 W meridian were initiated. Based on the measurements of the difference between the pCO 2 values in the surface ocean water and the atmosphere and of the radon-222 distribution in the upper water column, we have found that the average net flux for the Atlantic equatorial belt, 10 0 N-10 0 S, is 1.3 moles CO 2 /m 2 .y out of the ocean, when our measurements were made in November 1982 through February 1983. The surface water pCO 2 data obtained over the eastern North and South Pacific during the period, October 1983 through January 1984, show that the equatorial zone between 2 0 N and 8 0 S is an intense CO 2 source area, whereas a 10 0 wide belt coinciding with the area between the Subtropical and Antarctic Convergence Zones is a strong CO 2 sink area. The temperate gyre area located north of about 5 0 N and that located between 8 0 S and 35 0 S are nearly in equilibrium with atmospheric CO 2 . The surface water pCO 2 data obtained in the Southern Ocean during the past ten or more years suggest strongly the existence of an intense CO 2 sink zone, the Circumpolar Low pCO 2 Zone, which is about 10 0 wide in latitude and centered at about 50 0 S surrounding the Antarctica Continent. The surface water of the Ross Sea is found to be a strong CO 2 sink during the period January 23 through February 12, 1984. Because of contamination problems, no reliable data for atmospheric krypton-85 have been obtained. 23 refs., 22 figs., 3 tabs

  15. Carbon allocation, source-sink relations and plant growth: do we need to revise our carbon centric concepts?

    Science.gov (United States)

    Körner, Christian

    2014-05-01

    Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers

  16. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jochem, Warren C [ORNL; Sims, Kelly M [ORNL; Bright, Eddie A [ORNL; Urban, Marie L [ORNL; Rose, Amy N [ORNL; Coleman, Phil R [ORNL; Bhaduri, Budhendra L [ORNL

    2013-01-01

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.

  17. Combining stable isotope and carbohydrate analyses in phloem sap and fine roots to study seasonal changes of source-sink relationships in a Mediterranean beech forest.

    Science.gov (United States)

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2015-08-01

    Carbon isotope composition (δ(13)C) and carbohydrate content of phloem sap and fine roots were measured in a Mediterranean beech (Fagus sylvatica L.) forest throughout the growing season to study seasonal changes of source-sink relationships. Seasonal variations of δ(13)C and content of phloem sap sugars, collected during the daylight period, reflected the changes in soil and plant water status. The correlation between δ(13)C and content of phloem sap sugars, collected from plants belonging to different social classes, was significantly positive only during the driest month of July. In this month, δ(13)C of phloem sap sugars was inversely related to the increment of trunk radial growth and positively related to δ(13)C of fine roots. We conclude that the relationship between δ(13)C and the amount of phloem sap sugars is affected by a combination of causes, such as sink strength, tree social class, changes in phloem anatomy and transport capacity, and phloem loading of sugars to restore sieve tube turgor following the reduced plant water potential under drought conditions. However, δ(13)C and sugar composition of fine roots suggested that phloem transport of leaf sucrose to this belowground component was not impaired by mild drought and that sucrose was in a large part allocated towards fine roots in July, depending on tree social class. Hence, fine roots could represent a functional carbon sink during the dry seasonal periods, when transport and use of assimilates in other sink tissues are reduced. These results indicate a strict link between above- and belowground processes and highlight a rapid response of this Mediterranean forest to changes in environmental drivers to regulate source-sink relationships and carbon sink capacity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink

    Directory of Open Access Journals (Sweden)

    Hunegnaw Dessie

    2014-09-01

    Full Text Available In this analysis, MHD boundary layer flow and heat transfer of a fluid with variable viscosity through a porous medium towards a stretching sheet by taking in to the effects of viscous dissipation in presence of heat source/sink is considered. The symmetry groups admitted by the corresponding boundary value problem are obtained by using Lie’s scaling group of transformations. These transformations are used to convert the partial differential equations of the governing equations into self-similar non-linear ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. Numerical results obtained for different parameters such as viscosity variation parameter A, permeability parameter k1, heat source/sink parameter λ, magnetic field parameter M, Prandtl number Pr, and Eckert number Ec are drawn graphically and effects of different flow parameters on velocity and temperature profiles are discussed. The skin-friction coefficient -f″(0 and heat transfer coefficient −θ′(0 are presented in tables.

  19. Minimum cost dynamic flows: The series-parallel case

    NARCIS (Netherlands)

    Klinz, Bettina; Woeginger, Gerhard

    2004-01-01

    A dynamic network consists of a directed graph with capacities, costs, and integral transit times on the arcs. In the minimum-cost dynamic flow problem (MCDFP), the goal is to compute, for a given dynamic network with source s, sink t, and two integers v and T, a feasible dynamic flow from s to t of

  20. Effect of heat radiation in a Walter’s liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation

    Directory of Open Access Journals (Sweden)

    A.K. Abdul Hakeem

    2014-07-01

    Full Text Available In this present article heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink, elastic deformation and radiation are reported. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The dimensionless governing equations for this investigation are solved analytically using hyper geometric functions. The results are carried out for prescribed surface temperature (PST and prescribed power law surface heat flux (PHF. The effects of viscous dissipation, Prandtl number, Eckert number, heat source/sink parameter with elastic deformation and radiation are shown in the several plots and addressed.

  1. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    Science.gov (United States)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three

  2. Sources and sinks of stratospheric water vapor

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.

    1979-11-01

    A tutorial review of the understanding of stratospheric H 2 O and the processes controlling it is presented. Paradoxes posed by currently available observational data are cited and suggestions made as to how they might be resolved. Such resolution appears to require: that the bulk of our current data provides unrepresentative and misleading vertical and latitudinal H 2 O gradients immediately downstream from the tropical tropopause; and, that there exists within the troposphere a mechanism different from or in addition to the tropical tropopause cold trap for drying air to the mixing ratios found in the lower stratosphere. Satisfaction of these requirements will reconcile much heretofore puzzling observational data and will obviate the necessity for a stratospheric sink for H 2 O

  3. Long-term decline of the Amazon carbon sink.

    Science.gov (United States)

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  4. Pathway of phloem unloading in tobacco sink leaves

    International Nuclear Information System (INIS)

    Turgeon, R.

    1987-01-01

    Phloem unloading in transition sink leaves of tobacco (Nicotiana tabacum L.) was analyzed by quantitative autoradiography. Source leaves were labeled with 14 CO 2 and experimental treatments were begun approximately 1 h later when label had entered the sink leaves. Autoradiographs were prepared from rapidly frozen, lyophilized sink tissue at the beginning and end of the treatments and the amount of label in veins and in surrounding cells was determined by microdensitometry. Photoassimilate unloaded from third order and larger, but not smaller, veins. Long-distance import and unloading did not respond the same way to all experimental treatments. Import was completely inhibited by cold, anaerobiosis or steam girdling the sink leaf petiole. Unloading was inhibited by cold but continued in an anaerobic atmosphere and after steam girdling. Uptake of exogenous [ 14 C]sucrose was inhibited by anaerobiosis. Since an apoplastic pathway of phloem unloading would involve solute uptake from the apoplast the results are most consistent with passive symplastic unloading of photoassimilates from phloem to surrounding cells

  5. Modeling strategy of the source and sink terms in the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Ishii, Mamoru; Sun Xiaodong; Kim, Seungjin

    2003-01-01

    This paper presents the general strategy for modeling the source and sink terms in the two-group interfacial area transport equation. The two-group transport equation is applicable in bubbly, cap bubbly, slug, and churn-turbulent flow regimes to predict the change of the interfacial area concentration. This dynamic approach has an advantage of flow regime-independence over the conventional empirical correlation approach for the interfacial area concentration in the applications with the two-fluid model. In the two-group interfacial area transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Based upon a detailed literature review of the research on the bubble interactions, five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest. A systematic integral approach, in which the significant variations of bubble volume and shape are accounted for, is suggested for the modeling of two-group bubble interactions. To obtain analytical forms for the various bubble interactions, a simplification is made for the bubble number density distribution function

  6. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    International Nuclear Information System (INIS)

    An Tao; Baan, Willem A.

    2012-01-01

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  7. THE DYNAMIC EVOLUTION OF YOUNG EXTRAGALACTIC RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    An Tao [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 200030 Shanghai (China); Baan, Willem A., E-mail: antao@shao.ac.cn, E-mail: baan@astron.nl [ASTRON, P.O. Box 2, 7990-AA Dwingeloo (Netherlands)

    2012-11-20

    The evolution of symmetric extragalactic radio sources can be characterized by four distinct growth stages of the radio luminosity versus size of the source. The interaction of the jet with the ambient medium results in the formation and evolution of sources with non-standard (flaring) morphology. In addition, cessation or restarting of the jet power and obstruction of the jet will also result in distinct morphological structures. The radio source population may thus be classified in morphological types that indicate the prevailing physical processes. Compact symmetric objects (CSOs) occupy the earliest evolutionary phase of symmetric radio sources and their dynamical behavior is fundamental for any further evolution. Analysis of CSO dynamics is presented for a sample of 24 CSOs with known redshift and hotspot separation velocity and with a large range of radio power. Observables such as radio power, separation between two hotspots, hotspot separation velocity, and kinematic age of the source are found to be generally consistent with the self-similar predictions for individual sources that reflect the varying density structure of the ambient interstellar medium. Individual sources behave different from the group as a whole. The age and size statistics confirm that a large fraction of CSOs does not evolve into extended doubles.

  8. Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions

    Science.gov (United States)

    Parazoo, Nicholas C.; Koven, Charles D.; Lawrence, David M.; Romanovsky, Vladimir; Miller, Charles E.

    2018-01-01

    Thaw and release of permafrost carbon (C) due to climate change is likely to offset increased vegetation C uptake in northern high-latitude (NHL) terrestrial ecosystems. Models project that this permafrost C feedback may act as a slow leak, in which case detection and attribution of the feedback may be difficult. The formation of talik, a subsurface layer of perennially thawed soil, can accelerate permafrost degradation and soil respiration, ultimately shifting the C balance of permafrost-affected ecosystems from long-term C sinks to long-term C sources. It is imperative to understand and characterize mechanistic links between talik, permafrost thaw, and respiration of deep soil C to detect and quantify the permafrost C feedback. Here, we use the Community Land Model (CLM) version 4.5, a permafrost and biogeochemistry model, in comparison to long-term deep borehole data along North American and Siberian transects, to investigate thaw-driven C sources in NHL ( > 55° N) from 2000 to 2300. Widespread talik at depth is projected across most of the NHL permafrost region (14 million km2) by 2300, 6.2 million km2 of which is projected to become a long-term C source, emitting 10 Pg C by 2100, 50 Pg C by 2200, and 120 Pg C by 2300, with few signs of slowing. Roughly half of the projected C source region is in predominantly warm sub-Arctic permafrost following talik onset. This region emits only 20 Pg C by 2300, but the CLM4.5 estimate may be biased low by not accounting for deep C in yedoma. Accelerated decomposition of deep soil C following talik onset shifts the ecosystem C balance away from surface dominant processes (photosynthesis and litter respiration), but sink-to-source transition dates are delayed by 20-200 years by high ecosystem productivity, such that talik peaks early ( ˜ 2050s, although borehole data suggest sooner) and C source transition peaks late ( ˜ 2150-2200). The remaining C source region in cold northern Arctic permafrost, which shifts to a net

  9. Quantifying greenhouse gas sources and sinks in managed wetland systems

    Science.gov (United States)

    Stephen M Ogle; Patrick Hunt; Carl Trettin

    2014-01-01

    This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions and sinks at the entity scale for managed wetland systems. More specifically, it focuses on methods for managed palustrine wetlands.1 Section 4.1 provides an overview of wetland systems and resulting GHG emissions, system boundaries and temporal scale, a summary of the...

  10. Marsh soils as potential sinks for Bacteroides fecal indicator bacteria, Waccamaw National Wildlife Refuge, Georgetown, SC, USA

    Science.gov (United States)

    Drexler, Judith Z.; Johnson, Heather E.; Duris, Joseph W.; Krauss, Ken W.

    2014-01-01

    A soil core collected in a tidal freshwater marsh in the Waccamaw National Wildlife Refuge (Georgetown, SC) exuded a particularly strong odor of cow manure upon extrusion. In order to test for manure and determine its provenance, we carried out microbial source tracking using DNA markers for Bacteroides, a noncoliform, anaerobic bacterial group that represents a broad group of the fecal population. Three core sections from 0-3 cm, 9-12 cm and 30-33 were analyzed for the presence of Bacteroides. The ages of core sediments were estimated using 210Pb and 137Cs dating. All three core sections tested positive for Bacteroides DNA markers related to cow or deer feces. Because cow manure is stockpiled, used as fertilizer, and a source of direct contamination in the Great Pee Dee River/Winyah Bay watershed, it is very likely the source of the Bacteroides that was deposited on the marsh. The mid-points of the core sections were dated as follows: 0-3 cm: 2009; 9-12 cm: 1999, and 30-33 cm: 1961. The presence of Bacteroides at different depths/ages in the soil profile indicates that soils in tidal freshwater marshes are, at the least, capable of being short-term sinks for Bacteroides and, may have the potential to be long-term sinks of stable, naturalized populations.

  11. Transient cooling of electronics using phase change material (PCM)-based heat sinks

    International Nuclear Information System (INIS)

    Kandasamy, Ravi; Wang Xiangqi; Mujumdar, Arun S.

    2008-01-01

    Use of a phase change material (PCM)-based heat sink in transient thermal management of plastic quad flat package (QFP) electronic devices was investigated experimentally and numerically. Results show that increased power inputs enhance the melting rate as well as the thermal performance of the PCM-based heat sinks until the PCM is fully melted. A three-dimensional computational fluid dynamics model was proposed to simulate the problem and demonstrated good agreement with experimental data. Results indicate the potential for PCM-based heat sinks for use in intermittent-use devices

  12. Landfills as sinks for (hazardous) substances.

    Science.gov (United States)

    Scharff, Heijo

    2012-12-01

    The primary goal of waste regulations is to protect human health and the environment. This requires the removal from the material cycle of those materials that cannot be processed without harm. Policies to promote recycling hold a risk that pollutants are dispersed. Materials have an environmental impact during their entire life cycle from extraction through production, consumption and recycling to disposal. Essentially there are only two routes for pollutants that cannot be rendered harmless: storage in sinks or dispersion into the environment. Many sinks do not contain substances absolutely, but result in slow dispersion. Dispersion leads to exposure and impact to human health and the environment. It is therefore important to assess the impact of the release to the environment. Based on various sources this paper discusses important material flows and their potential impact. This is compared with the intentions and achievements of European environmental and resource policy. The polluter pays principle is being implemented in Europe, but lags behind implementation of waste management regulations. As long as producers are allowed to add hazardous substances to their products and don't take their products back, it is in society's best interest to carefully consider whether recycling or storage in a sink is the better solution. This requires further development of life-cycle assessment tools and harmonization of regulations. In many cases the sink is unavoidable. Landfills as sinks will be needed in the future. Fail-safe design and construction as well as sustainable management of landfills must be further developed.

  13. Characterization of occurrence, sources and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in a tropical urban catchment

    International Nuclear Information System (INIS)

    Chen, Huiting; Reinhard, Martin; Nguyen, Tung Viet; You, Luhua; He, Yiliang; Gin, Karina Yew-Hoong

    2017-01-01

    Understanding the sources, occurrence and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the urban water cycle is important to protect and utilize local water resources. Concentrations of 22 target PFASs and general water quality parameters were determined monthly for a year in filtered water samples from five tributaries and three sampling stations of an urban water body. Of the 22 target PFASs, 17 PFASs were detected with a frequency >93% including PFCAs: C4-C12 perfluoroalkyl carboxylates, C4, C6, C8, and C10 perfluoroalkane sulfonates, perfluorooctane sulfonamides and perfluorooctane sulfonamide substances (FOSAMs), C10 perfluoroalkyl phosphonic acid (C10 PFPA), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and C8/C8 perfluoroalkyl phosphinic acid (C8/C8-PFPIA). The most abundant PFASs in water were PFBS (1.4–55 ng/L), PFBA (1.0–23 ng/L), PFOS (1.5–24 ng/L) and PFOA (2.0–21 ng/L). In the tributaries, PFNA concentrations ranged from 1.2 to 87.1 ng/L except in the May 2013 samples of two tributaries, which reached 520 and 260 ng/L. Total PFAS concentrations in the sediment samples ranged from 1.6 to 15 ng/g d.w. with EtFOSAA, PFDoA, PFOS and PFDA being the dominant species. Based on water and sediment data, two types of sources were inferred: one-time or intermittent point sources and continuous non-point sources. FOSAMs and PFOS released continually from non-point sources, C8/C8 PFPIA, PFDoA and PFUnA was released from point sources. The highly water soluble short-chain PFASs including PFBA, PFPeA and PFBS remained predominantly in the water column. The factors governing solution phase concentrations appear to be compound hydrophobicity and sorption to suspended particles. Correlation of the dissolved phase concentrations with precipitation data suggested stormwater was a significant source of PFBA, PFBS, PFUnA and PFDoA. Negative correlations with precipitation indicated sources feeding FOSAA and FOSA directly into the tributaries

  14. Sink-to-Sink Coordination Framework Using RPL: Routing Protocol for Low Power and Lossy Networks

    Directory of Open Access Journals (Sweden)

    Meer M. Khan

    2016-01-01

    Full Text Available RPL (Routing Protocol for low power and Lossy networks is recommended by Internet Engineering Task Force (IETF for IPv6-based LLNs (Low Power and Lossy Networks. RPL uses a proactive routing approach and each node always maintains an active path to the sink node. Sink-to-sink coordination defines syntax and semantics for the exchange of any network defined parameters among sink nodes like network size, traffic load, mobility of a sink, and so forth. The coordination allows sink to learn about the network condition of neighboring sinks. As a result, sinks can make coordinated decision to increase/decrease their network size for optimizing over all network performance in terms of load sharing, increasing network lifetime, and lowering end-to-end latency of communication. Currently, RPL does not provide any coordination framework that can define message exchange between different sink nodes for enhancing the network performance. In this paper, a sink-to-sink coordination framework is proposed which utilizes the periodic route maintenance messages issued by RPL to exchange network status observed at a sink with its neighboring sinks. The proposed framework distributes network load among sink nodes for achieving higher throughputs and longer network’s life time.

  15. Shoreline erosion and decadal sediment accumulation in the Tar-Pamlico estuary, North Carolina, USA: A source-to-sink analysis

    Science.gov (United States)

    Eulie, Devon O.; Corbett, D. Reide; Walsh, J. P.

    2018-03-01

    Estuaries contain vital habitats and it is important to understand how these areas respond to human activities and natural processes such as sea-level rise and wave attack. As estuarine shorelines erode or become modified with hard structures, there is potential for significantly altering the availability of sediment and the filling of coastal systems. This study used a source-to-sink approach and quantified rates of shoreline erosion in the Tar-Pamlico sub-estuary, a tributary of the larger Albemarle-Pamlico Estuarine System (APES). The average shoreline change rate (SCR) determined using an end-point method was -0.5 ± 0.9 m yr-1 for the Tar-Pamlico. Incorporating bulk density estimates, this contributes 0.6 × 105 tons of fine sediment to the system annually, or after accounting for fluvial input, about 40% of the total sediment supply to the sub-estuary. The role of the Tar-Pamlico as a sink for these sediments was addressed using the radionuclide tracers 210Pb and 137Cs. Radionuclide activities and sediment accumulation rates identified several depositional regions, in particular in the middle of the estuary. Linear sediment accumulation rates ranged from 0.10 ± 0.02 to 0.38 ± 0.02 g cm-2 yr-1, and total storage of fine sediment in the system was 1.6 × 105 t yr-1. It was not possible to confidently discern a change in the rate of shoreline erosion or seabed accumulation. A preliminary budget for fine sediments (grain-size <63 μm) was then calculated to compare erosional sources with sedimentary sinks. Almost all (∼93.0%) of the fine sediment entering the system was accumulated and stored, while only about 7.0% was exported to Pamlico Sound.

  16. Control of Delta Avulsion by Downstream Sediment Sinks

    Science.gov (United States)

    Salter, Gerard; Paola, Chris; Voller, Vaughan R.

    2018-01-01

    Understanding how fluxes are partitioned at delta bifurcations is critical for predicting patterns of land loss and gain in deltas worldwide. Although the dynamics of river deltas are influenced from both upstream and downstream, previous studies of bifurcations have focused on upstream controls. Using a quasi-1-D bifurcation model, we show that flow switching in bifurcations is strongly influenced by downstream sediment sinks. We find that coupling between upstream and downstream feedbacks can lead to oscillations in water and sediment flux partitioning. The frequency and initial rate of growth/decay of the oscillations depend on both upstream and downstream conditions, with dimensionless bifurcate length and bypass fraction emerging as key downstream parameters. With a strong offshore sink, causing bypass in the bifurcate branches, we find that bifurcation dynamics become "frozen"; that is, the bifurcation settles on a permanent discharge ratio. In contrast, under depositional conditions, we identify three dynamical regimes: symmetric; soft avulsion, where both branches remain open but the dominant branch switches; and full avulsion. Finally, we show that differential subsidence alters these regimes, with the difference in average sediment supply to each branch exactly compensating for the difference in accommodation generation. Additionally, the model predicts that bifurcations with shorter branches are less asymmetric than bifurcations with longer branches, all else equal, providing a possible explanation for the difference between backwater length distributaries, which tend to be avulsive, and relatively stable mouth-bar-scale networks. We conclude that bifurcations are sensitive both quantitatively and qualitatively to downstream sinks.

  17. Effect of sink size on growth response to elevated atmospheric CO{sub 2} within the genus Brassica

    Energy Technology Data Exchange (ETDEWEB)

    Reekie, E G; Wong, I; MacDougall, G [Acadia Univ., Wolfsville, NS (Canada); Hicklenton, P R [Agriculture Canada, Research Station, Kentville, NS (Canada)

    1998-05-01

    This study examines the response to elevated CO{sub 2} of seven broccoli, cauliflower, mustard, and turnip species (sp. Brassica). These species are the end result of selection by plant breeders for different allocation patterns and differ markedly in both the size and location of their carbon sinks. Based on the assumption that the presence of carbon storage organs is indicative of a low source to sink ratio, the hypothesis that innate differences in source to sink ratio among plants influences their response to elevated CO{sub 2} was examined. The study also investigated the question of whether location of the sink in root, stem or reproductive structures has any influence on response to elevated CO{sub 2}. Neither biomass allocation to photosynthetic versus non-photosynthetic tissues, nor leaf area ratio could adequately reflect the differences in source to sink ratio within the genus Brassica. Although the evidence is not straightforward, it is clear that there are other factors than the presence of carbon sinks that influence the response to elevated CO{sub 2}. 24 refs., 3 figs.

  18. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks

    International Nuclear Information System (INIS)

    Hemschemeier, A; Happe, T.; Fouchard, S; Cournac, L; Peltier, G.

    2008-01-01

    The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H 2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H 2 producers. Two of the still most disputed questions regarding H 2 generation by C. reinhardtii concern the electron source for H 2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H 2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulose-bisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H 2 -production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H 2 also in the presence of sulfur, H 2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype.The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H 2 evolution. (authors)

  19. Trends and regional distributions of land and ocean carbon sinks

    Directory of Open Access Journals (Sweden)

    J. L. Sarmiento

    2010-08-01

    Full Text Available We show here an updated estimate of the net land carbon sink (NLS as a function of time from 1960 to 2007 calculated from the difference between fossil fuel emissions, the observed atmospheric growth rate, and the ocean uptake obtained by recent ocean model simulations forced with reanalysis wind stress and heat and water fluxes. Except for interannual variability, the net land carbon sink appears to have been relatively constant at a mean value of −0.27 Pg C yr−1 between 1960 and 1988, at which time it increased abruptly by −0.88 (−0.77 to −1.04 Pg C yr−1 to a new relatively constant mean of −1.15 Pg C yr−1 between 1989 and 2003/7 (the sign convention is negative out of the atmosphere. This result is detectable at the 99% level using a t-test. The land use source (LU is relatively constant over this entire time interval. While the LU estimate is highly uncertain, this does imply that most of the change in the net land carbon sink must be due to an abrupt increase in the land sink, LS = NLS – LU, in response to some as yet unknown combination of biogeochemical and climate forcing. A regional synthesis and assessment of the land carbon sources and sinks over the post 1988/1989 period reveals broad agreement that the Northern Hemisphere land is a major sink of atmospheric CO2, but there remain major discrepancies with regard to the sign and magnitude of the net flux to and from tropical land.

  20. The sinking of the Soviet Mike class nuclear powered submarine

    International Nuclear Information System (INIS)

    1989-01-01

    The purpose of this preliminary study is to assess the quantities of the longer-lived or persistent radioactive materials, or source terms, that have been lost at sea with the sinking of the Soviet MIKE class submarine off Bear Island on 7 April 1989. The report arrives at an assessment of the amount of radioactivity and compares this to the quantities of radioactive materials dumped by the UK from 1953 to 1982 at which time sea dumping of radioactive wastes was suspended by international resolve. This comparison can be used to assess the relative significance of the sinking of this submarine. The study does not extrapolate the estimated radioactive source terms to an environmental or radiological significance of the sinking, although it is concluded that unless the submarine is recovered intact from the ocean floor, the by far greater part of the radioactive materials on board will disperse to the marine environment at some future time, if they are not doing so already. (author)

  1. Detecting the permafrost carbon feedback: talik formation and increased cold-season respiration as precursors to sink-to-source transitions

    Directory of Open Access Journals (Sweden)

    N. C. Parazoo

    2018-01-01

    Full Text Available Thaw and release of permafrost carbon (C due to climate change is likely to offset increased vegetation C uptake in northern high-latitude (NHL terrestrial ecosystems. Models project that this permafrost C feedback may act as a slow leak, in which case detection and attribution of the feedback may be difficult. The formation of talik, a subsurface layer of perennially thawed soil, can accelerate permafrost degradation and soil respiration, ultimately shifting the C balance of permafrost-affected ecosystems from long-term C sinks to long-term C sources. It is imperative to understand and characterize mechanistic links between talik, permafrost thaw, and respiration of deep soil C to detect and quantify the permafrost C feedback. Here, we use the Community Land Model (CLM version 4.5, a permafrost and biogeochemistry model, in comparison to long-term deep borehole data along North American and Siberian transects, to investigate thaw-driven C sources in NHL ( >  55° N from 2000 to 2300. Widespread talik at depth is projected across most of the NHL permafrost region (14 million km2 by 2300, 6.2 million km2 of which is projected to become a long-term C source, emitting 10 Pg C by 2100, 50 Pg C by 2200, and 120 Pg C by 2300, with few signs of slowing. Roughly half of the projected C source region is in predominantly warm sub-Arctic permafrost following talik onset. This region emits only 20 Pg C by 2300, but the CLM4.5 estimate may be biased low by not accounting for deep C in yedoma. Accelerated decomposition of deep soil C following talik onset shifts the ecosystem C balance away from surface dominant processes (photosynthesis and litter respiration, but sink-to-source transition dates are delayed by 20–200 years by high ecosystem productivity, such that talik peaks early ( ∼  2050s, although borehole data suggest sooner and C source transition peaks late ( ∼  2150–2200. The

  2. Effects of source and sink manipulation on distribution of 14C-assimilate and endogenous hormone contents of high-yield cotton in Xinjiang

    International Nuclear Information System (INIS)

    Luo Honghai; Zhao Ruihai; Li Junhua; Zhang Yali; Zhang Wangfeng

    2011-01-01

    Effects of leaf-cutting and bud-thinning treatment on partitioning of 14 C-assimilate and endogenous hormone contents of source leaf (respective axial leaf and sympodian leaf) during flowering and boll-setting stage in high-yield cotton were studied by using Gossipium hirsutum L. cv. Xinluzao 132 as plant material. Results showed that bud-thinning reduced the peak value of indole-3-acetic acid (IAA) delayed the accumulation of isopenteny ladenime and its riboside (iP + iPA), and decreased the contents of abscisic acid (ABA) zeatin and its riboside (Z + ZR) of source leaf. Thus, the export and partitioning of percentage of 14 C-assimilate in boll was significantly decreased at full bolling and boll opening stages. As a result, both of boll weight and yield in bud-thinning were significantly lower than control. Leaf-cutting significantly improved the content of cytokinins (CTKs) and the distributive percentage of 14 C-assimilates in boll. Furthermore, when leaves were cut 1/4 at anthesis, no differences were found in number of bolls per plant, boll weight and yield compared with control. These results suggested that regulating source-sink relation with key practices of cultivation would be of great importance to super-high and stable yield of cotton, as it would affect the changes of endogenous hormone levels and regulate the distribution of 14 C-assimilate between source and sink. (authors)

  3. Modeling structured population dynamics using data from unmarked individuals

    Science.gov (United States)

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  4. Final Project Report: Composition and Realization of Source-to-Sink High-Performance Flows: File Systems, Storage, Hosts, LAN and WAN

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chase [New Jersey Inst. of Technology, Newark, NJ (United States)

    2017-09-06

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to achieve source-to-sink high-performance flows, and (2) develop tools that provide these capabilities through simple interfaces to users and applications. In terms of the former, we propose to develop (1) optimization methods that align and transition multiple storage flows to multiple network flows on multicore, multibus hosts; and (2) edge and long-haul network path realization and maintenance using advanced provisioning methods including OSCARS and OpenFlow. We also propose synthesis methods that combine these individual technologies to compose high-performance flows using a collection of constituent storage-network flows, and realize them across the storage and local network connections as well as long-haul connections. We propose to develop automated user tools that profile the hosts, storage systems, and network connections; compose the source-to-sink complex flows; and set up and maintain the needed network connections.

  5. A Comprehensive Study of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks

    Science.gov (United States)

    Khan, Abdul Waheed; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Bangash, Javed Iqbal

    2014-01-01

    Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink. PMID:24504107

  6. The Star, a dynamically configured dataflow director for realtime control

    International Nuclear Information System (INIS)

    Bickley, M.; Kewisch, J.

    1993-01-01

    The CEBAF accelerator is controlled by an automated system consisting of 50 computers connected to machine hardware and another 20 to 30 computers used for displaying machine data. The control system communication software must manage the inter-machine communication of these computer. Each of the different segments of software that make up the machine control system is treated as data sources and data sinks, with a single process mediating the transfer of all data between any data source/data sink pair. The mediating process is called the Star. This dynamically configured process keeps track of all available machine data posted by data sources and of all data requested by data sinks. Data transmission rates through the Star are kept low by sending only data that is requested by other control software, and then only when the value of the data changes. The system is entirely response-driven, with the Star process taking action only at the request of either a data source or a sink. The software for the communication is written using standard C code and TCP/IP sockets, making the communication software platform independent

  7. Design consideration for a diversity of heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Rueckbrodt, Karin; Meischak, Stefan [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    The defense in depth approach requires in all cases to prevent and mitigate accidents that could release radioactive materials. To assure the physical design barriers (preserve fuel integrity, reactor coolant pressure boundary integrity, and containment integrity) the decay heat has to be removed. External and internal events have to be taken in consideration for the robustness of all the involved cooling systems. To ensure the cooling function in all conceivable and all unlikely events an analysis for the necessity of a diversified heat sink is essential. The diversified concepts analyses the type of the primary heat sink and use contrary sources for the heat sink, air instead of water, well instead of a river. A complete diversity is realized if also for the heat transfer diversified systems are implemented. The described solutions are mainly applied for BWR plants, but can be partly transferred analogously to PWR plants. (orig.)

  8. Manipulation of the hypocotyl sink activity by reciprocal grafting of two Raphanus sativus varieties: its effects on morphological and physiological traits of source leaves and whole-plant growth.

    Science.gov (United States)

    Sugiura, Daisuke; Betsuyaku, Eriko; Terashima, Ichiro

    2015-12-01

    To reveal whether hypocotyl sink activities are regulated by the aboveground parts, and whether physiology and morphology of source leaves are affected by the hypocotyl sink activities, we conducted grafting experiments using two Raphanus sativus varieties with different hypocotyl sink activities. Comet (C) and Leafy (L) varieties with high and low hypocotyl sink activities were reciprocally grafted and resultant plants were called by their scion and stock such as CC, LC, CL and LL. Growth, leaf mass per area (LMA), total non-structural carbohydrates (TNCs) and photosynthetic characteristics were compared among them. Comet hypocotyls in CC and LC grew well regardless of the scions, whereas Leafy hypocotyls in CL and LL did not. Relative growth rate was highest in LL and lowest in CC. Photosynthetic capacity was correlated with Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) content but unaffected by TNC. High C/N ratio and accumulation of TNC led to high LMA and structural LMA. These results showed that the hypocotyl sink activity was autonomously regulated by hypocotyl and that the down-regulation of photosynthesis was not induced by TNC. We conclude that the change in the sink activity alters whole-plant growth through the changes in both biomass allocation and leaf morphological characteristics in R. sativus. © 2015 John Wiley & Sons Ltd.

  9. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines.

    Science.gov (United States)

    Bobeica, Natalia; Poni, Stefano; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Dai, Zhanwu

    2015-01-01

    Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3% as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1%. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9%) than under carbon sufficiency (48%). Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary metabolites.

  10. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines

    Directory of Open Access Journals (Sweden)

    Natalia eBobeica

    2015-05-01

    Full Text Available Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3 % as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1 %. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9% than under carbon sufficiency (48%. Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary

  11. Mass Balance of Cenozoic Andes-Amazon Source to Sink System—Marañón Basin, Peru

    Directory of Open Access Journals (Sweden)

    Gérôme Calvès

    2018-05-01

    Full Text Available We investigate the mass balance of the Cenozoic Andes-Amazon source to sink system using rock uplift proxies and solid sedimentation of the Marañón Basin in Peru. The evolution of sedimentation rates is calibrated with regional structural restored cross-section. The quantification of eroded sediments from reliefs to sedimentary basin is achieved with ×10 Myr resolution and compared to present day proxies from the HYBAM (HYdrologie et Biogéochimie du Bassin Amazonien Critical Zone Observatory. Erosion of the early Andean landforms started during the Upper Mesozoic period, but sediment rates significantly increase during the Neogene. This is in agreement with the calibrated increase of rock uplift in the Andean orogenic belt.

