WorldWideScience

Sample records for source water monitoring

  1. 40 CFR 141.701 - Source water monitoring.

    Science.gov (United States)

    2010-07-01

    ... (a)(4) of this section based on the E. coli level that applies to the nearest surface water body. If no surface water body is nearby, the system must comply based on the requirements that apply to... Monitoring Requirements § 141.701 Source water monitoring. (a) Initial round of source water monitoring...

  2. 40 CFR 141.706 - Reporting source water monitoring results.

    Science.gov (United States)

    2010-07-01

    ... systems serving at least 10,000 people must report the results from the initial source water monitoring... reporting monitoring results that EPA approves. (c) Systems serving fewer than 10,000 people must report.... PWS ID. 2. Facility ID. 3. Sample collection date. 4. Analytical method number. 5. Method type. 6...

  3. 40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.

    Science.gov (United States)

    2010-07-01

    ... approves the use of E. coli as a fecal indicator for source water monitoring under this paragraph (a). If the repeat sample collected from the ground water source is E.coli positive, the system must comply... listed in the in paragraph (c)(2) of this section for the presence of E. coli, enterococci, or coliphage...

  4. EPA Office of Water (OW): STORET Water Quality Monitoring Stations Source Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  5. Identification of technical guidance related to ground water monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  6. Identification of technical guidance related to ground water monitoring

    International Nuclear Information System (INIS)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act

  7. Water quality assessment of selected domestic water sources in ...

    African Journals Online (AJOL)

    However, lead ion appears higher than the approved WHO and SON standard for water quality in all the sources except that of water vendors which is 0.04mg/l. It is therefore recommended that periodic monitoring of water quality, effective waste management system to improve the general water quality in the town, and ...

  8. Source Water Management for Disinfection By-Product Control using New York City's Operations Support Tool and On-Line Monitoring

    Science.gov (United States)

    Weiss, W. J.; Becker, W.; Schindler, S.

    2012-12-01

    The United States Environmental Protection Agency's 2006 Stage 2 Disinfectant / Disinfection Byproduct Rule (DBPR) for finished drinking waters is intended to reduce overall DBP levels by limiting the levels of total trihalomethanes (TTHM) and five of the haloacetic acids (HAA5). Under Stage 2, maximum contaminant levels (MCLs), 80 μg/L for TTHM and 60 μg/L for HAA5, are based on a locational running annual average for individual sites instead of as the system-wide quarterly running annual average of the Stage 1 DBPR. This means compliance will have to be met at sampling locations of peak TTHM and HAA5 concentrations rather than an average across the entire system. Compliance monitoring under the Stage 2 DBPR began on April 1, 2012. The New York City (NYC) Department of Environmental Protection (DEP) began evaluating potential impacts of the Stage 2 DBPR on NYC's unfiltered water supply in 2002 by monitoring TTHM and HAA5 levels at various locations throughout the distribution system. Initial monitoring indicated that HAA5 levels could be of concern in the future, with the potential to intermittently violate the Stage 2 DBPR at specific locations, particularly those with high water age. Because of the uncertainty regarding the long-term prospect for compliance, DEP evaluated alternatives to ensure compliance, including operational changes (reducing chlorine dose, changing flow configurations to minimize water age, altering pH, altering source water withdrawals); changing the residual disinfectant from free chlorine to chloramines; and engineered treatment alternatives. This paper will discuss the potential for using DEP's Operations Support Tool (OST) and enhanced reservoir monitoring to support optimization of source water withdrawals to minimize finished water DBP levels. The OST is a state-of-the-art decision support system (DSS) to provide computational and predictive support for water supply operations and planning. It incorporates a water supply system

  9. Compliance Groundwater Monitoring of Nonpoint Sources - Emerging Approaches

    Science.gov (United States)

    Harter, T.

    2008-12-01

    Groundwater monitoring networks are typically designed for regulatory compliance of discharges from industrial sites. There, the quality of first encountered (shallow-most) groundwater is of key importance. Network design criteria have been developed for purposes of determining whether an actual or potential, permitted or incidental waste discharge has had or will have a degrading effect on groundwater quality. The fundamental underlying paradigm is that such discharge (if it occurs) will form a distinct contamination plume. Networks that guide (post-contamination) mitigation efforts are designed to capture the shape and dynamics of existing, finite-scale plumes. In general, these networks extend over areas less than one to ten hectare. In recent years, regulatory programs such as the EU Nitrate Directive and the U.S. Clean Water Act have forced regulatory agencies to also control groundwater contamination from non-incidental, recharging, non-point sources, particularly agricultural sources (fertilizer, pesticides, animal waste application, biosolids application). Sources and contamination from these sources can stretch over several tens, hundreds, or even thousands of square kilometers with no distinct plumes. A key question in implementing monitoring programs at the local, regional, and national level is, whether groundwater monitoring can be effectively used as a landowner compliance tool, as is currently done at point-source sites. We compare the efficiency of such traditional site-specific compliance networks in nonpoint source regulation with various designs of regional nonpoint source monitoring networks that could be used for compliance monitoring. We discuss advantages and disadvantages of the site vs. regional monitoring approaches with respect to effectively protecting groundwater resources impacted by nonpoint sources: Site-networks provide a tool to enforce compliance by an individual landowner. But the nonpoint source character of the contamination

  10. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    Science.gov (United States)

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  11. Brookhaven National Laboratory source water assessment for drinking water supply wells

    International Nuclear Information System (INIS)

    Bennett, D.B.; Paquette, D.E.; Klaus, K.; Dorsch, W.R.

    2000-01-01

    The BNL water supply system meets all water quality standards and has sufficient pumping and storage capacity to meet current and anticipated future operational demands. Because BNL's water supply is drawn from the shallow Upper Glacial aquifer, BNL's source water is susceptible to contamination. The quality of the water supply is being protected through (1) a comprehensive program of engineered and operational controls of existing aquifer contamination and potential sources of new contamination, (2) groundwater monitoring, and (3) potable water treatment. The BNL Source Water Assessment found that the source water for BNL's Western Well Field (comprised of Supply Wells 4, 6, and 7) has relatively few threats of contamination and identified potential sources are already being carefully managed. The source water for BNL's Eastern Well Field (comprised of Supply Wells 10, 11, and 12) has a moderate number of threats to water quality, primarily from several existing volatile organic compound and tritium plumes. The g-2 Tritium Plume and portions of the Operable Unit III VOC plume fall within the delineated source water area for the Eastern Well Field. In addition, portions of the much slower migrating strontium-90 plumes associated with the Brookhaven Graphite Research Reactor, Waste Concentration Facility and Building 650 lie within the Eastern source water area. However, the rate of travel in the aquifer for strontium-90 is about one-twentieth of that for tritium and volatile organic compounds. The Laboratory has been carefully monitoring plume migration, and has made adjustments to water supply operations. Although a number of BNL's water supply wells were impacted by VOC contamination in the late 1980s, recent routine analysis of water samples from BNL's supply wells indicate that no drinking water standards have been reached or exceeded. The high quality of the water supply strongly indicates that the operational and engineered controls implemented over the past

  12. Assessing Drinking Water Quality and Water Safety Management in Sub-Saharan Africa Using Regulated Monitoring Data.

    Science.gov (United States)

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Khush, Ranjiv

    2016-10-18

    Universal access to safe drinking water is prioritized in the post-2015 Sustainable Development Goals. Collecting reliable and actionable water quality information in low-resource settings, however, is challenging, and little is known about the correspondence between water quality data collected by local monitoring agencies and global frameworks for water safety. Using 42 926 microbial water quality test results from 32 surveillance agencies and water suppliers in seven sub-Saharan African countries, we determined the degree to which water sources were monitored, how water quality varied by source type, and institutional responses to results. Sixty-four percent of the water samples were collected from piped supplies, although the majority of Africans rely on nonpiped sources. Piped supplies had the lowest levels of fecal indicator bacteria (FIB) compared to any other source type: only 4% of samples of water piped to plots and 2% of samples from water piped to public taps/standpipes were positive for FIB (n = 14 948 and n = 12 278, respectively). Among other types of improved sources, samples from harvested rainwater and boreholes were less often positive for FIB (22%, n = 167 and 31%, n = 3329, respectively) than protected springs or protected dug wells (39%, n = 472 and 65%, n = 505). When data from different settings were aggregated, the FIB levels in different source types broadly reflected the source-type water safety framework used by the Joint Monitoring Programme. However, the insufficient testing of nonpiped sources relative to their use indicates important gaps in current assessments. Our results emphasize the importance of local data collection for water safety management and measurement of progress toward universal safe drinking water access.

  13. Source Monitoring in Alzheimer's Disease

    Science.gov (United States)

    El Haj, Mohamad; Fasotti, Luciano; Allain, Philippe

    2012-01-01

    Source monitoring is the process of making judgments about the origin of memories. There are three categories of source monitoring: reality monitoring (discrimination between self- versus other-generated sources), external monitoring (discrimination between several external sources), and internal monitoring (discrimination between two types of…

  14. Pressure monitoring and characterization of external sources of contamination at the site of the payment drinking water epidemiological studies.

    Science.gov (United States)

    Besner, Marie-Claude; Broséus, Romain; Lavoie, Jean; Giovanni, George Di; Payment, Pierre; Prévost, Michèle

    2010-01-01

    The 1990s epidemiological studies by Payment and colleagues suggested that an increase in gastrointestinal illnesses observed in the population consuming tap water from a system meeting all water quality regulations might be associated with distribution system deficiencies. In the current study, the vulnerability of this distribution system to microbial intrusion was assessed by characterizing potential sources of contamination near pipelines and monitoring the frequency and magnitude of negative pressures. Bacterial indicators of fecal contamination were recovered more frequently in the water from flooded air-valve vaults than in the soil or water from pipe trenches. The level of fecal contamination in these various sources was more similar to levels from river water rather than wastewater. Because of its configuration, this distribution system is vulnerable to negative pressures when pressure values out of the treatment plant reach or drop below 172 kPa (25 psi), which occurred nine times during a monitoring period of 17 months. The results from this investigation suggest that this distribution system is vulnerable to contamination by intrusion. Comparison of the frequency of occurrence of negative pressure events and repair rates with data from other distribution systems suggests that the system studied by Payment and colleagues is not atypical.

