WorldWideScience

Sample records for source-coupled n-channel jfet-based

  1. A fully integrated, monolithic, cryogenic charge sensitive preamplifier using N-channel JFETs and polysilicon resistors

    International Nuclear Information System (INIS)

    Jung, T.S.; Guckel, H.; Seefeldt, J.; Ott, G.; Ahn, Y.C.

    1994-01-01

    In this paper, an integrated charge preamplifier to be used with small (10--30 mm 2 ) Si(Li) and Ge(Li) X-ray detectors is described. The preamplifier is designed to operate at cryogenic temperatures (∼100 K to 160 K) for the best performance. An N-channel JFET process technology for integrated charge sensitive preamplifiers has been developed. The process integrates multiple pinch-off voltage JFETs fabricated in an n-type epitaxial layer on a low resistivity p-type substrate. The process also incorporates polysilicon resistors integrated on the same die as the JFETs. The optimized polysilicon resistors exhibit 1/f noise nearly as good as metal film resistors at the same current. Results for integrated amplifier are discussed

  2. Monolithic JFET preamplifier for ionization chamber calorimeter

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1990-10-01

    A monolithic charge sensitive preamplifier using exclusively n-channel diffused JFETs has been designed and is now being fabricated by INTERFET Corp. by means of a dielectrically isolated process which allows preserving as much as possible the technology upon which discrete JFETs are based. A first prototype built by means of junction isolated process has been delivered. The characteristics of monolithically integrated JFETs compare favorably with discrete devices. First results of tests of a preamplifier which uses these devices are reported. 4 refs

  3. Design of monolithic preamplifiers employing diffused n-JFETs for ionization chamber colorimeters

    International Nuclear Information System (INIS)

    Demicheli, M.; Manfredi, P.F.; Speziali, V.; Radeka, V.; Rescia, S.

    1990-01-01

    Silicon n-channel JFETs obtained by diffusing the gate into the epitaxial layer which contains the channel still feature unsurpassed noise performances in charge measurements with radiation detectors. Compared to implanted-gate junction field-effect devices, they have a better behaviour in the low-frequency noise, while the thermal noise in the channel more closely conforms to the expected g m -dependence. With respect to MOSFETs they feature, besides lower noise, superior radiation hardness and resistance to electrostatic discharges into the gate. The actual paper discusses the basic design considerations of a preamplifier for ionization chamber calorimeters, which is intended for monolithic integration based on a dielectrically isolated process. (orig.)

  4. AlGaN Channel Transistors for Power Management and Distribution

    Science.gov (United States)

    VanHove, James M.

    1996-01-01

    Contained within is the Final report of a Phase 1 SBIR program to develop AlGaN channel junction field effect transistors (JFET). The report summarizes our work to design, deposit, and fabricate JFETS using molecular beam epitaxy growth AlGaN. Nitride growth is described using a RF atomic nitrogen plasma source. Processing steps needed to fabricate the device such as ohmic source-drain contacts, reactive ion etching, gate formation, and air bride fabrication are documented. SEM photographs of fabricated power FETS are shown. Recommendations are made to continue the effort in a Phase 2 Program.

  5. A double-gate double-feedback JFET charge-sensitive preamplifier

    International Nuclear Information System (INIS)

    Fazzi, A.

    1996-01-01

    A new charge-sensitive preamplifier (CSP) without a physical resistance in the feedback is presented. The input device has to be a double-gate JFET. In this new preamplifier configuration the feedback capacitor is continuously discharged by means of a second DC current feedback loop closed through the bottom gate of the input JFET. The top gate-channel junction works as usual in reverse bias, the bottom gate-channel is forward biased. A fraction of the current injected by the bottom gate reaches the top gate discharging the feedback capacitor. The n-channel double-gate JFET is considered from the viewpoint of the restoring action as a parasitic p-n-p ''transversal'' bipolar junction transistor. The new preamplifier is also suited for detectors operating at room temperature with leakage current which may vary with time. The DC behaviour and the dynamic behaviour of the circuit is analyzed and new measurements presented. (orig.)

  6. Electrical and optical analyses of low fluence fast neutron damage to JFETs

    International Nuclear Information System (INIS)

    Hoffmann, A.; Charles, J.P.; Kerns, S.E.; Kerns, D.V. Jr.; Bardonnie, M. de la; Mialhe, P.

    1999-01-01

    The effects of fast neutron irradiation (30 MeV) on silicon n-channel JFETs are studied. Electrical parameters of the gate-channel junction are analysed at 3 fluences: 4,06*10 10 , 8,12*10 10 and 1,22*10 11 n/cm 2 for a flux of 2,82*10 6 n/s*cm 2 and using a custom software. Electrical parameter changes are attributed to bulk semi-conductor defects. Irradiation effects on passivation overlayers are evacuate using analysis of gate-channel junction electroluminescence. This study shows that even for low neutron fluences (10 11 n/cm 2 ), n-channel JFETs, characterized in direct conducting mode and submitted to neutron radiation, present a decrease in the reverse saturation current associated with recombination. (A.C.)

  7. Total dose induced increase in input offset voltage in JFET input operational amplifiers

    International Nuclear Information System (INIS)

    Pease, R.L.; Krieg, J.; Gehlhausen, M.; Black, J.

    1999-01-01

    Four different types of commercial JFET input operational amplifiers were irradiated with ionizing radiation under a variety of test conditions. All experienced significant increases in input offset voltage (Vos). Microprobe measurement of the electrical characteristics of the de-coupled input JFETs demonstrates that the increase in Vos is a result of the mismatch of the degraded JFETs. (authors)

  8. Constant-resistance deep-level transient spectroscopy in Si and Ge JFET's

    International Nuclear Information System (INIS)

    Kolev, P.V.; Deen, J.

    1999-01-01

    The recently introduced constant-resistance deep-level transient spectroscopy (CR-DLTS) was successfully applied to study virgin and radiation-damaged junction field-effect transistors (JFET's). The authors have studied three groups of devices: commercially available-discrete silicon JFET's; virgin and exposed to high-level neutron radiation silicon JFET's, custom-made by using a monolithic technology; and commercially available discrete germanium p-channel JFET's. CR-DLTS is similar to both the conductance DLTs and to the constant-capacitance variation (CC-DLTS). Unlike the conductance and current DLTS, it is independent of the transistor size and does not require simultaneous measurement of the transconductance or the free-carrier mobility for calculation of the trap concentration. Compared to the CC-DLTS, it measures only the traps inside the gate-controlled part of the space charge region. Comparisons have also been made with the CC-DLTS and standard capacitance DLTS. In addition, possibilities for defect profiling in the channel have been demonstrated. CR-DLTS was found to be a simple, very sensitive, and device area-independent technique which is well suited for measurement of a wide range of deep level concentrations in transistors

  9. Extracting the noise spectral densities parameters of JFET transistor by modeling a nuclear electronics channel response

    International Nuclear Information System (INIS)

    Assaf, J.

    2009-07-01

    Mathematical model for the RMS noise of JFET transistor has been realized. Fitting the model according to the experimental results gives the noise spectral densities values. Best fitting was for the model of three noise sources and real preamplifier transfer function. After gamma irradiation, an additional and important noise sources appeared and two point defects are estimated through the fitting process. (author)

  10. Radiation sensitivity of noise in monolithic JFET circuits exposed to 60Co γ - rays

    International Nuclear Information System (INIS)

    Cesura, G.; Re, V.; Tomasini, A.

    1993-01-01

    The spectral density of channel current noise in JFET's is governed in the low-frequency region by Lorentzian terms. Ordinarily, their influence on the equivalent noise charge of preamplifiers for radiation detectors is negligible, as these terms vanish as soon as the frequency exceeds a few Hz. Exposure of JFET's to γ - rays has proved, however, that these noise contributions are enhanced by the absorbed radiation and may invade a much broader frequency range, thereby degrading the equivalent noise charge even at comparatively short processing times. The extent to which the noise behaviour of JFET's is affected by radiation-enhanced Lorentzian terms is analysed in this paper. Results of measurements, carried out after exposure to 60 Co γ - rays of JFET parts and monolithic circuits realised in two different technologies, are discussed and compared with the theoretical predictions. (orig.)

  11. N Channel JFET Based Digital Logic Gate Structure

    Science.gov (United States)

    Krasowski, Michael J (Inventor)

    2013-01-01

    An apparatus is provided that includes a first field effect transistor with a source tied to zero volts and a drain tied to voltage drain drain (Vdd) through a first resistor. The apparatus also includes a first node configured to tie a second resistor to a third resistor and connect to an input of a gate of the first field effect transistor in order for the first field effect transistor to receive a signal. The apparatus also includes a second field effect transistor configured as a unity gain buffer having a drain tied to Vdd and an uncommitted source.

  12. Radiation damage studies of detector-compatible Si JFETs

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Boscardin, Maurizio; Candelori, Andrea; Pancheri, Lucio; Piemonte, Claudio; Ratti, Lodovico; Zorzi, Nicola

    2007-01-01

    We have largely improved the performance of our detector-compatible Si JFETs by optimizing the fabrication technology. New devices feature thermal noise values close to the theoretical ones, and remarkably low 1/f noise figures. In view of adopting these JFETs for X-ray imaging and HEP applications, bulk and surface radiation damage tests have been carried out by irradiating single transistors and test structures with neutrons and X-rays. Selected results from static and noise characterization of irradiated devices are discussed in this paper, and the impact of radiation effects on the performance of JFET-based circuits is addressed

  13. Phi Photoproduction in a Coupled-Channel Approach

    NARCIS (Netherlands)

    Ozaki, S.; Nagahiro, H.; Hosaka, A.; Scholten, O.

    2010-01-01

    We investigate photoproduction of phi-mesons off protons within a coupled-channel effective-Lagrangian method which is based on the K-matrix approach. We take into account pi N, rho N, eta N, K Lambda, K Sigma, K Lambda (1520) and phi N channels. Especially we focus on K Lambda(1520) channel. We

  14. Efficient fiber-coupled single-photon sources based on quantum dots

    DEFF Research Database (Denmark)

    Daveau, Raphaël Sura

    refrigeration with coupled quantum wells. Many photonic quantum information processing applications would benet from a highbrightness, ber-coupled source of triggered single photons. This thesis presents a study of such sources based on quantum dots coupled to unidirectional photonic-crystal waveguide devices.......6 %. This latter method opens a promising future for increasing the eciency and reliability of planar chip-based single-photon sources. Refrigeration of a solid-state system with light has potential applications for cooling small-scale electronic and photonic circuits. We show theoretically that two coupled...... semiconductor quantum wells are ecient cooling media because they support long-lived indirect electron-hole pairs. These pairs can be thermally excited to distinct higher-energy states with faster radiative recombination, thereby creating an ecient escape channel to remove thermal energy from the system. From...

  15. High Power Self-Aligned, Trench-Implanted 4H-SiC JFETs

    Directory of Open Access Journals (Sweden)

    Vamvoukakis K.

    2017-01-01

    Full Text Available The process technology for the fabrication of 4H-SiC trenched-implanted-gate 4H–SiC vertical-channel JFET (TI-VJFET has been developed. The optimized TIVJFETs have been fabricated with self-aligned nickel silicide source and gate contacts using a process sequence that greatly reduces process complexity as it includes only four lithography steps. A source-pillars sidewall oxidation and subsequent removal of the metallization from the top of the sidewall oxide ensured isolation between gate and source. Optimum planarization of the source pillars top has been performed by cyclotene spin coating and etch back. The effect of the channel geometry on the electrical characteristics has been studied by varying its length (0.3 and 1.2μm and its width (1.5-5μm. The voltage blocking exhibits a triode shape, which is typical for a static-induction transistor (SIT operation. The transistors exhibited high ON current handling capabilities (Direct Current density >1kA/cm2 and values of RON ranging from 6 - 12 mΩ•cm2 depending on the channel length. Maximum voltage blocking was 800V limited by the edge termination. The maximum voltage gain was 51. Most transistors were normally-on. Normally-off operation has been observed for transistors lower than 2μm channel width (mask level and deep implantation.

  16. Multichannel monolithic front-end system design. Part II. Microwave bipolar-JFET process for low-noise charge-sensitive preamplifiers

    International Nuclear Information System (INIS)

    Baturitsky, M.A.; Reutovich, S.I.; Solomashenko, N.F.

    1996-01-01

    For pt. I see ibid., vol.378, p.564-569, 1996. New monolithic low-noise process has been developed for simultaneous fabrication of high-speed low-noise 4-terminal and 3-terminal pJFETs and microwave low-noise npn BJTs. A new ion-implanted 4-terminal structure of JFET having 300 MHz cut-off frequency is designed. The process provides direct contact to a top gate and independent access to the top and bottom gates. Application of p-channel implant makes it possible to optimize the JFET pinch-off voltage without deterioration of bipolar transistor characteristics: f T ≥3 GHz, current gain β≥150, R bb' ≤15-40 Ω. (orig.)

  17. (C-V) and y-parameters determination of JFETs under different environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghanam, S.M., E-mail: safaaghanam@yahoo.co [Women' s College for Art, Science and Education, Ain-Shams University, Heliopolis, Cairo (Egypt)

    2010-10-01

    The C-V characteristics of n-channel JFET have been measured under different environmental conditions of temperature up to 140 deg. C and {gamma}-rays up to 100 kGy. For low bias voltage and frequency, the input capacitance, C{sub iss}, is shown to be a direct function of temperature. On the other hand, its value was shown to decrease from 11.68 down to 8.17 nF due to {gamma}-exposure up to 100 kGy. The y-parameters of common source amplifier were calculated under the influence of temperature and {gamma}-rays. The results show that the susceptance component of the admittance increases due to increase in temperature, while decreasing after {gamma}-exposure. Considering the cutoff frequency f{sub T0}, it is clear that as the temperature increases from 30 up to 140 deg. C, f{sub T0} dropped from 47 MHz down to 5 MHz, measured at 0.8 V. On the other hand its value was shown to increase from 43 MHz up to 102 MHz, measured at the same bias voltage, due to {gamma}-exposure up to 100 kGy.

  18. An array of cold-electron bolometers with SIN tunnel junctions and JFET readout for cosmology instruments

    International Nuclear Information System (INIS)

    Kuzmin, L

    2008-01-01

    A novel concept of the parallel/series array of Cold-Electron Bolometers (CEB) with Superconductor-Insulator-Normal (SIN) Tunnel Junctions has been proposed. The concept was developed specially for matching the CEB with JFET amplifier at conditions of high optical power load. The CEB is a planar antenna-coupled superconducting detector with high sensitivity. For combination of effective HF operation and low noise properties the current-biased CEBs are connected in series for DC and in parallel for HF signal. A signal is concentrated from an antenna to the absorber through the capacitance of the tunnel junctions and through additional capacitance for coupling of superconducting islands. Using array of CEBs the applications can be considerably extended to higher power load by distributing the power between N CEBs and decreasing the electron temperature. Due to increased responsivity the noise matching is so effective that photon NEP could be easily achieved at 300 mK with a room temperature JFET for wide range of optical power loads. The concept of the CEB array has been developed for the BOOMERanG balloon telescope and other Cosmology instruments

  19. Applications, Prospects and Challenges of Silicon Carbide Junction Field Effect Transistor (SIC JFET

    Directory of Open Access Journals (Sweden)

    Frederick Ojiemhende Ehiagwina

    2016-09-01

    Full Text Available Properties of Silicon Carbide Junction Field Effect Transistor (SiC JFET such as high switching speed, low forward voltage drop and high temperature operation have attracted the interest of power electronic researchers and technologists, who for many years developed devices based on Silicon (Si.  A number of power system Engineers have made efforts to develop more robust equipment including circuits or modules with higher power density. However, it was realized that several available power semiconductor devices were approaching theoretical limits offered by Si material with respect to capability to block high voltage, provide low on-state voltage drop and switch at high frequencies. This paper presents an overview of the current applications of SiC JFET in circuits such as inverters, rectifiers and amplifiers. Other areas of application reviewed include; usage of the SiC JFET in pulse signal circuits and boost converters. Efforts directed toward mitigating the observed increase in electromagnetic interference were also discussed. It also presented some areas for further research, such as having more applications of SiC JFET in harsh, high temperature environment. More work is needed with regards to SiC JFET drivers so as to ensure stable and reliable operation, and reduction in the prices of SiC JFETs through mass production by industries.

  20. Coupled-channel analysis for phi photoproduction with Lambda

    NARCIS (Netherlands)

    Ozaki, S.; Hosaka, A.; Nagahiro, H.; Scholten, O.

    We investigate photoproduction of phi mesons off protons within a coupled-channel effective-Lagrangian method which is based on the K-matrix approach. Since the threshold energy of the K Lambda(1520) channel is close to that of phi N, the contribution of this channel to f photoproduction near the

  1. Temperature characterization of deep and shallow defect centers of low noise silicon JFETs

    International Nuclear Information System (INIS)

    Arnaboldi, Claudio; Fascilla, Andrea; Lund, M.W.; Pessina, Gianluigi

    2004-01-01

    We have selected different low noise JFET processes that have shown outstanding dynamic and noise performance at both room temperature and low temperatures. We have studied JFETs made with a process optimized for cryogenic operation, testing several devices of varying capacitance. For most of them, we have been able to detect the presence of shallow individual traps at low temperature which create low frequency (LF) Generation-Recombination (G-R) noise. For one device type no evidence of traps has been observed at the optimum temperature of operation (around 100 K). It had a very small residual LF noise. This device has been cooled down to 14 K. From below 100 K down to 14 K the noise was observed to increase due to G-R noise originating from donor atoms (dopants) inside the channel. A very simple theoretical interpretation confirms the nature of G-R noise from these very shallow trapping centers. We also studied devices from a process optimized for room temperature operation and found noise corresponding to the presence of a single deep level trap. Even for this circumstance the theory was experimentally confirmed. The measurement approach we used allowed us to achieve a very high accuracy in the modeling of the measured G-R noise. The ratio of the density of the atoms responsible for G-R noise above the doping concentration, N T /N d , has been verified with a sensitivity around 10 -7

  2. High dose effect of gamma and neutrons on the N-JFET electronic components

    International Nuclear Information System (INIS)

    Assaf, Jamal-Eddin

    2006-11-01

    Two types of N-JFET components have been irradiated by high doses of thermal neutrons and gamma rays up to 2000x10 12 n/cm 2 and 1000 kGy, respectively. The static tests show a decrease of the g m and I d s parameters. The behaviour of electronic noise on the output was the principal dynamic test after irradiation. The result of this test gives an increase of the noise with radiation dose increasing. The noise was described as the Equivalent Noise of Charge (ENC) at the output of the measurements set-up. The quantities and the qualities of the noise depend on the N-JEET type and the type of radiation (neutrons or gamma). Other tests were carried out like the relaxation or recovery phenomena after radiation, and the superposed effects of gamma and neutrons.(author)

  3. Photojunction Field-Effect Transistor Based on a Colloidal Quantum Dot Absorber Channel Layer

    KAUST Repository

    Adinolfi, Valerio

    2015-01-27

    © 2015 American Chemical Society. The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors\\' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.

  4. Characterization of 6H-SiC JFET Integrated Circuits Over A Broad Temperature Range from -150 C to +500 C

    Science.gov (United States)

    Neudeck, Philip G.; Krasowski, Michael J.; Chen, Liang-Yu; Prokop, Norman F.

    2009-01-01

    The NASA Glenn Research Center has previously reported prolonged stable operation of simple prototype 6H-SiC JFET integrated circuits (logic gates and amplifier stages) for thousands of hours at +500 C. This paper experimentally investigates the ability of these 6H-SiC JFET devices and integrated circuits to also function at cold temperatures expected to arise in some envisioned applications. Prototype logic gate ICs experimentally demonstrated good functionality down to -125 C without changing circuit input voltages. Cascaded operation of gates at cold temperatures was verified by externally wiring gates together to form a 3-stage ring oscillator. While logic gate output voltages exhibited little change across the broad temperature range from -125 C to +500 C, the change in operating frequency and power consumption of these non-optimized logic gates as a function of temperature was much larger and tracked JFET channel conduction properties.

  5. High voltage MOSFET devices and methods of making the devices

    Science.gov (United States)

    Banerjee, Sujit; Matocha, Kevin; Chatty, Kiran

    2018-06-05

    A SiC MOSFET device having low specific on resistance is described. The device has N+, P-well and JFET regions extended in one direction (Y-direction) and P+ and source contacts extended in an orthogonal direction (X-direction). The polysilicon gate of the device covers the JFET region and is terminated over the P-well region to minimize electric field at the polysilicon gate edge. In use, current flows vertically from the drain contact at the bottom of the structure into the JFET region and then laterally in the X direction through the accumulation region and through the MOSFET channels into the adjacent N+ region. The current flowing out of the channel then flows along the N+ region in the Y-direction and is collected by the source contacts and the final metal. Methods of making the device are also described.

  6. High voltage MOSFET devices and methods of making the devices

    Science.gov (United States)

    Banerjee, Sujit; Matocha, Kevin; Chatty, Kiran

    2015-12-15

    A SiC MOSFET device having low specific on resistance is described. The device has N+, P-well and JFET regions extended in one direction (Y-direction) and P+ and source contacts extended in an orthogonal direction (X-direction). The polysilicon gate of the device covers the JFET region and is terminated over the P-well region to minimize electric field at the polysilicon gate edge. In use, current flows vertically from the drain contact at the bottom of the structure into the JFET region and then laterally in the X direction through the accumulation region and through the MOSFET channels into the adjacent N+ region. The current flowing out of the channel then flows along the N+ region in the Y-direction and is collected by the source contacts and the final metal. Methods of making the device are also described.

  7. The influence of operational conditions on radiation damage in JFET-input operational amplifiers

    International Nuclear Information System (INIS)

    Zheng Yuzhan; Wang Yiyuan; Chen Rui; Fei Wuxiong; Lu Wu; Ren Diyuan

    2010-01-01

    High- and low-dose-rate irradiation have been performed on JFET-input operational amplifiers (op-amps) with normal operational and zero biased conditions, respectively. The experimental results show that operational conditions have a great influence on the radiation effects and damage in JFET-input operational amplifiers. Under normal condition, the JFET-input op-amps have exhibited time-dependent effect (TDE); while they show enhanced low-dose-rate sensitivity (ELDRS) at zero biased condition. Compared with zero biased condition, the JFET-input op-amps would degrade more severely at normal condition for high-dose-rate irradiation; while for the low-dose-rate case, they have more degradation at normal condition. Irradiation would induce positive oxide-trapped charge and interface traps in bipolar transistors, which are the basic components in JFET-input op-amps. From the dependence of oxide trapped charge and interface traps on operational conditions, the degradation behavior is discussed. (authors)

  8. An improved fabrication process for Si-detector-compatible JFETs

    International Nuclear Information System (INIS)

    Piemonte, Claudio; Dalla Betta, Gian-Franco; Boscardin, Maurizio; Gregori, Paolo; Zorzi, Nicola; Ratti, Lodovico

    2006-01-01

    We report on JFET devices fabricated on high-resistivity silicon with a radiation detector technology. The problems affecting previous versions of these devices have been thoroughly investigated and solved by developing an improved fabrication process, which allows for a sizeable enhancement in the JFET performance. In this paper, the main features of the fabrication technology are presented and selected results from the electrical and noise characterization of transistors are discussed

  9. Recovery of the irradiated JFETs by thermal annealing

    International Nuclear Information System (INIS)

    Assaf, J.

    2007-10-01

    Study about the recovering of irradiated JFET transistors has been reported. The JFETs were damaged totally or partially by exposition to Gamma ray and neutrons. Electronics noise has used to evaluate the effect of radiation and the recovery. The study focused on the recovery by thermal annealing, where samples have been heated gradually until 140 centigrade degree (410 K). The recovery ratio given by this method was higher than that resulted from the relaxation method (time recovery) carried out in the room temperature (300 K), especially for Gamma irradiated samples.(author)

  10. Coupled channels in the different models

    International Nuclear Information System (INIS)

    Badalyan, A.M.; Polikarpov, M.I.; Simonov, Yu.A.

    1980-01-01

    Description of the multichannel phenomena due to channel coupling is considered. The different methods: the relativistic Logunov-Tavkhelidze-Blankenbecler-Sugar equations, the Schroedinger equation with the separable potentials and the many-channel N-D method are discussed. The particular emphasis is made on the dependence of pole trajectories and cross sections on the parameters of the coupled channel (CC) pole interaction. In detail the properties of the N anti N interaction with annihilation are taken into account. Elastic, charge exchange and annihilation cross sections are calculated in the 0-100 MeV energy range. The peaks in all cross sections at the threshold are due to the CC poles in the L=0 waves. The position of the 16 poles in different states for the case of no CC interaction and the standard CC interaction is presented

  11. Assessment of Durable SiC JFET Technology for +600 C to -125 C Integrated Circuit Operation

    Science.gov (United States)

    Neudeck, P. G.; Krasowski, M. J.; Prokop, N. F.

    2011-01-01

    Electrical characteristics and circuit design considerations for prototype 6H-SiC JFET integrated circuits (ICs) operating over the broad temperature range of -125 C to +600 C are described. Strategic implementation of circuits with transistors and resistors in the same 6H-SiC n-channel layer enabled ICs with nearly temperature-independent functionality to be achieved. The frequency performance of the circuits declined at temperatures increasingly below or above room temperature, roughly corresponding to the change in 6H-SiC n-channel resistance arising from incomplete carrier ionization at low temperature and decreased electron mobility at high temperature. In addition to very broad temperature functionality, these simple digital and analog demonstration integrated circuits successfully operated with little change in functional characteristics over the course of thousands of hours at 500 C before experiencing interconnect-related failures. With appropriate further development, these initial results establish a new technology foundation for realizing durable 500 C ICs for combustion engine sensing and control, deep-well drilling, and other harsh-environment applications.

  12. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    Science.gov (United States)

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  13. Resistor-less charge sensitive amplifier for semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pelczar, K., E-mail: krzysztof.pelczar@doctoral.uj.edu.pl; Panas, K.; Zuzel, G.

    2016-11-01

    A new concept of a Charge Sensitive Amplifier without a high-value resistor in the feedback loop is presented. Basic spectroscopic parameters of the amplifier coupled to a coaxial High Purity Germanium detector (HPGe) are discussed. The amplifier signal input is realized with an n-channel J-FET transistor. The feedback capacitor is discharged continuously by the second, forward biased n-channel J-FET, driven by an RC low–pass filter. Both the analog—with a standard spectroscopy amplifier and a multi-channel analyzer—and the digital—by applying a Flash Analog to Digital Converter—signal readouts were tested. The achieved resolution in the analog and the digital readouts was 0.17% and 0.21%, respectively, at the Full Width at Half Maximum of the registered {sup 60}Co 1332.5 keV gamma line.

  14. Rad-hard vertical JFET switch for the HV-MUX system of the ATLAS upgrade Inner Tracker

    CERN Document Server

    Fernandez-Martinez, Pablo; Flores, David; Hidalgo, Salvador; Quirion, David; Lynn, David

    2016-01-01

    This work presents a new silicon vertical JFET (V-JFET) device, based on the trenched 3D-detector technology developed at IMB-CNM, to be used as switches for the High-Voltage powering scheme of the ATLAS upgrade Inner Tracker. The optimization of the device characteristics is performed by 2D and 3D TCAD simulations. Special attention has been paid to the on-resistance and the switch-off and breakdown voltages to meet the specific requirements of the system. In addition, a set of parameter values has been extracted from the simulated curves to implement a SPICE model of the proposed V-JFET transistor. As these devices are expected to operate under very high radiation conditions during the whole experiment life-time, a study of the radiation damage effects and the expected degradation on the device performance is also presented at the end of the paper.

  15. SOI Fully complementary BI-JFET-MOS technology for analog-digital applications with vertical BJT's

    International Nuclear Information System (INIS)

    Delevoye, E.; Blanc, J.P.; Bonaime, J.; Pontcharra, J. de; Gautier, J.; Martin, F.; Truche, R.

    1993-01-01

    A silicon-on-insulator, fully complementary, Bi-JFET-MOS technology has been developed for realizing multi-megarad hardened mixed analog-digital circuits. The six different active components plus resistors and capacitors have been successfully integrated in a 25-mask process using SIMOX substrate and 1 μm thick epitaxial layer. Different constraints such as device compatibility, complexity not higher than BiCMOS technology and breakdown voltages suitable for analog applications have been considered. Several process splits have been realized and all the characteristics presented here have been measured on the same split. P + gate is used for PMOS transistor to get N and PMOST symmetrical characteristics. Both NPN and PNP vertical bipolar transistors with poly-emitters show f T > 5 GHz. 2-separated gate JFET's need no additional mask. (authors). 9 figs., 1 tab

  16. An improved PIN photodetector with integrated JFET on high-resistivity silicon

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Piemonte, Claudio; Boscardin, Maurizio; Gregori, Paolo; Zorzi, Nicola; Fazzi, Alberto; Pignatel, Giorgio U.

    2006-01-01

    We report on a PIN photodetector integrated with a Junction Field Effect Transistor (JFET) on a high-resistivity silicon substrate. Owing to a modified fabrication technology, the electrical and noise characteristics of the JFET transistor have been enhanced with respect to the previous versions of the device, allowing the performance to be significantly improved. In this paper, the main design and technological aspects relevant to the proposed structure are addressed and experimental results from the electrical characterization are discussed

  17. Noise characterization of silicon strip detectors-comparison of sensors with and without integrated jfet source-follower.

    CERN Document Server

    Giacomini, Gabriele

    Noise is often the main factor limiting the performance of detector systems. In this work a detailed study of the noise contributions in different types of silicon microstrip sensors is carried on. We investigate three sensors with double-sided readout fabricated by different suppliers for the ALICE experiment at the CERN LHC, in addition to detectors including an integrated JFET Source-Follower as a first signal conditioning stage. The latter have been designed as an attempt at improving the performance when very long strips, obtained by gangling together several sensors, are required. After a description of the strip sensors and of their operation, the “static” characterization measurements performed on them (current and capacitance versus voltage and/or frequency) are illustrated and interpreted. Numerical device simulation has been employed as an aid in interpreting some of the measurement results. The commonly used models for expressing the noise of the detector-amplifier system in terms of its relev...

  18. Single channel blind source separation based on ICA feature extraction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new technique is proposed to solve the blind source separation (BSS) given only a single channel observation. The basis functions and the density of the coefficients of source signals learned by ICA are used as the prior knowledge. Based on the learned prior information the learning rules of single channel BSS are presented by maximizing the joint log likelihood of the mixed sources to obtain source signals from single observation,in which the posterior density of the given measurements is maximized. The experimental results exhibit a successful separation performance for mixtures of speech and music signals.

  19. Galvanically Decoupled Current Source Modules for Multi-Channel Bioimpedance Measurement Systems

    Directory of Open Access Journals (Sweden)

    Roman Kusche

    2017-10-01

    Full Text Available Bioimpedance measurements have become a useful technique in the past several years in biomedical engineering. Especially, multi-channel measurements facilitate new imaging and patient monitoring techniques. While most instrumentation research has focused on signal acquisition and signal processing, this work proposes the design of an excitation current source module that can be easily implemented in existing or upcoming bioimpedance measurement systems. It is galvanically isolated to enable simultaneous multi-channel bioimpedance measurements with a very low channel-coupling. The system is based on a microcontroller in combination with a voltage-controlled current source circuit. It generates selectable sinusoidal excitation signals between 0.12 and 1.5 mA in a frequency range from 12 to 250 kHz, whereas the voltage compliance range is ±3.2 V. The coupling factor between two current sources, experimentally galvanically connected with each other, is measured to be less than −48 dB over the entire intended frequency range. Finally, suggestions for developments in the future are made.

  20. Low noise monolithic Si JFETs for operation in the 90-300K Range and in high radiation environments

    International Nuclear Information System (INIS)

    Radeka, V.; Citterio, M.; Rescia, S.; Manfredi, P.F.; Speziali, V.

    1994-12-01

    Development of low noise preamplifters for large ionization chambers with liquid argon (LAr) and liquid krypton (LKr) used in high energy physics experiments for measurement of energy of charged particles and photons requires die choice of a technology able to withstand the environment: a temperature of 90 K -120 K; an ionizing radiation dose of 1-2 Mrad; a neutron fluence of 0.5 -1.10 14 n/cm 2 . Silicon JFETs by virtue of their reliable noise behavior and their intrinsic radiation hardness appear to be very suitable devices for applications both at room and cryogenic temperatures. We describe the noise properties of JFET devices and a monolithic preamplifier suitable for amplification of charge and current signals

  1. Dynamical coupled channel approach to omega meson production

    Energy Technology Data Exchange (ETDEWEB)

    Mark Paris

    2007-09-10

    The dynamical coupled channel approach of Matsuyama, Sato, and Lee is used to study the $\\omega$--meson production induced by pions and photons scattering from the proton. The parameters of the model are fixed in a two-channel (\\omega N,\\pi N) calculation for the non-resonant and resonant contributions to the $T$ matrix by fitting the available unpolarized differential cross section data. The polarized photon beam asymmetry is predicted and compared to existing data.

  2. Schematic large-dimension coupled-channel study of strong inelastic excitations to high-lying states in colliding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, M. [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Nakano, M.; Yahiro, M.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    A mechanism of the strong inelastic excitation of colliding nuclei (e.g. deep inelastic heavy-ion collision) was studied in a schematic way based on a coupled channel (CC) framework. The purpose of this work is to see the gross behavior of the inelastic excitation strength versus epsilon (i.e. energy spectrum) for the assumed specific types of CC potentials between a large number of inelastic channels. Schematic large dimension CC calculation was considered rather than small-dimension CC calculation. The coupled N + 1 equations can be reduced to uncoupled N + 1 equations through the wellknown unitary transformation. An interesting case is that there exists strong channel independent coupling between any pair of the channels, all of which are almost degenerate in internal energy as compared with incoming c.m. energy. It was found that inelastic scattering hardly occurred while the collision was almost confined to the elastic component. The numerical calculation of S-matrix was carried out. Other cases, such as zero CC potential, the coupling between inelastic channel and entrance channel, and the case that the thickness of the coupling was changed, were investigated. As the results of the present study, it can be said that this CC coupling model may be useful for discussing continuum-continuum interactions in a breakup reaction by simulating the continuum states with many channels made discrete.

  3. LDGM Codes for Channel Coding and Joint Source-Channel Coding of Correlated Sources

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Frias

    2005-05-01

    Full Text Available We propose a coding scheme based on the use of systematic linear codes with low-density generator matrix (LDGM codes for channel coding and joint source-channel coding of multiterminal correlated binary sources. In both cases, the structures of the LDGM encoder and decoder are shown, and a concatenated scheme aimed at reducing the error floor is proposed. Several decoding possibilities are investigated, compared, and evaluated. For different types of noisy channels and correlation models, the resulting performance is very close to the theoretical limits.

  4. Joint source/channel coding of scalable video over noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, G.; Zakhor, A. [Department of Electrical Engineering and Computer Sciences University of California Berkeley, California94720 (United States)

    1997-01-01

    We propose an optimal bit allocation strategy for a joint source/channel video codec over noisy channel when the channel state is assumed to be known. Our approach is to partition source and channel coding bits in such a way that the expected distortion is minimized. The particular source coding algorithm we use is rate scalable and is based on 3D subband coding with multi-rate quantization. We show that using this strategy, transmission of video over very noisy channels still renders acceptable visual quality, and outperforms schemes that use equal error protection only. The flexibility of the algorithm also permits the bit allocation to be selected optimally when the channel state is in the form of a probability distribution instead of a deterministic state. {copyright} {ital 1997 American Institute of Physics.}

  5. Low-noise analog readout channel for SDD in X-ray spectrometry

    Science.gov (United States)

    Atkin, E.; Gusev, A.; Krivchenko, A.; Levin, V.; Malankin, E.; Normanov, D.; Rotin, A.; Sagdiev, I.; Samsonov, V.

    2016-01-01

    A low-noise analog readout channel optimized for operation with the Silicon Drift Detectors (SDDs) with built-in JFET is presented. The Charge Sensitive Amplifier (CSA) operates in a pulse reset mode using the reset diode built-in the SDD detector. The shaper is a 6th order semi-Gaussian filter with switchable discrete shaping times. The readout channel provides the Equivalent Noise Charge (ENC) of 12e- (simulation) and input dynamic range of 30 keV . The measured energy resolution at the 5,89 keV line of a 55Fe X-ray source is 336 eV (FWHM). The channel was prototyped via Europractice in the AMS 350 nm process as miniASIC. The simulation and first measurement results are presented in the paper.

  6. Dynamic analysis of multiple nuclear-coupled boiling channels based on a multi-point reactor model

    International Nuclear Information System (INIS)

    Lee, J.D.; Pan Chin

    2005-01-01

    This work investigates the non-linear dynamics and stabilities of a multiple nuclear-coupled boiling channel system based on a multi-point reactor model using the Galerkin nodal approximation method. The nodal approximation method for the multiple boiling channels developed by Lee and Pan [Lee, J.D., Pan, C., 1999. Dynamics of multiple parallel boiling channel systems with forced flows. Nucl. Eng. Des. 192, 31-44] is extended to address the two-phase flow dynamics in the present study. The multi-point reactor model, modified from Uehiro et al. [Uehiro, M., Rao, Y.F., Fukuda, K., 1996. Linear stability analysis on instabilities of in-phase and out-of-phase modes in boiling water reactors. J. Nucl. Sci. Technol. 33, 628-635], is employed to study a multiple-channel system with unequal steady-state neutron density distribution. Stability maps, non-linear dynamics and effects of major parameters on the multiple nuclear-coupled boiling channel system subject to a constant total flow rate are examined. This study finds that the void-reactivity feedback and neutron interactions among subcores are coupled and their competing effects may influence the system stability under different operating conditions. For those cases with strong neutron interaction conditions, by strengthening the void-reactivity feedback, the nuclear-coupled effect on the non-linear dynamics may induce two unstable oscillation modes, the supercritical Hopf bifurcation and the subcritical Hopf bifurcation. Moreover, for those cases with weak neutron interactions, by quadrupling the void-reactivity feedback coefficient, period-doubling and complex chaotic oscillations may appear in a three-channel system under some specific operating conditions. A unique type of complex chaotic attractor may evolve from the Rossler attractor because of the coupled channel-to-channel thermal-hydraulic and subcore-to-subcore neutron interactions. Such a complex chaotic attractor has the imbedding dimension of 5 and the

  7. First fabrication of a silicon vertical JFET for power distribution in high energy physics applications

    Science.gov (United States)

    Fernández-Martínez, Pablo; Flores, D.; Hidalgo, S.; Quirion, D.; Durà, R.; Ullán, M.

    2018-01-01

    A new vertical JFET transistor has been recently developed at the IMB-CNM, taking advantage of a deep-trenched 3D technology to achieve vertical conduction and low switch-off voltage. The silicon V-JFET transistors were mainly conceived to work as rad-hard protection switches for the renewed HV powering scheme (HV-MUX) of the ATLAS upgraded tracker. This work presents the features of the first batch of V-JFETs produced at the IMB-CNM clean room, together with the results of a full pre-irradiation characterization of the fabricated prototypes. Details of the technological process are provided and the outcome quality is also evaluated with the aid of reverse engineering techniques. Concerning the electrical performance of the prototypes, promising results were obtained, already meeting most of the HV-MUX specifications, both at room and below-zerotemperatures.

  8. Continuum level density of a coupled-channel system in the complex scaling method

    International Nuclear Information System (INIS)

    Suzuki, Ryusuke; Kato, Kiyoshi; Kruppa, Andras; Giraud, Bertrand G.

    2008-01-01

    We study the continuum level density (CLD) in the formalism of the complex scaling method (CSM) for coupled-channel systems. We apply the formalism to the 4 He=[ 3 H+p]+[ 3 He+n] coupled-channel cluster model where there are resonances at low energy. Numerical calculations of the CLD in the CSM with a finite number of L 2 basis functions are consistent with the exact result calculated from the S-matrix by solving coupled-channel equations. We also study channel densities. In this framework, the extended completeness relation (ECR) plays an important role. (author)

  9. Channel coupling in A(e,e N)B reactions

    CERN Document Server

    Kell, J

    1999-01-01

    The sensitivity of momentum distributions, recoil polarization observables, and response functions for nucleon knockout by polarized electron scattering to channel coupling in final-state interactions is investigated using a model in which both the distorting and the coupling potentials are constructed by folding density-dependent nucleon-nucleon effective interactions with nuclear transition densities. Elastic reorientation, inelastic scattering, and charge exchange are included for all possible couplings within the model space. Calculations for sup 1 sup 6 O are presented for 200 and 433 MeV ejectile energies, corresponding to proposed experiments at MAMI and TJNAF, and for sup 1 sup 2 C at 70 and 270 MeV, corresponding to experiments at NIKHEF and MIT-Bates. The relative importance of charge exchange decreases as the ejectile energy increases, but remains significant for 200 MeV. Both proton and neutron knockout cross sections for large recoil momenta, p sub m greater than 300 MeV/c, are substantially affe...

  10. Optimization of Training Signal Transmission for Estimating MIMO Channel under Antenna Mutual Coupling Conditions

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2010-01-01

    Full Text Available This paper reports investigations on the effect of antenna mutual coupling on performance of training-based Multiple-Input Multiple-Output (MIMO channel estimation. The influence of mutual coupling is assessed for two training-based channel estimation methods, Scaled Least Square (SLS and Minimum Mean Square Error (MMSE. It is shown that the accuracy of MIMO channel estimation is governed by the sum of eigenvalues of channel correlation matrix which in turn is influenced by the mutual coupling in transmitting and receiving array antennas. A water-filling-based procedure is proposed to optimize the training signal transmission to minimize the MIMO channel estimation errors.

  11. First-Order SPICE Modeling of Extreme-Temperature 4H-SiC JFET Integrated Circuits

    Science.gov (United States)

    Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu

    2016-01-01

    A separate submission to this conference reports that 4H-SiC Junction Field Effect Transistor (JFET) digital and analog Integrated Circuits (ICs) with two levels of metal interconnect have reproducibly demonstrated electrical operation at 500 C in excess of 1000 hours. While this progress expands the complexity and durability envelope of high temperature ICs, one important area for further technology maturation is the development of reasonably accurate and accessible computer-aided modeling and simulation tools for circuit design of these ICs. Towards this end, we report on development and verification of 25 C to 500 C SPICE simulation models of first order accuracy for this extreme-temperature durable 4H-SiC JFET IC technology. For maximum availability, the JFET IC modeling is implemented using the baseline-version SPICE NMOS LEVEL 1 model that is common to other variations of SPICE software and importantly includes the body-bias effect. The first-order accuracy of these device models is verified by direct comparison with measured experimental device characteristics.

  12. K Lambda and K Sigma photoproduction in a coupled-channels framework

    NARCIS (Netherlands)

    Usov, A; Scholten, O

    A coupled-channels analysis, based on the K-matrix approach, is presented for photo-induced kaon production. It is shown that channel coupling effects are large and should not be ignored. The importance of contact terms in the analysis, associated with short-range correlations, is pointed out. The

  13. LDPC-based iterative joint source-channel decoding for JPEG2000.

    Science.gov (United States)

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  14. Blind Channel Equalization with Colored Source Based on Constrained Optimization Methods

    Directory of Open Access Journals (Sweden)

    Dayong Zhou

    2008-12-01

    Full Text Available Tsatsanis and Xu have applied the constrained minimum output variance (CMOV principle to directly blind equalize a linear channel—a technique that has proven effective with white inputs. It is generally assumed in the literature that their CMOV method can also effectively equalize a linear channel with a colored source. In this paper, we prove that colored inputs will cause the equalizer to incorrectly converge due to inadequate constraints. We also introduce a new blind channel equalizer algorithm that is based on the CMOV principle, but with a different constraint that will correctly handle colored sources. Our proposed algorithm works for channels with either white or colored inputs and performs equivalently to the trained minimum mean-square error (MMSE equalizer under high SNR. Thus, our proposed algorithm may be regarded as an extension of the CMOV algorithm proposed by Tsatsanis and Xu. We also introduce several methods to improve the performance of our introduced algorithm in the low SNR condition. Simulation results show the superior performance of our proposed methods.

  15. Black Phosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and Junction Field-Effect Transistor.

    Science.gov (United States)

    Jeon, Pyo Jin; Lee, Young Tack; Lim, June Yeong; Kim, Jin Sung; Hwang, Do Kyung; Im, Seongil

    2016-02-10

    Black phosphorus (BP) nanosheet is two-dimensional (2D) semiconductor with distinct band gap and attracting recent attention from researches because it has some similarity to gapless 2D semiconductor graphene in the following two aspects: single element (P) for its composition and quite high mobilities depending on its fabrication conditions. Apart from several electronic applications reported with BP nanosheet, here we report for the first time BP nanosheet-ZnO nanowire 2D-1D heterojunction applications for p-n diodes and BP-gated junction field effect transistors (JFETs) with n-ZnO channel on glass. For these nanodevices, we take advantages of the mechanical flexibility of p-type conducting of BP and van der Waals junction interface between BP and ZnO. As a result, our BP-ZnO nanodimension p-n diode displays a high ON/OFF ratio of ∼10(4) in static rectification and shows kilohertz dynamic rectification as well while ZnO nanowire channel JFET operations are nicely demonstrated by BP gate switching in both electrostatics and kilohertz dynamics.

  16. SPICE-aided modeling of high-voltage silicon carbide JFETs

    International Nuclear Information System (INIS)

    Bargieł, Kamil; Zarębski, Janusz; Bisewski, Damian

    2016-01-01

    The paper presents the static characteristics of the SiC transistor SJEP170R550 offered by SemiSouth obtained from simulations using JFET model built-in in PSPICE. Values of the model parameters were estimated using MODEL EDITOR, as well as procedure described in the literature. Simulation results were verified experimentally by comparison of results of measurements

  17. Positron energy distributions from a hybrid positron source based on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.; Mahdipour, A.; Dabagov, S.B.; Wagner, W.

    2013-01-01

    A hybrid positron source which is based on the generation of channeling radiation by relativistic electrons channeled along different crystallographic planes and axes of a tungsten single crystal and subsequent conversion of radiation into e + e − -pairs in an amorphous tungsten target is described. The photon spectra of channeling radiation are calculated using the Doyle–Turner approximation for the continuum potentials and classical equations of motion for channeled particles to obtain their trajectories, velocities and accelerations. The spectral-angular distributions of channeling radiation are found applying classical electrodynamics. Finally, the conversion of radiation into e + e − -pairs and the energy distributions of positrons are simulated using the GEANT4 package

  18. Switching Performance Evaluation of Commercial SiC Power Devices (SiC JFET and SiC MOSFET) in Relation to the Gate Driver Complexity

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    and JFETs. The recent introduction of SiC MOSFET has proved that it is possible to have highly performing SiC devices with a minimum gate driver complexity; this made SiC power devices even more attractive despite their device cost. This paper presents an analysis based on experimental results...... of the switching losses of various commercially available Si and SiC power devices rated at 1200 V (Si IGBTs, SiC JFETs and SiC MOSFETs). The comparison evaluates the reduction of the switching losses which is achievable with the introduction of SiC power devices; this includes analysis and considerations...

  19. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  20. Processing and Characterization of Thousand-Hour 500 C Durable 4H-SiC JFET Integrated Circuits

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2016-01-01

    This work reports fabrication and testing of integrated circuits (ICs) with two levels of interconnect that consistently achieve greater than 1000 hours of stable electrical operation at 500 C in air ambient. These ICs are based on 4H-SiC junction field effect transistor (JFET) technology that integrates hafnium ohmic contacts with TaSi2 interconnects and SiO2 and Si3N4 dielectric layers over 1-m scale vertical topology. Following initial burn-in, important circuit parameters remain stable for more than 1000 hours of 500 C operational testing. These results advance the technology foundation for realizing long-term durable 500 C ICs with increased functional capability for sensing and control combustion engine, planetary, deep-well drilling, and other harsh-environment applications.