  12. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.

    Science.gov (United States)

    MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J

    2017-07-20

    Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Emission and Sink of Greenhouse Gases in Soils of Moscow

    Science.gov (United States)

    Mozharova, N. V.; Kulachkova, S. A.; Lebed'-Sharlevich, Ya. I.

    2018-03-01

    The first inventory and zoning of the emission and sink of methane and carbon dioxide in the urban structure of greenhouse gases from soils and surface technogenic formations (STFs) (Technosols) on technogenic, recrementogenic, and natural sediments have been performed with consideration for the global warming potential under conditions of different formation rate of these gases, underflooding, and sealing. From gas geochemical criteria and anthropogenic pedogenesis features, the main sources of greenhouse gases, their intensity, and mass emission were revealed. The mass fractions of emissions from the sectors of waste and land use in the inventories of greenhouse gas emissions have been determined. New sources of gas emission have been revealed in the first sector, the emissions from which add tens of percent to the literature and state reports. In the second sector, emissions exceed the available data in 70 times. Estimation criteria based on the degree of manifestation and chemical composition of soil-geochemical anomalies and barrier capacities have been proposed. The sink of greenhouse gases from the atmosphere and the internal (latent) sink of methane in soils and STFs have been determined. Ecological functions of soils and STFs have been shown, and the share of latent methane sink has been calculated. The bacterial oxidation of methane in soils and STFs exceeds its emission to the atmosphere in almost hundred times.

  14. [Population dynamics and armed violence in Colombia, 1985-2010].

    Science.gov (United States)

    Salaya, Hernán Eduardo; Rodríguez, Jesús

    2014-09-01

    Describe changes in the population structure of Colombia's municipalities in relation to internal displacement in response to armed violence. A descriptive ecological study was carried out. Secondary sources were consulted, taken from the Consolidated Registry of Displaced Population and from the National Administrative Department of Statistics, to calculate expulsion and reception rates for population displaced by violence from 2002 to 2010. Based on these rates, four groups were created of municipalities in the extreme quartile for each rate during the entire period, which were classified as high expulsion, low expulsion, high reception, and low reception. Subsequently, population pyramids and structure indicators were constructed for each group of municipalities for two comparative reference years (1985 and 2010). Municipalities with high expulsion or reception rates experienced a slower epidemiological transition, with lower mean ages and aging indices. The high expulsion group had the least regression, based on the Sundbärg index. In the high reception group, the masculinity ratio decreased the most, especially among the economically active population, and it had the highest population growth. Population dynamics in Colombia have been affected by armed violence and changes in these dynamics are not uniform across the country, leading to important social, economic, and cultural consequences. This study is useful for decision-making and public policy making.

  15. Determination of sink intensity of side shoots by the use of radioactive substances

    International Nuclear Information System (INIS)

    Hartmann, H.D.; Forche, E.

    1980-01-01

    The influence of side shoots in the source-sink system of tomato plants was demonstrated by following the translocation of 32 P and 14 C applied to different leaves. The results showed that the side shoots were important sinks for photosynthetic products until the growing fruits of adjoining inflorescences became predominant attraction centres. (orig.) [de

  16. Multi-scale constraints of sediment source to sink systems in frontier basins: a forward stratigraphic modeling case study of the Levant region

    Science.gov (United States)

    Hawie, Nicolas; Deschamps, Remy; Granjeon, Didier; Nader, Fadi-Henri; Gorini, Christian; Müller, Carla; Montadert, Lucien; Baudin, François

    2015-04-01

    Recent scientific work underlined the presence of a thick Cenozoic infill in the Levant Basin reaching up to 12 km. Interestingly; restricted sedimentation was observed along the Levant margin in the Cenozoic. Since the Late Eocene successive regional geodynamic events affecting Afro-Arabia and Eurasia (collision and strike slip deformation)induced fast marginal uplifts. The initiation of local and long-lived regional drainage systems in the Oligo-Miocene period (e.g. Lebanon versus Nile) provoked a change in the depositional pattern along the Levant margin and basin. A shift from carbonate dominated environments into clastic rich systems has been observed. Through this communication we explore the importance of multi-scale constraints (i.e.,seismic, well and field data) in the quantification of the subsidence history, sediment transport and deposition of a Middle-Upper Miocene "multi-source" to sink system along the northernLevant frontier region. We prove through a comprehensive forward stratigraphic modeling workflow that the contribution to the infill of the northern Levant Basin (offshore Lebanon) is split in between proximal and more distal clastic sources as well as in situ carbonate/hemipelagic deposition. In a wider perspective this work falls under the umbrella of multi-disciplinary source to sink studies that investigate the impact of geodynamic events on basin/margin architectural evolutions, consequent sedimentary infill and thus on petroleum systems assessment.

  17. A study of seasonal and yearly modulation on carbon dioxide sources and sinks, with a particular attention to the Boreal Atlantic Ocean

    International Nuclear Information System (INIS)

    Ferrarese, S.; Longhetto, A.; Cassardo, C.; Bertoni, D.; Giraud, C.

    2002-01-01

    With the intention of identifying and monitoring space and time patterns of carbon dioxide sources and sinks, the seasonal fields of atmospheric CO 2 concentration over an area covering Europe, the Boreal Atlantic, and North Africa have been computed by using CO 2 observations measured at one or two remote sites in conjunction with the backward air trajectories crossing the same observation sites. The air trajectories have been calculated by means of the wind speed fields provided by the ECMWF (European Centre of Medium-range Weather Forecast, of Reading, UK) analyses (T213/L31 model) on a regular grid, while the atmospheric CO 2 concentrations have been measured at two alpine European stations, located in the free atmosphere, far from the influence of local industrial pollution. A modified version of the statistical receptor-to-source-oriented-model (hereafter, source-oriented model) of Stohl (Atmos. Environ. 30 (1998) 947), using the above-mentioned air trajectories, has then been applied to reconstruct the spatial distribution fields of atmospheric CO 2 . This source-oriented methodology belongs to a family of models which are simpler and easier to use than the more powerful and widespread inverse models and can allow a reliable deduction of the location of sources and sinks of gas tracers. We have applied this kind of model in order to identify source and sink macro-regions of CO 2 over the above-mentioned area in the period 1993-1998. The CO 2 observing stations of Plateau Rosa (3480 m a.s.l., in the western Alps) and Zugspite (2937 m, in the eastern Alps) have been considered particularly fit for this purpose, because of their location in high orography areas, allowing to monitor values of atmospheric CO 2 concentrations representative of fairly well-mixed air, not affected by some local influences (industries, urban emissions, etc.). In this way, it can be assumed that possible maxima or minima observed in the trend of measured gas concentration can be due

  18. Laminar nanofluid flow in microheat-sinks

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.; Kleinstreuer, C. [North Carolina State University, Raleigh, NC (United States). Dept. of Mechanical and Aerospace Engineering

    2005-06-01

    In response to the ever increasing demand for smaller and lighter high-performance cooling devices, steady laminar liquid nanofluid flow in microchannels is simulated and analyzed. Considering two types of nanofluids, i.e., copper-oxide nanospheres at low volume concentrations in water or ethylene glycol, the conjugated heat transfer problem for microheat-sinks has been numerically solved. Employing new models for the effective thermal conductivity and dynamic viscosity of nanofluids, the impact of nanoparticle concentrations in these two mixture flows on the microchannel pressure gradients, temperature profiles and Nusselt numbers are computed, in light of aspect ratio, viscous dissipation, and enhanced temperature effects. Based on these results, the following can be recommended for microheat-sink performance improvements: Use of large high-Prandtl number carrier fluids, nanoparticles at high volume concentrations of about 4% with elevated thermal conductivities and dielectric constants very close to that of the carrier fluid, microchannels with high aspect ratios, and treated channel walls to avoid nanoparticle accumulation. (Author)

  19. Quantifying the sources and sinks of nitrite in the oxygen minimum zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret

    2017-04-01

    In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption

  20. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  1. The Use of Source-Sink and Doublet Distributions Extended to the Solution of Boundary-Value Problems in Supersonic Flow

    Science.gov (United States)

    Heaslet, Max A; Lomax, Harvard

    1948-01-01

    A direct analogy is established between the use of source-sink and doublet distributions in the solution of specific boundary-value problems in subsonic wing theory and the corresponding problems in supersonic theory. The correct concept of the "finite part" of an integral is introduced and used in the calculation of the improper integrals associated with supersonic doublet distributions. The general equations developed are shown to include several previously published results and particular examples are given for the loading on rolling and pitching triangular wings with supersonic leading edges.

  2. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive...... structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors...... sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT...

  3. U-Pb ages of detrital zircon from Cenozoic sediments in the southwestern Tarim Basin, NW China: Implications for Eocene-Pliocene source-to-sink relations and new insights into Cretaceous-Paleogene magmatic sources

    Science.gov (United States)

    Yang, Wei; Fu, Ling; Wu, Chaodong; Song, Yan; Jiang, Zhenxue; Luo, Qun; Zhang, Ziya; Zhang, Chen; Zhu, Bei

    2018-05-01

    A detailed investigation of potential provenance is still lacking in the southwestern Tarim Basin, which restricts our complete understanding of Cenozoic source-to-sink relations between the basin interior and the Pamir salient - western Kunlun Mountain Range. Debate also exists concerning the potential sources of the Paleogene and Cretaceous igneous detritus present in the Cenozoic sedimentary sequences. Here, we present U-Pb (LA-ICP-MS) ages of detrital zircons from the continuous Eocene-Pliocene sediment series in the well-exposed Aertashi section to investigate changes in sediment provenance through time. The U-Pb detrital zircon ages range widely from 45 to 3204 Ma and can be divided into seven main groups: 45-65 Ma (sub-peak at 49 Ma), 67-103 Ma (sub-peak at 95 Ma), 196-251 Ma (sub-peak at 208 Ma), 252-416 Ma (sub-peak at 296 Ma), 417-540 Ma (sub-peak at 446 Ma), 550-1429 Ma (sub-peaks at 614 Ma, 828 Ma and 942 Ma) and 1345-3204 Ma (sub-peaks at 1773 Ma and 2480 Ma). These zircons were mainly derived from the western Kunlun Mountain Range and northern Pamir salient to the west and south. The evolution of the provenance and source-to-sink relationship patterns in the southwestern Tarim Basin can be divided into three stages: (1) The Middle Eocene to Lower Oligocene sediments display a wide variety of detrital zircon ages, suggesting that the source area was extensive. (2) A major change in provenance occurred during the Late Oligocene to Early Miocene and was characterized by an abrupt increase in the proportion of Triassic and Lower Paleozoic igneous components, implying a significant adjustment in topography induced by the initial uplift and exhumation of the western Kunlun Mountain Range and northern Pamir salient. (3) In the Late Miocene, the source-to-sink system transformed again, and contributions of Triassic to Lower Paleozoic material weakened substantially due to the sufficient indentation of the Pamir salient. Our integrated analyses of zircon

  4. Fish population dynamics

    National Research Council Canada - National Science Library

    Gulland, J. A

    1977-01-01

    This book describes how the dynamics of fish populations can be analysed in terms of the factors affecting their rates of growth, mortality and reproduction, with particular emphasis on the effects of fishing...

  5. Modelling Nd-isotopes with a coarse resolution ocean circulation model: Sensitivities to model parameters and source/sink distributions

    International Nuclear Information System (INIS)

    Rempfer, Johannes; Stocker, Thomas F.; Joos, Fortunat; Dutay, Jean-Claude; Siddall, Mark

    2011-01-01

    The neodymium (Nd) isotopic composition (Nd) of seawater is a quasi-conservative tracer of water mass mixing and is assumed to hold great potential for paleo-oceanographic studies. Here we present a comprehensive approach for the simulation of the two neodymium isotopes 143 Nd, and 144 Nd using the Bern3D model, a low resolution ocean model. The high computational efficiency of the Bern3D model in conjunction with our comprehensive approach allows us to systematically and extensively explore the sensitivity of Nd concentrations and ε Nd to the parametrisation of sources and sinks. Previous studies have been restricted in doing so either by the chosen approach or by computational costs. Our study thus presents the most comprehensive survey of the marine Nd cycle to date. Our model simulates both Nd concentrations as well as ε Nd in good agreement with observations. ε Nd co-varies with salinity, thus underlining its potential as a water mass proxy. Results confirm that the continental margins are required as a Nd source to simulate Nd concentrations and ε Nd consistent with observations. We estimate this source to be slightly smaller than reported in previous studies and find that above a certain magnitude its magnitude affects ε Nd only to a small extent. On the other hand, the parametrisation of the reversible scavenging considerably affects the ability of the model to simulate both, Nd concentrations and ε Nd . Furthermore, despite their small contribution, we find dust and rivers to be important components of the Nd cycle. In additional experiments, we systematically varied the diapycnal diffusivity as well as the Atlantic-to-Pacific freshwater flux to explore the sensitivity of Nd concentrations and its isotopic signature to the strength and geometry of the overturning circulation. These experiments reveal that Nd concentrations and ε Nd are comparatively little affected by variations in diapycnal diffusivity and the Atlantic-to-Pacific freshwater flux

  6. Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus.

    Science.gov (United States)

    Guivier, E; Galan, M; Chaval, Y; Xuéreb, A; Ribas Salvador, A; Poulle, M-L; Voutilainen, L; Henttonen, H; Charbonnel, N; Cosson, J F

    2011-09-01

    Rodent host dynamics and dispersal are thought to be critical for hantavirus epidemiology as they determine pathogen persistence and transmission within and between host populations. We used landscape genetics to investigate how the population dynamics of the bank vole Myodes glareolus, the host of Puumala hantavirus (PUUV), vary with forest fragmentation and influence PUUV epidemiology. We sampled vole populations within the Ardennes, a French PUUV endemic area. We inferred demographic features such as population size, isolation and migration with regard to landscape configuration. We next analysed the influence of M. glareolus population dynamics on PUUV spatial distribution. Our results revealed that the global metapopulation dynamics of bank voles were strongly shaped by landscape features, including suitable patch size and connectivity. Large effective size in forest might therefore contribute to the higher observed levels of PUUV prevalence. By contrast, populations from hedge networks highly suffered from genetic drift and appeared strongly isolated from all other populations. This might result in high probabilities of local extinction for both M. glareolus and PUUV. Besides, we detected signatures of asymmetric bank vole migration from forests to hedges. These movements were likely to sustain PUUV in fragmented landscapes. In conclusion, our study provided arguments in favour of source-sink dynamics shaping PUUV persistence and spread in heterogeneous, Western European temperate landscapes. It illustrated the potential contribution of landscape genetics to the understanding of the epidemiological processes occurring at this local scale. © 2011 Blackwell Publishing Ltd.

  7. Source-to-Sink constraints on tectonic and sedimentary evolution of the Central Range, Cenderawasih Bay (Indonesia) and Gulf of Papua (Papua New Guinea)

    Science.gov (United States)

    Babault, J.; Viaplana-Muzas, M.; Legrand, X.; Van Den Driessche, J.; González-Quijano, M.; Mudd, S. M.; Kergaravat, C.; Ringenbach, J. C.; Callot, J. P.; Vetel, W.; Dhont, D.

    2017-12-01

    The island of Papua New Guinea is the result of continent-arc collision that began building the island's Central Range during the late Miocene. The tectono-sedimentary evolution of the Cenderawasih Bay, in the northwestern part of the island of Papua New Guinea (Indonesia), which links the Kepala Burung block to the Central Range is still poorly understood. Previous studies have shown that this bay contains a thick (> 8 km) sequence of undated sediments. Hypothesis claim that the embayment resulted from a 3 Ma aperture created by anticlockwise rotation of the Kepala Burung block with respect to the northern rim of the Australian plate, or from the southwest drift of a slice of volcanics/oceanic crust between 8 and 6 Ma. Using a source-to-sink approach, based on i) a geomorphologic analysis of the drainage network dynamics, ii) a reassessment of available thermochronological data, and iii) seismic lines interpretation, we suggest that sediments started to accumulate in the Cenderawasih Bay and onshore in the Waipoga Basin in the late Miocene since the beginning of the Central Range building at 12 Ma, resulting in sediment accumulation of up to 12200 m. At first order, we predict that infilling is mainly composed of siliciclastics sourced in the graphite-bearing Ruffaer Metamorphic Belt and its equivalent in the Weyland Overthrust. From the unroofing paths in the Central Range we deduce two rates of solid phase accumulation (SPAR) since 12 Ma, the first one at a mean SPAR ranging between 0.12-0.25 mm/a with a maximum SPAR of 0.23-0.58 mm/a, and the second during the last 3 Ma, at a mean SPAR ranging between 0.93-1.62 mm/a and with a maximum SPAR between 2.13-3.17 mm/a, i.e., 6700-10000 m of Plio-Pleistocene sediment accumulation. Local transtensional tectonics may explain these unusually high rates of sedimentation in an overall sinistral oblique convergence setting. We further extended this approach to the Gulf of Papua (Papua New Guinea), a foreland basin developed

  8. Development of Thermal Design Program for an Electronic Telecommunication System Using Heat Sink

    International Nuclear Information System (INIS)

    Lee, Jung Hwan; Kim, Jong Man; Chun, Ji Hwan; Bae, Chul Ho; Suh, Myung Won

    2007-01-01

    The purpose of this study is to investigate the cooling performance of heat sinks for an electronic telecommunication system by adequate natural convection. Heat generation rates of electronic components and the temperature distributions of heat sinks and surrounding air are analyzed experimentally and numerically. In order to perform the heat transfer analysis for the thermal design of telecommunication system, a program is developed. The program used the graphic user interface environment to determine the arrangement of heat sources, interior fan capacity, and heat sink configuration. The simulation results showed that the heat sinks were able to achieve a cooling capacity of up to 230W at the maximum temperature difference of 19 .deg. C. To verify the results from the numerical simulation, an experiment was conducted under the same condition as the numerical simulation, and their results were compared. The design program gave good prediction of the effects of various parameters involved in the design of a heat sinks for an electronic telecommunication system

  9. Population dynamics at high Reynolds number

    NARCIS (Netherlands)

    Perlekar, P.; Benzi, R.; Nelson, D.R.; Toschi, F.

    2010-01-01

    We study the statistical properties of population dynamics evolving in a realistic two-dimensional compressible turbulent velocity field. We show that the interplay between turbulent dynamics and population growth and saturation leads to quasi-localization and a remarkable reduction in the carrying

  10. Spatiotemporal distribution and national measurement of the global carbonate carbon sink.

    Science.gov (United States)

    Li, Huiwen; Wang, Shijie; Bai, Xiaoyong; Luo, Weijun; Tang, Hong; Cao, Yue; Wu, Luhua; Chen, Fei; Li, Qin; Zeng, Cheng; Wang, Mingming

    2018-06-21

    The magnitudes, spatial distributions and contributions to global carbon budget of the global carbonate carbon sink (CCS) still remain uncertain, allowing the problem of national measurement of CCS remain unresolved which will directly influence the fairness of global carbon markets and emission trading. Here, based on high spatiotemporal resolution ecological, meteorological raster data and chemical field monitoring data, combining highly reliable machine learning algorithm with the thermodynamic dissolution equilibrium model, we estimated the new CCS of 0.89 ± 0.23 petagrams of carbon per year (Pg C yr -1 ), amounting to 74.50% of global net forest sink and accounting for 28.75% of terrestrial sinks or 46.81% of the missing sink. Our measurement for 142 nations of CCS showed that Russia, Canada, China and the USA contribute over half of the global CCS. We also presented the first global fluxes maps of the CCS with spatial resolution of 0.05°, exhibiting two peaks in equatorial regions (10°S to 10°N) and low latitudes (10°N to 35°N) in Northern Hemisphere. By contrast, there are no peaks in Southern Hemisphere. The greatest average carbon sink flux (CCSF), i.e., 2.12 tC ha -1  yr -1 , for 2000 to 2014 was contributed by tropical rainforest climate near the equator, and the smallest average CCSF was presented in tropical arid zones, showing a magnitude of 0.26 tC ha -1  yr -1 . This research estimated the magnitudes, spatial distributions, variations and contributions to the global carbon budget of the CCS in a higher spatiotemporal representativeness and expandability way, which, via multiple mechanisms, introduced an important sink in the terrestrial carbon sink system and the global missing sink and that can help us further reveal and support our understanding of global rock weathering carbon sequestration, terrestrial carbon sink system and global carbon cycle dynamics which make our understanding of global change more comprehensive

  11. Sinking towards destiny: High throughput measurement of phytoplankton sinking rates through time-resolved fluorescence plate spectroscopy.

    Science.gov (United States)

    Bannon, Catherine C; Campbell, Douglas A

    2017-01-01

    Diatoms are marine primary producers that sink in part due to the density of their silica frustules. Sinking of these phytoplankters is crucial for both the biological pump that sequesters carbon to the deep ocean and for the life strategy of the organism. Sinking rates have been previously measured through settling columns, or with fluorimeters or video microscopy arranged perpendicularly to the direction of sinking. These side-view techniques require large volumes of culture, specialized equipment and are difficult to scale up to multiple simultaneous measures for screening. We established a method for parallel, large scale analysis of multiple phytoplankton sinking rates through top-view monitoring of chlorophyll a fluorescence in microtitre well plates. We verified the method through experimental analysis of known factors that influence sinking rates, including exponential versus stationary growth phase in species of different cell sizes; Thalassiosira pseudonana CCMP1335, chain-forming Skeletonema marinoi RO5A and Coscinodiscus radiatus CCMP312. We fit decay curves to an algebraic transform of the decrease in fluorescence signal as cells sank away from the fluorometer detector, and then used minimal mechanistic assumptions to extract a sinking rate (m d-1) using an RStudio script, SinkWORX. We thereby detected significant differences in sinking rates as larger diatom cells sank faster than smaller cells, and cultures in stationary phase sank faster than those in exponential phase. Our sinking rate estimates accord well with literature values from previously established methods. This well plate-based method can operate as a high throughput integrative phenotypic screen for factors that influence sinking rates including macromolecular allocations, nutrient availability or uptake rates, chain-length or cell size, degree of silification and progression through growth stages. Alternately the approach can be used to phenomically screen libraries of mutants.

  12. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen

    Science.gov (United States)

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-01-01

    Background and Aims Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina. Methods One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Key Results Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the

  13. Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control

    National Research Council Canada - National Science Library

    Corbin, Michael

    2002-01-01

    .... Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play...

  14. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  15. Population Dynamics of Early Human Migration in Britain.

    Directory of Open Access Journals (Sweden)

    Mayank N Vahia

    Full Text Available Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction.We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples' movement over ~2000 years before the present era.We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available.

  16. Use of Mobile Device Data To Better Estimate Dynamic Population Size for Wastewater-Based Epidemiology.

    Science.gov (United States)

    Thomas, Kevin V; Amador, Arturo; Baz-Lomba, Jose Antonio; Reid, Malcolm

    2017-10-03

    Wastewater-based epidemiology is an established approach for quantifying community drug use and has recently been applied to estimate population exposure to contaminants such as pesticides and phthalate plasticizers. A major source of uncertainty in the population weighted biomarker loads generated is related to estimating the number of people present in a sewer catchment at the time of sample collection. Here, the population quantified from mobile device-based population activity patterns was used to provide dynamic population normalized loads of illicit drugs and pharmaceuticals during a known period of high net fluctuation in the catchment population. Mobile device-based population activity patterns have for the first time quantified the high degree of intraday, week, and month variability within a specific sewer catchment. Dynamic population normalization showed that per capita pharmaceutical use remained unchanged during the period when static normalization would have indicated an average reduction of up to 31%. Per capita illicit drug use increased significantly during the monitoring period, an observation that was only possible to measure using dynamic population normalization. The study quantitatively confirms previous assessments that population estimates can account for uncertainties of up to 55% in static normalized data. Mobile device-based population activity patterns allow for dynamic normalization that yields much improved temporal and spatial trend analysis.

  17. Estimation of population dose from all sources in Japan

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Nakagawa, Takeo; Kai, Michiaki; Yoshizawa, Yasuo

    1988-01-01

    The purposes of estimation of population doses are to understand the per-caput doses of the public member from each artificial radiation source and to determine the proportion contributed of the doses from each individual source to the total irradiated population. We divided the population doses into two categories: individual-related and source-related population doses. The individual-related population dose is estimated based on the maximum assumption for use in allocation of the dose limits for members of the public. The source-related population dose is estimated both to justify the sources and practices and to optimize radiation protection. The source-related population dose, therefore, should be estimated as realistically as possible. We investigated all sources that caused exposure to the population in Japan from the above points of view

  18. Regulation of assimilate import into sink organs: Update on molecular drivers of sink strength

    Directory of Open Access Journals (Sweden)

    Saadia eBihmidine

    2013-06-01

    Full Text Available Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INV, not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell-cycle and cell-division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive feast genes, they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength

  19. Allee effects on population dynamics with delay

    International Nuclear Information System (INIS)

    Celik, C.; Merdan, H.; Duman, O.; Akin, O.

    2008-01-01

    In this paper, we study the stability analysis of equilibrium points of population dynamics with delay when the Allee effect occurs at low population density. Mainly, our mathematical results and numerical simulations point to the stabilizing effect of the Allee effects on population dynamics with delay

  20. Acoustic monitoring of a ball sinking in vibrated granular sediments

    Science.gov (United States)

    van den Wildenberg, Siet; Léopoldès, Julien; Tourin, Arnaud; Jia, Xiaoping

    2017-06-01

    We develop an ultrasound probing to investigate the dynamics of a high density ball sinking in 3D opaque dense granular suspensions under horizontal weak vibrations. We show that the motion of the ball in these horizontally vibrated glass bead packings saturated by water is consistent with the frictional rheology. The extracted stress-strain relation evidences an evolution of flow behaviour from frictional creep to inertial regimes. Our main finding is that weak external vibration primarily affects the yield stress and controls the depth of sinking via vibration-induced sliding at the grain contact. Also, we observe that the extracted rheological parameters depend on the size of the probing ball, suggesting thus a non-local rheology.

  1. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    Science.gov (United States)

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (g s ), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (V cmax ) and the initial slope of A-C i curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in V cmax , k, g s and ATP production driven by electron transport (J atp ). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in V cmax , g s and J atp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Structural stability of nonlinear population dynamics.

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  3. Structural stability of nonlinear population dynamics

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  4. Investigation of internally finned LED heat sinks

    Science.gov (United States)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  5. Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    Directory of Open Access Journals (Sweden)

    Malin Premaratne

    2009-01-01

    Full Text Available Measurement losses adversely affect the performance of target tracking. The sensor network’s life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node’s path. First, we assume that the mobile sink node’s position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods’ performance.

  6. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  7. A 3 A sink/source current fast transient response low-dropout Gm driven linear regulator

    International Nuclear Information System (INIS)

    Chu Xiuqin; Li Qingwei; Lai Xinquan; Yuan Bing; Li Yanming; Zhao Yongrui

    2011-01-01

    A 3 A sink/source G m -driven CMOS low-dropout regulator (LDO), specially designed for low input voltage and low cost, is presented by utilizing the structure of a current mirror G m (transconductance) driving technique, which provides high stability as well as a fast load transient response. The proposed LDO was fabricated by a 0.5 μm standard CMOS process, and the die size is as small as 1.0 mm 2 . The proposed LDO dissipates 220 μA of quiescent current in no-load conditions and is able to deliver up to 3 A of load current. The measured results show that the output voltage can be resumed within 2 μs with a less than 1 mV overshoot and undershoot in the output current step from -1.8 to 1.8 A with a 0.1 μs rising and falling time at three 10 μF ceramic capacitors. (semiconductor integrated circuits)

  8. A framework for estimating the determinants of spatial and temporal variation in vital rates and inferring the occurrence of unobserved extreme events.

    Science.gov (United States)

    Vincenzi, Simone; Jesenšek, Dušan; Crivelli, Alain J

    2018-03-01

    We develop a general framework that combines long-term tag-recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004-2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event.

  9. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2008

    Science.gov (United States)

    2010-04-01

    An emissions inventory that identifies and quantifies a country's primary anthropogenic sources and sinks of greenhouse gases is essential for addressing climate change. This inventory adheres to both 1) a comprehensive and detailed set of methodolog...

  10. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    Science.gov (United States)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    Coastal development in Black Sea has increased in recent years. Therefore, careful monitoring of the storms and verification of numerical tools with reliable data has become important. Previous studies by Kirezci and Ozyurt (2015) investigated extreme events in Black Sea using different wind datasets (NCEP's CFSR and ECMWF's operational datasets) and different numerical tools (SWAN and Wavewatch III). These studies showed that significant effect to results is caused by the deep water source-sink terms (wave growth by wind, deep water dissipation of wave energy (whitecapping) and deep water non-linear wave-wave interactions). According to Timmermans(2015), uncertainty about wind forcing and the process of nonlinear wave-wave interactions are found to be dominant in numerical wave modelling. Therefore, in this study deep water source and sink term solution approaches of 3rd generation numerical tool (SWAN model) are tested, validated and compared using the selected extreme storms in Black Sea. 45 different storms and storm like events observed in Black Sea between years 1994-1999 are selected to use in the models. The storm selection depends on the instrumental wave data (significant wave heights, mean wave period and mean wave direction) obtained in NATO-TU Waves project by the deep water buoy measurements at Hopa, Sinop, Gelendzhik, and wind data (mean and peak wind speeds, storm durations) of the regarding events. 2 different wave growth by wind with the corresponding deep water dissipation terms and 3 different wave -wave interaction terms of SWAN model are used in this study. Wave growth by wind consist of two parts, linear growth which is explained by Cavaleri and Malanotte-Rizzoli(1981),and dominant exponential growth. There are two methods in SWAN model for exponential growth of wave, first one by Snyder et al. (1981), rescaled in terms of friction velocity by Komen et. al (1984) which is derived using driving wind speed at 10m elevation with related drag

  11. Using Stable Isotopes to Link Nutrient Sources in the Everglades and Biological Sinks in Florida Bay: A Biogeochemical Approach to Evaluate Ecosystem Response to Changing Nutrient Regimes

    Science.gov (United States)

    Hoare, A. M.; Hollander, D. J.; Heil, C.; Glibert, P.; Murasko, S.; Revilla, M.; Alexander, J.

    2005-05-01

    Anthropogenic influences in South Florida have led to deterioration of its two major ecosystems, the Everglades wetlands and the Florida Bay estuary. Consequently, the Comprehensive Everglades Restoration Plan has been proposed to restore the Everglades ecosystem; however, restoration efforts will likely exert new ecological changes in the Everglades and ultimately Florida Bay. The success of the Florida Everglades restoration depends on our understanding and ability to predict how regional changes in the distribution and composition of dissolved organic and inorganic nutrients will direct the downstream biogeochemical dynamics of Florida Bay. While the transport of freshwater and nutrients to Florida Bay have been studied, much work remains to directly link nutrient dynamics in Florida Bay to nutrient sources in the Everglades. Our study uses stable C and N isotopic measurements of chemical and biological materials from the Everglades and Florida Bay as part of a multi-proxy approach to link nutrient sources in the Everglades to biological sinks in Florida Bay. Isotopic analyses of dissolved and particulate species of water, aquatic vegetation and sedimentary organic matter show that the watersheds within the Everglades are chemically distinct and that these signatures are also reflected in the bay. A large east-west gradient in both carbon and nitrogen (as much as 10‰ for δ15N POM) reflect differing nutrient sources for each region of Florida Bay and is strongly correlated with upstream sources in the Everglades. Isotopic signatures also reflect seasonal relationships associated with wet and dry periods. High C and N measurements of DOM and POM measurements suggest significant influence from waste water in Canal C-111 in eastern Florida Bay, particularly during the dry season. These observations show that nutrients from the Everglades watersheds enter Florida Bay and are important in controlling biogeochemical processes in the bay. This study proves that

  12. Population dynamics on heterogeneous bacterial substrates

    Science.gov (United States)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  13. Dynamic Properties of the Solow Model with Increasing or Decreasing Population and Time-to-Build Technology

    Directory of Open Access Journals (Sweden)

    Luca Guerrini

    2013-01-01

    Full Text Available We introduce a time-to-build technology in a Solow model with nonconstant population. Our analysis shows that the population dynamics may be a source of stability switches and Hopf bifurcations. The analytical results are obtained using the recent technique introduced by Beretta and Kuang (2002 in the studying of delayed differential equations with delay-dependent coefficients in characteristic equation. Numerical simulations are performed in order to illustrate the main dynamic features of the model.