  15. Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data.

    Science.gov (United States)

    Wu, Bing; Zhang, Yan; Zhang, Xu-Xiang; Cheng, Shu-Pei

    2011-12-01

    A carcinogenic risk assessment of polycyclic aromatic hydrocarbons (PAHs) in source water and drinking water of China was conducted using probabilistic techniques from a national perspective. The published monitoring data of PAHs were gathered and converted into BaP equivalent (BaP(eq)) concentrations. Based on the transformed data, comprehensive risk assessment was performed by considering different age groups and exposure pathways. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The risk analysis indicated that, the risk values for children and teens were lower than the accepted value (1.00E-05), indicating no significant carcinogenic risk. The probability of risk values above 1.00E-05 was 5.8% and 6.7% for adults and lifetime groups, respectively. Overall, carcinogenic risks of PAHs in source water and drinking water of China were mostly accepted. However, specific regions, such as Yellow river of Lanzhou reach and Qiantang river should be paid more attention. Notwithstanding the uncertainties inherent in the risk assessment, this study is the first attempt to provide information on carcinogenic risk of PAHs in source water and drinking water of China, and might be useful for potential strategies of carcinogenic risk management and reduction. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  17. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  18. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  19. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  20. Monitoring of Cryptosporidium and Giardia in Czech drinking water sources.

    Science.gov (United States)

    Dolejs, P; Ditrich, O; Machula, T; Kalousková, N; Puzová, G

    2000-01-01

    In Czech raw water sources for drinking water supply, Cryptosporidium was found in numbers from 0 to 7400 per 100 liters and Giardia from 0 to 485 per 100 liters. The summer floods of 1997 probably brought the highest numbers of Cryptosporidium oocysts into one of the reservoirs sampled; since then these numbers decreased steadily. A relatively high number of Cryptosporidium oocysts was found in one sample of treated water. Repeated sampling demonstrated that this was a sporadic event. The reason for the presence of Cryptosporidium in a sample of treated drinking-water is unclear and requires further study.

  1. Landsat change detection can aid in water quality monitoring

    Science.gov (United States)

    Macdonald, H. C.; Steele, K. F.; Waite, W. P.; Shinn, M. R.

    1977-01-01

    Comparison between Landsat-1 and -2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing Landsat change detection analyses.

  2. Public water supply sources - the practical problems

    International Nuclear Information System (INIS)

    Chambers, E.G.W.

    1990-01-01

    A complex system of reservoirs, streams, treatment works and pipe networks is used to provide the public water supply to consumers in Strathclyde. The manner in which a nuclear event would affect the quality of water available from this supply would depend on a wide variety of factors. The extent to which the quality from each source could be maintained or improved if found to be unsatisfactory would depend on the extent of contamination and the particular characteristics of each source. Development of contingency plans will incorporate monitoring of supplies and development of effective communications both internally and externally. (author)

  3. Detection system for continuous 222Rn monitoring in waters

    International Nuclear Information System (INIS)

    Holy, K.; Patschova, E.; Bosa, I.; Polaskova, A.; Hola, O.

    2001-01-01

    This contribution presents one of the high-sensitive systems of continuous radon monitoring in waters. The device can be used for the continual control of 222 Rn activity concentration in water sources, for a study of the daily and seasonal variations of radon activity concentration in water systems, for the determination of the infiltration time of surface water into the ground water and for the next untraditional applications. (authors)

  4. Multiple Household Water Sources and Their Use in Remote Communities With Evidence From Pacific Island Countries

    Science.gov (United States)

    Elliott, Mark; MacDonald, Morgan C.; Chan, Terence; Kearton, Annika; Shields, Katherine F.; Bartram, Jamie K.; Hadwen, Wade L.

    2017-11-01

    Global water research and monitoring typically focus on the household's "main source of drinking-water." Use of multiple water sources to meet daily household needs has been noted in many developing countries but rarely quantified or reported in detail. We gathered self-reported data using a cross-sectional survey of 405 households in eight communities of the Republic of the Marshall Islands (RMI) and five Solomon Islands (SI) communities. Over 90% of households used multiple sources, with differences in sources and uses between wet and dry seasons. Most RMI households had large rainwater tanks and rationed stored rainwater for drinking throughout the dry season, whereas most SI households collected rainwater in small pots, precluding storage across seasons. Use of a source for cooking was strongly positively correlated with use for drinking, whereas use for cooking was negatively correlated or uncorrelated with nonconsumptive uses (e.g., bathing). Dry season water uses implied greater risk of water-borne disease, with fewer (frequently zero) handwashing sources reported and more unimproved sources consumed. Use of multiple sources is fundamental to household water management and feasible to monitor using electronic survey tools. We contend that recognizing multiple water sources can greatly improve understanding of household-level and community-level climate change resilience, that use of multiple sources confounds health impact studies of water interventions, and that incorporating multiple sources into water supply interventions can yield heretofore-unrealized benefits. We propose that failure to consider multiple sources undermines the design and effectiveness of global water monitoring, data interpretation, implementation, policy, and research.

  5. Analytical monitoring of systems for the production of high-purity, desalinated water

    International Nuclear Information System (INIS)

    Kunert, I.

    1988-01-01

    The purity requirements to be met by high-purity water currently push the most sensitive analytical methods to their utmost limits of sensitivity. The required degree of purity of the water at present can only be achieved by application of membrane processes, and pre-purification of the feedwater to a quality corresponding to that of the raw water source. The contribution in hand discusses the analytical monitoring of the raw water treatment plant, the water treatment prior to the treatment by reverse osmosis, monitoring and control of the modules for reverse osmosis, and the monitoring of high-purity water production for the microelectronics industry. (orig./RB) [de

  6. Improved Marine Waters Monitoring

    Science.gov (United States)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  7. Recent Advances in Point-of-Access Water Quality Monitoring

    Science.gov (United States)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  8. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  9. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    Science.gov (United States)

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  10. Fenceline water quality monitoring of effluents from BARC establishment

    International Nuclear Information System (INIS)

    Prathibha, P.; Kothai, P.; Saradhi, I.V.; Pandit, G.G.; Puranik, V.D.

    2007-01-01

    Wastewater generated from various sources (industrial, residential, rain water runoff etc.,) is either discharged into water bodies or reused/recycled for various purposes. Continuous monitoring of the wastewater is necessary to check whether these effluents are meeting the stringent limits proposed for discharge into water bodies or recycled/reused. Monitoring of these effluents also helps in designing the wastewater treatment system required to meet the standards. In this paper, water quality monitoring carried out during each quarter of the year 2005 for the effluents discharged from different utilities of BARC into Trombay bay is presented. The results indicate that the Bio-chemical oxygen demand (BOD) and chemical oxygen demand (COD) are in the range of 7.9 to 38.9 mg/l and 29.4 to 78.9 mg/l respectively. The nitrates and sulphates are in the range of 0.5 to 7.2 mg/l and 7.8 to 52.3 mg/l respectively. The water quality data of the parameters analyzed are well within the limits stipulated by Central Pollution Control Board. (author)

  11. Source-water susceptibility assessment in Texas—Approach and methodology

    Science.gov (United States)

    Ulery, Randy L.; Meyer, John E.; Andren, Robert W.; Newson, Jeremy K.

    2011-01-01

    Public water systems provide potable water for the public's use. The Safe Drinking Water Act amendments of 1996 required States to prepare a source-water susceptibility assessment (SWSA) for each public water system (PWS). States were required to determine the source of water for each PWS, the origin of any contaminant of concern (COC) monitored or to be monitored, and the susceptibility of the public water system to COC exposure, to protect public water supplies from contamination. In Texas, the Texas Commission on Environmental Quality (TCEQ) was responsible for preparing SWSAs for the more than 6,000 public water systems, representing more than 18,000 surface-water intakes or groundwater wells. The U.S. Geological Survey (USGS) worked in cooperation with TCEQ to develop the Source Water Assessment Program (SWAP) approach and methodology. Texas' SWAP meets all requirements of the Safe Drinking Water Act and ultimately provides the TCEQ with a comprehensive tool for protection of public water systems from contamination by up to 247 individual COCs. TCEQ staff identified both the list of contaminants to be assessed and contaminant threshold values (THR) to be applied. COCs were chosen because they were regulated contaminants, were expected to become regulated contaminants in the near future, or were unregulated but thought to represent long-term health concerns. THRs were based on maximum contaminant levels from U.S. Environmental Protection Agency (EPA)'s National Primary Drinking Water Regulations. For reporting purposes, COCs were grouped into seven contaminant groups: inorganic compounds, volatile organic compounds, synthetic organic compounds, radiochemicals, disinfection byproducts, microbial organisms, and physical properties. Expanding on the TCEQ's definition of susceptibility, subject-matter expert working groups formulated the SWSA approach based on assumptions that natural processes and human activities contribute COCs in quantities that vary in space

  12. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  13. Downhole seismic monitoring with Virtual Sources

    Science.gov (United States)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Huge quantities of remaining oil and gas reserves are located in very challenging geological environments covered by salt, basalt or other complex overburdens. Conventional surface seismology struggles to deliver images necessary to economically explore them. Even if those reserves are found by drilling successful production critically depends on our ability to ``see" in real time where fluids are drawn from and how pressure changes throughout the reservoirs. For relatively simple overburdens surface time-lapse (4D) seismic monitoring became industry choice for aerial reservoir surveillance. For complex overburdens, 4D seismic does not have enough resolution and repeatability to answer the questions of reservoir engineers. For instance, often reservoir changes are too small to be detected from surface or these changes occur in such pace that all wells will be placed before we can detect them which greatly reduces the economical impact. Two additional challenges are present in real life that further complicate active monitoring: first, near-surface condition do change between the surveys (water level movement, freezing/thawing, tide variations etc) and second, repeating exact same acquisition geometry at the surface is difficult in practice. Both of these things may lead to false 4D response unrelated to reservoir changes. Virtual Source method (VSM) has been recently proposed as a way to eliminate overburden distortions for imaging and monitoring. VSM acknowledges upfront that our data inversion techniques are unable to unravel the details of the complex overburdens to the extent necessary to remove the distortions caused by them. Therefore VSM advocates placing permanent downhole geophones below that most complex overburden while still exciting signals with a surface sources. For instance, first applications include drilling instrumented wells below complicated near-surface, basalt or salt layer. Of course, in an ideal world we would prefer to have both downhole

  14. [Source-monitoring deficits in schizophrenia: review and pharmacotherapeutic implications].