  1. Coupling of laser energy into plasma channels

    International Nuclear Information System (INIS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-01-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length

  2. Experimental Durability Testing of 4H SiC JFET Integrated Circuit Technology at 727 C

    Science.gov (United States)

    Spry, David; Neudeck, Phil; Chen, Liangyu; Chang, Carl; Lukco, Dorothy; Beheim, Glenn M

    2016-01-01

    We have reported SiC integrated circuits (IC's) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 C [1, 2]. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 C [3]. However, this thermal ramp was not ended until a peak temperature of 880 C (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology. Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 C. In one test, the temperature was ramped and then held at 727 C, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 C before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 C (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid was used, and logic circuit operation was demonstrated for 143.5 hours at 700 C.

  3. 78 FR 29386 - Government-Owned Inventions, Available for Licensing

    Science.gov (United States)

    2013-05-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-053)] Government-Owned Inventions, Available for Licensing AGENCY: National Aeronautics and Space Administration. ACTION: Notice of... N Channel JFET Based Digital Logic Gate Structure Using Resistive Level Shifters and Having Direct...

  4. Effect of graded InGaN drain region and 'In' fraction in InGaN channel on performances of InGaN tunnel field-effect transistor

    Science.gov (United States)

    Duan, Xiaoling; Zhang, Jincheng; Wang, Shulong; Quan, Rudai; Hao, Yue

    2017-12-01

    An InGaN-based graded drain region tunnel field-effect transistor (GD-TFET) is proposed to suppress the ambipolar behavior. The simulation results with the trade-off between on-state current (Ion) and ambipolar current (Iambipolar) show decreased Iambipolar (1.9 × 10-14 A/μm) in comparison with that of conventional TFETs (2.0 × 10-8 A/μm). Furthermore, GD-TFET with high 'In' fraction InxGa1-xN source-side channel (SC- GD-TFET) is explored and exhibits 5.3 times Ion improvement and 60% average subthreshold swing (SSavg) reduction in comparison with GD-TFET by adjusting 'In' fraction in the InxGa1-xN source-side channel. The improvement is attributed to the confinement of BTBT in the source-side channel by the heterojunction. And then, the optimum value for source-side channel length (Lsc) is researched by DC performances results, which shows it falls into the range between Lsc = 10 nm and 20 nm.

  5. Minimally coupled N-particle scattering integral equations

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1977-01-01

    A concise formalism is developed which permits the efficient representation and generalization of several known techniques for deriving connected-kernel N-particle scattering integral equations. The methods of Kouri, Levin, and Tobocman and Bencze and Redish which lead to minimally coupled integral equations are of special interest. The introduction of channel coupling arrays is characterized in a general manner and the common base of this technique and that of the so-called channel coupling scheme is clarified. It is found that in the Bencze-Redish formalism a particular coupling array has a crucial function but one different from that of the arrays employed by Kouri, Levin, and Tobocman. The apparent dependence of the proof of the minimality of the Bencze-Redish integral equations upon the form of the inhomogeneous term in these equations is eliminated. This is achieved by an investigation of the full (nonminimal) Bencze-Redish kernel. It is shown that the second power of this operator is connected, a result which is needed for the full applicability of the Bencze-Redish formalism. This is used to establish the relationship between the existence of solutions to the homogeneous form of the minimal equations and eigenvalues of the full Bencze-Redish kernel

  6. Multi-reaction-channel fitting calculations in a coupled-channel model : Photoinduced strangeness production

    NARCIS (Netherlands)

    Scholten, O.; Usov, A.

    To describe photo- and meson-induced reactions on the nucleon, one is faced with a rather extensive coupled-channel problem Ignoring the effects of channel coupling, as one would do in describing a certain reaction at the tree level; invariably creates a large inconsistency between the different

  7. Single-channel source separation using non-negative matrix factorization

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard

    -determined and its solution relies on making appropriate assumptions concerning the sources. This dissertation is concerned with model-based probabilistic single-channel source separation based on non-negative matrix factorization, and consists of two parts: i) three introductory chapters and ii) five published...... papers. The first part introduces the single-channel source separation problem as well as non-negative matrix factorization and provides a comprehensive review of existing approaches, applications, and practical algorithms. This serves to provide context for the second part, the published papers......, in which a number of methods for single-channel source separation based on non-negative matrix factorization are presented. In the papers, the methods are applied to separating audio signals such as speech and musical instruments and separating different types of tissue in chemical shift imaging....

  8. Dynamical coupled-channel analysis at EBAC. (Excited Baryon Analysis Center)

    International Nuclear Information System (INIS)

    Lee, T.-S.H.; Thomas Jefferson National Accelerator Facility, Newport News, VA

    2008-01-01

    In this contribution, the author reports on the dynamical coupled-channels analysis being pursued at the Excited Baryon Analysis Center (EBAC) of Jefferson Laboratory. EBAC was established in January 2006. Its objective is to extract the parameters associated with the excited states (N*) of the nucleon from the world data of meson production reactions, and to also develop theoretical interpretations of the extracted N* parameters

  9. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  10. Static characteristics and short channel effect in enhancement-mode AlN/GaN/AlN N-polar MISFET with self-aligned source/drain regions

    International Nuclear Information System (INIS)

    Li Bin; Wei Lan; Wen Cai

    2014-01-01

    This paper aims to simulate the I–V static characteristic of the enhancement-mode (E-mode) N-polar GaN metal—insulator—semiconductor field effect transistor (MISFET) with self-aligned source/drain regions. Firstly, with SILVACO TCAD device simulation, the drain—source current as a function of the gate—source voltage is calculated and the dependence of the drain—source current on the drain—source voltage in the case of different gate—source voltages for the device with a 0.62 μm gate length is investigated. Secondly, a comparison is made with the experimental report. Lastly, the transfer characteristic with different gate lengths and different buffer layers has been performed. The results show that the simulation is in accord with the experiment at the gate length of 0.62 μm and the short channel effect becomes pronounced as gate length decreases. The E-mode will not be held below a 100 nm gate length unless both transversal scaling and vertical scaling are being carried out simultaneously. (semiconductor devices)

  11. Cryogenic readout integrated circuits for submillimeter-wave camera

    International Nuclear Information System (INIS)

    Nagata, H.; Kobayashi, J.; Matsuo, H.; Akiba, M.; Fujiwara, M.

    2006-01-01

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6μV/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit

  12. Cryogenic readout integrated circuits for submillimeter-wave camera

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan) and National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)]. E-mail: hirohisa.nagata@nao.ac.jp; Kobayashi, J. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Matsuo, H. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Akiba, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan); Fujiwara, M. [National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795 (Japan)

    2006-04-15

    The development of cryogenic readout circuits for Superconducting Tunneling Junction (Sj) direct detectors for submillimeter wave is presented. A SONY n-channel depletion-mode GaAs Junction Field Effect Transistor (JFET) is a candidate for circuit elements of the preamplifier. We measured electrical characteristics of the GaAs JFETs in the temperature range between 0.3 and 4.2K, and found that the GaAs JFETs work with low power consumption of a few microwatts, and show good current-voltage characteristics without cryogenic anomalies such as kink phenomena or hysteresis behaviors. Furthermore, measurements at 0.3K show that the input referred noise is as low as 0.6{mu}V/Hz at 1Hz. Based on these results and noise calculations, we estimate that a Capacitive Transimpedance Amplifier with the GaAs JFETs will have low noise and STJ detectors will operate below background noise limit.

  13. Source and Channel Choices in Business-to-Government Service Interactions: A Vignette Study

    NARCIS (Netherlands)

    van den Boer, Yvon; Pieterson, Willem Jan; Arendsen, R.; de Groot, Manon; Janssen, Marijn; Scholl, Hans Jochen; Wimmer, Maria A.; Bannister, Frank

    2014-01-01

    To deal with tax matters, businesses have various potential sources (e.g., Tax Office, advisor, industry organization, friends/family) in their environment. Those sources can be coupled with an increasingly wide variety of channels (e.g., telephone, face-to-face, website, e-mail) through which

  14. Experimental Durability Testing of 4H SiC JFET Integrated Circuit Technology at 727 Degrees Centigrade

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Chang, Carl W.; Lukco, Dorothy; Beheim, Glenn M.

    2016-01-01

    We have reported SiC integrated circuits (ICs) with two levels of metal interconnect that have demonstrated prolonged operation for thousands of hours at their intended peak ambient operational temperature of 500 degrees Centigrade. However, it is recognized that testing of semiconductor microelectronics at temperatures above their designed operating envelope is vital to qualification. Towards this end, we previously reported operation of a 4H-SiC JFET IC ring oscillator on an initial fast thermal ramp test through 727 degrees Centigrade. However, this thermal ramp was not ended until a peak temperature of 880 degrees Centigrade (well beyond failure) was attained. Further experiments are necessary to better understand failure mechanisms and upper temperature limit of this extreme-temperature capable 4H-SiC IC technology.Here we report on additional experimental testing of custom-packaged 4H-SiC JFET IC devices at temperatures above 500 degrees Centigrade. In one test, the temperature was ramped and then held at 727 degrees Centigrade, and the devices were periodically measured until electrical failure was observed. A 4H-SiC JFET on this chip electrically functioned with little change for around 25 hours at 727 degrees Centigrade before rapid increases in device resistance caused failure. In a second test, devices from our next generation 4H-SiC JFET ICs were ramped up and then held at 700 degrees Centigrade (which is below the maximum deposition temperature of the dielectrics). Three ring oscillators functioned for 8 hours at this temperature before degradation. In a third experiment, an alternative die attach of gold paste and package lid was used, and logic circuit operation was demonstrated for 143.5 hours at 700 degrees Centigrade.

  15. Duality for heavy-quark systems. II. Coupled channels

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1981-01-01

    We derive the duality relation approx. = which relates a suitable energy average of the physical coupled-channel cross section sigma=sigma(e + e - →hadrons) to the same average of the cross section sigma/sub bound/ for the production of bound qq-bar states in a single-channel confining potential. The average is equated by our previous work to the average cross section for production of a qq-bar pair moving freely in the nonconfining color Coulomb potential. Thus, approx. = . The corrections to these duality relations are calculable. We give an exactly solvable coupled-two-channel model and use it to verify duality for both weak and strong coupling

  16. Super-pixel extraction based on multi-channel pulse coupled neural network

    Science.gov (United States)

    Xu, GuangZhu; Hu, Song; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun

    2018-04-01

    Super-pixel extraction techniques group pixels to form over-segmented image blocks according to the similarity among pixels. Compared with the traditional pixel-based methods, the image descripting method based on super-pixel has advantages of less calculation, being easy to perceive, and has been widely used in image processing and computer vision applications. Pulse coupled neural network (PCNN) is a biologically inspired model, which stems from the phenomenon of synchronous pulse release in the visual cortex of cats. Each PCNN neuron can correspond to a pixel of an input image, and the dynamic firing pattern of each neuron contains both the pixel feature information and its context spatial structural information. In this paper, a new color super-pixel extraction algorithm based on multi-channel pulse coupled neural network (MPCNN) was proposed. The algorithm adopted the block dividing idea of SLIC algorithm, and the image was divided into blocks with same size first. Then, for each image block, the adjacent pixels of each seed with similar color were classified as a group, named a super-pixel. At last, post-processing was adopted for those pixels or pixel blocks which had not been grouped. Experiments show that the proposed method can adjust the number of superpixel and segmentation precision by setting parameters, and has good potential for super-pixel extraction.

  17. The Influence of eHealth Literacy on Perceived Trust in Online Health Communication Channels and Sources.

    Science.gov (United States)

    Paige, Samantha R; Krieger, Janice L; Stellefson, Michael L

    2017-01-01

    Disparities in online health information accessibility are partially due to varying levels of eHealth literacy and perceived trust. This study examined the relationship between eHealth literacy and perceived trust in online health communication channels and sources among diverse sociodemographic groups. A stratified sample of Black/African Americans (n = 402) and Caucasians (n = 409) completed a Web-based survey that measured eHealth literacy and perceived trustworthiness of online health communication channels and information sources. eHealth literacy positively predicted perceived trust in online health communication channels and sources, but disparities existed by sociodemographic factors. Segmenting audiences according to eHealth literacy level provides a detailed understanding of how perceived trust in discrete online health communication channels and information sources varies among diverse audiences. Black/African Americans with low eHealth literacy had high perceived trust in YouTube and Twitter, whereas Black/African Americans with high eHealth literacy had high perceived trust in online government and religious organizations. Older adults with low eHealth literacy had high perceived trust in Facebook but low perceived trust in online support groups. Researchers and practitioners should consider the sociodemographics and eHealth literacy level of an intended audience when tailoring information through trustworthy online health communication channels and information sources.

  18. Investigating the relationship between watching satellite channels and intimacy and marital satisfaction of couples in Isfahan, Iran, in 2014.

    Science.gov (United States)

    Babaie, Zohre; Keshvari, Mahrokh; Zamani, Ahmadreza

    2016-01-01

    In the age of communication and media that families are rapidly driven towards using satellite channels and other media, considering family health in this regard is essential. A determinant of health is marital satisfaction. The aim of this study was to investigate the relationship between watching satellite channels and intimacy and marital satisfaction in Isfahan, Iran. This cross-sectional and correlational study was conducted on one group of 480 couples ( n = 960) participating from 8 health-treatment centers in Isfahan. Multi-stage cluster sampling was used in this study. Inclusion criteria included at least 2 years of marriage. After completion of Bagarozzi's Marital Intimacy Questionnaire and ENRICH Marital Inventory, the couples were divided into two groups based on watching satellite networks. Data were analyzed using SPSS 18. There was a significant relationship between intimacy and marital satisfaction in both viewers and non-viewers of satellite channels ( P satellite viewing group was 22.4 minutes and in non-viewers group was 47.95 min. In addition, the duration of interaction had a significant relationship with marital satisfaction and intimacy ( P satellite channels reduced the intimacy and marital satisfaction of the couples, and duration of interaction among the couples.

  19. ΛN-ΣN interaction with isobar coupling and six-quark resonances

    International Nuclear Information System (INIS)

    Greenberg, W.R.; Lomon, E.L.

    1993-01-01

    The long-range ΛN-ΣN interaction is modeled by a configuration-space meson-exchange potential matrix coupling to channels with Δ and Σ(1385) isobars. An inner boundary condition, based on R-matrix theory, replaces form factors for short-range effects and includes the effects of free quark configurations. An excellent fit is obtained to the available data, with only the energy-independent boundary conditions as free parameters. The effect of isobar thresholds is shown to be substantial in several partial waves and is crucial to the understanding of the higher-energy ΛN elastic scattering data. The positions and widths of [q(1s 1/2 )] 5 s(1s 1/2 ) quark exotics are predicted

  20. Coupling of channel thermalhydraulics and fuel behaviour in ACR-1000 safety analyses

    International Nuclear Information System (INIS)

    Huang, F.L.; Lei, Q.M.; Zhu, W.; Bilanovic, Z.

    2008-01-01

    Channel thermalhydraulics and fuel thermal-mechanical behaviour are interlinked. This paper describes a channel thermalhydraulics and fuel behaviour coupling methodology that has been used in ACR-1000 safety analyses. The coupling is done for all 12 fuel bundles in a fuel channel using the channel thermalhydraulics code CATHENA MOD-3.5d/Rev 2 and the transient fuel behaviour code ELOCA 2.2. The coupling approach can be used for every fuel element or every group of fuel elements in the channel. Test cases are presented where a total of 108 fuel element models are set up to allow a full coupling between channel thermalhydraulics and detailed fuel analysis for a channel containing a string of 12 fuel bundles. An additional advantage of this coupling approach is that there is no need for a separate detailed fuel analysis because the coupling analysis, once done, provides detailed calculations for the fuel channel (fuel bundles, pressure tube, and calandria tube) as well as all the fuel elements (or element groups) in the channel. (author)

  1. DC feedback for wide band frequency fixed current source

    Directory of Open Access Journals (Sweden)

    Aoday Hashim Mohamad Al-Rawi

    2013-03-01

    Full Text Available Alternating current sources are mainly used in bioelectrical impedance devices. Nowadays 50 – 100 kHz bioelectrical impedance devices are commonly used for body composition analysis. High frequency bioelectrical impedance analysis devices are mostly used in bioimpedance tomography and blood analysis. High speed op-amps and voltage comparators are used in this circuit. Direct current feedback is used to prevent delay. An N-Channel J-FET transistor was used to establish the voltage controlled gain amplifier (VCG. A sine wave signal has been applied as input voltage. The value of this signal should be constant in 170 mV rms to keep the output current in about 1 mA rms. Four frequencies; 100 kHz, 1 MHz, 2 MHz and 3.2 MHz were applied to the circuit and the current was measured for different load resistances. The results showed that the current was stable for changes in the resistor load, bouncing around an average point as a result of bouncing DC feedback.

  2. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly; Pettersson, Gustav M.; Kostina, Victoria; Hassibi, Babak

    2017-01-01

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  3. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly

    2017-01-05

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel\\'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  4. Techniques for heavy-ion coupled-channels calculations. I. Long-range Coulomb coupling

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.; Macfarlane, M.H.; Pieper, S.C.

    1980-01-01

    Direct-reaction calculations for heavy ions require special computational techniques that take advantage of the physical peculiarities of heavy-ion systems. This paper is the first of a series on quantum-mechanical coupled-channels calculations for heavy ions. It deals with the problems posed by the long range of the Coulomb coupling interaction. Our approach is to use the Alder-Pauli factorization whereby the channel wave functions are expressed as products of Coulomb functions and modulating amplitudes. The equations for the modulating amplitudes are used to integrate inwards from infinity to a nuclear matching radius ( approx. = 20 fm). To adequate accuracy, the equations for the amplitudes can be reduced to first order and solved in first Born approximation. The use of the Born approximation leads to rapid recursion relations for the solutions of the Alder-Pauli equations and hence to a great reduction in computational labor. The resulting coupled-channels Coulomb functions can then be matched in the usual way to solutions of the coupled radial equations in the interior region of r space. Numerical studies demonstrate the reliability of the various techniques introduced

  5. Comparison between the effects of positive noncatastrophic HMB ESD stress in n-channel and p-channel power MOSFET's

    Science.gov (United States)

    Zupac, Dragan; Kosier, Steven L.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Baum, Keith W.

    1991-10-01

    The effect of noncatastrophic positive human body model (HBM) electrostatic discharge (ESD) stress on n-channel power MOSFETs is radically different from that on p-channel MOSFETs. In n-channel transistors, the stress causes negative shifts of the current-voltage characteristics indicative of positive charge trapping in the gate oxide. In p-channel transistors, the stress increases the drain-to-source leakage current, probably due to localized avalanche electron injection from the p-doped drain.

  6. A unitary approach to the coupling between the NN and πNN channels

    International Nuclear Information System (INIS)

    Blankleider, B.

    1980-11-01

    Some basic properties of the πNN system, in particular its coupling to the NN channel, are investigated. A set of linear integral equations that couple the N-N to the π-d channel, and satisfy two- and three-body unitarity is derived. By including the π-N amplitude in the P 11 channel, and retaining certain disconnected diagrams, it is found that the propagators for the nucleons, and form factors for the vertices, become dressed without changing the basic structure of the equations. For the numerical solution relativistic kinematics for the pion and non-relativistic kinematics for the nucleons are used. There is uncertainty about the importance of real pion absorption in the π-d elastic scattering reaction. Although the effect of absorption can be very large, its influence is cancelled to a large extent by the further inclusion of P 11 rescattering. The inclusion of absorption signnificantly lowers the dips in the π-d differential cross sections at higher energies. The model is able to reproduce the sole experimental value of the tensor polarization t 20 at 180 deg. so far available. Numerical results for the reaction NN→πd are in excellent agreement with the differential cross sections at all but the very high energies

  7. Coupled-channel analysis for heavy-ion scattering

    International Nuclear Information System (INIS)

    Kim, Byung-Taik.

    1978-01-01

    A method is given to carry out much faster coupled-channel (CC) calculations including the Coulomb excitation. For this purpose, two approximation techniques were used, namely, the WKB approximation of Alder and Pauli, in handling the effects of Coulomb excitation, and the Pade approximation for handling the large partial wave contribution. The formulation of CC calculations based on these two approximations is briefly discussed and some results of numerical calculations are shown for 16 O scattering with 152 Sm at 72 MeV

  8. SiC JFET Cascode Loss Dependency on the MOSFET Output Capacitance and Performance Comparison with Trench IGBTs

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    output capacitance on the switching performance of the SiC Cascode connection in terms of switching energy loss, dV/dt and dI/dt stresses. The Cascode connection switching performances are compared with the switching performance latest Trench IGBTs. The analysis is based on a set of several laboratory...... measurements and data post-processing in order to properly characterize the devices and quantify whether the SiC JFET Cascode connection can provide good performances with a simple MOSFET gate driver....

  9. Analysis of neutron cross sections using the coupled-channel theory

    International Nuclear Information System (INIS)

    Tanaka, Shigeya

    1975-01-01

    Fast neutron total and scattering cross sections calculated with the coupled-channel theory and the spherical optical model are compared with experimental data. The optical-potential parameters used in both the calculations were obtained from comparison of calculations with scattering data for 209 Bi. The calculations for total cross sections were made for thirty-five nuclides from 23 Na to 239 Pu in the energy range of 0.25 to 15 MeV, and good results were obtained with the coupled-channel calculations. The comparisons of the calculations with the elastic data for about twenty nuclides were made at incident energies of 8 and 14 MeV. In general, the coupled-channel calculations at 8 MeV have given better agreements with the experimental data than the spherical optical-model calculations. At 14 MeV, differences between both the calculations were small. The analysis was also made for the elastic and inelastic scattering by several nuclei such as Fe, Ni, 120 Sn, Pu in the low energy region, and good results have been given by the coupled-channel calculations. Thus, it is demonstrated that the coupled-channel calculations with one set of the optical parameters well reproduce the total and scattering cross sections over a wide energy and mass region. (auth.)

  10. Single- and coupled-channel radial inverse scattering with supersymmetric transformations

    International Nuclear Information System (INIS)

    Baye, Daniel; Sparenberg, Jean-Marc; Pupasov-Maksimov, Andrey M; Samsonov, Boris F

    2014-01-01

    The present status of the three-dimensional inverse-scattering method with supersymmetric transformations is reviewed for the coupled-channel case. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete, efficient and elegant solution to the inverse-scattering problem for the radial Schrödinger equation with short-range interactions. A special emphasis is put on the differences between conservative and non-conservative transformations, i.e. transformations that do or do not conserve the behaviour of solutions of the radial Schrödinger equation at the origin. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron–proton triplet eigenphase shifts for the S- and D-waves. We then summarize and extend our previous works on the coupled-channel case, i.e. on systems of coupled radial Schrödinger equations, and stress remaining difficulties and open questions of this problem by putting it in perspective with the single-channel case. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the important difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations in the two-channel case are studied and shown to lead to practical algorithms for inversion. A convenient particular technique where the mixing parameter can be fitted without modifying the eigenphases is developed with iterations of pairs of conjugate transformations. This technique is applied to the neutron–proton triplet S–D scattering matrix, for which exactly-solvable matrix potential models are constructed

  11. Asymptotic analysis of the average, steady, isotherml flow in coupled, parallel channels

    International Nuclear Information System (INIS)

    Lund, K.O.

    1976-01-01

    The conservation equations of mass and momentum are derived for the average flow of gases in coupled, parallel channels, or rod bundles. In the case of gas-cooled rod bundles the pitch of the rods is relatively large so the flows in the channels are strongly coupled. From this observation a perturbation parameter is derived and the descriptive equations are scaled using this parameter, which represents the ratio of the axial flow area to the transverse flow area, and which is of the order of 10 -3 in current gas-cooled fast breeder reactor designs. By expanding the velocities into perturbation series the equations for two channels are solved as an initial value problem, and the results compared to a finite difference solution of the same problem. The N-channel problem is solved to the lowest order as a two-point boundary value problem with the pressures specified at the inlet and the outlet. It is concluded from the study that asymptotic methods are effective in solving the flow problems of rod bundles; however, further work is required to evaluate the possible computational advantages of the methods

  12. Channel coupling in heavy quarkonia: Energy levels, mixing, widths, and new states

    International Nuclear Information System (INIS)

    Danilkin, I. V.; Simonov, Yu. A.

    2010-01-01

    The mechanism of channel coupling via decay products is used to study energy shifts, level mixing as well as the possibility of new near-threshold resonances in cc, bb systems. The Weinberg eigenvalue method is formulated in the multichannel problems, which allows one to describe coupled-channel resonances and wave functions in a unitary way, and to predict new states due to channel coupling. Realistic wave functions for all single-channel states and decay matrix elements computed earlier are exploited, and no new fitting parameters are involved. Examples of level shifts, widths, and mixings are presented; the dynamical origin of X(3872) and the destiny of the single-channel 2 3 P 1 (cc) state are clarified. As a result a sharp and narrow peak in the state with quantum numbers J PC =1 ++ is found at 3.872 GeV, while the single-channel resonance originally around 3.940 GeV becomes increasingly broad and disappears with growing coupling to open channels.

  13. A finite range coupled channel Born approximation code

    International Nuclear Information System (INIS)

    Nagel, P.; Koshel, R.D.

    1978-01-01

    The computer code OUKID calculates differential cross sections for direct transfer nuclear reactions in which multistep processes, arising from strongly coupled inelastic states in both the target and residual nuclei, are possible. The code is designed for heavy ion reactions where full finite range and recoil effects are important. Distorted wave functions for the elastic and inelastic scattering are calculated by solving sets of coupled differential equations using a Matrix Numerov integration procedure. These wave functions are then expanded into bases of spherical Bessel functions by the plane-wave expansion method. This approach allows the six-dimensional integrals for the transition amplitude to be reduced to products of two one-dimensional integrals. Thus, the inelastic scattering is treated in a coupled channel formalism while the transfer process is treated in a finite range born approximation formalism. (Auth.)

  14. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    Science.gov (United States)

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  15. Minimal coupling schemes in N-body reaction theory

    International Nuclear Information System (INIS)

    Picklesimer, A.; Tandy, P.C.; Thaler, R.M.

    1982-01-01

    A new derivation of the N-body equations of Bencze, Redish, and Sloan is obtained through the use of Watson-type multiple scattering techniques. The derivation establishes an intimate connection between these partition-labeled N-body equations and the particle-labeled Rosenberg equations. This result yields new insight into the implicit role of channel coupling in, and the minimal dimensionality of, the partition-labeled equations

  16. Novel attributes of AlGaN/AlN/GaN/SiC HEMTs with the multiple indented channel

    Science.gov (United States)

    Orouji, Ali A.; Ghaffari, Majid

    2015-11-01

    In this paper, a high performance AlGaN/AlN/GaN/SiC High Electron Mobility Transistor (HEMT) with the multiple indented channel (MIC-HEMT) is proposed. The main focus of the proposed structure is based on reduction of the space around the gate, stop of the spread of the depletion region around the source-drain, and decrement of the thickness of the channel between the gate and drain. Therefore, the breakdown voltage increases, meanwhile the elimination of the gate depletion layer extension to source/drain decreases the gate-source and gate-drain capacitances. The optimized results reveal that the breakdown voltage and the drain saturation current increase about 178% and 46% compared with a conventional HEMT (C-HEMT), respectively. Therefore, the maximum output power density is improved by factor 4.1 in comparison with conventional one. Also, the cut-off frequency of 25.2 GHz and the maximum oscillation frequency of 92.1 GHz for the MIC-HEMT are obtained compared to 13 GHz and 43 GHz for that of the C-HEMT and the minimum figure noise decreased consequently of reducing the gate-drain and gate-source capacitances by about 42% and 40%, respectively. The proposed MIC-HEMT shows a maximum stable gain (MSG) exceeding 24.1 dB at 3.1 GHz which the greatest gain is yet reported for HEMTs, showing the potential of this device for high power RF applications.

  17. Progressive Image Transmission Based on Joint Source-Channel Decoding Using Adaptive Sum-Product Algorithm

    Directory of Open Access Journals (Sweden)

    David G. Daut

    2007-03-01

    Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.

  18. Progressive Image Transmission Based on Joint Source-Channel Decoding Using Adaptive Sum-Product Algorithm

    Directory of Open Access Journals (Sweden)

    Liu Weiliang

    2007-01-01

    Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.

  19. Investigation Of Information Sources And Communication Channels ...

    African Journals Online (AJOL)

    Investigation Of Information Sources And Communication Channels In Ipm Rice ... the information accessibility of farmer groups seems as empowerment strategy. ... information sources and communication channels, in order of importance, ...

  20. On-the-energy-shell approximation for the heavy ion couple-channels problems

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hussein, M.S.

    Starting with the coupled channels equations describing multiple Coulomb excitations in heavy ion collisions an approximation scheme is developed based on replacing the channel Green's functions by their on-the-energy shell forms, which permits an exact analytic solution for the scattering matrix. The trivially equivalent Coulomb polarization potential valid for strong coupling and small energy loss in the excitation processes is constructed. This potential is seen to have a very simple r-dependence. A simple formula for the sub-barrier elastic scattering cross section is then derived both by using the WRB approximation and by summing the Born series for the T-matrix. Comparison of the two forms for the elastic cross section shows that they give almost identical numerical results in the small coupling limit only. The results are also compared with the predictions of the Alder-Winther theory. (Author) [pt

  1. Coupled channels Marchenko inversion for nucleon-nucleon potentials

    International Nuclear Information System (INIS)

    Kohlhoff, H.; Geramb, H.V. von

    1994-01-01

    Marchenko inversion is used to determine local energy independent but channel dependent potential matrices from optimum sets of experimental phase shifts. 3 SD 1 and 3 PF 2 channels of nucleon-nucleon systems contain in their off-diagonal potential matrices explicitly the tensor force for T = 0 and 1 isospin. We obtain, together with single channels, complete sets of quantitative nucleon-nucleon potential results which are ready for application in nuclear structure and reaction analyses. The historic coupled channels inversion result of Newton and Fulton is revisited. (orig.)

  2. AlGaN/GaN double-channel HEMT

    International Nuclear Information System (INIS)

    Quan Si; Hao Yue; Ma Xiaohua; Zheng Pengtian; Xie Yuanbin

    2010-01-01

    The fabrication of AlGaN/GaN double-channel high electron mobility transistors on sapphire substrates is reported. Two carrier channels are formed in an AlGaN/GaN/AlGaN/GaN multilayer structure. The DC performance of the resulting double-channel HEMT shows a wider high transconductance region compared with single-channel HEMT. Simulations provide an explanation for the influence of the double-channel on the high transconductance region. The buffer trap is suggested to be related to the wide region of high transconductance. The RF characteristics are also studied. (semiconductor devices)

  3. Gamma dose rate effect on JFET transistors

    International Nuclear Information System (INIS)

    Assaf, J.

    2011-04-01

    The effect of Gamma dose rate on JFET transistors is presented. The irradiation was accomplished at the following available dose rates: 1, 2.38, 5, 10 , 17 and 19 kGy/h at a constant dose of 600 kGy. A non proportional relationship between the noise and dose rate in the medium range (between 2.38 and 5 kGy/h) was observed. While in the low and high ranges, the noise was proportional to the dose rate as the case of the dose effect. This may be explained as follows: the obtained result is considered as the yield of a competition between many reactions and events which are dependent on the dose rate. At a given values of that events parameters, a proportional or a non proportional dose rate effects are generated. No dependence effects between the dose rate and thermal annealing recovery after irradiation was observed . (author)

  4. Programmable, very low noise current source

    Science.gov (United States)

    Scandurra, G.; Cannatà, G.; Giusi, G.; Ciofi, C.

    2014-12-01

    We propose a new approach for the realization of very low noise programmable current sources mainly intended for application in the field of low frequency noise measurements. The design is based on a low noise Junction Field Effect Transistor (JFET) acting as a high impedance current source and programmability is obtained by resorting to a low noise, programmable floating voltage source that allows to set the sourced current at the desired value. The floating voltage source is obtained by exploiting the properties of a standard photovoltaic MOSFET driver. Proper filtering and a control network employing super-capacitors allow to reduce the low frequency output noise to that due to the low noise JFET down to frequencies as low as 100 mHz while allowing, at the same time, to set the desired current by means of a standard DA converter with an accuracy better than 1%. A prototype of the system capable of supplying currents from a few hundreds of μA up to a few mA demonstrates the effectiveness of the approach we propose. When delivering a DC current of about 2 mA, the power spectral density of the current fluctuations at the output is found to be less than 25 pA/√Hz at 100 mHz and less than 6 pA/√Hz for f > 1 Hz, resulting in an RMS noise in the bandwidth from 0.1 to 10 Hz of less than 14 pA.

  5. Studies on the InAlN/InGaN/InAlN/InGaN double channel heterostructures with low sheet resistance

    Science.gov (United States)

    Zhang, Yachao; Wang, Zhizhe; Xu, Shengrui; Chen, Dazheng; Bao, Weimin; Zhang, Jinfeng; Zhang, Jincheng; Hao, Yue

    2017-11-01

    High quality InAlN/InGaN/InAlN/InGaN double channel heterostructures were proposed and grown by metal organic chemical vapor deposition. Benefiting from the adoption of the pulsed growth method and Two-Step AlN interlayer, the material quality and interface characteristics of the double channel heterostructures are satisfactory. The results of the temperature-dependent Hall effect measurement indicated that the transport properties of the double channel heterostructures were superior to those of the traditional single channel heterostructures in the whole test temperature range. Meanwhile, the sheet resistance of the double channel heterostructures reached 218.5 Ω/□ at 300 K, which is the record of InGaN-based heterostructures. The good transport properties of the InGaN double channel heterostructures are beneficial to improve the performance of the microwave power devices based on nitride semiconductors.

  6. Coupled-channels analyses for 9,11Li + 208Pb fusion reactions with multi-neutron transfer couplings

    Science.gov (United States)

    Choi, Ki-Seok; Cheoun, Myung-Ki; So, W. Y.; Hagino, K.; Kim, K. S.

    2018-05-01

    We discuss the role of two-neutron transfer processes in the fusion reaction of the 9,11Li + 208Pb systems. We first analyze the 9Li + 208Pb reaction by taking into account the coupling to the 7Li + 210Pb channel. To this end, we assume that two neutrons are directly transferred to a single effective channel in 210Pb and solve the coupled-channels equations with the two channels. By adjusting the coupling strength and the effective Q-value, we successfully reproduce the experimental fusion cross sections for this system. We then analyze the 11Li + 208Pb reaction in a similar manner, that is, by taking into account three effective channels with 11Li + 208Pb, 9Li + 210Pb, and 7Li + 212Pb partitions. In order to take into account the halo structure of the 11Li nucleus, we construct the potential between 11Li and 208Pb with a double folding procedure, while we employ a Woods-Saxon type potential with the global Akyüz-Winther parameters for the other channels. Our calculation indicates that the multiple two-neutron transfer process plays a crucial role in the 11Li + 208Pb fusion reaction at energies around the Coulomb barrier.

  7. Couple stress fluid flow in a rotating channel with peristalsis

    Science.gov (United States)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  8. Improved Tensor-Based Singular Spectrum Analysis Based on Single Channel Blind Source Separation Algorithm and Its Application to Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Dan Yang

    2017-04-01

    Full Text Available To solve the problem of multi-fault blind source separation (BSS in the case that the observed signals are under-determined, a novel approach for single channel blind source separation (SCBSS based on the improved tensor-based singular spectrum analysis (TSSA is proposed. As the most natural representation of high-dimensional data, tensor can preserve the intrinsic structure of the data to the maximum extent. Thus, TSSA method can be employed to extract the multi-fault features from the measured single-channel vibration signal. However, SCBSS based on TSSA still has some limitations, mainly including unsatisfactory convergence of TSSA in many cases and the number of source signals is hard to accurately estimate. Therefore, the improved TSSA algorithm based on canonical decomposition and parallel factors (CANDECOMP/PARAFAC weighted optimization, namely CP-WOPT, is proposed in this paper. CP-WOPT algorithm is applied to process the factor matrix using a first-order optimization approach instead of the original least square method in TSSA, so as to improve the convergence of this algorithm. In order to accurately estimate the number of the source signals in BSS, EMD-SVD-BIC (empirical mode decomposition—singular value decomposition—Bayesian information criterion method, instead of the SVD in the conventional TSSA, is introduced. To validate the proposed method, we applied it to the analysis of the numerical simulation signal and the multi-fault rolling bearing signals.

  9. Coupled channel calculations of K-shell ionization in asymmetric collision systems

    International Nuclear Information System (INIS)

    Mehler, G.; Greiner, W.; Soff, G.

    1986-07-01

    We report theoretical results on K-shell ionization for a variety of asymmetric collision systems. The calculated ionization rates are compared with experimental data. The coupled channel formalism underlying these calculations is presented. It is based on a set of relativistic target centred states, taking a screened potential of Dirac-Fock-Slater type into account. We discuss the effects of different matrix elements, e.g. continuum-continuum couplings. The binding effect is inherently contained in our approach and described in a dynamical way. (orig.)

  10. Coupling between scattering channels with SUSY transformations for equal thresholds

    International Nuclear Information System (INIS)

    Pupasov, Andrey M; Samsonov, Boris F; Sparenberg, Jean-Marc; Baye, Daniel

    2009-01-01

    Supersymmetric (SUSY) transformations of the multichannel Schroedinger equation with equal thresholds and arbitrary partial waves in all channels are studied. The structures of the transformation function and the superpotential are analysed. Relations between Jost and scattering matrices of superpartner potentials are obtained. In particular, we show that a special type of SUSY transformation allows us to introduce a coupling between scattering channels starting from a potential with an uncoupled scattering matrix. The possibility for this coupling to be trivial is discussed. We show that the transformation introduces bound and virtual states with a definite degeneracy at the factorization energy. A detailed study of the potential and scattering matrices is given for the 2 x 2 case. The possibility of inverting coupled-channel scattering data by such a SUSY transformation is demonstrated by several examples (s-s, s-p and s-d partial waves)

  11. Cross-channel coupling in positron-atom scattering

    International Nuclear Information System (INIS)

    McAlinden, M.T.; Kernoghan, A.A.; Walters, H.R.J.

    1994-01-01

    Coupled-state calculations including positronium channels are reported for positron scattering by atomic hydrogen, lithium and sodium. Integrated cross sections and total cross sections are presented for all three atoms. For lithium differential cross sections are also given. Throughout, comparison is made between results calculated with and without inclusion of the positronium channels. S-wave cross sections for positron scattering by atomic hydrogen in the Ps(1s, 2s, 2p) + H(1s, 2s, 2p) approximation show the high energy resonance first observed by Higgins and Burke in the coupled-static approximation. This resonance has now moved up to 51.05 eV and narrowed in width to 2.92 eV. Other pronounced structure is seen in the S-wave cross sections between 10 and 20 eV; it is tentatively suggested that this structure may be due to the formation of a temporary pseudo-molecular collision complex. Results calculated in the Ps(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) + H(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) approximation show convergence towards accurate values in the energy region below and in the Ore gap. Contrary to previous work on lithium using only an atomic basis, it is found that coupling to the 3d state of lithium is not so important when positronium channels are included; this is because a mixed basis of atom and positronium states gives a more rapidly convergent approximation than an expansion based on atom states alone. The threshold behaviour of the elastic cross section and the Ps(1s) formation cross section for lithium is investigated. Results in the Ps(1s, 2s, 2p) + Na(3s, 3p) approximation for sodium show good agreement with the total cross section measurements of Kwan et al. (orig.)

  12. Hybrid complementary circuits based on p-channel organic and n-channel metal oxide transistors with balanced carrier mobilities of up to 10 cm2/Vs

    KAUST Repository

    Isakov, Ivan

    2016-12-29

    We report the development of hybrid complementary inverters based on p-channel organic and n-channel metal oxide thin-film transistors (TFTs) both processed from solution at <200 °C. For the organic TFTs, a ternary blend consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, the polymer indacenodithiophene-benzothiadiazole (CIDT-BT) and the p-type dopant CF was employed, whereas the isotype InO/ZnO heterojunction was used for the n-channel TFTs. When integrated on the same substrate, p- and n-channel devices exhibited balanced carrier mobilities up to 10 cm/Vs. Hybrid complementary inverters based on these devices show high signal gain (>30 V/V) and wide noise margins (70%). The moderate processing temperatures employed and the achieved level of device performance highlight the tremendous potential of the technology for application in the emerging sector of large-area microelectronics.

  13. Hybrid complementary circuits based on p-channel organic and n-channel metal oxide transistors with balanced carrier mobilities of up to 10 cm2/Vs

    KAUST Repository

    Isakov, Ivan; Paterson, Alexandra F.; Solomeshch, Olga; Tessler, Nir; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Fei, Zhuping; Heeney, Martin; Anthopoulos, Thomas D.

    2016-01-01

    We report the development of hybrid complementary inverters based on p-channel organic and n-channel metal oxide thin-film transistors (TFTs) both processed from solution at <200 °C. For the organic TFTs, a ternary blend consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, the polymer indacenodithiophene-benzothiadiazole (CIDT-BT) and the p-type dopant CF was employed, whereas the isotype InO/ZnO heterojunction was used for the n-channel TFTs. When integrated on the same substrate, p- and n-channel devices exhibited balanced carrier mobilities up to 10 cm/Vs. Hybrid complementary inverters based on these devices show high signal gain (>30 V/V) and wide noise margins (70%). The moderate processing temperatures employed and the achieved level of device performance highlight the tremendous potential of the technology for application in the emerging sector of large-area microelectronics.

  14. Dynamical coupled-channels model for meson productions and application to strange nuclear physics

    International Nuclear Information System (INIS)

    Nakamura, S.X.; Kamano, H.; Lee, T.-S.H.; Sato, T.

    2013-01-01

    We discuss our dynamical coupled-channels (DCC) model in the context of extracting interesting strange nuclear physics from forthcoming J-PARC data. We describe the dynamical contents of the model, and its capability of describing a large amount of data of S=0 sector, namely, πN, γN → πN, ηN, KΛ, KΣ data. Then we discuss future extensions of the DCC model to S ≠ 0 and B ≥ 1 sectors. We emphasize that realistic amplitudes will be essential for extracting interesting physics from data, and the extended DCC model will play an important role there. (author)

  15. Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey

    Directory of Open Access Journals (Sweden)

    Pierre Siohan

    2005-05-01

    Full Text Available Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC and variable-length source codes (VLC widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.

  16. Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey

    Science.gov (United States)

    Guillemot, Christine; Siohan, Pierre

    2005-12-01

    Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM) capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes (VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.

  17. Silicon-Nitride-based Integrated Optofluidic Biochemical Sensors using a Coupled-Resonator Optical Waveguide

    Directory of Open Access Journals (Sweden)

    Jiawei eWANG

    2015-04-01

    Full Text Available Silicon nitride (SiN is a promising material platform for integrating photonic components and microfluidic channels on a chip for label-free, optical biochemical sensing applications in the visible to near-infrared wavelengths. The chip-scale SiN-based optofluidic sensors can be compact due to a relatively high refractive index contrast between SiN and the fluidic medium, and low-cost due to the complementary metal-oxide-semiconductor (CMOS-compatible fabrication process. Here, we demonstrate SiN-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide (CROW in the visible wavelengths. The working principle is based on imaging in the far field the out-of-plane elastic-light-scattering patterns of the CROW sensor at a fixed probe wavelength. We correlate the imaged pattern with reference patterns at the CROW eigenstates. Our sensing algorithm maps the correlation coefficients of the imaged pattern with a library of calibrated correlation coefficients to extract a minute change in the cladding refractive index. Given a calibrated CROW, our sensing mechanism in the spatial domain only requires a fixed-wavelength laser in the visible wavelengths as a light source, with the probe wavelength located within the CROW transmission band, and a silicon digital charge-coupled device (CCD / CMOS camera for recording the light scattering patterns. This is in sharp contrast with the conventional optical microcavity-based sensing methods that impose a strict requirement of spectral alignment with a high-quality cavity resonance using a wavelength-tunable laser. Our experimental results using a SiN CROW sensor with eight coupled microrings in the 680nm wavelength reveal a cladding refractive index change of ~1.3 × 10^-4 refractive index unit (RIU, with an average sensitivity of ~281 ± 271 RIU-1 and a noise-equivalent detection limit (NEDL of 1.8 ×10^-8 RIU ~ 1.0 ×10^-4 RIU across the CROW bandwidth of ~1 nm.

  18. Joint source-channel coding using variable length codes

    NARCIS (Netherlands)

    Balakirsky, V.B.

    2001-01-01

    We address the problem of joint source-channel coding when variable-length codes are used for information transmission over a discrete memoryless channel. Data transmitted over the channel are interpreted as pairs (m k ,t k ), where m k is a message generated by the source and t k is a time instant

  19. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    Science.gov (United States)

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  20. Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing.

    Science.gov (United States)

    Andrade, Arturo; Denome, Sylvia; Jiang, Yu-Qiu; Marangoudakis, Spiro; Lipscombe, Diane

    2010-10-01

    Alternative pre-mRNA splicing occurs extensively in the nervous systems of complex organisms, including humans, considerably expanding the potential size of the proteome. Cell-specific alternative pre-mRNA splicing is thought to optimize protein function for specialized cellular tasks, but direct evidence for this is limited. Transmission of noxious thermal stimuli relies on the activity of N-type Ca(V)2.2 calcium channels in nociceptors. Using an exon-replacement strategy in mice, we show that mutually exclusive splicing patterns in the Ca(V)2.2 gene modulate N-type channel function in nociceptors, leading to a change in morphine analgesia. Exon 37a (e37a) enhances μ-opioid receptor-mediated inhibition of N-type calcium channels by promoting activity-independent inhibition. In the absence of e37a, spinal morphine analgesia is weakened in vivo but the basal response to noxious thermal stimuli is not altered. Our data suggest that highly specialized, discrete cellular responsiveness in vivo can be attributed to alternative splicing events regulated at the level of individual neurons.

  1. PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Pless, Stephan A; Kurata, Harley T

    2017-01-01

    Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation. To elucid......Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation....... These findings reveal an important role for PIP2 in coupling retigabine binding to altered VSD function. We identify a polybasic motif in the proximal C terminus of retigabine-sensitive KCNQ channels that contributes to VSD-pore coupling via PIP2, and thereby influences the unique gating effects of retigabine....

  2. Mechanism of electromechanical coupling in voltage-gated potassium channels

    Directory of Open Access Journals (Sweden)

    Rikard eBlunck

    2012-09-01

    Full Text Available Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt and vertical displacement in order to bring 3-4 e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii insight as to how the voltage sensor and pore domain influence one another; and (iii theoretical predictions on the movement of the cytosolic face of the KV channels

  3. Coupled-channel equations and off-shell transformations in many-body scattering

    International Nuclear Information System (INIS)

    Cattapan, G.; Vanzani, V.

    1977-01-01

    The general structure and the basic features of several many-body coupled-channel integral equations, obtained by means of the channel coupling array device, are studied in a systematic way. Particular attention is paid to the employment of symmetric transition operators. The connection between different formulations has been clarified and the role played by some off-shell transformations for many-body transition operators has been discussed. Specific choices of the coupling scheme are considered and the corresponding coupled equations are compared with similar equations previously derived. Several sets of linear relations between transition operators have also been presented and used in a three-body context to derive uncoupled integral equations with connected kernel

  4. Coupled channels effects in heavy ion elastic scattering

    International Nuclear Information System (INIS)

    Bond, P.D.