  14. The role of plantation sinks

    International Nuclear Information System (INIS)

    Read, Peter

    2001-01-01

    In this paper it is argued that in the long term biofuel should play a significant role in global climate policy. Recent technological developments, as well as sustainable development criteria, would favour growing biofuel in community- scale plantations in developing countries. It is also pointed out that the lead times involved in growing biofuels are so great that the inclusion of biofuel plantation sinks in the CDM for the first commitment period would be desirable. It is suggested that to meet opposition to the inclusion of plantation sinks in the first commitment period plantation, sinks should be linked to biofuels technology development and production, and a biofuels obligation for plantation sink projects in the CDM should be established. (Author)

  15. Impact on Divertor Operation of the Pattern of Edge and SOL Flows Induced by Particle Sources and Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, P.; Bucalossi, J.; Futtersack, R.; Guillemaut, C.; Moulton, D.; Tamain, P., E-mail: philippe.ghendrih@cea.fr [CEA-IRFM, Saint Paul-lez-Durance (France); Auphan, T.; Mentrelli, A. [LATP, Technopole de Chateau-Gombert, Marseille (France); Bensiali, B.; Chiavassa, G.; Ciracolo, G.; Paredes, A.; Serre, E.; Schwander, F. [M2P2, Technopole de Chateau-Gombert, Marseille (France); Bilanceri, M.; Guillard, H. [INRIA, Sophia Antipolis and LJAD, Nice (France); Bodi, K. [M2P2, Technopole de Chateau-Gombert, Marseille (France); Dept. of Aerospace Engg., IIT Bombay, Mumbai (India); Bufferand, H. [CEA-IRFM, Saint Paul-lez-Durance (France); M2P2,Technopole de Chateau-Gombert, Marseille (France); Marandet, Y. [PIIM, CNRS/Aix-Marseille Universite, Marseille (France); Pasquetti, R. [LJAD, Nice (France)

    2012-09-15

    Full text: The role of divertors in present device operation is to control particle sources and sinks and consequently the energy flux channels in the boundary region of magnetically confined plasmas. The ESPOIR effort is based on a set of fluid codes from 1-D parallel to 3-D micro-turbulence modelling. Due to the long range particle transport into the SOL governed by intermittent turbulent bursts, the precise location of the particle sources at the wall is required to properly address the screening of the neutral particle influx. To that end we have developed a penalisation technique that extends the simulation domain up to all the plasma facing components of interest. The penalisation technique initiated for particle and momentum sinks has been extended to the temperatures as well as to electric currents. We have used the penalisation technique in 2D simulations of the radial shift of the plasma from the low field side modular limiter to the high field side bumper limiter. Experiments of the kind where achieved in TFTR, JET and Tore Supra to investigate the particle confinement time and particle trapping in the wall. We show that the ballooned transport plays a crucial role in these experiments so that most of the core density drop is reversible. In the divertor configuration, low ionisation sources are shown to govern a supersonic solution. Simulations of such a regime exhibit weak divertor density variation as the core plasma density is ramped up, in agreement with analytical predictions. In the standard divertor regimes, we show analytically that the plasma tends to a supersonic flow when the total plasma pressure is conserved along the field lines. The back transition to the subsonic flow at the plate then takes place at the cross-over between the diffusive heat transport and the convective energy transport. Such behaviour disappears when total plasma pressure losses take place. In the case of very strong divertor screening one finds a Mach number close to

  16. Sources and sinks of carbonyl sulfide in a mountain grassland and relationships to the carbon dioxide exchange

    Science.gov (United States)

    Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Wohlfahrt, Georg

    2016-04-01

    appears to be caused by incomplete stomatal closure and continuing catalytic CA activity in the absence of light. The resulting data also revealed a weaker correlation between COS- and CO2-fluxes than expected, which hints to further COS-exchange mechanisms at our site. To disentangle sources and sinks within and below the canopy, we measured vertical within-canopy profiles of COS and CO2 and inferred the vertical distribution of sources and sinks by means of an inverse Lagrangian analysis. The resulting data confirmed that soils at our site are sources for COS during daytime and close to neutral during nighttime and place the major COS/CO2 sink in the central part of the canopy, where a large amount of leaf area still receives enough light. Taken together our results suggest that using COS as a tracer for canopy CO2 and H2O exchange may be less straight forward than previously thought and that further work is required to better understand the ecosystem-scale COS exchange and its drivers.

  17. Population dynamics in variable environments

    CERN Document Server

    Tuljapurkar, Shripad

    1990-01-01

    Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula­ tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to re...

  18. Seasonal atmospheric deposition and air-sea gaseous exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implication for the source-sink processes

    Science.gov (United States)

    Jiang, Y.; Guo, Z.

    2017-12-01

    As the home of the largest port in the world, the Yangtze River Estuary (YRE) in the East China Sea (ECS) is adjacent to the largest economic zone in China with more than 10% of Chinese population and provides one-fifth of national GDP. The YRE is under the path of contaminated East Asian continental outflow. These make the YRE unique for the pollutant biogeochemical cycling in the world. In this work, 94 pairs of air samples and 20 surface seawater samples covering four seasons were collected from a remote receptor site in the YRE from March 2014 to January 2015, in order to explore the seasonal fluxes of air-sea gaseous exchange and atmospheric dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. The gaseous PAHs were released from seawater to atmosphere during the whole year with an average of 3039 ± 2030 ng m-2 d-1. The gaseous exchange of PAHs was referred as the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of the total dry and wet deposition. The gaseous PAH exchange flux was dominated by 3-ring PAHs, with the highest value in summer while lowest in winter, depicting a strong seasonal variation due to temperature, wind speed and air-sea concentration gradient difference among seasons. Based on the simplified mass balance estimation, net 9.6 tons/y of PAHs was volatilized from seawater to atmosphere with an area of approximately 20000 km2 in the YRE. Apart from Yangtze River input and ocean ship emissions in the entire year, the selective release of low molecular weight PAHs from sediments in winter due to re-suspension triggered by the East Asian winter monsoon could be another possible source for dissolved PAHs. This work suggests that the source-sink processes of PAHs at air

  19. Characterization of the near-source population around five ...

    Science.gov (United States)

    Many ports are currently preparing for increased freight traffic, which may result in elevated local air pollution in areas near the port and freight transportation corridors. In this study, a geographical information system (GIS) analysis of areas surrounding five ports – Port of New York and New Jersey, Port of Virginia, Port of Savannah, Port of Miami, and Port of Houston – was conducted to characterize the population that might be affected by air emissions from the freight transportation network and to determine which sources had the potential to affect the most people. Defining “near-source” populations as living within 300 m of the freight transportation network, namely the port and associated truck routes, railroads, and intermodal facilities (e. g. rail yards and warehouses); near-source populations ranged from 37,000 to over a million within 10 km of a port. At the ports considered, the population living within 300 m of the port boundary constituted of the total near-source population. Sensitive population exposure was also indicated, such as the 81 day care centers and K-12 schools in near-source environments within 2 km of the Port of New York and New Jersey. Minority groups constituted 55 % to 85 % of the near-source populations in the five port areas. For four of the five ports, the mean and median income of the near-source population was lower and the minority percentage was higher than the population living adjacent to the near-sou

  20. Population dynamical responses to climate change

    DEFF Research Database (Denmark)

    Forchhammer, Mads; Schmidt, Niels Martin; Høye, Toke Thomas

    2008-01-01

    approaches, we analyse concurrently the influence of climatic variability and trophic interactions on the temporal population dynamics of species in the terrestrial vertebrate community at Zackenberg. We describe and contrast the population dynamics of three predator species (arctic fox Alopex lagopus, stoat...... of arctic fox were not significantly related to changes in lemming abundance, both the stoat and the breeding of long-tailed skua were mainly related to lemming dynamics. The predator-prey system at Zackenberg differentiates from previously described systems in high-arctic Greenland, which, we suggest...

  1. Studies on source sink relationship of composite tea plants using 14C

    International Nuclear Information System (INIS)

    Marimuthu, S.; Raj Kumar, R.; Jayakumar, D.; Cox, Spurgeon

    2000-01-01

    An experiment on sink capacity of grafted tea plants was carried out adopting radiotracer technique under nursery conditions with two different graft combinations besides the un-grafted control plants. Among the control plants, UPASI-3 translocated higher quantum of photosynthates towards the growing shoot followed by UPASI-9 and ATK-I. In order to confirm the sink capacity of axillary shoot of rootstock, shoot arising from rootstock has been removed prior to exposure of root stock mother leaf. This led to a dramatic enhancement in assimilates translocation towards UPASI-3 scions. ATK- I rootstock mother leaves retained higher amount of photoassimilates when UPASI-9 was used as scion. Variation existed in partitioning of dry matter in response to cultivar type used for composite plant product. Axillary shoot of rootstock, ATK-I drained about seven per cent of total dry matter production irrespective of the scions. UPASI-3 scions drew about 40 per cent of total dry matter and it enhanced to 60 per cent on removal of axillary shoot of ATK-I. Results highlight that the removal of axillary shoot of the rootstock should be practiced at nursery level, immediately after initiation of its growth to obtain the balanced shoot : root ratio. (author)

  2. Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US Army Research Laboratory Liquid-Fueled Thermophotovoltaic Power Source Demonstrator

    Science.gov (United States)

    2016-09-01

    temperatures above 500 °C.1 Figure 1 describes the primary components of a TPV system : a heat source, an emitter, and a photovoltaic converter. The heat...carrier surface not covered by the photovoltaic cell. 4. Mesh The mesh was set to level 3 with the minimum gap size manually set to 0.01 inch. A...heat sink to control the temperature of the photovoltaic cell while exposed to radiation from the emitter. 15. SUBJECT TERMS TPV

  3. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-01-01

    Full Text Available In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  4. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei

    2016-01-29

    In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  5. Algorithms for solving the single-sink fixed-charge transportation problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    2006-01-01

    The single-sink fixed-charge transportation problem is an important subproblem of the fixed-charge transportation problem. Just a few methods have been proposed in the literature to solve this problem. In this paper, solution approaches based on dynamic programming and implicit enumeration...... are revisited. It is shown how the problem size as well as the search space of a recently published dynamic programming method can be reduced by exploiting reduced cost information. Additionally, a further implicit enumeration approach relying on solution concepts for the binary knapsack problem is introduced...

  6. What's Up with Sinking?

    Science.gov (United States)

    Blintz, William

    2005-01-01

    In Hamlet, Shakespeare invites readers to ponder a famous philosophical question: To be or not to be? That is the question. In this issue, two trade books invite students to explore the question: To sink or not to sink? That is the experiment. Though both books are targeted for younger children, teachers can use these books with elementary…

  7. Market Squid Population Dynamics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...

  8. Modeling the energy performance of event-driven wireless sensor network by using static sink and mobile sink.

    Science.gov (United States)

    Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.

  9. Modeling the Energy Performance of Event-Driven Wireless Sensor Network by Using Static Sink and Mobile Sink

    Science.gov (United States)

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503

  10. Population dynamics and population control of Galium aparine L.

    NARCIS (Netherlands)

    Weide, van der R.Y.

    1993-01-01

    The population biology of Galium aparine L. needs to be better understood, in order to be able to rationalize decisions about the short- and long-term control of this weed species for different cropping practices.

    A population dynamics model was developed to

  11. [Eco-economic thinking for developing carbon sink industry in the de-farming regions].

    Science.gov (United States)

    Wang, Ji Jun; Wang, Zheng Shu; Cheng, Si Min; Gu, Wen; Li, Yue; Li, Mao Sen

    2017-12-01

    Based on the potential and the law that plants absorb carbon dioxide, carbon sink industry means certain appropriate artificial intervention to obtain clean air, and to meet people's production and life demand for ecological environment industry. Carbon sink industry is considered as a breakthrough point and a new growth point for optimizing and upgrading of the original relatively balanced or stable agricultural industry-resources system. Among the ecosystem services in the de-farming regions, the rapid increase of the economic manifestation of carbon fixation and oxygen release function and the carbon sink potential, as well as the rise of carbon trading and carbon market both in domestic and international, have established a theoretical and practical basis for the deve-lopment of carbon industry. With the development of the carbon sink industry, improving the carbon sequestration output will become the core of the carbon sink industry. The producers or marketers will form the controlling of the carbon source, the development of the path for carbon storage increasing and re-layout of agricultural industry-resources structure, and thus bring new vitality to regional sustainable development in the de-farming regions. This indicates the emphasis for the future research and development, that is, allocating the agricultural industry-resources structure and their benign coupling mechanism after integrating the carbon sink industry.

  12. Evolutionary dynamics of cooperation in neutral populations

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2018-01-01

    Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner's dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.

  13. [Review of lime carbon sink.

    Science.gov (United States)

    Liu, Li Li; Ling, Jiang Hua; Tie, Li; Wang, Jiao Yue; Bing, Long Fei; Xi, Feng Ming

    2018-01-01

    Under the background of "missing carbon sink" mystery and carbon capture and storage (CCS) technology development, this paper summarized the lime material flow process carbon sink from the lime carbonation principles, impact factors, and lime utilization categories in chemical industry, metallurgy industry, construction industry, and lime kiln ash treatment. The results showed that the lime carbonation rate coefficients were mainly impacted by materials and ambient conditions; the lime carbon sink was mainly in chemical, metallurgy, and construction industries; and current researches focused on the mechanisms and impact factors for carbonation, but their carbon sequestration calculation methods had not been proposed. Therefore, future research should focus on following aspects: to establish a complete system of lime carbon sequestration accounting method in view of material flow; to calculate lime carbon sequestration in both China and the world and explain their offset proportion of CO 2 emission from lime industrial process; to analyze the contribution of lime carbon sequestration to missing carbon sink for clarifying part of missing carbon sinks; to promote the development of carbon capture and storage technology and provide some scientific bases for China's international negotiations on climate change.

  14. Dairy cow excreta patches change the boreal grass swards from sink to source of methane

    Directory of Open Access Journals (Sweden)

    Marja Elisa Maljanen

    2012-06-01

    Full Text Available We studied methane (CH4 flux rates from experimental excreta patches on a dairy pasture with a chamber technique during snow free seasons and with a gas gradient technique during winter from timothy-meadow fescue sward with mineral N fertilization (220 kg ha-1 and from grass-white clover mixture without fertilization. The dung and urine patches were applied in June or August two consecutive grazing seasons and the measurements were carried out for a year following each application. There were no significant differences in CH4 fluxes between plant species and emissions originated mainly from the fresh dung pats. The average annual CH4 fluxes from the control sites without excreta were -0.60±0.1 and with the excreta 0.47±0.3 kg CH4 ha-1. Thus, excreta originating from dairy cows can turn boreal swards from weak sinks to small sources of CH4. However, these emissions are only 0.2% of the total CH4 emissions from a dairy cow.

  15. Southern Ocean CO2 sink: the contribution of the sea ice

    DEFF Research Database (Denmark)

    Delille, B.; Vancoppenolle, Martin; Geilfus, Nicolas-Xavier

    2014-01-01

    at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first esti- mates of spring and summer CO2 uptake from the atmosphere...... by Antarctic sea ice. Over the spring- summer period, the Antarctic sea ice cover is a net sink of atmospheric CO2 of 0.029 Pg C, about 58% of the estimated annual uptake from the Southern Ocean. Sea ice then contributes significantly to the sink of CO2 of the Southern Ocean....... undersaturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate crystals, and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer...

  16. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    Science.gov (United States)

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate

  17. feedback between population and evolutionary dynamics determines the fate of social microbial populations.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the

  18. Composition and Realization of Source-to-Sink High-Performance Flows: File Systems, Storage, Hosts, LAN and WAN

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chase Qishi [Univ. of Tennessee, Memphis, TN (United States)

    2016-12-01

    A number of Department of Energy (DOE) science applications, involving exascale computing systems and large experimental facilities, are expected to generate large volumes of data, in the range of petabytes to exabytes, which will be transported over wide-area networks for the purpose of storage, visualization, and analysis. To support such capabilities, significant progress has been made in various components including the deployment of 100 Gbps networks with future 1 Tbps bandwidth, increases in end-host capabilities with multiple cores and buses, capacity improvements in large disk arrays, and deployment of parallel file systems such as Lustre and GPFS. High-performance source-to-sink data flows must be composed of these component systems, which requires significant optimizations of the storage-to-host data and execution paths to match the edge and long-haul network connections. In particular, end systems are currently supported by 10-40 Gbps Network Interface Cards (NIC) and 8-32 Gbps storage Host Channel Adapters (HCAs), which carry the individual flows that collectively must reach network speeds of 100 Gbps and higher. Indeed, such data flows must be synthesized using multicore, multibus hosts connected to high-performance storage systems on one side and to the network on the other side. Current experimental results show that the constituent flows must be optimally composed and preserved from storage systems, across the hosts and the networks with minimal interference. Furthermore, such a capability must be made available transparently to the science users without placing undue demands on them to account for the details of underlying systems and networks. And, this task is expected to become even more complex in the future due to the increasing sophistication of hosts, storage systems, and networks that constitute the high-performance flows. The objectives of this proposal are to (1) develop and test the component technologies and their synthesis methods to

  19. Scaling of the mean and variance of population dynamics under fluctuating regimes.

    Science.gov (United States)

    Pertoldi, Cino; Faurby, S; Reed, D H; Knape, J; Björklund, M; Lundberg, P; Kaitala, V; Loeschcke, V; Bach, L A

    2014-12-01

    Theoretical ecologists have long sought to understand how the persistence of populations depends on the interactions between exogenous (biotic and abiotic) and endogenous (e.g., demographic and genetic) drivers of population dynamics. Recent work focuses on the autocorrelation structure of environmental perturbations and its effects on the persistence of populations. Accurate estimation of extinction times and especially determination of the mechanisms affecting extinction times is important for biodiversity conservation. Here we examine the interaction between environmental fluctuations and the scaling effect of the mean population size with its variance. We investigate how interactions between environmental and demographic stochasticity can affect the mean time to extinction, change optimal patch size dynamics, and how it can alter the often-assumed linear relationship between the census size and the effective population size. The importance of the correlation between environmental and demographic variation depends on the relative importance of the two types of variation. We found the correlation to be important when the two types of variation were approximately equal; however, the importance of the correlation diminishes as one source of variation dominates. The implications of these findings are discussed from a conservation and eco-evolutionary point of view.

  20. Chemical reaction dynamics using the Advanced Light Source

    International Nuclear Information System (INIS)

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G.; Lin, J.; Wodtke, A.M.

    1995-01-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10(sup 16) photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source

  1. Chemical reaction dynamics using the Advanced Light Source

    International Nuclear Information System (INIS)

    Yang, X.; Blank, D.A.; Heimann, P.A.; Lee, Y.T.; Suits, A.G.; Lin, J.; Wodtke, A.M.

    1995-09-01

    The recently commissioned Advanced Light Source (ALS) at Berkeley provides a high brightness, tunable VUV light source for chemical dynamics studies. A dedicated chemical dynamics beamline has been built at the ALS for studies of fundamental chemical processes. High flux (10 16 photon/s with 2% bandwidth) VUV synchrotron radiation from 5 to 30 eV can be obtained from the beamline, whose source is the U8/10 undulator. Three endstations will be in operation for studies ranging from crossed beam reaction dynamics and photodissociation to high resolution photoionization dynamics and spectroscopy. A rotatable source crossed molecular beam apparatus (endstation one) has been established for unimolecular and bimolecular reactive scattering studies. Photodissociation of methylamine and ozone were carried out using VUV synchrotron radiation as the ionization detection technique at this endstation. Results show the advantages of the new endstation using VUV ionization as the detection scheme over similar machines using electron bombardment as the ionization source

  2. Predicting responses of the Adélie penguin population of Edmonson Point to future sea ice changes in the Ross Sea

    Directory of Open Access Journals (Sweden)

    Tosca eBallerini

    2015-02-01

    Full Text Available Atmosphere-Ocean General Circulation Models (AOGCMs predict changes in the sea ice environment and in atmospheric precipitations over larger areas of Antarctica. These changes are expected to affect the population dynamics of seabirds and marine mammals, but the extent of this influence is not clear. We investigated the future population trajectories of the colony of Adélie penguins at Edmonson Point, in the Ross Sea, from 2010 to 2100. To do so, we incorporated the relationship between sea ice and demographic parameters of the studied colony into a matrix population model. Specifically, we used sea ice projections from AOGCMs and a proxy for snowfall precipitation. Simulations of population persistence under future climate change scenarios showed that a reduction in sea ice extent and an increase in precipitation events during the breeding season will drive the population to extinction. However, the population growth rate estimated by the model was lower than the population growth rate observed during the last decades, suggesting that recruits from other colonies maintain the observed population dynamics at Edmonson Point. This local ‘rescue’ effect is consistent with a metapopulation dynamic for Adélie penguins in the Ross Sea, in which neighboring colonies might exhibit contrasting population trends and different density-dependent effects. In the hypothesis that connectivity with larger source colonies or that local recruitment would decrease, the sink colony at Edmonson Point is predicted to disappear.

  3. Does source population size affect performance in new environments?

    Science.gov (United States)

    Yates, Matthew C; Fraser, Dylan J

    2014-01-01

    Small populations are predicted to perform poorly relative to large populations when experiencing environmental change. To explore this prediction in nature, data from reciprocal transplant, common garden, and translocation studies were compared meta-analytically. We contrasted changes in performance resulting from transplantation to new environments among individuals originating from different sized source populations from plants and salmonids. We then evaluated the effect of source population size on performance in natural common garden environments and the relationship between population size and habitat quality. In ‘home-away’ contrasts, large populations exhibited reduced performance in new environments. In common gardens, the effect of source population size on performance was inconsistent across life-history stages (LHS) and environments. When transplanted to the same set of new environments, small populations either performed equally well or better than large populations, depending on life stage. Conversely, large populations outperformed small populations within native environments, but only at later life stages. Population size was not associated with habitat quality. Several factors might explain the negative association between source population size and performance in new environments: (i) stronger local adaptation in large populations and antagonistic pleiotropy, (ii) the maintenance of genetic variation in small populations, and (iii) potential environmental differences between large and small populations. PMID:25469166

  4. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application

    DEFF Research Database (Denmark)

    Rezania, Alireza; Rosendahl, L. A.

    2015-01-01

    . In this study, a micro-structured plate-fin heat sink is compared to a modified design of cross-cut heat sink applied to TEGs over a range of temperatures and thermal conductivities. The particular focus of this study is to explore the net power output from the TEG module. The three-dimensional governing...... equations for the flow and heat transfer are solved using computational fluid dynamics (CFD) in conjunction with the thermoelectric characteristics of the TEG over a wide range of flow inlet velocities. The results show that at small flow inlet velocity, the maximum net power output in TEG with plate......Heat sink configuration has strong impact on net power output from thermoelectric generators (TEGs). A weak cooling strategy can even cause negative net power output from the thermoelectric device. However, the net power output can be significantly improved by optimal design of the heat sink...

  5. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.

    Science.gov (United States)

    Lenski, Richard E

    2017-10-01

    Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.

  6. Sources and sinks of nitrogen and phosphorus to a deep, oligotrophic lake, Lake Crescent, Olympic National Park, Washington

    Science.gov (United States)

    Moran, P.W.; Cox, S.E.; Embrey, S.S.; Huffman, R.L.; Olsen, T.D.; Fradkin, S.C.

    2012-01-01

    Lake Crescent, in Olympic National Park in the northwest corner of Washington State is a deep-water lake renowned for its pristine water quality and oligotrophic nature. To examine the major sources and sinks of nutrients (as total nitrogen, total phosphorus, and dissolved nitrate), a study was conducted in the Lake Crescent watershed. The study involved measuring five major inflow streams, the Lyre River as the major outflow, recording weather and climatic data, coring lake bed sediment, and analyzing nutrient chemistry in several relevant media over 14 months. Water samples for total nitrogen, total phosphorous, and dissolved nitrate from the five inflow streams, the outlet Lyre River, and two stations in the lake were collected monthly from May 2006 through May 2007. Periodic samples of shallow water from temporary sampling wells were collected at numerous locations around the lake. Concentrations of nutrients detected in Lake Crescent and tributaries were then applied to the water budget estimates to arrive at monthly and annual loads from various environmental components within the watershed. Other sources, such as leaf litter, pollen, or automobile exhaust were estimated from annual values obtained from various literature sources. This information then was used to construct a nutrient budget for total nitrogen and total phosphorus. The nitrogen budget generally highlights vehicle traffic-diesel trucks in particular-along U.S. Highway 101 as a potential major anthropogenic source of nitrogen compounds in the lake. In contrast, contribution of nitrogen compounds from onsite septic systems appears to be relatively minor related to the other sources identified.

  7. A new approach to the method of source-sink potentials for molecular conduction

    Energy Technology Data Exchange (ETDEWEB)

    Pickup, Barry T., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Fowler, Patrick W., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Borg, Martha [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom); Sciriha, Irene [Department of Mathematics, University of Malta, Msida (Malta)

    2015-11-21

    We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue of the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy.

  8. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    International Nuclear Information System (INIS)

    Toader, D.; Craciun, G.; Manaila, E.; Oproiu, C.; Marghitu, S.

    2009-01-01

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES L V) with a plasma electron source (PES L V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP L V source.

  9. FRED (a Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations.

    Science.gov (United States)

    Grefenstette, John J; Brown, Shawn T; Rosenfeld, Roni; DePasse, Jay; Stone, Nathan T B; Cooley, Phillip C; Wheaton, William D; Fyshe, Alona; Galloway, David D; Sriram, Anuroop; Guclu, Hasan; Abraham, Thomas; Burke, Donald S

    2013-10-08

    Mathematical and computational models provide valuable tools that help public health planners to evaluate competing health interventions, especially for novel circumstances that cannot be examined through observational or controlled studies, such as pandemic influenza. The spread of diseases like influenza depends on the mixing patterns within the population, and these mixing patterns depend in part on local factors including the spatial distribution and age structure of the population, the distribution of size and composition of households, employment status and commuting patterns of adults, and the size and age structure of schools. Finally, public health planners must take into account the health behavior patterns of the population, patterns that often vary according to socioeconomic factors such as race, household income, and education levels. FRED (a Framework for Reconstructing Epidemic Dynamics) is a freely available open-source agent-based modeling system based closely on models used in previously published studies of pandemic influenza. This version of FRED uses open-access census-based synthetic populations that capture the demographic and geographic heterogeneities of the population, including realistic household, school, and workplace social networks. FRED epidemic models are currently available for every state and county in the United States, and for selected international locations. State and county public health planners can use FRED to explore the effects of possible influenza epidemics in specific geographic regions of interest and to help evaluate the effect of interventions such as vaccination programs and school closure policies. FRED is available under a free open source license in order to contribute to the development of better modeling tools and to encourage open discussion of modeling tools being used to evaluate public health policies. We also welcome participation by other researchers in the further development of FRED.

  10. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    Directory of Open Access Journals (Sweden)

    Zak Frentz

    2015-10-01

    Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  11. How Resource Phenology Affects Consumer Population Dynamics.

    Science.gov (United States)

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  12. Modelling the Dynamics of an Aedes albopictus Population

    Directory of Open Access Journals (Sweden)

    Thomas Anung Basuki

    2010-08-01

    Full Text Available We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.

  13. Recent Changes to the Strength of the CO2 Sink in Boreal Land Regions (Invited)

    Science.gov (United States)

    Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.; Gurney, K. R.; Melillo, J. M.

    2009-12-01

    Studies suggest that high-latitude terrestrial ecosystems have had a significant influence on the global carbon budget by acting as a substantial sink of atmospheric CO2 over the latter part of the 20th Century. However, recent changes in the controlling factors of this sink, including surface air temperature warming and increases in the frequency and severity of disturbances, have the potential to alter the C balance of boreal land regions. Whether these ecosystems continue to sequester atmospheric CO2 in the face of these changes is a key question in global change science and policy, as any changes to the strength of this major terrestrial sink will have important implications for the global C budget and climate system. Here, we diagnose and attribute contemporary terrestrial CO2 sink strength in the boreal land regions using a biogeochemical process model within a simulation framework that incorporates the impacts of recent changes in atmospheric chemistry and climate variability, as well as fire, forest management and agricultural land use regimes. The simulations estimate that the boreal land regions acted as a net sink of 102 TgC yr-1 from 1960 to 1980 that declined in strength to 28 TgC yr-1 for the 1990s and switched to a source of 99 TgC yr-1 from years 2000 to 2006. The weakening sink strength in the 1990s was largely a result of C losses from Boreal North American tundra and forest ecosystems through increasing decomposition of soil organic matter in response to warmer temperatures. Compared to previous decades, a near doubling of fire emissions was the major factor causing the boreal land regions to switch to a net C source since 2000 when large burn years occurred across the region, particularly in forests of Boreal Asia. A steady sink averaging 23 TgC yr-1 was estimated for Boreal European ecosystems from 1960 to 2006, with the ‘fertilization’ effects of increasing atmospheric CO2 concentration and N deposition primarily responsible for the

  14. Electron Beam Diagnosis and Dynamics using DIADYN Plasma Source

    Energy Technology Data Exchange (ETDEWEB)

    Toader, D; Craciun, G; Manaila, E; Oproiu, C [National Institute of Research for Laser, Plasma and Radiation Physics Bucuresti (Romania); Marghitu, S [ICPE Electrostatica S.A - Bucuresti (Romania)

    2009-11-15

    This paper is presenting results obtained with the DIADYN installation after replacing its vacuum electron source (VES{sub L}V) with a plasma electron source (PES{sub L}V). DIADYN is a low energy laboratory equipment operating with 10 to 50 keV electron beams and designed to help realize non-destructive diagnosis and dynamics for low energy electron beams but also to be used in future material irradiations. The results presented here regard the beam diagnosis and dynamics made with beams obtained from the newly replaced plasma source. We discuss both results obtained in experimental dynamics and dynamics calculation results for electron beams extracted from the SEP{sub L}V source.

  15. Causes of sinks near Tucson, Arizona, USA

    Science.gov (United States)

    Hoffmann, J.P.; Pool, D.R.; Konieczki, A.D.; Carpenter, M.C.

    1998-01-01

    Land subsidence in the form of sinks has occurred on and near farmlands near Tucson, Pima County, Arizona, USA. The sinks occur in alluvial deposits along the flood plain of the Santa Cruz River, and have made farmlands dangerous and unsuitable for farming. More than 1700 sinks are confined to the flood plain of the Santa Cruz River and are grouped along two north-northwestward-trending bands that are approximately parallel to the river and other flood-plain drainages. An estimated 17,000 m3 of sediment have been removed in the formation of the sinks. Thirteen trenches were dug to depths of 4-6 m to characterize near-surface sediments in sink and nonsink areas. Sediments below about 2 m included a large percentage of dispersive clays in sink areas. Sediments in nonsink areas contain a large component of medium- to coarse-grained, moderately to well sorted sand that probably fills a paleochannel. Electromagnetic surveys support the association of silts and clays in sink areas that are highly electrically conductive relative to sand in nonsink areas. Sinks probably are caused by the near-surface process of subsurface erosion of dispersive sediments along pre-existing cracks in predominantly silt and clay sediments. The pre-existing cracks probably result from desiccation or tension that developed during periods of water-table decline and channel incision during the past 100 years or in earlier periods.

  16. Diversity in Betasatellites Associated with Cotton Leaf Curl Disease During Source-To-Sink Movement Through a Resistant Host

    Directory of Open Access Journals (Sweden)

    Iftikhar Ali Khan

    2016-02-01

    Full Text Available Cotton leaf curl is devastating disease of cotton characterized by leaf curling, vein darkening and enations. The disease symptoms are induced by DNA satellite known as Cotton leaf curl Multan betasatellite (CLCuMuB, dominant betasatellite in cotton but another betasatellite known as Chili leaf curl betasatellite (ChLCB is also found associated with the disease. Grafting experiment was performed to determine if host plant resistance is determinant of dominant population of betasatellite in cotton (several distinct strains of CLCuMuB are associated with the disease. Infected scion of Gossypium hirsutum collected from field (the source was grafted on G. arboreum, a diploid cotton species, resistant to the disease. A healthy scion of G. hirsutum (sink was grafted at the top of G. arboreum to determine the movement of virus/betasatellite to upper susceptible scion of G. hirsutum. Symptoms of disease appeared in the upper scion and presence of virus/betasatellite in the upper scion was confirmed via molecular techniques, showing that virus/betasatellite was able to move to upper scion through resistant G. arboreum. However, no symptoms appeared on G. arboreum. Betasatelites were cloned and sequenced from lower scion, upper scion and G. arboreum which show that the lower scion contained both CLCuMuB and ChLCB, however only ChLCB was found in G. arboreum. The upper scion contained CLCuMuB with a deletion of 78 nucleotides (nt in the non-coding region between A-rich sequence and βC1 gene and insertion of 27 nt in the middle of βC1 ORF. This study may help in investigating molecular basis of resistance in G. arboreum.

  17. Flooding and sinking of nuclear merchant ships

    International Nuclear Information System (INIS)

    Lettnin, H.K.J.; Wehowsky, P.

    1978-01-01

    In contrast to land-based power plants for ship reactors the marine environment brings up the peril of sinking. But this peril is low for nuclear ships with its high safety standard. An evaluation of casualties from 1964 - 1974 for ships>8000 GRT allows to estimate a very low sink probability for nuclear ships in the range of 10 -7 to 10 -8 p.a. In spite of this low probability a sinking cannot be excluded absolutely. Therefore passive means must be provided for sinking in deep waters: to maintain the integrity of at least one enclosure as activity barrier; to supply seawater into the safety containment for decay heat removal. For sinking in shallow waters and flooding at least one of the redundant decay heat removal systems including power supply stays operable. A mathematical tool is available for the design of flood openings of sufficient cross sections to flood the containment and to reach a pressure balance in case of postulated sinking in deep waters of any depth

  18. A 3 A sink/source current fast transient response low-dropout G{sub m} driven linear regulator

    Energy Technology Data Exchange (ETDEWEB)

    Chu Xiuqin; Li Qingwei; Lai Xinquan; Yuan Bing [Institute of Electronic CAD, Xidian University, Xi' an 710071 (China); Li Yanming [School of Electronic and Control Engineering, Chang' an University, Xi' an 710064 (China); Zhao Yongrui, E-mail: liqw309@163.com, E-mail: xqchu@mail.xidian.edu.cn [Key Laboratory of High-Speed Circuit Design and EMC, Ministry of Education, Xidian University, Xi' an 710071 (China)

    2011-06-15

    A 3 A sink/source G{sub m}-driven CMOS low-dropout regulator (LDO), specially designed for low input voltage and low cost, is presented by utilizing the structure of a current mirror G{sub m} (transconductance) driving technique, which provides high stability as well as a fast load transient response. The proposed LDO was fabricated by a 0.5 {mu}m standard CMOS process, and the die size is as small as 1.0 mm{sup 2}. The proposed LDO dissipates 220 {mu}A of quiescent current in no-load conditions and is able to deliver up to 3 A of load current. The measured results show that the output voltage can be resumed within 2 {mu}s with a less than 1 mV overshoot and undershoot in the output current step from -1.8 to 1.8 A with a 0.1 {mu}s rising and falling time at three 10 {mu}F ceramic capacitors. (semiconductor integrated circuits)

  19. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories.