    Science.gov (United States)

    Juhász, Levente Zsolt; Bartkó, György

    2007-03-01

    The disturbance of source-monitoring is one of the various impairments in cognitive functioning observed in schizophrenic patients. The process of source-monitoring allows individuals to distinguish self generated thoughts and behaviours from those generated by others. The aim of the present study is to review the general psychological definition of source memory and source-monitoring and its neurological basis as well as the models for explanation of source-monitoring deficits. The relationship between source-monitoring-deficits and psychopathological symptoms as well as the effect of antipsychotic treatment on source-monitoring disturbances are introduced. There is evidence suggesting, that a selective source-monitoring deficit is in the occurrence of auditory hallucinations. The disturbance of prospective memory may influence unfavorably the compliance. Administration of antipsychotics in general can improve source-monitoring deficits. The neuropsychiatric perspective provides a more accurate and comprehensive understanding of schizophrenia.

  15. Integrated Microfluidic Gas Sensors for Water Monitoring

    Science.gov (United States)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  16. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries.

    Science.gov (United States)

    Bain, Rob E S; Gundry, Stephen W; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K

    2012-03-01

    To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement.

  17. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  18. A water-quality monitoring network for Vallecitos Valley, Alameda County, California. Water-resources investigations (final)

    International Nuclear Information System (INIS)

    Farrar, C.D.

    1980-10-01

    A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring

  19. Microwave-gamma ray water in crude monitor

    International Nuclear Information System (INIS)

    Paap, H.J.

    1984-01-01

    A microwave-gamma ray water-in-crude monitoring system measures the percent quantity of fresh water or salt water in crude oil flowing in a pipe line. The system includes a measuring cell arranged with the pipe line so that the crude oil flows through the measuring cell. A microwave transmitter subsystem and a gamma ray source are arranged with the measuring cell so that microwave energy and gamma rays are transmitted through the measuring cell. A microwave receiving subsystem and a gamma ray detector provide signals corresponding to received microwave energy and to the received gamma rays, respectively. Apparatus connected to the microwave receiver and to the gamma ray detector provides an indication of the percentage of water in the crude oil

  20. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  1. Online Monitoring and Controlling Water Plant System Based on IoT Cloud Computing and Arduino

    Directory of Open Access Journals (Sweden)

    Ali Najim Abdullah

    2017-07-01

    Full Text Available Water is basis of the existence of life on earth and its invaluable because it’s an essential requirement for all the human beings but, presently water preparation and processing systems are suffering from different problems such as real-time operations problems, loss of large amounts of water in the liquidation and distribution operations, less amount of water sources, i.e. The increase in water problems coincides with the increase in population numbers and residential areas such as (water distribution, consumption, Interrupted water sources problems as well as water quality. Therefore, to eliminate these problems and make more efficient water systems, effective and reliable there is necessity for accurate monitoring and proper controlling system. In this paper, we are focusing on the design of water system in real-time and on the continuous monitoring of water based on IoT cloud computing and Arduino microcontroller. Water system with proper control algorithm and continuous monitoring any place and any time makes a stable distribution so that, we can have a record of height of water in tanks and we can change the devices status in the plant. Internet of things is a network of physical connected objects equipped with software, electronics circuits, sensors, and network connection part which allow monitoring and controlling anywhere around the world. Through using cloud computing proved by free severs, the water system’s data continuously is uploaded to cloud allowing the real time monitoring operation by the use of sensors and microcontroller (Arduino as Minicomputer to control and monitor the system operation from cloud with efficient (client to server connection.

  2. Accounting for water quality in monitoring access to safe drinking-water as part of the Millennium Development Goals: lessons from five countries

    Science.gov (United States)

    Bain, Rob ES; Wright, Jim A; Yang, Hong; Pedley, Steve; Bartram, Jamie K

    2012-01-01

    Abstract Objective To determine how data on water source quality affect assessments of progress towards the 2015 Millennium Development Goal (MDG) target on access to safe drinking-water. Methods Data from five countries on whether drinking-water sources complied with World Health Organization water quality guidelines on contamination with thermotolerant coliform bacteria, arsenic, fluoride and nitrates in 2004 and 2005 were obtained from the Rapid Assessment of Drinking-Water Quality project. These data were used to adjust estimates of the proportion of the population with access to safe drinking-water at the MDG baseline in 1990 and in 2008 made by the Joint Monitoring Programme for Water Supply and Sanitation, which classified all improved sources as safe. Findings Taking account of data on water source quality resulted in substantially lower estimates of the percentage of the population with access to safe drinking-water in 2008 in four of the five study countries: the absolute reduction was 11% in Ethiopia, 16% in Nicaragua, 15% in Nigeria and 7% in Tajikistan. There was only a slight reduction in Jordan. Microbial contamination was more common than chemical contamination. Conclusion The criterion used by the MDG indicator to determine whether a water source is safe can lead to substantial overestimates of the population with access to safe drinking-water and, consequently, also overestimates the progress made towards the 2015 MDG target. Monitoring drinking-water supplies by recording both access to water sources and their safety would be a substantial improvement. PMID:22461718

  3. Water Quality Monitoring Manual.

    Science.gov (United States)

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  4. Automated monitoring of recovered water quality

    Science.gov (United States)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  5. Monitoring of Hazardous Inorganic Pollutants and Heavy Metals in Potable Water at the Source of Supply and Consumers end of a Tropical Urban Municipality

    International Nuclear Information System (INIS)

    Shah, A. B.; Singh, R. P.

    2016-01-01

    River water is not only an indispensable source for irrigation but also plays a vital role for drinking water supply for most of the urban municipalities. Water from rivers is pumped at specific sites and after treatment at municipal water treatment plants supplied as domestic potable water supply. The present study was undertaken to assess the suitability of Gomti river water at Gaughat being used as the source of water supply for Lucknow city and to evaluate post-treatment potable water quality at the consumer end by monitoring the levels of inorganic pollutants (nitrate, nitrite, ammonium and phosphate) and heavy metals. Municipal water supply at Gaughat showed marked variations in the levels of p H (7.13-8.63) and electrical conductivity (375.66-571.67μS/cm). The amount of nitrate, nitrite, ammonium and phosphate was observed 26.25, 0.082, 6.9 and 1.82 mg/l respectively at Gaughat. Also, the levels of heavy metals in the municipal water source at Gaughat varied significantly for Fe (0.33-1.65 mg/l), Cu (0.077-0.108 mg/l), Cd (0.03-0.052 mg/l), Pb (0.68-0.96 mg/l) and Cr (0.036-0.065 mg/l). Water at the user end was also contaminated as the concentration of analysed inorganic pollutants and heavy metals were correspondingly higher than observed at the source. While comparing potable water at the user end of Lucknow municipality with the BIS (Drinking Water Specifications) and WHO standards for drinking water, the concentration of all studied heavy metals and other inorganic contaminants were much above the permissible levels, thus posing a serious threat to the public health.

  6. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  7. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  8. Making the Case for a Water Monitor: A Potential Complement to the U.S. Drought Monitor within a Water Management Context

    Science.gov (United States)

    Svoboda, M. D.; Fuchs, B.; Poulsen, C.; Nothwehr, J.; Swigart, J.

    2017-12-01

    Launched in 1999, the weekly U.S. Drought Monitor (USDM) is now approaching its twentieth year of existence. Over that time, it has built up an expert validation community that has grown into a network of nearly 450 persons. From the very beginning, questions from the user community have been centered on how we can do a better job of addressing and depicting short- vs. long-term conditions on a single map such as the U.S. Drought Monitor. Early efforts to fill the water supply/demand/forecast void have simply utilized existing hydrological websites and products from a variety of sources across a variety of spatial and temporal scales. The question being asked repeatedly has been "Why not develop two separate maps?" Can such an approach strengthen our capacity to assess both the supply and demand side of the equation when it comes to balancing drought and water supply? This presentation will describe in more detail the evolution of the USDM and how the need for a complementary sister product such as a Water Monitor has emerged. We will explore how such a tool could better capture and collectively assess key hydroclimatic parameters (e.g., in situ, modeled and remotely sensed products), better integrate streamflow forecasts, and reflect surface and groundwater resources and snow water equivalent. In essence, the goal is to develop a more usable decision support tool that has the potential to better facilitate water management and markets in the United States. Ultimately, there are vast differences between the USDM and Water Monitor products that we must address in order to better reflect how drought affects both managed and unmanaged systems.