    1977-01-01

    The effects of inelastic excitation on the elastic scattering of heavy ions are considered within a coupled channels framework. Both Coulomb and nuclear excitation results are applied to 18 O + 184 W and other heavy ion reactions

  5. Electric dipole moment of the deuteron in the standard model with NN - ΛN - ΣN coupling

    Science.gov (United States)

    Yamanaka, Nodoka

    2017-07-01

    We calculate the electric dipole moment (EDM) of the deuteron in the standard model with | ΔS | = 1 interactions by taking into account the NN - ΛN - ΣN channel coupling, which is an important nuclear level systematics. The two-body problem is solved with the Gaussian Expansion Method using the realistic Argonne v18 nuclear force and the YN potential which can reproduce the binding energies of Λ3H, Λ3He, and Λ4He. The | ΔS | = 1 interbaryon potential is modeled by the one-meson exchange process. It is found that the deuteron EDM is modified by less than 10%, and the main contribution to this deviation is due to the polarization of the hyperon-nucleon channels. The effect of the YN interaction is small, and treating ΛN and ΣN channels as free is a good approximation for the EDM of the deuteron.

  6. GIS-Based Noise Simulation Open Source Software: N-GNOIS

    Science.gov (United States)

    Vijay, Ritesh; Sharma, A.; Kumar, M.; Shende, V.; Chakrabarti, T.; Gupta, Rajesh

    2015-12-01

    Geographical information system (GIS)-based noise simulation software (N-GNOIS) has been developed to simulate the noise scenario due to point and mobile sources considering the impact of geographical features and meteorological parameters. These have been addressed in the software through attenuation modules of atmosphere, vegetation and barrier. N-GNOIS is a user friendly, platform-independent and open geospatial consortia (OGC) compliant software. It has been developed using open source technology (QGIS) and open source language (Python). N-GNOIS has unique features like cumulative impact of point and mobile sources, building structure and honking due to traffic. Honking is the most common phenomenon in developing countries and is frequently observed on any type of roads. N-GNOIS also helps in designing physical barrier and vegetation cover to check the propagation of noise and acts as a decision making tool for planning and management of noise component in environmental impact assessment (EIA) studies.

  7. Coupled channels description of the α-decay fine structure

    Science.gov (United States)

    Delion, D. S.; Ren, Zhongzhou; Dumitrescu, A.; Ni, Dongdong

    2018-05-01

    We review the coupled channels approach of α transitions to excited states. The α-decaying states are identified as narrow outgoing Gamow resonances in an α-daughter potential. The real part of the eigenvalue corresponds to the Q-value, while the imaginary part determines the half of the total α-decay width. We first review the calculations describing transitions to rotational states treated by the rigid rotator model, in even–even, odd-mass and odd–odd nuclei. It is found that the semiclassical method overestimates the branching ratios to excited 4+ for some even–even α-emitters and fails in explaining the unexpected inversion of branching ratios of some odd-mass nuclei, while the coupled-channels results show good agreement with the experimental data. Then, we review the coupled channels method for α-transitions to 2+ vibrational and transitional states. We present the results of the Coherent State Model that describes in a unified way the spectra of vibrational, transitional and rotational nuclei. We evidence general features of the α-decay fine structure, namely the linear dependence between α-intensities and excitation energy, the linear correlation between the strength of the α-core interaction and spectroscopic factor, and the inverse correlation between the nuclear collectivity, given by electromagnetic transitions, and α-clustering.

  8. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    Science.gov (United States)

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  9. Coupling of unidimensional neutron kinetics to thermal hydraulics in parallel channels

    International Nuclear Information System (INIS)

    Cecenas F, M.; Campos G, R.M.

    2003-01-01

    In this work the dynamic behavior of a consistent system in fifteen channels in parallel that represent the reactor core of a BWR type, coupled of a kinetic neutronic model in one dimension is studied by means of time series. The arrangement of channels is obtained collapsing the assemblies that it consists the core to an arrangement of channels prepared in straight lines, and it is coupled to the unidimensional solution of the neutron diffusion equation. This solution represents the radial power distribution, and initially the static solution is obtained to verify that the one modeling core is critic. The coupled set nuclear-thermal hydraulics it is solved numerically by means of a net of CPUs working in the outline teacher-slave by means of Parallel Virtual Machine (PVM), subject to the restriction that the pressure drop is equal for each channel, which is executed iterating on the refrigerant distribution. The channels are dimensioned according to the one Stability Benchmark of the Ringhals swedish plant, organized by the Nuclear Energy Agency in 1994. From the information of this benchmark it is obtained the axial power profile for each channel, which is assumed as invariant in the time. To obtain the time series, the system gets excited with white noise (sequence that statistically obeys to a normal distribution with zero media), so that the power generated in each channel it possesses the same ones characteristics of a typical signal obtained by means of the acquisition of those signals of neutron flux in a BWR reactor. (Author)

  10. Sigma-1 Receptor Plays a Negative Modulation on N-type Calcium Channel

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2017-05-01

    Full Text Available The sigma-1 receptor is a 223 amino acids molecular chaperone with a single transmembrane domain. It is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes. By chaperone-mediated interactions with ion channels, G-protein coupled receptors and cell-signaling molecules, the sigma-1 receptor performs broad physiological and pharmacological functions. Despite sigma-1 receptors have been confirmed to regulate various types of ion channels, the relationship between the sigma-1 receptor and N-type Ca2+ channel is still unclear. Considering both sigma-1 receptors and N-type Ca2+ channels are involved in intracellular calcium homeostasis and neurotransmission, we undertake studies to explore the possible interaction between these two proteins. In the experiment, we confirmed the expression of the sigma-1 receptors and the N-type calcium channels in the cholinergic interneurons (ChIs in rat striatum by using single-cell reverse transcription-polymerase chain reaction (scRT-PCR and immunofluorescence staining. N-type Ca2+ currents recorded from ChIs in the brain slice of rat striatum was depressed when sigma-1 receptor agonists (SKF-10047 and Pre-084 were administrated. The inhibition was completely abolished by sigma-1 receptor antagonist (BD-1063. Co-expression of the sigma-1 receptors and the N-type calcium channels in Xenopus oocytes presented a decrease of N-type Ca2+ current amplitude with an increase of sigma-1 receptor expression. SKF-10047 could further depress N-type Ca2+ currents recorded from oocytes. The fluorescence resonance energy transfer (FRET assays and co-immunoprecipitation (Co-IP demonstrated that sigma-1 receptors and N-type Ca2+ channels formed a protein complex when they were co-expressed in HEK-293T (Human Embryonic Kidney -293T cells. Our results revealed that the sigma-1 receptors played a negative modulation on N-type Ca2+ channels. The mechanism for the inhibition of sigma-1 receptors on

  11. Multi-channel Kondo necklace

    International Nuclear Information System (INIS)

    Fazekas, P.; Kee Haeyoung.

    1993-06-01

    A multi-channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins τ J , j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig

  12. Pitch Channel Control of a REMUS AUV with Input Saturation and Coupling Disturbances

    Directory of Open Access Journals (Sweden)

    Nailong Wu

    2018-02-01

    Full Text Available The motion of an underwater vehicle is prone to be affected by time-varying model parameters and the actuator limitation in control practice. Adaptive control is an effective method to deal with the general system dynamic uncertainties and disturbances. However, the effect of disturbances control on transient dynamics is not prominent. In this paper, we redesign the L 1 adaptive control architecture (L1AC with anti-windup (AW compensator to guarantee robust and fast adaption of the underwater vehicle with input saturation and coupling disturbances. To reduce the fluctuation of vehicle states, the Riccati-based AW compensator is utilized to compensate the output signal from L1AC controller via taking proper modification. The proposed method is applied to the pitch channel of REMUS vehicle’s six Degrees Of Freedom (DOF model with strong nonlinearities and compared with L1AC baseline controller. Simulations show the effectiveness of the proposed control strategy compared to the original L1AC. Besides, the fluctuation in roll channel coupled with pitch channel is suppressed according to the performances of control tests.

  13. A Novel Partial Discharge Ultra-High Frequency Signal De-Noising Method Based on a Single-Channel Blind Source Separation Algorithm

    Directory of Open Access Journals (Sweden)

    Liangliang Wei

    2018-02-01

    Full Text Available To effectively de-noise the Gaussian white noise and periodic narrow-band interference in the background noise of partial discharge ultra-high frequency (PD UHF signals in field tests, a novel de-noising method, based on a single-channel blind source separation algorithm, is proposed. Compared with traditional methods, the proposed method can effectively de-noise the noise interference, and the distortion of the de-noising PD signal is smaller. Firstly, the PD UHF signal is time-frequency analyzed by S-transform to obtain the number of source signals. Then, the single-channel detected PD signal is converted into multi-channel signals by singular value decomposition (SVD, and background noise is separated from multi-channel PD UHF signals by the joint approximate diagonalization of eigen-matrix method. At last, the source PD signal is estimated and recovered by the l1-norm minimization method. The proposed de-noising method was applied on the simulation test and field test detected signals, and the de-noising performance of the different methods was compared. The simulation and field test results demonstrate the effectiveness and correctness of the proposed method.

  14. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    DEFF Research Database (Denmark)

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...

  15. Adaptive Combined Source and Channel Decoding with Modulation ...

    African Journals Online (AJOL)

    In this paper, an adaptive system employing combined source and channel decoding with modulation is proposed for slow Rayleigh fading channels. Huffman code is used as the source code and Convolutional code is used for error control. The adaptive scheme employs a family of Convolutional codes of different rates ...

  16. Iterative List Decoding of Concatenated Source-Channel Codes

    Directory of Open Access Journals (Sweden)

    Hedayat Ahmadreza

    2005-01-01

    Full Text Available Whenever variable-length entropy codes are used in the presence of a noisy channel, any channel errors will propagate and cause significant harm. Despite using channel codes, some residual errors always remain, whose effect will get magnified by error propagation. Mitigating this undesirable effect is of great practical interest. One approach is to use the residual redundancy of variable length codes for joint source-channel decoding. In this paper, we improve the performance of residual redundancy source-channel decoding via an iterative list decoder made possible by a nonbinary outer CRC code. We show that the list decoding of VLC's is beneficial for entropy codes that contain redundancy. Such codes are used in state-of-the-art video coders, for example. The proposed list decoder improves the overall performance significantly in AWGN and fully interleaved Rayleigh fading channels.

  17. A coupled-channels analysis of pion scattering and pion-induced eta production on the nucleon

    International Nuclear Information System (INIS)

    Pratt, R.K.; Bennhold, C.; Surya, Y.

    1995-01-01

    Motivated by new, upcoming Brookhaven data, pion scattering and pion-induced eta production on the nucleon in the S 11 (1535) resonance region is studied in an extension of the unitary, relativistic resonance model by Surya and Gross. The Kernel of the relativistic wave equation includes the nucleon, Roper, δ(1232), D 13 (1520) and S 11 (1535) pole terms along with contact σ- and ρ-like exchange terms. The formalism includes a coupling between the πN and ηN channels. The resonance parameters are adjusted to reproduce the experimental πN phase shifts

  18. Multi-channel Kondo necklace

    Energy Technology Data Exchange (ETDEWEB)

    Fazekas, P; Haeyoung, Kee

    1993-06-01

    A multi-channel generalization of Doniach`s Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins {tau}{sub J}, j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig.

  19. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

    Science.gov (United States)

    Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin

    2013-08-06

    Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.

  20. Phosphorylation of rat brain purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal kinase-3 modifies open-channel noise.

    Science.gov (United States)

    Gupta, Rajeev

    2017-09-02

    The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Ge p-channel tunneling FETs with steep phosphorus profile source junctions

    Science.gov (United States)

    Takaguchi, Ryotaro; Matsumura, Ryo; Katoh, Takumi; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    The solid-phase diffusion processes of three n-type dopants, i.e., phosphorus (P), arsenic (As), and antimony (Sb), from spin-on-glass (SOG) into Ge are compared. We show that P diffusion can realize both the highest impurity concentration (˜7 × 1019 cm-3) and the steepest impurity profile (˜10 nm/dec) among the cases of the three n-type dopants because the diffusion coefficient is strongly dependent on the dopant concentration. As a result, we can conclude that P is the most suitable dopant for the source formation of Ge p-channel TFETs. Using this P diffusion, we fabricate Ge p-channel TFETs with high-P-concentration and steep-P-profile source junctions and demonstrate their operation. A high ON current of ˜1.7 µA/µm is obtained at room temperature. However, the subthreshold swing and ON current/OFF current ratio are degraded by any generation-recombination-related current component. At 150 K, SSmin of ˜108 mV/dec and ON/OFF ratio of ˜3.5 × 105 are obtained.

  2. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers.

    Science.gov (United States)

    Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana

    2017-08-01

    Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.

  3. Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor

    International Nuclear Information System (INIS)

    Besleaga, C.; Stan, G.E.; Pintilie, I.; Barquinha, P.; Fortunato, E.; Martins, R.

    2016-01-01

    Highlights: • TFTs based on IGZO channel semiconductor and AlN gate dielectric were fabricated. • AlN films – a viable and cheap gate dielectric alternative for transparent TFTs. • Influence of gate dielectric layer thickness on TFTs electrical characteristics. • No degradation of AlN gate dielectric was observed during devices stress testing. - Abstract: The degradation of thin-film transistors (TFTs) caused by the self-heating effect constitutes a problem to be solved for the next generation of displays. Aluminum nitride (AlN) is a viable alternative for gate dielectric of TFTs due to its good thermal conductivity, matching coefficient of thermal expansion to indium–gallium–zinc-oxide, and excellent stability at high temperatures. Here, AlN thin films of different thicknesses were fabricated by a low temperature reactive radio-frequency magnetron sputtering process, using a low cost, metallic Al target. Their electrical properties have been thoroughly assessed. Furthermore, the 200 nm and 500 nm thick AlN layers have been integrated as gate-dielectric in transparent TFTs with indium–gallium–zinc-oxide as channel semiconductor. Our study emphasizes the potential of AlN thin films for transparent electronics, whilst the functionality of the fabricated field-effect transistors is explored and discussed.

  4. Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Besleaga, C.; Stan, G.E.; Pintilie, I. [National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele-Ilfov (Romania); Barquinha, P.; Fortunato, E. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP-UNINOVA, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP-UNINOVA, 2829-516 Caparica (Portugal)

    2016-08-30

    Highlights: • TFTs based on IGZO channel semiconductor and AlN gate dielectric were fabricated. • AlN films – a viable and cheap gate dielectric alternative for transparent TFTs. • Influence of gate dielectric layer thickness on TFTs electrical characteristics. • No degradation of AlN gate dielectric was observed during devices stress testing. - Abstract: The degradation of thin-film transistors (TFTs) caused by the self-heating effect constitutes a problem to be solved for the next generation of displays. Aluminum nitride (AlN) is a viable alternative for gate dielectric of TFTs due to its good thermal conductivity, matching coefficient of thermal expansion to indium–gallium–zinc-oxide, and excellent stability at high temperatures. Here, AlN thin films of different thicknesses were fabricated by a low temperature reactive radio-frequency magnetron sputtering process, using a low cost, metallic Al target. Their electrical properties have been thoroughly assessed. Furthermore, the 200 nm and 500 nm thick AlN layers have been integrated as gate-dielectric in transparent TFTs with indium–gallium–zinc-oxide as channel semiconductor. Our study emphasizes the potential of AlN thin films for transparent electronics, whilst the functionality of the fabricated field-effect transistors is explored and discussed.

  5. Direct imprinting of indium-tin-oxide precursor gel and simultaneous formation of channel and source/drain in thin-film transistor

    Science.gov (United States)

    Haga, Ken-ichi; Kamiya, Yuusuke; Tokumitsu, Eisuke

    2018-02-01

    We report on a new fabrication process for thin-film transistors (TFTs) with a new structure and a new operation principle. In this process, both the channel and electrode (source/drain) are formed simultaneously, using the same oxide material, using a single nano-rheology printing (n-RP) process, without any conventional lithography process. N-RP is a direct thermal imprint technique and deforms oxide precursor gel. To reduce the source/drain resistance, the material common to the channel and electrode is conductive indium-tin-oxide (ITO). The gate insulator is made of a ferroelectric material, whose high charge density can deplete the channel of the thin ITO film, which realizes the proposed operation principle. First, we have examined the n-RP conditions required for the channel and source/drain patterning, and found that the patterning properties are strongly affected by the cooling rate before separating the mold. Second, we have fabricated the TFTs as proposed and confirmed their TFT operation.

  6. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    Science.gov (United States)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  7. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  8. LLNL large-area inductively coupled plasma (ICP) source: Experiments

    International Nuclear Information System (INIS)

    Richardson, R.A.; Egan, P.O.; Benjamin, R.D.

    1995-05-01

    We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N 2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable

  9. High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p-n Heterojunction.

    Science.gov (United States)

    Yu, Jingjing; Javaid, Kashif; Liang, Lingyan; Wu, Weihua; Liang, Yu; Song, Anran; Zhang, Hongliang; Shi, Wen; Chang, Ting-Chang; Cao, Hongtao

    2018-03-07

    A visible-blind ultraviolet (UV) photodetector was designed based on a three-terminal electronic device of thin-film transistor (TFT) coupled with two-terminal p-n junction optoelectronic device, in hope of combining the beauties of both of the devices together. Upon the uncovered back-channel surface of amorphous indium-gallium-zinc-oxide (IGZO) TFT, we fabricated PEDOT:PSS/SnO x /IGZO heterojunction structure, through which the formation of a p-n junction and directional carrier transfer of photogenerated carriers were experimentally validated. As expected, the photoresponse characteristics of the newly designed photodetector, with a photoresponsivity of 984 A/W at a wavelength of 320 nm, a UV-visible rejection ratio up to 3.5 × 10 7 , and a specific detectivity up to 3.3 × 10 14 Jones, are not only competitive compared to the previous reports but also better than those of the pristine IGZO phototransistor. The hybrid photodetector could be operated in the off-current region with low supply voltages (<0.1 V) and ultralow power dissipation (<10 nW under illumination and ∼0.2 pW in the dark). Moreover, by applying a short positive gate pulse onto the gate, the annoying persistent photoconductivity presented in the wide band gap oxide-based devices could be suppressed conveniently, in hope of improving the response rate. With the terrific photoresponsivity along with the advantages of photodetecting pixel integration, the proposed phototransistor could be potentially used in high-performance visible-blind UV photodetector pixel arrays.

  10. ψ(3S) and Υ(5S) Originating in Heavy Meson Molecules: A Coupled Channel Analysis Based on an Effective Vector Quark–Quark Interaction

    International Nuclear Information System (INIS)

    Matsuda, Y.; Sakai, M.; Hirano, M.

    2013-01-01

    In our previous coupled channel analysis based on the Cornell effective quark–quark interaction, it was indicated that the ψ(3S) solution corresponding to ψ(4040) originates from a D ∗ D¯ ∗ channel state. In this article, we report on a simultaneous analysis of the ψ - and Υ-family states. The most conspicuous outcome is a finding that the Υ(5S) solution corresponding to Υ(10860) originates from a B ∗ B¯ ∗ channel state, very much like ψ(3S). Some other characteristics of the result, including the induced very large S–D mixing and relation of some of the solutions with newly observed heavy quarkonia-like states are discussed. (author)

  11. Communication channels to promote evidence-based practice: a survey of primary care clinicians to determine perceived effects.

    Science.gov (United States)

    Dadich, Ann; Hosseinzadeh, Hassan

    2016-08-11

    Research suggests that the channels through which evidence-based practices are communicated to healthcare professionals can shape the ways they engage with, and use, this information. For instance, there is evidence to suggest that information should be communicated via sources that are deemed to be credible, like government departments, professional bodies and peers. This article examines the contention that information should be communicated via credible sources. More specifically, the article examines the different communication channels through which primary care clinicians learnt of resources on evidence-based sexual healthcare - namely, clinical aides and online training programs. Furthermore, the article determines whether these communication channels influenced the perceived impact of the resources. Primary care clinicians in Australia (n = 413), notably General Practitioners (n = 214) and Practice Nurses (n = 217), were surveyed on the GP Project - a suite of resources to promote evidence-based sexual healthcare within primary care. Survey items pertained to the source of information about the resources (or communication channel), perceived usefulness of the resources, frequency of use, subsequent contact with the Sexual Health Infoline and a sexual health clinic, as well as the perceived impact of the resources. To determine the relationships between the different communication channels and the perceived impact of the resources, a one-way ANOVA using Tukey's post-hoc test, an independent sample t-test, a χ(2) test, and a Kruskal-Wallis H test were performed where appropriate. Of the respondents who were aware of the clinical aides (49.9%), the largest proportion became aware of these through an educational event or a colleague. Of those who were aware of the online training programs (36.9%), the largest proportion became aware of these through a professional body or government organisation, either directly or via their website. Although both resource

  12. 9Be(d,n)10B-based neutron sources for BNCT

    International Nuclear Information System (INIS)

    Capoulat, M.E.; Herrera, M.S.; Minsky, D.M.; González, S.J.; Kreiner, A.J.

    2014-01-01

    In the frame of accelerator-based BNCT, the 9 Be(d,n) 10 B reaction was investigated as a possible source of epithermal neutrons. In order to determine the configuration in terms of bombarding energy, target thickness and Beam Shaping Assembly (BSA) design that results in the best possible beam quality, a systematic optimization study was carried out. From this study, the optimal configuration resulted in tumor doses ≥40 Gy-Eq, with a maximum value of 51 Gy-Eq at a depth of about 2.7 cm, in a 60 min treatment. The optimal configuration was considered for the treatment planning assessment of a real Glioblastoma Multiforme case. From this, the resulted dose performances were comparable to those obtained with an optimized 7 Li(p,n)-based neutron source, under identical conditions and subjected to the same clinical protocol. - Highlights: • Study of the 9 Be(d,n) 10 B reaction as a source of epithermal neutrons for BNCT. • Evaluation of the optimal configuration of target thickness, deuteron energy and BSA design. • Computational dose assessment for brain tumor treatments using the MCNP code. • Treatment planning assessment of a particular clinical Glioblastoma Multiforme case. • Dose performances were comparable to those obtained with an optimized 7 Li(p,n)-based source

  13. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    Science.gov (United States)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  14. Near-Barrier Fusion of Heavy Nuclei. Coupling of the Channels

    CERN Document Server

    Zagrebaev, V I

    2003-01-01

    The problem of quantum description of near-barrier fusion of heavy nuclei taking place under strong coupling of relative motion with rotation of deformed nuclei and with dynamic deformations of their surfaces is studied in the paper. A new effective method is proposed for numerical solution of a set of coupled Schrodinger equations with boundary conditions corresponding to a full absorption of the flux penetrated through the multi-dimensional Coulomb barrier. The method has no limitation on the number of coupled channels and allows one to calculate fusion cross-sections of very heavy nuclei used for synthesis of super-heavy elements. A combined analysis of the multi-dimensional potential energy surface relief and the multi-channel wave function in the vicinity of the Coulomb barrier gives a clear interpretation of near-barrier fusion dynamics. Comparison with experimental data and with semi-empirical model calculations is performed. The computing codes are allocated at the web-server http://nrv.jinr.ru/nrv/ w...

  15. 5kW phase-shifted full-bridge converter with current doubler using normally-off SiC JFETs designed for 98% efficiency

    DEFF Research Database (Denmark)

    Török, Lajos; Beczkowski, Szymon; Munk-Nielsen, Stig

    2013-01-01

    In this paper a 5kW step-down converter for low-voltage high-current application is presented using normally-off SiC JFETs as high voltage power switches, operating with efficiency close to 98%. Different low voltage side rectification solutions and loss estimations are also presented. As results...

  16. R and D toward a compact high-brilliance X-ray source based on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; Brau, C. A.; Gabella, W. E.; Choi, B. K.; Jarvis, J. D.; Lewellen, J. W.; Mendenhall, M. H.; Mihalcea, D. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States) and Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235 (United States) and Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Physics Department and Combat Systems, Naval Postgraduate School, Monterey, CA 93943 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States)

    2012-12-21

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B{approx} 10{sup 12} photons.(mm-mrd){sup -2}. (0.1% BW){sup -1}.s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  17. R and D Toward a Compact High-Brilliance X-Ray Source Based on Channeling Radiation

    International Nuclear Information System (INIS)

    Piot, P.; Brau, C.A.; Gabella, W.E.; Choi, B.K.; Jarvis, J.D.; Mendenhall, M.H.; Lewellen, J.W.; Mihalcea, D.

    2012-01-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B ∼ 10 12 photons.(mm-mrd) -2 .(0.1% BW) -1 .s -1 is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  18. Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet.

    Science.gov (United States)

    Musyimi, Harrison K; Guy, Jason; Narcisse, Damien A; Soper, Steven A; Murray, Kermit K

    2005-12-01

    We report on the coupling of a polymer-based microfluidic chip to a MALDI-TOF MS using a rotating ball interface. The microfluidic chips were fabricated by micromilling a mold insert into a brass plate, which was then used for replicating polymer microparts via hot embossing. Assembly of the chip was accomplished by thermally annealing a cover slip to the embossed substrate to enclose the channels. The linear separation channel was 50 microm wide, 100 microm deep, and possessed an 8 cm effective length separation channel with a double-T injector (V(inj) = 10 nL). The exit of the separation channel was machined to allow direct contact deposition of effluent onto a specially constructed rotating ball inlet to the mass spectrometer. Matrix addition was accomplished in-line on the surface of the ball. The coupling utilized the ball as the cathode transfer electrode to transport sample into the vacuum for desorption with a 355 nm Nd:YAG laser and analyzed on a TOF mass spectrometer. The ball was cleaned online after every rotation. The ability to couple poly(methylmethacrylate) microchip electrophoresis devices for the separation of peptides and peptide fragments produced from a protein digest with subsequent online MALDI MS detection was demonstrated.

  19. A striking performance improvement of fullerene n-channel field-effect transistors via synergistic interfacial modifications

    International Nuclear Information System (INIS)

    Du, Lili; Luo, Xiao; Wen, Zhanwei; Zhang, Jianping; Sun, Lei; Lv, Wenli; Li, Yao; Zhao, Feiyu; Zhong, Junkang; Ren, Qiang; Huang, Fobao; Xia, Hongquan; Peng, Yingquan

    2015-01-01

    For fullerene based n-channel transistors, remarkably improved device characteristics were achieved via charge injection and transport interfacial synergistic modifications using low-cost aluminium source/drain electrodes. Compared with the reference device without any modifications (device A), the as-fabricated transistor (device H) showed a dramatic improvement of saturation mobility from 0.0026 to 0.3078 cm 2 V −1 s −1 with a maximum on–off current ratio of 10 6 and a minimum subthreshold slope of 1.52 V decade −1 . AFM and XRD analysis manifested that the deposited C 60 films on PVA/OTS successive-modified SiO 2 substrate were highly dense polycrystalline and uniform with larger crystalline grain and less grain boundary. A gap state assisted electron injection mechanism was proposed to explicate the enhanced electrical conductivity considering BCP modification for charge injection interface, which has been well corroborated by a diode-based injection experiment and a theoretical calculation of contact resistances. We further demonstrated the application of the concept modification method to enable comparative time-stable operation of fullerene n-channel transistors. Given many key merits, we believed that this general method using multi-interface modifications could be extended to fabricate other n-channel OFETs with superior electrical performance and stability. (paper)

  20. Effects of couple stresses in MHD channel flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1977-01-01

    An analysis of fully developed MHD channel flow of an electrically conducting incompressible fluid, taking into account the couple stresses, is carried out. Exact solutions are derived for velocity profiles, current density, skin-friction and coefficient of mass flux. They are influenced by the magnetic field, the loading parameter k, and the non-dimensional parameter (a=b 1 /lambda). Their variations with respect to M, k and a are represented graphically, this is followed by a physical discussion. It is observed that the couple stresses are more effective in the presence of a very weak magnetic field. (Auth.)

  1. Optimization of Coding of AR Sources for Transmission Across Channels with Loss

    DEFF Research Database (Denmark)

    Arildsen, Thomas

    Source coding concerns the representation of information in a source signal using as few bits as possible. In the case of lossy source coding, it is the encoding of a source signal using the fewest possible bits at a given distortion or, at the lowest possible distortion given a specified bit rate....... Channel coding is usually applied in combination with source coding to ensure reliable transmission of the (source coded) information at the maximal rate across a channel given the properties of this channel. In this thesis, we consider the coding of auto-regressive (AR) sources which are sources that can...... compared to the case where the encoder is unaware of channel loss. We finally provide an extensive overview of cross-layer communication issues which are important to consider due to the fact that the proposed algorithm interacts with the source coding and exploits channel-related information typically...

  2. Maja Valles, Mars: A Multi-Source Fluvio-Volcanic Outflow Channel System

    Science.gov (United States)

    Keske, A.; Christensen, P. R.

    2017-12-01

    The resemblance of martian outflow channels to the channeled scablands of the Pacific Northwest has led to general consensus that they were eroded by large-scale flooding. However, the observation that many of these channels are coated in lava issuing from the same source as the water source has motivated the alternative hypothesis that the channels were carved by fluid, turbulent lava. Maja Valles is a circum-Chryse outflow channel whose origin was placed in the late Hesperian by Baker and Kochel (1979), with more recent studies of crater density variations suggesting that its formation history involved multiple resurfacing events (Chapman et al., 2003). In this study, we have found that while Maja Valles indeed host a suite of standard fluvial landforms, its northern portion is thinly coated with lava that has buried much of the older channel landforms and overprinted them with effusive flow features, such as polygons and bathtub rings. Adjacent to crater pedestals and streamlined islands are patches of dark, relatively pristine material pooled in local topographic lows that we have interpreted as ponds of lava remaining from one or more fluid lava flows that flooded the channel system and subsequently drained, leaving marks of the local lava high stand. Despite the presence of fluvial landforms throughout the valles, lava flow features exist in the northern reaches of the system alone, 500-1200 km from the channels' source. The flows can instead be traced to a collection of vents in Lunae Plaum, west of the valles. In previously studied fluvio-volcanic outflow systems, such as Athabasca Valles, the sources of the volcanic activity and fluvial activity have been indistinguishable. In contrast, Maja Valles features numerous fluvio-volcanic landforms bearing similarity to those identified in other channel systems, yet the source of its lava flows is distinct from the source of its channels. Furthermore, in the absence of any channels between the source of the lava

  3. Tetraquark candidate Zc(3900 from coupled-channel scattering - how to extract hadronic interactions? -

    Directory of Open Access Journals (Sweden)

    Ikeda Yoichi

    2018-01-01

    On the basis of the HAL QCD method, the structure of the tetraquark candidate Zc(3900, which was experimentally reported in e+e- collisions, is studied by the s-wave two-meson coupled-channel scattering. The results show that the Zc(3900 is not a conventional resonance but a threshold cusp. A semi-phenomenological analysis with the coupled-channel interaction to the experimentally observed decay mode is also presented to confirm the conclusion.

  4. Study for the charge symmetric systems, 12C+13N and 12C+13C with the orthogonalized coupled-reaction-channel method

    International Nuclear Information System (INIS)

    Imanishi, B.; Denisov, V.; Motobayashi, T.

    1996-10-01

    The charge-symmetric scattering systems, 12 C+ 13 N and 12 C+ 13 C have been investigated by using the orthogonalized coupled-reaction-channel (OCRC) method with the basis functions of the elastic, inelastic and transfer channels defined by the single-particle states, 1p1/2, 2s1/2, 1d5/2 and 1d3/2 of the valence nucleon in 13 N or 13 C. The data of the elastic scattering of 13 N on 12 C measured by Lienard et al. have been explained consistently with the data of the elastic and inelastic scattering of the 12 C+ 13 C system. The CRC effects both on the above systems are very strong, although those on the 12 C+ 13 N system are fairly weaker than the 12 C+ 13 C system. The role of the highly excited single-particle states 1d3/2 is particularly important in the formation of a specific CRC scheme, i.e., the formation of the covalent molecules due to the hybridization caused by the mixing of the different parity single-particle states. The fusion cross sections of the 12 C+ 13 C system at energies below the Coulomb barrier are strongly enhanced as a result of the strong CRC effects as compared with those of the 12 C+ 12 C system, while in 12 C+ 13 N system the enhancement of the sub-barrier fusion has not been observed. The above absorption mechanism for the 12 C+ 13 C system explains the lack of the molecular-resonance phenomena observed in the 12 C+ 12 C system. We check the effects of the dipole (E1) transition of the valence nucleon in 13 N (and also in 13 C) due to the core-core Coulomb interaction in the scattering at sub-barrier energies. The effects are not appreciable. (author)

  5. Multiple Speech Source Separation Using Inter-Channel Correlation and Relaxed Sparsity

    Directory of Open Access Journals (Sweden)

    Maoshen Jia

    2018-01-01

    Full Text Available In this work, a multiple speech source separation method using inter-channel correlation and relaxed sparsity is proposed. A B-format microphone with four spatially located channels is adopted due to the size of the microphone array to preserve the spatial parameter integrity of the original signal. Specifically, we firstly measure the proportion of overlapped components among multiple sources and find that there exist many overlapped time-frequency (TF components with increasing source number. Then, considering the relaxed sparsity of speech sources, we propose a dynamic threshold-based separation approach of sparse components where the threshold is determined by the inter-channel correlation among the recording signals. After conducting a statistical analysis of the number of active sources at each TF instant, a form of relaxed sparsity called the half-K assumption is proposed so that the active source number in a certain TF bin does not exceed half the total number of simultaneously occurring sources. By applying the half-K assumption, the non-sparse components are recovered by regarding the extracted sparse components as a guide, combined with vector decomposition and matrix factorization. Eventually, the final TF coefficients of each source are recovered by the synthesis of sparse and non-sparse components. The proposed method has been evaluated using up to six simultaneous speech sources under both anechoic and reverberant conditions. Both objective and subjective evaluations validated that the perceptual quality of the separated speech by the proposed approach outperforms existing blind source separation (BSS approaches. Besides, it is robust to different speeches whilst confirming all the separated speeches with similar perceptual quality.

  6. Effects induced by γ-radiation on the noise in junction field-effect transistors belonging to monolithic processes

    International Nuclear Information System (INIS)

    Manfredi, P.F.; Re, V.; Manfredi, P.F.; Speziali, V.; Re, V.; Manfredi, P.F.; Speziali, V.

    1999-01-01

    The effects of γ-rays on the noise characteristics of junction field-effect transistors belonging to three monolithic technologies have been investigated. A substantially different behavior of the radiation-induced noise in N and P -channel JFETs was observed. This may result in interesting design considerations. (authors)

  7. Multi-channels coupling-induced pattern transition in a tri-layer neuronal network

    Science.gov (United States)

    Wu, Fuqiang; Wang, Ya; Ma, Jun; Jin, Wuyin; Hobiny, Aatef

    2018-03-01

    Neurons in nerve system show complex electrical behaviors due to complex connection types and diversity in excitability. A tri-layer network is constructed to investigate the signal propagation and pattern formation by selecting different coupling channels between layers. Each layer is set as different states, and the local kinetics is described by Hindmarsh-Rose neuron model. By changing the number of coupling channels between layers and the state of the first layer, the collective behaviors of each layer and synchronization pattern of network are investigated. A statistical factor of synchronization on each layer is calculated. It is found that quiescent state in the second layer can be excited and disordered state in the third layer is suppressed when the first layer is controlled by a pacemaker, and the developed state is dependent on the number of coupling channels. Furthermore, the collapse in the first layer can cause breakdown of other layers in the network, and the mechanism is that disordered state in the third layer is enhanced when sampled signals from the collapsed layer can impose continuous disturbance on the next layer.

  8. Investigations of Orchestra Auralizations Using the Multi-Channel Multi-Source Auralization Technique

    DEFF Research Database (Denmark)

    Vigeant, Michelle; Wang, Lily M.; Rindel, Jens Holger

    2008-01-01

    a multi-channel multi-source auralization technique, involving individual five-channel anechoic recordings of each instrumental part of two symphonies. In the first study, these auralizations were subjectively compared to orchestra auralizations made using (a) a single omni-directional source, (b......) a surface source, and (c) single-channel multi-source method. Results show that the multi-source auralizations were rated to be more realistic than the surface source ones and to have larger source width than the single omni-directional source auralizations. No significant differences were found between......Room acoustics computer modeling is a tool for generating impulse responses and auralizations from modeled spaces. The auralizations are commonly made from a single-channel anechoic recording of solo instruments. For this investigation, auralizations of an entire orchestra were created using...

  9. AlInGaN-Based Superlattice Terahertz Source, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — WaveBand Corporation in collaboration with Virginia Commonwealth University proposes to design and fabricate a new sub-millimeter source based on an InAlGaN...

  10. Enhancement mode GaN-based multiple-submicron channel array gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors

    Science.gov (United States)

    Lee, Ching-Ting; Wang, Chun-Chi

    2018-04-01

    To study the function of channel width in multiple-submicron channel array, we fabricated the enhancement mode GaN-based gate-recessed fin metal-oxide-semiconductor high-electron mobility transistors (MOS-HEMTs) with a channel width of 450 nm and 195 nm, respectively. In view of the enhanced gate controllability in a narrower fin-channel structure, the transconductance was improved from 115 mS/mm to 151 mS/mm, the unit gain cutoff frequency was improved from 6.2 GHz to 6.8 GHz, and the maximum oscillation frequency was improved from 12.1 GHz to 13.1 GHz of the devices with a channel width of 195 nm, compared with the devices with a channel width of 450 nm.

  11. Method and system for a gas tube-based current source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  12. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    International Nuclear Information System (INIS)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua; Gong Zhao

    2008-01-01

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 μm, the splitting length of the devices is only 35 μm even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits

  13. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua [Department of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou (China); Gong Zhao [Zhejiang University City College, 310027 Hangzhou (China)

    2008-05-07

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 {mu}m, the splitting length of the devices is only 35 {mu}m even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits.

  14. Influence of the channel electric field distribution on the polarization Coulomb field scattering in AlGaN/AlN/GaN heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Yingxia Yu

    2013-09-01

    Full Text Available Using the Quasi-Two-Dimensional (quasi-2D model, the current-voltage (I-V characteristics of AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs with different gate length were simulated based on the measured capacitance-voltage (C-V characteristics and I-V characteristics. By analyzing the simulation results, we found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field scattering, and the difference of the electron mobility mostly caused by the polarization Coulomb field scattering can reach up to 1829.9 cm2/V·s for the prepared AlGaN/AlN/GaN HFET. In addition, it was also found that when the two-dimension electron gas (2DEG sheet density is modulated by the drain-source bias, the electron mobility appears peak with the variation of the 2DEG sheet density, and the ratio of gate length to drain-source distance is smaller, the 2DEG sheet density corresponding to the peak point is higher.

  15. Image transmission system using adaptive joint source and channel decoding

    Science.gov (United States)

    Liu, Weiliang; Daut, David G.

    2005-03-01

    In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.

  16. Heavy-ion fusion: Channel-coupling effects, the barrier penetration model, and the threshold anomaly for heavy-ion potentials

    International Nuclear Information System (INIS)

    Satchler, G.R.; Nagarajan, M.A.; Lilley, J.S.; Thompson, I.J.

    1987-01-01

    We study the formal structure of the influence of channel coupling on near- and sub-barrier fusion. The reduction to a one-channel description is studied, with emphasis on the channel-coupling effects being manifest primarily as an energy dependence (the ''threshold anomaly'') of the real nuclear potential. The relation to the barrier penetration model is examined critically. The results of large-scale coupled-channel calculations are used as ''data'' to illustrate the discussion. Particular emphasis is placed on the importance of reproducing correctly the partial-wave (or ''spin'') distributions. The simple barrier penetration model is found to be adequate to exhibit the strong enhancements due to channel couplings when the threshold anomaly is taken into account, although there may be important corrections due to the long-ranged peripheral absorption, especially from Coulomb excitation. copyright 1987 Academic Press, Inc

  17. Central tracker for BM@N experiment based on double side Si-microstrip detectors

    Science.gov (United States)

    Kovalev, Yu.; Kapishin, M.; Khabarov, S.; Shafronovskaia, A.; Tarasov, O.; Makankin, A.; Zamiatin, N.; Zubarev, E.

    2017-07-01

    Design of central tracker system based on Double-Sided Silicon Detectors (DSSD) for BM@N experiment is described. A coordinate plane with 10240 measuring channels, pitch adapter, reading electronics was developed. Each element was tested and assembled into a coordinate plane. The first tests of the plane with 106Ru source were carried out before installation for the BM@N experiment. The results of the study indicate that noisy channels and inefficient channels are less than 3%. In general, single clusters 87% (one group per module of consecutive strips) and 75% of clusters with a width equal to one strip.

  18. n-Channel semiconductor materials design for organic complementary circuits.

    Science.gov (United States)

    Usta, Hakan; Facchetti, Antonio; Marks, Tobin J

    2011-07-19

    Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an

  19. Coupled Landscape and Channel Dynamics in the Ganges-Brahmaputra Tidal Deltaplain, Southwest Bangladesh

    Science.gov (United States)

    Bomer, J.; Wilson, C.; Hale, R. P.

    2017-12-01

    In the Ganges-Brahmaputra Delta (GBD) and other tide-dominated systems, periodic flooding of the land surface during the tidal cycle promotes sediment accretion and surface elevation gain over time. However, over the past several decades, anthropogenic modification of the GBD tidal deltaplain through embankment construction has precluded sediment delivery to catchment areas, leading to widespread channel siltation and subsidence in poldered landscapes. Amongst the current discussion on GBD sustainability, the relationship between tidal inundation period and resultant sedimentation in natural and embanked settings remains unclear. Moreover, an evaluation of how riparian sedimentology and stratigraphic architecture changes across the GBD tidal-fluvial spectrum is notably absent, despite its critical importance in assessing geomorphic change in human-impacted transitional environments. To provide local-scale, longitudinal trends of coupled landscape-channel dynamics, an array of surface elevation tables, groundwater piezometers, and sediment traps deployed in natural and embanked settings have been monitored seasonally over a time span of 4 years. This knowledge base will be extended across the GBD tidal-fluvial transition by collecting sediment cores from carefully selected point bars along the Gorai River. Sediments will be analyzed for lithologic, biostratigraphic, and geochemical properties to provide an integrated framework for discerning depositional zones and associated facies assemblages across this complex transitional environment. Preliminary comparisons of accretion and hydroperiod data suggest that inundation duration strongly governs mass accumulation on the intertidal platform, though other factors such as mass extraction from sediment source and vegetation density may play secondary roles.

  20. Improvement of Source Number Estimation Method for Single Channel Signal.

    Directory of Open Access Journals (Sweden)

    Zhi Dong

    Full Text Available Source number estimation methods for single channel signal have been investigated and the improvements for each method are suggested in this work. Firstly, the single channel data is converted to multi-channel form by delay process. Then, algorithms used in the array signal processing, such as Gerschgorin's disk estimation (GDE and minimum description length (MDL, are introduced to estimate the source number of the received signal. The previous results have shown that the MDL based on information theoretic criteria (ITC obtains a superior performance than GDE at low SNR. However it has no ability to handle the signals containing colored noise. On the contrary, the GDE method can eliminate the influence of colored noise. Nevertheless, its performance at low SNR is not satisfactory. In order to solve these problems and contradictions, the work makes remarkable improvements on these two methods on account of the above consideration. A diagonal loading technique is employed to ameliorate the MDL method and a jackknife technique is referenced to optimize the data covariance matrix in order to improve the performance of the GDE method. The results of simulation have illustrated that the performance of original methods have been promoted largely.

  1. Sub-channel/system coupled code development and its application to SCWR-FQT loop

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2015-01-01

    Highlights: • A coupled code is developed for SCWR accident simulation. • The feasibility of the code is shown by application to SCWR-FQT loop. • Some measures are selected by sensitivity analysis. • The peak cladding temperature can be reduced effectively by the proposed measures. - Abstract: In the frame of Super-Critical Reactor In Pipe Test Preparation (SCRIPT) project in China, one of the challenge tasks is to predict the transient performance of SuperCritical Water Reactor-Fuel Qualification Test (SCWR-FQT) loop under some accident conditions. Several thermal–hydraulic codes (system code, sub-channel code) are selected to perform the safety analysis. However, the system code cannot simulate the local behavior of the test bundle, and the sub-channel code is incapable of calculating the whole system behavior of the test loop. Therefore, to combine the merits of both codes, and minimizes their shortcomings, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code COBRA-SC and system code ATHLET-SC are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the new developed coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal–hydraulic parameters are predicted by the sub-channel code COBRA-SC. The codes are utilized to get the local thermal–hydraulic parameters in the SCWR-FQT fuel bundle under some accident case (e.g. a flow blockage during LOCA). Some measures to mitigate the accident consequence are proposed by the sensitivity study and trialed to demonstrate their effectiveness in the coupled simulation. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel bundle can be reduced effectively by the safety measures

  2. Sub-channel/system coupled code development and its application to SCWR-FQT loop

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: xiaojingliu@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Cheng, X. [Institute of Fusion and Reactor Technology, Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany)

    2015-04-15

    Highlights: • A coupled code is developed for SCWR accident simulation. • The feasibility of the code is shown by application to SCWR-FQT loop. • Some measures are selected by sensitivity analysis. • The peak cladding temperature can be reduced effectively by the proposed measures. - Abstract: In the frame of Super-Critical Reactor In Pipe Test Preparation (SCRIPT) project in China, one of the challenge tasks is to predict the transient performance of SuperCritical Water Reactor-Fuel Qualification Test (SCWR-FQT) loop under some accident conditions. Several thermal–hydraulic codes (system code, sub-channel code) are selected to perform the safety analysis. However, the system code cannot simulate the local behavior of the test bundle, and the sub-channel code is incapable of calculating the whole system behavior of the test loop. Therefore, to combine the merits of both codes, and minimizes their shortcomings, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code COBRA-SC and system code ATHLET-SC are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the new developed coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal–hydraulic parameters are predicted by the sub-channel code COBRA-SC. The codes are utilized to get the local thermal–hydraulic parameters in the SCWR-FQT fuel bundle under some accident case (e.g. a flow blockage during LOCA). Some measures to mitigate the accident consequence are proposed by the sensitivity study and trialed to demonstrate their effectiveness in the coupled simulation. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel bundle can be reduced effectively by the safety measures

  3. A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors

    Science.gov (United States)

    Ratcliff, Erin L.; Veneman, P. Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel

    2010-01-01

    We present a simple chip-based refractometer with a central organic light emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence emission from an Alq3/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) and light detection with planar heterojunction pentacene/C60 OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin film OLEDs that is coupled into guided modes in the IRE instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions, a “sample” and “reference” channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) which might influence sensor response. The dual beam configuration permits significantly enhanced sensitivity to refractive index changes relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (ΔR.I.) between 10−2 and 10−3 R.I. units could be detected for single channel operation, with sensitivity increased to ΔR.I. ≈ 10−4 units when the dual beam configuration is employed. PMID:20218580

  4. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators.

    Science.gov (United States)

    Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu

    2018-03-01

    Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A ligand channel through the G protein coupled receptor opsin.