    Science.gov (United States)

    Miller, David A; Clark, William R; Arnold, Stevan J; Bronikowski, Anne M

    2011-08-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of

  20. Topology Optimization of Thermal Heat Sinks

    DEFF Research Database (Denmark)

    Klaas Haertel, Jan Hendrik; Engelbrecht, Kurt; Lazarov, Boyan Stefanov

    2015-01-01

    In this paper, topology optimization is applied to optimize the cooling performance of thermal heat sinks. The coupled two-dimensional thermofluid model of a heat sink cooled with forced convection and a density-based topology optimization including density filtering and projection are implemented...... in COMSOL Multiphysics. The optimization objective is to minimize the heat sink’s temperature for a prescribed pressure drop and fixed heat generation. To conduct the optimization, COMSOL’s Optimization Module with GCMMA as the optimization method is used. The implementation of this topology optimization...... approach in COMSOL Multiphysics is described in this paper and results for optimized two-dimensional heat sinks are presented. Furthermore, parameter studies regarding the effect of the prescribed pressure drop of the system on Reynolds number and realized heat sink temperature are presented and discussed....

  1. Simulation modelling of population dynamics of mosquito vectors for rift valley Fever virus in a disease epidemic setting.

    Directory of Open Access Journals (Sweden)

    Clement N Mweya

    Full Text Available Rift Valley Fever (RVF is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics.Time-varying distributed delays (TVDD and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district.Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings.

  2. Simulation modelling of population dynamics of mosquito vectors for rift valley Fever virus in a disease epidemic setting.

    Science.gov (United States)

    Mweya, Clement N; Holst, Niels; Mboera, Leonard E G; Kimera, Sharadhuli I

    2014-01-01

    Rift Valley Fever (RVF) is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics. Time-varying distributed delays (TVDD) and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML) files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district. Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings.

  3. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  4. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  5. Determination of Original Infection Source of H7N9 Avian Influenza by Dynamical Model

    Science.gov (United States)

    Zhang, Juan; Jin, Zhen; Sun, Gui-Quan; Sun, Xiang-Dong; Wang, You-Ming; Huang, Baoxu

    2014-05-01

    H7N9, a newly emerging virus in China, travels among poultry and human. Although H7N9 has not aroused massive outbreaks, recurrence in the second half of 2013 makes it essential to control the spread. It is believed that the most effective control measure is to locate the original infection source and cut off the source of infection from human. However, the original infection source and the internal transmission mechanism of the new virus are not totally clear. In order to determine the original infection source of H7N9, we establish a dynamical model with migratory bird, resident bird, domestic poultry and human population, and view migratory bird, resident bird, domestic poultry as original infection source respectively to fit the true dynamics during the 2013 pandemic. By comparing the date fitting results and corresponding Akaike Information Criterion (AIC) values, we conclude that migrant birds are most likely the original infection source. In addition, we obtain the basic reproduction number in poultry and carry out sensitivity analysis of some parameters.

  6. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The application of information on vulnerability and persistence to conservation planning and management is discussed under the headings of natural dynamics, replication of protection, levels of representation, source and sink population structures, refuges and critical resources, reserve design, habitat fragmentation and ...

  7. Continental Arcs as Both Carbon Source and Sink in Regulating Long Term Climate

    Science.gov (United States)

    Jiang, H.; Lee, C. T.

    2017-12-01

    The long-term variability of atmospheric pCO2 is determined by the balance between the rate of geologic inputs of CO­­2 (e.g., magmatic/metamorphic degassing, carbonate weathering) and the rate of carbonate precipitation driven by silicate weathering. The Late Cretaceous-Early Cenozoic was characterized by elevated atmospheric pCO2 and greenhouse climate, likely due to increased magmatic flux from mid-ocean ridges and, in particular, continental arcs. However, it has been suggested that continental arc magmatism is accompanied by rapid uplift and erosion due to magmatic/tectonic thickening of the crust, thus continental arcs likely enhance the chemical weathering flux, in turn increasing the carbon sink. To assess the contribution of continental arcs to global carbon inputs and sinks, we conducted a case study in the Cretaceous Peninsular Ranges batholith (PRB) and associated forearc basin in southern California, USA, representing one segment of the Cretaceous Cordillera arc-forearc system. Arc magmatism occurred between 170-85 Ma, peaking at 100 Ma, but erosion of the arc continues into the early Eocene, with forearc sediments representing this protracted arc unroofing. During magmatism, we estimate the CO2 degassing flux from the PRB was at least 5-25*105 mol·km-2·yr-1. By calculating the depletion of Ca and Mg in the forearc sediments relative to their arc protoliths, we estimate the silicate weathering/carbonate precipitation flux to be 106 mol·km-2·yr-1 during Late Cretaceous magmatism, decreasing to 105 mol·km-2·yr-1 by the Early Eocene. We show that during active continental arc magmatism, the CO2 degassing flux is comparable to CO2 consumption driven by silicate weathering in the arc. However, after magmatism ends, a regional imbalance arises in which the arc no longer contributes to CO2 inputs but continued silicate weathering of the arc drives carbonate precipitation such that the arc indirectly becomes CO2 sink. We propose that the development of

  8. Sinks and sources : a strategy to involve forest communities in Tanzania in global climate policy

    NARCIS (Netherlands)

    Zahabu, E.M.

    2008-01-01

    At present only the sink ability of forest to sequester atmospheric CO2 through establishing new forests is credited under the current UNFCCC climate change mitigation mechanisms in developing countries, i.e. the Clean Development Mechanism (CDM) of the Kyoto Protocol. Other forest practices such as

  9. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  10. Ocean carbon sinks and international climate policy

    International Nuclear Information System (INIS)

    Rehdanz, Katrin; Tol, Richard S.J.; Wetzel, Patrick

    2006-01-01

    Terrestrial vegetation sinks have entered the Kyoto Protocol as offsets for anthropogenic greenhouse gas emissions, but ocean sinks have escaped attention. Ocean sinks are as unexplored and uncertain as were the terrestrial sinks at the time of negotiation of the Kyoto Protocol. It is not unlikely that certain countries will advocate the inclusion of ocean carbon sinks to reduce their emission reduction obligations in post-2012 negotiations. We use a simple model of the international market for carbon dioxide emissions to evaluate who would gain or loose from allowing for ocean carbon sinks. Our analysis is restricted to information on anthropogenic carbon sequestration within the exclusive economic zone of a country. We use information on the actual carbon flux and derive the human-induced uptake for the period from 1990 onwards. Like the carbon sequestration of business as usual forest management activities, natural ocean carbon sequestration applies at zero costs. The total amount of anthropogenic ocean carbon sequestration is large, also in the exclusive economic zones. As a consequence, it substantially alters the costs of emission reduction for most countries. Countries such as Australia, Denmark, France, Iceland, New Zealand, Norway and Portugal would gain substantially, and a large number of countries would benefit too. Current net exporters of carbon permits, particularly Russia, would gain less and oppose the inclusion of ocean carbon sinks

  11. Coarse-grained sediment delivery and distribution in the Holocene Santa Monica Basin, California: Implications for evaluating source-to-sink flux at millennial time scales

    Science.gov (United States)

    Romans, B.W.; Normark, W.R.; McGann, M.M.; Covault, J.A.; Graham, S.A.

    2009-01-01

    Utilizing accumulations of coarse-grained terrigenous sediment from deep-marine basins to evaluate the relative contributions of and history of controls on sediment flux through a source-to-sink system has been difficult as a result of limited knowledge of event timing. In this study, six new radiocarbon (14C) dates are integrated with five previously published dates that have been recalibrated from a 12.5-m-thick turbidite section from Ocean Drilling Program (ODP) Site 1015 in Santa Monica Basin, offshore California. This borehole is tied to high-resolution seismic-reflection profiles that cover an 1100 km2 area of the middle and lower Hueneme submarine fan and most of the basin plain. The resulting stratigraphic framework provides the highest temporal resolution for a thick-bedded Holocene turbidite succession to date, permitting an evaluation of source-to-sink controls at millennial (1000 yr) scales. The depositional history from 7 ka to present indicates that the recurrence interval for large turbidity-current events is relatively constant (300-360 yr), but the volume of sediment deposited on the fan and in the basin plain has increased by a factor of 2 over this period. Moreover, the amount of sand per event on the basin plain during the same interval has increased by a factor of 7. Maps of sediment distribution derived from correlation of seismic-reflection profiles indicate that this trend cannot be attributed exclusively to autogenic processes (e.g., progradation of depocenters). The observed variability in sediment accumulation rates is thus largely controlled by allogenic factors, including: (1) increased discharge of Santa Clara River as a result of increased magnitude and frequency of El Ni??o-Southern Oscillation (ENSO) events from ca. 2 ka to present, (2) an apparent change in routing of coarse-grained sediment within the staging area at ca. 3 ka (i.e., from direct river input to indirect, littoral cell input into Hueneme submarine canyon), and (3

  12. Constraints on Galactic populations from the unidentified EGRET sources

    International Nuclear Information System (INIS)

    Siegal-Gaskins, Jennifer M.; Pavlidou, Vasiliki; Brown, Carolyn; Olinto, Angela V.; Fields, Brian D.

    2007-01-01

    A significant fraction of the sources in the third EGRET catalog have not yet been identified with a low-energy counterpart. We evaluate the plausibility of a Galactic population accounting for some or all of the unidentified EGRET sources by making the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. Rather than focusing on the properties of a specific candidate emitter, we constrain the abundance and spatial distribution of proposed Galactic populations. We find that it is highly improbable that the unidentified EGRET sources contain more than a handful of members of a Galactic halo population, but that current observations are consistent with all of these sources being Galactic objects if they reside entirely in the disk and bulge. We discuss the additional constraints and new insights into the nature of Galactic gamma-ray emitting populations that GLAST is expected to provide

  13. Allee effects on population dynamics in continuous (overlapping) case

    International Nuclear Information System (INIS)

    Merdan, H.; Duman, O.; Akin, O.; Celik, C.

    2009-01-01

    This paper presents the stability analysis of equilibrium points of a continuous population dynamics with delay under the Allee effect which occurs at low population density. The mathematical results and numerical simulations show the stabilizing role of the Allee effects on the stability of the equilibrium point of this population dynamics.

  14. Analysis of Population Dynamics in World Economy

    OpenAIRE

    Martin, Gress

    2011-01-01

    Population dynamics is an important topic in current world economy. The size and growth of population have an impact on economic growth and development of individual countries and vice versa, economic development influences demographic variables in a country. The aim of the article is to analyze historical development of world population, population stock change and relations between population stock change and economic development.

  15. Sink- or Source-driven Phanerozoic carbon cycle?

    Science.gov (United States)

    Godderis, Y.; Donnadieu, Y.; Maffre, P.; Carretier, S.

    2017-12-01

    The Phanerozoic evolution of the atmospheric CO2 level is controlled by the fluxes entering or leaving the exospheric system. Those fluxes (including continental weathering, magmatic degassing, organic carbon burial, oxidation of sedimentary organic carbon) are intertwined, and their relative importance in driving the global carbon cycle evolution may have fluctuated through time. Deciphering the causes of the Phanerozoic climate evolution thus requires a holistic and quantitative approach. Here we focus on the role played by the paleogeographic configuration on the efficiency of the CO2 sink by continental silicate weathering, and on the impact of the magmatic degassing of CO2. We use the spatially resolved numerical model GEOCLIM (geoclimmodel.worpress.com) to compute the response of the silicate weathering and atmospheric CO2 to continental drift for 22 time slices of the Phanerozoic. Regarding the CO2 released by the magmatic activity, we reconstruct several Phanerozoic histories of this flux, based on published indexes. We calculate the CO2 evolution for each degassing scenario, and accounting for the paleogeographic setting. We show that the paleogeographic setting is a main driver of the climate from 540 Ma to about the beginning of the Jurassic. Regarding the role of the magmatic degassing, the various reconstructions do not converge towards a single signal, and thus introduce large uncertainties in the calculated CO2 level over time. Nevertheless, the continental dispersion, which prevails since the Jurassic, promotes the CO2 consumption by weathering and forces atmospheric CO2 to stay low. Warm climates of the "middle" Cretaceous and early Cenozoic require enhanced CO2 degassing by magmatic activity. In summary, the Phanerozoic climate evolution can be hardly assigned to a single process, but is the result of complex and intertwined processes.

  16. A quantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes

    NARCIS (Netherlands)

    Yin, X.; Guo, W.; Spiertz, J.H.J.

    2009-01-01

    We present a simple generic framework to quantify source–sink relationships during grain filling, by using a determinate growth function which has a unique property, namely being able of explicitly describing the time for the end of a growth process. This model framework was applied to analyze these

  17. Characterization of occurrence, sources and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in a tropical urban catchment.

    Science.gov (United States)

    Chen, Huiting; Reinhard, Martin; Nguyen, Tung Viet; You, Luhua; He, Yiliang; Gin, Karina Yew-Hoong

    2017-08-01

    Understanding the sources, occurrence and sinks of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the urban water cycle is important to protect and utilize local water resources. Concentrations of 22 target PFASs and general water quality parameters were determined monthly for a year in filtered water samples from five tributaries and three sampling stations of an urban water body. Of the 22 target PFASs, 17 PFASs were detected with a frequency >93% including PFCAs: C4-C12 perfluoroalkyl carboxylates, C4, C6, C8, and C10 perfluoroalkane sulfonates, perfluorooctane sulfonamides and perfluorooctane sulfonamide substances (FOSAMs), C10 perfluoroalkyl phosphonic acid (C10 PFPA), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and C8/C8 perfluoroalkyl phosphinic acid (C8/C8-PFPIA). The most abundant PFASs in water were PFBS (1.4-55 ng/L), PFBA (1.0-23 ng/L), PFOS (1.5-24 ng/L) and PFOA (2.0-21 ng/L). In the tributaries, PFNA concentrations ranged from 1.2 to 87.1 ng/L except in the May 2013 samples of two tributaries, which reached 520 and 260 ng/L. Total PFAS concentrations in the sediment samples ranged from 1.6 to 15 ng/g d.w. with EtFOSAA, PFDoA, PFOS and PFDA being the dominant species. Based on water and sediment data, two types of sources were inferred: one-time or intermittent point sources and continuous non-point sources. FOSAMs and PFOS released continually from non-point sources, C8/C8 PFPIA, PFDoA and PFUnA was released from point sources. The highly water soluble short-chain PFASs including PFBA, PFPeA and PFBS remained predominantly in the water column. The factors governing solution phase concentrations appear to be compound hydrophobicity and sorption to suspended particles. Correlation of the dissolved phase concentrations with precipitation data suggested stormwater was a significant source of PFBA, PFBS, PFUnA and PFDoA. Negative correlations with precipitation indicated sources feeding FOSAA and FOSA directly into the tributaries

  18. Source-sink colonization as a possible strategy of insects living in temporary habitats

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Kindlmann, Pavel

    2015-01-01

    Roč. 10, č. 6 (2015), e0127743 E-ISSN 1932-6203 R&D Projects: GA ČR GB14-36098G; GA MŠk(CZ) ED1.1.00/02.0073 Grant - others:GA ČR(CZ) GA526/98/P156 Institutional support: RVO:60077344 ; RVO:67179843 Keywords : butterfly metapopulation * evolutionary stability * oviposition behavior * population * dynamics Subject RIV: DF - Soil Science; EG - Zoology (UEK-B) Impact factor: 3.057, year: 2015

  19. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    Science.gov (United States)

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  20. A review on heat sink for thermo-electric power generation: Classifications and parameters affecting performance

    International Nuclear Information System (INIS)

    Elghool, Ali; Basrawi, Firdaus; Ibrahim, Thamir Khalil; Habib, Khairul; Ibrahim, Hassan; Idris, Daing Mohamad Nafiz Daing

    2017-01-01

    Highlights: • Coupling a thermoelectric power generation (TEG) to a heat sink is presented. • Review the classifications and parameters affecting performance of the TEG with heat sink. • Discuss different mathematical models of the heat sinks. • The passive heat sinks are most appropriate because of the inherent efficiency of TEG. • Medium temperature range below 300 °C is found to be most suitable for HPHS. - Abstract: In recent years, there have been growing interests in key areas related to global warming resulting from environmental emissions, and the diminishing sources of fossil fuel. The increased interest has led to significant research efforts towards finding novel technologies in clean energy production. Consequently, the merits of a thermo-electric generator (TEG) have promised a revival of alternative means of producing green energy. It is, however, impractical to account for the cost of thermal energy input to the TEG which is in the form of final waste heat. This is because the technology presents critical limitations in determining its cost efficiency nor its economic disadvantages. This paper reviews the principles of thermo-electric power production, as well the materials use, performance achieved, and application areas. The paper also takes a particular deliberation on TEG heat sinks geometries and categories. The review emphasizes more on the TEG performance while considering a number of heat sink parameters related to its performance.

  1. On the meaning of sink capture efficiency and sink strength for point defects

    International Nuclear Information System (INIS)

    Mansur, L.K.; Wolfer, W.G.

    1982-01-01

    The concepts of sink capture efficiency and sink strength for point defects are central to the theory of point defect reactions in materials undergoing irradiation. Two fundamentally different definitions of the capture efficiency are in current use. The essential difference can be stated simply. The conventional meaning denotes a measure of the loss rate of point defects to sinks per unit mean point defect concentration. A second definition of capture efficiency, introduced recently, gives a measure of the point defect loss rate without normalization to the mean point defect concentration. The relationship between the two capture efficiencies is here derived. By stating the relationship we hope to eliminate confusion caused by comparisons of the two types of capture efficiencies at face value and to provide a method of obtaining one from the other. Internally consistent usage of either of the capture efficiencies leads to the same results for the calculation of measuable quantities, as is required physically. (orig.)

  2. Russia's population sink.

    Science.gov (United States)

    Nelson, T

    1996-01-01

    Russia's public health problems, which are a result in part of uncontrolled development, are a lesson for developing countries. Trends in births and deaths in Russia indicate that as socioeconomic conditions declined in recent years, the death rate increased. During 1992-93 the death rate increased from 12.1 per 1000 population to 14.5, with 75% of the increase due to cardiovascular disease, accidents, murder, suicide, and alcohol poisoning. Quality of health care was given as one reason for the high cardiovascular disease rate that included deaths due to even mild heart attacks. 20-30% of deaths are attributed to pollution. 75% of rivers and lakes in the former Soviet Union are considered unfit for drinking, and 50% of tap water is unsanitary. An estimated 15% of Russia's land area is considered to be an ecological disaster zone. Births declined from a peak of 2.5 million in 1987 to 1.4 million in 1994. During this same period deaths increased from 1.5 million to 2.3 million. In 1994 deaths exceeded births by 880,000. Life expectancy declined from 65 to 57 years for men and from 75 years to 71 years for women. Infant mortality is rising. 11% of newborns had birth defects, and 60% showed evidence of allergies or vitamin D deficiencies. The death rate during pregnancy was 50 per 1000 births, and 75% of Russian women experienced complications during pregnancy. Women's health in the reproductive years was compromised by gynecological infections. A survey in 1992 revealed that 75% of Russian women gave insufficient income as a reason for reduced childbearing. The social conditions in Russia and the former Soviet republics reflect a lack of confidence in the future. Demographic trends are affected by a complex set of factors including economic collapse, economic change and uncertainty, inadequate health care, and poor environmental conditions. These changes occurred during the mid-1980s and before the collapse of the Soviet Union in 1991.

  3. Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations.

    Science.gov (United States)

    Fola, Abebe A; Nate, Elma; Abby Harrison, G L; Barnadas, Céline; Hetzel, Manuel W; Iga, Jonah; Siba, Peter; Mueller, Ivo; Barry, Alyssa E

    2018-03-01

    The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P. vivax in PNG, here we investigate population structure in eight geographically and ecologically distinct regions of the country. A total of 219 P. vivax isolates (16-30 per population) were successfully haplotyped using 10 microsatellite markers. A wide range of genetic diversity (H e =0.37-0.87, R s =3.60-7.58) and significant multilocus linkage disequilibrium (LD) was observed in six of the eight populations (I A S =0.08-0.15 p-value<0.05) reflecting a spectrum of transmission intensities across the country. Genetic differentiation between regions was evident (Jost's D=0.07-0.72), with increasing divergence of populations with geographic distance. Overall, P. vivax isolates clustered into three major genetic populations subdividing the Mainland lowland and coastal regions, the Islands and the Highlands. P. vivax gene flow follows major human migration routes, and there was higher gene flow amongst Mainland parasite populations than among Island populations. The Central Province (samples collected in villages close to the capital city, Port Moresby), acts as a sink for imported infections from the three major endemic areas. These insights into P. vivax transmission dynamics and population networks will inform targeted strategies to contain malaria infections and to prevent the spread of drug resistance in PNG. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Identifying the sources and sinks of CDOM/FDOM across the Mauritanian Shelf and their potential rolein the decomposition of Superoxide (O2-

    Directory of Open Access Journals (Sweden)

    Maija Iris Heller

    2016-08-01

    Full Text Available Superoxide (O2- is a short lived reactive oxygen species (ROS formed in seawater by photochemical or biological sources, it is important in the redox cycling of trace elements and organic matter in the ocean. The photoproduction of O2- is now thought to involve reactions between O2 and reactive reducing (radical intermediates formed from dissolved organic matter (DOM via intramolecular reactions between excited singlet state donors and ground-state acceptors (Zhang et al., 2012. In seawater the main pathways identified for the decomposition of O2- into H2O2 and O2, involve reactions with Cu, Mn and DOM. In productive regions of the ocean, the reaction between DOM and O2- can be a significant sink for O2-. Thus DOM is a key component of both the formation and decomposition of O2- and formation of H2O2. In the present work we examined the relationships between O2- decay rates and parameters associated with chromophoric dissolved organic matter (CDOM and fluorescent dissolved organic matter (FDOM by using the thermal O2- source SOTS-1. Filtered samples (0.2 µm were run both in the presence, and absence, of the metal chelator diethylenetriaminepentaacetic acid (DTPA to determine the contribution from DOM. Samples were collected along a transect across the continental shelf of the Mauritanian continental shelf during a period of upwelling. In this region we found that reactions with DOM, are a significant sink for O2- in the Mauritanian Upwelling, constituting on average 58 ± 13 % of the O2- loss rates. Superoxide reactivity with organic matter showed no clear correlation with bulk CDOM or FDOM properties (as assessed by PARAFAC analysis suggesting that future work should concentrate at the functional group level to clearly elucidate which molecular species are involved as bulk properties represent a wide spread of chemical moieties with different O2- reactivities. Analysis of FDOM parameters indicates that many of the markers used previously for

  5. Sinks as integrative elements of the anthropogenic metabolism

    Science.gov (United States)

    Kral, Ulrich; Brunner, Paul H.

    2015-04-01

    The anthropogenic metabolism is an open system requiring exchange of materials and energy between the anthroposphere and the environment. Material and energy flows are taken from nature and become utilized by men. After utilization, the materials either remain in the anthroposphere as recycling products, or they leave the anthroposphere as waste and emission flows. To accommodate these materials without jeopardizing human and environmental health, limited natural sinks are available; thus, man-made sinks have to be provided where natural sinks are missing or overloaded. The oral presentation (1) suggests a coherent definition of the term "sink", encompassing natural and man-made processes, (2) presents a framework to analyse and evaluate anthropogenic material flows to sinks, based on the tool substance flow analysis and impact assessment methodology, and (3) applies the framework in a case study approach for selected substances such as Copper and Lead in Vienna and Perfluorooctane sulfonate in Switzerland. Finally, the numeric results are aggregated in terms of a new indicator that specifies on a regional scale which fractions of anthropogenic material flows to sinks are acceptable. The following results are obtained: In Vienna, 99% of Cu flows to natural and man-made sinks are in accordance with accepted standards. However, the 0.7% of Cu entering urban soils and the 0.3% entering receiving waters surpass the acceptable level. In the case of Pb, 92% of all flows into sinks prove to be acceptable, but 8% are disposed of in local landfills with limited capacity. For PFOS, 96% of all flows into sinks are acceptable. 4% cannot be evaluated due to a lack of normative criteria, despite posing a risk for human health and the environment. The case studies corroborate the need and constraints of sinks to accommodate inevitable anthropogenic material flows.

  6. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  7. Perturbation analysis of transient population dynamics using matrix projection models

    DEFF Research Database (Denmark)

    Stott, Iain

    2016-01-01

    Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management...... these methods to know exactly what is being measured. Despite a wealth of existing methods, I identify some areas that would benefit from further development....

  8. Stochastic population dynamics of a montane ground-dwelling squirrel.

    Science.gov (United States)

    Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λbounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  9. Source-to-Sink System Evolution as Recorded in Clastic Facies in Two New Zealand Examples: the Bounty System of South Island and the Waipaoa System of North Island

    Science.gov (United States)

    Marsaglia, K. M.

    2010-12-01

    New Zealand river sources and their submarine sinks are excellent examples for modeling source-to-sink systems. In particular, the sand fractions of these systems can be used as tracers to document links and/or disconnects between fluvial, shelf, slope, and bathyal components. Within any given system, the ability to use sand as a tracer depends on the nature of the rocks exposed in source river drainage basins. In evolving systems, the potential for erosional unroofing, change of outcrop lithology through time, can be important. Additionally, the ability of a given lithology to generate sediment of a certain size may also vary. For example in the New Zealand examples, Cenozoic mudstones generate mostly mud but can liberate recycled sand grains (if present), as well as a smaller proportion of mudstone lithic fragments depending on degree of mudstone induration; schist generates copious sand and quartz-vein pebbles; and thin-bedded sandy turbidites can generate significant gravel, as well as mud and sand. Sediment production mode also comes into play with glacial processes (South Island) generating rock flour, as well as coarser debris. The major outcropping unit across both islands is a sedimentary to metasedimentary forearc succession, the Torlesse Terrane. It served as the protolith of the Otago schist (South Island) and the source of detritus for Cretaceous and Cenozoic sedimentary units on both islands. Local magmatism also supplied sand-sized material: intraplate (South Island) volcanism produced intrabasinal epiclastic debris and magmatic arc (North Island) volcanism produced extrabasinal pyroclastic debris. Various lithologies have characteristic detrital signatures. For example, in the Cenozoic units of the Waipaoa system, Pliocene calcareous mudstone fragments are key lithic components in tracing sediment transport from source-to sink, whereas the major fingerprint of Otago schist input into the Bounty System of South Island is mica. Critical to defining

  10. Phenology and carbon dioxide source/sink strength of a subalpine grassland in response to an exceptionally short snow season

    International Nuclear Information System (INIS)

    Galvagno, M; Cremonese, E; Filippa, G; Morra di Cella, U; Wohlfahrt, G; Rossini, M; Colombo, R; Julitta, T; Manca, G; Siniscalco, C; Migliavacca, M

    2013-01-01

    Changes in snow cover depth and duration predicted by climate change scenarios are expected to strongly affect high-altitude ecosystem processes. This study investigates the effect of an exceptionally short snow season on the phenology and carbon dioxide source/sink strength of a subalpine grassland. An earlier snowmelt of more than one month caused a considerable advancement (40 days) of the beginning of the carbon uptake period (CUP) and, together with a delayed establishment of the snow season in autumn, contributed to a two-month longer CUP. The combined effect of the shorter snow season and the extended CUP led to an increase of about 100% in annual carbon net uptake. Nevertheless, the unusual environmental conditions imposed by the early snowmelt led to changes in canopy structure and functioning, with a reduction of the carbon sequestration rate during the snow-free period. (letter)

  11. Radiation effects on the mixed convection flow induced by an inclined stretching cylinder with non-uniform heat source/sink.

    Science.gov (United States)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Asghar, Saleem

    2017-01-01

    This study investigates the mixed convection flow of Jeffrey liquid by an impermeable inclined stretching cylinder. Thermal radiation and non-uniform heat source/sink are considered. The convective boundary conditions at surface are imposed. Nonlinear expressions of momentum, energy and concentration are transformed into dimensionless systems. Convergent homotopic solutions of the governing systems are worked out by employing homotopic procedure. Impact of physical variables on the velocity, temperature and concentration distributions are sketched and discussed. Numerical computations for skin friction coefficient, local Nusselt and Sherwood numbers are carried out. It is concluded that velocity field enhances for Deborah number while reverse situation is observed regarding ratio of relaxation to retardation times. Temperature and heat transfer rate are enhanced via larger thermal Biot number. Effect of Schmidt number on the concentration and local Sherwood number is quite reverse.

  12. Assessment of dose contribution to population exposure from the radiation sources in the alienated Chernobyl zone

    International Nuclear Information System (INIS)

    Grodzinsky, D.M.; Francevych, L.K.; Koval, H.N.; Yakovlev, E.A.; Bezdrobny, Yu.V.; Proscura, N.I.; Pyantkowsky, V.L.

    1997-01-01

    The main dose load of Ukrainian population is caused by radionuclide-contamination of country territories, located outside the alienated zone, following Chernobyl accident. Besides, much attention could be devoted to the contribution of dose load on population, received from the radioactivity sources that were transferred out from the zone after accident. Present research and analysis of the available documents reflecting the transfer of radioactivity from the alienated zone, provided the estimates of dose load on population, resulting from transfer of the radioactivity sources via following channels: (1) direct surface flow; (2) underground waters; (3) wind-powdered route; (4) transfer with hydrobionts; (5) transfer during irrigation; (6) biogenic route; (7) transport routes and (8) route during wood transportation. Dynamics of radiation transfer through each channel was also studied for the post-accident period. Specific gravity of radioactivity transfer is determined in relation to dose load on Ukrainian population in different regions, in particular, in Dnipro river basin. The perspectives of radioactivity transfer via each of studied channels and its role in dose load on population were also analyzed. On the basis of present results the recommendations on possible arrangements are working out that aimed to reduce the dose contribution in population exposure by radioactivity source transfer from the alienated zone via channels that stipulate the largest dose loads and collective doses

  13. Central-marginal population dynamics in species invasions

    Directory of Open Access Journals (Sweden)

    Qinfeng eGuo

    2014-06-01

    Full Text Available The species’ range limits and associated central-marginal (C-M; i.e., from species range center to margin population dynamics continue to draw increasing attention because of their importance for current emerging issues such as biotic invasions and epidemic diseases under global change. Previous studies have mainly focused on species borders and C-M process in natural settings for native species. More recently, growing efforts are devoted to examine the C-M patterns and process for invasive species partly due to their relatively short history, highly dynamic populations, and management implications. Here I examine recent findings and information gaps related to (1 the C-M population dynamics linked to species invasions, and (2 the possible effects of climate change and land use on the C-M patterns and processes. Unlike most native species that are relatively stable (some even having contracting populations or ranges, many invasive species are still spreading fast and form new distribution or abundance centers. Because of the strong nonlinearity of population demographic or vital rates (i.e. birth, death, immigration and emigration across the C-M gradients and the increased complexity of species ranges due to habitat fragmentation, multiple introductions, range-wide C-M comparisons and simulation involving multiple vital rates are needed in the future.

  14. Null Controllability of a Nonlinear Dissipative System and Application to the Detection of the Incomplete Parameter for a Nonlinear Population Dynamics Model

    Directory of Open Access Journals (Sweden)

    Yacouba Simporé

    2016-01-01

    Full Text Available We first prove a null controllability result for a nonlinear system derived from a nonlinear population dynamics model. In order to tackle the controllability problem we use an adapted Carleman inequality. Next we consider the nonlinear population dynamics model with a source term called the pollution term. In order to obtain information on the pollution term we use the method of sentinel.

  15. Sink Potential of Canadian Agricultural Soils

    International Nuclear Information System (INIS)

    Boehm, M.; Junkins, B.; Desjardins, R.; Lindwall, W.; Kulshreshtha, S.

    2004-01-01

    Net greenhouse gas (GHG) emissions from Canadian crop and livestock production were estimated for 1990, 1996 and 2001 and projected to 2008. Net emissions were also estimated for three scenarios (low (L), medium (M) and high (H)) of adoption of sink enhancing practices above the projected 2008 level. Carbon sequestration estimates were based on four sink-enhancing activities: conversion from conventional to zero tillage (ZT), reduced frequency of summerfallow (SF), the conversion of cropland to permanent cover crops (PC), and improved grazing land management (GM). GHG emissions were estimated with the Canadian Economic and Emissions Model for Agriculture (CEEMA). CEEMA estimates levels of production activities within the Canadian agriculture sector and calculates the emissions and removals associated with those levels of activities. The estimates indicate a decline in net emissions from 54 Tg CO2-Eq yr-1 in 1990 to 52 Tg CO2-Eq yr-1 in 2008. Adoption of the sink-enhancing practices above the level projected for 2008 resulted in further declines in emissions to 48 Tg CO2-Eq yr-1 (L), 42 Tg CO2-Eq yr-1 (M) or 36 Tg CO2-Eq yr-1 (H). Among the sink-enhancing practices, the conversion from conventional tillage to ZT provided the largest C sequestration potential and net reduction in GHG emissions among the scenarios. Although rates of C sequestration were generally higher for conversion of cropland to PC and adoption of improved GM, those scenarios involved smaller areas of land and therefore less C sequestration. Also, increased areas of PC were associated with an increase in livestock numbers and CH4 and N2O emissions from enteric fermentation and manure, which partially offset the carbon sink. The CEEMA estimates indicate that soil C sinks are a viable option for achieving the UNFCCC objective of protecting and enhancing GHG sinks and reservoirs as a means of reducing GHG emissions (UNFCCC, 1992)

  16. Omnivory in birds is a macroevolutionary sink.

    Science.gov (United States)

    Burin, Gustavo; Kissling, W Daniel; Guimarães, Paulo R; Şekercioğlu, Çağan H; Quental, Tiago B

    2016-04-07

    Diet is commonly assumed to affect the evolution of species, but few studies have directly tested its effect at macroevolutionary scales. Here we use Bayesian models of trait-dependent diversification and a comprehensive dietary database of all birds worldwide to assess speciation and extinction dynamics of avian dietary guilds (carnivores, frugivores, granivores, herbivores, insectivores, nectarivores, omnivores and piscivores). Our results suggest that omnivory is associated with higher extinction rates and lower speciation rates than other guilds, and that overall net diversification is negative. Trait-dependent models, dietary similarity and network analyses show that transitions into omnivory occur at higher rates than into any other guild. We suggest that omnivory acts as macroevolutionary sink, where its ephemeral nature is retrieved through transitions from other guilds rather than from omnivore speciation. We propose that these dynamics result from competition within and among dietary guilds, influenced by the deep-time availability and predictability of food resources.