  9. Coral skeletal geochemistry as a monitor of inshore water quality

    International Nuclear Information System (INIS)

    Saha, Narottam; Webb, Gregory E.; Zhao, Jian-Xin

    2016-01-01

    Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current ‘state of the art’ in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input

  10. Coral skeletal geochemistry as a monitor of inshore water quality

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Narottam, E-mail: n.saha@uq.edu.au; Webb, Gregory E.; Zhao, Jian-Xin

    2016-10-01

    Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current ‘state of the art’ in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input

  11. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones are often overlooked in monitoring plans, but they can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. Perched water has been detected at depths of 90 and 210 ft below land surface, approximately 370 ft above the regional water table. Eighteen years of water level measurements from one well at a depth of 210 ft indicate a consistent source of water. Water level data indicate a seasonal fluctuation. The maximum water level in this well varies within a 0.5 ft interval, suggesting the water level reaches equilibrium with the inflow to the well at this height. Volatile organic constituents have been detected in concentrations from 1.2 to 1.4 mg/L of carbon tetrachloride. Eight other volatile organics have been detected. The concentrations of organics are consistent with the prevailing theory of movement by diffusion in the gaseous phase. Results of tritium analyses indicate water has moved to a depth of 86 ft in 17 yr. Results of well sampling analyses indicate monitoring and sampling of perched water can be a valuable resource for understanding the hydrogeologic environment of the vadose zone at disposal sites

  12. [Source monitoring: general presentation and review of literature in schizophrenia].

    Science.gov (United States)

    Ferchiou, A; Schürhoff, F; Bulzacka, E; Mahbouli, M; Leboyer, M; Szöke, A

    2010-09-01

    SOURCE MONITORING FRAMEWORK: Source monitoring refers to the ability to remember the origin of information. Three source monitoring processes can be distinguished: external source monitoring, internal or self-monitoring and reality monitoring (i.e. discrimination between internal and external sources of information). Source monitoring decisions are based on memory characteristics recorded such as perceptions, contextual information or emotional reactions and heuristic or more controlled judgement processes. Several studies suggested that specific structures in the prefrontal and the mediotemporal lobes are the main areas implicated in source monitoring. A typical source monitoring paradigm includes an items generation stage and a second stage of recognition of items (old versus new) and identification of their sources: external (usually the examiner) or internal (the subject). Several indices can be calculated based on the raw data such as the number of false alarms, attribution biases or discrimination indexes. To date, there is no standardized source monitoring task and differences in the type of items used (words, pictures), in the cognitive or emotional effort involved or in the delay between the two test stages, contribute to the heterogeneity of results. Factors such as age (either very young or very old) and emotions influence source monitoring performances. Influence of gender was not properly explored, whereas the role of IQ and selective attention is still debated. Source monitoring deficits are observed mainly in disorders affecting frontotemporal areas, such as frontal trauma, Alzheimer's disease or frontotemporal dementia. Source monitoring errors (e.g. external misattribution of self-generated information) are observed in schizophrenia and seem to correlate with positive symptomatology, in particular auditory hallucinations, thought intrusion and alien control symptoms. These results are of particular interest in clinical research because source

  13. How Much Will It Cost To Monitor Microbial Drinking Water Quality in Sub-Saharan Africa?

    Science.gov (United States)

    Delaire, Caroline; Peletz, Rachel; Kumpel, Emily; Kisiangani, Joyce; Bain, Robert; Khush, Ranjiv

    2017-06-06

    Microbial water quality monitoring is crucial for managing water resources and protecting public health. However, institutional testing activities in sub-Saharan Africa are currently limited. Because the economics of water quality testing are poorly understood, the extent to which cost may be a barrier to monitoring in different settings is unclear. This study used cost data from 18 African monitoring institutions (piped water suppliers and health surveillance agencies in six countries) and estimates of water supply type coverage from 15 countries to assess the annual financial requirements for microbial water testing at both national and regional levels, using World Health Organization recommendations for sampling frequency. We found that a microbial water quality test costs 21.0 ± 11.3 USD, on average, including consumables, equipment, labor, and logistics, which is higher than previously calculated. Our annual cost estimates for microbial monitoring of piped supplies and improved point sources ranged between 8 000 USD for Equatorial Guinea and 1.9 million USD for Ethiopia, depending primarily on the population served but also on the distribution of piped water system sizes. A comparison with current national water and sanitation budgets showed that the cost of implementing prescribed testing levels represents a relatively modest proportion of existing budgets (water sources in sub-Saharan Africa would cost 16.0 million USD per year, which is minimal in comparison to the projected annual capital costs of achieving Sustainable Development Goal 6.1 of safe water for all (14.8 billion USD).

  14. How to Decide? Multi-Objective Early-Warning Monitoring Networks for Water Suppliers

    Science.gov (United States)

    Bode, Felix; Loschko, Matthias; Nowak, Wolfgang

    2015-04-01

    Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources, which cannot be eliminated, especially in urban regions. As a matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs. In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations, to enhance the early warning time before detected contaminations reach the drinking water well, and to minimize the installation and operating costs of the monitoring network. Using multi-objectives optimization, we avoid the problem of having to weight these objectives to a single objective-function. These objectives are clearly competing, and it is impossible to know their mutual trade-offs beforehand - each catchment differs in many points and it is hardly possible to transfer knowledge between geological formations and risk inventories. To make our optimization results more specific to the type of risk inventory in different catchments we do risk prioritization of all known risk sources. Due to the lack of the required data, quantitative risk ranking is impossible. Instead, we use a qualitative risk ranking to prioritize the known risk sources for monitoring. Additionally, we allow for the existence of unknown risk sources that are totally uncertain in location and in their inherent risk. Therefore, they can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well. We classify risk sources into four different categories: severe, medium and tolerable for known risk

  15. Source Water Protection Contaminant Sources

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Simplified aggregation of potential contaminant sources used for Source Water Assessment and Protection. The data is derived from IDNR, IDALS, and US EPA program...

  16. 21 CFR 868.2450 - Lung water monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lung water monitor. 868.2450 Section 868.2450 Food... DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2450 Lung water monitor. (a) Identification. A lung water monitor is a device used to monitor the trend of fluid volume changes in a patient's lung by...

  17. Detection limits for real-time source water monitoring using indigenous freshwater microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jr, Miguel [ORNL; Greenbaum, Elias [ORNL

    2009-01-01

    This research identified toxin detection limits using the variable fluorescence of naturally occurring microalgae in source drinking water for five chemical toxins with different molecular structures and modes of toxicity. The five chemicals investigated were atrazine, Diuron, paraquat, methyl parathion, and potassium cyanide. Absolute threshold sensitivities of the algae for detection of the toxins in unmodified source drinking water were measured. Differential kinetics between the rate of action of the toxins and natural changes in algal physiology, such as diurnal photoinhibition, are significant enough that effects of the toxin can be detected and distinguished from the natural variance. This is true even for physiologically impaired algae where diminished photosynthetic capacity may arise from uncontrollable external factors such as nutrient starvation. Photoinhibition induced by high levels of solar radiation is a predictable and reversible phenomenon that can be dealt with using a period of dark adaption of 30 minutes or more.

  18. Integrated approach to monitor water dynamics with drones

    Science.gov (United States)

    Raymaekers, Dries; De Keukelaere, Liesbeth; Knaeps, Els; Strackx, Gert; Decrop, Boudewijn; Bollen, Mark

    2017-04-01

    Remote sensing has been used for more than 20 years to estimate water quality in the open ocean and study the evolution of vegetation on land. More recently big improvements have been made to extend these practices to coastal and inland waters, opening new monitoring opportunities, eg. monitoring the impact of dredging activities on the aquatic environment. While satellite sensors can provide complete coverage and historical information of the study area, they are limited in their temporal revisit time and spatial resolution. Therefore, deployment of drones can create an added value and in combination with satellite information increase insights in the dynamics and actors of coastal and aquatic systems. Drones have the advantages of monitoring at high spatial detail (cm scale), with high frequency and are flexible. One of the important water quality parameters is the suspended sediment concentration. However, retrieving sediment concentrations from unmanned systems is a challenging task. The sediment dynamics in the port of Breskens, the Netherlands, were investigated by combining information retrieved from different data sources: satellite, drone and in-situ data were collected, analysed and inserted in sediment models. As such, historical (satellite), near-real time (drone) and predictive (sediment models) information, integrated in a spatial data infrastructure, allow to perform data analysis and can support decision makers.

  19. Using Dual Isotopes and a Bayesian Isotope Mixing Model to Evaluate Nitrate Sources of Surface Water in a Drinking Water Source Watershed, East China

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-08-01

    Full Text Available A high concentration of nitrate (NO3− in surface water threatens aquatic systems and human health. Revealing nitrate characteristics and identifying its sources are fundamental to making effective water management strategies. However, nitrate sources in multi-tributaries and mix land use watersheds remain unclear. In this study, based on 20 surface water sampling sites for more than two years’ monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3− and δ18O-NO3− were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, China. Nitrate-nitrogen concentrations (ranging from 0.02 to 8.57 mg/L were spatially heterogeneous that were influenced by hydrogeological and land use conditions. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage, M & S; soil nitrogen, NS; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall were estimated by using a Bayesian isotope mixing model. The results showed that nitrate sources contributions varied significantly among different rainfall conditions and land use types. As for the whole watershed, M & S (manure and sewage and NS (soil nitrogen were major nitrate sources in both wet and dry seasons (from 28% to 36% for manure and sewage and from 24% to 27% for soil nitrogen, respectively. Overall, combining a dual isotopes method with a Bayesian isotope mixing model offered a useful and practical way to qualitatively analyze nitrate sources and transformations as well as quantitatively estimate the contributions of potential nitrate sources in drinking water source watersheds, Jianghuai hilly region, eastern China.

  20. Radioactivity, radiation protection and monitoring during dismantling of light-water reactors

    International Nuclear Information System (INIS)

    Hummel, L.; Zech, J.B.