    Directory of Open Access Journals (Sweden)

    Peter W Hildebrand

    Full Text Available The G protein coupled receptor rhodopsin contains a pocket within its seven-transmembrane helix (TM structure, which bears the inactivating 11-cis-retinal bound by a protonated Schiff-base to Lys296 in TM7. Light-induced 11-cis-/all-trans-isomerization leads to the Schiff-base deprotonated active Meta II intermediate. With Meta II decay, the Schiff-base bond is hydrolyzed, all-trans-retinal is released from the pocket, and the apoprotein opsin reloaded with new 11-cis-retinal. The crystal structure of opsin in its active Ops* conformation provides the basis for computational modeling of retinal release and uptake. The ligand-free 7TM bundle of opsin opens into the hydrophobic membrane layer through openings A (between TM1 and 7, and B (between TM5 and 6, respectively. Using skeleton search and molecular docking, we find a continuous channel through the protein that connects these two openings and comprises in its central part the retinal binding pocket. The channel traverses the receptor over a distance of ca. 70 A and is between 11.6 and 3.2 A wide. Both openings are lined with aromatic residues, while the central part is highly polar. Four constrictions within the channel are so narrow that they must stretch to allow passage of the retinal beta-ionone-ring. Constrictions are at openings A and B, respectively, and at Trp265 and Lys296 within the retinal pocket. The lysine enforces a 90 degrees elbow-like kink in the channel which limits retinal passage. With a favorable Lys side chain conformation, 11-cis-retinal can take the turn, whereas passage of the all-trans isomer would require more global conformational changes. We discuss possible scenarios for the uptake of 11-cis- and release of all-trans-retinal. If the uptake gate of 11-cis-retinal is assigned to opening B, all-trans is likely to leave through the same gate. The unidirectional passage proposed previously requires uptake of 11-cis-retinal through A and release of photolyzed all

  6. Novel low-temperature processing of low noise SDDs with on-detector electronics

    International Nuclear Information System (INIS)

    Sonsky, J.; Koornneef, R.; Huizenga, J.; Hollander, R.W.; Nanver, L.K.; Scholtes, T.; Roozeboom, F.; Eijk, C.W.E. van

    2004-01-01

    We have developed a fabrication process (SMART700 deg. process) for monolithic integration of p-channel JFETs and silicon detectors. Processing steps of the SMART700 deg. do not exceed 700 deg. C. The integrated p-JFET has a minimum gate length of 1 μm. A relatively large width can be chosen to achieve a reasonable transconductance, while the JFET capacitance still matches the small capacitance of a detector. The feedback capacitor was also realized on-chip as a double-metal capacitor. In this paper we describe DC and noise characteristics of a silicon drift detector (SDD) with a p-JFET (W/L=100/1) and a feedback capacitor integrated in the read-out anode (smart-SDD). The device has a transconductance of 1-3 mS, a top gate capacitance of ∼140 fF and a low leakage current ( 2 at room temperature). The smart-SDD with an active area of 3.8 mm 2 has reached an energy resolution of ∼50 rms electrons at a temperature of 213 K. This relatively poor energy resolution is due to generation-recombination noise caused by defects produced by a deep n-implantation. Rapid thermal annealing (RTA) and excimer laser annealing (ELA) techniques are experimented to remove the implantation damage. The noise of p-JFETs annealed with RTA and ELA is also presented

  7. Coupling of a single NV center to a fiber-based microcavity

    International Nuclear Information System (INIS)

    Christoph Becher

    2014-01-01

    The read-out of the spin state of a NV center in diamond or the transfer of quantum information between its spin and a photon would profit enormously from coupling the NV center's optical transitions to a microcavity with a highly directional output. We here report on such a coupling of a single NV center in a nanodiamond to a fiber-based, tunable microcavity at room temperature. Making use of the NV center's strongly broadened emission we operate in the regime of phonon-assisted cavity seeding and realize a widely tunable, narrow-band single photon source. A master equation model well reproduces our experimental results and predicts a transition into a Purcell-enhanced emission regime at low temperatures where up to 65% of the NV emission would be channeled into the cavity mode for our given experimental parameters. Further reducing scattering losses from the nanodiamonds could enable schemes for cavity-enhanced spin measurements or creation of entangled states. (author)

  8. 4H-SiC JFET Multilayer Integrated Circuit Technologies Tested Up to 1000 K

    Science.gov (United States)

    Spry, D. J.; Neudeck, P. G.; Chen, L.; Chang, C. W.; Lukco, D.; Beheim, G. M.

    2015-01-01

    Testing of semiconductor electronics at temperatures above their designed operating envelope is recognized as vital to qualification and lifetime prediction of circuits. This work describes the high temperature electrical testing of prototype 4H silicon carbide (SiC) junction field effect transistor (JFET) integrated circuits (ICs) technology implemented with multilayer interconnects; these ICs are intended for prolonged operation at temperatures up to 773K (500 C). A 50 mm diameter sapphire wafer was used in place of the standard NASA packaging for this experiment. Testing was carried out between 300K (27 C) and 1150K (877 C) with successful electrical operation of all devices observed up to 1000K (727 C).

  9. Effect of isovector coupling channel on the macroscopic part of the nuclear binding energy

    International Nuclear Information System (INIS)

    Haddad, S.

    2011-04-01

    The effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy is determined utilizing the relativistic density dependent Thomas-Fermi approach for the calculation of the macroscopic part of the nuclear binding energy, and the dependency of this effect on the numbers of neutrons and protons is studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect sharpens with growing excess of the number of neutrons on the number of protons. (author)

  10. Modeling satellite-Earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers

    Science.gov (United States)

    Gruneisen, Mark T.; Flanagan, Michael B.; Sickmiller, Brett A.

    2017-12-01

    The efficient coupling of photons from a free-space quantum channel into a single-mode optical fiber (SMF) has important implications for quantum network concepts involving SMF interfaces to quantum detectors, atomic systems, integrated photonics, and direct coupling to a fiber network. Propagation through atmospheric turbulence, however, leads to wavefront errors that degrade mode matching with SMFs. In a free-space quantum channel, this leads to photon losses in proportion to the severity of the aberration. This is particularly problematic for satellite-Earth quantum channels, where atmospheric turbulence can lead to significant wavefront errors. This report considers propagation from low-Earth orbit to a terrestrial ground station and evaluates the efficiency with which photons couple either through a circular field stop or into an SMF situated in the focal plane of the optical receiver. The effects of atmospheric turbulence on the quantum channel are calculated numerically and quantified through the quantum bit error rate and secure key generation rates in a decoy-state BB84 protocol. Numerical simulations include the statistical nature of Kolmogorov turbulence, sky radiance, and an adaptive-optics system under closed-loop control.

  11. Recent advances in acceleration of source iterations for fixed-source slab-geometry S{sub N} calculations based on P{sub N} synthetic initial guess

    Energy Technology Data Exchange (ETDEWEB)

    Guida, Mateus Rodrigues; Alves Filho, Hermes; Barros, Ricardo C., E-mail: mguida@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-Graduacao em Modelagem Computacional

    2015-07-01

    The scattering source iterative (SI) scheme is applied traditionally to converge fine-mesh numerical solutions to fixed-source discrete ordinates (S{sub N}) neutron transport problems with linearly anisotropic scattering. The SI scheme is very simple to implement under a computational viewpoint. However, the SI scheme may show very slow convergence rate, mainly for diffusive media (low absorption) with several mean free paths in extent. In this work we describe two acceleration techniques based on improved initial guesses for the SI scheme, wherein we initialize the scattering source distribution within the slab using the P{sub 1} and P{sub 3} approximations. In order to estimate these initial guesses, we use the coarse-mesh solution of the PN equations with special boundary conditions to account for the classical S{sub N} prescribed boundary conditions, including vacuum boundary conditions. To apply this coarse-mesh P{sub N} solution for the accelerated scheme, we first perform within-node spatial reconstruction, and then we determine the fine-mesh average scalar flux and total current for initializing the linearly anisotropic scattering source terms for the SI scheme. We consider a number of numerical experiments to illustrate the efficiency of the offered P{sub N} synthetic acceleration (P{sub N}SA) technique based on initial guess. (author)

  12. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    Science.gov (United States)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  13. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    International Nuclear Information System (INIS)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-01-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection

  14. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    Energy Technology Data Exchange (ETDEWEB)

    Deen, David A.; Osinsky, Andrei; Miller, Ross [Agnitron Technology Incorporated, Eden Prairie, Minnesota 55346 (United States)

    2014-03-03

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  15. Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels

    Science.gov (United States)

    Li, Haoran; Wienecke, Steven; Romanczyk, Brian; Ahmadi, Elaheh; Guidry, Matthew; Zheng, Xun; Keller, Stacia; Mishra, Umesh K.

    2018-02-01

    A GaN/InGaN composite channel design for vertically scaled N-polar high-electron-mobility transistor (HEMT) structures is proposed and demonstrated by metal-organic chemical vapor deposition. In a conventional N-polar HEMT structure, as the channel thickness (tch) decreases, the sheet charge density (ns) decreases, the electric field in the channel increases, and the centroid of the two-dimensional electron gas (2DEG) moves towards the back-barrier/channel interface, resulting in stronger scattering and lower electron mobility (μ). In this study, a thin InGaN layer was introduced in-between the channel and the AlGaN cap to increase the 2DEG density and reduce the electric field in the channel and therefore increase the electron mobility. The dependence of μ on the InGaN thickness (tInGaN) and the indium composition (xIn) was investigated for different channel thicknesses. With optimized tInGaN and xIn, significant improvements in electron mobility were observed. For a 6 nm channel HEMT structure, the electron mobility increased from 606 to 1141 cm2/(V.s) when the 6 nm thick pure GaN channel was replaced by the 4 nm GaN/2 nm In0.1Ga0.9N composite channel.

  16. The Effect of Extending the Length of the Coupling Coils in a Muon Ionization Cooling Channel

    International Nuclear Information System (INIS)

    Green, Michael A.

    2007-01-01

    RF cavities are used to re-accelerate muons that have been cooled by absorbers that are in low beta regions of a muon ionization cooling channel. A superconducting coupling magnet (or magnets) are around or among the RF cavities of a muon ionization-cooling channel. The field from the magnet guides the muons so that they are kept within the iris of the RF cavities that are used to accelerate the muons. This report compares the use of a single short coupling magnet with an extended coupling magnet that has one or more superconducting coils as part of a muon-cooling channel of the same design as the muon ionization cooling experiment (MICE). Whether the superconducting magnet is short and thick or long and this affects the magnet stored energy and the peak field in the winding. The magnetic field distribution also affects is the muon beam optics in the cooling cell of a muon cooling channel

  17. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido

  18. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Fossorier Marc

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope -ary phase shift key ( -PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded -PSK signaling (with . Then, it is extended to include coded -PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded -PSK signaling performs 3.1 to 5.2 dB better than uncoded -PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  19. Physics and numerical methods of OPTMAN. A coupled-channels method based on soft-rotator model for a description of collective nuclear structure and excitations

    International Nuclear Information System (INIS)

    Soukhovitskii, Efrem Sh.; Morogovskii, Gennadij B.; Chiba, Satoshi; Iwamoto, Osamu; Fukahori, Tokio

    2004-03-01

    This report gives a detailed description of the theory and computational algorithms of modernized coupled-channels optical model code OPTMAN based on the soft-rotator model for the collective nuclear structure and excitations. This work was performed under the Project Agreement B-521 with the International Science and Technology Center (Moscow), financing party of which is Japan. As a result of this work, the computational method of OPTMAN was totally updated, and an user-friendly interface was attached. (author)

  20. An eight channel low-noise CMOS readout circuit for silicon detectors with on-chip front-end FET

    International Nuclear Information System (INIS)

    Fiorini, C.; Porro, M.

    2006-01-01

    We propose a CMOS readout circuit for the processing of signals from multi-channel silicon detectors to be used in X-ray spectroscopy and γ-ray imaging applications. The circuit is composed by eight channels, each one featuring a low-noise preamplifier, a 6th-order semigaussian shaping amplifier with four selectable peaking times, from 1.8 up to 6 μs, a peak stretcher and a discriminator. The circuit is conceived to be used with silicon detectors with a front-end FET integrated on the detector chips itself, like silicon drift detectors with JFET and pixel detectors with DEPMOS. The integrated time constants used for the shaping are implemented by means of an RC-cell, based on the technique of demagnification of the current flowing in a resistor R by means of the use of current mirrors. The eight analog channels of the chip are multiplexed to a single analog output. A suitable digital section provides self-resetting of each channel and trigger output and is able to set independent thresholds on the analog channels by means of a programmable serial register and 3-bit DACs. The circuit has been realized in the 0.35 μm CMOS AMS technology. In this work, the main features of the circuit are presented along with the experimental results of its characterization

  1. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  2. Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in Caiman retina.

    Directory of Open Access Journals (Sweden)

    Astrid Zayas-Santiago

    Full Text Available Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown.We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus, endowed with both diurnal and nocturnal vision, by (i immunohistochemistry, (ii whole-cell voltage-clamp, and (iii fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications.Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100β, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling.Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.

  3. Channel-coupling theory of covalent bonding in H2: A further application of arrangement-channel quantum mechanics

    International Nuclear Information System (INIS)

    Levin, F.S.; Krueger, H.

    1977-01-01

    The dissociation energy D/sub e/ and the equilibrium proton-proton separation R/sub eq/ of H 2 are calculated using the methods of arrangement-channel quantum mechanics. This theory is the channel component version of the channel-coupling array approach to many-body scattering, applied to bound-state problems. In the approximation used herein, the wave function is identical to that of the classic Heitler-London-Sugiura valence-bond calculation, which gave D/sub e/ = 3.14 eV and R/sub eq/ = 1.65a 0 , values accurate to 34% and 17.8%, respectively. The present method yields D/sub e/ = 4.437 eV and R/sub eq/ approx. = 1.42a 0 , accurate to 6.5% and 1%, respectively. Some implications of these results are discussed

  4. Photo-Ionization of Noble Gases: A Demonstration of Hybrid Coupled Channels Approach

    Directory of Open Access Journals (Sweden)

    Vinay Pramod Majety

    2015-01-01

    Full Text Available We present here an application of the recently developed hybrid coupled channels approach to study photo-ionization of noble gas atoms: Neon and Argon. We first compute multi-photon ionization rates and cross-sections for these inert gas atoms with our approach and compare them with reliable data available from R-matrix Floquet theory. The good agreement between coupled channels and R-matrix Floquet theory show that our method treats multi-electron systems on par with the well established R-matrix theory. We then apply the time dependent surface flux (tSURFF method with our approach to compute total and angle resolved photo-electron spectra from Argon with linearly and circularly polarized 12 nm wavelength laser fields, a typical wavelength available from Free Electron Lasers (FELs.

  5. Complementary HFET technology for wireless digital and microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Baca, A.G.; Zolper, J.C.; Dubbert, D.F. [and others

    1996-09-01

    Development of a complementary heterostructure field effect transistor (CHFET) technology for low-power, mixed-mode digital-microwave applications is presented. Digital CHFET technology with independently optimizable transistors has been shown to operate with 319 ps loaded gate delays at 8.9 fJ. Power consumption is dominated by leakage currents of the p-channel FET, while performance is determined by the characteristics of 0.7 {mu}m gate length devices. As a microwave technology, the nJFET forms the basis of low-power cirucitry without any modification to the digital process. Narrow band amplification with a 0.7x100 {mu}m nJFET has been demonstrated at 2.1-2.4 GHz with gains of 8-10 dB at 1 mW power. These amplifiers showed a minimum noise figure of 2.5 dB. Next generation CHFET transistors with sub 0.5 {mu}m gate lengths have also been developed. Cutoff frequencies of 49 and 11.5 GHz were achieved for n- and p-channel FETs with 0.3 and 0.4 {mu}m gates, respectively. These FETs will enable enhancements in both digital and microwave circuits.

  6. Integrated thin film Si fluorescence sensor coupled with a GaN microLED for microfluidic point-of-care testing

    Science.gov (United States)

    Robbins, Hannah; Sumitomo, Keiko; Tsujimura, Noriyuki; Kamei, Toshihiro

    2018-02-01

    An integrated fluorescence sensor consisting of a SiO2/Ta2O5 multilayer optical interference filter and hydrogenated amorphous silicon (a-Si:H) pin photodiode was coupled with a GaN microLED to construct a compact fluorescence detection module for point-of-care microfluidic biochemical analysis. The combination of the small size of the GaN microLED and asymmetric microlens resulted in a focal spot diameter of the excitation light of approximately 200 µm. The limit of detection of the sensor was as high as 36 nM for fluorescein solution flowing in a 100 µm deep microfluidic channel because of the lack of directionality of the LED light. Nevertheless, we used the GaN microLED coupled with the a-Si:H fluorescence sensor to successfully detect fluorescence from a streptavidin R-phycoerythrin conjugate that bound to biotinylated antibody-coated microbeads trapped by the barrier in the microfluidic channel.

  7. Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus

    International Nuclear Information System (INIS)

    Wang, Jing-Fang; Wei, Dong-Qing; Chou, Kuo-Chen

    2009-01-01

    The M2 proton channel is one of indispensable components for the influenza A virus that plays a vital role in its life cycle and hence is an important target for drug design against the virus. In view of this, the three-dimensional structure of the H1N1-M2 channel was developed based on the primary sequence taken from a patient recently infected by the H1N1 (swine flu) virus. With an explicit water-membrane environment, molecular docking studies were performed for amantadine and rimantadine, the two commercial drugs generally used to treat influenza A infection. It was found that their binding affinity to the H1N1-M2 channel is significantly lower than that to the H5N1-M2 channel, fully consistent with the recent report that the H1N1 swine virus was resistant to the two drugs. The findings and the relevant analysis reported here might provide useful structural insights for developing effective drugs against the new swine flu virus.

  8. Asymmetric Joint Source-Channel Coding for Correlated Sources with Blind HMM Estimation at the Receiver

    Directory of Open Access Journals (Sweden)

    Ser Javier Del

    2005-01-01

    Full Text Available We consider the case of two correlated sources, and . The correlation between them has memory, and it is modelled by a hidden Markov chain. The paper studies the problem of reliable communication of the information sent by the source over an additive white Gaussian noise (AWGN channel when the output of the other source is available as side information at the receiver. We assume that the receiver has no a priori knowledge of the correlation statistics between the sources. In particular, we propose the use of a turbo code for joint source-channel coding of the source . The joint decoder uses an iterative scheme where the unknown parameters of the correlation model are estimated jointly within the decoding process. It is shown that reliable communication is possible at signal-to-noise ratios close to the theoretical limits set by the combination of Shannon and Slepian-Wolf theorems.

  9. Optical model representation of coupled channel effects

    International Nuclear Information System (INIS)

    Wall, N.S.; Cowley, A.A.; Johnson, R.C.; Kobas, A.M.

    1977-01-01

    A modification to the usual 6-parameter Woods-Saxon parameterization of the optical model for the scattering of composite particles is proposed. This additional real term reflects the effect of coupling other channels to the elastic scattering. The analyses favor a repulsive interaction for this term, especially for alpha particles. It is found that the repulsive term when combined with a Woods-Saxon term yields potentials with central values and volume integrals similar to those found by uncoupled elastic scattering calculations. These values are V(r = 0) approximately equal to 125 MeV and J/4A approximately equal to 300 MeV-fm 3

  10. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Marc Fossorier

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope M-ary phase shift key (M-PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded M-PSK signaling (with M=2k. Then, it is extended to include coded M-PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded M-PSK signaling performs 3.1 to 5.2 dB better than uncoded M-PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  11. Alternative RF coupling configurations for H− ion sources

    International Nuclear Information System (INIS)

    Briefi, S.; Fantz, U.; Gutmann, P.

    2015-01-01

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H − current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region

  12. Channel estimation in DFT-based offset-QAM OFDM systems.

    Science.gov (United States)

    Zhao, Jian

    2014-10-20

    Offset quadrature amplitude modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) exhibits enhanced net data rates compared to conventional OFDM, and reduced complexity compared to Nyquist FDM (N-FDM). However, channel estimation in discrete-Fourier-transform (DFT) based offset-QAM OFDM is different from that in conventional OFDM and requires particular study. In this paper, we derive a closed-form expression for the demultiplexed signal in DFT-based offset-QAM systems and show that although the residual crosstalk is orthogonal to the decoded signal, its existence degrades the channel estimation performance when the conventional least-square method is applied. We propose and investigate four channel estimation algorithms for offset-QAM OFDM that vary in terms of performance, complexity, and tolerance to system parameters. It is theoretically and experimentally shown that simple channel estimation can be realized in offset-QAM OFDM with the achieved performance close to the theoretical limit. This, together with the existing advantages over conventional OFDM and N-FDM, makes this technology very promising for optical communication systems.

  13. N-channel thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride with ultrathin polymer gate buffer layer

    International Nuclear Information System (INIS)

    Tanida, Shinji; Noda, Kei; Kawabata, Hiroshi; Matsushige, Kazumi

    2009-01-01

    N-channel operation of thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA) with a 9-nm-thick poly(methyl methacrylate) (PMMA) gate buffer layer was examined. The uniform coverage of the ultrathin PMMA layer on an SiO 2 gate insulator, verified by X-ray reflectivity measurement, caused the increase of electron field-effect mobility because of the suppression of electron traps existing on the SiO 2 surface. In addition, air stability for n-channel operation of the NTCDA transistor was also improved by the PMMA layer which possibly prevented the adsorption of ambient water molecules onto the SiO 2 surface.

  14. Two new integrable couplings of the soliton hierarchies with self-consistent sources

    International Nuclear Information System (INIS)

    Tie-Cheng, Xia

    2010-01-01

    A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s-tilde l(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra s-tilde l(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources. (general)

  15. Towards Holography via Quantum Source-Channel Codes

    Science.gov (United States)

    Pastawski, Fernando; Eisert, Jens; Wilming, Henrik

    2017-07-01

    While originally motivated by quantum computation, quantum error correction (QEC) is currently providing valuable insights into many-body quantum physics, such as topological phases of matter. Furthermore, mounting evidence originating from holography research (AdS/CFT) indicates that QEC should also be pertinent for conformal field theories. With this motivation in mind, we introduce quantum source-channel codes, which combine features of lossy compression and approximate quantum error correction, both of which are predicted in holography. Through a recent construction for approximate recovery maps, we derive guarantees on its erasure decoding performance from calculations of an entropic quantity called conditional mutual information. As an example, we consider Gibbs states of the transverse field Ising model at criticality and provide evidence that they exhibit nontrivial protection from local erasure. This gives rise to the first concrete interpretation of a bona fide conformal field theory as a quantum error correcting code. We argue that quantum source-channel codes are of independent interest beyond holography.

  16. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    International Nuclear Information System (INIS)

    Haddad, S.

    2010-01-01

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)

  17. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  18. Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source

    Directory of Open Access Journals (Sweden)

    Ruizhi Chen

    2010-07-01

    Full Text Available Recent advances in nonlinear fiber optics and compact pulsed lasers have resulted in creation of broadband directional light sources. These supercontinuum laser sources produce directional broadband light using cascaded nonlinear optical interactions in an optical fibre framework. This system is used to simultaneously measure distance and reflectance to demonstrate a technique capable of distinguishing between a vegetation target and inorganic material using the Normalized Difference Vegetation Index (NDVI parameters, while the range can be obtained from the waveform of the echoes. A two-channel, spectral range-finding system based on a supercontinuum laser source was used to determine its potential application of distinguishing the NDVI for Norway spruce, a coniferous tree, and its three-dimensional parameters at 600 nm and 800 nm. A prototype system was built using commercial components.

  19. Top-Contact Pentacene-Based Organic Thin Film Transistor (OTFT) with N, N'-Bis(3-Methyl Phenyl)- N, N'-Diphenyl Benzidine (TPD)/Au Bilayer Source-Drain Electrode

    Science.gov (United States)

    Borthakur, Tribeni; Sarma, Ranjit

    2018-01-01

    A top-contact Pentacene-based organic thin film transistor (OTFT) with N, N'-Bis (3-methyl phenyl)- N, N'-diphenyl benzidine (TPD)/Au bilayer source-drain electrode is reported. The devices with TPD/Au bilayer source-drain (S-D) electrodes show better performance than the single layer S-D electrode OTFT devices. The field-effect mobility of 4.13 cm2 v-1 s-1, the on-off ratio of 1.86 × 107, the threshold voltage of -4 v and the subthreshold slope of .27 v/decade, respectively, are obtained from the device with a TPD/Au bilayer source-drain electrode.

  20. Light mesons and separated J(PC) sources in N-antiN annihilations at rest

    International Nuclear Information System (INIS)

    Lucaci-Timoce, Angela; Lazanu, I.

    2002-01-01

    N-antiN annihilations at rest and in flight are the most productive physics tools to investigate the spectroscopy of light mesons. The annihilations proceed from more sources of initial states, with different J (PC) quantum numbers. This makes the interpretation of the experimental data much more difficult than in the case of other annihilation process, as for example the e + e - annihilations, and introduces ambiguities in the results. In this talk, the possibilities to separate the N-antiN contributions of initial quantum states in different annihilation channels, are analyzed. The interference phenomena that appear are also discussed. (authors)

  1. 9Be scattering with microscopic wave functions and the continuum-discretized coupled-channel method

    Science.gov (United States)

    Descouvemont, P.; Itagaki, N.

    2018-01-01

    We use microscopic 9Be wave functions defined in a α +α +n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the stochastic variational method, and the optimal solution is obtained by superposing Slater determinants and by diagonalizing the Hamiltonian. The 9Be three-body continuum is approximated by square-integral wave functions. The 9Be microscopic wave functions are then used in a continuum-discretized coupled-channel (CDCC) calculation of 9Be+208Pb and of 9Be+27Al elastic scattering. Without any parameter fitting, we obtain a fair agreement with experiment. For a heavy target, the influence of 9Be breakup is important, while it is weaker for light targets. This result confirms previous nonmicroscopic CDCC calculations. One of the main advantages of the microscopic CDCC is that it is based on nucleon-target interactions only; there is no adjustable parameter. The present work represents a first step towards more ambitious calculations involving heavier Be isotopes.

  2. Effect of the isovector coupling channel on the macroscopic part of ...

    Indian Academy of Sciences (India)

    Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria. E-mail: pscientific@aec.org.sy. MS received 10 June 2012; revised 18 October 2012; accepted 12 December 2012. Abstract. The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied ...

  3. Coupled-channel analysis of nucleon scattering from 40Ca

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Honore, G.M.; Tornow, W.; Walter, R.L.

    1985-05-01

    Differential cross sections and analyzing powers for neutron scattering from 40 Ca have been measured at TUNL in the 10-17 MeV energy range. These measurements and other σ(theta) and σsub(T) measurements, as well as available 40 Ca+p data, have been combined together in a coupled-channel analysis in order to trace the properties (energy dependencies, spin-orbit potentials, deformation parameters) of the nucleon + 40 Ca potential up to 80 MeV

  4. Coupled-channel analysis of nucleon scattering from 40Ca

    International Nuclear Information System (INIS)

    Delaroche, J.-P.; Honore, G.M.; Tornow, W.; Walter, R.L.

    1986-01-01

    Differential cross sections and analyzing powers for neutron scattering from 40 Ca have been measured at TUNL in the 10-17 MeV energy range. These measurements and other σ(theta) and σsub(T) measurements, as well as available 40 Ca+p data, have been combined together in a coupled-channel analysis in order to trace the properties (energy dependencies, spin-orbit potentials, deformation parameters) of the nucleon + 40 Ca potential up to 80 MeV. (author)

  5. Coupled Model of channels in parallel and neutron kinetics in two dimensions

    International Nuclear Information System (INIS)

    Cecenas F, M.; Campos G, R.M.; Valle G, E. del

    2004-01-01

    In this work an arrangement of thermohydraulic channels is presented that represent those four quadrants of a nucleus of reactor type BWR. The channels are coupled to a model of neutronic in two dimensions that allow to generate the radial profile of power of the reactor. Nevertheless that the neutronic pattern is of two dimensions, it is supplemented with axial additional information when considering the axial profiles of power for each thermo hydraulic channel. The stationary state is obtained the one it imposes as frontier condition the same pressure drop for all the channels. This condition is satisfied to iterating on the flow of coolant in each channel to equal the pressure drop in all the channels. This stationary state is perturbed later on when modifying the values for the effective sections corresponding to an it assembles. The calculation in parallel of the neutronic and the thermo hydraulic is carried out with Vpm (Virtual parallel machine) by means of an outline teacher-slave in a local net of computers. (Author)

  6. Multi-channel spintronic transistor design based on magnetoelectric barriers and spin-orbital effects

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a spin transistor design based on spin-orbital interactions in a two-dimensional electron gas, with magnetic barriers induced by a patterned ferromagnetic gate. The proposed device overcomes certain shortcomings of previous spin transistor designs such as long device length and degradation of conductance modulation for multi-channel transport. The robustness of our device for multi-channel transport is unique in spin transistor designs based on spin-orbit coupling. The device is more practical in fabrication and experimental respects compared to previously conceived single-mode spin transistors

  7. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions.

    Science.gov (United States)

    Ruiz-Castillo, Paula; Buchwald, Stephen L

    2016-10-12

    Pd-catalyzed cross-coupling reactions that form C-N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C-N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

  8. Magnetically coupled impedance-source inverters

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2012-01-01

    input-to-output gain, and the presence of an impedance network. The former means a high dc-link voltage, which can stress the semiconductor switches unnecessarily. The latter leads to increases in cost and size, which similarly are undesirable. To lessen these concerns, an interesting approach is to use...... magnetically coupled transformers or inductors to raise the gain and modulation ratio simultaneously, while reducing the number of passive components needed. A study of the approach is now presented to show how various existing magnetically coupled inverters can be derived by applying a generic methodology....... The same methodology is then applied to develop more magnetically coupled Z-source inverters with advantages that have not been identified in the literature. These findings have already been proven in experiments....

  9. Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values

    International Nuclear Information System (INIS)

    Ma Xiao-Hua; Zhang Ya-Man; Chen Wei-Wei; Wang Xin-Hua; Yuan Ting-Ting; Pang Lei; Liu Xin-Yu

    2015-01-01

    In this paper, the off-state breakdown characteristics of two different AlGaN/GaN high electron mobility transistors (HEMTs), featuring a 50-nm and a 150-nm GaN thick channel layer, respectively, are compared. The HEMT with a thick channel exhibits a little larger pinch-off drain current but significantly enhanced off-state breakdown voltage (BV off ). Device simulation indicates that thickening the channel increases the drain-induced barrier lowering (DIBL) but reduces the lateral electric field in the channel and buffer underneath the gate. The increase of BV off in the thick channel device is due to the reduction of the electric field. These results demonstrate that it is necessary to select an appropriate channel thickness to balance DIBL and BV off in AlGaN/GaN HEMTs. (paper)

  10. Design of Active N-path Filters

    NARCIS (Netherlands)

    Darvishi, M.; van der Zee, Ronan A.R.; Nauta, Bram

    2013-01-01

    A design methodology for synthesis of active N-path bandpass filters is introduced. Based on this methodology, a 0.1-to-1.2 GHz tunable 6th-order N-path channel-select filter in 65 nm LP CMOS is introduced. It is based on coupling N-path filters with gyrators, achieving a “flat‿ passband shape and

  11. Coupled channel analysis of s-wave ππ and K anti-K photoproduction

    International Nuclear Information System (INIS)

    Chueng-Ryong Ji; Szczepaniak, A.; Kaminski, R.; Lesniak, L.; Williams, R.

    1997-10-01

    We present a coupled channel partial wave analysis of non-diffractive S-wave π + π - and K + K - photoproduction focusing on the K anti-K threshold. Final state interactions are included. We calculate total cross sections, angular and effective mass distributions in both ππ and K anti-K channels. Our results indicate that these processes are experimentally measurable and valuable information on the f 0 (980) resonance structure can be obtained. (author)

  12. Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites.

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-11-21

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

  13. Sound source localization and segregation with internally coupled ears

    DEFF Research Database (Denmark)

    Bee, Mark A; Christensen-Dalsgaard, Jakob

    2016-01-01

    to their correct sources (sound source segregation). Here, we review anatomical, biophysical, neurophysiological, and behavioral studies aimed at identifying how the internally coupled ears of frogs contribute to sound source localization and segregation. Our review focuses on treefrogs in the genus Hyla......, as they are the most thoroughly studied frogs in terms of sound source localization and segregation. They also represent promising model systems for future work aimed at understanding better how internally coupled ears contribute to sound source localization and segregation. We conclude our review by enumerating...

  14. A 1D-2D coupled SPH-SWE model applied to open channel flow simulations in complicated geometries

    Science.gov (United States)

    Chang, Kao-Hua; Sheu, Tony Wen-Hann; Chang, Tsang-Jung

    2018-05-01

    In this study, a one- and two-dimensional (1D-2D) coupled model is developed to solve the shallow water equations (SWEs). The solutions are obtained using a Lagrangian meshless method called smoothed particle hydrodynamics (SPH) to simulate shallow water flows in converging, diverging and curved channels. A buffer zone is introduced to exchange information between the 1D and 2D SPH-SWE models. Interpolated water discharge values and water surface levels at the internal boundaries are prescribed as the inflow/outflow boundary conditions in the two SPH-SWE models. In addition, instead of using the SPH summation operator, we directly solve the continuity equation by introducing a diffusive term to suppress oscillations in the predicted water depth. The performance of the two approaches in calculating the water depth is comprehensively compared through a case study of a straight channel. Additionally, three benchmark cases involving converging, diverging and curved channels are adopted to demonstrate the ability of the proposed 1D and 2D coupled SPH-SWE model through comparisons with measured data and predicted mesh-based numerical results. The proposed model provides satisfactory accuracy and guaranteed convergence.

  15. Double-Nanodomain Coupling of Calcium Channels, Ryanodine Receptors, and BK Channels Controls the Generation of Burst Firing.

    Science.gov (United States)

    Irie, Tomohiko; Trussell, Laurence O

    2017-11-15

    Action potentials clustered into high-frequency bursts play distinct roles in neural computations. However, little is known about ionic currents that control the duration and probability of these bursts. We found that, in cartwheel inhibitory interneurons of the dorsal cochlear nucleus, the likelihood of bursts and the interval between their spikelets were controlled by Ca 2+ acting across two nanodomains, one between plasma membrane P/Q Ca 2+ channels and endoplasmic reticulum (ER) ryanodine receptors and another between ryanodine receptors and large-conductance, voltage- and Ca 2+ -activated K + (BK) channels. Each spike triggered Ca 2+ -induced Ca 2+ release (CICR) from the ER immediately beneath somatic, but not axonal or dendritic, plasma membrane. Moreover, immunolabeling demonstrated close apposition of ryanodine receptors and BK channels. Double-nanodomain coupling between somatic plasma membrane and hypolemmal ER cisterns provides a unique mechanism for rapid control of action potentials on the millisecond timescale. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    Science.gov (United States)

    Rodriguez, J Alexis P; Kargel, Jeffrey S; Baker, Victor R; Gulick, Virginia C; Berman, Daniel C; Fairén, Alberto G; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-08

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System's most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet's upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which at the time was completely submerged under a primordial northern plains ocean [corrected]. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation.

  17. Measurement of the Higgs boson coupling properties in the diphoton, ZZ and WW decay channels using the ATLAS detector

    CERN Document Server

    Gupta, Ruchi; The ATLAS collaboration

    2017-01-01

    The coupling properties of the Higgs boson are studied in the diphoton, ZZ to four-lepton decay channels using 36.1 fb$^{-1}$ of $pp$ collision data from the LHC at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. Measurements of simplified template cross sections, designed to measure the different Higgs boson production processes in specific regions of phase space, are reported for diphoton and four-leptons decay channels. Cross sections for different higgs boson production modes are interpreted in terms of coupling modifiers. In ZZ decay channel, the tensor structure of the Higgs boson couplings is studied using an effective Lagrangian approach for the description of interactions beyond the Standard Model.

  18. Study of doubly excited states of H- and He in the coupled-channel hypersperical adiabatic approach

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Abrashkevich, D.G.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.

    1989-01-01

    Doubly excited states (DES) of H - and He are investigated within the coupled-channel hyperspherical adiabatic (HSA) approach. Influence of the angular and radial electron correlations on the rate of convergence of the values of the potential curves and matrix elements of radial coupling is studied numerically. The scheme based on molecular classification of the HSA basis states is used for the classification of DES. The results of the multichannel calculations of 1 S e and 1 P 0 DES of H - and He below the second threshold are presented. The obtained results are compared with other calculations and experiment. The region of applicability of the adiabatic approximation is discussed. 75 refs.; 10 tabs

  19. Hybrid Coupling of Laser Light sources to Silicon (Oxy)Nitride Based Waveguides

    NARCIS (Netherlands)

    Krijger, A.J.T. de; Bekman, H.H.P.T.

    1997-01-01

    An efficient method was developed to couple a diode laser to a high contrast waveguides. The laserdiodes were mounted with sub-micron precision using a thermocompression mounting technique. An AlGaAs (λ = 850 nm) laserdiode was coupled to a SiON based slab waveguide (efficiency η EQ 25 - 30%) and to

  20. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    Science.gov (United States)

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  1. Channel Estimation in DCT-Based OFDM

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  2. Optically coupled semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Kumagaya, Naoki

    1988-11-18

    This invention concerns an optically coupled semiconductor device using the light as input signal and a MOS transistor for the output side in order to control on-off of the output side by the input signal which is insulated from the output. Concerning this sort of element, when a MOS transistor and a load resistance are planned to be accumulated on the same chip, a resistor and control of impurity concentration of the channel, etc. become necessary despite that the only formation of a simple P-N junction is enough, for a solar cell, hence cost reduction thereof cannot be done. In order to remove this defect, this invention offers an optically coupled semiconductor device featuring that two solar cells are connected in reverse parallel between the gate sources of the output MOS transistors and an operational light emitting element is individually set facing a respective solar cell. 4 figs.

  3. Reaction channel coupling effects for nucleons on 16O: Induced undularity and proton-neutron potential differences

    Science.gov (United States)

    Keeley, N.; Mackintosh, R. S.

    2018-01-01

    Background: Precise fitting of scattering observables suggests that the nucleon-nucleus interaction is l dependent. Such l dependence has been shown to be S -matrix equivalent to an undulatory l -independent potential. The undulations include radial regions where the imaginary term is emissive. Purpose: To study the dynamical polarization potential (DPP) generated in proton-16O and neutron-16O interaction potentials by coupling to pickup channels. Undulatory features occurring in these DPPs can be compared with corresponding features of empirical optical model potentials (OMPs). Furthermore, the additional inclusion of coupling to vibrational states of the target will provide evidence for dynamically generated nonlocality. Methods: The fresco code provides the elastic channel S -matrix Sl j for chosen channel couplings. Inversion, Sl j→V (r ) +l .s VSO(r ) , followed by subtraction of the bare potential, yields an l -independent and local representation of the DPP due to the chosen couplings. Results: The DPPs have strongly undulatory features, including radial regions of emissivity. Certain features of empirical DPPs appear, e.g., the full inverted potential has emissive regions. The DPPs for different collective states are additive except near the nuclear center, whereas the collective and reaction channel DPPs are distinctly nonadditive over a considerable radial range, indicating dynamical nonlocality. Substantial differences between the DPPs due to pickup coupling for protons and neutrons occur; these imply a greater difference between proton and neutron OMPs than the standard phenomenological prescription. Conclusions: The onus is on those who object to undularity in the local and l -independent representation of nucleon elastic scattering to show why such undulations do not occur. This work suggests that it is not legitimate to halt model-independent fits to high-quality data at the appearance of undularity.

  4. Optimization of nanoparticle focusing by coupling thermophoresis and engineered vortex in a microfluidic channel

    Science.gov (United States)

    Zhao, Chao; Cao, Zhibo; Fraser, John; Oztekin, Alparslan; Cheng, Xuanhong

    2017-01-01

    Enriching nanoparticles in an aqueous solution is commonly practiced for various applications. Despite recent advances in microfluidic technologies, a general method to concentrate nanoparticles in a microfluidic channel in a label free and continuous flow fashion is not yet available, due to strong Brownian motion on the nanoscale. Recent research of thermophoresis indicates that thermophoretic force can overcome the Brownian force to direct nanoparticle movement. Coupling thermophoresis with natural convection on the microscale has been shown to induce significant enrichment of biomolecules in a thermal diffusion column. However, the column operates in a batch process, and the concentrated samples are inconvenient to retrieve. We have recently designed a microfluidic device that combines a helical fluid motion and simple one-dimensional temperature gradient to achieve effective nanoparticle focusing in a continuous flow. The helical convection is introduced by microgrooves patterned on the channel floor, which directly controls the focusing speed and power. Here, COMSOL simulations are conducted to study how the device geometry and flow rate influence transport and subsequent nanoparticle focusing, with a constant temperature gradient. The results demonstrate a complex dependence of nanoparticle accumulation on the microgroove tilting angle, depth, and spacing, as well as channel width and flow rate. Further dimensional analyses reveal that the ratio between particle velocities induced by thermophoretic and fluid inertial forces governs the particle concentration factor, with a maximum concentration at a ratio of approximately one. This simple relationship provides fundamental insights about nanoparticle transport in coupled flow and thermal fields. The study also offers a useful guideline to the design and operation of nanoparticle concentrators based on combining engineered helical fluid motion subject to phoretic fields.

  5. Unresolved transition array based water window soft x-ray source by laser-produced high-Z plasma

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Dunne, Padraig; O'Sullivan, Gerry

    2013-01-01

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2 to 4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics. At power densities available from 'table-top' solid-state lasers, comparison of emission from a number of targets has shown that 3d-4f UTA in zirconium plasmas have highest overall brightness and in an imaging system based on reflective multilayer mirrors, may, depending on bandwidth, have superior performance than either line or broader-band sources. (author)

  6. Study of an hybrid positron source using channeling for CLIC

    CERN Document Server

    Dadoun, O; Chehab, R; Poirier, F; Rinolfi, L; Strakhovenko, V; Variola, A; Vivoli, A

    2009-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten radiator. With the tungsten crystal oriented on its axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. In this note the optimization of the positron yield and the peak energy deposition density in the amorphous target are studied according to the distance between the crystal and the amorphous targets, the primary electron energy and the amorphous target thickness.

  7. Volcanic or Fluvial Channels on Ascraeus Mons: Focus on the Source Area of Sinuous Channels on the Southeast Rift Apron

    Science.gov (United States)

    Signorella, J. D.; de Wet, A. P.; Bleacher, J. E.; Collins, A.; Schierl, Z. P.; Schwans, B.

    2012-03-01

    This study focuses on the source area of sinuous channels on the southeast rift apron on Ascraeus Mons, Mars and attempts to understand whether the channels were formed through volcanic or fluvial processes.

  8. Effects of n-3 polyunsaturated fatty acids on cardiac ion channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno

    2012-07-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on cardiac sodium channel (Nav1.5 and two potassium channels (Kv (Kv1.5 and Kv11.1. n-3 marine (docohexaenoic and eicohexapentaenoic acid and plant origin (alpha-linolenic acid PUFAs block Kv1.5 and Kv11.1 channels at physiological concentrations. Also, DHA and EPA decreased Nav1.5 and calcium channels. These effects on Na and Ca channels theoretically should shorten the cardiac APD, whereas the blocking actions of n-3 PUFAs of Kv channels should lengthen the cardiac action potential. Experiments performed in female rabbits fed with a diet rich in n-3 PUFAs show a longer cardiac action potential and effective refractory period. This study was performed to analyze if their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability and dispersion of the cardiac action potential (TRIaD as a measure of proarrhythmic effects. Dietary n-3 PUFAs supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced torsades de pointes (TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of dietary supplements of n-3 PUFAs against dofetilide induced proarrhythmia observed in this animal model. The cardiac effects of n-3 PUFAs resemble those of amiodarone: both block sodium, calcium and potassium channels, have anti-adrenergic properties, can prolong the cardiac action potential, reverse TRIaD and suppress TdP. The main difference is that sodium channel block by n-3 PUFAs has a much faster onset and offset kinetics. Therefore, the electrophysiological profile of n-3 PUFAs appears more desirable: the duration of reduced sodium current (facilitates re-entry is much shorter. The n-3 PUFAs appear as a safer alternative to other antiarrhythmic

  9. Implantation doping of GaN

    International Nuclear Information System (INIS)

    Zolper, J.C.

    1996-01-01

    Ion implantation has played an enabling role in the realization of many high performance photonic and electronic devices in mature semiconductor materials systems such as Si and GaAs. This can also be expected to be the case in III-Nitride based devices as the material quality continues to improve. This paper reviews the progress in ion implantation processing of the III-Nitride materials, namely, GaN, AlN, InN and their alloys. Details are presented of the successful demonstrations of implant isolation as well as n- and p-type implantation doping of GaN. Implant doping has required activation annealing at temperatures in excess of 1,000 C. The nature of the implantation induced damage and its response to annealing is addressed using Rutherford Backscattering. Finally, results are given for the first demonstration of a GaN device fabricated using ion implantation doping, a GaN junction field effect transistor (JFET)

  10. Coupled-channel analysis of nucleon scattering from /sup 40/Ca

    Energy Technology Data Exchange (ETDEWEB)

    Delaroche, J.-P.; Honore, G.M.; Tornow, W.; Walter, R.L.

    1986-01-01

    Differential cross sections and analyzing powers for neutron scattering from /sup 40/Ca have been measured at TUNL in the 10-17 MeV energy range. These measurements and other sigma(theta) and sigmasub(T) measurements, as well as available /sup 40/Ca+p data, have been combined together in a coupled-channel analysis in order to trace the properties (energy dependencies, spin-orbit potentials, deformation parameters) of the nucleon + /sup 40/Ca potential up to 80 MeV.

  11. Entangled state teleportation through a couple of quantum channels composed of XXZ dimers in an Ising- XXZ diamond chain

    Science.gov (United States)

    Rojas, M.; de Souza, S. M.; Rojas, Onofre

    2017-02-01

    The quantum teleportation plays an important role in quantum information process, in this sense, the quantum entanglement properties involving an infinite chain structure is quite remarkable because real materials could be well represented by an infinite chain. We study the teleportation of an entangled state through a couple of quantum channels, composed by Heisenberg dimers in an infinite Ising-Heisenberg diamond chain, the couple of chains are considered sufficiently far away from each other to be ignored the any interaction between them. To teleporting a couple of qubits through the quantum channel, we need to find the average density operator for Heisenberg spin dimers, which will be used as quantum channels. Assuming the input state as a pure state, we can apply the concept of fidelity as a useful measurement of teleportation performance of a quantum channel. Using the standard teleportation protocol, we have derived an analytical expression for the output concurrence, fidelity, and average fidelity. We study in detail the effects of coupling parameters, external magnetic field and temperature dependence of quantum teleportation. Finally, we explore the relations between entanglement of the quantum channel, the output entanglement and the average fidelity of the system. Through a kind of phase diagram as a function of Ising-Heisenberg diamond chain model parameters, we illustrate where the quantum teleportation will succeed and a region where the quantum teleportation could fail.

  12. P- and N-type implantation doping of GaN with Ca and O

    International Nuclear Information System (INIS)

    Zolper, J.C.; Wilson, R.G.; Pearton, S.J.

    1996-01-01

    III-N photonic devices have made great advances in recent years following the demonstration of doping of GaN p-type with Mg and n-type with Si. However, the deep ionization energy level of Mg in GaN (∼ 160 meV) limits the ionized of acceptors at room temperature to less than 1.0% of the substitutional Mg. With this in mind, the authors used ion implantation to characterize the ionization level of Ca in GaN since Ca had been suggested by Strite to be a shallow acceptor in GaN. Ca-implanted GaN converted from n-to-p type after a 1,100 C activation anneal. Variable temperature Hall measurements give an ionization level at 169 meV. Although this level is equivalent to that of Mg, Ca-implantation may have advantages (shallower projected range and less straggle for a given energy) than Mg for electronic devices. In particular, the authors report the first GaN device using ion implantation doping. This is a GaN junction field effect transistor (JFET) which employed Ca-implantation. A 1.7 microm JFET had a transconductance of 7 mS/mm, a saturation current at 0 V gate bias of 33 mA/mm, a f t of 2.7 GHz, and a f max of 9.4 GHz. O-implantation was also studied and shown to create a shallow donor level (∼ 25 meV) that is similar to Si. SIMS profiles of as-implanted and annealed samples showed no measurable redistribution of either Ca or O in GaN at 1,125 C

  13. Analytical model of nanoscale junctionless transistors towards controlling of short channel effects through source/drain underlap and channel thickness engineering

    Science.gov (United States)

    Roy, Debapriya; Biswas, Abhijit

    2018-01-01

    We develop a 2D analytical subthreshold model for nanoscale double-gate junctionless transistors (DGJLTs) with gate-source/drain underlap. The model is validated using well-calibrated TCAD simulation deck obtained by comparing experimental data in the literature. To analyze and control short-channel effects, we calculate the threshold voltage, drain induced barrier lowering (DIBL) and subthreshold swing of DGJLTs using our model and compare them with corresponding simulation value at channel length of 20 nm with channel thickness tSi ranging 5-10 nm, gate-source/drain underlap (LSD) values 0-7 nm and source/drain doping concentrations (NSD) ranging 5-12 × 1018 cm-3. As tSi reduces from 10 to 5 nm DIBL drops down from 42.5 to 0.42 mV/V at NSD = 1019 cm-3 and LSD = 5 nm in contrast to decrement from 71 to 4.57 mV/V without underlap. For a lower tSiDIBL increases marginally with increasing NSD. The subthreshold swing reduces more rapidly with thinning of channel thickness rather than increasing LSD or decreasing NSD.