  17. Mosquito population regulation and larval source management in heterogeneous environments.

    Directory of Open Access Journals (Sweden)

    David L Smith

    Full Text Available An important question for mosquito population dynamics, mosquito-borne pathogen transmission and vector control is how mosquito populations are regulated. Here we develop simple models with heterogeneity in egg laying patterns and in the responses of larval populations to crowding in aquatic habitats. We use the models to evaluate how such heterogeneity affects mosquito population regulation and the effects of larval source management (LSM. We revisit the notion of a carrying capacity and show how heterogeneity changes our understanding of density dependence and the outcome of LSM. Crowding in and productivity of aquatic habitats is highly uneven unless egg-laying distributions are fine-tuned to match the distribution of habitats' carrying capacities. LSM reduces mosquito population density linearly with coverage if adult mosquitoes avoid laying eggs in treated habitats, but quadratically if eggs are laid in treated habitats and the effort is therefore wasted (i.e., treating 50% of habitat reduces mosquito density by approximately 75%. Unsurprisingly, targeting (i.e. treating a subset of the most productive pools gives much larger reductions for similar coverage, but with poor targeting, increasing coverage could increase adult mosquito population densities if eggs are laid in higher capacity habitats. Our analysis suggests that, in some contexts, LSM models that accounts for heterogeneity in production of adult mosquitoes provide theoretical support for pursuing mosquito-borne disease prevention through strategic and repeated application of modern larvicides.

  18. Quantifying Sources, Sinks and Gas-surface Interactions on the Moon from LADEE Measurements of Exospheric Na and K

    Science.gov (United States)

    Colaprete, A.; Sarantos, M.; Poppe, A. R.; Bennett, C.; Orlando, T. M.

    2015-12-01

    We present numerical simulations of the generation and loss of the sodium (Na) and potassium (K) exospheres of the Moon and compare these results to recent LADEE observations. While both species appear to migrate towards the poles like other volatiles, Na resides on the soil and exosphere for one to two months before getting lost to the solar wind or the subsurface. K exhibits a different evolutionary trend: it is lost much more quickly than ionization and sputtering rates allow for, suggesting that it is lost to the ground in just a few bounces. Thus, the two alkalis exhibit very different interactions with the lunar surface. Reproducing the monthly variation exhibited by Na requires higher source rates at Mare, or higher sink rates at Highlands, or a combination of both. The very different behavior of Na on Mare and Highlands soils is reminiscent of laboratory experiments of water binding on Apollo fine soils.

  19. Impact of heat source/sink on radiative heat transfer to Maxwell nanofluid subject to revised mass flux condition

    Science.gov (United States)

    Khan, M.; Irfan, M.; Khan, W. A.

    2018-06-01

    Nanofluids retain noteworthy structure that have absorbed attentions of numerous investigators because of their exploration in nanotechnology and nanoscience. In this scrutiny a mathematical computation of 2D flows of Maxwell nanoliquid influenced by a stretched cylinder has been established. The heat transfer structure is conceded out in the manifestation of thermal radiation and heat source/sink. Moreover, the nanoparticles mass flux condition is engaged in this exploration. This newly endorsed tactic is more realistic where the conjecture is made that the nanoparticle flux is zero and nanoparticle fraction regulates itself on the restrictions consequently. By utilizing apposite conversion the governing PDEs are transformed into ODEs and then tackled analytically via HAM. The attained outcomes are plotted and deliberated in aspect for somatic parameters. It is remarked that with an intensification in the Deborah number β diminish the liquid temperature while it boosts for radiation parameter Rd . Furthermore, the concentration of Maxwell liquid has conflicting impact for Brownian motion Nb and thermophoresis parameters Nt .

  20. Nonlinear Relaxation in Population Dynamics

    Science.gov (United States)

    Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo

    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.

  1. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux.

    Science.gov (United States)

    Hölttä, Teemu; Lintunen, Anna; Chan, Tommy; Mäkelä, Annikki; Nikinmaa, Eero

    2017-07-01

    Trees must simultaneously balance their CO2 uptake rate via stomata, photosynthesis, the transport rate of sugars and rate of sugar utilization in sinks while maintaining a favourable water and carbon balance. We demonstrate using a numerical model that it is possible to understand stomatal functioning from the viewpoint of maximizing the simultaneous photosynthetic production, phloem transport and sink sugar utilization rate under the limitation that the transpiration-driven hydrostatic pressure gradient sets for those processes. A key feature in our model is that non-stomatal limitations to photosynthesis increase with decreasing leaf water potential and/or increasing leaf sugar concentration and are thus coupled to stomatal conductance. Maximizing the photosynthetic production rate using a numerical steady-state model leads to stomatal behaviour that is able to reproduce the well-known trends of stomatal behaviour in response to, e.g., light, vapour concentration difference, ambient CO2 concentration, soil water status, sink strength and xylem and phloem hydraulic conductance. We show that our results for stomatal behaviour are very similar to the solutions given by the earlier models of stomatal conductance derived solely from gas exchange considerations. Our modelling results also demonstrate how the 'marginal cost of water' in the unified stomatal conductance model and the optimal stomatal model could be related to plant structural and physiological traits, most importantly, the soil-to-leaf hydraulic conductance and soil moisture. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effects of biofouling on the sinking behavior of microplastics

    Science.gov (United States)

    Kaiser, David; Kowalski, Nicole; Waniek, Joanna J.

    2017-12-01

    Although plastic is ubiquitous in marine systems, our current knowledge of transport mechanisms is limited. Much of the plastic entering the ocean sinks; this is intuitively obvious for polymers such as polystyrene (PS), which have a greater density than seawater, but lower density polymers like polyethylene (PE) also occur in sediments. Biofouling can cause large plastic objects to sink, but this phenomenon has not been described for microplastics microplastic particles in estuarine and coastal waters to determine how biofouling changes their sinking behavior. Sinking velocities of PS increased by 16% in estuarine water (salinity 9.8) and 81% in marine water (salinity 36) after 6 weeks of incubation. Thereafter sinking velocities decreased due to lower water temperatures and reduced light availability. Biofouling did not cause PE to sink during the 14 weeks of incubation in estuarine water, but PE started to sink after six weeks in coastal water when sufficiently colonized by blue mussels Mytilus edulis, and its velocity continued to increase until the end of the incubation period. Sinking velocities of these PE pellets were similar irrespective of salinity (10 vs. 36). Biofilm composition differed between estuarine and coastal stations, presumably accounting for differences in sinking behavior. We demonstrate that biofouling enhances microplastic deposition to marine sediments, and our findings should improve microplastic transport models.

  3. Effects of the age class distributions of the temperate and boreal forests on the global CO2 source-sink function

    Science.gov (United States)

    Kohlmaier, G. H.; Häger, Ch.; Würth, G.; Lüdeke, M. K. B.; Ramge, P.; Badeck, F.-W.; Kindermann, J.; Lang, T.

    1995-02-01

    The rôle of the temperate and boreal forests as a global CO2 source or sink is examined, both for the present time and for the next hundred years. The results of the Forest Resource Assessment for 1990 of the Economic Comission for Europe and the Food and Agricultural Organisation of the United Nations (1992) serve as the main database in this study. Out of the estimated total area of approximately 20106 km2 of forests and wooded lands in the temperate and boreal zone only approximately fifty percent is documented within the category of exploitable forests, which are examined in detail here. In this study, a general formalism of the time evolution of an ensemble of forests within an ecological province is developed using the formalism of the Leslie matrix. This matrix can be formulated if the age class dependent mortalities which arise from the disturbances are known. A distinction is made between the natural disturbances by fire, wind throw and insect infestations and disturbances introduced through harvesting of timber. Through the use of Richards growth function each age class of a given biome is related to the corresponding biomass and annual increment. The data reported on the mean net annual increment and on the mean biomass serve to calibrate the model. The difference of the reported net annual increment and annual fellings of approximately 550 106 m3 roundwood correspond to a sink of 210-330 Mt of carbon per year excluding any changes in the soil balance. It could be shown that the present distribution of forest age classes for the United States, Canada, Europe, or the former Soviet Union does not correspond to a quasi-stationary state, in which biomass is accumulated only due to a stimulated growth under enhanced atmospheric CO2 levels. The present CO2 sink function will not persist in the next century, if harvesting rates increase with 0.5% annually or even less. The future state will also be influenced by the effect of the greenhouse climate, the impact

  4. Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels

    Directory of Open Access Journals (Sweden)

    Peter eStief

    2016-02-01

    Full Text Available In the world’s oceans, even relatively low oxygen (O2 levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here we show that sinking diatom aggregates can host anaerobic nitrogen cycling at ambient O2 levels well above the hypoxic threshold. Aggregates were produced from the ubiquitous diatom Skeletonema marinoi and the natural microbial community of seawater. Microsensor profiling through the center of sinking aggregates revealed internal anoxia at ambient 40% air saturation (~100 µmol O2 L-1 and below. Accordingly, anaerobic nitrate turnover inside the aggregates was evident within this range of ambient O2 levels. In incubations with 15N-labeled nitrate, individual Skeletonema aggregates produced NO2- (up to 10.7 nmol N h-1 per aggregate, N2 (up to 7.1 nmol N h-1, NH4+ (up to 2.0 nmol N h-1, and N2O (up to 0.2 nmol N h-1. Intriguingly, nitrate stored inside the diatom cells served as an additional, internal nitrate source for N2 production, which may partially uncouple anaerobic nitrate turnover by diatom aggregates from direct ambient nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient O2 levels. Depending on the extent of intracellular nitrate consumption during the sinking process, diatom aggregates may also be involved in the long-distance export of nitrate to the deep ocean.

  5. Longevity of terrestrial Carbon sinks: effects of soil degradation on greenhouse gas emissions

    Science.gov (United States)

    Kuhn, Nikolaus J.; Berger, Samuel; Kuonen, Samuel

    2013-04-01

    Soil erosion by water is a key process of soil and land degradation. In addition, significant amounts of nutrients and organic Carbon are moved from eroding source areas to landscape sinks. As a consequence, areas affected by erosion suffer a loss of fertility, while sinks experience the development of a stockpile of the deposited sediment, including soil organic matter and nutrients. The deposited nutrients are largely unavailable for the plants growing in these landscape sediment sinks once the thickness of the deposited layer is greater than the rooting depth of the plants. In addition, the deposited organic matter is decomposed slowly through the pack of sediment. At sites of erosion, nutrients have to be replaced and organic matter content of the soil declines due to a destruction of the A horizon. Over time, the risk of a significant reduction in productivity, for example caused by a loss of top soil with a sufficient water storage capacity for maximum plant growth, leads to a decline in CO2 uptake by photosynthesis. Soil organic matter at eroding sites therefore declines and consequently the sediment that is moved to landscape sinks also has a smaller organic matter content than sediment generated from the non-degraded soil. The sediment sinks, on the other hand, emit an increasing amount of greenhouse gases as a consequence of the increasing amount of organic matter deposited while the upslope area is eroded. Over time, the perceived sink effect of soil erosion for greenhouse gases is therefore replaced with a neutral or positive emission balance of erosion in agricultural landscapes. Such a switch from none or a negative emission balance of agricultural landscapes to a positive balance carries the risk of accelerating climate change. In this study, we tried to estimate the risk associated with ongoing soil degradation and closing landscape soil organic matter sinks. Currently observed global erosion rates were linked to known limitations of soil

  6. Population and evolutionary dynamics in spatially structured seasonally varying environments.

    Science.gov (United States)

    Reid, Jane M; Travis, Justin M J; Daunt, Francis; Burthe, Sarah J; Wanless, Sarah; Dytham, Calvin

    2018-03-25

    Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can

  7. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  8. Effects of an invasive plant on population dynamics in toads.

    Science.gov (United States)

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  9. Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications

    Directory of Open Access Journals (Sweden)

    G. R. Wentworth

    2016-02-01

    Full Text Available Continuous hourly measurements of gas-phase ammonia (NH3(g were taken from 13 July to 7 August 2014 on a research cruise throughout Baffin Bay and the eastern Canadian Arctic Archipelago. Concentrations ranged from 30 to 650 ng m−3 (40–870 pptv with the highest values recorded in Lancaster Sound (74°13′ N, 84°00′ W. Simultaneous measurements of total ammonium ([NHx], pH and temperature in the ocean and in melt ponds were used to compute the compensation point (χ, which is the ambient NH3(g concentration at which surface–air fluxes change direction. Ambient NH3(g was usually several orders of magnitude larger than both χocean and χMP (< 0.4–10 ng m3 indicating these surface pools are net sinks of NH3. Flux calculations estimate average net downward fluxes of 1.4 and 1.1 ng m−2 s−1 for the open ocean and melt ponds, respectively. Sufficient NH3(g was present to neutralize non-sea-salt sulfate (nss-SO42− in the boundary layer during most of the study. This finding was corroborated with a historical data set of PM2.5 composition from Alert, Nunavut (82°30′ N, 62°20′ W wherein the median ratio of NH4+/nss-SO42− equivalents was greater than 0.75 in June, July and August. The GEOS-Chem chemical transport model was employed to examine the impact of NH3(g emissions from seabird guano on boundary-layer composition and nss-SO42− neutralization. A GEOS-Chem simulation without seabird emissions underestimated boundary layer NH3(g by several orders of magnitude and yielded highly acidic aerosol. A simulation that included seabird NH3 emissions was in better agreement with observations for both NH3(g concentrations and nss-SO42− neutralization. This is strong evidence that seabird colonies are significant sources of NH3 in the summertime Arctic, and are ubiquitous enough to impact atmospheric composition across the entire Baffin Bay region. Large wildfires in the Northwest Territories were likely

  10. Seasonal atmospheric deposition and air-sea gas exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implications for source-sink processes

    Science.gov (United States)

    Jiang, Yuqing; Lin, Tian; Wu, Zilan; Li, Yuanyuan; Li, Zhongxia; Guo, Zhigang; Yao, Xiaohong

    2018-04-01

    In this work, air samples and surface seawater samples covering four seasons from March 2014 to January 2015 were collected from a background receptor site in the YRE to explore the seasonal fluxes of air-sea gas exchange and dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. Gaseous PAH release from seawater to the atmosphere averaged 3114 ± 1999 ng m-2 d-1 in a year round. The air-sea gas exchange of PAHs was the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of total dry and wet deposition. The gas PAH exchange flux was dominated by three-ring PAHs, with the highest value in summer and lowest in winter, indicating a marked seasonal variation owing to differences in Henry's law constants associated with temperature, as well as wind speed and gaseous-dissolved gradient among seasons. Based on the simplified mass balance estimation, a net 11 tons y-1 of PAHs (mainly three-ring PAHs) were volatilized from seawater to the atmosphere in a ∼20,000 km2 area in the YRE. Other than the year-round Yangtze River input and ocean ship emissions, the selective release of low-molecular-weight PAHs from bottom sediments in winter due to resuspension triggered by the East Asian winter monsoon is another potential source of PAHs. This work suggests that the source-sink processes of PAHs at the air-sea interface in the YRE play a crucial role in regional cycling of PAHs.

  11. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  12. Evolutionary Dynamics and Diversity in Microbial Populations

    Science.gov (United States)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  13. Dynamics of a physiologically structured population in a time-varying environment

    DEFF Research Database (Denmark)

    Heilmann, Irene Louise Torpe; Starke, Jens; Andersen, Ken Haste

    2016-01-01

    Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more...... or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two...... cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts...

  14. Dynamic Aperture Measurements at the Advanced Light Source

    International Nuclear Information System (INIS)

    Decking, W.; Robin, D.

    1999-01-01

    A large dynamic aperture for a storage ring is of importance for long lifetimes and a high injection efficiency. Measurements of the dynamic aperture of the third generation synchrotron light source Advanced Light Source (ALS) using beam excitation with kicker magnets are presented. The experiments were done for various accelerator conditions, allowing us to investigate the influence of different working points, chromaticities, insertion devices, etc.. The results are compared both with tracking calculations and a simple model for the dynamic aperture yielding good agreements. This gives us confidence in the predictability of the nonlinear accelerator model. This is especially important for future ALS upgrades as well as new storage ring designs

  15. Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.

    1995-07-01

    The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.

  16. An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    DEFF Research Database (Denmark)

    Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model...

  17. Population dynamics of active and total ciliate populations in arable soil amended with wheat

    DEFF Research Database (Denmark)

    Ekelund, F.; Frederiksen, Helle B.; Ronn, R.

    2002-01-01

    of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil...... microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable...

  18. DYNAMICS OF Cercospora zeina POPULATIONS IN MAIZE-BASED ...

    African Journals Online (AJOL)

    ACSS

    DYNAMICS OFCercospora zeina POPULATIONS IN MAIZE-BASED AGRO- ..... Population differentiation of Cercospora zeina in three districts of Uganda based on analysis of molecular variance ..... interactions: The example of the Erysiphe.

  19. Nitrogen sources, transport and processing in peri-urban floodplains

    OpenAIRE

    Gooddy, D.C.; Macdonald, D.M.J.; Lapworth, D.J.; Bennett, S.A.; Griffiths, K.J.

    2014-01-01

    Peri-urban floodplains are an important interface between developed land and the aquatic environment and may act as a source or sink for contaminants moving from urban areas towards surface water courses. With increasing pressure from urban development the functioning of floodplains is coming under greater scrutiny. A number of peri-urban sites have been found to be populated with legacy landfills which could potentially cause pollution of adjacent river bodies. Here, a peri-urban floodplain ...

  20. Shifting nitrous oxide source/sink behaviour in a subtropical estuary revealed by automated time series observations

    Science.gov (United States)

    Reading, Michael J.; Santos, Isaac R.; Maher, Damien T.; Jeffrey, Luke C.; Tait, Douglas R.

    2017-07-01

    The oceans are a major source of the potent greenhouse gas nitrous oxide (N2O) to the atmosphere. However, little information is available on how estuaries and the coastal ocean may contribute to N2O budgets, and on the drivers of N2O in aquatic environments. This study utilised five time series stations along the freshwater to marine continuum in a sub-tropical estuary in Australia (Coffs Creek, Australia). Each time series station captured N2O, radon (222Rn, a natural submarine groundwater discharge tracer), dissolved nitrogen, and dissolved organic carbon (DOC) concentrations for a minimum of 25 h. The use of automated time series observations enabled spatial and tidal-scale variability of N2O to be captured. Groundwater was highly enriched in N2O (up to 306 nM) compared to the receiving surface water. Dissolved N2O supersaturation as high as 386% (27.4 nM) was observed in the upstream freshwater and brackish water areas which represented only a small (∼13%) proportion of the total estuary area. A large area of N2O undersaturation (as low as 53% or 3.9 nM) was observed in the mangrove-dominated lower estuary. This undersaturated area likely resulted from N2O consumption due to nitrate/nitrite (NOx) limitation in mangrove sediments subject to shallow porewater exchange. Overall, the estuary was a minor source of N2O to the atmosphere as the lower mangrove-dominated estuary sink of N2O counteracted groundwater-dominated source of N2O in the upper estuary. Average area-weighted N2O fluxes at the water-air interface approached zero (0.2-0.7 μmol m-2 d-1, depending on piston velocity model used), and were much lower than nitrogen-rich Northern Hemisphere estuaries that are considered large sources of N2O to the atmosphere. This study revealed a temporally and spatially diverse estuary, with areas of N2O production and consumption related to oxygen and total dissolved nitrogen availability, submarine groundwater discharge, and uptake within mangroves.

  1. POPULATION DYNAMICS OF PSEUDO-NITZSCHIA SPECIES ...

    African Journals Online (AJOL)

    nb

    current study aimed at assessing the population dynamics of Pseudo-nitzschia ... and to the developing aquaculture industry ... B. Hotel. Pangani Island. Bongoyo Island. Mbudya Island. Msasani Bay ... Salinity values did not show clear trends.

  2. The finite state projection approach to analyze dynamics of heterogeneous populations

    Science.gov (United States)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  3. Population studies of the unidentified EGRET sources

    Energy Technology Data Exchange (ETDEWEB)

    Siegal-Gaskins, J M [University of Chicago, Chicago, IL 60637 (United States); Pavlidou, V [University of Chicago, Chicago, IL 60637 (United States); Olinto, A V [University of Chicago, Chicago, IL 60637 (United States); Brown, C [University of Chicago, Chicago, IL 60637 (United States); Fields, B D [University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-03-15

    The third EGRET catalog contains a large number of unidentified sources. Current data allows the intriguing possibility that some of these objects may represent a new class of yet undiscovered gamma-ray sources. By assuming that galaxies similar to the Milky Way host comparable populations of objects, we constrain the allowed Galactic abundance and distribution of various classes of gamma-ray sources using the EGRET data set. Furthermore, regardless of the nature of the unidentified sources, faint unresolved objects of the same class contribute to the observed diffuse gamma-ray background. We investigate the potential contribution of these unresolved sources to the extragalactic gamma-ray background.

  4. Population studies of the unidentified EGRET sources

    International Nuclear Information System (INIS)

    Siegal-Gaskins, J M; Pavlidou, V; Olinto, A V; Brown, C; Fields, B D

    2007-01-01

    The third EGRET catalog contains a large number of unidentified sources. Current data allows the intriguing possibility that some of these objects may represent a new class of yet undiscovered gamma-ray sources. By assuming that galaxies similar to the Milky Way host comparable populations of objects, we constrain the allowed Galactic abundance and distribution of various classes of gamma-ray sources using the EGRET data set. Furthermore, regardless of the nature of the unidentified sources, faint unresolved objects of the same class contribute to the observed diffuse gamma-ray background. We investigate the potential contribution of these unresolved sources to the extragalactic gamma-ray background

  5. Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008.

    Science.gov (United States)

    Guo, Zhaodi; Hu, Huifeng; Li, Pin; Li, Nuyun; Fang, Jingyun

    2013-07-01

    Forests play a leading role in regional and global carbon (C) cycles. Detailed assessment of the temporal and spatial changes in C sinks/sources of China's forests is critical to the estimation of the national C budget and can help to constitute sustainable forest management policies for climate change. In this study, we explored the spatio-temporal changes in forest biomass C stocks in China between 1977 and 2008, using six periods of the national forest inventory data. According to the definition of the forest inventory, China's forest was categorized into three groups: forest stand, economic forest, and bamboo forest. We estimated forest biomass C stocks for each inventory period by using continuous biomass expansion factor (BEF) method for forest stands, and the mean biomass density method for economic and bamboo forests. As a result, China's forests have accumulated biomass C (i.e., biomass C sink) of 1896 Tg (1 Tg=10(12) g) during the study period, with 1710, 108 and 78 Tg C in forest stands, and economic and bamboo forests, respectively. Annual forest biomass C sink was 70.2 Tg C a(-1), offsetting 7.8% of the contemporary fossil CO2 emissions in the country. The results also showed that planted forests have functioned as a persistent C sink, sequestrating 818 Tg C and accounting for 47.8% of total C sink in forest stands, and that the old-, mid- and young-aged forests have sequestrated 930, 391 and 388 Tg C from 1977 to 2008. Our results suggest that China's forests have a big potential as biomass C sink in the future because of its large area of planted forests with young-aged growth and low C density.

  6. Critical dynamics in population vaccinating behavior.

    Science.gov (United States)

    Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T

    2017-12-26

    Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.

  7. Uncovering the secret lives of sewer rats (Rattus norvegicus): Movements, distribution and population dynamics revealed by a capture-mark-recapture study

    DEFF Research Database (Denmark)

    Heiberg, Ann-Charlotte; Sluydts, Vincent; Leirs, Herwig E.l.

    2012-01-01

    Context.: In many parts of the world, brown rats have colonised sewer systems and the rat populations in sewers are often thought to be a source of problems with rats on the surface. The management of sewer rat populations is usually performed with little, if any, knowledge of the dynamics and be...

  8. Unsteady MHD flow of a dusty nanofluid past a vertical stretching surface with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    C. Sulochana

    2016-02-01

    Full Text Available We analyzed the momentum and heat transfer characteristics of unsteady MHD flow of a dusty nanofluid over a vertical stretching surface in presence of volume fraction of dust and nano particles with non uniform heat source/sink. We considered two types of nanofluids namely Ag-water and Cu-water embedded with conducting dust particles. The governing equations are transformed in to nonlinear ordinary differential equations by using similarity transformation and solved numerically using Shooting technique. The effects of non-dimensional governing parameters on velocity and temperature profiles for fluid and dust phases are discussed and presented through graphs. Also, the skin friction coefficient and Nusselt number are discussed and presented for two dusty nanofluids separately in tabular form. Results indicate that an increase in the volume fraction of dust particles enhances the heat transfer in Cu-water nanofluid compared with Ag-water nanofluid and a raise in the volume fraction of nano particles shows uniform heat transfer in both Cu-water and Ag-water nanofluids.

  9. Source-to-sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera, southeastern France

    Science.gov (United States)

    Anthony, Edward J.; Julian, Maurice

    1999-12-01

    Steep coastal margins are potentially subject to mass wasting processes involving notable landslide activity and sediment evacuation downstream by steep-gradient streams. Sediment transfer from short source-to-sink segments, coupled with mountain hydrological regimes, regulate patterns of river channel aggradation and coastal sediment supply in such geomorphic settings. On the steep French Riviera margin, sediment transfers from existing landslides or from various minor mass wasting processes to stream channels may result following bursts of heavy, concentrated rainfall. High-magnitude flooding and massive sediment transport downstream are generally related to unpredictable extreme rainfalls. Both mass movements and channel sediment storage pose serious hazards to downvalley settlements and infrastructure. A consideration of channel sediment storage patterns in the Var River catchment, the most important catchment in this area, highlights two important shortcomings relative to environmental engineering and hazard mitigation practices. In the first place, the appreciation of geomorphic processes is rather poor. This is illustrated by the undersized nature of engineering works constructed to mitigate hazards in the upstream bedload-dominated channels, and by the unforeseen effects that ten rock dams, constructed in the early 1970s, have had on downstream and coastal sediment storage and on sediment dispersal patterns and, consequently, valley flooding. Secondly, planners and environmental engineers have lacked foresight in valley and coastal management issues on this steep setting, notably as regards the reclaimed areas of the lower Var channel and delta liable to flooding. Urbanization and transport and environmental engineering works have progressively affected patterns of storage and transport of fine-grained sediments in the lower Var channel and delta. Meanwhile the problems raised by these changes have not been adequately addressed in terms of scientific

  10. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.

  11. Problems in the neutron dynamics of source-driven systems

    International Nuclear Information System (INIS)

    Ravetto, P.

    2001-01-01

    The present paper presents some neutronic features of source-driven neutron multiplying systems, with special regards to dynamics, discussing the validity and limitations of classical methods, developed for systems in the vicinity of criticality. Specific characteristics, such as source dominance and the role of delayed neutron emissions are illustrated. Some dynamic peculiarities of innovative concepts proposed for accelerator-driven systems, such as fluid-fuel, are also discussed. The second portion of the work formulates the quasi-static methods for source-driven systems, evidencing its novel features and presenting some numerical results. (author)

  12. Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective

    International Nuclear Information System (INIS)

    Gunter, W.D.; Wong, S.; Cheel, D.B.; Sjostrom, G.

    1998-01-01

    Significant reduction of CO 2 emissions on a global scale may be achieved by reduction of energy intensity, by reduction of carbon intensity or by capture and storage of CO 2 . A portfolio of these methods is required to achieve the large reductions required; of which utilization of carbon sinks (i.e. material, geosphere and biosphere) will be an important player. Material sinks will probably only play a minor role as compared to biosphere and geosphere sinks in storage of CO 2 . Biosphere sinks are attractive because they can sequester CO 2 from a diffuse source whereas geosphere sinks require a pure waste stream of CO 2 (obtained by using expensive separation methods). On the other hand, environmental factors and storage time favor geosphere sinks. It is expected that a combination of the two will be used in order to meet emission reduction targets over the next 100 yr.A critical look is taken at capacities, retention/residence times, rates of uptake and relative cost of utilization of biosphere and geosphere sinks at three scales - global, national (Canada) and provincial (Alberta). Biosphere sinks considered are oceans, forests and soils. Geosphere sinks considered are enhanced oil recovery, coal beds, depleted oil and gas reservoirs and deep aquifers. The largest sinks are oceans and deep aquifers. The other biosphere and geosphere sinks have total capacities approximately of an order of lower magnitude. The sinks that will probably be used first are those that are economically viable such as enhanced oil-recovery, agriculture, forestry and possibly enhanced coalbed methane-recovery. The other sinks will be used when these options have been exhausted or are not available or a penalty (e.g. carbon tax) exists. Although the data tabulated for these sinks is only regarded as preliminary, it provides a starting point for assessment of the role of large sinks in meeting greenhouse gas emission reduction targets. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam

  13. A community model of ciliate Tetrahymena and bacteria E. coli. Part 1: Individual-based models of Tetrahymena and E. coli populations

    Energy Technology Data Exchange (ETDEWEB)

    Jaworska, J.S.; Hallam, T.G.; Schultz, T.W. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-03-01

    The dynamics of a microbial community consisting of a eucaryotic ciliate Tetrahymena pyriformis and procaryotic. Escherichia coli in a batch culture is explored by employing an individual-based approach. In this portion of the article, Part 1, population models are presented. Because both models are individual-based, models of individual organisms are developed prior to construction of the population models. The individual models use an energy budget method in which growth depends on energy gain from feeding and energy sinks such as maintenance and reproduction. These models are not limited by simplifying assumptions about constant yield, constant energy sinks and Monod growth kinetics as are traditional models of microbial organisms. Population models are generated from individual models by creating distinct individual types and assigning to each type the number of real individuals they represent. A population is a compilation of individual types that vary in a phase of cell cycle and physiological parameters such as filtering rate for ciliates and maximum anabolic rate for bacteria. An advantage of the developed models is that they realistically describe the growth of the individual cells feeding on resource which varies in density and composition. Part 2, the core of the project, integrates models into a dynamic microbial community and provides model analysis based upon available data.

  14. Sources, sinks, trends, and opportunities

    International Nuclear Information System (INIS)

    Ciborowski, P.

    1989-01-01

    Each year the emission of greenhouse gases commits the earth to a warming of 0.02 to 0.06 degrees C. Many of these gases are released as by-products of fossil fuel combustion. The remainder are produced as a result of forest clearing in the tropics or agriculture or industrial activities. Carbon dioxide (CO 2 ) is the most important greenhouse gas, contributing about half of global heating. In addition, there are what are known as the non-CO 2 greenhouse gases: methane (CH 4 ), nitrous oxide (N 2 O), freon CFC-12 (CF 2 Cl 2 ), freon CFC-11 (CF 3 Cl), and tropospheric ozone (O 3 ). Carbon monoxide and the nitrogen gases, increase the amount of methane and ozone in the troposphere. There are also about 15 or 20 other greenhouse gases of lesser importance. This paper reviews the sources of some of these greenhouse gases, analyzes trends in their emissions, and suggests means through which greenhouse gas emissions can be limited

  15. Forest carbon sinks in the Northern Hemisphere

    Science.gov (United States)

    Christine L. Goodale; Michael J. Apps; Richard A. Birdsey; Christopher B. Field; Linda S. Heath; Richard A. Houghton; Jennifer C. Jenkins; Gundolf H. Kohlmaier; Werner Kurz; Shirong Liu; Gert-Jan Nabuurs; Sten Nilsson; Anatoly Z. Shvidenko

    2002-01-01

    There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measurement-based constraints on the magnitude of net forest carbon uptake. We brought together...

  16. Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure

    KAUST Repository

    Mazarrasa, Inés

    2017-03-15

    Seagrass meadows are strong coastal carbon sinks of autochthonous and allochthonous carbon. The aim of this study was to assess the effect of coastal anthropogenic pressure on the variability of carbon sources in seagrass carbon sinks during the last 150 yr. We did so by examining the composition of the sediment organic carbon (Corg) stocks by measuring the δ13Corg signature and C : N ratio in 210Pb dated sediments of 11 Posidonia oceanica seagrass meadows around the Balearic Islands (Spain, Western Mediterranean) under different levels of human pressure. On average, the top meter sediment carbon deposits were mainly (59% ± 12%) composed by P. oceanica derived carbon whereas seston contribution was generally lower (41% ± 8%). The contribution of P. oceanica to the total sediment carbon stock was the highest (∼ 80%) in the most pristine sites whereas the sestonic contribution was the highest (∼ 40–80%) in the meadows located in areas under moderate to very high human pressure. Furthermore, an increase in the contribution of sestonic carbon and a decrease in that of seagrass derived carbon toward present was observed in most of the meadows examined, coincident with the onset of the tourism industry development and coastal urbanization in the region. Our results demonstrate a general increase of total carbon accumulation rate in P. oceanica sediments during the last century, mainly driven by the increase in sestonic Corg carbon burial, which may have important implications in the long-term carbon sink capacity of the seagrass meadows in the region examined.