    2005-01-01

    Based on the radioactivity inventory in the systems and components of light-water reactors observed during operation, the impact of actions during plant emptying after the conclusion of power operation and possible subsequent long-term safe enclosure concerning the composition of the nuclide inventory of the plant to be dismantled will be described. Derived from this will be the effects on radioactivity monitoring in the plant, physical radiation protection monitoring, and the measured characterization of the residual materials resulting from the dismantling. The impact of long-term interim storage will also be addressed in the discussion. The talk should provide an overview of the interrelationships between source terms, decay times and the radioactivity monitoring requirements of the various dismantling concepts for commercial light-water reactors. (orig.)

  1. Environmental Monitoring, Water Quality - MO 2009 Stream Team Volunteer Water Quality Monitoring Sites (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set shows the monitoring locations of trained Volunteer Water Quality Monitors. A monitoring site is considered to be a 300 foot section of stream channel....

  2. Source to point of use drinking water changes and knowledge, attitude and practices in Katsina State, Northern Nigeria

    Science.gov (United States)

    Onabolu, B.; Jimoh, O. D.; Igboro, S. B.; Sridhar, M. K. C.; Onyilo, G.; Gege, A.; Ilya, R.

    In many Sub-Saharan countries such as Nigeria, inadequate access to safe drinking water is a serious problem with 37% in the region and 58% of rural Nigeria using unimproved sources. The global challenge to measuring household water quality as a determinant of safety is further compounded in Nigeria by the possibility of deterioration from source to point of use. This is associated with the use of decentralised water supply systems in rural areas which are not fully reticulated to the household taps, creating a need for an integrated water quality monitoring system. As an initial step towards establishing the system in the north west and north central zones of Nigeria, The Katsina State Rural Water and Sanitation Agency, responsible for ensuring access to safe water and adequate sanitation to about 6 million people carried out a three pronged study with the support of UNICEF Nigeria. Part 1 was an assessment of the legislative and policy framework, institutional arrangements and capacity for drinking water quality monitoring through desk top reviews and Key Informant Interviews (KII) to ascertain the institutional capacity requirements for developing the water quality monitoring system. Part II was a water quality study in 700 households of 23 communities in four local government areas. The objectives were to assess the safety of drinking water, compare the safety at source and household level and assess the possible contributory role of end users’ Knowledge Attitudes and Practices. These were achieved through water analysis, household water quality tracking, KII and questionnaires. Part III was the production of a visual documentary as an advocacy tool to increase awareness of the policy makers of the linkages between source management, treatment and end user water quality. The results indicate that except for pH, conductivity and manganese, the improved water sources were safe at source. However there was a deterioration in water quality between source and

  3. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  4. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  5. Tritiated-water detection with a 2D(γ,n)1H monitor

    International Nuclear Information System (INIS)

    Winn, W.G.; Baumann, N.P.

    Tritiated process water is monitored by detecting the D 2 O component via the 2 D(γ,n) 1 H reaction. A probe containing a 1 to 7 mCi 24 Na (15 h) γ-source and six 3 He neutron detectors produces and monitors the 2 D(γ,n) 1 H reaction. A variety of probe configurations were examined for D 2 O detection sensitivity. The corresponding detection limits range from 6 to 280 μL for D 2 O droplets and 1 to 13 μL/cm for D 2 O streams, when 10-minute neutron counting with a 1 mCi γ-source is used. Results from two field applications illustrate the utility of the monitor

  6. Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China.

    Science.gov (United States)

    Leung, Ho Wing; Jin, Ling; Wei, Si; Tsui, Mirabelle Mei Po; Zhou, Bingsheng; Jiao, Liping; Cheung, Pak Chuen; Chun, Yiu Kan; Murphy, Margaret Burkhardt; Lam, Paul Kwan Sing

    2013-07-01

    Pharmaceuticals are known to contaminate tap water worldwide, but the relevant human health risks have not been assessed in China. We monitored 32 pharmaceuticals in Chinese tap water and evaluated the life-long human health risks of exposure in order to provide information for future prioritization and risk management. We analyzed samples (n = 113) from 13 cities and compared detected concentrations with existing or newly-derived safety levels for assessing risk quotients (RQs) at different life stages, excluding the prenatal stage. We detected 17 pharmaceuticals in 89% of samples, with most detectable concentrations (92%) at risk levels, but 4 (i.e., dimetridazole, thiamphenicol, sulfamethazine, and clarithromycin) were found to have at least one life-stage RQ ≥ 0.01, especially for the infant and child life stages, and should be considered of high priority for management. We propose an indicator-based monitoring framework for providing information for source identification, water treatment effectiveness, and water safety management in China. Chinese tap water is an additional route of human exposure to pharmaceuticals, particularly for dimetridazole, although the risk to human health is low based on current toxicity data. Pharmaceutical detection and application of the proposed monitoring framework can be used for water source protection and risk management in China and elsewhere.

  7. Spectral Band Characterization for Hyperspectral Monitoring of Water Quality

    Science.gov (United States)

    Vermillion, Stephanie C.; Raqueno, Rolando; Simmons, Rulon

    2001-01-01

    A method for selecting the set of spectral characteristics that provides the smallest increase in prediction error is of interest to those using hyperspectral imaging (HSI) to monitor water quality. The spectral characteristics of interest to these applications are spectral bandwidth and location. Three water quality constituents of interest that are detectable via remote sensing are chlorophyll (CHL), total suspended solids (TSS), and colored dissolved organic matter (CDOM). Hyperspectral data provides a rich source of information regarding the content and composition of these materials, but often provides more data than an analyst can manage. This study addresses the spectral characteristics need for water quality monitoring for two reasons. First, determination of the greatest contribution of these spectral characteristics would greatly improve computational ease and efficiency. Second, understanding the spectral capabilities of different spectral resolutions and specific regions is an essential part of future system development and characterization. As new systems are developed and tested, water quality managers will be asked to determine sensor specifications that provide the most accurate and efficient water quality measurements. We address these issues using data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and a set of models to predict constituent concentrations.

  8. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  9. Radioactivity monitoring of fallout, water and ground

    International Nuclear Information System (INIS)

    Radosavljevic, R.

    1961-01-01

    During 1961, the radioactivity monitoring of the Boris Kidric Institute site covered monitoring of the total β activity of the fallout and water on the site. Activity of the fallout was monitored by measuring the activity of the rain and collected sedimented dust form the atmosphere. Water monitored was the water from Danube and river Mlaka, technical and drinking water. Plants and soil activity were not measured although sample were taken and the total β activity will be measured and analysed later

  10. Microbial Monitoring of Surface Water in South Africa: An Overview

    Directory of Open Access Journals (Sweden)

    Brendan S. Wilhelmi

    2012-07-01

    Full Text Available Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H2S strip test might be used as a surrogate for the Colilert®18.

  11. Nonpoint source water pollution abatement and the feasibility of voluntary programs

    Science.gov (United States)

    Sawicki, David S.; Judd, Lynne B.

    1983-09-01

    This article details a case study of a voluntary, decentralized institutional arrangement for nonpint source water pollution control used in the Root River watershed in southeastern Wisconsin. This watershed was chosen because of its mix of urban, agricultural, and urbanizing land uses. The project objectives were to monitor and draw conclusions about the effectiveness of a voluntary, decentralized institutional system, to specify deficiencies of the approach and suggest means to correct them, and to use the conclusions to speculate about the need for regulations regarding nonpoint source pollution control or the appropriateness of financial incentives for nonpoint source control. Institutional factors considered include diversity of land uses in the watershed, educational needs, economic conditions, personality, water quality, number of agencies involved, definition of authority, and bureaucratic requirements

  12. INEEL Source Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sehlke, Gerald

    2003-03-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL’s drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey’s Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency’s Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL’s Source Water Assessment. Of the INEEL’s 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will

  13. Title: Water Quality Monitoring to Restore and Enhance Lake Herrick

    Science.gov (United States)

    Kannan, A.; Saintil, T.; Radcliffe, D. E.; Rasmussen, T. C.

    2017-12-01

    Lake Allyn M. Herrick is about 1.5 km2 and covers portions of the University of Georgia's East campus, the Oconee forest, residential and commercial land use. Lake Herrick, a 15-acre water body established in 1982 at the University of Georgia's campus was closed in 2002 for recreation due to fecal contamination, color change, and heavy sedimentation. Subsequent monitoring confirmed cyanobacterium blooms on the surface of lake and nutrient concentration especially phosphorus was one of the primary reasons. However, no studies have been done on lake inflows and outflows after 2005 in terms of nutrients and fecal Indicator bacteria. Two inflow tributaries and the outlet stream were monitored for discharge, E. coli, total coliform, forms of nitrogen and phosphorus and other water quality parameters during base flow and storm conditions. External environmental factors like precipitation, land-use/location, discharge, and internal factors within the water like temperature, DO, pH, conductivity, and turbidity influencing fecal indicator bacteria and nutrients will be discussed with data collected from the inflows/outflow between February 2016 to October 2017. Following this, microbial source tracking methods were also used to detect the bacterial source in the samples specific to a ruminant or human host. The source tracking data will be presented during the timeframe of January 2017 to September 2017, to draw a conclusion on the potential source of fecal contamination. The future aim of the project will include modeling flow and bacteria at the watershed scale in order to make management decisions to restore the lake for recreational uses where green infrastructure could play a key role.

  14. Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis.

    Science.gov (United States)

    Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie

    2015-12-01

    Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.

  15. Bioassay battery interlaboratory investigation of emerging contaminants in spiked water extracts - Towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring.