  14. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter

    Science.gov (United States)

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-01-01

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31×31 focal plane array has been fully integrated in a 0.13μm standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0.2μV RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0.6 nW at 270 GHz and 0.8 nW at 600 GHz. PMID:26950131

  15. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter.

    Science.gov (United States)

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-03-03

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.

  16. Strained Si channel NMOSFETs using a stress field with Si1-yC y source and drain stressors

    International Nuclear Information System (INIS)

    Chang, S.T.; Tasi, H.-S.; Kung, C.Y.

    2006-01-01

    The strain field in the silicon channel of a metal-oxide-semiconductor transistor with silicon-carbon alloy source and drain stressors was evaluated using the commercial process simulator FLOOPS-ISE TM . The physical origin of the strain components in the transistor channel region was explained. The magnitude and distribution of the strain components, and their dependence on device design parameters such as the spacing L G between the silicon-carbon alloy stressors, the carbon mole fraction in the stressors and stressor depth were investigated. Reducing the stressor spacing L G or increasing the carbon mole fraction in the stressors and stressor depth increases the magnitude of the vertical compressive stress and the lateral tensile stress in the portion of the N channel region where the inversion charge resides. This is beneficial for improving the electron mobility in n-channel metal-oxide-semiconductor transistors. A simple guiding principle for an optimum combination of the above-mentioned device design parameters in terms of mobility enhancement, drain current enhancement and the tradeoff consideration for junction leakage current degradation

  17. Non-local coupled-channels optical calculation of electron scattering by atomic hydrogen at 54.42 eV

    International Nuclear Information System (INIS)

    Ratnavelu, K.; McCarthy, I.E.

    1990-01-01

    The present study incorporates the non-local optical potentials for the continuum within the coupled-channels optical framework to study electron scattering from atomic hydrogen at 54.42 eV. Nine-state coupled-channels calculations with non-local and local continuum optical potentials were performed. The results for differential, total and ionization cross sections as well as the 2p angular correlation parameters λ and R are comparable with other non-perturbative calculations. There are still discrepancies between theory and experiment, particularly for λ and R at larger angles. (author)

  18. Coupled-channel analysis of nucleon scattering from /sup 40/Ca

    International Nuclear Information System (INIS)

    Delaroche, J.P.; Honore, G.M.; Tornow, W.; Walter, R.L.

    1985-01-01

    Differential cross sections and analyzing powers for neutron scattering from /sup 40/Ca have been measured at TUNL in the 10-17 MeV energy range. These measurements and other σ(θ) and σ/sub T/ measurements, as well as available /sup 40/Ca+p data, have been combined together in a coupled-channel analysis in order to trace the properties (energy dependencies, spin-orbit potentials, deformation parameters) of the nucleon + /sup 40/Ca potential up to 80 MeV

  19. Lower Bounds on the Capacity of the Relay Channel with States at the Source

    Directory of Open Access Journals (Sweden)

    Abdellatif Zaidi

    2009-01-01

    Full Text Available We consider a state-dependent three-terminal full-duplex relay channel with the channel states noncausally available at only the source, that is, neither at the relay nor at the destination. This model has application to cooperation over certain wireless channels with asymmetric cognition capabilities and cognitive interference relay channels. We establish lower bounds on the channel capacity for both discrete memoryless (DM and Gaussian cases. For the DM case, the coding scheme for the lower bound uses techniques of rate-splitting at the source, decode-and-forward (DF relaying, and a Gel'fand-Pinsker-like binning scheme. In this coding scheme, the relay decodes only partially the information sent by the source. Due to the rate-splitting, this lower bound is better than the one obtained by assuming that the relay decodes all the information from the source, that is, full-DF. For the Gaussian case, we consider channel models in which each of the relay node and the destination node experiences on its link an additive Gaussian outside interference. We first focus on the case in which the links to the relay and to the destination are corrupted by the same interference; and then we focus on the case of independent interferences. We also discuss a model with correlated interferences. For each of the first two models, we establish a lower bound on the channel capacity. The coding schemes for the lower bounds use techniques of dirty paper coding or carbon copying onto dirty paper, interference reduction at the source and decode-and-forward relaying. The results reveal that, by opposition to carbon copying onto dirty paper and its root Costa's initial dirty paper coding (DPC, it may be beneficial in our setup that the informed source uses a part of its power to partially cancel the effect of the interference so that the uninformed relay benefits from this cancellation, and so the source benefits in turn.

  20. Properties of regular polygons of coupled microring resonators.

    Science.gov (United States)

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2007-11-01

    The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1+N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed.

  1. Computer-based multi-channel analyzer based on internet

    International Nuclear Information System (INIS)

    Zhou Xinzhi; Ning Jiaoxian

    2001-01-01

    Combined the technology of Internet with computer-based multi-channel analyzer, a new kind of computer-based multi-channel analyzer system which is based on browser is presented. Its framework and principle as well as its implementation are discussed

  2. Joint Source-Channel Coding by Means of an Oversampled Filter Bank Code

    Directory of Open Access Journals (Sweden)

    Marinkovic Slavica

    2006-01-01

    Full Text Available Quantized frame expansions based on block transforms and oversampled filter banks (OFBs have been considered recently as joint source-channel codes (JSCCs for erasure and error-resilient signal transmission over noisy channels. In this paper, we consider a coding chain involving an OFB-based signal decomposition followed by scalar quantization and a variable-length code (VLC or a fixed-length code (FLC. This paper first examines the problem of channel error localization and correction in quantized OFB signal expansions. The error localization problem is treated as an -ary hypothesis testing problem. The likelihood values are derived from the joint pdf of the syndrome vectors under various hypotheses of impulse noise positions, and in a number of consecutive windows of the received samples. The error amplitudes are then estimated by solving the syndrome equations in the least-square sense. The message signal is reconstructed from the corrected received signal by a pseudoinverse receiver. We then improve the error localization procedure by introducing a per-symbol reliability information in the hypothesis testing procedure of the OFB syndrome decoder. The per-symbol reliability information is produced by the soft-input soft-output (SISO VLC/FLC decoders. This leads to the design of an iterative algorithm for joint decoding of an FLC and an OFB code. The performance of the algorithms developed is evaluated in a wavelet-based image coding system.

  3. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  4. A study of Ground Source Heat Pump based on a heat infiltrates coupling model established with FEFLOW

    Science.gov (United States)

    Chen, H.; Hu, C.; Chen, G.; Zhang, Q.

    2017-12-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.

  5. Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.

    Science.gov (United States)

    Capes, Deborah L; Arcisio-Miranda, Manoel; Jarecki, Brian W; French, Robert J; Chanda, Baron

    2012-02-14

    Voltage-dependent ion channels are crucial for generation and propagation of electrical activity in biological systems. The primary mechanism for voltage transduction in these proteins involves the movement of a voltage-sensing domain (D), which opens a gate located on the cytoplasmic side. A distinct conformational change in the selectivity filter near the extracellular side has been implicated in slow inactivation gating, which is important for spike frequency adaptation in neural circuits. However, it remains an open question whether gating transitions in the selectivity filter region are also actuated by voltage sensors. Here, we examine conformational coupling between each of the four voltage sensors and the outer pore of a eukaryotic voltage-dependent sodium channel. The voltage sensors of these sodium channels are not structurally symmetric and exhibit functional specialization. To track the conformational rearrangements of individual voltage-sensing domains, we recorded domain-specific gating pore currents. Our data show that, of the four voltage sensors, only the domain IV voltage sensor is coupled to the conformation of the selectivity filter region of the sodium channel. Trapping the outer pore in a particular conformation with a high-affinity toxin or disulphide crossbridge impedes the return of this voltage sensor to its resting conformation. Our findings directly establish that, in addition to the canonical electromechanical coupling between voltage sensor and inner pore gates of a sodium channel, gating transitions in the selectivity filter region are also coupled to the movement of a voltage sensor. Furthermore, our results also imply that the voltage sensor of domain IV is unique in this linkage and in the ability to initiate slow inactivation in sodium channels.

  6. Electrically controlled wire-channel GaN/AlGaN transistor for terahertz plasma applications

    Science.gov (United States)

    Cywiński, G.; Yahniuk, I.; Kruszewski, P.; Grabowski, M.; Nowakowski-Szkudlarek, K.; Prystawko, P.; Sai, P.; Knap, W.; Simin, G. S.; Rumyantsev, S. L.

    2018-03-01

    We report on a design of fin-shaped channel GaN/AlGaN field-effect transistors developed for studying resonant terahertz plasma oscillations. Unlike common two dimensional FinFET transistor design, the gates were deposited only to the sides of the two dimensional electron gas channel, i.e., metal layers were not deposited on the top of the AlGaN. This side gate configuration allowed us to electrically control the conductivity of the channel by changing its width while keeping the carrier density and mobility virtually unchanged. Computer simulations and analytical model describe well the general shape of the characteristics. The side gate control of the channel width of these transistors allowed us to eliminate the so-called oblique plasma wave modes and paves the way towards future terahertz detectors and emitters using high quality factor plasma wave resonances.

  7. 128 Channel PCI-based data acquisition system for MDSplus

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, Xavier E-mail: xavier.llobet@epfl.ch; Duval, Basil P. E-mail: basil.duval@epfl.ch

    2002-06-01

    With the increasing demand for analogue channel acquisition on the TCV tokamak, a new PCI based acquisition has been specified, designed, built and installed into our MDSplus acquisition environment. The design criteria were to not only improve the cost/channel, as compared to our conventional hub based acquisition (CAMAC), but to provide some distributed processing power to avoid the associated acquisition server saturation, both in terms of CPU and network bandwidth. These units were initially intended to satisfy the requirements of general variable rate acquisition from a variety of sources, and many channel acquisition from modern multi-channel diagnostics. Hosted by a i386-Linux PC in a crate with four available PCI slots, each single-PCI slot 32-channel digitiser features sampling frequencies up to 200 kHz, and 64 MB of memory, providing 1 Msample of 16-bit data per channel. The local hard disk is used for immediate local storage of all the acquired data from the selected channels into a local MDSplus database. The host is then accessed as a MDS/IP server that provides, on demand, down-sampled and software filtered traces. The local hard disk capacity is used for medium to long-term storage and availability of the full data set with optional mirror technology to guard against hard disk failure. We have thus obtained a general solution for high resolution, multi-channel routine acquisition using the multi-platform MDSplus environment, in which different software and hardware architectures are intelligently linked across a standard TCP/IP network. The implementation presented here uses ONLY standard components of the MDSplus environment.

  8. 128 Channel PCI-based data acquisition system for MDSplus

    International Nuclear Information System (INIS)

    Llobet, Xavier; Duval, Basil P.

    2002-01-01

    With the increasing demand for analogue channel acquisition on the TCV tokamak, a new PCI based acquisition has been specified, designed, built and installed into our MDSplus acquisition environment. The design criteria were to not only improve the cost/channel, as compared to our conventional hub based acquisition (CAMAC), but to provide some distributed processing power to avoid the associated acquisition server saturation, both in terms of CPU and network bandwidth. These units were initially intended to satisfy the requirements of general variable rate acquisition from a variety of sources, and many channel acquisition from modern multi-channel diagnostics. Hosted by a i386-Linux PC in a crate with four available PCI slots, each single-PCI slot 32-channel digitiser features sampling frequencies up to 200 kHz, and 64 MB of memory, providing 1 Msample of 16-bit data per channel. The local hard disk is used for immediate local storage of all the acquired data from the selected channels into a local MDSplus database. The host is then accessed as a MDS/IP server that provides, on demand, down-sampled and software filtered traces. The local hard disk capacity is used for medium to long-term storage and availability of the full data set with optional mirror technology to guard against hard disk failure. We have thus obtained a general solution for high resolution, multi-channel routine acquisition using the multi-platform MDSplus environment, in which different software and hardware architectures are intelligently linked across a standard TCP/IP network. The implementation presented here uses ONLY standard components of the MDSplus environment

  9. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Michael D., E-mail: mdlogue@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  10. Comparison of different source calculations in two-nucleon channel at large quark mass

    Science.gov (United States)

    Yamazaki, Takeshi; Ishikawa, Ken-ichi; Kuramashi, Yoshinobu

    2018-03-01

    We investigate a systematic error coming from higher excited state contributions in the energy shift of light nucleus in the two-nucleon channel by comparing two different source calculations with the exponential and wall sources. Since it is hard to obtain a clear signal of the wall source correlation function in a plateau region, we employ a large quark mass as the pion mass is 0.8 GeV in quenched QCD. We discuss the systematic error in the spin-triplet channel of the two-nucleon system, and the volume dependence of the energy shift.

  11. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  12. Measurements of low noise 64 channel counting ASIC for Si and CdTe strip detectors

    International Nuclear Information System (INIS)

    Kachel, M; Grybos, P; Szczygiel, R; Takeyoshi, T

    2011-01-01

    We present the design and performance of a 64-channel ASIC called SXDR64. The circuit is intended to work with DC coupled CdTe detectors as well as with standard AC coupled Si detectors. A single channel of the ASIC consists of a charge sensitive amplifier with a pole-zero cancellation circuit, a 4 th order programmable shaper, a base-line restorer and two independent discriminators with 20-bit counters equipped with RAM. The circuit is able to operate correctly with both polarities of the input signal and the detectors leakage current in a few nA range, with the average rate of input pulses up to 1 Mcps.

  13. Four-channel readout ASIC for silicon pad detectors

    International Nuclear Information System (INIS)

    Baturitsky, M.A.; Zamiatin, N.I.

    2000-01-01

    A custom front-end readout ASIC has been designed for silicon calorimeters supposed to be used in high-energy physics experiments. The ASIC was produced using BJT-JFET technology. It contains four channels of a fast low-noise charge-sensitive preamplifier (CSP) with inverting outputs summed by a linear adder (LA) followed by an RC-CR shaping amplifier (SA) with 30 ns peaking time. Availability of separate outputs of the CSPs and the LA makes it possible to join any number of silicon detector layers to obtain the longitudinal and transversal resolution required using only this ASIC in any silicon calorimeter minitower configuration. Noise performance is ENC=1800e - +18e - /pF at 30 ns peaking time for detector capacitance up to C d =400 pF. Rise time is 8 ns at input capacitance C d =100 pF. Power dissipation is less than 50 mW/ chip at voltage supply 5 V

  14. Reorganization of a marine trophic network along an inshore-offshore gradient due to stronger pelagic-benthic coupling in coastal areas

    Science.gov (United States)

    Kopp, Dorothée; Lefebvre, Sébastien; Cachera, Marie; Villanueva, Maria Ching; Ernande, Bruno

    2015-01-01

    Recent theoretical considerations have highlighted the importance of the pelagic-benthic coupling in marine food webs. In continental shelf seas, it was hypothesized that the trophic network structure may change along an inshore-offshore gradient due to weakening of the pelagic-benthic coupling from coastal to offshore areas. We tested this assumption empirically using the eastern English Channel (EEC) as a case study. We sampled organisms from particulate organic matter to predatory fishes and used baseline-corrected carbon and nitrogen stable isotope ratios (δ13C and δ15N) to determine their trophic position. First, hierarchical clustering on δ13C and δ15N coupled to bootstrapping and estimates of the relative contribution of pelagic and benthic carbon sources to consumers' diet showed that, at mesoscale, the EEC food web forms a continuum of four trophic levels with trophic groups spread across a pelagic and a benthic trophic pathway. Second, based on the same methods, a discrete approach examined changes in the local food web structure across three depth strata in order to investigate the inshore-offshore gradient. It showed stronger pelagic-benthic coupling in shallow coastal areas mostly due to a reorganization of the upper consumers relative to the two trophic pathways, benthic carbon sources being available to pelagic consumers and, reciprocally, pelagic sources becoming accessible to benthic species. Third a continuous approach examined changes in the mean and variance of upper consumers' δ13C and δ15N with depth. It detected a significant decrease in δ13C variance and a significant increase in δ15N variance as depth increases. A theoretical two-source mixing model showed that an inshore-offshore decrease in the pelagic-benthic coupling was a sufficient condition to produce the δ13C variance pattern, thus supporting the conclusions of the discrete approach. These results suggest that environmental gradients such as the inshore-offshore one should

  15. Large N baryons, strong coupling theory, quarks

    International Nuclear Information System (INIS)

    Sakita, B.

    1984-01-01

    It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)

  16. δ15N values of atmospheric N species simultaneously collected using sector-based samplers distant from sources - Isotopic inheritance and fractionation

    Science.gov (United States)

    Savard, Martine M.; Cole, Amanda; Smirnoff, Anna; Vet, Robert

    2017-08-01

    The nitrogen isotope ratios (δ15N) of atmospheric N species are commonly suggested as indicators of N emission sources. Therefore, numerous research studies have developed analytical methodologies and characterized primary (gases) and secondary emission products (mostly precipitation and aerosols) from various emitters. These previous studies have generally collected either reduced or oxidized N forms, and sampled them separately prior to determining their δ15N values. Distinctive isotopic signals have been reported for emissions from various sources, and seasonality of the δ15N values has been frequently attributed to shifts in relative contributions from sources with different isotopic signals. However, theoretical concepts suggest that temperature effects on isotopic fractionation may also affect the δ15N values of atmospheric reaction products. Here we use a sector-based multi-stage filter system to simultaneously collect seven reduced and oxidized N species downwind from five different source types in Alberta, Canada. We report δ15N values obtained with a state-of-the-art gold-furnace pre-concentrator online with an isotope ratio mass spectrometer (IRMS) to provide representative results even for oxidized-N forms. We find that equilibrium isotope effects and their temperature dependence play significant roles in determining the δ15N values of the secondary emission products. In the end, seasonal δ15N changes here are mainly caused by temperature effects on fractionation, and the δ15N values of only two N species from one source type can be retained as potential fingerprints of emissions.

  17. Dirac potentials in a coupled channel approach to inelastic scattering

    International Nuclear Information System (INIS)

    Mishra, V.K.; Clark, B.C.; Cooper, E.D.; Mercer, R.L.

    1990-01-01

    It has been shown that there exist transformations that can be used to change the Lorentz transformation character of potentials, which appear in the Dirac equation for elastic scattering. We consider the situation for inelastic scattering described by coupled channel Dirac equations. We examine a two-level problem where both the ground and excited states are assumed to have zero spin. Even in this simple case we have not found an appropriate transformation. However, if the excited state has zero excitation energy it is possible to find a transformation

  18. An improved channel assessment scheme

    KAUST Repository

    Bader, Ahmed

    2014-01-01

    A source node in a multihop network determines whether to transmit in a channel based on whether the channel is occupied by a packet transmission with a large number of relays; whether the source node is in the data tones back-off zone; and the source node is in the busy tone back-off zone.

  19. An improved channel assessment scheme

    KAUST Repository

    Bader, Ahmed

    2014-05-01

    A source node in a multihop network determines whether to transmit in a channel based on whether the channel is occupied by a packet transmission with a large number of relays; whether the source node is in the data tones back-off zone; and the source node is in the busy tone back-off zone.

  20. New Conotoxin SO-3 Targeting N-type Voltage-Sensitive Calcium Channels

    Directory of Open Access Journals (Sweden)

    Lei Wen

    2006-04-01

    Full Text Available Selective blockers of the N-type voltage-sensitive calcium (CaV channels are useful in the management of severe chronic pain. Here, the structure and function characteristics of a novel N-type CaV channel blocker, SO-3, are reviewed. SO-3 is a 25-amino acid conopeptide originally derived from the venom of Conus striatus, and contains the same 4-loop, 6-cysteine framework (C-C-CC-C-C as O-superfamily conotoxins. The synthetic SO-3 has high analgesic activity similar to ω-conotoxin MVIIA (MVIIA, a selective N-type CaV channel blocker approved in the USA and Europe for the alleviation of persistent pain states. In electrophysiological studies, SO-3 shows more selectivity towards the N-type CaV channels than MVIIA. The dissimilarity between SO-3 and MVIIA in the primary and tertiary structures is further discussed in an attempt to illustrate the difference in selectivity of SO-3 and MVIIA towards N-type CaV channels.

  1. Long quantum channels for high-quality entanglement transfer

    International Nuclear Information System (INIS)

    Banchi, L; Apollaro, T J G; Cuccoli, A; Verrucchi, P; Vaia, R

    2011-01-01

    High-quality quantum-state and entanglement transfer can be achieved in an unmodulated spin bus operating in the ballistic regime, which occurs when the endpoint qubits A and B are nonperturbatively coupled to the chain by a suitable exchange interaction j 0 . Indeed, the transition amplitude characterizing the transfer quality exhibits a maximum for a finite optimal value j opt 0 (N), where N is the channel length. We show that j opt 0 (N) scales as N -1/6 for large N and that it ensures a high-quality entanglement transfer even in the limit of arbitrarily long channels, almost independently of the channel initialization. For instance, for any chain length the average quantum-state transmission fidelity exceeds 90% and decreases very little in a broad neighbourhood of j opt 0 (N). We emphasize that, taking the reverse point of view, should j 0 be experimentally constrained, high-quality transfer can still be obtained by adjusting the channel length to its optimal value. (paper)

  2. Development of sub-channel/system coupled code and its application to a supercritical water-cooled test loop

    International Nuclear Information System (INIS)

    Liu, X.J.; Yang, T.; Cheng, X.

    2014-01-01

    To analyze the local thermal-hydraulic parameters in the supercritical water reactor-fuel qualification test (SCWR-FQT) fuel bundle with a flow blockage, a coupled sub-channel and system code system is developed in this paper. Both of the sub-channel code and system code are adapted to transient analysis of SCWR. Two codes are coupled by data transfer and data adaptation at the interface. In the coupled code, the whole system behavior including safety system characteristic is analyzed by system code ATHLET-SC, whereas the local thermal-hydraulic parameters are predicted by the sub-channel code COBRA-SC. Sensitivity analysis are carried out respectively in ATHLET-SC and COBRA-SC code, to identify the appropriate models for description of the flow blockage phenomenon in the test loop. Some measures to mitigate the accident consequence are also trialed to demonstrate their effectiveness. The results indicate that the new developed code has good feasibility to transient analysis of supercritical water-cooled test. And the peak cladding temperature caused by blockage in the fuel assembly can be reduced effectively by the safety measures of SCWR-FQT. (author)

  3. Processing and Prolonged 500 C Testing of 4H-SiC JFET Integrated Circuits with Two Levels of Metal Interconnect

    Science.gov (United States)

    Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.

    2015-01-01

    Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype IC's with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3- and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient. Improved reproducibility remains to be accomplished.

  4. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    Science.gov (United States)

    Deen, David A.; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J.

    2016-08-01

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics ft/fmax of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with ft/fmax of 48/60 GHz.

  5. Thermal Analysis of AlGaN/GaN High-Electron-Mobility Transistor and Its RF Power Efficiency Optimization with Source-Bridged Field-Plate Structure.

    Science.gov (United States)

    Kwak, Hyeon-Tak; Chang, Seung-Bo; Jung, Hyun-Gu; Kim, Hyun-Seok

    2018-09-01

    In this study, we consider the relationship between the temperature in a two-dimensional electron gas (2-DEG) channel layer and the RF characteristics of an AlGaN/GaN high-electron-mobility transistor by changing the geometrical structure of the field-plate. The final goal is to achieve a high power efficiency by decreasing the channel layer temperature. First, simulations were performed to compare and contrast the experimental data of a conventional T-gate head structure. Then, a source-bridged field-plate (SBFP) structure was used to obtain the lower junction temperature in the 2-DEG channel layer. The peak electric field intensity was reduced, and a decrease in channel temperature resulted in an increase in electron mobility. Furthermore, the gate-to-source capacitance was increased by the SBFP structure. However, under the large current flow condition, the SBFP structure had a lower maximum temperature than the basic T-gate head structure, which improved the device electron mobility. Eventually, an optimum position of the SBFP was used, which led to higher frequency responses and improved the breakdown voltages. Hence, the optimized SBFP structure can be a promising candidate for high-power RF devices.

  6. Measurement channel of neutron flow based on software

    International Nuclear Information System (INIS)

    Rivero G, T.; Benitez R, J. S.

    2008-01-01

    The measurement of the thermal power in nuclear reactors is based mainly on the measurement of the neutron flow. The presence of these in the reactor core is associated to neutrons released by the fission reaction of the uranium-235. Once moderate, these neutrons are precursors of new fissions. This process it is known like chain reaction. Thus, the power to which works a nuclear reactor, he is proportional to the number of produced fissions and as these depend on released neutrons, also the power is proportional to the number of present neutrons. The measurement of the thermal power in a reactor is realized with called instruments nuclear channels. To low power (level source), these channels measure the individual counts of detected neutrons, whereas to a medium and high power, they measure the electrical current or fluctuation of the same one that generate the fission neutrons in ionization chambers especially designed to detect neutrons. For the case of TRIGA reactors, the measurement channels of neutron flow use discreet digital electronic technology makes some decades already. Recently new technological tools have arisen that allow developing new versions of nuclear channels of simple form and compacts. The present work consists of the development of a nuclear channel for TRIGA reactors based on the use of the correlated signal of a fission chamber for ample interval. This new measurement channel uses a data acquisition card of high speed and the data processing by software that to the being installed in a computer is created a virtual instrument, with what spreads in real time, in graphic and understandable form for the operator, the power indication to which it operates the nuclear reactor. This system when being based on software, offers a major versatility to realize changes in the signal processing and power monitoring algorithms. The experimental tests of neutronic power measurement show a reliable performance through seven decades of power, with a

  7. Energy coupling of nuclear bursts in and above the ocean surface: source region calculations and experimental validation

    International Nuclear Information System (INIS)

    Clarke, D.B.; Harben, P.E.; Rock, D.W.; White, J.W.; Piacsek, A.

    1997-01-01

    In support of the Comprehensive Test Ban, research is under way on the long range propagation of signals from nuclear explosions in deep underwater sound (SOFAR) channel. Initially our work at LLNL on signals in the source region considered explosions in or above deep ocean. We studied the variation of wave properties and source region energy coupling as a function of height or depth of burst. Initial calculations on the CALE hydrodynamics code were linked at a few hundred milliseconds to a version of NRL's weak code, NPE, which solves the nonlinear progressive wave equation. The simulation of the wave propagation was carried down to 5000 m depth and out to 10,000 m range. We have completed ten such simulations at a variety of heights and depths below the ocean surface

  8. A strategy for determination of test intervals of k-out-of-n multi-channel systems

    International Nuclear Information System (INIS)

    Cho, S.; Jiang, J.

    2007-01-01

    State space models for determination of the optimal test frequencies for k-out-of-n multi channel systems are developed in this paper. The analytic solutions for the optimal surveillance test frequencies are derived using the Markov process technique. The solutions show that an optimal test frequency which maximizes the target probability can be determined by decomposing the system states to 3 states based on the system configuration and success criteria. Examples of quantification of the state probabilities and the optimal test frequencies of a three-channel system and a four-channel system with different success criteria are presented. The strategy for finding the optimal test frequency developed in this paper can generally be applicable to any k-out-of-n multi-channel standby systems that involve complex testing schemes. (author)

  9. Ultra-short channel GaN high electron mobility transistor-like Gunn diode with composite contact

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Yang, Lin' an, E-mail: layang@xidian.edu.cn; Wang, Zhizhe; Chen, Qing; Huang, Yonghong; Dai, Yang; Chen, Haoran; Zhao, Hongliang; Hao, Yue [The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2014-09-07

    We present a numerical analysis on an ultra-short channel AlGaN/GaN HEMT-like planar Gunn diode based on the velocity-field dependence of two-dimensional electron gas (2-DEG) channel accounting for the ballistic electron acceleration and the inter-valley transfer. In particular, we propose a Schottky-ohmic composite contact instead of traditional ohmic contact for the Gunn diode in order to significantly suppress the impact ionization at the anode side and shorten the “dead zone” at the cathode side, which is beneficial to the formation and propagation of dipole domain in the ultra-short 2-DEG channel and the promotion of conversion efficiency. The influence of the surface donor-like traps on the electron domain in the 2-DEG channel is also included in the simulation.

  10. Hyperonic mixing in five-baryon double-strangeness hypernuclei in a two-channel treatment

    OpenAIRE

    Lanskoy, D. E.; Yamamoto, Y.

    2003-01-01

    Properties of hypernuclei $_{\\Lambda \\Lambda}^5$H and $_{\\Lambda \\Lambda }^5$He are studied in a two-channel approach with explicit treatment of coupling of channels ^3\\text{Z}+\\Lambda+\\Lambda and \\alpha+\\Xi. Diagonal \\Lambda\\Lambda and coupling \\Lambda\\Lambda-\\Xi N interactions are derived within G-matrix procedure from Nijmegen meson-exchange models. Bond energy \\Delta B_{\\Lambda\\Lambda} in $_{\\Lambda \\Lambda}^5$He exceeds significantly that in $_{\\Lambda \\Lambda}^5$H due to the channel cou...

  11. Monte Carlo criticality source convergence in a loosely coupled fuel storage system

    International Nuclear Information System (INIS)

    Blomquist, Roger N.; Gelbard, Ely M.

    2003-01-01

    The fission source convergence of a very loosely coupled array of 36 fuel subassemblies with slightly non-symmetric reflection is studied. The fission source converges very slowly from a uniform guess to the fundamental mode in which about 40% of the fissions occur in one corner subassembly. Eigenvalue and fission source estimates are analyzed using a set of statistical tests similar to those used in MCNP, including the 'drift-in-mean' test and a new drift-in-mean test using a linear fit to the cumulative estimate drift, the Shapiro-Wilk test for normality, the relative error test, and the '1/N' test. The normality test does not detect a drifting eigenvalue or fission source. Applied to eigenvalue estimates, the other tests generally fail to detect an unconverged solution, but they are sometimes effective when evaluating fission source distributions. None of the tests provides completely reliable indication of convergence, although they can detect nonconvergence. (author)

  12. An accurate mobility model for the I-V characteristics of n-channel enhancement-mode MOSFETs with single-channel boron implantation

    International Nuclear Information System (INIS)

    Chingyuan Wu; Yeongwen Daih

    1985-01-01

    In this paper an analytical mobility model is developed for the I-V characteristics of n-channel enhancement-mode MOSFETs, in which the effects of the two-dimensional electric fields in the surface inversion channel and the parasitic resistances due to contact and interconnection are included. Most importantly, the developed mobility model easily takes the device structure and process into consideration. In order to demonstrate the capabilities of the developed model, the structure- and process-oriented parameters in the present mobility model are calculated explicitly for an n-channel enhancement-mode MOSFET with single-channel boron implantation. Moreover, n-channel MOSFETs with different channel lengths fabricated in a production line by using a set of test keys have been characterized and the measured mobilities have been compared to the model. Excellent agreement has been obtained for all ranges of the fabricated channel lengths, which strongly support the accuracy of the model. (author)

  13. Differential contribution of Ca2+ sources to day and night BK current activation in the circadian clock.

    Science.gov (United States)

    Whitt, Joshua P; McNally, Beth A; Meredith, Andrea L

    2018-02-05

    Large conductance K + (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca 2+ (Ca 2+ i ). To enable this regulation, BK channels functionally couple to both voltage-gated Ca 2+ channels (VGCCs) and channels mediating Ca 2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca 2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)-the brain's circadian clock-BK current, VGCC current, and Ca 2+ i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca 2+ i are reduced. Here, to determine whether diurnal regulation of Ca 2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca 2+ channels (LTCCs) are the primary daytime Ca 2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)-mediated Ca 2+ i release. The N- and P/Q-type Ca 2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca 2+ sources in the SCN, contributing to diurnal regulation of SCN excitability. © 2018 Whitt et al.

  14. New Magnetically Coupled Impedance (Z-) Source Networks

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang

    2016-01-01

    Various Magnetically Coupled Impedance Source (MCIS) networks have been proposed in the literature for increasing voltage gain and modulation index simultaneously, while reducing the number of passive components used in the converter. However, applications of such networks have been limited...

  15. Estimating Total Fusion Cross Sections by Using a Coupled-Channel Method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki-Seok; Cheoun, Myung-Ki [Soongsil University, Seoul (Korea, Republic of); Kim, K. S. [Korea Aerospace University, Koyang (Korea, Republic of); Kim, T. H.; So, W. Y. [Kangwon National University at Dogye, Samcheok (Korea, Republic of)

    2017-01-15

    We calculate the total fusion cross sections for the {sup 6}He + {sup 209}Bi, {sup 6}Li + {sup 209}Bi,{sup 9}Be + {sup 208}Pb, {sup 10}Be + {sup 209}Bi, and {sup 11}Li + {sup 208}Pb systems by using a coupled-channel (CC) method and compare the results with the experimental data. In the CC approach for the total fusion cross sections, we exploit a globally determined Wood-Saxon potential with Aky¨uz-Winther parameters and couplings of the ground state to the low-lying excited states in the projectile and the target nuclei. The total fusion cross sections obtained with the CC are compared with those obtained without the CC couplings. The latter approach is tantamount to a one-dimensional barrier penetration model. Finally, our approach is applied to understand new data for the {sup 11}Li+{sup 208}Pb system. Possible ambiguities inherent in those approaches are discussed in detail for further applications to the fusion system of halo and/or neutron-rich nuclei.

  16. Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene.

    Science.gov (United States)

    Quang Dang, Vinh; Kim, Do-Il; Thai Duy, Le; Kim, Bo-Yeong; Hwang, Byeong-Ung; Jang, Mi; Shin, Kyung-Sik; Kim, Sang-Woo; Lee, Nae-Eung

    2014-12-21

    Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

  17. A Perspective for Time-Varying Channel Compensation with Model-Based Adaptive Passive Time-Reversal

    Directory of Open Access Journals (Sweden)

    Lussac P. MAIA

    2015-06-01

    Full Text Available Underwater communications mainly rely on acoustic propagation which is strongly affected by frequency-dependent attenuation, shallow water multipath propagation and significant Doppler spread/shift induced by source-receiver-surface motion. Time-reversal based techniques offer a low complexity solution to decrease interferences caused by multipath, but a complete equalization cannot be reached (it saturates when maximize signal to noise ratio and these techniques in conventional form are quite sensible to channel variations along the transmission. Acoustic propagation modeling in high frequency regime can yield physical-based information that is potentially useful to channel compensation methods as the passive time-reversal (pTR, which is often employed in Digital Acoustic Underwater Communications (DAUC systems because of its low computational cost. Aiming to overcome the difficulties of pTR to solve time-variations in underwater channels, it is intended to insert physical knowledge from acoustic propagation modeling in the pTR filtering. Investigation is being done by the authors about the influence of channel physical parameters on propagation of coherent acoustic signals transmitted through shallow water waveguides and received in a vertical line array of sensors. Time-variant approach is used, as required to model high frequency acoustic propagation on realistic scenarios, and applied to a DAUC simulator containing an adaptive passive time-reversal receiver (ApTR. The understanding about the effects of changes in physical features of the channel over the propagation can lead to design ApTR filters which could help to improve the communications system performance. This work presents a short extension and review of the paper 12, which tested Doppler distortion induced by source-surface motion and ApTR compensation for a DAUC system on a simulated time-variant channel, in the scope of model-based equalization. Environmental focusing approach

  18. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    International Nuclear Information System (INIS)

    Deen, David A.; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J.

    2016-01-01

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics f_t/f_m_a_x of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with f_t/f_m_a_x of 48/60 GHz.

  19. Suppression of surface-originated gate lag by a dual-channel AlN/GaN high electron mobility transistor architecture

    Energy Technology Data Exchange (ETDEWEB)

    Deen, David A., E-mail: david.deen@alumni.nd.edu; Storm, David F.; Scott Katzer, D.; Bass, R.; Meyer, David J. [Naval Research Laboratory, Electronics Science and Technology Division, Washington, DC 20375 (United States)

    2016-08-08

    A dual-channel AlN/GaN high electron mobility transistor (HEMT) architecture is demonstrated that leverages ultra-thin epitaxial layers to suppress surface-related gate lag. Two high-density two-dimensional electron gas (2DEG) channels are utilized in an AlN/GaN/AlN/GaN heterostructure wherein the top 2DEG serves as a quasi-equipotential that screens potential fluctuations resulting from distributed surface and interface states. The bottom channel serves as the transistor's modulated channel. Dual-channel AlN/GaN heterostructures were grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. HEMTs fabricated with 300 nm long recessed gates demonstrated a gate lag ratio (GLR) of 0.88 with no degradation in drain current after bias stressed in subthreshold. These structures additionally achieved small signal metrics f{sub t}/f{sub max} of 27/46 GHz. These performance results are contrasted with the non-recessed gate dual-channel HEMT with a GLR of 0.74 and 82 mA/mm current collapse with f{sub t}/f{sub max} of 48/60 GHz.

  20. Resonances in the nuclear reactions 15N + 12C and 15N + 16O

    International Nuclear Information System (INIS)

    Monnehan, G.A.

    1987-06-01

    The reaction 12 C + 15 N have been studied at 15 N beam energies between 30 and 70 MeV. For each reaction, about twelve residual nuclei have been identified through the γ-ray detection method. Excitation functions were obtained for the fusion and peripheral channels. Resonances are seen in the channels containing at least one α particle at energies below 50 MeV. At higher energies, strong structures are observed in the direct reaction channels. The evolution of the fusion cross section is well reproduced by a model based on the statistical desexcitation of the compound nucleus if the discrete states of the residual nuclei are taken into account. The favourable observation of resonant phenomena in 15 N induced reactions can be understood in terms of a small number of channels open to the grazing wave. In the range 50 to 60 MeV, there is a strong coupling between the fusion and the direct reaction channels. The occurrence of resonances above E lab = 50 MeV in the peripheral channels is explained with the band crossing and effective barrier models. In the 15 N induced reactions, the absorption of the surface waves is weak [fr

  1. Coupled-channel analysis of nucleon scattering from sup40Ca up to 80 MeV

    International Nuclear Information System (INIS)

    Honore, G.M.; Tornow, W.; Howell, C.R.; Pedroni, R.S.; Byrd, R.C.; Walter, R.L.; Delaroche, J.P.

    1986-01-01

    Differential cross sections sigma(theta) and analyzing powers A/sub y/(theta) for neutron scattering to the ground and first 3 - excited state of 40 Ca have been measured in the energy range from 11 to 17 MeV. Elastic and inelastic scattering measurements have been obtained for A/sub y/(theta) at energies of 11.0, 13.9, and 16.9 MeV, the inelastic scattering data representing the first (n,n') measurements of A/sub y/(theta) for this nucleus. Differential cross sections for (n,n) and (n,n') have been obtained at 13.9 and 16.9 MeV. Both the sigma(theta) and A/sub y/(theta) data at 13.9 MeV have been compared with previous measurements at this energy and the agreement is good, typically within less than 3%. These results have been combined with other sigma(theta) and A/sub y/(theta) data and total cross section sigma/sub T/ measurements to form a large set of scattering and reaction data for incident energies up to 80 MeV. This data set, along with sigma(theta) and A/sub y/(theta) measurements available for proton scattering in this energy range, has been described in the framework of the coupled-channel formalism. This highly constrained analysis has led to a precise determination of geometries, energy dependencies, and deformation parameters

  2. Characterization of a sealed Americium-Beryllium (AmBe) source by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Sommers, J.; Jimenez, M.; Adamic, M.; Giglio, J.; Carney, K.

    2009-01-01

    Two Americium-Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as 'age' since purification, actinide content, trace metal content and inter and intra source composition were determined. The 'age' since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic uncertainties in the 'age' determination were ±4% 2σ. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n = 8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n = 3 sub-samples). The Be-Am ratio varied greatly between the two sources. Source 1 had an Am-Be ratio of 6.3 ± 52% (1σ). Source 2 had an Am-Be ratio of 9.81 ± 3.5% (1σ). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Sources 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W. (author)

  3. Coupled-channel dynamics in the Nambu--Jona-Lasinio model

    International Nuclear Information System (INIS)

    Celenza, L.S.; Pantziris, A.; Shakin, C.M.; Szweda, J.

    1993-01-01

    We study the scalar-isoscalar sector of the Nambu--Jona-Lasinio (NJL) model and extend the model to include a description of the coupling of the quark-antiquark states to the two-pion continuum. The q bar q interaction gives rise to a sigma meson, which takes on a width and energy shift that depends upon the strength of the coupling for q+bar q→π+π. (For weak channel coupling, the resonance is located at the mass of the sigma, m σ congruent 2m q cons , where m q cons is the constituent quark mass of the NJL model.) We consider two models for the q bar q→ππ coupling. In the first model, we find a low-energy resonance, with the resonance energy E R ≤2m q cons . We then see that the values, obtained from the analysis of experimental data, of the scalar-isoscalar phase shift describing ππ scattering δ 0 0 , are not compatible with the existence of a low-mass sigma. In the second model, the resonance is pushed upward into the region of the two-quark continuum, E R >2m q cons . This second model provides an example of a phenomenon where the behavior of the q bar q T matrix is parametrized for q 2 ≤0 by a mass that is smaller than the physical mass that characterizes the pole in the T matrix. The behavior of the second model suggests how the absence of experimental evidence for a low-mass sigma may be reconciled with the importance of such a meson in nuclear structure studies

  4. A dispersive optical model potential for nucleon induced reactions on 238U and 232Th nuclei with full coupling

    Directory of Open Access Journals (Sweden)

    Chiba Satoshi

    2013-03-01

    Full Text Available A dispersive coupled-channel optical model potential (DCCOMP that couples the ground-state rotational and low-lying vibrational bands of 238U and 232Th nuclei is studied. The derived DCCOMP couples almost all excited levels below 1 MeV of excitation energy of the corresponding even-even actinides. The ground state, octupole, beta, gamma, and non-axial bands are coupled. The first two isobar analogue states (IAS populated in the quasi-elastic (p,n reaction are also coupled in the proton induced calculation, making the potential approximately Lane consistent. The coupled-channel potential is based on a soft-rotor description of the target nucleus structure, where dynamic vibrations are considered as perturbations of the rigid rotor underlying structure. Matrix elements required to use the proposed structure model in Tamura coupled-channel scheme are derived. Calculated ratio R(U238/Th232 of the total cross-section difference to the averaged σT for 238U and 232Th nuclei is shown to be in excellent agreement with measured data.

  5. Studies on the coupling transformer to improve the performance of microwave ion source.

    Science.gov (United States)

    Misra, Anuraag; Pandit, V S

    2014-06-01

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on the transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.

  6. 10th order laterally coupled GaN-based DFB laser diodes with V-shaped surface gratings

    Science.gov (United States)

    Kang, J. H.; Wenzel, H.; Hoffmann, V.; Freier, E.; Sulmoni, L.; Unger, R.-S.; Einfeldt, S.; Wernicke, T.; Kneissl, M.

    2018-02-01

    Single longitudinal mode operation of laterally coupled distributed feedback (DFB) laser diodes (LDs) based on GaN containing 10th-order surface Bragg gratings with V-shaped grooves is demonstrated using i-line stepper lithography and inductively coupled plasma etching. A threshold current of 82 mA, a slope efficiency of 1.7 W/A, a single peak emission at 404.5 nm with a full width at half maximum of 0.04 nm and a side mode suppression ratio of > 23 dB at an output power of about 46 mW were achieved under pulsed operation. The shift of the lasing wavelength of DFB LDs with temperature was around three times smaller than that of conventional ridge waveguide LDs.

  7. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W

    2003-01-01

    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  8. Coupled channel theory of pion--deuteron reaction applied to threshold scattering

    International Nuclear Information System (INIS)

    Mizutani, T.; Koltun, D.S.

    1977-01-01

    Scattering and absorption of pions by a nuclear target are treated together in a coupled channel theory. The theory is developed explicitly for the problem of pion scattering and absorption by a deuteron. The equations are presented in terms of the integral equations of three-body scattering theory. The method is then applied in an approximate from to calculate the contribution of pion absorption to the scattering length for pion--deuteron scattering. The sensitivity of the calculated results to the model assumptions and approximations is investigated

  9. Uplink scheduling and adjacent-channel coupling loss analysis for TD-LTE deployment.

    Science.gov (United States)

    Yeo, Woon-Young; Moon, Sung Ho; Kim, Jae-Hoon

    2014-01-01

    TD-LTE, one of the two duplexing modes in LTE, operates in unpaired spectrum and has the advantages of TDD-based technologies. It is expected that TD-LTE will be more rapidly deployed in near future and most of WiMax operators will upgrade their networks to TD-LTE gradually. Before completely upgrading to TD-LTE, WiMax may coexist with TD-LTE in an adjacent frequency band. In addition, multiple TD-LTE operators may deploy their networks in adjacent bands. When more than one TDD network operates in adjacent frequency bands, severe interference may happen due to adjacent channel interference (ACI) and unsynchronized operations. In this paper, coexistence issues between TD-LTE and other systems are analyzed and coexistence requirements are provided. This paper has three research objectives. First, frame synchronization between TD-LTE and WiMax is discussed by investigating possible combinations of TD-LTE and WiMax configurations. Second, an uplink scheduling algorithm is proposed to utilize a leakage pattern of ACI in synchronized operations. Third, minimum requirements for coexistence in unsynchronized operations are analyzed by introducing a concept of adjacent-channel coupling loss. From the analysis and simulation results, we can see that coexistence of TD-LTE with other TDD systems is feasible if the two networks are synchronized. For the unsynchronized case, some special cell-site engineering techniques may be required to reduce the ACI.

  10. Theoretical study of the performance for short channel carbon nanotube transistors with asymmetric contacts

    International Nuclear Information System (INIS)

    Zou Jianping; Zhang Qing; Marzari, Nicola; Li Hong

    2008-01-01

    We have simulated short channel carbon nanotube field-effect transistors with asymmetric source and drain contacts using a coupled mode space approach within the non-equilibrium Green's function framework. The simulated results show that the asymmetric conduction properties under positive and negative drain-to-source voltages are caused by the asymmetric Schottky barriers to carriers at the source and drain contacts. Under negative drain-to-source voltages, hole and electron conduction are dominated by thermionic emission and tunneling through the Schottky barrier, respectively, leading to the different subthreshold behaviors of the hole and electron conduction. With increasing channel length, short channel effects can be suppressed effectively and ON/OFF ratio can be improved

  11. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    International Nuclear Information System (INIS)

    Long, Yan; Lin, Zuoxian; Xia, Menghang; Zheng, Wei; Li, Zhiyuan

    2013-01-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC 50 values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds

  12. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yan; Lin, Zuoxian [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Xia, Menghang; Zheng, Wei [National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Zhiyuan, E-mail: li_zhiyuan@gibh.ac.cn [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2013-03-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.

  13. Operating experience of upgraded radio frequency source at 76 MHz coupled to heavy ion RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shiju, A.; Patel, N.R.; Shrotriya, S.D.; Bhagwat, P.V.