  17. Delay differential systems for tick population dynamics.

    Science.gov (United States)

    Fan, Guihong; Thieme, Horst R; Zhu, Huaiping

    2015-11-01

    Ticks play a critical role as vectors in the transmission and spread of Lyme disease, an emerging infectious disease which can cause severe illness in humans or animals. To understand the transmission dynamics of Lyme disease and other tick-borne diseases, it is necessary to investigate the population dynamics of ticks. Here, we formulate a system of delay differential equations which models the stage structure of the tick population. Temperature can alter the length of time delays in each developmental stage, and so the time delays can vary geographically (and seasonally which we do not consider). We define the basic reproduction number [Formula: see text] of stage structured tick populations. The tick population is uniformly persistent if [Formula: see text] and dies out if [Formula: see text]. We present sufficient conditions under which the unique positive equilibrium point is globally asymptotically stable. In general, the positive equilibrium can be unstable and the system show oscillatory behavior. These oscillations are primarily due to negative feedback within the tick system, but can be enhanced by the time delays of the different developmental stages.

  18. Pseudo-dynamic source modelling with 1-point and 2-point statistics of earthquake source parameters

    KAUST Repository

    Song, S. G.

    2013-12-24

    Ground motion prediction is an essential element in seismic hazard and risk analysis. Empirical ground motion prediction approaches have been widely used in the community, but efficient simulation-based ground motion prediction methods are needed to complement empirical approaches, especially in the regions with limited data constraints. Recently, dynamic rupture modelling has been successfully adopted in physics-based source and ground motion modelling, but it is still computationally demanding and many input parameters are not well constrained by observational data. Pseudo-dynamic source modelling keeps the form of kinematic modelling with its computational efficiency, but also tries to emulate the physics of source process. In this paper, we develop a statistical framework that governs the finite-fault rupture process with 1-point and 2-point statistics of source parameters in order to quantify the variability of finite source models for future scenario events. We test this method by extracting 1-point and 2-point statistics from dynamically derived source models and simulating a number of rupture scenarios, given target 1-point and 2-point statistics. We propose a new rupture model generator for stochastic source modelling with the covariance matrix constructed from target 2-point statistics, that is, auto- and cross-correlations. Our sensitivity analysis of near-source ground motions to 1-point and 2-point statistics of source parameters provides insights into relations between statistical rupture properties and ground motions. We observe that larger standard deviation and stronger correlation produce stronger peak ground motions in general. The proposed new source modelling approach will contribute to understanding the effect of earthquake source on near-source ground motion characteristics in a more quantitative and systematic way.

  19. Modeling the population dynamics of Pacific yew.

    Science.gov (United States)

    Richard T. Busing; Thomas A. Spies

    1995-01-01

    A study of Pacific yew (Taxus brevifolia Nutt.) population dynamics in the mountains of western Oregon and Washington was based on a combination of long-term population data and computer modeling. Rates of growth and mortality were low in mature and old-growth forest stands. Diameter growth at breast height ranged from 0 to 3 centimeters per decade...

  20. Stochastic population dynamic models as probability networks

    Science.gov (United States)

    M.E. and D.C. Lee. Borsuk

    2009-01-01

    The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...

  1. Using NDACC column measurements of carbonyl sulfide to estimate its sources and sinks

    Science.gov (United States)

    Wang, Yuting; Marshall, Julia; Palm, Mathias; Deutscher, Nicholas; Roedenbeck, Christian; Warneke, Thorsten; Notholt, Justus; Baker, Ian; Berry, Joe; Suntharalingam, Parvadha; Jones, Nicholas; Mahieu, Emmanuel; Lejeune, Bernard; Hannigan, James; Conway, Stephanie; Strong, Kimberly; Campbell, Elliott; Wolf, Adam; Kremser, Stefanie

    2016-04-01

    Carbonyl sulfide (OCS) is taken up by plants during photosynthesis through a similar pathway as carbon dioxide (CO2), but is not emitted by respiration, and thus holds great promise as an additional constraint on the carbon cycle. It might act as a sort of tracer of photosynthesis, a way to separate gross primary productivity (GPP) from the net ecosystem exchange (NEE) that is typically derived from flux modeling. However the estimates of OCS sources and sinks still have significant uncertainties, which make it difficult to use OCS as a photosynthetic tracer, and the existing long-term surface-based measurements are sparse. The NDACC-IRWG measures the absorption of OCS in the atmosphere, and provides a potential long-term database of OCS total/partial columns, which can be used to evaluate OCS fluxes. We have retrieved OCS columns from several NDACC sites around the globe, and compared them to model simulation with OCS land fluxes based on the simple biosphere model (SiB). The disagreement between the measurements and the forward simulations indicates that (1) the OCS land fluxes from SiB are too low in the northern boreal region; (2) the ocean fluxes need to be optimized. A statistical linear flux model describing OCS is developed in the TM3 inversion system, and is used to estimate the OCS fluxes. We performed flux inversions using only NOAA OCS surface measurements as an observational constraint and with both surface and NDACC OCS column measurements, and assessed the differences. The posterior uncertainties of the inverted OCS fluxes decreased with the inclusion of NDACC data comparing to those using surface data only, and could be further reduced if more NDACC sites were included.

  2. Effect of source-sink alterations on the characteristics of reproductive abortion in soybeans

    International Nuclear Information System (INIS)

    Heitholt, J.J.

    1984-01-01

    Soybeans (Glycine max (L.) Merr.) were grown in the field in 1982 and 1983 (cv. Kent) and greenhouse (cv. McCall) to characterize the effects of timing and source-sink alterations on flower and immature pod abortion and to study the causes of abortion. Flowers and immature pods were marked during early flowering (R1 to R2) and late flowering (R3 to R4). Nineteen percent of the early flowers aborted in the greenhouse and 31 to 48% aborted in the field. Seventy-six to 92% and 77 to 90% of the late flowers aborted in the greenhouse and field, respectively. Defoliation increased early flower abortion and depodding decreased late flower abortion. Fifteen and 19% of the early immature pods and the late immature pods from depodded plants aborted, respectively. Fifty-seven percent of the late immature pods aborted. Across both years there was not a consistent relationship between the concentrations of ethanol soluble carbohydrates, starch, ethanol soluble nitrogen, ethanol insoluble nitrogen, nitrate, and cations in the flowers or immature pods and abortion. During both early and late flowering, a single leaf located in the middle of the main stem that subtended flowers at anthesis, or immature pods was labeled with 3.7 x 10 5 Bq 14 CO 2 for 1 h. After 24 h the entire plant was harvested, divided into flowers, pods, labeled leaf, and the remainder of the plant and the radioactivity was determined. The low aborting flowers and immature pods contained a greater percentage of the total 14 C recovered than the high aborting flowers and immature pods. The results indirectly support the hypothesis that a signal compound produced by another plant part, perhaps the established pods, inhibits the development of aborting flowers and immature pods

  3. Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.

    Science.gov (United States)

    Tanaka, W; Mantese, A I; Maddonni, G A

    2009-08-01

    Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P embryos with low oil concentration had an increased (P embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.

  4. Sink strength simulations using the Monte Carlo method: Applied to spherical traps

    Science.gov (United States)

    Ahlgren, T.; Bukonte, L.

    2017-12-01

    The sink strength is an important parameter for the mean-field rate equations to simulate temporal changes in the micro-structure of materials. However, there are noteworthy discrepancies between sink strengths obtained by the Monte Carlo and analytical methods. In this study, we show the reasons for these differences. We present the equations to estimate the statistical error for sink strength calculations and show the way to determine the sink strengths for multiple traps. We develop a novel, very fast Monte Carlo method to obtain sink strengths. The results show that, in addition to the well-known sink strength dependence of the trap concentration, trap radius and the total sink strength, the sink strength also depends on the defect diffusion jump length and the total trap volume fraction. Taking these factors into account, allows us to obtain a very accurate analytic expression for the sink strength of spherical traps.

  5. Estimating spatio-temporal dynamics of size-structured populations

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste

    2014-01-01

    with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...

  6. Variability of dynamic source parameters inferred from kinematic models of past earthquakes

    KAUST Repository

    Causse, M.

    2013-12-24

    We analyse the scaling and distribution of average dynamic source properties (fracture energy, static, dynamic and apparent stress drops) using 31 kinematic inversion models from 21 crustal earthquakes. Shear-stress histories are computed by solving the elastodynamic equations while imposing the slip velocity of a kinematic source model as a boundary condition on the fault plane. This is achieved using a 3-D finite difference method in which the rupture kinematics are modelled with the staggered-grid-split-node fault representation method of Dalguer & Day. Dynamic parameters are then estimated from the calculated stress-slip curves and averaged over the fault plane. Our results indicate that fracture energy, static, dynamic and apparent stress drops tend to increase with magnitude. The epistemic uncertainty due to uncertainties in kinematic inversions remains small (ϕ ∼ 0.1 in log10 units), showing that kinematic source models provide robust information to analyse the distribution of average dynamic source parameters. The proposed scaling relations may be useful to constrain friction law parameters in spontaneous dynamic rupture calculations for earthquake source studies, and physics-based near-source ground-motion prediction for seismic hazard and risk mitigation.

  7. D-DSC: Decoding Delay-based Distributed Source Coding for Internet of Sensing Things.

    Science.gov (United States)

    Aktas, Metin; Kuscu, Murat; Dinc, Ergin; Akan, Ozgur B

    2018-01-01

    Spatial correlation between densely deployed sensor nodes in a wireless sensor network (WSN) can be exploited to reduce the power consumption through a proper source coding mechanism such as distributed source coding (DSC). In this paper, we propose the Decoding Delay-based Distributed Source Coding (D-DSC) to improve the energy efficiency of the classical DSC by employing the decoding delay concept which enables the use of the maximum correlated portion of sensor samples during the event estimation. In D-DSC, network is partitioned into clusters, where the clusterheads communicate their uncompressed samples carrying the side information, and the cluster members send their compressed samples. Sink performs joint decoding of the compressed and uncompressed samples and then reconstructs the event signal using the decoded sensor readings. Based on the observed degree of the correlation among sensor samples, the sink dynamically updates and broadcasts the varying compression rates back to the sensor nodes. Simulation results for the performance evaluation reveal that D-DSC can achieve reliable and energy-efficient event communication and estimation for practical signal detection/estimation applications having massive number of sensors towards the realization of Internet of Sensing Things (IoST).

  8. Computer simulation of population dynamics inside the urban environment

    Science.gov (United States)

    Andreev, A. S.; Inovenkov, I. N.; Echkina, E. Yu.; Nefedov, V. V.; Ponomarenko, L. S.; Tikhomirov, V. V.

    2017-12-01

    In this paper using a mathematical model of the so-called “space-dynamic” approach we investigate the problem of development and temporal dynamics of different urban population groups. For simplicity we consider an interaction of only two population groups inside a single urban area with axial symmetry. This problem can be described qualitatively by a system of two non-stationary nonlinear differential equations of the diffusion type with boundary conditions of the third type. The results of numerical simulations show that with a suitable choice of the diffusion coefficients and interaction functions between different population groups we can receive different scenarios of population dynamics: from complete displacement of one population group by another (originally more “aggressive”) to the “peaceful” situation of co-existence of them together.

  9. Maximizing Lifetime of Wireless Sensor Networks with Mobile Sink Nodes

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2014-01-01

    Full Text Available In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.

  10. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    Energy Technology Data Exchange (ETDEWEB)

    Bhaduri, Budhendra L [ORNL; Bright, Eddie A [ORNL; Rose, Amy N [ORNL; Liu, Cheng [ORNL; Urban, Marie L [ORNL; Stewart, Robert N [ORNL

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  11. Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications

    DEFF Research Database (Denmark)

    Staliulionis, Ž.; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Research and optimisation of cooling of electronic components using heat sinks becomes increasingly important in modern industry. Numerical methods with experimental real-world verification are the main tools to evaluate efficiency of heat sinks or heat sink systems. Here the investigation...... of relatively simple heat sink application is performed using modeling based on finite element method, and also the potential of such analysis was demonstrated by real-world measurements and comparing obtained results. Thermal modeling was accomplished using finite element analysis software COMSOL and thermo...

  12. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  13. Temperature effects on sinking velocity of different Emiliania huxleyi strains.

    Science.gov (United States)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2018-01-01

    The sinking properties of three strains of Emiliania huxleyi in response to temperature changes were examined. We used a recently proposed approach to calculate sinking velocities from coccosphere architecture, which has the advantage to be applicable not only to culture samples, but also to field samples including fossil material. Our data show that temperature in the sub-optimal range impacts sinking velocity of E. huxleyi. This response is widespread among strains isolated in different locations and moreover comparatively predictable, as indicated by the similar slopes of the linear regressions. Sinking velocity was positively correlated to temperature as well as individual cell PIC/POC over the sub-optimum to optimum temperature range in all strains. In the context of climate change our data point to an important influence of global warming on sinking velocities. It has recently been shown that seawater acidification has no effect on sinking velocity of a Mediterranean E. huxleyi strain, while nutrient limitation seems to have a small negative effect on sinking velocity. Given that warming, acidification, and lowered nutrient availability will occur simultaneously under climate change scenarios, the question is what the net effect of different influential factors will be. For example, will the effects of warming and nutrient limitation cancel? This question cannot be answered conclusively but analyses of field samples in addition to laboratory culture studies will improve predictions because in field samples multi-factor influences and even evolutionary changes are not excluded. As mentioned above, the approach of determining sinking rate followed here is applicable to field samples. Future studies could use it to analyse not only seasonal and geographic patterns but also changes in sinking velocity over geological time scales.

  14. The sustainability of carbon sinks in forests. Studying the sensitivity of forest carbon sinks in the Netherlands, Europe and the Amazon to climate and management

    International Nuclear Information System (INIS)

    Kruijt, B.; Kramer, K.; Van den Wyngaert, I.; Groen, R.; Elbers, J.A.; Jans, W.W.P.

    2003-01-01

    The aim of this study was to assess the sustainability of carbon sinks in managed or unmanaged forests of Europe and the Amazon. First, the functioning and seasonal variability of the carbon sink strength in forest ecosystems was analysed in relation to climate variability. For this, existing global data sets of ecosystem fluxes measured by eddy correlation were analysed. A simple, comprehensive empirical model was derived to represent these flux variabilities. Also, new soil respiration measurements were initiated in the Netherlands and Amazonia and their usefulness to understand the uptake- and emission components of carbon exchange was analysed. Then, two long-term forest dynamics models were parameterised (FORSPACE and CENTURY) for Dutch Pinus and Fagus forests, to study the development of forest carbon stocks over a century under different management and climate scenarios. Finally, using the empirical model as well as the long-term models, scenario predictions were made. It turns out that uptake rates are expected to decrease in a climate with higher temperatures, but that storage capacity for carbon can be expected to be slightly enhanced, especially if also the management intensity is carefully tuned down

  15. Population Dynamics and Cost-Benefit Analysis. An Attempt to Relate Population Dynamics via Lifetime Reproductive Success to Short-Term Decisions

    NARCIS (Netherlands)

    Tinbergen, J.M.; Balen, J.H. van; Drent, P.J.; Cavé, A.J.; Mertens, J.A.L.; Boer-Hazewinkel, J. den

    1987-01-01

    1. The aim of this article is to explore whether cost-benefit analysis of behaviour may help to understand the population dynamics of a species. The Great Tit is taken as an example. 2. The lifetime reproductive success in different populations of Great Tits amounts from 0.7 (Hoge Veluwe, Wytham) to

  16. Do Continental Shelves Act as an Atmospheric CO2 Sink?

    Science.gov (United States)

    Cai, W.

    2003-12-01

    Recent air-to-sea CO2 flux measurements at several major continental shelves (European Atlantic Shelves, East China Sea and U.S. Middle Atlantic Bight) suggest that shelves may act as a one-way pump and absorb atmospheric CO2 into the ocean. These observations also favor the argument that continental shelves are autotrophic (i.e., net production of organic carbon, OC). The U.S. South Atlantic Bight (SAB) contrasts these findings in that it acts as a strong source of CO2 to the atmosphere while simultaneously exporting dissolved inorganic carbon (DIC) to the open ocean. We report pCO2, DIC, and alkalinity data from the SAB collected in 8 cruises along a transect from the shore to the shelf break in the central SAB. The shelf-wide net heterotrophy and carbon exports in the SAB are subsidized by the export of OC from the abundant intertidal marshes, which are a sink for atmospheric CO2. It is proposed here that the SAB represents a marsh-dominated heterotrophic ocean margin as opposed to river-dominated autotrophic margins. To further investigate why margins may behave differently in term of CO2 sink/source, the physical and biological conditions of several western boundary current margins are compared. Based on this and other studies, DIC export flux from margins to the open ocean must be significant in the overall global ocean carbon budget.

  17. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kok-Keong Loo

    2011-05-01

    Full Text Available The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  18. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  19. Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Jain

    2015-01-01

    Full Text Available The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB.

  20. Particle algorithms for population dynamics in flows

    International Nuclear Information System (INIS)

    Perlekar, Prasad; Toschi, Federico; Benzi, Roberto; Pigolotti, Simone

    2011-01-01

    We present and discuss particle based algorithms to numerically study the dynamics of population subjected to an advecting flow condition. We discuss few possible variants of the algorithms and compare them in a model compressible flow. A comparison against appropriate versions of the continuum stochastic Fisher equation (sFKPP) is also presented and discussed. The algorithms can be used to study populations genetics in fluid environments.

  1. Population dynamics of rural Ethiopia.

    Science.gov (United States)

    Bariabagar, H

    1978-01-01

    2 rounds of the national sample surveys, conducted by the central statistical office of Ethiopia during 1964-1967 and 1969-1971, provide the only comprehensive demographic data for the country and are the basis for this discussion of rural Ethiopia's population dynamics. The population of Ethiopia is predominantly rural. Agglomerations of 2000 and over inhabitants constitute about 14% of the population, and this indicates that Ethiopia has a low level of urbanization. In rural Ethiopia, international migration was negligent in the 1970's and the age structure can be assumed to be the results of past trends of fertility and mortality conditions. The reported crude birthrate (38.2), crude death rate (12.3) and infant mortality rate (90) of rural Ethiopia fall short of the averages for African countries. Prospects of population growth of rural Ethiopia would be immense. At the rate of natural increase of between 2.4 and 3.0% per annum, the population would double in 24-29 years. Regarding population issues, the programs of the National Democratic Revolution of Ethiopia faces the following main challenging problems: 1) carrying out national population censuses in order to obtain basic information for socialist planning; 2) minimizing or curtailing the existing high urban growth rates; 3) reducing rapidly growing population; and 5) mobilizing Ethiopian women to participate in the social, economic and political life of the country in order to create favorable conditions for future fertility reduction.

  2. Effect of ion temperature gradient driven turbulence on the edge-core connection for transient edge temperature sink

    International Nuclear Information System (INIS)

    Miyato, Naoaki

    2014-01-01

    Ion temperature gradient (ITG) driven turbulence simulation for a transient edge temperature sink localized in the poloidal plane is performed using a global Landau-fluid code in the electrostatic limit. Pressure perturbations with (m, n) = (±1, 0) are induced by the edge sink, where m and n are poloidal and toroidal mode numbers, respectively. It was found in the previous simulation that the nonlinear dynamics of these perturbations are responsible for the nonlocal plasma response/transport connecting edge and core in a toroidal plasma. Present simulation shows, however, that the ITG turbulence in the core region dissipates the large-scale (m, n) = (±1, 0) perturbations and weakens the edge-core connection observed in the previous simulation. (author)

  3. Coupling population dynamics with earth system models: the POPEM model.

    Science.gov (United States)

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  4. Dynamics of Population on the Verge of Extinction

    OpenAIRE

    Oborny, B.; Meszena, G.; Szabo, G.

    2005-01-01

    Theoretical considerations suggest that extinction in dispersal-limited populations is necessarily a threshold-like process that is analogous to a critical phase transition in physics. We use this analogy to find robust, common features in the dynamics of extinctions, and suggest early warning signals which may indicate that a population is endangered. As the critical threshold of extinction is approached, the population spontaneously fragments into discrete subpopulations and, consequently, ...

  5. Stochastic population dynamics of a montane ground-dwelling squirrel.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hostetler

    Full Text Available Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008 study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1 for 9 out of 18 years. The stochastic population growth rate λ(s was 0.92, suggesting a declining population; however, the 95% CI on λ(s included 1.0 (0.52-1.60. Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  6. [The dynamics of heath indicators of population of industrial town].

    Science.gov (United States)

    Kalinkin, D E; Karpov, A B; Takhauov, R M; Samoĭlova, Iu A

    2013-01-01

    The article presents the results of analysis of dynamics of health indicators of population of industrial town (medical demographic indicators, disability, morbidity of social hygienically important diseases) during 1970-2010. The classified administrative territorial municipality of Seversk constructed near the Siberian chemical industrial center, the internationally first-rate complex of nuclear industry enterprises was used as a research base. It is demonstrated that dynamics of health indicators of studied population had such negative tendencies as rapid population ageing, population loss due to decrease of natality and increase of mortality (population of able-bodied age included), prevalence of cardio-vascular diseases, malignant neoplasms and external causes, chronization of diseases. The established tendencies are to be considered in management decision making targeted to support and promote population health in industrial towns.

  7. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations

    Science.gov (United States)

    Lou, Yijun; Zhao, Xiao-Qiang

    2017-04-01

    There is a growing body of biological investigations to understand impacts of seasonally changing environmental conditions on population dynamics in various research fields such as single population growth and disease transmission. On the other side, understanding the population dynamics subject to seasonally changing weather conditions plays a fundamental role in predicting the trends of population patterns and disease transmission risks under the scenarios of climate change. With the host-macroparasite interaction as a motivating example, we propose a synthesized approach for investigating the population dynamics subject to seasonal environmental variations from theoretical point of view, where the model development, basic reproduction ratio formulation and computation, and rigorous mathematical analysis are involved. The resultant model with periodic delay presents a novel term related to the rate of change of the developmental duration, bringing new challenges to dynamics analysis. By investigating a periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type is established: all solutions either go to zero when basic reproduction ratio is less than one, or stabilize at a positive periodic state when the reproduction ratio is greater than one. The synthesized approach developed here is applicable to broader contexts of investigating biological systems with seasonal developmental durations.

  8. The potential contribution of sinks to meeting Kyoto Protocol commitments

    DEFF Research Database (Denmark)

    Missfeldt, F.; Haites, E.

    2001-01-01

    scenario, at least some of the sinks have costs lower than the market price, so the larger the eligible sinks, the lower the compliance costs for industrialised countries. Greater use of sinks also reduces the net income received by the economies in transition and developing countries. Increased use......, a range of average costs is used with the lowest cost allowing maximum use of sinks. The effects considered are the impacts on compliance costs for OECD countries, economies in transition, and developing countries and the mix of actions used by industrialised countries to achieve compliance. In every...

  9. Beam dynamics simulation in the X-ray Compton source

    International Nuclear Information System (INIS)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center

  10. Beam dynamics simulation in the X-ray Compton source

    CERN Document Server

    Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  11. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhangbing Zhou

    2015-12-01

    Full Text Available With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s. When sensory data are collected at sink node(s, the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady.

  12. Network evolution induced by the dynamical rules of two populations

    Science.gov (United States)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  13. Modeling the Hourly Distribution of Population at a High Spatiotemporal Resolution Using Subway Smart Card Data: A Case Study in the Central Area of Beijing

    Directory of Open Access Journals (Sweden)

    Yunjia Ma

    2017-04-01

    Full Text Available The accurate estimation of the dynamic changes in population is a key component in effective urban planning and emergency management. We developed a model to estimate hourly dynamic changes in population at the community level based on subway smart card data. The hourly population of each community in six central districts of Beijing was calculated, followed by a study of the spatiotemporal patterns and diurnal dynamic changes of population and an exploration of the main sources and sinks of the observed human mobility. The maximum daytime population of the six central districts of Beijing was approximately 0.7 million larger than the night-time population. The administrative and commercial districts of Dongcheng and Xicheng had high values of population ratio of day to night of 1.35 and 1.22, respectively, whereas Shijingshan, a residential district, had the lowest value of 0.84. Areas with a high population ratio were mainly concentrated in Dongcheng, Xicheng, West Chaoyang, and Southeast Haidian. The daytime population distribution showed a hierarchical spatial pattern of planar centers and second scattered centers as opposed to multiple scattered centers during the night-time. This was because most people moved inward from the areas with a low–high to high–low population ratio of day to night from night-time to daytime, which can be explained by the process of commuting between residential areas and workplaces. Several distinctive phenomena (e.g., the distribution of new industrial parks, the so-called old residential areas, and colleges and universities in the development of China are reflected by the spatiotemporal pattern of the distribution of population. The general consistency of the population ratios of day to night, population distribution, population variation of typical communities, and population mobility pattern with previous research suggests that the subway smart card data has potential in analyzing dynamic diurnal

  14. Population dynamics model for plasmid bearing and plasmid lacking ...

    African Journals Online (AJOL)

    Streptokinase production in bioreactor is well associated to cell population dynamics. It is an established fact that two types of cell populations are found to emerge from the initial pool of recombinant cell population. This phenomenon leads to an undesired loss in yield of the product. Primary metabolites, like acetic acid etc ...

  15. Importance of thermal radiation from heat sink in cooling of three phase PWM inverter kept inside an evacuated chamber

    Directory of Open Access Journals (Sweden)

    Anjan Sarkar

    2017-04-01

    Full Text Available The paper describes a thermal analysis of a three-phase inverter operated under a Sinusoidal Pulse Width Modulation (SPWM technique which used three sine waves displaced in 120° phase difference as reference signals. The IGBT unit is assumed to be placed with a heat sink inside an evacuated chamber and the entire heat has to be transferred by conduction and radiation. The main heat sources present here are the set of IGBTs and diodes which generates heat on a pulse basing on their switching frequencies. Melcosim (a well-known tool developed by Mitsubishi Electric Corporation has been used to generate the power pulse from one set of IGBT and diode connected to a phase. A Scilab code is written to study the conduction and thermal radiation of heat sink and their combined effect on transient growth of the junction temperature of IGBT unit against complex switching pulses. The results mainly show that how thermal radiation from heat sink plays a crucial role in maintaining the junction temperature of IGBT within a threshold limit by adjusting various heat sink parameters. As the IGBT heat generation rate becomes higher, radiative heat transfer of the heat sink increases sharply which enhances overall cooling performance of the system.

  16. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  17. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed

    2017-01-05

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.

  18. Beam dynamics simulation in the X-ray Compton source

    Energy Technology Data Exchange (ETDEWEB)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A

    2002-05-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  19. Population dynamics of Pseudo-nitzschia species ...

    African Journals Online (AJOL)

    The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es Salaam. Samples ...

  20. Effects of demographic structure on key properties of stochastic density-independent population dynamics.

    Science.gov (United States)

    Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar

    2012-12-01

    The development of stochastic demography has largely been based on age structured populations, although other types of demographic structure, especially permanent and dynamic heterogeneity, are likely common in natural populations. The combination of stochasticity and demographic structure is a challenge for analyses of population dynamics and extinction risk, because the population structure will fluctuate around the stable structure and the population size shows transient fluctuations. However, by using a diffusion approximation for the total reproductive value, density-independent dynamics of structured populations can be described with only three population parameters: the expected population growth rate, the environmental variance and the demographic variance. These parameters depend on population structure via the state-specific vital rates and transition rates. Once they are found, the diffusion approximation represents a substantial reduction in model complexity. Here, we review and compare the key population parameters across a wide range of demographic structure, from the case of no structure to the most general case of dynamic heterogeneity, and for both discrete and continuous types. We focus on the demographic variance, but also show how environmental stochasticity can be included. This study brings together results from recent models, each considering a specific type of population structure, and places them in a general framework for structured populations. Comparison across different types of demographic structure reveals that the reproductive value is an essential concept for understanding how population structure affects stochastic dynamics and extinction risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Aspiration dynamics of multi-player games in finite populations.

    Science.gov (United States)

    Du, Jinming; Wu, Bin; Altrock, Philipp M; Wang, Long

    2014-05-06

    On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics.

  2. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Directory of Open Access Journals (Sweden)

    Minnett Peter

    2008-11-01

    Full Text Available Abstract Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs. Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.

  3. On the population dynamics of the malaria vector

    International Nuclear Information System (INIS)

    Ngwa, G.A.

    2005-10-01

    A deterministic differential equation model for the population dynamics of the human malaria vector is derived and studied. Conditions for the existence and stability of a non-zero steady state vector population density are derived. These reveal that a threshold parameter, the vectorial basic reproduction number, exist and the vector can establish itself in the community if and only if this parameter exceeds unity. When a non-zero steady state population density exists, it can be stable but it can also be driven to instability via a Hopf Bifurcation to periodic solutions, as a parameter is varied in parameter space. By considering a special case, an asymptotic perturbation analysis is used to derive the amplitude of the oscillating solutions for the full non-linear system. The present modelling exercise and results show that it is possible to study the population dynamics of disease vectors, and hence oscillatory behaviour as it is often observed in most indirectly transmitted infectious diseases of humans, without recourse to external seasonal forcing. (author)

  4. Long GRBs sources population non-uniformity

    Science.gov (United States)

    Arkhangelskaja, Irene

    Long GRBs observed in the very wide energy band. It is possible to separate two subsets of GRBs with high energy component (E > 500 MeV) presence. First type events energy spectra in low and high energy intervals are similar (as for GRB 021008) and described by Band, power law or broken power law models look like to usual bursts without emission in tens MeV region. For example, Band spectrum of GRB080916C covering 6 orders of magnitude. Second ones contain new additional high energy spectral component (for example, GRB 050525B and GRB 090902B). Both types of GRBs observed since CGRO mission beginning. The low energy precursors existence are typical for all types bursts. Both types of bursts temporal profiles can be similar in the various energy regions during some events or different in other cases. The absence of hard to soft evolution in low energy band and (or) presence of high energy precursors for some events are the special features of second class of GRBs by the results of preliminary data analysis and this facts gives opportunities to suppose differences between these two GRBs subsets sources. Also the results of long GRB redshifts distribution analysis have shown its shape contradiction to uniform population objects one for our Metagalaxy to both total and various redshifts definition methods GRBs sources samples. These evidences allow making preliminary conclusion about non-uniformity of long GRBs sources population.

  5. Dynamic droop scheme considering effect of intermittent renewable energy source

    DEFF Research Database (Denmark)

    Wang, Yanbo; Chen, Zhe; Deng, Fujin

    2016-01-01

    This paper presents a dynamic droop control scheme for islanded microgrids dominated by intermittent renewable energy sources, which is able to perform desirable power sharing in the presence of renewable energy source fluctuation. First, allowable maximum power points of wind generator and PV...... flexibility and effectiveness in the presence of the renewable energy sources fluctuation....... controller of each DG unit is activated through local logic variable inferred by wind speed and solar insolation information. Simulation results are given for validating the droop control scheme. The proposed dynamic droop scheme preserves the advantage of conventional droop control method, and provides...

  6. Minimization of sink mark defects in injection molding process ...

    African Journals Online (AJOL)

    user

    3Institute of Remote Sensing, Anna University, Chennai-600025, INDIA .... Most of the Taguchi based studies used sink mark index or sink index as the parameter. It is an .... Maintaining higher pack pressure requires additional power and cost.

  7. Bridging the Timescales of Single-Cell and Population Dynamics

    Science.gov (United States)

    Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya

    2018-04-01

    How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.

  8. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning.

    Science.gov (United States)

    Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg

    2016-11-01

    Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.

  9. Change in the structures, dynamics and disease-related mortality rates of the population of Qatari nationals: 2007-2011.

    Science.gov (United States)

    Al-Thani, Mohamed H; Sadoun, Eman; Al-Thani, Al-Anoud; Khalifa, Shamseldin A; Sayegh, Suzan; Badawi, Alaa

    2014-12-01

    Developing effective public health policies and strategies for interventions necessitates an assessment of the structure, dynamics, disease rates and causes of death in a population. Lately, Qatar has undertaken development resurgence in health and economy that resulted in improving the standard of health services and health status of the entire Qatari population (i.e., Qatari nationals and non-Qatari residents). No study has attempted to evaluate the population structure/dynamics and recent changes in disease-related mortality rates among Qatari nationals. The present study examines the population structure/dynamics and the related changes in the cause-specific mortality rates and disease prevalence in the Qatari nationals. This is a retrospective, analytic descriptive analysis covering a period of 5years (2007-2011) and utilizes a range of data sources from the State of Qatar including the population structure, disease-related mortality rates, and the prevalence of a range of chronic and infectious diseases. Factors reflecting population dynamics such as crude death (CDR), crude birth (CBR), total fertility (TFR) and infant mortality (IMR) rates were also calculated. The Qatari nationals is an expansive population with an annual growth rate of ∼4% and a stable male:female ratio. The CDR declined by 15% within the study period, whereas the CBR was almost stable. The total disease-specific death rate, however, was decreased among the Qatari nationals by 23% due to the decline in mortality rates attributed to diseases of the blood and immune system (43%), nervous system (44%) and cardiovascular system (41%). There was a high prevalence of a range of chronic diseases, whereas very low frequencies of the infectious diseases within the study population. Public health strategies, approaches and programs developed to reduce disease burden and the related death, should be tailored to target the population of Qatari nationals which exhibits characteristics that vary from

  10. The methane sink associated to soils of natural and agricultural ecosystems in Italy.

    Science.gov (United States)

    Castaldi, Simona; Costantini, Massimo; Cenciarelli, Pietro; Ciccioli, Paolo; Valentini, Riccardo

    2007-01-01

    In the present work, the CH4 sink associated to Italian soils was calculated by using a process-based model controlled by gas diffusivity and microbial activity, which was run by using a raster-based geographical information system. Georeferenced data included land cover CLC2000, soil properties from the European Soil Database, climatic data from the MARS-STAT database, plus several derived soils properties based on published algorithms applied to the above mentioned databases. Overall CH4 consumption from natural and agricultural sources accounted for a total of 43.3 Gg CH4 yr(-1), with 28.1 Gg CH4 yr(-1) removed in natural ecosystems and 15.1 Gg CH4 yr(-1) in agricultural ecosystems. The highest CH4 uptake rates were obtained for natural areas of Southern Apennines and islands of Sardinia and Sicily, and were mainly associated to areas covered by sclerophyllous vegetation (259.7+/-30.2 mg CH4 m(-2) yr(-1)) and broad-leaved forest (237.5 mg CH4 m(-2) yr(-1)). In terms of total sink strength broad-leaved forests were the dominant ecosystem. The overall contribution of each ecosystem type to the whole CH4 sink depended on the total area covered by the specific ecosystem and on its exact geographic distribution. The latter determines the type of climate present in the area and the dominant soil type, both factors which showed to have a strong influence on CH4 uptake rates. The aggregated CH4 sink, calculated for natural ecosystems present in the Italian region, is significantly higher than previously reported estimates, which were extrapolated from fluxes measured in other temperate ecosystems.