    Science.gov (United States)

    Di Paolo, Carolina; Ottermanns, Richard; Keiter, Steffen; Ait-Aissa, Selim; Bluhm, Kerstin; Brack, Werner; Breitholtz, Magnus; Buchinger, Sebastian; Carere, Mario; Chalon, Carole; Cousin, Xavier; Dulio, Valeria; Escher, Beate I; Hamers, Timo; Hilscherová, Klára; Jarque, Sergio; Jonas, Adam; Maillot-Marechal, Emmanuelle; Marneffe, Yves; Nguyen, Mai Thao; Pandard, Pascal; Schifferli, Andrea; Schulze, Tobias; Seidensticker, Sven; Seiler, Thomas-Benjamin; Tang, Janet; van der Oost, Ron; Vermeirssen, Etienne; Zounková, Radka; Zwart, Nick; Hollert, Henner

    2016-11-01

    equivalency factors reliably reflected the sample content. In the Ames, strong revertant induction occurred following 3-NBA spike incubation with the TA98 strain, which was of lower magnitude after metabolic transformation and when compared to TA100. Differences in experimental protocols, model organisms, and data analysis can be sources of variation, indicating that respective harmonized standard procedures should be followed when implementing bioassays in water monitoring. Together with other ongoing activities for the validation of a basic bioassay battery, the present study is an important step towards the implementation of bioanalytical monitoring tools in water quality assessment and monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  17. A review of tritium-in-water monitors

    International Nuclear Information System (INIS)

    Surette, R.A.; McElroy, R.G.C.

    1986-11-01

    The current status of tritium-in-water monitors is reviewed. It is argued that the main short-coming of existing tritium-in-water monitors is imperfections in the sample delivery. Most of the liquid and solid scintillation detectors are adequately sensitive for real time monitoring applications. Although other techniques for detecting tritium-in-water are possible they all suffer from the same sample delivery problems and are either insensitive, costly, complicated or not applicable for real time monitoring. 25 refs

  18. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  19. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  20. Anthropogenic organic compounds in source water of select community water systems in the United States, 2002-10

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Kingsbury, James A.; Hopple, Jessica A.; Price, Curtis V.; Bender, David A.

    2014-01-01

    Drinking water delivered by community water systems (CWSs) comes from one or both of two sources: surface water and groundwater. Source water is raw, untreated water used by CWSs and is usually treated before distribution to consumers. Beginning in 2002, the U.S. Geological Survey’s (USGS) National Water-Quality Assessment Program initiated Source Water-Quality Assessments (SWQAs) at select CWSs across the United States, primarily to characterize the occurrence of a large number of anthropogenic organic compounds that are predominantly unregulated by the U.S. Environmental Protection Agency. Source-water samples from CWSs were collected during 2002–10 from 20 surface-water sites (river intakes) and during 2002–09 from 448 groundwater sites (supply wells). River intakes were sampled approximately 16 times during a 1-year sampling period, and supply wells were sampled once. Samples were monitored for 265 anthropogenic organic compounds. An additional 3 herbicides and 16 herbicide degradates were monitored in samples collected from 8 river intakes and 118 supply wells in areas where these compounds likely have been used. Thirty-seven compounds have an established U.S. Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) for drinking water, 123 have USGS Health-Based Screening Levels (HBSLs), and 29 are included on the EPA Contaminant Candidate List 3. All compounds detected in source water were evaluated both with and without an assessment level and were grouped into 13 categories (hereafter termed as “use groups”) based on their primary use or source. The CWS sites were characterized in a national context using an extract of the EPA Safe Drinking Water Information System to develop spatially derived and system-specific ancillary data. Community water system information is contained in the EPA Public Supply Database, which includes 2,016 active river intakes and 112,099 active supply wells. Ancillary variables including population served

  1. Bioluminescent bioreporter pad biosensor for monitoring water toxicity.

    Science.gov (United States)

    Axelrod, Tim; Eltzov, Evgeni; Marks, Robert S

    2016-01-01

    Toxicants in water sources are of concern. We developed a tool that is affordable and easy-to-use for monitoring toxicity in water. It is a biosensor composed of disposable bioreporter pads (calcium alginate matrix with immobilized bacteria) and a non-disposable CMOS photodetector. Various parameters to enhance the sensor's signal have been tested, including the effect of alginate and bacterium concentrations. The effect of various toxicants, as well as, environmental samples were tested by evaluating their effect on bacterial luminescence. This is the first step in the creation of a sensitive and simple operative tool that may be used in different environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    OpenAIRE

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-01-01

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is ...

  3. 40 CFR 141.132 - Monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... must monitor for alkalinity in the source water prior to any treatment. Systems must take one paired sample and one source water alkalinity sample per month per plant at a time representative of normal... reduce monitoring for both TOC and alkalinity to one paired sample and one source water alkalinity sample...

  4. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  5. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  6. Tritium-gas/water-vapor monitor. Tests and evaluation

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1982-07-01

    A tritium gas/water-vapor monitor was designed and built by the Health Physics Group at the Los Alamos National Laboratory. In its prototype configuration, the monitor took the shape of two separate instruments: a (total) tritium monitor and a water-vapor monitor. Both instruments were tested and evaluated. The tests of the (total) tritium monitor, basically an improved version of the standard flow-through ion-chamber instrument, are briefly reported here and more completely elsewhere. The tests of the water-vapor monitor indicated that the novel approach used to condense water vapor for scintillation counting has a number of serious drawbacks and that further development of the instrument is unwarranted

  7. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  8. Ground-Water Protection and Monitoring Program

    International Nuclear Information System (INIS)

    Dresel, P.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options

  9. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    Directory of Open Access Journals (Sweden)

    Jon Chouler

    2015-07-01

    Full Text Available The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.

  10. Microbiological water quality monitoring in a resource-limited urban area: a study in Cameroon, Africa

    Directory of Open Access Journals (Sweden)

    Andrew W. Nelson

    2012-10-01

    Full Text Available In resource-limited developing nations, such as Cameroon, the expense of modern water-quality monitoring techniques is prohibitive to frequent water testing, as is done in the developed world. Inexpensive, shelf-stable 3M™ Petrifilm™ Escherichia coli/Coliform Count Plates potentially can provide significant opportunity for routine water-quality monitoring in the absence of infrastructure for state-of-the-art testing. We used shelf-stable E. coli/coliform culture plates to assess the water quality at twenty sampling sites in Kumbo, Cameroon. Culture results from treated and untreated sources were compared to modern bacterial DNA pyrosequencing methods using established bioinformatics and statistical tools. Petrifilms were reproducible between replicates and sampling dates. Additionally, cultivation on Petrifilms suggests that treatment by the Kumbo Water Authority (KWA greatly improves water quality as compared with untreated river and rainwater. The majority of sequences detected were representative of common water and soil microbes, with a minority of sequences (<40% identified as belonging to genera common in fecal matter and/or causes of human disease. Water sources had variable DNA sequence counts that correlated significantly with the culture count data and may therefore be a proxy for bacterial load. Although the KWA does not meet Western standards for water quality (less than one coliform per 100 mL, KWA piped water is safer than locally available alternative water sources such as river and rainwater. The culture-based technology described is easily transferrable to resource-limited areas and provides local water authorities with valuable microbiological safety information with potential to protect public health in developing nations.

  11. On-line monitoring of Escherichia coli in raw water at Oset drinking water treatment plant, Oslo (Norway).

    Science.gov (United States)

    Tryland, Ingun; Eregno, Fasil Ejigu; Braathen, Henrik; Khalaf, Goran; Sjølander, Ingrid; Fossum, Marie

    2015-02-04

    The fully automated Colifast ALARM™ has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources.

  12. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    Science.gov (United States)

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Community drinking water quality monitoring data: utility for public health research and practice.

    Science.gov (United States)

    Jones, Rachael M; Graber, Judith M; Anderson, Robert; Rockne, Karl; Turyk, Mary; Stayner, Leslie T

    2014-01-01

    Environmental Public Health Tracking (EPHT) tracks the occurrence and magnitude of environmental hazards and associated adverse health effects over time. The EPHT program has formally expanded its scope to include finished drinking water quality. Our objective was to describe the features, strengths, and limitations of using finished drinking water quality data from community water systems (CWSs) for EPHT applications, focusing on atrazine and nitrogen compounds in 8 Midwestern states. Water quality data were acquired after meeting with state partners and reviewed and merged for analysis. Data and the coding of variables, particularly with respect to censored results (nondetects), were not standardized between states. Monitoring frequency varied between CWSs and between atrazine and nitrates, but this was in line with regulatory requirements. Cumulative distributions of all contaminants were not the same in all states (Peto-Prentice test P water as the CWS source water type. Nitrate results showed substantial state-to-state variability in censoring (20.5%-100%) and in associations between concentrations and the CWS source water type. Statistical analyses of these data are challenging due to high rates of censoring and uncertainty about the appropriateness of parametric assumptions for time-series data. Although monitoring frequency was consistent with regulations, the magnitude of time gaps coupled with uncertainty about CWS service areas may limit linkage with health outcome data.

  14. Modeling water demand when households have multiple sources of water

    Science.gov (United States)

    Coulibaly, Lassina; Jakus, Paul M.; Keith, John E.

    2014-07-01

    A significant portion of the world's population lives in areas where public water delivery systems are unreliable and/or deliver poor quality water. In response, people have developed important alternatives to publicly supplied water. To date, most water demand research has been based on single-equation models for a single source of water, with very few studies that have examined water demand from two sources of water (where all nonpublic system water sources have been aggregated into a single demand). This modeling approach leads to two outcomes. First, the demand models do not capture the full range of alternatives, so the true economic relationship among the alternatives is obscured. Second, and more seriously, economic theory predicts that demand for a good becomes more price-elastic as the number of close substitutes increases. If researchers artificially limit the number of alternatives studied to something less than the true number, the price elasticity estimate may be biased downward. This paper examines water demand in a region with near universal access to piped water, but where system reliability and quality is such that many alternative sources of water exist. In extending the demand analysis to four sources of water, we are able to (i) demonstrate why households choose the water sources they do, (ii) provide a richer description of the demand relationships among sources, and (iii) calculate own-price elasticity estimates that are more elastic than those generally found in the literature.

  15. Chemical monitoring strategy for the assessment of advanced water treatment plant performance.

    Science.gov (United States)

    Drewes, J E; McDonald, J A; Trinh, T; Storey, M V; Khan, S J

    2011-01-01

    A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.