    2015-01-01

    A heavy ion radio frequency quadrupole (RFQ) accelerator has been developed at BARC (BARC). A RF source which was designed and developed at 76 MHz earlier, has been upgraded and coupled to heavy ion RFQ successfully. The DC bias supplies of this source have been replaced with new supplies having high efficiency and well filteration against RF interference (RFI). The driver of main power amplifier has been replaced with indigenously designed and developed unit. The earlier introduced microcontroller based interlock experienced RF noise issues. So, this circuit has been modified with the new circuit. With these modifications, the performance of the RF source was improved. Additionally, a separate low power RF source of around 100 + Watt was designed, developed and integrated with RFQ for its RF conditioning. This paper describes the details of up gradation of technologies implemented and coupling experience of this RF source with heavy ion RFQ. (author)

  14. Teleportation of n-Particle State via n Pairs of EPR Channels

    Institute of Scientific and Technical Information of China (English)

    CAO Min; ZHU Shi-Qun; FANG Jian-Xing

    2004-01-01

    The teleportation of an arbitrary n-particle state (n ≥ 1) is proposed if n pairs of identical EPR states are utilized as quantum channels. Independent Bell state measurements are performed for joint measurement. By using a special Latin square of order 2n(n ≥ 1), explicit expressions of outcomes after the Bell state measurements by Alice (sender) and the corresponding unitary transformations by Bob (receiver) can be derived. It is shown that the teleportation of n-particle state can be implemented by a series of single-qubit teleportation.

  15. Three-body coupled-channel theory of scattering and breakup of light and heavy ions

    International Nuclear Information System (INIS)

    Kamimura, M.; Kameyama, H.; Kawai, M.; Sakuragi, Y.; Iseri, Y.; Yahiro, M.; Tanifuji, M.

    1986-09-01

    It is shown that the method of coupled discretized continuum channels (CDCC) based on the three-body model for direct reactions is very successful in explaining the following, recently developed experiments using deuteron, 6 Li and 7 Li projectiles whose breakup threshold energies are very low: (i) Precise measurement of all the possible analyzing powers in elastic scattering of polarized deuteron at 56 MeV, (ii) scattering of polarized deuteron at intermediate energies, (iii) deuteron projectile breakup at 56 MeV, (iv) scattering of polarized 7 Li at 20 and 44 MeV and (v) projectile breakup of 6 Li at 178 MeV and 7 Li at 70 MeV. The CDCC analyses of those data are made transparently with no adjustable parameters. (author)

  16. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria.

    Science.gov (United States)

    Omairi-Nasser, Amin; Haselkorn, Robert; Austin, Jotham

    2014-07-01

    Cyanobacteria, formerly called blue-green algae, are abundant bacteria that carry out green plant photosynthesis, fixing CO2 and generating O2. Many species can also fix N2 when reduced nitrogen sources are scarce. Many studies imply the existence of intracellular communicating channels in filamentous cyanobacteria, in particular, the nitrogen-fixing species. In a species such as Anabaena, growth in nitrogen-depleted medium, in which ∼10% of the cells differentiate into anaerobic factories for nitrogen fixation (heterocysts), requires the transport of amino acids from heterocysts to vegetative cells, and reciprocally, the transport of sugar from vegetative cells to heterocysts. Convincing physical evidence for such channels has been slim. Using improved preservation of structure by high-pressure rapid freezing of samples for electron microscopy, coupled with high-resolution 3D tomography, it has been possible to visualize and measure the dimensions of channels that breach the peptidoglycan between vegetative cells and between heterocysts and vegetative cells. The channels appear to be straight tubes, 21 nm long and 14 nm in diameter for the latter and 12 nm long and 12 nm in diameter for the former.-Omairi-Nasser, A., Haselkorn, R., Austin, J. II. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria. © FASEB.

  17. Coupling climate conditions, sediment sources and sediment transport in an alpine basin

    Science.gov (United States)

    Rainato, Riccardo; Picco, Lorenzo; Cavalli, Marco; Mao, Luca; Neverman, Andrew J.; Tarolli, Paolo

    2017-04-01

    -2006 period. In this sense, the sediment availability resulting from armour layer and bedform removal appears crucial to describing the sediment fluxes during this period, stressing the key role of the in-channel sediment supply. In the recent period 2007-2015 a marked climate warming accompanied by increased precipitation was observed. This climate forcing did not affect the landscape evolution, with sediment source extent remaining substantially in line between 2006 and 2016. The absence of a significant landscape response and the restoration of the channel armour layer can describe the limited sediment fluxes observed during the last decade. In particular, the increased temperature and precipitation were not accompanied by an increase in flood occurrence and magnitude, stressing the evident absence of hillslope-channel network coupling. This research was funded by the University of Padova Research Projects 'Sediment transfer processes in an Alpine basin: sediment cascades from hillslopes to the channel network-BIRD167919'.

  18. Coupled channel folding model description of α scattering from 9Be

    International Nuclear Information System (INIS)

    Roy, S.; Chatterjee, J.M.; Majumdar, H.; Datta, S.K.; Banerjee, S.R.; Chintalapudi, S.N.

    1995-01-01

    Alpha scattering from 9 Be at E α = 65 MeV is described in the coupled channel framework with phenomenological as well as folded potentials. The multipole components of the deformed density of 9 Be are derived from Nilsson model wave functions. Reasonably good agreements are obtained for the angular distributions of 3/2 - (g.s.) and 5/2 - (2.43 MeV) states of the ground state band with folded potentials. The deformation predicted by the model corroborates with that derived from the phenomenological analysis with potentials of different geometries

  19. cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore.

    Directory of Open Access Journals (Sweden)

    Alex K Lyashchenko

    Full Text Available Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model but couple more loosely (as envisioned in a modular model of protein activation. Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile "slow" channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.

  20. Channel and delay estimation for base-station–based cooperative communications in frequency-selective fading channels

    Directory of Open Access Journals (Sweden)

    Hongjun Xu

    2011-07-01

    Full Text Available A channel and delay estimation algorithm for both positive and negative delay, based on the distributed Alamouti scheme, has been recently discussed for base-station–based asynchronous cooperative systems in frequency-flat fading channels. This paper extends the algorithm, the maximum likelihood estimator, to work in frequency-selective fading channels. The minimum mean square error (MMSE performance of channel estimation for both packet schemes and normal schemes is discussed in this paper. The symbol error rate (SER performance of equalisation and detection for both time-reversal space-time block code (STBC and single-carrier STBC is also discussed in this paper. The MMSE simulation results demonstrated the superior performance of the packet scheme over the normal scheme with an improvement in performance of up to 6 dB when feedback was used in the frequency-selective channel at a MSE of 3 x 10–2. The SER simulation results showed that, although both the normal and packet schemes achieved similar diversity orders, the packet scheme demonstrated a 1 dB coding gain over the normal scheme at a SER of 10–5. Finally, the SER simulations showed that the frequency-selective fading system outperformed the frequency-flat fading system.

  1. The Physical Connection and Magnetic Coupling of the MICE Cooling Channel Magnets and the Magnet Forces for Various MICE Operating Modes

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Baynham, D.E.; Fabricatore, Pasquale; Farinon, Stefania; Green, Michael A.; Ivanyushenkov, Yury; Lau, Wing W.; Maldavi, S.M.; Virostek, Steve P.; Witte, Holger

    2006-01-01

    A key issue in the construction of the MICE cooling channel is the magnetic forces between various elements in the cooling channel and the detector magnets. This report describes how the MICE cooling channel magnets are hooked to together so that the longitudinal magnetic forces within the cooling channel can be effectively connected to the base of the experiment. This report presents a magnetic force and stress analysis for the MICE cooling channel magnets, even when longitudinal magnetic forces as large as 700 kN (70 tons) are applied to the vacuum vessel of various magnets within the MICE channel. This report also shows that the detector magnets can be effectively separated from the central MICE cooling channel magnets without damage to either type of magnet component

  2. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    Science.gov (United States)

    Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.

    2017-12-01

    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we

  3. Influence of the channel electric field distribution on the polarization Coulomb field scattering in In0.18Al0.82N/AlN/GaN heterostructure field-effect transistors

    International Nuclear Information System (INIS)

    Yu Ying-Xia; Lin Zhao-Jun; Luan Chong-Biao; Yang Ming; Wang Yu-Tang; Lü Yuan-Jie; Feng Zhi-Hong

    2014-01-01

    By making use of the quasi-two-dimensional (quasi-2D) model, the current–voltage (I–V) characteristics of In 0.18 Al 0.82 N/AlN/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance–voltage (C–V) characteristics and I–V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm 2 /V·s for the prepared In 0.18 Al 0.82 N/AlN/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain–source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. The exact effective couplings of 4D N=2 gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Vladimir [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Pomoni, Elli [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); National Technical Univ. Athens (Greece). Physics Division

    2014-07-15

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  5. The exact effective couplings of 4D N=2 gauge theories

    International Nuclear Information System (INIS)

    Mitev, Vladimir; Humboldt-Universitaet, Berlin; Pomoni, Elli; National Technical Univ. Athens

    2014-07-01

    The anomalous dimensions of operators in the purely gluonic SU(2,1 vertical stroke 2) sector of any planar conformal N=2 theory can be read off from the N=4 SYM results by replacing the N=4 coupling constant by an interpolating function of the N=2 coupling constants, to which we refer to as the effective coupling. For a large class of N=2 theories we compute the weak coupling expansion of these functions as well as the leading strong coupling term by employing supersymmetric localization. Via Feynman diagrams, we interpret our results as the relative (between N=2 and N=4) finite renormalization of the coupling constant. Using the AdS/CFT dictionary, we identify the effective couplings with the effective string tensions of the corresponding gravity dual theories. Thus, any observable in the SU(2,1 vertical stroke 2) sector can be obtained from its N=4 counterpart by replacing the N=4 coupling constant by the universal, for a given theory, effective coupling.

  6. SU(N) gauge theory couplings on asymmetric lattices

    International Nuclear Information System (INIS)

    Karsch, F.

    1982-01-01

    The connection between euclidean and hamiltonian lattice QCD requires the use of asymmetric lattices, which in turn implies the necessity of two coupling parameters. We analyse the dependence of space- and time-like couplings gsub(sigma) and gsub(tau) on the different lattice spacings a and asub(tau) in space and time directions. Using the background field method we determine the derivatives of the couplings with respect to the asymmetry factor xi = a/asub(tau) in the weak coupling limit, obtaining for xi = 1 the values (deltag -2 sub(sigma)/deltaxi)sub(xi = 1) = 0.11403, N = 2, 0.20161, N = 3, (deltag -2 sub(tau)/deltaxi)sub(xi = 1) = -0.06759, N = 2, -0.13195, N = 3. We argue that the sum of these derivatives has to be equal to b 0 = 11N/48π 2 and determine the Λ parameter for asymmetric lattices. In the limit xi → infinity all our results agree with those of A. and P. Hasenfratz. (orig.)

  7. Calculations of accelerator-based neutron sources characteristics

    International Nuclear Information System (INIS)

    Tertytchnyi, R.G.; Shorin, V.S.

    2000-01-01

    Accelerator-based quasi-monoenergetic neutron sources (T(p,n), D(d;n), T(d;n) and Li (p,n)-reactions) are widely used in experiments on measuring the interaction cross-sections of fast neutrons with nuclei. The present work represents the code for calculation of the yields and spectra of neutrons generated in (p, n)- and ( d; n)-reactions on some targets of light nuclei (D, T; 7 Li). The peculiarities of the stopping processes of charged particles (with incident energy up to 15 MeV) in multilayer and multicomponent targets are taken into account. The code version is made in terms of the 'SOURCE,' a subroutine for the well-known MCNP code. Some calculation results for the most popular accelerator- based neutron sources are given. (authors)

  8. Coupling of unidimensional neutron kinetics to thermal hydraulics in parallel channels; Acoplamiento de cinetica neutronica unidimensional a canales termohidraulicos en paralelo

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M.; Campos G, R.M. [IIE, Av. Reforma 113, Col. Palmira, Cuernavaca, Morelos (Mexico)]. e-mail: mcf@iie.org.mx

    2003-07-01

    In this work the dynamic behavior of a consistent system in fifteen channels in parallel that represent the reactor core of a BWR type, coupled of a kinetic neutronic model in one dimension is studied by means of time series. The arrangement of channels is obtained collapsing the assemblies that it consists the core to an arrangement of channels prepared in straight lines, and it is coupled to the unidimensional solution of the neutron diffusion equation. This solution represents the radial power distribution, and initially the static solution is obtained to verify that the one modeling core is critic. The coupled set nuclear-thermal hydraulics it is solved numerically by means of a net of CPUs working in the outline teacher-slave by means of Parallel Virtual Machine (PVM), subject to the restriction that the pressure drop is equal for each channel, which is executed iterating on the refrigerant distribution. The channels are dimensioned according to the one Stability Benchmark of the Ringhals swedish plant, organized by the Nuclear Energy Agency in 1994. From the information of this benchmark it is obtained the axial power profile for each channel, which is assumed as invariant in the time. To obtain the time series, the system gets excited with white noise (sequence that statistically obeys to a normal distribution with zero media), so that the power generated in each channel it possesses the same ones characteristics of a typical signal obtained by means of the acquisition of those signals of neutron flux in a BWR reactor. (Author)

  9. The Breakdown: Hillslope Sources of Channel Blocks in Bedrock Landscapes

    Science.gov (United States)

    Selander, B.; Anderson, S. P.; Rossi, M.

    2017-12-01

    Block delivery from hillslopes is a poorly understood process that influences bedrock channel incision rates and shapes steep terrain. Previous studies demonstrate that hillslope sediment delivery rate and grain size increases with channel downcutting rate or fracture density (Attal et al., 2015, ESurf). However, blocks that exceed the competence of the channel can inhibit incision. In Boulder Creek, a bedrock channel in the Colorado Front Range, large boulders (>1 m diameter) are most numerous in the steepest channel reaches; their distribution seems to reflect autogenic channel-hillslope feedback between incision rate and block delivery (Shobe et al., 2016, GRL). It is clear that the processes, rates of production, and delivery of large blocks from hillslopes into channels are critical to our understanding of steep terrain evolution. Fundamental questions are 1) whether block production or block delivery is rate limiting, 2) what mechanisms release blocks, and 3) how block production and transport affect slope morphology. As a first step, we map rock outcrops on the granodiorite hillslopes lining Boulder Creek within Boulder Canyon using a high resolution DEM. Our algorithm uses high ranges of curvature values in conjunction with slopes steeper than the angle of repose to quickly identify rock outcrops. We field verified mapped outcrop and sediment-mantled locations on hillslopes above and below the channel knickzone. We find a greater abundance of exposed rock outcrops on steeper hillslopes in Boulder Canyon. Additionally, we find that channel reaches with large in-channel blocks are located at the base of hillslopes with large areas of exposed bedrock, while reaches lacking large in-channel blocks tend to be at the base of predominately soil mantled and forested hillslopes. These observations support the model of block delivery and channel incision of Shobe et al. (2016, GRL). Moreover, these results highlight the conundrum of how rapid channel incision is

  10. Skyrmion-based multi-channel racetrack

    Science.gov (United States)

    Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Xia, Haiyan; Wang, Jianbo; Liu, Qingfang

    2017-11-01

    Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.

  11. Mass spectra and ionization temperatures in an argon-nitrogen inductively coupled plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Montaser, A.; Fassel, V.A.

    1983-01-01

    Positive ions were extracted from the axial channel of an inductively coupled plasma (ICP) in which the outer gas flow was Ar, N 2 , or a mixture of Ar and N 2 . Addition of N 2 to the outer gas decreases the electron number density (n/sub e/) in the axial channel. Ar +2 , O 2 + , and ArH + react with N-containing species in the plasma and/or during the ion extraction process. Ar + remains abundant even if there is no Ar in the outer gas, which indicates the probable occurrence of charge transfer reactions between N 2 + and Ar. The present work corroborates two general concepts upon which several theories of theorigin of suprathermal ionization in ICPs are based: (a) species are physically transported from the induction region to the axial channel; and (b) these species may react with a ionize neutral species in the axial channel. Ionization temperatures (T/sub ion/) measured from the ratio Cd + /I + were 5750 to 6700 K for a N 2 outer flow ICP a forward power of 1.2 kW. This T/sub ion/ range is significantly below that obtained for an Ar outer gas ICP under otherwise similar operating parameters

  12. Unsteady coupling of Navier-Stokes and radiative heat transfer solvers applied to an anisothermal multicomponent turbulent channel flow

    International Nuclear Information System (INIS)

    Amaya, J.; Cabrit, O.; Poitou, D.; Cuenot, B.; El Hafi, M.

    2010-01-01

    Direct numerical simulations (DNS) of an anisothermal reacting turbulent channel flow with and without radiative source terms have been performed to study the influence of the radiative heat transfer on the optically non-homogeneous boundary layer structure. A methodology for the study of the emitting/absorbing turbulent boundary layer (TBL) is presented. Details on the coupling strategy and the parallelization techniques are exposed. An analysis of the first order statistics is then carried out. It is shown that, in the studied configuration, the global structure of the thermal boundary layer is not significantly modified by radiation. However, the radiative transfer mechanism is not negligible and contributes to the heat losses at the walls. The classical law-of-the-wall for temperature can thus be improved for RANS/LES simulations taking into account the radiative contribution.

  13. Simultaneous protection of organic p- and n-channels in complementary inverter from aging and bias-stress by DNA-base guanine/Al2O3 double layer.

    Science.gov (United States)

    Lee, Junyeong; Hwang, Hyuncheol; Min, Sung-Wook; Shin, Jae Min; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil

    2015-01-28

    Although organic field-effect transistors (OFETs) have various advantages of lightweight, low-cost, mechanical flexibility, and nowadays even higher mobility than amorphous Si-based FET, stability issue under bias and ambient condition critically hinder its practical application. One of the most detrimental effects on organic layer comes from penetrated atmospheric species such as oxygen and water. To solve such degradation problems, several molecular engineering tactics are introduced: forming a kinetic barrier, lowering the level of molecule orbitals, and increasing the band gap. However, direct passivation of organic channels, the most promising strategy, has not been reported as often as other methods. Here, we resolved the ambient stability issues of p-type (heptazole)/or n-type (PTCDI-C13) OFETs and their bias-stability issues at once, using DNA-base small molecule guanine (C5H5N5O)/Al2O3 bilayer. The guanine protects the organic channels as buffer/and H getter layer between the channels and capping Al2O3, whereas the oxide capping resists ambient molecules. As a result, both p-type and n-type OFETs are simultaneously protected from gate-bias stress and 30 days-long ambient aging, finally demonstrating a highly stable, high-gain complementary-type logic inverter.

  14. Performance Analysis of Secrecy Outage Probability for AF-Based Partial Relay Selection with Outdated Channel Estimates

    Directory of Open Access Journals (Sweden)

    Kyu-Sung Hwang

    2017-01-01

    Full Text Available We study the secrecy outage probability of the amplify-and-forward (AF relaying protocol, which consists of one source, one destination, multiple relays, and multiple eavesdroppers. In this system, the aim is to transmit the confidential messages from a source to a destination via the selected relay in presence of eavesdroppers. Moreover, partial relay selection scheme is utilized for relay selection based on outdated channel state information where only neighboring channel information (source-relays is available and passive eavesdroppers are considered where a transmitter does not have any knowledge of eavesdroppers’ channels. Specifically, we offer the exact secrecy outage probability of the proposed system in a one-integral form as well as providing the asymptotic secrecy outage probability in a closed-form. Numerical examples are given to verify our provided analytical results for different system conditions.

  15. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke

    for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect......This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... to allow for e- cient plasmon-based single-photon sources. Theoretical studies of coupling and propagation properties of plasmonic waveguides reveal that a high-refractive index of the medium surrounding the emitter, e.g. nGaAs = 3.5, limits the realizability of ecient plasmon-based single-photon sources...

  16. Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal

    Science.gov (United States)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-09-01

    Electromagnetic polarization conveys valuable information for signal processing. Manipulation of terahertz wavelength demultiplexer exhibits tremendous potential in developing application of terahertz science and technology. We propose an approach to separate efficiently four frequencies terahertz waves based on three cascaded directional coupling two-dimensional photonic crystal waveguides. Both plane wave expansion method and finite-difference time-domain method are used to calculate and analyze the characteristics of the proposed device. The simulation results show that the designed terahertz wavelength demultiplexer can split four different wavelengths of terahertz wave into different propagation directions with high transmittance and low crosstalk. The present device is very compact and the total size is 6.8×10.6 mm2. This enables the terahertz wavelength demultiplexer to be used in terahertz wave system and terahertz wave integrated circuit fields.

  17. Complementary HFET technology for low-power mixed-mode applications

    Energy Technology Data Exchange (ETDEWEB)

    Baca, A.G.; Sherwin, M.E.; Zolper, J.C.; Dubbert, D.F.; Hietala, V.M.; Shul, R.J.; Sloan, L.R.; Hafich, M.J.

    1996-06-01

    Development of a complementary heterostructure field effect transistor (CHFET) technology for low-power, mixed-mode digital-microwave applications is presented. An earlier digital CHFET technology with independently optimizable transistors which operated with 319 ps loaded gate delays at 8.9 fJ is reviewed. Then work demonstrating the applicability of the digital nJFET device as a low-power microwave transistor in a hybrid microwave amplifier without any modification to the digital process is presented. A narrow band amplifier with a 0.7 {times} 100 {micro}m nJFET as the active element was designed, constructed, and tested. At 1 mW operating power, the amplifier showed 9.7 dB of gain at 2.15 GHz and a minimum noise figure of 2.5 dB. In addition, next generation CHFET transistors with sub 0.5 {micro}m gate lengths were developed. Cutoff frequencies, f{sub t} of 49 GHz and 11.5 GHz were achieved for n- and p-channel FETs with 0.3 and 0.4 {micro}m gates, respectively. These FETs will enable both digital and microwave circuits with enhanced performance.

  18. Calculation of spin-dependent observables in electron-sodium scattering using the coupled-channel optical method

    International Nuclear Information System (INIS)

    Bray, Igor.

    1992-04-01

    The calculations of the 3 2 S and 3 2 P spin asymmetries and the angular momentum for singlet and triplet scattering for projectile energies of 10 and 20 eV is presented. Together these observables give a most stringent test of any electron-atom scattering theory. An excellent agreement was found between the results of the coupled-channel optical method and experiment, which for the spin asymmetries can only be obtained by a good description of the couplings between the lower-lying target states and the target continuum. 10 refs., 2 figs

  19. Exploring information-seeking processes by business: analyzing source and channel choices in business-to-government service interactions

    NARCIS (Netherlands)

    van den Boer, Yvon; Pieterson, Willem Jan; van Dijk, Johannes A.G.M.; Arendsen, R.

    2016-01-01

    With the rise of electronic channels it has become easier for businesses to consult various types of information sources in information-seeking processes. Governments are urged to rethink their role as reliable information source and the roles of their (electronic) service channels to provide

  20. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    Science.gov (United States)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  1. X-ray system with coupled source drive and detector drive

    International Nuclear Information System (INIS)

    1976-01-01

    An electronic coupling replacing the (more expensive) mechanical coupling which controls the speed of two sets of two electric motors, one driving an X-ray source and the other an X-ray detector, is described. Source and detector are kept rotating in parallel planes with a fairly constant velocity ratio. The drives are controlled by an electronic system comprising a comparator circuit comparing the position-indicative signals, a process control circuit and an inverter switch. The control system regulates the speed of the electric motors. The signal processing is described

  2. Importance of channel coupling for very large angle proton-nucleus scattering and the failure of the optical model

    International Nuclear Information System (INIS)

    Amado, R.D.; Sparrow, D.A.

    1984-01-01

    The importance of inelastic channels in proton-nucleus scattering grows with momentum transfer, q, so that for large q coupled channels are required. This happens when the elastic and inelastic cross sections become comparable. We incorporate these ideas in a simple analytic framework to explain the large angle p- 208 Pb elastic scattering data at 800 MeV for which standard optical model calculations have failed completely

  3. The Role of Canonical Transient Receptor Potential Channels in Seizure and Excitotoxicity

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2014-04-01

    Full Text Available Canonical transient receptor potential (TRPC channels are a family of polymodal cation channels with some degree of Ca2+ permeability. Although initially thought to be channels mediating store-operated Ca2+ influx, TRPC channels can be activated by stimulation of Gq-coupled G-protein coupled receptors, or by an increase in intracellular free Ca2+ concentration. Thus, activation of TRPC channels could be a common downstream event of many signaling pathways that contribute to seizure and excitotoxicity, such as N-methyl-D-aspartate (NMDA receptor-mediated Ca2+ influx, or metabotropic glutamate receptor activation. Recent studies with genetic ablation of various TRPC family members have demonstrated that TRPC channels, in particular heteromeric TRPC1/4 channels and homomeric TRPC5 channels, play a critical role in both pilocarpine-induced acute seizures and neuronal cell death. However, exact underlying mechanisms remain to be fully elucidated, and selective TRPC modulators and antibodies with better specificity are urgently needed for future research.

  4. Flat-top passband filter based on parallel-coupled double microring resonators in silicon

    Science.gov (United States)

    Huang, Qingzhong; Xiao, Xi; Li, Yuntao; Li, Zhiyong; Yu, Yude; Yu, Jinzhong

    2009-08-01

    Optical filters with box-like response were designed and realized based on parallel-coupled double microrings in silicon-on-insulator. The properties of this design are simulated, considering the impact of the center-to-center distance of two rings, and coupling efficiency. Flat-top passband in the drop channel of the fabricated device was demonstrated with a 1dB bandwidth of 0.82nm, a 1dB/10dB bandwidth ratio of 0.51, an out of band rejection ratio of 14.6dB, as well as a free spectrum range of 13.6nm.

  5. AlGaN channel field effect transistors with graded heterostructure ohmic contacts

    Science.gov (United States)

    Bajaj, Sanyam; Akyol, Fatih; Krishnamoorthy, Sriram; Zhang, Yuewei; Rajan, Siddharth

    2016-09-01

    We report on ultra-wide bandgap (UWBG) Al0.75Ga0.25N channel metal-insulator-semiconductor field-effect transistors (MISFETs) with heterostructure engineered low-resistance ohmic contacts. The low intrinsic electron affinity of AlN (0.6 eV) leads to large Schottky barriers at the metal-AlGaN interface, resulting in highly resistive ohmic contacts. In this work, we use a reverse compositional graded n++ AlGaN contact layer to achieve upward electron affinity grading, leading to a low specific contact resistance (ρsp) of 1.9 × 10-6 Ω cm2 to n-Al0.75Ga0.25N channels (bandgap ˜5.3 eV) with non-alloyed contacts. We also demonstrate UWBG Al0.75Ga0.25N channel MISFET device operation employing the compositional graded n++ ohmic contact layer and 20 nm atomic layer deposited Al2O3 as the gate-dielectric.

  6. Voltage-Dependent Gating of hERG Potassium Channels

    Science.gov (United States)

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  7. Voltage-dependent gating of hERG potassium channels

    Directory of Open Access Journals (Sweden)

    Yen May eCheng

    2012-05-01

    Full Text Available The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4-S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-a-go-go related gene, hERG, which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure-function relationships underlying voltage-dependent gating in Shaker and hERG channels, with a focus on the roles of the voltage sensing domain and the S4-S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter charge interactions. More recent data suggest that key amino acid differences in the hERG voltage sensing unit and S4-S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor.

  8. Development of sub-channel code SACoS and its application in coupled neutronics/thermal hydraulics system for SCWR

    International Nuclear Information System (INIS)

    Chaudri, Khurrum Saleem; Su Yali; Chen Ronghua; Tian Wenxi; Su Guanghui; Qiu Suizheng

    2012-01-01

    Highlights: ► A tool is developed for coupled neutronics/thermal-hydraulic analysis for SCWR. ► For thermal hydraulic analysis, a sub-channel code SACoS is developed and verified. ► Coupled analysis agree quite well with the reference calculations. ► Different choice of important parameters makes huge difference in design calculations. - Abstract: Supercritical Water Reactor (SCWR) is one of the promising reactors from the list of fourth generation of nuclear reactors. High thermal efficiency and low cost of electricity make it an attractive option in the era of growing energy demand. An almost seven fold density variation for coolant/moderator along the active height does not allow the use of constant density assumption for design calculations, as used for previous generations of reactors. The advancement in computer technology gives us the superior option of performing coupled analysis. Thermal hydraulics calculations of supercritical water systems present extra challenges as not many computational tools are available to perform that job. This paper introduces a new sub-channel code called Sub-channel Analysis Code of SCWR (SACoS) and its application in coupled analyses of High Performance Light Water Reactor (HPLWR). SACoS can compute the basic thermal hydraulic parameters needed for design studies of a supercritical water reactor. Multiple heat transfer and pressure drop correlations are incorporated in the code according to the flow regime. It has the additional capability of calculating the thermal hydraulic parameters of moderator flowing in water box and between fuel assemblies under co-current or counter current flow conditions. Using MCNP4c and SACoS, a coupled system has been developed for SCWR design analyses. The developed coupled system is verified by performing and comparing HPLWR calculations. The results were found to be in very good agreement. Significant difference between the results was seen when Doppler feedback effect was included in

  9. Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system

    International Nuclear Information System (INIS)

    Han, Xu; Wang, Tao; Liu, Bo; He, Yu; Tang, Jian; Li, Xiaoming

    2015-01-01

    Ultrafast and low-power dynamically tunable single channel and multichannel slow light based on plasmon induced transparencies (PITs) in disk resonators coupled to a metal-dielectric-metal (MDM) waveguide system with a nonlinear optical Kerr medium is investigated both numerically and analytically. A coupled-mode theory (CMT) is introduced to analyze this dynamically tunable single channel slow light structure. Multichannel slow light is realized in this plasmonic waveguide structure based on a bright–dark mode coupling mechanism. In order to reduce the pump intensity and obtain ultrafast response time, the traditional nonlinear Kerr material is replaced by monolayer graphene. It is found that the magnitude of the single PIT window can be controlled between 0.08 and 0.48, while the corresponding group index is controlled between 14.5 and 2.0 by dynamically decreasing pump intensity from 11.7 to 4.4 MW cm −2 . Moreover, the phase shift multiplication effect is found in this structure. This work paves a new way towards the realization of highly integrated optical circuits and networks, especially for wavelength-selective, all-optical storage and nonlinear devices. (paper)

  10. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    Science.gov (United States)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  11. A cross-coupled-structure-based temperature sensor with reduced process variation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Tie Meng; Cheng Xu, E-mail: tiemeng@mprc.pku.edu.c [Microprocessor Research and Development Center, Peking University, Beijing 100871 (China)

    2009-04-15

    An innovative, thermally-insensitive phenomenon of cascaded cross-coupled structures is found. And a novel CMOS temperature sensor based on a cross-coupled structure is proposed. This sensor consists of two different ring oscillators. The first ring oscillator generates pulses that have a period, changing linearly with temperature. Instead of using the system clock like in traditional sensors, the second oscillator utilizes a cascaded cross-coupled structure to generate temperature independent pulses to capture the result from the first oscillator. Due to the compensation between the two ring oscillators, errors caused by supply voltage variations and systematic process variations are reduced. The layout design of the sensor is based on the TSMC13G process standard cell library. Only three inverters are modified for proper channel width tuning without any other custom design. This allows for an easy integration of the sensor into cell-based chips. Post-layout simulations results show that an error lower than +-1.1 deg. C can be achieved in the full temperature range from -40 to 120 deg. C. As shown by SPICE simulations, the thermal insensitivity of the cross-coupled inverters can be realized for various TSMC technologies: 0.25 mum, 0.18 mum, 0.13 mum, and 65 nm.

  12. Electronic Communication Channel Use and Health Information Source Preferences Among Latinos in Northern Manhattan.

    Science.gov (United States)

    Hillyer, Grace Clarke; Schmitt, Karen M; Lizardo, Maria; Reyes, Andria; Bazan, Mercedes; Alvarez, Maria C; Sandoval, Rossy; Abdul, Kazeem; Orjuela, Manuela A

    2017-04-01

    Understanding key health concepts is crucial to participation in Precision Medicine initiatives. In order to assess methods to develop and disseminate a curriculum to educate community members in Northern Manhattan about Precision Medicine, clients from a local community-based organization were interviewed during 2014-2015. Health literacy, acculturation, use of Internet, email, and text messaging, and health information sources were assessed. Associations between age and outcomes were evaluated; multivariable analysis used to examine the relationship between participant characteristics and sources of health information. Of 497 interviewed, 29.4 % had inadequate health literacy and 53.6 % had access to the Internet, 43.9 % to email, and 45.3 % to text messaging. Having adequate health literacy was associated with seeking information from a healthcare professional (OR 2.59, 95 % CI 1.54-4.35) and from the Internet (OR 3.15, 95 % CI 1.97-5.04); having ≤ grade school education (OR 2.61, 95 % CI 1.32-5.17) also preferred information from their provider; persons >45 years (OR 0.29, 95 % CI 0.18-0.47) were less likely to use the Internet for health information and preferred printed media (OR 1.64, 95 % CI 1.07-2.50). Overall, electronic communication channel use was low and varied significantly by age with those ≤45 years more likely to utilize electronic channels. Preferred sources of health information also varied by age as well as by health literacy and educational level. This study demonstrates that to effectively communicate key Precision Medicine concepts, curriculum development for Latino community members of Northern Manhattan will require attention to health literacy, language preference and acculturation and incorporate more traditional communication channels for older community members.

  13. Transient Moderator Simulation Using CFX10-CAMO, a CANDU Moderator Analysis Model Based on a Coupled Solver

    International Nuclear Information System (INIS)

    Yoon, Churl; Park, Joo Hwan

    2007-01-01

    When a PHT(Primary Heat Transfer) system fails to remove excess heat from fuel channels for some loss of coolant accidents(LOCA's) in CANDU NPP's, the fuel channel temperature could increase until the pressure tube strains (i.e., balloon or sag) to contact its surrounding Calandria tube.(PT/CT contact) Following a PT/CT contact, there is a spike in the heat flux to the moderator surrounding the Calandria tube, which may lead to a sustained CT dryout and also a failure of a fuel channel. The prevention of a CT dryout following a PT/CT contact depends on the local moderator subcooling. That is, fuel channel integrity depends on the capability of the moderator to act as the ultimate heat sink for some LOCA's in a CANDU reactor. In KAERI, Yoon et al. developed a CFD model for predicting a CANDU-6 moderator temperature on the basis of a commercial CFD code CFX-4(ANSYS Inc.). This analytic model has the strength of modelling the hydraulic resistances in the core region and accounting for a heat source term in the energy equations. But convergence difficulties and a slow computing speed are the limitations of this model, because the CFX-4 code adapts a segregated solver to resolve a moderator circulation including a strong coupled-effect. Compared to a segregated solver, a coupled-solver is highly efficient and robust especially for a flow with a strong interference between the variables such as combustion

  14. Channel coupling and distortion effects in the excitation of the 02+ state in 12C by alpha scattering

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1983-01-01

    The excitation of the 0 2 + (7.65 MeV) state in 12 C by inelastic alpha scattering is investigated using microscopic resonating-group wave-functions in a coupled channel folding model. The importance of coupling to other states and the influence of varying the optical potential in the excited states is studied. Both effects must be taken into account for a quantitative description

  15. A Channelization-Based DOA Estimation Method for Wideband Signals

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2016-07-01

    Full Text Available In this paper, we propose a novel direction of arrival (DOA estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR using direct wideband radio frequency (RF digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method.

  16. Feasibility study of broadband efficient ''water window'' source

    International Nuclear Information System (INIS)

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang Weihua; Endo, Akira; Li Bowen; Dunne, Padraig; O'Sullivan, Gerry

    2012-01-01

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  17. Research on out-phase oscillation in a nuclear-coupled parallel double-channel boiling system

    International Nuclear Information System (INIS)

    Zhou Linglan; Zhang Hong; Liu Yu; Zang Xi'nian

    2011-01-01

    In this paper, the RELAP5 thermal-hydraulic system code is coupled with the TDOT-T 3D neutron kinetic code by PVM (Parallel Virtual Machine). A parallel double-channel boiling system is built by the coupled code and the instability boundary of out-of-phase oscillation in the system is obtained. The effects of axis power distribution and neutron feedback on the out-of-phase oscillation are analyzed in details. It is found that there are type-Ⅰ and type-Ⅱ density wave oscillation regions when the axial power peak is located at upstream of the heating section. At relatively lower values of fuel time constant, the neutron feedback always delays both types of density wave oscillations. (authors)

  18. Traveling Wave-Guide Channels of a New Coupled Integrable Dispersionless System

    International Nuclear Information System (INIS)

    Souleymanou, Abbagari; Kuetche, Victor K.; Bouetou, Thomas B.; Kofane, Timoleon C.

    2012-01-01

    In the wake of the recent investigation of new coupled integrable dispersionless equations by means of the Darboux transformation [Zhaqilao, et al., Chin. Phys. B 18 (2009) 1780], we carry out the initial value analysis of the previous system using the fourth-order Runge-Kutta's computational scheme. As a result, while depicting its phase portraits accordingly, we show that the above dispersionless system actually supports two kinds of solutions amongst which the localized traveling wave-guide channels. In addition, paying particular interests to such localized structures, we construct the bilinear transformation of the current system from which scattering amongst the above waves can be deeply studied. (general)

  19. Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations

    Science.gov (United States)

    Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.

    2017-12-01

    A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.

  20. Optical bistability in a single-sided cavity coupled to a quantum channel

    Science.gov (United States)

    Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.

    2018-06-01

    In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.

  1. N-linked glycans are required on epithelial Na+ channel subunits for maturation and surface expression.

    Science.gov (United States)

    Kashlan, Ossama B; Kinlough, Carol L; Myerburg, Michael M; Shi, Shujie; Chen, Jingxin; Blobner, Brandon M; Buck, Teresa M; Brodsky, Jeffrey L; Hughey, Rebecca P; Kleyman, Thomas R

    2018-03-01

    Epithelial Na + channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αβγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, β-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding. Heterologous expression in Xenopus oocytes or Fischer rat thyroid cells with αβγ-ENaC lacking N-linked glycans on a single subunit reduced ENaC activity as well as the inhibitory response to extracellular Na + . The lack of N-linked glycans on the β-subunit also precluded channel activation by trypsin. However, channel activation by shear stress was N-linked glycan independent, regardless of which subunit was modified. We also discovered that the lack of N-linked glycans on any one subunit reduced the total and surface levels of cognate subunits. The lack of N-linked glycans on the β-subunit had the largest effect on total levels, with the lack of N-linked glycans on the γ- and α-subunits having intermediate and modest effects, respectively. Finally, channels with wild-type β-subunits were more sensitive to limited trypsin proteolysis than channels lacking N-linked glycans on the β-subunit. Our results indicate that N-linked glycans on each subunit are required for proper folding, maturation, surface expression, and function of the channel.

  2. Stable integrated hyper-parametric oscillator based on coupled optical microcavities.

    Science.gov (United States)

    Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick

    2015-12-01

    We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

  3. Effect of the Presence of Semi-circular Cylinders on Heat Transfer From Heat Sources Placed in Two Dimensional Channel

    Directory of Open Access Journals (Sweden)

    Ahmed W. Mustava

    2013-04-01

    Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations.  The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass.  The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the

  4. Thinning of N-face GaN (0001) samples by inductively coupled plasma etching and chemomechanical polishing

    International Nuclear Information System (INIS)

    Rizzi, F.; Gu, E.; Dawson, M. D.; Watson, I. M.; Martin, R. W.; Kang, X. N.; Zhang, G. Y.

    2007-01-01

    The processing of N-polar GaN (0001) samples has been studied, motivated by applications in which extensive back side thinning of freestanding GaN (FS-GaN) substrates is required. Experiments were conducted on FS-GaN from two commercial sources, in addition to epitaxial GaN with the N-face exposed by a laser lift-off process. The different types of samples produced equivalent results. Surface morphologies were examined over relatively large areas, using scanning electron microscopy and stylus profiling. The main focus of this study was on inductively coupled plasma (ICP) etch processes, employing Cl 2 /Ar or Cl 2 /BCl 3 Ar gas mixtures. Application of a standard etch recipe, optimized for feature etching of Ga-polar GaN (0001) surfaces, caused severe roughening of N-polar samples and confirmed the necessity for specific optimization of etch conditions for N-face material. A series of recipes with a reduced physical (sputter-based) contribution to etching allowed average surface roughness values to be consistently reduced to below 3 nm. Maximum N-face etch rates of 370-390 nm/min have been obtained in recipes examined to date. These are typically faster than etch rates obtained on Ga-face samples under the same conditions and adequate for the process flows of interest. Mechanistic aspects of the ICP etch process and possible factors contributing to residual surface roughness are discussed. This study also included work on chemomechanical polishing (CMP). The optimized CMP process had stock removal rates of ∼500 nm/h on the GaN N face. This was much slower than the ICP etching but showed the important capability of recovering smooth surfaces on samples roughened in previous processing. In one example, a surface roughened by nonoptimized ICP etching was smoothed to give an average surface roughness of ∼2 nm

  5. Effects of annealing gas and drain doping concentration on electrical properties of Ge-source/Si-channel heterojunction tunneling FETs

    Science.gov (United States)

    Bae, Tae-Eon; Wakabayashi, Yuki; Nakane, Ryosho; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Improvement in the performance of Ge-source/Si-channel heterojunction tunneling FETs (TFETs) with high on-current/off-current (I on/I off) ratio and steep subthreshold swing (SS) is demonstrated. In this paper, we experimentally examine the effects of gas ambient [N2 and forming gas (4% H2/N2)] and a doping concentration in the drain regions on the electrical characteristics of Ge/Si heterojunction TFETs. The minimum SS (SSmin) of 70.9 mV/dec and the large I on/I off ratio of 1.4 × 107 are realized by postmetallization annealing in forming gas. Also, the steep SSmin and averaged SS (SSavr) values of 64.2 and 78.4 mV/dec, respectively, are obtained in low drain doping concentration. This improvement is attributable to the reduction in interface state density (D it) in the channel region and to the low leakage current in the drain region.

  6. Diagrammatic Monte Carlo for the weak-coupling expansion of non-Abelian lattice field theories: Large-N U (N ) ×U (N ) principal chiral model

    Science.gov (United States)

    Buividovich, P. V.; Davody, A.

    2017-12-01

    We develop numerical tools for diagrammatic Monte Carlo simulations of non-Abelian lattice field theories in the t'Hooft large-N limit based on the weak-coupling expansion. First, we note that the path integral measure of such theories contributes a bare mass term in the effective action which is proportional to the bare coupling constant. This mass term renders the perturbative expansion infrared-finite and allows us to study it directly in the large-N and infinite-volume limits using the diagrammatic Monte Carlo approach. On the exactly solvable example of a large-N O (N ) sigma model in D =2 dimensions we show that this infrared-finite weak-coupling expansion contains, in addition to powers of bare coupling, also powers of its logarithm, reminiscent of resummed perturbation theory in thermal field theory and resurgent trans-series without exponential terms. We numerically demonstrate the convergence of these double series to the manifestly nonperturbative dynamical mass gap. We then develop a diagrammatic Monte Carlo algorithm for sampling planar diagrams in the large-N matrix field theory, and apply it to study this infrared-finite weak-coupling expansion for large-N U (N ) ×U (N ) nonlinear sigma model (principal chiral model) in D =2 . We sample up to 12 leading orders of the weak-coupling expansion, which is the practical limit set by the increasingly strong sign problem at high orders. Comparing diagrammatic Monte Carlo with conventional Monte Carlo simulations extrapolated to infinite N , we find a good agreement for the energy density as well as for the critical temperature of the "deconfinement" transition. Finally, we comment on the applicability of our approach to planar QCD at zero and finite density.

  7. Effect of state feedback coupling on the transient performance of voltage source inverters with LC filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; Antonio DeSouza Ribeiro, Luiz

    2016-01-01

    State feedback coupling between the capacitor voltage and inductor current deteriorates notably the performance during transients of voltage and current regulators in stand-alone systems based on voltage source inverters. A decoupling technique is proposed, considering the limitations introduced...

  8. Channel allocation and rate adaptation for relayed transmission over correlated fading channels

    KAUST Repository

    Hwang, Kyusung

    2009-09-01

    We consider, in this paper, channel allocation and rate adaptation scheme for relayed transmission over correlated fading channels via cross-layer design. Specifically, jointly considering the data link layer buffer occupancy and channel quality at both the source and relay nodes, we develop an optimal channel allocation and rate adaptation policy for a dual-hop relayed transmission. As such the overall transmit power for the relayed system is minimized while a target packet dropping rate (PDR) due to buffer over flows is guaranteed. In order to find such an optimal policy, the channel allocation and rate adaptation transmission framework is formulated as a constraint Markov decision process (CMDP). The PDR performance of the optimal policy is compared with that of two conventional suboptimal schemes, namely the channel quality based and the buffer occupancy based channel allocation schemes. Numerical results show that for a given power budget, the optimal scheme requires significantly less power than the conventional schemes in order to maintain a target PDR. ©2009 IEEE.

  9. A diversity compression and combining technique based on channel shortening for cooperative networks

    KAUST Repository

    Hussain, Syed Imtiaz

    2012-02-01

    The cooperative relaying process with multiple relays needs proper coordination among the communicating and the relaying nodes. This coordination and the required capabilities may not be available in some wireless systems where the nodes are equipped with very basic communication hardware. We consider a scenario where the source node transmits its signal to the destination through multiple relays in an uncoordinated fashion. The destination captures the multiple copies of the transmitted signal through a Rake receiver. We analyze a situation where the number of Rake fingers N is less than that of the relaying nodes L. In this case, the receiver can combine N strongest signals out of L. The remaining signals will be lost and act as interference to the desired signal components. To tackle this problem, we develop a novel signal combining technique based on channel shortening principles. This technique proposes a processing block before the Rake reception which compresses the energy of L signal components over N branches while keeping the noise level at its minimum. The proposed scheme saves the system resources and makes the received signal compatible to the available hardware. Simulation results show that it outperforms the selection combining scheme. © 2012 IEEE.

  10. Ensemble-based data assimilation and optimal sensor placement for scalar source reconstruction

    Science.gov (United States)

    Mons, Vincent; Wang, Qi; Zaki, Tamer

    2017-11-01

    Reconstructing the characteristics of a scalar source from limited remote measurements in a turbulent flow is a problem of great interest for environmental monitoring, and is challenging due to several aspects. Firstly, the numerical estimation of the scalar dispersion in a turbulent flow requires significant computational resources. Secondly, in actual practice, only a limited number of observations are available, which generally makes the corresponding inverse problem ill-posed. Ensemble-based variational data assimilation techniques are adopted to solve the problem of scalar source localization in a turbulent channel flow at Reτ = 180 . This approach combines the components of variational data assimilation and ensemble Kalman filtering, and inherits the robustness from the former and the ease of implementation from the latter. An ensemble-based methodology for optimal sensor placement is also proposed in order to improve the condition of the inverse problem, which enhances the performances of the data assimilation scheme. This work has been partially funded by the Office of Naval Research (Grant N00014-16-1-2542) and by the National Science Foundation (Grant 1461870).

  11. Roy-Steiner equations for {pi}N scattering - The Muskhelishvili-Omnes problem for the t-channel partial waves

    Energy Technology Data Exchange (ETDEWEB)

    Ditsche, Christoph; Hoferichter, Martin; Kubis, Bastian [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn (Germany); Bethe Center for Theoretical Physics, Bonn (Germany); Meissner, Ulf G. [Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn (Germany); Institut fuer Kernphysik (Theorie), Institute for Advanced Simulations, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Bethe Center for Theoretical Physics, Bonn (Germany)

    2011-07-01

    Starting from (subtracted) hyperbolic dispersion relations for {pi}N scattering, which are based on the general principles of Lorentz invariance, unitarity, crossing and analyticity as well as isospin symmetry, we propose a closed system of (subtracted) hyperbolic partial wave dispersion relations for the partial waves f{sup I}{sub l{+-}}({radical}(s)) of the s-channel reaction {pi}N{yields}{pi}N and the partial waves f{sup J}{sub {+-}}(t) of the t-channel reaction {pi}{pi}{yields} anti NN in the spirit of Roy and Steiner. A key step to the ultimate goal of solving this Roy-Steiner system is to first solve the corresponding (subtracted) Muskhelishvili-Omnes problem with inelasticities and a finite matching point for the lowest t-channel partial waves f{sup 0}{sub +}(t), f{sup 1}{sub {+-}}(t). The recent status of this ongoing effort is presented.