  11. A new ODE tumor growth modeling based on tumor population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  12. A new ODE tumor growth modeling based on tumor population dynamics

    International Nuclear Information System (INIS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-01-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan

  13. Genetic Algorithm Design of a 3D Printed Heat Sink

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tong [ORNL; Ozpineci, Burak [ORNL; Ayers, Curtis William [ORNL

    2016-01-01

    In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size andshape. This approach combines random iteration processesand genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers survival of the fittest , a more powerful heat sink can bedesigned which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due totheir complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate the performance of the newly designed heat sinkcompared to commercially available heat sinks.

  14. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  15. Photosynthesis and sink activity of wasp-induced galls in Acacia pycnantha.

    Science.gov (United States)

    Dorchin, Netta; Cramer, Michael D; Hoffmann, John H

    2006-07-01

    Although insect galls are widely known to influence source-sink relationships in plants, the relationship between photosynthesis and gall activity has not been extensively studied. In this study we used 14CO2, photosynthesis, and respiration measurements to examine the capacity of bud galls induced by the wasp Trichilogaster signiventris (Pteromalidae) as carbon sinks in Acacia pycnantha. Galls of this species develop either in vegetative or reproductive buds, depending on the availability of tissues at different times of the year, and effectively eliminate seed production by the plant. Photosynthetic rates in phyllodes subtending clusters of galls were greater than rates in control phyllodes, a result we attributed to photosynthesis compensating for increased carbon demand by the galls. Contrary to previous studies, we found that photosynthesis within galls contributed substantially to the carbon budgets of the galls, particularly in large, mature galls, which exhibited lower specific respiration rates allowing for a net carbon gain in the light. To determine the sink capacity and competitive potential of galls, we measured the proportion of specific radioactivity in galls originating from either vegetative or reproductive buds and found no difference between them. The proportion of the total amount of phyllode-derived 14C accumulated in both clustered and solitary galls was less than that in fruits. Galls and fruits were predominantly reliant on subtending rather than on distant phyllodes for photosynthate. Solitary galls that developed in vegetative buds constituted considerably stronger sinks than galls in clusters on inflorescences where there was competition between galls or fruits for resources from the subtending phyllode. Wasps developing in solitary vegetative galls were correspondingly significantly larger than those from clustered galls. We conclude that, in the absence of inflorescence buds during summer and fall, the ability of the wasps to cause gall

  16. Population dynamics, antibiotics resistance and biofilm formation of Aeromonas and Vibrio species isolated from aquatic sources in Northern Malaysia.

    Science.gov (United States)

    Odeyemi, Olumide A; Ahmad, Asmat

    2017-02-01

    This study aimed to compare population dynamics, antibiotic resistance and biofilm formation of Aeromonas and Vibrio species from seawater and sediment collected from Northern Malaysia. Isolates with different colony morphology were characterized using both biochemical and molecular methods before testing for antibiotic resistance and biofilm formation. Results obtained from this study showed that in Kedah, the population of Aeromonas isolated from sediment was highest in Pantai Merdeka (8.22 log CFU/ml), Pulau Bunting recorded the highest population of Aeromonas from sediment (8.43 log CFU/g). It was observed that Vibrio species isolated from seawater and sediment were highest in Kuala Sanglang (9.21 log CFU/ml). In Kuala Perlis, the population of Aeromonas isolated from seawater was highest in Jeti (7.94 log CFU/ml). Highest population of Aeromonas from sediment was recorded in Kampong Tanah Baru (7.99 log CFU/g). It was observed that Vibrio species isolated from seawater was highest in Padang Benta (8.42 log CFU/g) while Jeti Kuala Perlis had highest population of Vibrio isolated from sediment. It was observed that location does not influence population of Aeromonas. The results of the independent t - test revealed that there was no significant relationship between location and population of Vibrio (df = 10, t = 1.144, p > 0.05). The occurrence of biofilm formation and prevalence of antibiotic resistant Aeromonas and Vibrio species in seawater and sediment pose danger to human and aquatic animals' health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Strong carbon sink of monsoon tropical seasonal forest in Southern Vietnam

    Science.gov (United States)

    Deshcherevskaya, Olga; Anichkin, Alexandr; Avilov, Vitaly; Duy Dinh, Ba; Luu Do, Phong; Huan Tran, Cong; Kurbatova, Julia

    2014-05-01

    -1, from carbon source to the strong sink. Storage total for all the year was near-zero, but in our case including of storage resulted in gap-filling regression changes with corresponding change in total carbon balance. Probably the only way for proper net carbon balance evaluation for NCT site is chamber-measurements of night respiration of different ecosystem components, as used at Pasoh EC station, Malaysia. Ciais P., Piao S.L., Cadule P., Friedlingstein P., & Chedin A. Variability and recent trends in the African carbon balance. Biogeosciences Discussions, 5(4), 2008. Pp. 3497-3532. Clark D.A. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1443), 2004. Pp. 477-491. Gifford, R. M. (1994). The global carbon cycle: a viewpoint on the missing sink. Functional Plant Biology, 21(1), 1-15. Kosugi Y., Takanashi S., Tani M., Ohkubo S., Matsuo N., Itoh M., Noguchi S. & Nik A.R. Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia. Journal of forest research, 17(3), 2012. Pp. 227-240. Malhi, Y. (2010). The carbon balance of tropical forest regions, 1990-2005. Current Opinion in Environmental Sustainability, 2(4), 237-244. Saigusa, N., Yamamoto, S., Hirata, R., Ohtani, Y., Ide, R., Asanuma, J., ... & Wang, H. (2008). Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agricultural and forest meteorology, 148(5), 700-713.

  18. A model for bacterial colonization of sinking aggregates.

    Science.gov (United States)

    Bearon, R N

    2007-01-01

    Sinking aggregates provide important nutrient-rich environments for marine bacteria. Quantifying the rate at which motile bacteria colonize such aggregations is important in understanding the microbial loop in the pelagic food web. In this paper, a simple analytical model is presented to predict the rate at which bacteria undergoing a random walk encounter a sinking aggregate. The model incorporates the flow field generated by the sinking aggregate, the swimming behavior of the bacteria, and the interaction of the flow with the swimming behavior. An expression for the encounter rate is computed in the limit of large Péclet number when the random walk can be approximated by a diffusion process. Comparison with an individual-based numerical simulation is also given.

  19. Review of tribological sinks in six major industries

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  20. Infection by rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen

    Czech Academy of Sciences Publication Activity Database

    Dhandapani, P.; Song, J.; Novák, Ondřej; Jameson, P. E.

    2017-01-01

    Roč. 119, č. 5 (2017), s. 841-852 ISSN 0305-7364 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : Amino acid transporter * Apical dominance * Cell wall invertase * Cytokinin * Cytokinin oxidase/dehydro-genase * Pea * Pisum sativum L. * Rhodococcus fascians * Seed * Sink and source * Sucrose transporter * sweet Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  1. Evaluation of Network Reliability for Computer Networks with Multiple Sources

    Directory of Open Access Journals (Sweden)

    Yi-Kuei Lin

    2012-01-01

    Full Text Available Evaluating the reliability of a network with multiple sources to multiple sinks is a critical issue from the perspective of quality management. Due to the unrealistic definition of paths of network models in previous literature, existing models are not appropriate for real-world computer networks such as the Taiwan Advanced Research and Education Network (TWAREN. This paper proposes a modified stochastic-flow network model to evaluate the network reliability of a practical computer network with multiple sources where data is transmitted through several light paths (LPs. Network reliability is defined as being the probability of delivering a specified amount of data from the sources to the sink. It is taken as a performance index to measure the service level of TWAREN. This paper studies the network reliability of the international portion of TWAREN from two sources (Taipei and Hsinchu to one sink (New York that goes through a submarine and land surface cable between Taiwan and the United States.

  2. Population dynamics and distribution of the coffee berry borer ...

    African Journals Online (AJOL)

    Population dynamics and distribution of coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) were studied on Coffea arabica L. in southwestern region of Ethiopia. Thirty coffee trees were sampled at weekly intervals from 2000 to 2001. Findings of this study showed that coffee berry borer population ...

  3. Reduced Future Precipitation Makes Permanence of Amazonian Carbon Sinks Questionable

    Science.gov (United States)

    Arora, V.

    2011-12-01

    The tropical forests of the Amazon, considered as a tipping element in Earth's climate system, provide several ecosystem services including the maintenance of favourable regional climatic conditions in the region and storage of large amounts of carbon in their above- and below-ground pools. While it is nearly impossible, at present, to put a dollar value on these ecosystem services, the developed countries have started paying large sums of money to developing countries in the tropics to reduce deforestation. Norway recently committed up to $1 billion to the Amazon fund. The United Nations' Reducing Emissions from Deforestation and forest Degradation (REDD) program also financially supports national activities of 13 countries worldwide. The primary assumption inherent in paying for avoiding deforestation is that avoided land use change emissions contribute towards climate change mitigation. In addition, the standing forests that are spared deforestation contribute towards additional carbon sinks associated with the CO2 fertilization effect. Implicit in this reasoning is the understanding that the carbon sinks provided by avoided deforestation have some "permanence" associated with them, at least in the order of 50-100 years. Clearly, if "avoided deforestation" is essentially "delayed deforestation" then the benefits will not be long lasting. More importantly, changes in climate have the potential to adversely affect the permanence of carbon sinks, whether they are being paid for or not. This presentation will address the question of "permanence" by analyzing simulations of the second generation Canadian Earth system model (CanESM2) that are contributing results to the upcoming fifth Coupled Modeled Intercomparison Project (CMIP5). CanESM2 results for the future RCP 2.6, 4.5 and 8.5 scenarios show, that due to reduced future precipitation, the Amazonian region remains a net source of carbon over the 21st century in all scenarios. The carbon losses during the recent

  4. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    Science.gov (United States)

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  5. Effects of dispersal on total biomass in a patchy, heterogeneous system: analysis and experiment.

    Science.gov (United States)

    Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Ni, Wei-Ming; Wang, G Geoff

    2015-01-01

    An intriguing recent result from mathematics is that a population diffusing at an intermediate rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. We extended the current mathematical theory to apply to logistic growth and also showed that the result applies to patchy systems with dispersal among patches, both for continuous and discrete time. This allowed us to make specific predictions, through simulations, concerning the biomass dynamics, which were verified by a laboratory experiment. The experiment was a study of biomass growth of duckweed (Lemna minor Linn.), where the resources (nutrients added to water) were distributed homogeneously among a discrete series of water-filled containers in one treatment, and distributed heterogeneously in another treatment. The experimental results showed that total biomass peaked at an intermediate, relatively low, diffusion rate, higher than the total carrying capacity of the system and agreeing with the simulation model. The implications of the experiment to dynamics of source, sink, and pseudo-sink dynamics are discussed.

  6. Understanding long-term fruit fly (Diptera: Tephritidae) population dynamics: implications for areawide management.

    Science.gov (United States)

    Aluja, Martín; Ordano, Mariano; Guillén, Larissa; Rull, Juan

    2012-06-01

    Fruit flies (Diptera: Tephritidae) are devastating agricultural pests worldwide but studies on their long-term population dynamics are sparse. Our aim was to determine the mechanisms driving long-term population dynamics as a prerequisite for ecologically based areawide pest management. The population density of three pestiferous Anastrepha species [Anastrepha ludens (Loew), Anastrepha obliqua (Macquart), and Anastrepha serpentina (Wiedemann)] was determined in grapefruit (Citrus x paradisi Macfad.), mango (Mangifera indica L.), and sapodilla [Manilkara zapota (L.) P. Royen] orchards in central Veracruz, México, on a weekly basis over an 11-yr period. Fly populations exhibited relatively stable dynamics over time. Population dynamics were mainly driven by a direct density-dependent effect and a seasonal feedback process. We discovered direct and delayed influences that were correlated with both local (rainfall and air temperature) and global climatic variation (El Niño Southern Oscillation [ENSO] and North Atlantic Oscillation [NAO]), and detected differences among species and location of orchards with respect to the magnitude and nature (linear or nonlinear) of the observed effects, suggesting that highly mobile pest outbreaks become uncertain in response to significant climatic events at both global and local levels. That both NAO and ENSO affected Anastrepha population dynamics, coupled with the high mobility of Anastrepha adults and the discovery that when measured as rate of population change, local population fluctuations exhibited stable dynamics over time, suggests potential management scenarios for the species studied lie beyond the local scale and should be approached from an areawide perspective. Localized efforts, from individual growers will probably prove ineffective, and nonsustainable.

  7. Shoot growth processes, assessed by bud development types, reflect Norway spruce vitality and sink prioritization

    Czech Academy of Sciences Publication Activity Database

    Polák, T.; Rock, B. N.; Campbell, P.E.; Soukupová, J.; Šolcová, Blanka; Zvára, K.; Albrechtová, Jana

    2006-01-01

    Roč. 225, 1-3 (2006), s. 337-348 ISSN 0378-1127 R&D Projects: GA MŠk ME 658 Grant - others:Univerzita Karlova v Praze / Přírodovědecká fakulta(CZ) KJB6111307 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z60050516 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : tree vitality * buds * carbon allocation * sink/source concept Subject RIV: GK - Forestry Impact factor: 1.839, year: 2006 http://dx.doi.org/10.1016/j.foreco.2006.01.027

  8. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    Science.gov (United States)

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  9. Programming Saposin-Mediated Compensatory Metabolic Sinks for Enhanced Ubiquinone Production.

    Science.gov (United States)

    Xu, Wen; Yuan, Jifeng; Yang, Shuiyun; Ching, Chi-Bun; Liu, Jiankang

    2016-12-16

    Microbial synthesis of ubiquinone by fermentation processes has been emerging in recent years. However, as ubiquinone is a primary metabolite that is tightly regulated by the host central metabolism, tweaking the individual pathway components could only result in a marginal improvement on the ubiquinone production. Given that ubiquinone is stored in the lipid bilayer, we hypothesized that introducing additional metabolic sink for storing ubiquinone might improve the CoQ 10 production. As human lipid binding/transfer protein saposin B (hSapB) was reported to extract ubiquinone from the lipid bilayer and form the water-soluble complex, hSapB was chosen to build a compensatory metabolic sink for the ubiquinone storage. As a proof-of-concept, hSapB-mediated metabolic sink systems were devised and systematically investigated in the model organism of Escherichia coli. The hSapB-mediated periplasmic sink resulted in more than 200% improvement of CoQ 8 over the wild type strain. Further investigation revealed that hSapB-mediated sink systems could also improve the CoQ 10 production in a CoQ 10 -hyperproducing E. coli strain obtained by a modular pathway rewiring approach. As the design principles and the engineering strategies reported here are generalizable to other microbes, compensatory sink systems will be a method of significant interest to the synthetic biology community.

  10. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed; Shamma, Jeff S.

    2017-01-01

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population

  11. Social Information Links Individual Behavior to Population and Community Dynamics.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M; Spiegel, Orr; Baskett, Marissa L; Sih, Andrew

    2018-05-07

    When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Network evolution induced by the dynamical rules of two populations

    International Nuclear Information System (INIS)

    Platini, Thierry; Zia, R K P

    2010-01-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (N a and N b ) and preferred degree (κ a and κ b a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees (k bb ) and (k ab ) presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal N a = N b , the ratio of the restricted degree θ 0 = (k ab )/(k bb ) appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t 1 = κ b ) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ 0 = 1. Interestingly, in the intermediate time regime (defined for t 1 2 ∝κ a and for which θ 0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ 0 = 3

  13. Study on the effect of sink moving trajectory on wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.

  14. A general modeling framework for describing spatially structured population dynamics

    Science.gov (United States)

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  15. The population dynamical implications of male-biased parasitism in different mating systems.

    Directory of Open Access Journals (Sweden)

    Martin R Miller

    2007-07-01

    Full Text Available Although there is growing evidence that males tend to suffer higher levels of parasitism than females, the implications of this for the population dynamics of the host population are not yet understood. Here we build on an established 'two-sex' model and investigate how increased susceptibility to infection in males affects the dynamics, under different mating systems. We investigate the effect of pathogenic disease at different case mortalities, under both monogamous and polygynous mating systems. If the case mortality is low, then male-biased parasitism appears similar to unbiased parasitism in terms of its effect on the population dynamics. At higher case mortalities, we identified significant differences between male-biased and unbiased parasitism. A host population may therefore be differentially affected by male-biased and unbiased parasitism. The dynamical outcome is likely to depend on a complex interaction between the host's mating system and demography, and the parasite virulence.

  16. Two decades of ocean CO2 sink and variability

    International Nuclear Information System (INIS)

    Quere, C. Le; Bopp, L.; Heimann, M.; Prentice, I.C.; Aumont, O.; Bousquet, P.; Ciais, P.; Francey, R.; Rayner, P.J.; Keeling, C.D.; Keeling, R.F.; Piper, S.C.; Kheshgi, H.; Peyliln, P.

    2003-01-01

    Atmospheric CO 2 has increased at a nearly identical average rate of 3.3 and 3.2 Pg C/yr for the decades of the 1980s and the 1990s, in spite of a large increase in fossil fuel emissions from 5.4 to 6.3 Pg C/yr. Thus, the sum of the ocean and land CO 2 sinks was 1 Pg C/yr larger in the 1990s than in to the 1980s. Here we quantify the ocean and land sinks for these two decades using recent atmospheric inversions and ocean models. The ocean and land sinks are estimated to be, respectively, 0.3 (0.1 to 0.6) and 0.7 (0.4 to 0.9) Pg C/yr larger in the 1990s than in the 1980s. When variability less than 5 yr is removed, all estimates show a global oceanic sink more or less steadily increasing with time, and a large anomaly in the land sink during 1990-1994. For year-to-year variability, all estimates show 1/3 to 1/2 less variability in the ocean than on land, but the amplitude and phase of the oceanic variability remain poorly determined. A mean oceanic sink of 1.9 Pg C/yr for the 1990s based on O 2 observations corrected for ocean outgassing is supported by these estimates, but an uncertainty on the mean value of the order of ±0.7 Pg C/yr remains. The difference between the two decades appears to be more robust than the absolute value of either of the two decades

  17. Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2015-12-01

    Full Text Available The aim of the present study is to investigate the influence of non-uniform heat source/sink, mass transfer and chemical reaction on an unsteady mixed convection boundary layer flow of a magneto-micropolar fluid past a stretching/shrinking sheet in the presence of viscous dissipation and suction/injection. The governing equations of the flow, heat and mass transfer are transformed into system of nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Shooting technique with Matlab Package. The influence of non-dimensional governing parameters on velocity, microrotation, temperature and concentration profiles are discussed and presented with the help of their graphical representations. Also, friction factor, heat and mass transfer rates have been computed and presented through tables. Under some special conditions, present results are compared with the existed results to check the accuracy and validity of the present study. An excellent agreement is observed with the existed results.

  18. Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock

    Science.gov (United States)

    Kölling, Katharina; Thalmann, Matthias; Müller, Antonia; Jenny, Camilla; Zeeman, Samuel C

    2015-01-01

    Abstract Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low-starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant’s circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock. This work focusses on the temporal changes in the allocation and transport of photoassimilates within Arabidopsis rosettes, helping to fill a gap in our understanding of plant growth. Using short pulses of 14C-labelled carbon dioxide, we quantified how much carbon is used for growth and how much is stored as starch for use at night. In source leaves, partitioning is surprisingly dynamic during the day, even though photosynthesis is relatively constant, while in sink leaves, utilisation is more constant. Furthermore, by analysing metabolic mutants and clock mutants, and by manipulating the growth conditions, we show that

  19. Effects of wind farms on harbour porpoise behaviour and population dynamics

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Tougaard, Jakob; Teilmann, Jonas

    We developed an individual-based simulation model in order to study the cumulative impacts of wind farms and ship traffic on the long-term survival and population dynamics of the harbour porpoise (Phocoena phocoena) in Kattegat and the Belt Seas. The model is based on knowl- edge of the porpoises...... at distances >1 km. Our simulations suggest that operating wind farms and wind farms under construction do not affect the size or dynamics of the harbour porpoise population in Kattegat. Ship traffic may, in contrast, cause the population size to decrease....

  20. Subterranean karst environments as a global sink for atmospheric methane

    Science.gov (United States)

    Webster, Kevin D.; Drobniak, Agnieszka; Etiope, Giuseppe; Mastalerz, Maria; Sauer, Peter E.; Schimmelmann, Arndt

    2018-03-01

    The air in subterranean karst cavities is often depleted in methane (CH4) relative to the atmosphere. Karst is considered a potential sink for the atmospheric greenhouse gas CH4 because its subsurface drainage networks and solution-enlarged fractures facilitate atmospheric exchange. Karst landscapes cover about 14% of earth's continental surface, but observations of CH4 concentrations in cave air are limited to localized studies in Gibraltar, Spain, Indiana (USA), Vietnam, Australia, and by incomplete isotopic data. To test if karst is acting as a global CH4 sink, we measured the CH4 concentrations, δ13CCH4, and δ2HCH4 values of cave air from 33 caves in the USA and three caves in New Zealand. We also measured CO2 concentrations, δ13CCO2, and radon (Rn) concentrations to support CH4 data interpretation by assessing cave air residence times and mixing processes. Among these caves, 35 exhibited subatmospheric CH4 concentrations in at least one location compared to their local atmospheric backgrounds. CH4 concentrations, δ13CCH4, and δ2HCH4 values suggest that microbial methanotrophy within caves is the primary CH4 consumption mechanism. Only 5 locations from 3 caves showed elevated CH4 concentrations compared to the atmospheric background and could be ascribed to local CH4 sources from sewage and outgassing swamp water. Several associated δ13CCH4 and δ2HCH4 values point to carbonate reduction and acetate fermentation as biochemical pathways of limited methanogenesis in karst environments and suggest that these pathways occur in the environment over large spatial scales. Our data show that karst environments function as a global CH4 sink.

  1. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    Directory of Open Access Journals (Sweden)

    Joseph G Makin

    2015-11-01

    Full Text Available Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF, the parameters of which can be learned via latent-variable density estimation (the EM algorithm. The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.

  2. Building the bridge between animal movement and population dynamics.

    Science.gov (United States)

    Morales, Juan M; Moorcroft, Paul R; Matthiopoulos, Jason; Frair, Jacqueline L; Kie, John G; Powell, Roger A; Merrill, Evelyn H; Haydon, Daniel T

    2010-07-27

    While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through 'spatially informed' movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission-fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction.

  3. Heat sink management during CANDU low level operation

    International Nuclear Information System (INIS)

    Wang Liansheng

    2008-01-01

    This paper introduces the practice of low-level operation with opening on the main heat transport system during an outage for a Candu-6 nuclear power plant, analyses the risks of losing heat sink during this condition, and points out the safety measures and management requirement for controlling such risks. This paper can be used as a reference for improving and optimizing the heat sink management for the coming outages. (author)

  4. The failure rate dynamics in heterogeneous populations

    International Nuclear Information System (INIS)

    Cha, Ji Hwan; Finkelstein, Maxim

    2013-01-01

    Most populations encountered in real world are heterogeneous. In reliability applications, the mixture (observed) failure rate, obviously, can be considered as a measure of ‘average’ quality in these populations. However, in addition to this average measure, some variability characteristics for failure rates can be very helpful in describing the time-dependent changes in quality of heterogeneous populations. In this paper, we discuss variance and the coefficient of variation of the corresponding random failure rate as variability measures for items in heterogeneous populations. Furthermore, there is often a risk that items of poor quality are selected for important missions. Therefore, along with the ‘average quality’ of a population, more ‘conservative’ quality measures should be also defined and studied. For this purpose, we propose the percentile and the tail-mixture of the failure rates as the corresponding conservative measures. Some illustrative examples are given. -- Highlights: ► This paper provides the insight on the variability measures in heterogeneous populations. ► The conservative quality measures in heterogeneous populations are defined. ► The utility of these measures is illustrated by meaningful examples. ► This paper provides a better understanding of the dynamics in heterogeneous populations

  5. National greenhouse gas accounts: Current anthropogenic sources and sinks

    International Nuclear Information System (INIS)

    Subak, S.; Raskin, P.; Hippel, David von

    1992-01-01

    This study provides spatially disaggregated estimates of greenhouse gas emissions from the major anthropogenic sources for 145 countries. The data compilation is comprehensive in approach, including emissions from CO, CH 4 , N 2 O and ten halocarbons, in addition to CO 2 . The sources include emissions from fossil fuel production and use, cement production, halocarbons, landfills, land use changes, biomass burning, rice and livestock production and fertilizer consumption. The approach used to derive these estimates corresponds closely with the simple methodologies proposed by the Greenhouse Gas Emissions Task Force of the Intergovernmental Panel on Climate Change. The inventory includes a new estimate of greenhouse gas emissions from fossil fuel combustion based principally on data from the International Energy Agency. The research methodologies for estimating emissions from all sources is briefly described and compared with other recent studies in the literature. (112 refs.)

  6. SIR dynamics in structured populations with heterogeneous connectivity

    OpenAIRE

    Volz, Erik

    2005-01-01

    Most epidemic models assume equal mixing among members of a population. An alternative approach is to model a population as random network in which individuals may have heterogeneous connectivity. This paper builds on previous research by describing the exact dynamical behavior of epidemics as they occur in random networks. A system of nonlinear differential equations is presented which describes the behavior of epidemics spreading through random networks with arbitrary degree distributions. ...

  7. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    Science.gov (United States)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  8. Population viability analysis: using a modeling tool to assess the viability of tapir populations in fragmented landscapes.

    Science.gov (United States)

    Medici, Emília Patrícia; Desbiez, Arnaud Leonard Jean

    2012-12-01

    A population viability analysis (PVA) was conducted of the lowland tapir populations in the Atlantic Forest of the Pontal do Paranapanema region, Brazil, including Morro do Diabo State Park (MDSP) and surrounding forest fragments. Results from the model projected that the population of 126 tapirs in MDSP is likely to persist over the next 100 years; however, 200 tapirs would be required to maintain a viable population. Sensitivity analysis showed that sub-adult mortality and adult mortality have the strongest influence on the dynamics of lowland tapir populations. High road-kill has a major impact on the MDSP tapir population and can lead to population extinction. Metapopulation modeling showed that dispersal of tapirs from MDSP to the surrounding fragments can be detrimental to the overall metapopulation, as fragments act as sinks. Nevertheless, the model showed that under certain conditions the maintenance of the metapopulation dynamics might be determinant for the persistence of tapirs in the region, particularly in the smaller fragments. The establishment of corridors connecting MDSP to the forest fragments models resulted in an increase in the stochastic growth rate, making tapirs more resilient to threats and catastrophes, but only if rates of mortality were not increased when using corridors. The PVA showed that the conservation of tapirs in the Pontal region depends on: the effective protection of MDSP; maintenance and, whenever possible, enhancement of the functional connectivity of the landscape, reducing mortality during dispersal and threats in the unprotected forest fragments; and neutralization of all threats affecting tapirs in the smaller forest fragments. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  9. An age-structured population balance model for microbial dynamics

    Directory of Open Access Journals (Sweden)

    Duarte M.V.E.

    2003-01-01

    Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.

  10. Heat sink design considerations in medium power electronic applications with long power cycles

    CERN Document Server

    AUTHOR|(SzGeCERN)744611; Papastergiou, Konstantinos; Thiringer, Torbjörn; Bongiorno, Massimo

    2015-01-01

    The aim of this work is to investigate the impact of the heat sink thickness and material, as well as, of the convection coefficient of the water cooling system on the power-electronics module thermal stressing. The heat extraction capability of different thicknesses is tested. It is concluded that the thickest heat sink results in marginally lower temperature variation at the junction level compared to the second thickest one. In the thickest heat sink case, the linear dependence of the thermal resistance on the thickness counteracts the benefit of the increased thermal capacitance. The increase in the cooling medium flow rate, which corresponds to an increase in the convection coefficient between the heat sink bottom surface and the water, can be avoided by increasing the thickness of the heat sink. In this way, the energy consumption of the cooling system is reduced. The increase in the flow rate drastically reduces the thermal stressing in the thinnest heat sink case. The increase of the heat sink thickne...

  11. Stochastic carbon sinks for combating carbon dioxide emissions in the EU

    International Nuclear Information System (INIS)

    Gren, Ing-Marie; Carlsson, Mattias; Elofsson, Katarina; Munnich, Miriam

    2012-01-01

    This paper carries out numerical calculations on the potential of carbon sinks in the EU Emissions Trading Scheme (ETS) and national commitments under conditions of stochastic carbon dioxide emissions from fossil fuels and carbon sequestration by forests. Chance constraint programming is used to analyze the role of stochastic carbon sinks for national and EU-wide compliance costs. The analytical results show that the inclusion of the carbon sink option can reduce costs for low enough marginal cost and risk discount, but also that costless carbon sinks as by-products from forestry are not part of a cost-effective solution under a high reliability concern. Cost savings are reduced due to risk discounting under a reliability concern, in particular when assigning Chebyshev's inequality as compared with a normal probability distribution. It is also shown that the supply of forest sinks on the market depends on the differences in marginal abatement cost between the trading and the non-trading sectors, and in risk discounting between achievements of the ETS cap and the national commitment. Relatively low marginal abatement cost in the non-trading sector and high risk discounting of national commitment achievements increase the supply of sinks in the market and, hence, reduces the equilibrium price. The empirical application illustrates the importance of risk discounting for the magnitude of cost savings obtained from introducing forest carbon sinks in the EU ETS and national commitments.

  12. Dynamic modeling of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Ibn-Khayat, M.

    1990-01-01

    The purpose of this paper is to provide a summary description and some applications of a computer model that has been developed to simulate the dynamic behavior of the advanced neutron source (ANS) reactor. The ANS dynamic model is coded in the advanced continuous simulation language (ACSL), and it represents the reactor core, vessel, primary cooling system, and secondary cooling systems. The use of a simple dynamic model in the early stages of the reactor design has proven very valuable not only in the development of the control and plant protection system but also of components such as pumps and heat exchangers that are usually sized based on steady-state calculations

  13. Controlling range expansion in habitat networks by adaptively targeting source populations.

    Science.gov (United States)

    Hock, Karlo; Wolff, Nicholas H; Beeden, Roger; Hoey, Jessica; Condie, Scott A; Anthony, Kenneth R N; Possingham, Hugh P; Mumby, Peter J

    2016-08-01

    Controlling the spread of invasive species, pests, and pathogens is often logistically limited to interventions that target specific locations at specific periods. However, in complex, highly connected systems, such as marine environments connected by ocean currents, populations spread dynamically in both space and time via transient connectivity links. This results in nondeterministic future distributions of species in which local populations emerge dynamically and concurrently over a large area. The challenge, therefore, is to choose intervention locations that will maximize the effectiveness of the control efforts. We propose a novel method to manage dynamic species invasions and outbreaks that identifies the intervention locations most likely to curtail population expansion by selectively targeting local populations most likely to expand their future range. Critically, at any point during the development of the invasion or outbreak, the method identifies the local intervention that maximizes the long-term benefit across the ecosystem by restricting species' potential to spread. In so doing, the method adaptively selects the intervention targets under dynamically changing circumstances. To illustrate the effectiveness of the method we applied it to controlling the spread of crown-of-thorns starfish (Acanthaster sp.) outbreaks across Australia's Great Barrier Reef. Application of our method resulted in an 18-fold relative improvement in management outcomes compared with a random targeting of reefs in putative starfish control scenarios. Although we focused on applying the method to reducing the spread of an unwanted species, it can also be used to facilitate the spread of desirable species through connectivity networks. For example, the method could be used to select those fragments of habitat most likely to rebuild a population if they were sufficiently well protected. © 2016 Society for Conservation Biology.

  14. Sinking and fit of abutment of locking taper implant system

    Science.gov (United States)

    Moon, Seung-Jin; Kim, Hee-Jung; Son, Mee-Kyoung

    2009-01-01

    STATEMENT OF PROBLEM Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE In this study, Bicon® Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS 10 Bicon® implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS It was evident, that the amount of abutment sinking in Bicon® Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at 0.45 ± 0.09 mm. CONCLUSION Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location. PMID:21165262

  15. Enhanced heat sink with geometry induced wall-jet

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M. [Department of Mechanical Engineering Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh (Bangladesh)

    2016-07-12

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  16. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  17. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Madhumathy Perumal

    2015-01-01

    Full Text Available Data gathering and optimal path selection for wireless sensor networks (WSN using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS. This protocol finds the rendezvous point for optimal transmission of data using a “splitting tree” technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the “Biased Random Walk” model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  18. Geography, European colonization, and past population dynamics in Africa

    OpenAIRE

    Vaz Silva, Luis

    2005-01-01

    Past population dynamics in Africa have remained largely elusive due to the lack of demographic data. Researchers are understandably deterred from trying to explain what is not known and African historical population estimates suffer from this lack of interest. In this paper I explain present day African population densities using mostly ecological factors as explanatory variables. I find evidence supporting the view that ecological factors deeply affected precolonial patterns of human settle...