  16. Radioactive source monitoring system based on RFID and GPRS

    International Nuclear Information System (INIS)

    He Haiyang; Zhou Hongliang; Zhang Hongjian; Zhang Sheng; Zhou Junru; Weng Guojie

    2011-01-01

    Nuclear radiation produced by radioactive source is harmful to the health of human body, and the lost and theft of radioactive source will cause environmental pollution and social panic. In order to solve the abnormal leaks, accidental loss, theft and other problems of the radioactive source, a radioactive source monitoring system based on RFID, GPS, GPRS and GSM technology is put forward. Radiation dose detector and GPS wireless location module are used to obtain the information of radiation dose and location respectively, RFID reader reads the status of a tag fixed on the bottom of the radioactive source. All information is transmitted to the remote monitoring center via GPRS wireless transmission. There will be an audible and visual alarm when radiation dose is out of limits or the state of radioactive source is abnormal, and the monitoring center will send alarming text messages to the managers through GSM Modem at the same time. Thus, the functions of monitoring and alarming are achieved. The system has already been put into operation and is being kept in functional order. It can provide stable statistics as well as accurate alarm, improving the supervision of radioactive source effectively. (authors)

  17. Drinking water sources, availability, quality, access and utilization for goats in the Karak Governorate, Jordan.

    Science.gov (United States)

    Al-Khaza'leh, Ja'far Mansur; Reiber, Christoph; Al Baqain, Raid; Valle Zárate, Anne

    2015-01-01

    Goat production is an important agricultural activity in Jordan. The country is one of the poorest countries in the world in terms of water scarcity. Provision of sufficient quantity of good quality drinking water is important for goats to maintain feed intake and production. This study aimed to evaluate the seasonal availability and quality of goats' drinking water sources, accessibility, and utilization in different zones in the Karak Governorate in southern Jordan. Data collection methods comprised interviews with purposively selected farmers and quality assessment of water sources. The provision of drinking water was considered as one of the major constraints for goat production, particularly during the dry season (DS). Long travel distances to the water sources, waiting time at watering points, and high fuel and labor costs were the key reasons associated with the problem. All the values of water quality (WQ) parameters were within acceptable limits of the guidelines for livestock drinking WQ with exception of iron, which showed slightly elevated concentration in one borehole source in the DS. These findings show that water shortage is an important problem leading to consequences for goat keepers. To alleviate the water shortage constraint and in view of the depleted groundwater sources, alternative water sources at reasonable distance have to be tapped and monitored for water quality and more efficient use of rainwater harvesting systems in the study area is recommended.

  18. Monitoring of radioactivity in drinking water

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Letessier, P.

    2008-01-01

    Radioactivity is a physical phenomenon whose presence in water is monitored due to its potential capability to induce deleterious effects on human health. In this article the effects that can be caused by radioactivity as well as the way in which regulations establish how to perform a monitorization of water that enables us to ascertain that the radiological quality of water is in agreement with the accepted standard of quality of life are analyzed. Finally the means available to know the content of radioactivity in water together with some clues on how to remove it from water are described. (Author) 5 refs

  19. Fusion of radar and optical data for mapping and monitoring of water bodies

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyn

    2017-10-01

    Remote sensing techniques owe their great popularity to the possibility to obtain of rapid, accurate and information over large areas with optimal time, spatial and spectral resolutions. The main areas of interest for remote sensing research had always been concerned with environmental studies, especially water bodies monitoring. Many methods that are using visible and near- an infrared band of the electromagnetic spectrum had been already developed to detect surface water reservoirs. Moreover, the usage of an image obtained in visible and infrared spectrum allows quality monitoring of water bodies. Nevertheless, retrieval of water boundaries and mapping surface water reservoirs with optical sensors is still quite demanding. Therefore, the microwave data could be the perfect complement to data obtained with passive optical sensors to detect and monitor aquatic environment especially surface water bodies. This research presents the methodology to detect water bodies with open- source satellite imagery acquired with both optical and microwave sensors. The SAR Sentinel- 1 and multispectral Sentinel- 2 imagery were used to detect and monitor chosen reservoirs in Poland. In the research Level, 1 Sentinel- 2 data and Level 1 SAR images were used. SAR data were mainly used for mapping water bodies. Next, the results of water boundaries extraction with Sentinel-1 data were compared to results obtained after application of modified spectral indices for Sentinel- 2 data. The multispectral optical data can be used in the future for the evaluation of the quality of the reservoirs. Preliminary results obtained in the research had shown, that the fusion of data obtained with optical and microwave sensors allow for the complex detection of water bodies and could be used in the future quality monitoring of water reservoirs.

  20. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  1. 40 CFR 130.4 - Water quality monitoring.

    Science.gov (United States)

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...; developing and reviewing water quality standards, total maximum daily loads, wasteload allocations and load... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4...

  2. Gamma ampersand beta-gamma storm water monitor operability

    International Nuclear Information System (INIS)

    Tshiskiku, E.M.

    1993-01-01

    High Level Waste (HLW) facilities have nine storm water monitors that monitor storm water run off from different process areas for Cesium 137, a Gamma emitter. F - Area has three monitors: 907-2F, 907-3F and 907-4F while H - Area has six monitors: 907-2H, 907-3H, 907-4H, 907-5H, 907-6H and 907-7H (See attachments number-sign 1, number-sign 2 and number-sign 3 for location). In addition to monitoring for Cesium, 907-6H and 907-7H monitor for Strontium-90, a Beta emitter. Each monitor is associated with one of the following diversion gate encasements 907-1H, 241-15H, 241-51H, 907-1F or 241-23F. Normal flow of storm water from these diversion gate encasements is to the Four Mile Creek. When a storm water monitor detects radioactivity at a level exceeding the Four Mile Creek discharge limit, the monitor causes repositioning of the associated diversion gate to discharge to the H - Area retention basin 281-8H or the F - Area retention basin 281-8F. In response to recent OSR interpretation of storm water monitor calibration requirements, this report is provided to document operability and accuracy of radiation detection

  3. 40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond

    International Nuclear Information System (INIS)

    Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

    1989-03-01

    This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs

  4. [Arsenic levels in drinking water supplies from underground sources in the community of Madrid].

    Science.gov (United States)

    Aragonés Sanz, N; Palacios Diez, M; Avello de Miguel, A; Gómez Rodríguez, P; Martínez Cortés, M; Rodríguez Bernabeu, M J

    2001-01-01

    In 1998, arsenic concentrations of more than 50 micrograms/l were detected in some drinking water supplies from underground sources in the Autonomous Community of Madrid, which is the maximum permissible concentration for drinking water in Spain. These two facts have meant the getting under way of a specific plan for monitoring arsenic in the drinking water in the Autonomous Community of Madrid. The results of the first two sampling processes conducted in the arsenic level monitoring plan set out are presented. In the initial phase, water samples from 353 water supplies comprised within the census of the Public Health Administration of the Autonomous Community of Madrid were analyzed. A water supply risk classification was made based on these initial results. In a second phase, six months later, the analyses were repeated on those 35 water supplies which were considered to possibly pose a risk to public health. Seventy-four percent (74%) of the water supplies studied in the initial phase were revealed to have an arsenic concentration of less than 10 micrograms/l, 22.6% containing levels of 10 micrograms/l-50 micrograms/l, and 3.7% over 50 micrograms/l. Most of the water supplies showing arsenic levels of more than 10 micrograms/l are located in the same geographical area. In the second sampling process (six months later), the 35 water supplies classified as posing a risk were included. Twenty-six (26) of these supplies were revealed to have the same arsenic level ((10-50 micrograms/l), and nine changed category, six of which had less than 10 micrograms/l and three more than 50 micrograms/l. In the Autonomous Community of Madrid, less than 2% of the population drinks water coming from supplies which are from underground sources. The regular water quality monitoring conducted by the Public Health Administration has led to detecting the presence of more than 50 micrograms/l of arsenic in sixteen drinking water supplies from underground sources, which is the maximum

  5. Seasonal Variation in Drinking and Domestic Water Sources and Quality in Port Harcourt, Nigeria

    Science.gov (United States)

    Kumpel, Emily; Cock-Esteb, Alicea; Duret, Michel; de Waal, Dominick; Khush, Ranjiv

    2017-01-01

    We compared dry and rainy season water sources and their quality in the urban region of Port Harcourt, Nigeria. Representative sampling indicated that municipal water supplies represent < 1% of the water sources. Residents rely on privately constructed and maintained boreholes that are supplemented by commercially packaged bottled and sachet drinking water. Contamination by thermotolerant coliforms increased from 21% of drinking water sources in the dry season to 42% of drinking water sources in the rainy season (N = 356 and N = 397). The most significant increase was in sachet water, which showed the lowest frequencies of contamination in the dry season compared with other sources (15%, N = 186) but the highest frequencies during the rainy season (59%, N = 76). Only half as many respondents reported drinking sachet water in the rainy season as in the dry season. Respondents primarily used flush or pour-flush toilets connected to septic tanks (85%, N = 399). The remainder relied on pit latrines and hanging (pier) latrines that drained into surface waters. We found significant associations between fecal contamination in boreholes and the nearby presence of hanging latrines. Sanitary surveys of boreholes showed that more than half were well-constructed, and we did not identify associations between structural or site deficiencies and microbial water quality. The deterioration of drinking water quality during the rainy season is a serious public health risk for both untreated groundwater and commercially packaged water, highlighting a need to address gaps in monitoring and quality control. PMID:27821689

  6. Autonomous nutrient detection for water quality monitoring

    OpenAIRE

    Maher, Damien; Cleary, John; Cogan, Deirdre; Diamond, Dermot

    2012-01-01

    The ever increasing demand for real time environmental monitoring is currently being driven by strong legislative and societal drivers. Low cost autonomous environmental monitoring systems are required to meet this demand as current monitoring solutions are insufficient. This poster presents an autonomous nutrient analyser platform for water quality monitoring. Results from a field trial of the nutrient analyser are reported along with current work to expand the range of water quality targ...