  12. Mineral compositions and sources of the riverbed sediment in the desert channel of Yellow River.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2011-02-01

    The Yellow River flows through an extensive, aeolian desert area and extends from Xiaheyan, Ningxia Province, to Toudaoguai, Inner Mongolia Province, with a total length of 1,000 km. Due to the construction and operation of large reservoirs in the upstream of the Yellow River, most water and sediment from upstream were stored in these reservoirs, which leads to the declining flow in the desert channel that has no capability to scour large amount of input of desert sands from the desert regions. By analyzing and comparing the spatial distribution of weight percent of mineral compositions between sediment sources and riverbed sediment of the main tributaries and the desert channel of the Yellow River, we concluded that the coarse sediment deposited in the desert channel of the Yellow River were mostly controlled by the local sediment sources. The analyzed results of the Quartz-Feldspar-Mica (QFM) triangular diagram and the R-factor models of the coarse sediment in the Gansu reach and the desert channel of the Yellow River further confirm that the Ningxia Hedong desert and the Inner Mongolian Wulanbuhe and Kubuqi deserts are the main provenances of the coarse sediment in the desert channel of the Yellow River. Due to the higher fluidity of the fine sediment, they are mainly contributed by the local sediment sources and the tributaries that originated from the loess area of the upper reach of the Yellow River.

  13. Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels

    Science.gov (United States)

    Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei

    2018-01-01

    As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.

  14. p-n Junction Dynamics Induced in a Graphene Channel by Ferroelectric-Domain Motion in the Substrate

    International Nuclear Information System (INIS)

    Kurchak, Anatolii I.; Eliseev, Eugene A.; Kalinin, Sergei V.; Strikha, Maksym V.; Morozovska, Anna N.

    2017-01-01

    The p - n junction dynamics induced in a graphene channel by stripe-domain nucleation, motion, and reversal in a ferroelectric substrate is explored using a self-consistent approach based on Landau-Ginzburg-Devonshire phenomenology combined with classical electrostatics. Relatively low gate voltages are required to induce the hysteresis of ferroelectric polarization and graphene charge in response to the periodic gate voltage. Pronounced nonlinear hysteresis of graphene conductance with a wide memory window corresponds to high amplitudes of gate voltage. Also, we reveal the extrinsic size effect in the dependence of the graphene-channel conductivity on its length. We predict that the top-gate–dielectric-layer–graphene-channel–ferroelectric-substrate nanostructure considered here can be a promising candidate for the fabrication of the next generation of modulators and rectifiers based on the graphene p - n junctions.

  15. Boundary Layer Fluid Flow in a Channel with Heat Source, Soret ...

    African Journals Online (AJOL)

    The boundary layer fluid flow in a channel with heat source, soret effects and slip condition was studied. The governing equations were solved using perturbation technique. The effects of different parameters such Prandtl number Pr , Hartmann number M, Schmidt number Sc, suction parameter ƒÜ , soret number Sr and the ...

  16. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  17. A signal combining technique based on channel shortening for cooperative sensor networks

    KAUST Repository

    Hussain, Syed Imtiaz; Alouini, Mohamed-Slim; Hasna, Mazen Omar

    2010-01-01

    The cooperative relaying process needs proper coordination among the communicating and the relaying nodes. This coordination and the required capabilities may not be available in some wireless systems, e.g. wireless sensor networks where the nodes are equipped with very basic communication hardware. In this paper, we consider a scenario where the source node transmits its signal to the destination through multiple relays in an uncoordinated fashion. The destination can capture the multiple copies of the transmitted signal through a Rake receiver. We analyze a situation where the number of Rake fingers N is less than that of the relaying nodes L. In this case, the receiver can combine N strongest signals out of L. The remaining signals will be lost and act as interference to the desired signal components. To tackle this problem, we develop a novel signal combining technique based on channel shortening. This technique proposes a processing block before the Rake reception which compresses the energy of L signal components over N branches while keeping the noise level at its minimum. The proposed scheme saves the system resources and makes the received signal compatible to the available hardware. Simulation results show that it outperforms the selection combining scheme. ©2010 IEEE.

  18. A signal combining technique based on channel shortening for cooperative sensor networks

    KAUST Repository

    Hussain, Syed Imtiaz

    2010-06-01

    The cooperative relaying process needs proper coordination among the communicating and the relaying nodes. This coordination and the required capabilities may not be available in some wireless systems, e.g. wireless sensor networks where the nodes are equipped with very basic communication hardware. In this paper, we consider a scenario where the source node transmits its signal to the destination through multiple relays in an uncoordinated fashion. The destination can capture the multiple copies of the transmitted signal through a Rake receiver. We analyze a situation where the number of Rake fingers N is less than that of the relaying nodes L. In this case, the receiver can combine N strongest signals out of L. The remaining signals will be lost and act as interference to the desired signal components. To tackle this problem, we develop a novel signal combining technique based on channel shortening. This technique proposes a processing block before the Rake reception which compresses the energy of L signal components over N branches while keeping the noise level at its minimum. The proposed scheme saves the system resources and makes the received signal compatible to the available hardware. Simulation results show that it outperforms the selection combining scheme. ©2010 IEEE.

  19. Local anesthetics disrupt energetic coupling between the voltage-sensing segments of a sodium channel.

    Science.gov (United States)

    Muroi, Yukiko; Chanda, Baron

    2009-01-01

    Local anesthetics block sodium channels in a state-dependent fashion, binding with higher affinity to open and/or inactivated states. Gating current measurements show that local anesthetics immobilize a fraction of the gating charge, suggesting that the movement of voltage sensors is modified when a local anesthetic binds to the pore of the sodium channel. Here, using voltage clamp fluorescence measurements, we provide a quantitative description of the effect of local anesthetics on the steady-state behavior of the voltage-sensing segments of a sodium channel. Lidocaine and QX-314 shifted the midpoints of the fluorescence-voltage (F-V) curves of S4 domain III in the hyperpolarizing direction by 57 and 65 mV, respectively. A single mutation in the S6 of domain IV (F1579A), a site critical for local anesthetic block, abolished the effect of QX-314 on the voltage sensor of domain III. Both local anesthetics modestly shifted the F-V relationships of S4 domain IV toward hyperpolarized potentials. In contrast, the F-V curve of the S4 domain I was shifted by 11 mV in the depolarizing direction upon QX-314 binding. These antagonistic effects of the local anesthetic indicate that the drug modifies the coupling between the voltage-sensing domains of the sodium channel. Our findings suggest a novel role of local anesthetics in modulating the gating apparatus of the sodium channel.

  20. Coupled channel folding model description of {alpha} scattering from {sup 9}Be

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Chatterjee, J.M.; Majumdar, H. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064 (India); Datta, S.K. [Nuclear Science Centre, P.O.10502, New Delhi 110067 (India); Banerjee, S.R. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Calcutta 700064 (India); Chintalapudi, S.N. [Inter-University Consortium, Department of Atomic Energy Facilities, Bidhannagar, Calcutta 700064 (India)

    1995-09-01

    Alpha scattering from {sup 9}Be at {ital E}{sub {alpha}}= 65 MeV is described in the coupled channel framework with phenomenological as well as folded potentials. The multipole components of the deformed density of {sup 9}Be are derived from Nilsson model wave functions. Reasonably good agreements are obtained for the angular distributions of 3/2{sup {minus}}(g.s.) and 5/2{sup {minus}}(2.43 MeV) states of the ground state band with folded potentials. The deformation predicted by the model corroborates with that derived from the phenomenological analysis with potentials of different geometries.

  1. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuhai; Kasemann, Daniel, E-mail: daniel.kasemann@iapp.de; Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Strasse 1, 01069 Dresden (Germany)

    2015-03-09

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  2. Fatty acid analogue N-arachidonoyl taurine restores function of IKs channels with diverse long QT mutations

    DEFF Research Database (Denmark)

    Liin, Sara I; Larsson, Johan E; Barro-Soria, Rene

    2016-01-01

    . Finally, we find that the fatty acid analogue N-arachidonoyl taurine restores channel gating of many different mutant channels, even though the mutations are in different domains of the IKs channel and affect the channel by different molecular mechanisms. N-arachidonoyl taurine is therefore an interesting...

  3. On matter couplings in N=1 supergravities

    International Nuclear Information System (INIS)

    Galperin, A.; Ogievskiy, V.; Sokatchev, E.

    1983-01-01

    A flexible version of N=1 supergravity is proposed. It contains 28+28 fields and is an extension of the new minimal supergravity version. Matter couplings in various N=1 supergravity versions are discussed. The chiral densities are constructed for non-minimal and flexible versions. Therefore these versions admit a general R-non-invariant matter coupling as the minimal supergravity does. A modified Fayet-Iliopoulos type mechanism is conjectured which apparently can work in the non-minimal and flexible versions without R-symmetry of the superpotential unlike the minimal and new minimal ones

  4. Irreversibility analysis of hydromagnetic flow of couple stress fluid with radiative heat in a channel filled with a porous medium

    Directory of Open Access Journals (Sweden)

    A.S. Eegunjobi

    Full Text Available Numerical analysis of the intrinsic irreversibility of a mixed convection hydromagnetic flow of an electrically conducting couple stress fluid through upright channel filled with a saturated porous medium and radiative heat transfer was carried out. The thermodynamics first and second laws were employed to examine the problem. We obtained the dimensionless nonlinear differential equations and solves numerically with shooting procedure joined with a fourth order Runge-Kutta-Fehlberg integration scheme. The temperature and velocity obtained, used to analyse the entropy generation rate together with some various physical parameters of the flow. Our results are presented graphically and talk over. Keywords: MHD channel flow, Couple stress fluid, Porous medium, Thermal radiation, Entropy generation, Injection/suction

  5. Fast neutron scattering from soft nuclei: coupled-channel formalism and illustrations

    International Nuclear Information System (INIS)

    Delaroche, J.P.

    1986-01-01

    Spectra of most of the even-even nuclei have a character which is neither that of a pure vibrator nor that of a pure rotor. Instead, the nuclear spectra display very often both characters. Therefore, improvements in the analysises of nucleon scattering and reaction cross sections require that appropriate collective models of nuclear structure be used. A selection of these models is reviewed, and suggestions are given as to how to extend the familiar coupled-channel formalism to incorporate these enriched collective pictures. These extensions are primarily intended to describe inelastic scattering from levels belonging to β - , γ - and octupole bands. Illustrations are given for neutron and proton scattering off various nuclei [fr

  6. Thin film silicon on silicon nitride for radiation hardened dielectrically isolated MISFET's

    International Nuclear Information System (INIS)

    Neamen, D.; Shedd, W.; Buchanan, B.

    1975-01-01

    The permanent ionizing radiation effects resulting from charge trapping in a silicon nitride isolation dielectric have been determined for a total ionizing dose up to 10 7 rads (Si). Junction FET's, whose active channel region is directly adjacent to the silicon-silicon nitride interface, were used to measure the effects of the radiation induced charge trapping in the Si 3 N 4 isolation dielectric. The JFET saturation current and channel conductance versus junction gate voltage and substrate voltage were characterized as a function of the total ionizing radiation dose. The experimental results on the Si 3 N 4 are compared to results on similar devices with SiO 2 dielectric isolation. The ramifications of using the silicon nitride for fabricating radiation hardened dielectrically isolated MIS devices are discussed

  7. Roy–Steiner equations for πN scattering

    Directory of Open Access Journals (Sweden)

    Ruiz de Elvira J.

    2014-06-01

    Full Text Available In this talk, we present a coupled system of integral equations for the πN → πN (s-channel and ππ → N̅N (t-channel lowest partial waves, derived from Roy–Steiner equations for pion–nucleon scattering. After giving a brief overview of this system of equations, we present the solution of the t-channel sub-problem by means of Muskhelishvili–Omnès techniques, and solve the s-channel sub-problem after finding a set of phase shifts and subthreshold parameters which satisfy the Roy–Steiner equations.

  8. N-(2-methoxyphenyl) benzenesulfonamide, a novel regulator of neuronal G protein-gated inward rectifier K+ channels.

    Science.gov (United States)

    Walsh, Kenneth B; Gay, Elaine A; Blough, Bruce E; Geurkink, David W

    2017-11-15

    G protein-gated inward rectifier K + (GIRK) channels are members of the super-family of proteins known as inward rectifier K + (Kir) channels and are expressed throughout the peripheral and central nervous systems. Neuronal GIRK channels are the downstream targets of a number of neuromodulators including opioids, somatostatin, dopamine and cannabinoids. Previous studies have demonstrated that the ATP-sensitive K + channel, another member of the Kir channel family, is regulated by sulfonamide drugs. Therefore, to determine if sulfonamides also modulate GIRK channels, we screened a library of arylsulfonamide compounds using a GIRK channel fluorescent assay that utilized pituitary AtT20 cells expressing GIRK channels along with the somatostatin type-2 and -5 receptors. Enhancement of the GIRK channel fluorescent signal by one compound, N-(2-methoxyphenyl) benzenesulfonamide (MPBS), was dependent on the activation of the channel by somatostatin. In whole-cell patch clamp experiments, application of MPBS both shifted the somatostatin concentration-response curve (EC 50 = 3.5nM [control] vs.1.0nM [MPBS]) for GIRK channel activation and increased the maximum GIRK current measured with 100nM somatostatin. However, GIRK channel activation was not observed when MPBS was applied to the cells in the absence of somatostatin. While the MPBS structural analog 4-fluoro-N-(2-methoxyphenyl) benzenesulfonamide also augmented the somatostatin-induced GIRK fluorescent signal, no increase in the signal was observed with the sulfonamides tolbutamide, sulfapyridine and celecoxib. In conclusion, MPBS represents a novel prototypic GPCR-dependent regulator of neuronal GIRK channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Towards a model of source and channel choices in business-to-government service interactions : A structural equation modeling approach

    NARCIS (Netherlands)

    van den Boer, Yvon; Pieterson, Willem; Arendsen, Rex; van Dijk, Jan

    With a growing number of available communication channels and the increasing role of other information sources, organizations are urged to rethink their service strategies. Most theories are limited to a one-dimensional focus on source or channel choice and do not fit into today's networked

  10. Investigating the relationship between watching satellite channels and intimacy and marital satisfaction of couples in Isfahan, Iran, in 2014

    OpenAIRE

    Babaie, Zohre; Keshvari, Mahrokh; Zamani, Ahmadreza

    2016-01-01

    Background: In the age of communication and media that families are rapidly driven towards using satellite channels and other media, considering family health in this regard is essential. A determinant of health is marital satisfaction. The aim of this study was to investigate the relationship between watching satellite channels and intimacy and marital satisfaction in Isfahan, Iran. Materials and Methods: This cross-sectional and correlational study was conducted on one group of 480 couples ...

  11. /sup 16/O(/sup 16/O, /sup 12/C)/sup 20/Ne reaction in the framework of the coupled channel formalism

    Energy Technology Data Exchange (ETDEWEB)

    Krause, O; Scheid, W; Greiner, W [Frankfurt Univ. (Germany, F.R.). Inst. fuer Theoretische Physik

    1974-01-01

    The transfer reaction /sup 16/O(/sup 16/O, /sup 12/C)/sup 20/Ne is treated in the coupled channel formalism. The influence of the transfer channels on the intermediate structure in the elastic excitation function is discussed. The /sup 16/O and /sup 20/Ne-nuclei are described in an ..cap alpha..-cluster model.

  12. Climate Change and Closure of Thyborøn Channel

    DEFF Research Database (Denmark)

    Larsen, Torben

    The matter of Thyborøn Channel is the culmination of the coastal engineering in Denmark. Many hundreds of man-years have been spent by engineers and scientists on the planning and evaluation of the complex of problems briefly outlined in the following. After having been separated for more than 70...... of the consequences of the global warming and the rising sea level........ In general, the public conceives the channel as a preservation-worthy piece of nature but the inconvenient truth is that the channel exists only because of human intervention in the nature. At suggestion of Jørgen Bülow Beck and the author the matter was reopened in 2005 because of the discussion...

  13. Field applications of the channel network model, CHAN3D

    International Nuclear Information System (INIS)

    Khademi, B.; Gylling, B.; Moreno, L.; Neretnieks, I.

    1998-01-01

    The Channel Network model and its computer implementation, CHAN3D, was developed to simulate fluid flow and transport of solutes in fractured media. The model has been used to interpret field experiments of flow and transport in small and in large scale. It may also be used for safety assessments of repositories for nuclear and other hazardous wastes. In this case, CHAN3D has been coupled to a compartment model, NUCTRAN, to describe the near field of the repository. The model is based on field observations, which indicate that the flow and solute transport take place in a three-dimensional network of connected channels. The channels have very different properties and they are generated in the model from observed stochastic distributions. This allows us to represent the large heterogeneity of the flow distribution commonly observed in fractured media. Solute transport is modelled considering advection and rock interactions such as matrix diffusion and sorption within the interior of the rock. Objects such as fracture zones, tunnels and release sources can be incorporated in the model

  14. Downlink Channel Estimation in Cellular Systems with Antenna Arrays at Base Stations Using Channel Probing with Feedback

    Directory of Open Access Journals (Sweden)

    Biguesh Mehrzad

    2004-01-01

    Full Text Available In mobile communication systems with multisensor antennas at base stations, downlink channel estimation plays a key role because accurate channel estimates are needed for transmit beamforming. One efficient approach to this problem is channel probing with feedback. In this method, the base station array transmits probing (training signals. The channel is then estimated from feedback reports provided by the users. This paper studies the performance of the channel probing method with feedback using a multisensor base station antenna array and single-sensor users. The least squares (LS, linear minimum mean square error (LMMSE, and a new scaled LS (SLS approaches to the channel estimation are studied. Optimal choice of probing signals is investigated for each of these techniques and their channel estimation performances are analyzed. In the case of multiple LS channel estimates, the best linear unbiased estimation (BLUE scheme for their linear combining is developed and studied.

  15. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    Science.gov (United States)

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo

  16. High-quality GaN epitaxially grown on Si substrate with serpentine channels

    Science.gov (United States)

    Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong

    2018-06-01

    A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.

  17. Self-mixing differential vibrometer based on electronic channel subtraction

    International Nuclear Information System (INIS)

    Donati, Silvano; Norgia, Michele; Giuliani, Guido

    2006-01-01

    An instrument for noncontact measurement of differential vibrations is developed, based on the self-mixing interferometer. As no reference arm is available in the self-mixing configuration, the differential mode is obtained by electronic subtraction of signals from two (nominally equal) vibrometer channels, taking advantage that channels are servo stabilized and thus insensitive to speckle and other sources of amplitude fluctuation. We show that electronic subtraction is nearly as effective as field superposition. Common-mode suppression is 25-30 dB, the dynamic range (amplitude) is in excess of 100 μm, and the minimum measurable (differential) amplitude is 20 nm on aB=10 kHz bandwidth. The instrument has been used to measure vibrations of two metal samples kept in contact, revealing the hysteresis cycle in the microslip and gross-slip regimes, which are of interest in the study of friction induced vibration damping of gas turbine blades for aircraft applications

  18. SiC Optically Modulated Field-Effect Transistor

    Science.gov (United States)

    Tabib-Azar, Massood

    2009-01-01

    An optically modulated field-effect transistor (OFET) based on a silicon carbide junction field-effect transistor (JFET) is under study as, potentially, a prototype of devices that could be useful for detecting ultraviolet light. The SiC OFET is an experimental device that is one of several devices, including commercial and experimental photodiodes, that were initially evaluated as detectors of ultraviolet light from combustion and that could be incorporated into SiC integrated circuits to be designed to function as combustion sensors. The ultraviolet-detection sensitivity of the photodiodes was found to be less than desired, such that it would be necessary to process their outputs using high-gain amplification circuitry. On the other hand, in principle, the function of the OFET could be characterized as a combination of detection and amplification. In effect, its sensitivity could be considerably greater than that of a photodiode, such that the need for amplification external to the photodetector could be reduced or eliminated. The experimental SiC OFET was made by processes similar to JFET-fabrication processes developed at Glenn Research Center. The gate of the OFET is very long, wide, and thin, relative to the gates of typical prior SiC JFETs. Unlike in prior SiC FETs, the gate is almost completely transparent to near-ultraviolet and visible light. More specifically: The OFET includes a p+ gate layer less than 1/4 m thick, through which photons can be transported efficiently to the p+/p body interface. The gate is relatively long and wide (about 0.5 by 0.5 mm), such that holes generated at the body interface form a depletion layer that modulates the conductivity of the channel between the drain and the source. The exact physical mechanism of modulation of conductivity is a subject of continuing research. It is known that injection of minority charge carriers (in this case, holes) at the interface exerts a strong effect on the channel, resulting in amplification

  19. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  20. On-line coupling of sample preconcentration by LVSEP with gel electrophoretic separation on T-channel chips.

    Science.gov (United States)

    Kitagawa, Fumihiko; Kinami, Saeko; Takegawa, Yuuki; Nukatsuka, Isoshi; Sueyoshi, Kenji; Kawai, Takayuki; Otsuka, Koji

    2017-01-01

    To achieve an on-line coupling of the sample preconcentration by a large-volume sample stacking with an electroosmotic flow pump (LVSEP) with microchip gel electrophoresis (MCGE), a sample solution, a background solution for LVSEP and a sieving solution for MCGE were loaded in a T-form channel and three reservoirs on PDMS microchips. By utilizing the difference in the flow resistance of the two channels, a low-viscosity sample and a viscous polymer solution were easily introduced into the LVSEP and MCGE channels, respectively. Fluorescence imaging of the sequential LVSEP-MCGE processes clearly demonstrated that a faster stacking of anionic fluorescein and successive introduction into the MCGE channel can be carried out on the T-channel chip. To evaluate the preconcentration performance, a conventional MCZE analysis of fluorescein on the cross-channel chip was compared with LVSEP-MCGE on the short T-channel chip, and as a result that the value of sensitive enhancement factor (SEF) was estimated to be 370. The repeatability of the peak height was good with the RSD value of 3.2%, indicating the robustness of the enrichment performance. In the successive LVSEP-MCGE analysis of φX174/HaeIII digest, the DNA fragments were well enriched to a sharp peak in the LVSEP channel, and they were separated in the MCGE channel, whose electropherogram was well-resembled with that in the conventional MCGE. The values of SEF for the DNA fragments were calculated to be ranging from 74 to 108. Thus, the successive LVSEP-MCGE analysis was effective for both preconcentrating and separating DNA fragments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stabilization effect of fission source in coupled Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Borge; Dufek, Jan [Div. of Nuclear Reactor Technology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm (Sweden)

    2017-08-15

    A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  2. Stabilization effect of fission source in coupled Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Börge Olsen

    2017-08-01

    Full Text Available A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  3. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Romarly F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Oliveira, Eliane M. de; Lima, Marco A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Bettega, Márcio H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Jones, Darryl B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Brunger, Michael J. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Blanco, Francisco [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Ciudad Universitaria, 2840 Madrid (Spain); Colmenares, Rafael [Hospital Ramón y Cajal, 28034 Madrid (Spain); and others

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].

  4. Coupled channel effects in quasi-elastic barrier distributions of 16,18O + 206Pb systems

    International Nuclear Information System (INIS)

    Jha, V.; Roy, B.J.; Parkar, V.V.; Kumawat, H.; Pal, U.K.; Pandit, S.K.; Mahata, K.; Shrivastava, A.; Mohanty, A.K.

    2013-01-01

    The fusion barrier distribution and QEBD for the 16 O + 208 Pb have been studied in great detail. The couplings due to the collective excitations of the colliding nuclei are found to have the dominant effect as deduced by the conventional coupled-channels calculations used to explain the experimental QEBD and fusion barrier distributions. In contrast, for the 18 O + 206 Pb system, the role of single neutron stripping (Q-value= -1.308 MeV) and neutron pair transfer (Q-value = + 1.917 MeV) are expected to be significant. In the present work, the QEBD measurements for the 18 O + 206 Pb system are performed for the investigation of these aspects

  5. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Waqas Rehan

    2016-09-01

    Full Text Available Wireless sensor networks (WSNs have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM, that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI and the average of the link quality indicator (LQI of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC algorithm in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC algorithm, that can perform channel quality estimation on the basis of both current and past values of channel rank estimation

  6. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks.

    Science.gov (United States)

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-09-12

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end

  7. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels.

    Science.gov (United States)

    Lieb, Andreas; Ortner, Nadine; Striessnig, Jörg

    2014-04-01

    Activity of voltage-gated Cav1.3 L-type Ca(2+) channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages

  8. A two-channel, spectrally degenerate polarization entangled source on chip

    Science.gov (United States)

    Sansoni, Linda; Luo, Kai Hong; Eigner, Christof; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine

    2017-12-01

    Integrated optics provides the platform for the experimental implementation of highly complex and compact circuits for quantum information applications. In this context integrated waveguide sources represent a powerful resource for the generation of quantum states of light due to their high brightness and stability. However, the confinement of the light in a single spatial mode limits the realization of multi-channel sources. Due to this challenge one of the most adopted sources in quantum information processes, i.e. a source which generates spectrally indistinguishable polarization entangled photons in two different spatial modes, has not yet been realized in a fully integrated platform. Here we overcome this limitation by suitably engineering two periodically poled waveguides and an integrated polarization splitter in lithium niobate. This source produces polarization entangled states with fidelity of F = 0.973 ±0.003 and a test of Bell's inequality results in a violation larger than 14 standard deviations. It can work both in pulsed and continuous wave regime. This device represents a new step toward the implementation of fully integrated circuits for quantum information applications.

  9. Search for anomalous Wtb couplings and top FCNC in t-channel single-top-quark events

    CERN Document Server

    CMS Collaboration

    2014-01-01

    Single-top-quark events in the $t$-channel are used to probe Wtb anomalous couplings and to search for top quark Flavor Changing Neutral Current (FCNC) interactions in proton-proton collisions at $\\sqrt{s}=7$ TeV. The analyzed data correspond to an integrated luminosity of 5~fb$^{-1}$. Events with the top quark decaying into a muon, neutrino and b-quark are selected. A Bayesian neural network is used to discriminate between signal and backgrounds. The observed event yields are consistent with SM prediction, and exclusion limits at 95\\% C.L. are determined. The exclusion limits on anomalous right vector and left tensor couplings of the Wtb vertex are found to be $|f_{V}^{R}|< 0.34$ and $|f_{T}^{L}|<0.09$. In the scenarios with FCNC tcg and tug couplings, limits on the coupling strengths are found to be $\\kappa_{tug}/\\Lambda < 1.8 \\cdot 10^{-2}~ \\mathrm{TeV^{-1}},\\ \\kappa_{tcg}/\\Lambda < 5.6 \\cdot 10^{-2} ~ \\mathrm{TeV^{-1}}$ which corresponds to limits on the branching ratios $Br(t~\\rightarrow~u+g)...

  10. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    Directory of Open Access Journals (Sweden)

    Danilo ePezo

    2014-11-01

    Full Text Available To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie’s method for Markov Chains (MC simulation is highly accurate, yet it becomes computationally intensive in the regime of high channel numbers. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA. Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties – such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Dangerfield et al., 2012; Linaro et al., 2011; Huang et al., 2013a; Orio and Soudry, 2012; Schmandt and Galán, 2012; Goldwyn et al., 2011; Güler, 2013, comparing all of them in a set of numerical simulations that asses numerical accuracy and computational efficiency on three different models: the original Hodgkin and Huxley model, a model with faster sodium channels, and a multi-compartmental model inspired in granular cells. We conclude that for low channel numbers (usually below 1000 per simulated compartment one should use MC – which is both the most accurate and fastest method. For higher channel numbers, we recommend using the method by Orio and Soudry (2012, possibly combined with the method by Schmandt and Galán (2012 for increased speed and slightly reduced accuracy. Consequently, MC modelling may be the best method for detailed multicompartment neuron models – in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels.

  11. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    Science.gov (United States)

    Pezo, Danilo; Soudry, Daniel; Orio, Patricio

    2014-01-01

    To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914

  12. Facile N...N coupling of manganese(V) imido species.

    Science.gov (United States)

    Yiu, Shek-Man; Lam, William W Y; Ho, Chi-Ming; Lau, Tai-Chu

    2007-01-31

    (Salen)manganese(V) nitrido species are activated by electrophiles such as trifluoroacetic anhydride (TFAA) or trifluoroacetic acid (TFA) to produce N2. Mechanistic studies suggest that the manganese(V) nitrido species first react with TFAA or TFA to produce an imido species, which then undergoes N...N coupling. It is proposed that the resulting manganese(III) mu-diazene species decomposes via internal redox to give N2 and manganese(II). The manganese(II) species is then rapidly oxidized by manganese(V) imide to give manganese(III) and CF3CONH2 (for TFAA) or NH3 (for TFA).

  13. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection

    International Nuclear Information System (INIS)

    Qiu Chen; Hu Ting; Wang Wan-Jun; Yu Ping; Jiang Xiao-Qing; Yang Jian-Yi

    2012-01-01

    A channel-selectable optical link based on a silicon microring resonator is proposed and demonstrated. This optical link consists of the wavelength-tunable microring modulators and the filters, defined on a silicon-on-insulator (SOI) platform. With a p—i—n junction embedded in the microring modulator, light at the resonant wavelength of the ring resonator is modulated. The 2 nd -order microring add-drop filter routes the modulated light. The channel selectivity is demonstrated by heating the microrings. With a thermal tuning efficiency of 5.9 mW/nm, the filter drop port response was successfully tuned with 0.8 nm channel spacing. We also show that modulation can be achieved in these channels. This device aims to offer flexibility and increase the bandwidth usage efficiency in optical interconnection

  14. Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block

    International Nuclear Information System (INIS)

    Li, Jiajia; Wang, Rong; Du, Mengmeng; Tang, Jun; Wu, Ying

    2016-01-01

    The involvement of astrocytes in neuronal firing dynamics is becoming increasingly evident. In this study, we used a classical hippocampal tripartite synapse model consisting of soma-dendrite coupled neuron models and a Hodgkin–Huxley-like astrocyte model, to investigate the seizure-like firing in the somatic neuron induced by the over-expressed neuronal N-methyl-d-aspartate (NMDA) receptors. Based on this model, we further investigated the effect of the astrocytic channel block on the neuronal firing through a bifurcation analysis. Results show that blocking inositol-1,4,5-triphosphate(IP3)-dependent calcium channel in astrocytes efficiently suppresses the astrocytic calcium oscillation, which in turn suppresses the seizure-like firing in the neuron.

  15. Singlet channel coupling in deuteron elastic scattering at intermediate energies

    International Nuclear Information System (INIS)

    Al-Khalili, J.S.; Tostevin, J.A.; Johnson, R.C.

    1990-01-01

    Intermediate energy deuteron elastic scattering is investigated in a three-body model incorporating relativistic kinematics. The effects of deuteron breakup to singlet spin intermediate states, on the elastic scattering observables for the 58 Ni(d vector, d) 58 Ni reaction at 400 and 700 MeV, are studied quantitatively. The singlet-breakup contributions to the elastic amplitude are estimated within an approximate two-step calculation. The calculation makes an adiabatic approximation in the intermediate states propagator which allows the use of closure over the np intermediate states continuum. The singlet channel coupling is found to produce large effects on the calculated reaction tensor analysing power A yy , characteristic of a dynamically induced second-rank tensor interaction. By inspection of the calculated breakup amplitudes we show this induced interaction to be of the T L tensor type. (orig.)

  16. Nonreciprocal optical tunnelling through evanescently coupled Tamm states in magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yun-Tuan [Jiangsu Univ., Zhenjiang (China). School of Computer Science and Telecommunication Engineering; Han, Ling [The Second Military Medical Univ., Shanghai (China). Dept. of Radiation Medicine; Gao, Yong-Feng [Jiangsu Univ., Zhenjiang (China). School of Mechanical Engineering

    2015-07-01

    Evanescently coupled Tamm states are achieved through two magnetophotonic crystals (MPCs) with a pair of coupling prisms. At the wavelengths of coupled Tamm states, a double of nonreciprocal optical tunnelling channels is found through the transmission spectra obtained from a developed transfer matrix method. The nonreciprocal tunnelling wavelength and the interval between two nonreciprocal channels can be adjusted depending on the width of the air gap between two MPCs or the scale invariant of a PC. The nonreciprocal tunnelling is demonstrated through electromagnetic field distribution simulations based on finite element software. Such theoretical results may provide a new method to design tunable optical isolators with a double of channels.

  17. Measurement and analysis of channel attenuation characteristics for an implantable galvanic coupling human-body communication.

    Science.gov (United States)

    Zhang, Shuang; Pun, Sio Hang; Mak, Peng Un; Qin, Yu-Ping; Liu, Yi-He; Vai, Mang I

    2016-11-14

    In this study, an experiment was designed to verify the low power consumption of galvanic coupling human-body communication. A silver electrode (silver content: 99%) is placed in a pig leg and a sine wave signal with the power of 0 dBm is input. Compared with radio frequency communication and antenna transmission communication, attenuation is reduced by approximately 10 to 15 dB, so channel characteristics are highly improved.

  18. Analysis of the acoustoelectric behavior of microwave frequency, temperature-compensated AlN-based multilayer coupling configurations

    International Nuclear Information System (INIS)

    Caliendo, Cinzia

    2008-01-01

    Piezoelectric AlN films, 1.3-6.2 μm thick, have been grown on bare and metallized Al 2 O 3 (0001) substrates by reactive radio-frequency-sputtering technique at 180 deg. C. The films were uniform, stress-free, highly c-axis oriented normal to the surface, and extremely adhesive to the substrates. Surface acoustic wave (SAW) delay lines, showing harmonic modes with operating frequencies up to about 2.44 GHz, were obtained just using conventional optical lithography at 7.5 μm linewidth resolution. Four interdigital transducer (IDT)/counter electrode configurations were obtained locating the IDTs either on the AlN free surface or at the Al 2 O 3 /AlN interface, with and without an Al thin metal film opposite the IDTs. The temperature induced shift of the fundamental and harmonic operating frequencies of the four configurations was measured at different temperatures in the range from -25 to 70 deg. C. The first order temperature coefficient of delay (TCD) of the four structures was experimentally evaluated for different film thickness values and for SAWs propagating along and normal the Al 2 O 3 a-axis. Eight AlN thicknesses, i.e., the temperature-compensated points (TCPs), were experimentally estimated at which the TCD is equal to 0 ppm/deg. C. These TCPs were found to be in good agreement with those theoretically evaluated. The SAW propagation along the four coupling structures was investigated in terms of phase and group velocity, electromechanical coupling coefficient, electrical potential, and IDT capacitance and radiation resistance for different film thickness values and SAW propagation directions. The numerical simulation of the mechanical and electrical behaviors of the coupling structures showed how the electroacoustic transduction efficiency, the IDT directivity, and bandwidth can benefit from having different electrical boundary conditions. The obtained results confirm the AlN feasibility to the implementation of SAW devices for application to gigahertz

  19. Coupled-Inductor-Based Aalborg Inverter With Input DC Energy Regulation

    DEFF Research Database (Denmark)

    Wang, Houqing; Wu, Weimin; Chung, Henry Shu-hung

    2018-01-01

    Due to the global environmental issues and energy crisis, the injection of renewable energy sources (RESs) into the power system is continuously increasing. As the interface between RESs and power grid, grid-tied inverters using MOSFET switches, without traditional line frequency transformers, show...... some potential advantages, in terms of low cost, high efficiency, and lightweight and small size. Among several proposed configurations, the Aalborg inverter was proposed as a new family of high efficiency MOSFET-switch-based hybrid source inverters. For a conventional “half bridge” type Aalborg...... inverter, due to the imbalance of two independent dc sources, the input dc energies may not be fully utilized, which may reduce the efficiency of whole system. In order to extract the maximum energy from two independent dc sources, a coupled-inductor-based “half bridge” type Aalborg inverter is proposed...

  20. Robust transceiver design for reciprocal M × N interference channel based on statistical linearization approximation

    Science.gov (United States)

    Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad

    2017-12-01

    This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.

  1. The coupled-channel T-matrix: its lowest-order Born + Lanczos approximants

    International Nuclear Information System (INIS)

    Znojil, M.

    1995-01-01

    Three iterative methods of solution of the Lippmann-Schwinger equations (viz., the method of continued fractions by J.Horacek and T.Sasakawa), its Born-remainder modification and a coupled-channel matrix-continued-fraction generalization are all interpreted as special cases of a common iterative matrix prescription. Firstly, in terms of certain asymmetric projectors P≠P + , we re-derive the three particular older methods as different realizations of the well-known Lanczos inversion. Then, a generalized iteration method is proposed as a Born-like re-arrangement of any intermediate Lanczos iteration step. A maximal flexibility is achieved in the formalism which might compete with the standard Pade re-summations in practice. Its first few truncations are listed, therefore. 26 refs., 1 tab

  2. Dual Channel Pulse Coupled Neural Network Algorithm for Fusion of Multimodality Brain Images with Quality Analysis

    Directory of Open Access Journals (Sweden)

    Kavitha SRINIVASAN

    2014-09-01

    Full Text Available Background: In the review of medical imaging techniques, an important fact that emerged is that radiologists and physicians still are in a need of high-resolution medical images with complementary information from different modalities to ensure efficient analysis. This requirement should have been sorted out using fusion techniques with the fused image being used in image-guided surgery, image-guided radiotherapy and non-invasive diagnosis. Aim: This paper focuses on Dual Channel Pulse Coupled Neural Network (PCNN Algorithm for fusion of multimodality brain images and the fused image is further analyzed using subjective (human perception and objective (statistical measures for the quality analysis. Material and Methods: The modalities used in fusion are CT, MRI with subtypes T1/T2/PD/GAD, PET and SPECT, since the information from each modality is complementary to one another. The objective measures selected for evaluation of fused image were: Information Entropy (IE - image quality, Mutual Information (MI – deviation in fused to the source images and Signal to Noise Ratio (SNR – noise level, for analysis. Eight sets of brain images with different modalities (T2 with T1, T2 with CT, PD with T2, PD with GAD, T2 with GAD, T2 with SPECT-Tc, T2 with SPECT-Ti, T2 with PET are chosen for experimental purpose and the proposed technique is compared with existing fusion methods such as the Average method, the Contrast pyramid, the Shift Invariant Discrete Wavelet Transform (SIDWT with Harr and the Morphological pyramid, using the selected measures to ascertain relative performance. Results: The IE value and SNR value of the fused image derived from dual channel PCNN is higher than other fusion methods, shows that the quality is better with less noise. Conclusion: The fused image resulting from the proposed method retains the contrast, shape and texture as in source images without false information or information loss.

  3. Coupled-channel optical calculation of electron-atom scattering: elastic scattering from sodium at 20 to 150 eV

    International Nuclear Information System (INIS)

    Bray, Igor; Konovalov, D.A.; McCarthy, I.E.

    1991-04-01

    A coupled-channel optical method for electron-atom scattering is applied to elastic electron-sodium scattering at energies of 20, 22.1, 54.4, 100, and 150 eV. It is demonstrated that the effect of all the inelastic channels on elastic scattering may be well reproduced by the 'ab initio' calculated complex non-local polarization potential. Whilst the experiments generally agree at small angles and therefore agree on the total elastic cross section, there is considerable discrepancy at intermediate and backward angles. 9 refs., 2 tabs., 1 fig

  4. Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars.

    Science.gov (United States)

    Du, Chunhua; Jiang, Chunyan; Zuo, Peng; Huang, Xin; Pu, Xiong; Zhao, Zhenfu; Zhou, Yongli; Li, Linxuan; Chen, Hong; Hu, Weiguo; Wang, Zhong Lin

    2015-12-02

    Visible light communication (VLC) simultaneously provides illumination and communication via light emitting diodes (LEDs). Keeping a low bit error rate is essential to communication quality, and holding a stable brightness level is pivotal for illumination function. For the first time, a piezo-phototronic effect controlled visible light communication (PVLC) system based on InGaN/GaN multiquantum wells nanopillars is demonstrated, in which the information is coded by mechanical straining. This approach of force coding is also instrumental to avoid LED blinks, which has less impact on illumination and is much safer to eyes than electrical on/off VLC. The two-channel transmission mode of the system here shows great superiority in error self-validation and error self-elimination in comparison to VLC. This two-channel PVLC system provides a suitable way to carry out noncontact, reliable communication under complex circumstances. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. PLUGM: a coupled thermal-hydraulic computer model for freezing melt flow in a channel

    International Nuclear Information System (INIS)

    Pilch, M.

    1982-01-01

    PLUGM is a coupled thermal-hydraulic computer model for freezing liquid flow and plugging in a cold channel. PLUGM is being developed at Sandia National Laboratories for applications in Sandia's ex-vessel Core Retention Concept Assessment Program and in Sandia's LMFBR Transition Phase Program. The purpose of this paper is to introduce PLUGM and demonstrate how it can be used in the analysis of two of the core retention concepts under investigation at Sandia: refractory brick crucibles and particle beds

  6. Two-channel totally asymmetric simple exclusion processes

    International Nuclear Information System (INIS)

    Pronina, Ekaterina; Kolomeisky, Anatoly B

    2004-01-01

    Totally asymmetric simple exclusion processes, consisting of two coupled parallel lattice chains with particles interacting with hard-core exclusion and moving along the channels and between them, are considered. In the limit of strong coupling between the channels, the particle currents, density profiles and a phase diagram are calculated exactly by mapping the system into an effective one-channel totally asymmetric exclusion model. For intermediate couplings, a simple approximate theory, that describes the particle dynamics in vertical clusters of two corresponding parallel sites exactly and neglects the correlations between different vertical clusters, is developed. It is found that, similarly to the case of one-channel totally asymmetric simple exclusion processes, there are three stationary state phases, although the phase boundaries and stationary properties strongly depend on inter-channel coupling. Extensive computer Monte Carlo simulations fully support the theoretical predictions

  7. Insect Ryanodine Receptor: Distinct But Coupled Insecticide Binding Sites for [N-C3H3]Chlorantraniliprole, Flubendiamide, and [3H]Ryanodine

    OpenAIRE

    Isaacs, André K.; Qi, Suzhen; Sarpong, Richmond; Casida, John E.

    2012-01-01

    Radiolabeled anthranilic diamide insecticide [N-C3H3]chlorantraniliprole was synthesized at high specific activity and compared with phthalic diamide insecticide flubendiamide and [3H]ryanodine in radioligand binding studies with house fly muscle membranes to provide the first direct evidence with a native insect ryanodine receptor that the major anthranilic and phthalic diamide insecticides bind at different allosterically coupled sites, i.e. there are three distinct Ca2+-release channel tar...

  8. Resonant excitation of coupled Rayleigh waves in a short and narrow fluid channel clad between two identical metal plates

    Directory of Open Access Journals (Sweden)

    Victor M. García-Chocano

    2011-12-01

    Full Text Available Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.

  9. An O(NlogN Algorithm for Region Definition Using Channels/Switchboxes and Ordering Assignment

    Directory of Open Access Journals (Sweden)

    Jin-Tai Yan

    1996-01-01

    Full Text Available For a building block placement, the routing space can be further partitioned into channels and switchboxes. In general, the definition of switchboxes releases the cyclic channel precedence constraints and further yields a safe routing ordering process. However, switchbox routing is more difficult than channel routing. In this paper, an O(NlogN region definition and ordering assignment (RDAOA algorithm is proposed to minimize the number of switchboxes for the routing phase, where N is the number of vertices in a channel precedence graph. Several examples have been tested on the proposed algorithm, and the experimental results are listed and compared.

  10. L-Type Calcium Channels Modulation by Estradiol.

    Science.gov (United States)

    Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E

    2017-09-01

    Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.

  11. Impact of plasma tube wall thickness on power coupling in ICP sources

    International Nuclear Information System (INIS)

    Nawaz, Anuscheh; Herdrich, Georg

    2009-01-01

    The inductively heated plasma source at the Institute of Space Systems was investigated with respect to the wall thickness of the plasma tube using an air plasma. For this, the wall thickness of the quartz tube was reduced in steps from 2.5 to 1.25 mm. The significance of reducing the wall thickness was analyzed with respect to both the maximum allowable tube cooling power and the coupling efficiency. While the former results from thermal stresses in the tube's wall, the latter results from a minimization of magnetic field losses near the coil turns of the inductively coupled plasma (ICP) source. Analysis of the thermal stress could be validated by experimental data, i.e. the measurement of the tube cooling power when the respective tube structure failed. The coupling efficiency could be assessed qualitatively by simplified models, and the experimental data recorded show that coupling was improved far more than predicted.

  12. Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography 2301

    Science.gov (United States)

    Headcut and channel extension in response to an abrupt base level change in 2004 of approximately 1m was studied in a 1.29 ha semiarid headwater drainage on the Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona, USA. Field observations and time-lapse photography were coupled with hy...

  13. A method for estimating spatially variable seepage and hydrualic conductivity in channels with very mild slopes

    Science.gov (United States)

    Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab

    2014-01-01

    Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.

  14. Tetraquark candidate Zc(3900) from coupled-channel scattering - how to extract hadronic interactions? -

    Science.gov (United States)

    Ikeda, Yoichi

    2018-03-01

    We present recent progress of lattice QCD studies on hadronic interactions which play a crucial role to understand the properties of atomic nuclei and hadron resonances. There are two methods, the plateau method (or the direct method) and the HAL QCD method, to study the hadronic interactions. In the plateau method, the determination of a ground state energy from the temporal correlation functions of multi-hadron systems is a key to reliably extract the physical observables. It turns out that, due to the contamination of excited elastic scattering states nearby, one can easily be misled by a fake plateau into extracting the ground state energy. We introduce a consistency check (sanity check) which can rule out obviously false results obtained from a fake plateau, and find that none of the results obtained at the moment for two-baryon systems in the plateau method pass the test. On the other hand, the HAL QCD method is free from the fake-plateau problem. We investigate the systematic uncertainties of the HAL QCD method, which are found to be well controlled. On the basis of the HAL QCD method, the structure of the tetraquark candidate Zc(3900), which was experimentally reported in e+e- collisions, is studied by the s-wave two-meson coupled-channel scattering. The results show that the Zc(3900) is not a conventional resonance but a threshold cusp. A semi-phenomenological analysis with the coupled-channel interaction to the experimentally observed decay mode is also presented to confirm the conclusion.

  15. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-01

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis

  16. Geomorphic Response of a Low-Gradient Channel to Modern, Progressive Base-Level Lowering: Nahal HaArava, the Dead Sea

    Science.gov (United States)

    Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda

    2017-12-01

    The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta

  17. Comparison of earthquake source parameters and interseismic plate coupling variations in global subduction zones (Invited)

    Science.gov (United States)

    Bilek, S. L.; Moyer, P. A.; Stankova-Pursley, J.