  19. Host country attractiveness for CDM non-sink projects

    International Nuclear Information System (INIS)

    Jung, Martina

    2006-01-01

    In the present study, CDM host countries are classified according to their attractiveness for CDM non-sink projects by using cluster analysis. The attractiveness of host countries for CDM non-sink projects is described by three indicators: mitigation potential, institutional CDM capacity and general investment climate. The results suggest that only a small proportion of potential host countries will attract most of the CDM investment. The CDM (non-sink) stars are China, India, Brazil, Argentina, Mexico, South Africa, Indonesia and Thailand. They are followed by attractive countries like Costa Rica, Trinidad and Tobago, Mongolia, Panama, and Chile. While most of the promising CDM host countries are located in Latin America and Asia, the general attractiveness of African host countries is relatively low (with the exception of South Africa). Policy implications of this rather inequitable geographical distribution of CDM project activities are discussed briefly

  20. Dynamical structure of hadron emission sources

    International Nuclear Information System (INIS)

    Zhao Xi; Huang Bangrong; Zhao Shusong

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of the hadron emission sources exist exactly in the hadron-hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ) ν K ν (aQ) distributions (Generalized functions). The dynamical structure of a hadron emission source is described by the (aQ) ν K ν (aQ) distributions. The anomalous dimensions of the pionic quantum fields are γ B (g R ) = - 0.045 +- 0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter ε = 4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous γ B (g R ) of the quantum fields for the regularization. (-2γ B (g R )↔ε/2 1/ln(Λ 2 /m 2 )Λ→∞)

  1. Spatially-Explicit Assessments of Genetic Biodiversity and Dispersal in Gopher Tortoises for Evaluation of Habitat Fragmentation at DoD Sites

    Science.gov (United States)

    2008-10-01

    crocodilian population genetics questions. J. Herpetology . 35: 541-544. Diemer JE. 1992. Home range and movements of the tortoise Gopherus...polyphemus in northern Florida. Journal of Herpetology 26:158–162 Diffendorfer JE. 1998. Testing models of source-sink dynamics and balanced dispersal...associated with tortoise (Gopherus polyphemus) burrows in four habitats in south-central Florida. Journal of Herpetology 25:477-481. Luikart G, Cornuet J-M

  2. Sedimentary mercury (Hg) in the marginal seas adjacent to Chinese high-Hg emissions: Source-to-sink, mass inventory, and accumulation history.

    Science.gov (United States)

    Kim, Jihun; Lim, Dhongil; Jung, Dohyun; Kang, Jeongwon; Jung, Hoisoo; Woo, Hanjun; Jeong, Kapsik; Xu, Zhaokai

    2018-03-01

    We comprehensively investigated sedimentary Hg in Yellow and East China Seas (YECSs), which constitute potentially important depocenters for large anthropogenic Hg emissions from mainland China. A large dataset of Al-TOC-Hg concentrations led to an in-depth understanding of sedimentary Hg in the entire YECSs, including distribution and its determinants, source-to-sink, background levels, inventory in flux and budget, and accumulation history. Especially, the net atmospheric Hg flux to the sediments was estimated to be 1.3 × 10 -5  g/m 2 /yr, which corresponded reasonably well to that calculated using a box model. About 21.2 tons of atmospheric Hg (approximately 4% of the total anthropogenic atmospheric Hg emissions from China) were buried annually in the YECS basin. This result implies that most of atmospheric Hg from China is transferred to the surface of the Pacific (including the East/Japan Sea and South China Sea) by the westerlies and, consequently, can play a critical role in open-sea aquatic ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effects of constant immigration on the dynamics and persistence of stable and unstable Drosophila populations

    Science.gov (United States)

    Dey, Snigdhadip; Joshi, Amitabh

    2013-01-01

    Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546

  4. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  5. Sources of population and family planning assistance.

    Science.gov (United States)

    1983-01-01

    This document assesses the current status of population and family planning assistance throughout the world and provides brief sketches of the available sources including national governments, intergovernmental agencies such as the UNFPA and other UN entities, and nongovernmental funding, technical assistance, or funding and technical assistance organizations. The descriptions of aid-granting organizations describe their purposes, sources of funding, and activities, and give addresses where further information may be sought. At present about $100 million of the US $1 billion spent for family planning in developing countries each year comes from individuals paying for their own supplies and services, over $400 million is spent by national governments on their own programs, and about $450 million comes from developed country governments and private agencies. Over half of external assistance appears to be channeled through international agencies, and only a few countries provide a substantial proportion of aid bilaterally. In the past decade several governments, particularly in Asia, significantly increased the share of program costs they assumed themselves, and the most populous developing countries, China, India, and Indonesia, now contribute most of the funding for their own programs. Although at least 130 countries have provided population aid at some time, most is given by 12 industrialized countries. The US Agency for International Development (USAID) is the largest single donor, but the US share of population assistance has declined to 50% of all assistance in 1981 from 60% in the early 1970s. Governments of Communist bloc countries have made only small contributions to international population assistance. Most governmental asistance is in cash grant form, but loans, grants in kind, and technical assistance are also provided. Private organizations give assistance primarily to other private organizations in developing countries, and have been major innovators in

  6. Nonlinear dynamics of interacting populations

    CERN Document Server

    Bazykin, Alexander D

    1998-01-01

    This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the

  7. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  8. A dynamic model of neurovascular coupling: implications for blood vessel dilation and constriction

    OpenAIRE

    Zheng, Y.; Pan, Y.; Harris, S.; Billings, S.A.; Coca, D.; Berwick, J.; Jones, M.; Kennerley, A.; Johnston, D.; Martin, C.; Devonshire, I.M.; Mayhew, J.

    2010-01-01

    Neurovascular coupling in response to stimulation of the rat barrel cortex was investigated using concurrent multichannel electrophysiology and laser Doppler flowmetry. The data were used to build a linear dynamic model relating neural activity to blood flow. Local field potential time series were subject to current source density analysis, and the time series of a layer IV sink of the barrel cortex was used as the input to the model. The model output was the time series of the changes in reg...

  9. Effect of the inter-block spacing on the thermal performance of a PCM based heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Faraji, M.; El Qarnia, H. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire de mecanique des fluides et d' energetique; El Khadir, L. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire d' tomatique de l' Environnement et Procedes de Transferts

    2010-07-01

    Advanced electronic devices require efficient thermal control systems. Heat transfer analysis of such systems is challenging because of constraints regarding space limitations, power consumption and noise level. This study considered the problem of melting and natural convection in a rectangular enclosure heated with 3 heat sources with a constant and uniform volumetric heat generation. The heat sources were protruding and mounted on a vertical conducting plate. Conjugate conduction in a plate and heat sources coupled with natural convection and melting process were examined in an effort to determine the effects of the inter-blocks spacing ratio on the thermal performance of the cooling PCM-heat sink. The percentage contribution of substrate heat conduction on the total removed heat from heat sources was also investigated. Correlations were derived for the non- dimensional secured working time and the corresponding melt fraction. In order to investigate the thermal behaviour of the proposed heat sink, a mathematical model was developed based on the mass, momentum and energy conservation equations. The results revealed that for lower inter-blocks spacing, the dimensionless secured working time needed by the chips to reach the critical temperature was maximized. The highest inter-blocks spacing ratio provoked a sudden rise in chip temperatures and thus reduced the dimensionless secured working time. It was concluded that this approach can be used in the design of PCM-based cooling systems. 9 refs., 2 tabs., 4 figs.

  10. An Empirical Study of AI Population Dynamics with Million-agent Reinforcement Learning

    OpenAIRE

    Yang, Yaodong; Yu, Lantao; Bai, Yiwei; Wang, Jun; Zhang, Weinan; Wen, Ying; Yu, Yong

    2017-01-01

    In this paper, we conduct an empirical study on discovering the ordered collective dynamics obtained by a population of artificial intelligence (AI) agents. Our intention is to put AI agents into a simulated natural context, and then to understand their induced dynamics at the population level. In particular, we aim to verify if the principles developed in the real world could also be used in understanding an artificially-created intelligent population. To achieve this, we simulate a large-sc...

  11. Characterization of Radial Curved Fin Heat Sink under Natural and Forced Convection

    Science.gov (United States)

    Khadke, Rishikesh; Bhole, Kiran

    2018-02-01

    Heat exchangers are important structures widely used in power plants, food industries, refrigeration, and air conditioners and now widely used in computing systems. Finned type of heat sink is widely used in computing systems. The main aim of the design of the heat sink is to maintain the optimum temperature level. To achieve this goal so many geometrical configurations are implemented. This paper presents a characterization of radially curved fin heat sink under natural and forced convection. Forced convection is studied for the optimization of temperature for better efficiency. The different alternatives in geometry are considered in characterization are heat intensity, the height of the fin and speed of the fan. By recognizing these alternatives the heat sink is characterized by the heat flux usually generated in high-end PCs. The temperature drop characteristics across height and radial direction are presented for the constant heat input and air flow in the heat sink. The effect of dimensionless elevation height (0 ≤ Z* ≤ 1) and Elenbaas Number (0.4 ≤ El ≤ 2.8) of the heat sink were investigated for study of the Nusselt number. Based on experimental characterization, process plan has been developed for the selection of the similar heat sinks for desired output (heat dissipation and temperature distribution).

  12. A spatial ecosystem and populations dynamics model (SEAPODYM) Modeling of tuna and tuna-like populations

    Science.gov (United States)

    Lehodey, Patrick; Senina, Inna; Murtugudde, Raghu

    2008-09-01

    An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical-biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack ( Katsuwonus pelamis) and bigeye ( Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization

  13. CO2 Sink/Source in the Indonesian Seas

    KAUST Repository

    Kartadikaria, Aditya R.; Watanabe, Atsushi; Nadaoka, Kazuo; Prayitno, Hanif; Adi, Novi; Suharsono, Suharsono; Muchtar, Muswerry; Triyulianti, Iis; Setiawan, Agus; Suratno, Suratno; Khasanah, Elly

    2015-01-01

    condition in Java Sea. Temperature is found to have a limited influence to control different characteristic in the west and east, but SST change of 2.0 0C during La Ninã condition effectively reduced the source amount of CO2 by 50% compared to Normal year

  14. Nuisance Source Population Modeling for Radiation Detection System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sokkappa, P; Lange, D; Nelson, K; Wheeler, R

    2009-10-05

    A major challenge facing the prospective deployment of radiation detection systems for homeland security applications is the discrimination of radiological or nuclear 'threat sources' from radioactive, but benign, 'nuisance sources'. Common examples of such nuisance sources include naturally occurring radioactive material (NORM), medical patients who have received radioactive drugs for either diagnostics or treatment, and industrial sources. A sensitive detector that cannot distinguish between 'threat' and 'benign' classes will generate false positives which, if sufficiently frequent, will preclude it from being operationally deployed. In this report, we describe a first-principles physics-based modeling approach that is used to approximate the physical properties and corresponding gamma ray spectral signatures of real nuisance sources. Specific models are proposed for the three nuisance source classes - NORM, medical and industrial. The models can be validated against measured data - that is, energy spectra generated with the model can be compared to actual nuisance source data. We show by example how this is done for NORM and medical sources, using data sets obtained from spectroscopic detector deployments for cargo container screening and urban area traffic screening, respectively. In addition to capturing the range of radioactive signatures of individual nuisance sources, a nuisance source population model must generate sources with a frequency of occurrence consistent with that found in actual movement of goods and people. Measured radiation detection data can indicate these frequencies, but, at present, such data are available only for a very limited set of locations and time periods. In this report, we make more general estimates of frequencies for NORM and medical sources using a range of data sources such as shipping manifests and medical treatment statistics. We also identify potential data sources for industrial

  15. Multi-Scale Approach to Understanding Source-Sink Dynamics of Amphibians

    Science.gov (United States)

    2015-12-01

    spotted salamander, A. maculatum) at Fort Leonard Wood (FLW), Missouri. We used a multi-faceted approach in which we combined ecological , genetic...spotted salamander, A. maculatum) at Fort Leonard Wood , Missouri through a combination of intensive ecological field studies, genetic analyses, and...spatial demographic networks to identify optimal locations for wetland construction and restoration. Ecological Applications. Walls, S. C., Ball, L. C

  16. The demographic drivers of local population dynamics in two rare migratory birds.

    Science.gov (United States)

    Schaub, Michael; Reichlin, Thomas S; Abadi, Fitsum; Kéry, Marc; Jenni, Lukas; Arlettaz, Raphaël

    2012-01-01

    The exchange of individuals among populations can have strong effects on the dynamics and persistence of a given population. Yet, estimation of immigration rates remains one of the greatest challenges for animal demographers. Little empirical knowledge exists about the effects of immigration on population dynamics. New integrated population models fitted using Bayesian methods enable simultaneous estimation of fecundity, survival and immigration, as well as the growth rate of a population of interest. We applied this novel analytical framework to the demography of two populations of long-distance migratory birds, hoopoe Upupa epops and wryneck Jynx torquilla, in a study area in south-western Switzerland. During 2002-2010, the hoopoe population increased annually by 11%, while the wryneck population remained fairly stable. Apparent juvenile and adult survival probability was nearly identical in both species, but fecundity and immigration were slightly higher in the hoopoe. Hoopoe population growth rate was strongly correlated with juvenile survival, fecundity and immigration, while that of wrynecks strongly correlated only with immigration. This indicates that demographic components impacting the arrival of new individuals into the populations were more important for their dynamics than demographic components affecting the loss of individuals. The finding that immigration plays a crucial role in the population growth rates of these two rare species emphasizes the need for a broad rather than local perspective for population studies, and the development of wide-scale conservation actions.

  17. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    Energy Technology Data Exchange (ETDEWEB)

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  18. Carbon dynamics after forest harvest in Central Siberia: the ZOTTO footprint area

    Science.gov (United States)

    Panov, Alexey; Zrazhevskaya, Galina; Shibistova, Olga; Onuchin, Alexander; Heimann, Martin

    2013-04-01

    Temperate and boreal forests of the Northern Hemisphere have been recognized as important carbon sinks. Accurate calculation of forest carbon budget and estimation of the temporal variations of forest net carbon fluxes are important topics to elucidate the ''missing sink'' question and follow up the changing carbon dynamics in forests. In the frame of the ongoing Russian-German partner project the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a unique international research platform for large-scale climatic observations is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). The data of the ongoing greenhouse gas and aerosol measurements at the tall tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over the whole Northern Eurasia. The tall tower footprint area estimates of carbon stocks and fluxes are highly demanded for bottom-up validation of inversion estimates. The ZOTTO site lies in a vast region of forests and wetlands, still relatively undisturbed by anthropogenic influences, but a moderate human impact on vegetation, represented mainly by logging activities, becomes essential. Therefore, accurate estimates of carbon pools in vegetation and soil following harvesting are essential to inversion studies for ZOTTO and critical to predictions of both local ecosystem sustainability and global C exchange with the atmosphere. We present our investigation of carbon dynamics after forest harvest in the tall tower footprint area (~1000 km2). The changes in C pools and annual sequestration were quantified among several clear-cut lichen pine (Pinus sylvestris Lamb.) stands representing various stages of secondary succession with a "space-for-time substitution" technique. When viewed as a chronosequence, these stands represent snapshots showing how the effects of logging may propagate through time. The study concluded that ecosystems during the first 15 yrs after forest harvest become C

  19. Chemical Dynamics at the Advanced Light Source

    International Nuclear Information System (INIS)

    Baer, T.; Berrah, N.; Fadley, C.; Moore, C.B.; Neumark, D.M.; Ng, C.Y.; Ruscic, B.; Smith, N.V.; Suits, A.G.; Wodtke, A.M.

    1999-01-01

    A day-long retreat was held January 15, 1999 to chart the future directions for chemical dynamics studies at the Advanced Light Source. This represents an important period for the Chemical Dynamics Beamline, as the hardware is well-developed, most of the initial experimental objectives have been realized and the mission is now to identify the future scientific priorities for the beamline and attract users of the highest caliber. To this end, we have developed a detailed scientific program for the near term; identified and prioritized the long range scientific opportunities, identified essential new hardware, and outlined an aggressive outreach program to involve the chemical physics community

  20. Analysis of Sources and Sinks of Mercury in the Urban Water Cycle of Frankfurt am Main, Germany

    Directory of Open Access Journals (Sweden)

    Imke Fricke

    2015-11-01

    Full Text Available Mercury (Hg is still a focus of environmental research, since its levels in fish frequently exceed the Environmental Quality Standard (EQS of 20 µg/kg for biota defined by the European Water Framework Directive (Directive 2008/105/EC. Current Hg levels in Abramis brama from German rivers are in the range of 73–346 µg/kg wet weight (2009 and exceed the EQS by a factor of 3.7–17.3. Therefore, it is important to identify the sources of Hg pollution in the aquatic environment and to develop effective strategies for reducing the input into associated river systems. The aim of the present study was to analyze Hg in the urban water cycle of the city of Frankfurt am Main, Germany. Samples were taken from the river Main crosscutting the city and its tributaries. In addition, precipitation, stormwater runoff, effluents of two municipal WWTPs, and stormwater management structures such as combined sewer overflows and stormwater retention basins have been analyzed. Loads of Hg have been determined based on the measured concentrations and a Hg mass balance for the aquatic system was created. A total of 160 water samples were analyzed by cold vapor atomic fluorescence spectroscopy (CVAFS according to US EPA Method 1631. Results from the mass balance have shown that approximately 5 kg Hg/a enter and 15 kg Hg/a leave the study area of Frankfurt am Main via the river Main. The largest amount of Hg (24.58 kg/a throughout the urban water cycle of Frankfurt am Main is transported via wastewater. However, municipal WWTPs in Frankfurt am Main have been identified as the largest Hg sink, since 99.7% (24.5 kg/a of the Hg is shifted from the sewage water and stormwater during treatment into the sewage sludge. Thus, the increase of the Hg load in the river Main from 5 to 15 kg/a has to be attributed to other sources such as 3 industrial WWTPs, groundwater and non-treated stormwater runoff during heavy rain events.

  1. Passive sinking into the snow as possible survival strategy during the off-host stage in an insect ectoparasite.

    Science.gov (United States)

    Kaunisto, Sirpa; Ylonen, Hannu; Kortet, Raine

    2015-07-22

    Abiotic and biotic factors determine success or failure of individual organisms, populations and species. The early life stages are often the most vulnerable to heavy mortality due to environmental conditions. The deer ked (Lipoptena cervi Linnaeus, 1758) is an invasive insect ectoparasite of cervids that spends an important period of the life cycle outside host as immobile pupa. During winter, dark-coloured pupae drop off the host onto the snow, where they are exposed to environmental temperature variation and predation as long as the new snowfall provides shelter against these mortality factors. The other possible option is to passively sink into the snow, which is aided by morphology of pupae. Here, we experimentally studied passive snow sinking capacity of pupae of L. cervi. We show that pupae have a notable passive snow sinking capacity, which is the most likely explained by pupal morphology enabling solar energy absorption and pupal weight. The present results can be used when planning future studies and when evaluating possible predation risk and overall survival of this invasive ectoparasite species in changing environmental conditions.

  2. Using temporal sampling to improve attribution of source populations for invasive species.

    Directory of Open Access Journals (Sweden)

    Sharyn J Goldstien

    Full Text Available Numerous studies have applied genetic tools to the identification of source populations and transport pathways for invasive species. However, there are many gaps in the knowledge obtained from such studies because comprehensive and meaningful spatial sampling to meet these goals is difficult to achieve. Sampling populations as they arrive at the border should fill the gaps in source population identification, but such an advance has not yet been achieved with genetic data. Here we use previously acquired genetic data to assign new incursions as they invade populations within New Zealand ports and marinas. We also investigated allelelic frequency change in these recently established populations over a two-year period, and assessed the effect of temporal genetic sampling on our ability to assign new incursions to their population of source. We observed shifts in the allele frequencies among populations, as well as the complete loss of some alleles and the addition of alleles novel to New Zealand, within these recently established populations. There was no significant level of genetic differentiation observed in our samples between years, and the use of these temporal data did alter the assignment probability of new incursions. Our study further suggests that new incursions can add genetic variation to the population in a single introduction event as the founders themselves are often more genetically diverse than theory initially predicted.

  3. Laser sources and techniques for spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kung, A.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This program focuses on the development of novel laser and spectroscopic techniques in the IR, UV, and VUV regions for studying combustion related molecular dynamics at the microscopic level. Laser spectroscopic techniques have proven to be extremely powerful in the investigation of molecular processes which require very high sensitivity and selectivity. The authors approach is to use quantum electronic and non-linear optical techniques to extend the spectral coverage and to enhance the optical power of ultrahigh resolution laser sources so as to obtain and analyze photoionization, fluorescence, and photoelectron spectra of jet-cooled free radicals and of reaction products resulting from unimolecular and bimolecular dissociations. New spectroscopic techniques are developed with these sources for the detection of optically thin and often short-lived species. Recent activities center on regenerative amplification of high resolution solid-state lasers, development of tunable high power mid-IR lasers and short-pulse UV/VUV tunable lasers, and development of a multipurpose high-order suppressor crossed molecular beam apparatus for use with synchrotron radiation sources. This program also provides scientific and technical support within the Chemical Sciences Division to the development of LBL`s Combustion Dynamics Initiative.

  4. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  5. Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils

    NARCIS (Netherlands)

    Bodelier, P.L.E.

    2011-01-01

    Recent dynamics and uncertainties in global methane budgets necessitate research of controls of sources and sinks of atmospheric methane. Production of methane by methanogenic archaea in wetlands is a major source while consumption by methane oxidizing bacteria in upland soils is a major sink.

  6. Copepods use chemical trails to find sinking marine snow aggregates

    DEFF Research Database (Denmark)

    Lombard, Fabien; Koski, Marja; Kiørboe, Thomas

    2013-01-01

    Copepods are major consumers of sinking marine particles and hence reduce the efficiency of the biological carbon pump. Their high abundance on marine snow suggests that they can detect sinking particles remotely. By means of laboratory observations, we show that the copepod Temora longicornis ca...

  7. Moisture sources of the Atmospheric Rivers making landfall in western Europe

    Science.gov (United States)

    Trigo, Ricardo M.; Ramos, Alexandre M.; Nieto, Raquel; Tomé, Ricardo; Gimeno, Luis; Liberato, Margarida L. R.; Lavers, David A.

    2017-04-01

    An automated atmospheric river (AR) detection algorithm is used for the North Atlantic Ocean basin, allowing the identification of the major ARs affecting western European coasts between 1979 and 2012. The entire western coast of Europe was divided into five domains, namely the Iberian Peninsula (9.75W, 36-43.75N), France (4.5W, 43.75-50N), UK (4.5W, 50-59N), southern Scandinavia and the Netherlands (5.25E, 50-59N), and northern Scandinavia (5.25E, 59-70N). Following the identification of the main ARs that made landfall in western Europe, a Lagrangian analysis was then applied in order to identify the main areas where the moisture uptake was anomalous and contributed to the ARs reaching each domain. The Lagrangian data set used was obtained from the FLEXPART model global simulation from 1979 to 2012. The results show that, in general, for all regions considered, the major climatological areas for the anomalous moisture uptake extend along the subtropical North Atlantic, from the Florida Peninsula (northward of 20N) to each sink region, with the nearest coast to each sink region always appearing as a local maximum. In addition, during AR events the Atlantic subtropical source is reinforced and displaced, with a slight northward movement of the sources found when the sink region is positioned at higher latitudes. In conclusion, the results confirm not only the anomalous advection of moisture linked to ARs from subtropical ocean areas but also the existence of a tropical source, together with midlatitude anomaly sources at some locations closer to AR landfalls (Ramos et al., 2016). References: Ramos et al., (2016) Atmospheric rivers moisture sources from a Lagrangian perspective, Earth Syst. Dynam., 7, 371-384. Acknowledgements This work was supported by the project IMDROFLOOD - Improving Drought and Flood Early Warning, Forecasting and Mitigation using real-time hydroclimatic indicators (WaterJPI/0004/2014) funded by Fundação para a Ciência e a Tecnologia

  8. Development and numerical investigation of novel gradient-porous heat sinks

    International Nuclear Information System (INIS)

    Wang, Baicun; Hong, Yifeng; Wang, Liang; Fang, Xudong; Wang, Pengfei; Xu, Zhongbin

    2015-01-01

    Highlights: • A novel design of gradient-porous heat sink (GPHS) was proposed in this work. • A 3D model was constructed to study the hydraulic and thermal performances of GPHS. • GPHS is capable of improving the hydraulic and thermal performances simultaneously. • GPHS with decreasing dp by Y can effectively suppress the bottom wall temperature. - Abstract: A novel design of gradient-porous heat sink (GPHS) was proposed and numerically studied in this work. Computational simulation was carried out to analyze the effects of gradient porous material (GPM) configuration on the hydraulic and thermal performances of heat sinks in comparison of homogeneous-porous heat sink (HPHS) serving as the control. Both gradient pore-size (dp) in the flow direction and the direction normal to flow direction were studied. It was found that, compared with conventional HPHS, GPHS can effectively improve the hydraulic and thermal performances simultaneously. Both the friction factor and overall thermal resistance of heat sinks with GPM configurations are considerably lowered. The Nusselt numbers of GPHS with gradient in flow direction are larger than those of homogeneous porous material (HPM) configurations. GPHS is also featured with the capabilities of effectively suppressing the bottom wall temperature and enhancing the convection performance.

  9. The basic approach to age-structured population dynamics models, methods and numerics

    CERN Document Server

    Iannelli, Mimmo

    2017-01-01

    This book provides an introduction to age-structured population modeling which emphasises the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology, and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modelling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behaviour of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students an...

  10. Potential impact of harvesting on the population dynamics of two epiphytic bromeliads

    Science.gov (United States)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa

    2014-08-01

    Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.

  11. Understanding of radiation effect on sinks in aluminum materials for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Il; Kim, Ji Hyun [UNIST, Daejeon (Korea, Republic of)

    2015-05-15

    Aluminum and its alloy are widely used in structural materials for research reactor such as guide tube and cladding because of its physical properties such as high thermal conductivity, neutron economy and corrosion resistant properties. Although aluminum and its alloy have excellent characteristic, radiation induced hardening and swelling are still important safety concern. From microstructural analysis, it was confirmed that dislocation loop, void and precipitate are major sinks which induced swelling and hardening. Among these defects, precipitation such as Mg{sub 2}Si and Si were generated by reaction between alloy elements and transmutations. Therefore, radiation induced swelling and hardening can be predicted by analyzing these defect. However, quantitative analysis of these defects has not been done by computational tools. Therefore, it is unclear that specific mechanism of alloy element effects on the irradiation swelling and hardening in aluminum alloys. Historically, radiation induced phenomena such as swelling, growth and hardening is simulated by Mean Field Radiation Damage Theory (MFRDT). From the MFRDT, reactions of irradiation defect and sink are calculated and then sink density is evolved at each type of sinks. The aim of this study is understanding of radiation effect on sink behavior. From the simplified reaction mechanism, defect concentration, sink density and irradiation hardening are calculated at each sink type. Transmutation effect was mostly dominant and dislocation loop and void effect were negligible.

  12. The use of segregated heat sink structures to achieve enhanced passive cooling for outdoor wireless devices

    International Nuclear Information System (INIS)

    O'Flaherty, K; Punch, J

    2014-01-01

    Environmental standards which govern outdoor wireless equipment can stipulate stringent conditions: high solar loads (up to 1 kW/m 2 ), ambient temperatures as high as 55°C and negligible wind speeds (0 m/s). These challenges result in restrictions on power dissipation within a given envelope, due to the limited heat transfer rates achievable with passive cooling. This paper addresses an outdoor wireless device which features two segregated heat sink structures arranged vertically within a shielded chimney structure: a primary sink to cool temperature-sensitive components; and a secondary sink for high power devices. Enhanced convective cooling of the primary sink is achieved due to the increased mass flow within the chimney generated by the secondary sink. An unshielded heat sink was examined numerically, theoretically and experimentally, to verify the applicability of the methods employed. Nusselt numbers were compared for three cases: an unshielded heat sink; a sink located at the inlet of a shield; and a primary heat sink in a segregated structure. The heat sink, when placed at the inlet of a shield three times the length of the sink, augmented the Nusselt number by an average of 64% compared to the unshielded case. The Nusselt number of the primary was found to increase proportionally with the temperature of the secondary sink, and the optimum vertical spacing between the primary and secondary sinks was found to be close to zero, provided that conductive transfer between the sinks was suppressed.

  13. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    Science.gov (United States)

    Russell, Tanya L.; Lwetoijera, Dickson W.; Knols, Bart G. J.; Takken, Willem; Killeen, Gerry F.; Ferguson, Heather M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAICc support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness. PMID:21389034

  14. Identifying populations at risk from environmental contamination from point sources

    OpenAIRE

    Williams, F; Ogston, S

    2002-01-01

    Objectives: To compare methods for defining the population at risk from a point source of air pollution. A major challenge for environmental epidemiology lies in correctly identifying populations at risk from exposure to environmental pollutants. The complexity of today's environment makes it essential that the methods chosen are accurate and sensitive.

  15. The Soil Sink for Nitrous Oxide: Trivial Amount but Challenging Question

    Science.gov (United States)

    Davidson, E. A.; Savage, K. E.; Sihi, D.

    2015-12-01

    Net uptake of atmospheric nitrous oxide (N2O) has been observed sporadically for many years. Such observations have often been discounted as measurement error or noise, but they were reported frequently enough to gain some acceptance as valid. The advent of fast response field instruments with good sensitivity and precision has permitted confirmation that some soils can be small sinks of N2O. With regards to "closing the global N2O budget" the soil sink is trivial, because it is smaller than the error terms of most other budget components. Although not important from a global budget perspective, the existence of a soil sink for atmospheric N2O presents a fascinating challenge for understanding the physical, chemical, and biological processes that explain the sink. Reduction of N2O by classical biological denitrification requires reducing conditions generally found in wet soil, and yet we have measured the N2O sink in well drained soils, where we also simultaneously measure a sink for atmospheric methane (CH4). Co-occurrence of N2O reduction and CH4 oxidation would require a broad range of microsite conditions within the soil, spanning high and low oxygen concentrations. Abiotic sinks for N2O or other biological processes that consume N2O could exist, but have not yet been identified. We are attempting to simulate processes of diffusion of N2O, CH4, and O2 from the atmosphere and within a soil profile to determine if classical biological N2O reduction and CH4 oxidation at rates consistent with measured fluxes are plausible.

  16. Population dynamics of light-limited phytoplankton : Microcosm experiments

    NARCIS (Netherlands)

    Huisman, Jef

    This paper investigates the extent to which the predictions of an elementary model for light-limited growth are matched by laboratory experiments with light-limited phytoplankton. The model and experiments link the population dynamics of phytoplankton species with changes in the light gradient

  17. Rethinking the logistic approach for population dynamics of mutualistic interactions.

    Science.gov (United States)

    García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J

    2014-12-21

    Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Direct characterization of chaotic and stochastic dynamics in a population model with strong periodicity

    International Nuclear Information System (INIS)

    Tung Wenwen; Qi Yan; Gao, J.B.; Cao Yinhe; Billings, Lora

    2005-01-01

    In recent years it has been increasingly recognized that noise and determinism may have comparable but different influences on population dynamics. However, no simple analysis methods have been introduced into ecology which can readily characterize those impacts. In this paper, we study a population model with strong periodicity and both with and without noise. The noise-free model generates both quasi-periodic and chaotic dynamics for certain parameter values. Due to the strong periodicity, however, the generated chaotic dynamics have not been satisfactorily described. The dynamics becomes even more complicated when there is noise. Characterizing the chaotic and stochastic dynamics in this model thus represents a challenging problem. Here we show how the chaotic dynamics can be readily characterized by the direct dynamical test for deterministic chaos developed by [Gao JB, Zheng ZM. Europhys. Lett. 1994;25:485] and how the influence of noise on quasi-periodic motions can be characterized as asymmetric diffusions wandering along the quasi-periodic orbit. It is hoped that the introduced methods will be useful in studying other population models as well as population time series obtained both in field and laboratory experiments

  19. Efficient characterisation of large deviations using population dynamics

    Science.gov (United States)

    Brewer, Tobias; Clark, Stephen R.; Bradford, Russell; Jack, Robert L.

    2018-05-01

    We consider population dynamics as implemented by the cloning algorithm for analysis of large deviations of time-averaged quantities. We use the simple symmetric exclusion process with periodic boundary conditions as a prototypical example and investigate the convergence of the results with respect to the algorithmic parameters, focussing on the dynamical phase transition between homogeneous and inhomogeneous states, where convergence is relatively difficult to achieve. We discuss how the performance of the algorithm can be optimised, and how it can be efficiently exploited on parallel computing platforms.

  20. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    Science.gov (United States)

    Rezania, A.; Rosendahl, L. A.

    2012-06-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The three-dimensional governing equations for the fluid flow and the heat transfer are solved using the finite-volume method for a wide range of pressure drop laminar flows along the heat sink. The temperature and the mass flow rate distribution in the heat sink are discussed. The results, which are in good agreement with previous computational studies, show that using suggested heat sink configurations reduces the coolant pumping power in the system.