    2010-12-01

    Geodetically determined interseismic coupling variations have been found in subduction zones worldwide. These coupling variations have been linked to heterogeneities in interplate fault frictional conditions. These connections to fault friction imply that observed coupling variations are also important in influencing details in earthquake rupture behavior. Because of the wealth of newly available geodetic models along many subduction zones, it is now possible to examine detailed variations in coupling and compare to seismicity characteristics. Here we use a large catalog of earthquake source time functions and slip models for moderate to large magnitude earthquakes to explore these connections, comparing earthquake source parameters with available models of geodetic coupling along segments of the Japan, Kurile, Kamchatka, Peru, Chile, and Alaska subduction zones. In addition, we use published geodetic results along the Costa Rica margin to compare with source parameters of small magnitude earthquakes recorded with an onshore-offshore network of seismometers. For the moderate to large magnitude earthquakes, preliminary results suggest a complex relationship between earthquake parameters and estimates of strongly and weakly coupled segments of the plate interface. For example, along the Kamchatka subduction zone, these earthquakes occur primarily along the transition between strong and weak coupling, with significant heterogeneity in the pattern of moment scaled duration with respect to the coupling estimates. The longest scaled duration event in this catalog occurred in a region of strong coupling. Earthquakes along the transition between strong and weakly coupled exhibited the most complexity in the source time functions. Use of small magnitude (0.5 earthquake spectra, with higher corner frequencies and higher mean apparent stress for earthquakes that occur in along the Osa Peninsula relative to the Nicoya Peninsula, mimicking the along-strike variations in

  18. Superimposed Training-Based Channel Estimation for MIMO Relay Networks

    Directory of Open Access Journals (Sweden)

    Xiaoyan Xu

    2012-01-01

    Full Text Available We introduce the superimposed training strategy into the multiple-input multiple-output (MIMO amplify-and-forward (AF one-way relay network (OWRN to perform the individual channel estimation at the destination. Through the superposition of a group of additional training vectors at the relay subject to power allocation, the separated estimates of the source-relay and relay-destination channels can be obtained directly at the destination, and the accordance with the two-hop AF strategy can be guaranteed at the same time. The closed-form Bayesian Cramér-Rao lower bound (CRLB is derived for the estimation of two sets of flat-fading MIMO channel under random channel parameters and further exploited to design the optimal training vectors. A specific suboptimal channel estimation algorithm is applied in the MIMO AF OWRN using the optimal training sequences, and the normalized mean square error performance for the estimation is provided to verify the Bayesian CRLB results.

  19. Exploratory study of possible resonances in heavy meson - heavy baryon coupled-channel interactions

    Science.gov (United States)

    Shen, Chao-Wei; Rönchen, Deborah; Meißner, Ulf-G.; Zou, Bing-Song

    2018-01-01

    We use a unitary coupled-channel model to study the \\bar{{{D}}}{{{Λ }}}{{c}}-\\bar{{{D}}}{{{Σ }}}{{c}} interactions. In our calculation, SU(3) flavor symmetry is applied to determine the coupling constants. Several resonant and bound states with different spin and parity are dynamically generated in the mass range of the recently observed pentaquarks. The approach is also extended to the hidden beauty sector to study the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions. As the b-quark mass is heavier than the c-quark mass, there are more resonances observed for the {{B}}{{{Λ }}}{{b}}-{{B}}{{{Σ }}}{{b}} interactions and they are more tightly bound. Supported by DFG and NSFC through funds provided to the Sino-German CRC 110 “Symmetry and the Emergence of Structure in QCD” (NSFC 11621131001, DFG TR110), as well as an NSFC fund (11647601). The work of UGM was also supported by the CAS President’s International Fellowship Initiative (PIFI) (2017VMA0025)

  20. Experimental studies of laser guiding and wake excitation in plasma channels

    International Nuclear Information System (INIS)

    Volfbeyn, P.; Lawrence Berkeley National Lab., CA

    1998-06-01

    This thesis presents results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme was proposed and experimentally tested in hydrogen and nitrogen. It made use of two laser pulses. The Ignitor, an ultrashort ( 17 W/cm 2 , 75fs laser pulse. The guiding properties and transmission and coupling efficiency were studied as a function of relative position of the channel and the injection pulse focus. Whereas entrance coupling efficiency into the channel was lower than expected, channel coupling to continuum losses were found to be in good agreement with analytical predictions. The authors speculate that increased coupling efficiency can be achieved through better mode matching into the channel. Analytic and numerical one dimensional (1-D), nonrelativistic theory of laser pulse propagation in underdense plasma was presented, in the context of laser wakefield acceleration. The relation between the laser pulse energy depletion, longitudinal laser pulse shape distortion, and changes in the group velocity and center wavelength was explored. 1-D theory was extended to treat the case of a laser exciting a wake in a hollow plasma channel, by making use of an energy conservation argument. Based on the results of this theory, a laser wakefield diagnostic was proposed where, by measuring the changes in phase or spectrum of the driving laser pulse, it is possible to infer the amplitude of the plasma wake

  1. Ultrabroadband terahertz source and beamline based on coherent transition radiation

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2009-03-01

    Full Text Available Coherent transition radiation (CTR in the THz regime is an important diagnostic tool for analyzing the temporal structure of the ultrashort electron bunches needed in ultraviolet and x-ray free-electron lasers. It is also a powerful source of such radiation, covering an exceptionally broad frequency range from about 200 GHz to 100 THz. At the soft x-ray free-electron laser FLASH we have installed a beam transport channel for transition radiation (TR with the intention to guide a large fraction of the radiation to a laboratory outside the accelerator tunnel. The radiation is produced on a screen inside the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond window and transported to the laboratory through an evacuated tube equipped with five focusing and four plane mirrors. The design of the beamline has been based on a thorough analysis of the generation of TR on metallic screens of limited size. The optical propagation of the radiation has been computed taking into account the effects of near-field (Fresnel diffraction. The theoretical description of the TR source is presented in the first part of the paper, while the design principles and the technical layout of the beamline are described in the second part. First experimental results demonstrate that the CTR beamline covers the specified frequency range and preserves the narrow time structure of CTR pulses emitted by short electron bunches.

  2. Effects of elevated line sources on turbulent mixing in channel flow

    Science.gov (United States)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2016-11-01

    Fluids mixing in turbulent flows has been studied extensively, due to the importance of this phenomena in nature and engineering. Convection effects along with motion of three-dimensional coherent structures in turbulent flow disperse a substance more efficiently than molecular diffusion does on its own. We present here, however, a study that explores the conditions under which turbulent mixing does not happen, when different substances are released into the flow field from different vertical locations. The study uses a method which combines Direct Numerical Simulation (DNS) with Lagrangian Scalar Tracking (LST) to simulate a turbulent channel flow and track the motion of passive scalars with different Schmidt numbers (Sc). The particles are released from several instantaneous line sources, ranging from the wall to the center region of the channel. The combined effects of mean velocity difference, molecular diffusion and near-wall coherent structures lead to the observation of different concentrations of particles downstream from the source. We then explore in details the conditions under which particles mixing would not happen. Results from numerical simulation at friction Reynolds number of 300 and 600 will be discussed and for Sc ranging from 0.1 to 2,400.

  3. An analytical threshold voltage model for a short-channel dual-metal-gate (DMG) recessed-source/drain (Re-S/D) SOI MOSFET

    Science.gov (United States)

    Saramekala, G. K.; Santra, Abirmoya; Dubey, Sarvesh; Jit, Satyabrata; Tiwari, Pramod Kumar

    2013-08-01

    In this paper, an analytical short-channel threshold voltage model is presented for a dual-metal-gate (DMG) fully depleted recessed source/drain (Re-S/D) SOI MOSFET. For the first time, the advantages of recessed source/drain (Re-S/D) and of dual-metal-gate structure are incorporated simultaneously in a fully depleted SOI MOSFET. The analytical surface potential model at Si-channel/SiO2 interface and Si-channel/buried-oxide (BOX) interface have been developed by solving the 2-D Poisson’s equation in the channel region with appropriate boundary conditions assuming parabolic potential profile in the transverse direction of the channel. Thereupon, a threshold voltage model is derived from the minimum surface potential in the channel. The developed model is analyzed extensively for a variety of device parameters like the oxide and silicon channel thicknesses, thickness of source/drain extension in the BOX, control and screen gate length ratio. The validity of the present 2D analytical model is verified with ATLAS™, a 2D device simulator from SILVACO Inc.

  4. Joint Scheduling for Dual-Hop Block-Fading Broadcast Channels

    KAUST Repository

    Zafar, Ammar; AlNuweiri, Hussein; Alouini, Mohamed-Slim; Shaqfeh, Mohammad

    2012-01-01

    weight that maintains the stability constraint. We show how to obtain the source weight either off-line based on channel statistics or on real-time based on channel measurements. Furthermore, we consider special cases including the maximum sum rate

  5. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...

  6. Jahn-Teller effect versus Hund's rule coupling in C60N-

    Science.gov (United States)

    Wehrli, S.; Sigrist, M.

    2007-09-01

    We propose variational states for the ground state and the low-energy collective rotator excitations in negatively charged C60N- ions (N=1,…,5) . The approach includes the linear electron-phonon coupling and the Coulomb interaction on the same level. The electron-phonon coupling is treated within the effective mode approximation which yields the linear t1u⊗Hg Jahn-Teller problem whereas the Coulomb interaction gives rise to Hund’s rule coupling for N=2,3,4 . The Hamiltonian has accidental SO(3) symmetry which allows an elegant formulation in terms of angular momenta. Trial states are constructed from coherent states and using projection operators onto angular momentum subspaces which results in good variational states for the complete parameter range. The evaluation of the corresponding energies is to a large extent analytical. We use the approach for a detailed analysis of the competition between Jahn-Teller effect and Hund’s rule coupling, which determines the spin state for N=2,3,4 . We calculate the low-spin-high-spin gap for N=2,3,4 as a function of the Hund’s rule coupling constant J . We find that the experimentally measured gaps suggest a coupling constant in the range J=60-80meV . Using a finite value for J , we recalculate the ground state energies of the C60N- ions and find that the Jahn-Teller energy gain is partly counterbalanced by the Hund’s rule coupling. In particular, the ground state energies for N=2,3,4 are almost equal.

  7. A basic design of microcontroller based data processor and local display for digital logarithmic power channel

    International Nuclear Information System (INIS)

    Nur Khasan; Syahrudin Yusuf

    2009-01-01

    A data processor and its local display for a digital logarithmic power channel, which will be used as a complement and diversification of nuclear reactor instrument, has been designed using micro controller base circuit. This power channel has been designed using TTL device and microcontroller. The roll of the microcontroller will be as data acquisition, data processing for the measurement of percentage reactor power, period and the trip decision. In this design has beer; created display of numerical value will be display on the local display in on-line mode for 1 nV to 10 10 nV neutron flux measurement range. This logarithmic power channel is expected to support the existing instrument which uses analog system in Instrumentation and Control System of nuclear reactor. (author)

  8. Generation of an N-qubit phase gate via atom—cavity nonidentical coupling

    International Nuclear Information System (INIS)

    Ying-Qiao, Zhang; Shou, Zhang

    2009-01-01

    A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom–cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When N → ∞, the fidelity and success probability infinitely approach 1, but never exceed 1. (general)

  9. Theory of low-energy electron-molecule collision physics in the coupled-channel method and application to e-CO2 scattering

    International Nuclear Information System (INIS)

    Morrison, M.A.

    1976-08-01

    A theory of electron-molecule scattering based on the fixed-nuclei approximation in a body-fixed reference frame is formulated and applied to e-CO 2 collisions in the energy range from 0.07 to 10.0 eV. The procedure used is a single-center coupled-channel method which incorporates a highly accurate static interaction potential, an approximate local exchange potential, and an induced polarization potential. Coupled equations are solved by a modification of the integral equations algorithm; several partial waves are required in the region of space near the nuclei, and a transformation procedure is developed to handle the consequent numerical problems. The potential energy is converged by separating electronic and nuclear contributions in a Legendre-polynomial expansion and including a large number of the latter. Formulas are derived for total elastic, differential, momentum transfer, and rotational excitation cross sections. The Born and asymptotic decoupling approximations are derived and discussed in the context of comparison with the coupled-channel cross sections. Both are found to be unsatisfactory in the energy range under consideration. An extensive discussion of the technical aspects of calculations for electron collisions with highly nonspherical targets is presented, including detailed convergence studies and a discussion of various numerical difficulties. The application to e-CO 2 scattering produces converged results in good agreement with observed cross sections. Various aspects of the physics of this collision are discussed, including the 3.8 eV shape resonance, which is found to possess both p and f character, and the anomalously large low-energy momentum transfer cross sections, which are found to be due to Σ/sub g/ symmetry. Comparison with static and static-exchange approximations are made

  10. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    Science.gov (United States)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  11. Poles near the thresholds in the coupled ΛN - ΣN system

    International Nuclear Information System (INIS)

    Yamamura, H.; Miyagawa, K.

    1999-01-01

    We find t-matrix poles near the ΣN threshold for the meson theoretical Nijmegen YN interactions including hard-core models. These poles are connected with the strength of the ΛN - ΣN coupling. We also observe antibound-state poles below the ΛN threshold which correlate with scattering lengths. Refs. 4, tabs. 2 (author)

  12. Impact of seaweed beachings on dynamics of δ15N isotopic signatures in marine macroalgae

    International Nuclear Information System (INIS)

    Lemesle, Stéphanie; Mussio, Isabelle; Rusig, Anne-Marie; Menet-Nédélec, Florence; Claquin, Pascal

    2015-01-01

    Highlights: • Two coastal sites (COU, GM) in the Bay of Seine affected by summer seaweed beachings. • The same temporal dynamics of the algal δ 15 N at the two sites. • N and P concentrations in seawater of the two sites dominated by riverine sources. • A coupling between seaweed beachings and N sources of intertidal macroalgae. - Abstract: A fine-scale survey of δ 15 N, δ 13 C, tissue-N in seaweeds was conducted using samples from 17 sampling points at two sites (Grandcamp-Maisy (GM), Courseulles/Mer (COU)) along the French coast of the English Channel in 2012 and 2013. Partial triadic analysis was performed on the parameter data sets and revealed the functioning of three areas: one estuary (EstA) and two rocky areas (GM ∗ , COU ∗ ). In contrast to oceanic and anthropogenic reference points similar temporal dynamics characterized δ 15 N signatures and N contents at GM ∗ and COU ∗ . Nutrient dynamics were similar: the N-concentrations in seawater originated from the River Seine and local coastal rivers while P-concentrations mainly from these local rivers. δ 15 N at GM ∗ were linked to turbidity suggesting inputs of autochthonous organic matter from large-scale summer seaweed beachings made up of a mixture of Rhodophyta, Phaeophyta and Chlorophyta species. This study highlights the coupling between seaweed beachings and nitrogen sources of intertidal macroalgae

  13. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  14. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation.

    Science.gov (United States)

    Wiggins, Graham C; Polimeni, Jonathan R; Potthast, Andreas; Schmitt, Melanie; Alagappan, Vijay; Wald, Lawrence L

    2009-09-01

    The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive-only phased-array head coil with 96 receive elements constructed on a close-fitting helmet-shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal-to-noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g-factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32-channel array built on an identical helmet-shaped former and to a larger commercial 12-channel head coil. The 96-channel coil provided substantial SNR gains in the distal cortex compared to the 12- and 32-channel coils. The central SNR for the 96-channel coil was similar to the 32-channel coil for optimum SNR combination and 20% lower for root-sum-of-squares combination. There was a significant reduction in the maximum g-factor for 96 channels compared to 32; for example, the 96-channel maximum g-factor was 65% of the 32-channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images.

  15. MPEG-compliant joint source/channel coding using discrete cosine transform and substream scheduling for visual communication over packet networks

    Science.gov (United States)

    Kim, Seong-Whan; Suthaharan, Shan; Lee, Heung-Kyu; Rao, K. R.

    2001-01-01

    Quality of Service (QoS)-guarantee in real-time communication for multimedia applications is significantly important. An architectural framework for multimedia networks based on substreams or flows is effectively exploited for combining source and channel coding for multimedia data. But the existing frame by frame approach which includes Moving Pictures Expert Group (MPEG) cannot be neglected because it is a standard. In this paper, first, we designed an MPEG transcoder which converts an MPEG coded stream into variable rate packet sequences to be used for our joint source/channel coding (JSCC) scheme. Second, we designed a classification scheme to partition the packet stream into multiple substreams which have their own QoS requirements. Finally, we designed a management (reservation and scheduling) scheme for substreams to support better perceptual video quality such as the bound of end-to-end jitter. We have shown that our JSCC scheme is better than two other two popular techniques by simulation and real video experiments on the TCP/IP environment.

  16. N-body simulations for coupled scalar-field cosmology

    International Nuclear Information System (INIS)

    Li Baojiu; Barrow, John D.

    2011-01-01

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the ΛCDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  17. Static and dynamic polarizabilities of Na- within a variationally stable coupled-channel hyperspherical method

    International Nuclear Information System (INIS)

    Masili, Mauro; Groote, J.J. de

    2004-01-01

    Using a model potential representation combined with a variationally stable method, we present a precise calculation of the electric dipole polarizabilities of the sodium negative ion (Na - ). The effective two-electron eigensolutions for Na - are obtained from a hyperspherical coupled-channel calculation. This approach allows efficient error control and insight into the system's properties through one-dimensional potential curves. Our result of 1018.3 a.u. for the static dipole polarizability is in agreement with previous calculations and supports our results for the dynamic polarizability, which has scarcely been investigated hitherto

  18. Action of insecticidal N-alkylamides at site 2 of the voltage-sensitive sodium channel

    International Nuclear Information System (INIS)

    Ottea, J.A.; Payne, G.T.; Soderlund, D.M.

    1990-01-01

    Nine synthetic N-alkylamides were examined as inhibitors of the specific binding of [ 3 H]batrachotoxinin A 20α-benzoate ([ 3 H]BTX-B) to sodium channels and as activators of sodium uptake in mouse brain synaptoneurosomes. In the presence of scorpion (Leiurus quinquestriatus) venom, the six insecticidal analogues were active as both inhibitors of [ 3 H]BTX-B binding and stimulators of sodium uptake. These findings are consistent with an action of these compounds at the alkaloid activator recognition site (site 2) of the voltage-sensitive sodium channel. The three noninsecticidal N-alkylamides also inhibited [ 3 H]BTX-B binding but were ineffective as activators of sodium uptake. Concentration-response studies revealed that some of the insecticidal amides also enhanced sodium uptake through a second, high-affinity interaction that does not involve site 2, but this secondary effect does not appear to be correlated with insecticidal activity. The activities of N-alkylamides as sodium channel activators were influenced by the length of the alkenyl chain and the location of unsaturation within the molecule. These results further define the actions of N-alkylamides on sodium channels and illustrate the significance of the multiple binding domains of the sodium channel as target sites for insect control agents

  19. Channel Temperature Determination for AlGaN/GaN HEMTs on SiC and Sapphire

    Science.gov (United States)

    Freeman, Jon C.; Mueller, Wolfgang

    2008-01-01

    Numerical simulation results (with emphasis on channel temperature) for a single gate AlGaN/GaN High Electron Mobility Transistor (HEMT) with either a sapphire or SiC substrate are presented. The static I-V characteristics, with concomitant channel temperatures (T(sub ch)) are calculated using the software package ATLAS, from Silvaco, Inc. An in-depth study of analytical (and previous numerical) methods for the determination of T(sub ch) in both single and multiple gate devices is also included. We develop a method for calculating T(sub ch) for the single gate device with the temperature dependence of the thermal conductivity of all material layers included. We also present a new method for determining the temperature on each gate in a multi-gate array. These models are compared with experimental results, and show good agreement. We demonstrate that one may obtain the channel temperature within an accuracy of +/-10 C in some cases. Comparisons between different approaches are given to show the limits, sensitivities, and needed approximations, for reasonable agreement with measurements.

  20. Two-ply channels for faster wicking in paper-based microfluidic devices.

    Science.gov (United States)

    Camplisson, Conor K; Schilling, Kevin M; Pedrotti, William L; Stone, Howard A; Martinez, Andres W

    2015-12-07

    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas-Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated.

  1. Feasibility study of broadband efficient ''water window'' source

    Energy Technology Data Exchange (ETDEWEB)

    Higashiguchi, Takeshi; Yugami, Noboru [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kanagawa, Saitama 332-0012 (Japan); Otsuka, Takamitsu [Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), and Optical Technology Innovation Center (OpTIC), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Jiang Weihua [Department of Electrical Engineering, Nagaoka University of Technology, Kami-tomiokamachi 1603-1, Nagaoka, Niigata 940-2188 (Japan); Endo, Akira [Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Li Bowen; Dunne, Padraig; O' Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland)

    2012-01-02

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  2. Techniques for Handling Channeling in High Resolution Fourier Transform Spectra Recorded with Synchrotron Sources

    International Nuclear Information System (INIS)

    Ibrahim, Amr; PredoiCross, Adriana; Teillet, P. M.

    2010-01-01

    Seven different techniques in dealing the problem of channel spectra in Fourier transform Spectroscopy utilizing synchrotron source were examined and compared. Five of these techniques deal with the artifacts (spikes) in the recorded interferogram which in turn result in channel spectra within the spectral domain. Such interferogram editing method include replacing these spikes with zeros, straight line, fitted polynomial curve, rescaled spike and spike reduced with Gauss Function. Another two techniques try to target this issue in the spectral domain instead by either generating a synthetic background simulating the channels or measuring the channels parameters (amplitude, spacing and phase) to use in the spectral fitting program. Results showed spectral domain techniques produces higher quality results in terms of signal to noise and fitting residual. The effect of each method on the line parameters such as position, intensity are air broadening are also measured and discussed.

  3. Modeling water droplet condensation and evaporation in DNS of turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Russo, E; Kuerten, J G M; Geld, C W M van der [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Geurts, B J, E-mail: e.russo@tue.nl [Faculty EEMCS, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)

    2011-12-22

    In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Eulerian-Lagrangian approach. The two-way coupling is investigated in terms of the effects of mass and heat transfer on the droplets distributions along the channel wall-normal direction and by comparison of the droplet temperature statistics with respect to the case without evaporation and condensation. A remarkable conclusion is that the presence of evaporating and condensing droplets results in an increase in the non-dimensional heat transfer coefficient of the channel flow represented by the Nusselt number.

  4. Scheduling for dual-hop block-fading channels with two source-user pairs sharing one relay

    KAUST Repository

    Zafar, Ammar

    2013-09-01

    In this paper, we maximize the achievable rate region of a dual-hop network with two sources serving two users independently through a single shared relay. We formulate the problem as maximizing the sum of the weighted long term average throughputs of the two users under stability constraints on the long term throughputs of the source-user pairs. In order to solve the problem, we propose a joint user-and-hop scheduling scheme, which schedules the first or second hop opportunistically based on instantaneous channel state information, in order to exploit multiuser diversity and multihop diversity gains. Numerical results show that the proposed joint scheduling scheme enhances the achievable rate region as compared to a scheme that employs multi-user scheduling on the second-hop alone. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  5. Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications

    Science.gov (United States)

    Qian, Xuewen; Deng, Honggui; He, Hailang

    2017-10-01

    Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.

  6. Time over threshold based multi-channel LuAG-APD PET detector

    International Nuclear Information System (INIS)

    Shimazoe, Kenji; Orita, Tadashi; Nakamura, Yasuaki; Takahashi, Hiroyuki

    2013-01-01

    To achieve efficient signal processing, several time-based positron emission tomography (PET) systems using a large number of granulated gamma-ray detectors have recently been proposed. In this work described here, a 144-channel Pr:LuAG avalanche photodiode (APD) PET detector that uses time over threshold (ToT) and pulse train methods was designed and fabricated. The detector is composed of 12×12 Pr:LuAG crystals, each of which produces a 2 mm×2 mm×10 mm pixel individually coupled to a 12×12 APD array, which in turn is connected pixel-by-pixel with one channel of a time over threshold based application-specific integrated circuit (ToT-ASIC) that was designed and fabricated using a 0.25 μm 3.3 V Taiwan Semiconductor Company complementary metal oxide semiconductor (TSMC CMOS) process. The ToT outputs are connected through a field-programmable gate array (FPGA) to a data acquisition (DAQ) system. Three front-end ASIC boards—each incorporating a ToT-ASIC chip, threshold control digital-to-analog converters (DACs), and connectors, and dissipating power at about 230 mW per board—are used to read from the 144-channel LuAG-APD detector. All three boards are connected through an FPGA board that is programmed to calibrate the individual thresholds of the ToT circuits to allow digital multiplexing to form an integrated PET module with a measured timing resolution of 4.2 ns. Images transmitted by this PET system can be successfully acquired through collimation masks. As a further implementation of this technology, an animal PET system consisting of eight gamma pixel modules forming a ring is planned

  7. Accelerator-based pulsed cold neutron source

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Iwasa, Hirokatsu; Kiyanagi, Yoshiaki

    1979-01-01

    An accelerator-based pulsed cold neutron source was constructed. The accelerator is a 35 MeV electron linear accelerator with 1 kW average beam power. The cold neutron beam intensity at a specimen is equivalent to that of a research reactor of 10 14 n/cm 2 .s thermal flux in the case of the quasi-elastic neutron scattering measurements. In spite of some limitations to the universal uses, it has been demonstrated by this facility that the modest capacity accelerator-based pulsed cold neutron source is a highly efficient cold neutron source with low capital investment. Design philosophy, construction details, performance and some operational experiences are described. (author)

  8. Bit Error Rate Performance Analysis of a Threshold-Based Generalized Selection Combining Scheme in Nakagami Fading Channels

    Directory of Open Access Journals (Sweden)

    Kousa Maan

    2005-01-01

    Full Text Available The severity of fading on mobile communication channels calls for the combining of multiple diversity sources to achieve acceptable error rate performance. Traditional approaches perform the combining of the different diversity sources using either the conventional selective diversity combining (CSC, equal-gain combining (EGC, or maximal-ratio combining (MRC schemes. CSC and MRC are the two extremes of compromise between performance quality and complexity. Some researches have proposed a generalized selection combining scheme (GSC that combines the best branches out of the available diversity resources ( . In this paper, we analyze a generalized selection combining scheme based on a threshold criterion rather than a fixed-size subset of the best channels. In this scheme, only those diversity branches whose energy levels are above a specified threshold are combined. Closed-form analytical solutions for the BER performances of this scheme over Nakagami fading channels are derived. We also discuss the merits of this scheme over GSC.

  9. Effect of the Channel Length on the Transport Characteristics of Transistors Based on Boron-Doped Graphene Ribbons

    Directory of Open Access Journals (Sweden)

    Paolo Marconcini

    2018-04-01

    Full Text Available Substitutional boron doping of devices based on graphene ribbons gives rise to a unipolar behavior, a mobility gap, and an increase of the I O N / I O F F ratio of the transistor. Here we study how this effect depends on the length of the doped channel. By means of self-consistent simulations based on a tight-binding description and a non-equilibrium Green’s function approach, we demonstrate a promising increase of the I O N / I O F F ratio with the length of the channel, as a consequence of the different transport regimes in the ON and OFF states. Therefore, the adoption of doped ribbons with longer aspect ratios could represent a significant step toward graphene-based transistors with an improved switching behavior.

  10. Low complexity source and channel coding for mm-wave hybrid fiber-wireless links

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Vegas Olmos, Juan José; Pang, Xiaodan

    2014-01-01

    We report on the performance of channel and source coding applied for an experimentally realized hybrid fiber-wireless W-band link. Error control coding performance is presented for a wireless propagation distance of 3 m and 20 km fiber transmission. We report on peak signal-to-noise ratio perfor...

  11. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    International Nuclear Information System (INIS)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-01-01

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity ( 14 Wcm -2 ) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  12. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  13. Nuclear fusion ion beam source composed of optimum channel wall

    International Nuclear Information System (INIS)

    Furukaw, T.

    2007-01-01

    Full text of publication follows: Numerical and experimental researches of the hall-type beam accelerator was conducted by highlighting both neutral species and material of acceleration channel wall. The hall-type beam accelerator is expected as ion beam source for nuclear fusion since it could product ion beam density over 10 3 times as high as that of electrostatic accelerator, which is used regularly as beam heating device, because it is proven that the beam heating method could accelerate ion to high energy beam by electric field and heat plasma to ultra high temperature of 100 million degrees or more. At high-voltage mode of DC regime that is normal operational condition, however, the various plasma MHD (magneto-hydrodynamic) instabilities are generated. In particular, the large-amplitude and low-frequency plasma MHD instability in the tens of kHz among them has been a serious problem that should be solved to improve the operational stability and the system durability. So, we propose a hall-type beam accelerator with new design concepts; both acquisition of simultaneous solution for reducing the plasma MHD instability and the accelerator core overheating and optimum combination of the acceleration channel wall material. The technologies for this concept are as follows: 1) To increase neutral species velocity-inlet in acceleration channel by preheating propellant through circularly propellant conduit line inside accelerator system could bring about the lower amplitude of the instability. 2) Through this method, the accelerator system is cooled, and the higher thrust and specific-impulse is produced with hardly changing thrust efficiency at the same time. 3) To select BN (Boron- Nitride) and Al 2 O 3 as wall material of ionization- and acceleration-zone in acceleration channel respectively having different secondary-electron emission-coefficient could achieve the higher-efficiency and -durability. The hall-type beam accelerator designed using these technologies

  14. NMR scalar couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy

    Science.gov (United States)

    Pervushin, Konstantin; Ono, Akira; Fernández, César; Szyperski, Thomas; Kainosho, Masatsune; Wüthrich, Kurt

    1998-01-01

    This paper describes the NMR observation of 15N—15N and 1H—15N scalar couplings across the hydrogen bonds in Watson–Crick base pairs in a DNA duplex, hJNN and hJHN. These couplings represent new parameters of interest for both structural studies of DNA and theoretical investigations into the nature of the hydrogen bonds. Two dimensional [15N,1H]-transverse relaxation-optimized spectroscopy (TROSY) with a 15N-labeled 14-mer DNA duplex was used to measure hJNN, which is in the range 6–7 Hz, and the two-dimensional hJNN-correlation-[15N,1H]-TROSY experiment was used to correlate the chemical shifts of pairs of hydrogen bond-related 15N spins and to observe, for the first time, hJHN scalar couplings, with values in the range 2–3.6 Hz. TROSY-based studies of scalar couplings across hydrogen bonds should be applicable for large molecular sizes, including protein-bound nucleic acids. PMID:9826668

  15. Partial wave analysis of the reaction πN→Nππ and coupled channel analyses of the reactions πN in the CM energy range 1.38-1.74GeV

    International Nuclear Information System (INIS)

    Dolbeau, Jean.

    1976-01-01

    The partial wave analysis of 91314 π + -p→Nππ events at nine CM energies between 1.38 and 1.74GeV was performed using the generalized isobar model and assuming the coherent production of Δ, rho and sigma in the final state. A coupled channel analysis (K-matrix formalism) led to the determination of the arbitrary phase at each energy and to smooth the partial wave amplitudes. The paramaters (mass, total and partial widths, signs of coupling constants) of sixteen resonances, among which two new ones, are determined by two different methods. Those results help in classifying the lower-mass excited states of the nucleon in the frame of unitary symmetries, as SU6 [fr

  16. Operation and scalability of dopant-segregated Schottky barrier MOSFETs with recessed channels

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Hsia, Jui-Kai

    2013-01-01

    Recessed channels were used in scaled dopant-segregated Schottky barrier MOSFETs (DS-SBMOS) to control the severe short-channel effect. The physical operation and device scalability of the DS-SBMOS resulting from the presence of recessed channels and associated gate-corners are elucidated. The coupling of Schottky and gate-corner barriers has a key function in determining the on–off switching and drain current. The gate-corner barriers divide the channel into three regions for protection from the drain penetration field. To prevent resistive degradations in the drive current, an alternative asymmetric recessed channel (ARC) without a source-side gate-corner is proposed to simultaneously optimize both the short-channel effect and drive current in the scaled DS-SBMOS. By employing the proposed ARC architecture, the DS-SBMOS devices can be successfully scaled down, making them promising candidates for next-generation CMOS devices. (paper)

  17. Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2009-01-01

    Full Text Available Imperfect channel state information degrades the performance of multiple-input multiple-output (MIMO communications; its effects on single-user (SU and multiuser (MU MIMO transmissions are quite different. In particular, MU-MIMO suffers from residual interuser interference due to imperfect channel state information while SU-MIMO only suffers from a power loss. This paper compares the throughput loss of both SU and MU-MIMO in the broadcast channel due to delay and channel quantization. Accurate closed-form approximations are derived for achievable rates for both SU and MU-MIMO. It is shown that SU-MIMO is relatively robust to delayed and quantized channel information, while MU-MIMO with zero-forcing precoding loses its spatial multiplexing gain with a fixed delay or fixed codebook size. Based on derived achievable rates, a mode switching algorithm is proposed, which switches between SU and MU-MIMO modes to improve the spectral efficiency based on average signal-to-noise ratio (SNR, normalized Doppler frequency, and the channel quantization codebook size. The operating regions for SU and MU modes with different delays and codebook sizes are determined, and they can be used to select the preferred mode. It is shown that the MU mode is active only when the normalized Doppler frequency is very small, and the codebook size is large.

  18. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-15

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis.

  19. A bright single-photon source based on a photonic trumpet

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Malik, Nitin S.; Bleuse, Joël

    Fiber-like photonic nanowires, which are optical waveguides made of a high refractive index material n, have recently emerged as non-resonant systems providing an efficient spontaneous emission (SE) control. When they embed a quantum emitter like a quantum dot (QD), they find application to the r......Fiber-like photonic nanowires, which are optical waveguides made of a high refractive index material n, have recently emerged as non-resonant systems providing an efficient spontaneous emission (SE) control. When they embed a quantum emitter like a quantum dot (QD), they find application...... to the realization of bright sources of quantum light and, reversibly, provide an efficient interface between propagating photons and the QD. For a wire diameter ∼ λ/n (λ is the operation wavelength), the fraction of QD SE coupled to the fundamental guided mode exceeds 90%. The collection of the photons can...... be brought close to unity with a proper engineering of the wire ends. In particular, a tapering of the top wire end is necessary to achieve a directive far-field emission pattern [1]. Recently, we have realized a single-photon source featuring a needle-like taper. The source efficiency, though record...

  20. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    Directory of Open Access Journals (Sweden)

    Marco Crescentini

    2016-05-01

    Full Text Available High-throughput screening (HTS using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i design of scalable microfluidic devices; (ii design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  1. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    Science.gov (United States)

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-05-19

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  2. Analysis of Magnetically-Coupled Impedance Source Three-Phase Four-Switch Inverters

    DEFF Research Database (Denmark)

    Li, Kerui; Abdelhakim, Ahmed; Yang, Yongheng

    2017-01-01

    In this paper, magnetically-coupled impedance source (MCIS) three-phase four-switch inverters are introduced for renewable energy applications. This inverter utilizes two single-phase MCIS inverters to obtain a three-phase output, where less component-count is achieved in order to reduce the inve......In this paper, magnetically-coupled impedance source (MCIS) three-phase four-switch inverters are introduced for renewable energy applications. This inverter utilizes two single-phase MCIS inverters to obtain a three-phase output, where less component-count is achieved in order to reduce...... the inverter volume. On the other hand, as a result of the reduced number of switches, the proposed inverter suffers from higher voltage stresses. The MCIS inverters are first reviewed. Then, the modulation and operation principle of the MCIS three-phase inverter topology are introduced before sizing...

  3. Development of a CANDU Moderator Analysis Model; Based on Coupled Solver

    International Nuclear Information System (INIS)

    Yoon, Churl; Park, Joo Hwan

    2006-01-01

    A CFD model for predicting the CANDU-6 moderator temperature has been developed for several years in KAERI, which is based on CFX-4. This analytic model(CFX4-CAMO) has some strength in the modeling of hydraulic resistance in the core region and in the treatment of heat source term in the energy equations. But the convergence difficulties and slow computing speed reveal to be the limitations of this model, because the CFX-4 code adapts a segregated solver to solve the governing equations with strong coupled-effect. Compared to CFX-4 using segregated solver, CFX-10 adapts high efficient and robust coupled-solver. Before December 2005 when CFX-10 was distributed, the previous version of CFX-10(CFX-5. series) also adapted coupled solver but didn't have any capability to apply porous media approaches correctly. In this study, the developed moderator analysis model based on CFX- 4 (CFX4-CAMO) is transformed into a new moderator analysis model based on CFX-10. The new model is examined and the results are compared to the former

  4. The dynamic time-over-threshold method for multi-channel APD based gamma-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orita, T., E-mail: orita.tadashi@jaea.go.jp [Japan Atomic Energy Agency, Fukushima (Japan); Shimazoe, K.; Takahashi, H. [Department of Nuclear Management and Engineering, The University of Tokyo, Bunkyō (Japan)

    2015-03-01

    t– Recent advances in manufacturing technology have enabled the use of multi-channel pixelated detectors in gamma-ray imaging applications. When obtaining gamma-ray measurements, it is important to obtain pulse height information in order to avoid unnecessary events such as scattering. However, as the number of channels increases, more electronics are needed to process each channel's signal, and the corresponding increases in circuit size and power consumption can result in practical problems. The time-over-threshold (ToT) method, which has recently become popular in the medical field, is a signal processing technique that can effectively avoid such problems. However, ToT suffers from poor linearity and its dynamic range is limited. We therefore propose a new ToT technique called the dynamic time-over-threshold (dToT) method [4]. A new signal processing system using dToT and CR-RC shaping demonstrated much better linearity than that of a conventional ToT. Using a test circuit with a new Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (GAGG) scintillator and an avalanche photodiode, the pulse height spectra of {sup 137}Cs and {sup 22}Na sources were measured with high linearity. Based on these results, we designed a new application-specific integrated circuit (ASIC) for this multi-channel dToT system, measured the spectra of a {sup 22}Na source, and investigated the linearity of the system.

  5. Development and application of a coupled bio-geochmical and hydrological model for point and non-point source river water pollution

    Science.gov (United States)

    Pohlert, T.

    2007-12-01

    The aim of this paper is to present recent developments of an integrated water- and N-balance model for the assessment of land use changes on water and N-fluxes for meso-scale river catchments. The semi-distributed water-balance model SWAT was coupled with algorithms of the bio-geochemical model DNDC as well as the model CropSyst. The new model that is further denoted as SWAT-N was tested with leaching data from a long- term lysimeter experiment as well as results from a 5-years sampling campaign that was conducted at the outlet of the meso-scale catchment of the River Dill (Germany). The model efficiency for N-load as well as the spatial representation of N-load along the river channel that was tested with results taken from longitudinal profiles show that the accuracy of the model has improved due to the integration of the aforementioned process-oriented models. After model development and model testing, SWAT-N was then used for the assessment of the EU agricultural policy (CAP reform) on land use change and consequent changes on N-fluxes within the Dill Catchment. giessen.de/geb/volltexte/2007/4531/

  6. Effects of quantum coupling on the performance of metal-oxide

    Indian Academy of Sciences (India)

    Based on the analysis of the three-dimensional Schrödinger equation, the effects of quantum coupling between the transverse and the longitudinal components of channel electron motion on the performance of ballistic MOSFETs have been theoretically investigated by self-consistently solving the coupled ...

  7. The interpretation of resonance formation in coupled-channel models of positron scattering by atomic hydrogen using localized optical potentials

    International Nuclear Information System (INIS)

    Bransden, B.H.; Hewitt, R.N.

    1997-01-01

    Above-threshold resonances can occur in coupled-channel models of the e + + H system when Ps formation is taken into account (although it should be pointed out that, in this specific system, resonances do not occur in an exact theory). In general, to understand the mechanism of resonance formation it is useful to obtain the exact optical potential in a given channel in a localized form. The methods of achieving this localization are discussed with reference to a specific application to the resonance found in the two-state approximation for the l = 0 partial wave. (author)

  8. A survey on OFDM channel estimation techniques based on denoising strategies

    Directory of Open Access Journals (Sweden)

    Pallaviram Sure

    2017-04-01

    Full Text Available Channel estimation forms the heart of any orthogonal frequency division multiplexing (OFDM based wireless communication receiver. Frequency domain pilot aided channel estimation techniques are either least squares (LS based or minimum mean square error (MMSE based. LS based techniques are computationally less complex. Unlike MMSE ones, they do not require a priori knowledge of channel statistics (KCS. However, the mean square error (MSE performance of the channel estimator incorporating MMSE based techniques is better compared to that obtained with the incorporation of LS based techniques. To enhance the MSE performance using LS based techniques, a variety of denoising strategies have been developed in the literature, which are applied on the LS estimated channel impulse response (CIR. The advantage of denoising threshold based LS techniques is that, they do not require KCS but still render near optimal MMSE performance similar to MMSE based techniques. In this paper, a detailed survey on various existing denoising strategies, with a comparative discussion of these strategies is presented.

  9. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    International Nuclear Information System (INIS)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  10. Stopping Power and Energy Straggling of Channeled He-Ions in GaN

    International Nuclear Information System (INIS)

    Turos, A.; Ratajczak, R.; Pagowska, K.; Nowicki, L.; Stonert, A.; Caban, P.

    2011-01-01

    GaN epitaxial layers are usually grown on sapphire substrates. To avoid disastrous effect of the large lattice mismatch a thin polycrystalline nucleation layer is grown at 500 o C followed by the deposition of thick GaN template at much higher temperature. Remnants of the nucleation layer were visualized by transmission electron microscopy as defect agglomeration at the GaN/sapphire interface and provide a very useful depth marker for the measurement of channeled ions stopping power. Random and aligned spectra of He ions incident at energies ranging from 1.7 to 3.7 MeV have been measured and evaluated using the Monte Carlo simulation code McChasy. Impact parameter dependent stopping power has been calculated for channeling direction and its parameters have been adjusted according to experimental data. For virgin, i.e. as grown, samples, the ratio of channeled to random stopping power is constant and amounts to 0.7 in the energy range studied. Defects produced by ion implantation largely influence the stopping power. For channeled ions the variety of possible trajectories leads to different energy loss at a given depth, thus resulting in much larger energy straggling than that for the random path. Beam energy distributions at different depths have been calculated using the McChasy code. They are significantly broader than those predicted by the Bohr formula for random direction. (author)

  11. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence

    Directory of Open Access Journals (Sweden)

    Rajeev Gupta

    2017-06-01

    Full Text Available Voltage-Dependent Anion Channel (VDAC phosphorylated by c-Jun N-terminal Kinase-3 (JNK3 was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  12. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence.

    Science.gov (United States)

    Gupta, Rajeev; Ghosh, Subhendu

    2017-06-01

    Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  13. St36 electroacupuncture activates nNOS, iNOS and ATP-sensitive potassium channels to promote orofacial antinociception in rats.

    Science.gov (United States)

    Almeida, R T; Galdino, G; Perez, A C; Silva, G; Romero, T R; Duarte, I D

    2017-02-01

    Orofacial pain is pain perceived in the face and/or oral cavity, generally caused by diseases or disorders of regional structures, by dysfunction of the nervous system, or through referral from distant sources. Treatment of orofacial pain is mainly pharmacological, but it has increased the number of reports demonstrating great clinical results with the use of non-pharmacological therapies, among them electroacupuncture. However, the mechanisms involved in the electroacupuncture are not well elucidated. Thus, the present study investigate the involvement of the nitric oxide synthase (NOS) and ATP sensitive K + channels (KATP) in the antinociception induced by electroacupuncture (EA) at acupoint St36. Thermal nociception was applied in the vibrissae region of rats, and latency time for face withdrawal was measured. Electrical stimulation of acupoint St36 for 20 minutes reversed the thermal withdrawal latency and this effect was maintained for 150 min. Intraperitoneal administration of specific inhibitors of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and a KATP channels blocker reversed the antinociception induced by EA. Furthermore, nitrite concentration in cerebrospinal fluid (CSF) and plasma, increased 4 and 3-fold higher, respectively, after EA. This study suggests that NO participates of antinociception induced by EA by nNOS, iNOS and ATP-sensitive K + channels activation.

  14. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin; Fisher, Paul; Lobino, Mirko [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane (Australia); Streed, Erik W. [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Institute for Glycomics, Griffith University, Gold Coast (Australia)

    2016-05-15

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

  15. Coupling constants (Tdn) and (Td*n) for local potentials

    International Nuclear Information System (INIS)

    Belyaev, V.B.; Irgaziev, B.F.; Orlov, Yu.V.

    1976-01-01

    The coupling constants (Tdn) and (Td*n) are found solving the Faddeev equations with local potentials. It is shown that the polinomial extrapolation of the wave function to the nonphysical region of the variable Q 2 turns not to be sure for determination of the coupling constants

  16. Subspace Based Blind Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Hayashi, Kazunori; Matsushima, Hiroki; Sakai, Hideaki

    2012-01-01

    The paper proposes a subspace based blind sparse channel estimation method using 1–2 optimization by replacing the 2–norm minimization in the conventional subspace based method by the 1–norm minimization problem. Numerical results confirm that the proposed method can significantly improve...

  17. An FPGA-Based Adaptable 200 MHz Bandwidth Channel Sounder for Wireless Communication Channel Characterisation

    Directory of Open Access Journals (Sweden)

    David L. Ndzi

    2011-01-01

    Full Text Available This paper describes the development of a fast adaptable FPGA-based wideband channel sounder with signal bandwidths of up to 200 MHz and channel sampling rates up to 5.4 kHz. The application of FPGA allows the user to vary the number of real-time channel response averages, channel sampling interval, and duration of measurement. The waveform, bandwidth, and frequency resolution of the sounder can be adapted for any channel under investigation. The design approach and technology used has led to a reduction in size and weight by more than 60%. This makes the sounder ideal for mobile time-variant wireless communication channels studies. Averaging allows processing gains of up to 30 dB to be achieved for measurement in weak signal conditions. The technique applied also improves reliability, reduces power consumption, and has shifted sounder design complexity from hardware to software. Test results show that the sounder can detect very small-scale variations in channels.

  18. Semiconductor light sources fabricated by vapor phase epitaxial regrowth

    International Nuclear Information System (INIS)

    Powazinik, W.; Olshansky, R.; Meland, E.; Lauer, R.B.

    1986-01-01

    An extremely versatile technique for the fabrication of semiconductor light sources is described. The technique which is based on the halide vapor phase regrowth (VPR) of InP on channeled and selectively etched InGaAsP/InP double heterostructure material, results in a buried heterostructure (BH) index-guided VPR-BH diode laser structure which can be optimized for a number of different types of semiconductor light sources. The conditions and parameters associated with the halide VPR process are given, and the properties of the regrown InP are reported. The processing and characterization of high-frequency lasers with 18-GHz bandwidths and high-power lasers with cw single-spatial-mode powers of 60 mW are described. Additionally, the fabrication and characterization of superluminescent LEDs based on the this basic VPR-BH structure are described. These LEDs are capable of coupling more than 80 μW of optical power into a single-mode fiber at 100 mA, and can couple as much as 8 μW of optical power into a single-mode fiber at drive currents as low as 20 mA

  19. Determination of channel temperature for AlGaN/GaN HEMTs by high spectral resolution micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Zhang Guangchen; Feng Shiwei; Li Jingwan; Guo Chunsheng; Zhao Yan

    2012-01-01

    Channel temperature determinations of AlGaN/GaN high electron mobility transistors (HEMTs) by high spectral resolution micro-Raman spectroscopy are proposed. The temperature dependence of the E2 phonon frequency of GaN material is calibrated by using a JYT-64000 micro-Raman system. By using the Lorentz fitting method, the measurement uncertainty for the Raman phonon frequency of ±0.035 cm −1 is achieved, corresponding to a temperature accuracy of ±3.2 °C for GaN material, which is the highest temperature resolution in the published works. The thermal resistance of the tested AlGaN/GaN HEMT sample is 22.8 °C/W, which is in reasonably good agreement with a three dimensional heat conduction simulation. The difference among the channel temperatures obtained by micro-Raman spectroscopy, the pulsed electrical method and the infrared image method are also investigated quantificationally. (semiconductor devices)

  20. Second law analysis for hydromagnetic couple stress fluid flow through a porous channel

    Directory of Open Access Journals (Sweden)

    S.O. Kareem

    2016-06-01

    Full Text Available In this work, the combined effects of magnetic field and ohmic heating on the entropy generation rate in the flow of couple stress fluid through a porous channel are investigated. The equations governing the fluid flow are formulated, non-dimensionalised and solved using a rapidly convergent semi-analytical Adomian decomposition method (ADM. The result of the computation shows a significant dependence of fluid’s thermophysical parameters on Joule’s dissipation as well as decline in the rate of change of fluid momentum due to the interplay between Lorentz and viscous forces. Moreover, the rate of entropy generation in the flow system drops as the magnitude of the magnetic field increases.