  7. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  8. Prevalent flucocorticoid and androgen activity in US water sources

    Science.gov (United States)

    Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki; Iwanowiczl, Luke R.; Hager, Gordon L.

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  9. Prevalent glucocorticoid and androgen activity in US water sources.

    Science.gov (United States)

    Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  10. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    Science.gov (United States)

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and

  11. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  12. Real-time monitoring and operational control of drinking-water systems

    CERN Document Server

    Ocampo-Martínez, Carlos; Pérez, Ramon; Cembrano, Gabriela; Quevedo, Joseba; Escobet, Teresa

    2017-01-01

    This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees. The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover: • decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;...

  13. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  14. Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China.

    Science.gov (United States)

    Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan

    2013-08-01

    Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.

  15. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    International Nuclear Information System (INIS)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs

  16. Domestic water service delivery indicators and frameworks for monitoring, evaluation, policy and planning: a review.

    Science.gov (United States)

    Kayser, Georgia L; Moriarty, Patrick; Fonseca, Catarina; Bartram, Jamie

    2013-10-11

    Monitoring of water services informs policy and planning for national governments and the international community. Currently, the international monitoring system measures the type of drinking water source that households use. There have been calls for improved monitoring systems over several decades, some advocating use of multiple indicators. We review the literature on water service indicators and frameworks with a view to informing debate on their relevance to national and international monitoring. We describe the evidence concerning the relevance of each identified indicator to public health, economic development and human rights. We analyze the benefits and challenges of using these indicators separately and combined in an index as tools for planning, monitoring, and evaluating water services. We find substantial evidence on the importance of each commonly recommended indicator--service type, safety, quantity, accessibility, reliability or continuity of service, equity, and affordability. Several frameworks have been proposed that give structure to the relationships among individual indicators and some combine multiple indicator scores into a single index but few have been rigorously tested. More research is needed to understand if employing a composite metric of indicators is advantageous and how each indicator might be scored and scaled.

  17. Domestic Water Service Delivery Indicators and Frameworks for Monitoring, Evaluation, Policy and Planning: A Review

    Directory of Open Access Journals (Sweden)

    Jamie Bartram

    2013-10-01

    Full Text Available Monitoring of water services informs policy and planning for national governments and the international community. Currently, the international monitoring system measures the type of drinking water source that households use. There have been calls for improved monitoring systems over several decades, some advocating use of multiple indicators. We review the literature on water service indicators and frameworks with a view to informing debate on their relevance to national and international monitoring. We describe the evidence concerning the relevance of each identified indicator to public health, economic development and human rights. We analyze the benefits and challenges of using these indicators separately and combined in an index as tools for planning, monitoring, and evaluating water services. We find substantial evidence on the importance of each commonly recommended indicator—service type, safety, quantity, accessibility, reliability or continuity of service, equity, and affordability. Several frameworks have been proposed that give structure to the relationships among individual indicators and some combine multiple indicator scores into a single index but few have been rigorously tested. More research is needed to understand if employing a composite metric of indicators is advantageous and how each indicator might be scored and scaled.

  18. On-Line Monitoring of Escherichia coli in Raw Water at Oset Drinking Water Treatment Plant, Oslo (Norway

    Directory of Open Access Journals (Sweden)

    Ingun Tryland

    2015-02-01

    Full Text Available The fully automated Colifast ALARMTM has been used for two years for daily monitoring of the presence/absence of Escherichia coli in 100 mL raw water at Oset drinking water treatment plant in Oslo, Norway. The raw water is extracted from 35 m depth from the Lake Maridalsvannet. E. coli was detected in 18% of the daily samples. In general, most samples positive for E. coli were observed during the autumn turnover periods, but even in some samples taken during warm and dry days in July, with stable temperature stratification in the lake, E. coli was detected. The daily samples gave useful additional information compared with the weekly routine samples about the hygienic raw water quality and the hygienic barrier efficiency of the lake under different weather conditions and seasons. The winter 2013/2014 was much warmer than the winter 2012/2013. The monitoring supported the hypothesis that warmer winters with shorter periods with ice cover on lakes, which may be a consequence of climate changes, may reduce the hygienic barrier efficiency in deep lakes used as drinking water sources.

  19. Managing the ‘Monitoring Imperative’ in the Context of SDG Target 6.3 on Water Quality and Wastewater

    Directory of Open Access Journals (Sweden)

    Janet G. Hering

    2017-09-01

    Full Text Available Monitoring the Sustainable Development Goal (SDG 6 for water and sanitation builds on monitoring frameworks that were developed for the Millennium Development Goals (MDGs, specifically the WHO/UNICEF Joint Monitoring Programme (JMP. Yet, since SDG 6 goes beyond the MDG focus on drinking water and sanitation, it also significantly expands monitoring and reporting responsibilities. The target to improve water quality (Target 6.3 calls for water quality monitoring and data reporting that are likely to pose a significant challenge to countries that lack an established monitoring program. At the same time, redundant burdens may be imposed on countries that already have established programs and report out water quality data to inter- or supranational agencies. In this context, there is a risk that the intention that water quality data should serve as a basis for evidence-based decision making will become subsidiary to the resource-intensive activities of data collection and management. Alternatively, policies could be designed based on historical experience with measures of proven effectiveness, prioritizing policies that could have multiple benefits. Policies could be implemented in parallel with the development of monitoring programs and conventional monitoring data could be complemented by information gained from sources such as remote sensing and unstructured data.

  20. Determination of sources and analysis of micro-pollutants in drinking water

    International Nuclear Information System (INIS)

    Md Pauzi Abdullah; Soh Shiau Chian

    2005-01-01

    The objectives of the study are to develop and validate selected analytical methods for the analysis of micro organics and metals in water; to identify, monitor and assess the levels of micro organics and metals in drinking water supplies; to evaluate the relevancy of the guidelines set in the National Standard of Drinking Water Quality 2001; and to identify the sources of pollution and to carryout risk assessment of exposure to drinking water. The presentation discussed the progress of the work include determination of VOCs (Volatile organic compounds) in drinking water using SPME (Solid phase micro-extraction) extraction techniques, analysis of heavy metals in drinking water, determination of Cr(VI) with ICPES (Inductively coupled plasma emission spectrometry) and the presence of halogenated volatile organic compounds (HVOCs), which is heavily used by agricultural sector, in trace concentrations in waters

  1. Domestic water and sanitation as water security: monitoring, concepts and strategy

    Science.gov (United States)

    Bradley, David J.; Bartram, Jamie K.

    2013-01-01

    Domestic water and sanitation provide examples of a situation where long-term, target-driven efforts have been launched with the objective of reducing the proportion of people who are water-insecure, most recently through the millennium development goals (MDGs) framework. Impacts of these efforts have been monitored by an increasingly evidence-based system, and plans for the next period of international policy, which are likely to aim at universal coverage with basic water and sanitation, are being currently developed. As distinct from many other domains to which the concept of water security is applied, domestic or personal water security requires a perspective that incorporates the reciprocal notions of provision and risk, as the current status of domestic water and sanitation security is dominated by deficiency This paper reviews the interaction of science and technology with policies, practice and monitoring, and explores how far domestic water can helpfully fit into the proposed concept of water security, how that is best defined, and how far the human right to water affects the situation. It is considered that they fit well together in terms both of practical planning of targets and indicators and as a conceptual framework to help development. The focus needs to be broad, to extend beyond households, to emphasize maintenance as well as construction and to increase equity of access. International and subnational monitoring need to interact, and monitoring results need to be meaningful to service providers as well as users. PMID:24080628

  2. Estimation of contribution ratios of pollutant sources to a specific section based on an enhanced water quality model.

    Science.gov (United States)

    Cao, Bibo; Li, Chuan; Liu, Yan; Zhao, Yue; Sha, Jian; Wang, Yuqiu

    2015-05-01

    Because water quality monitoring sections or sites could reflect the water quality status of rivers, surface water quality management based on water quality monitoring sections or sites would be effective. For the purpose of improving water quality of rivers, quantifying the contribution ratios of pollutant resources to a specific section is necessary. Because physical and chemical processes of nutrient pollutants are complex in water bodies, it is difficult to quantitatively compute the contribution ratios. However, water quality models have proved to be effective tools to estimate surface water quality. In this project, an enhanced QUAL2Kw model with an added module was applied to the Xin'anjiang Watershed, to obtain water quality information along the river and to assess the contribution ratios of each pollutant source to a certain section (the Jiekou state-controlled section). Model validation indicated that the results were reliable. Then, contribution ratios were analyzed through the added module. Results show that among the pollutant sources, the Lianjiang tributary contributes the largest part of total nitrogen (50.43%), total phosphorus (45.60%), ammonia nitrogen (32.90%), nitrate (nitrite + nitrate) nitrogen (47.73%), and organic nitrogen (37.87%). Furthermore, contribution ratios in different reaches varied along the river. Compared with pollutant loads ratios of different sources in the watershed, an analysis of contribution ratios of pollutant sources for each specific section, which takes the localized chemical and physical processes into consideration, was more suitable for local-regional water quality management. In summary, this method of analyzing the contribution ratios of pollutant sources to a specific section based on the QUAL2Kw model was found to support the improvement of the local environment.

  3. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gulson, Brian, E-mail: brian.gulson@mq.edu.au [Graduate School of the Environment, Faculty of Science, Macquarie University, Sydney, NSW 2109 (Australia); CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670 (Australia); Korsch, Michael [CSIRO Earth Science and Resource Engineering North Ryde, NSW 1670 (Australia); Winchester, Wayne; Devenish, Matthew; Hobbs, Thad [Esperance Cleanup and Recovery Project, Western Australia (WA) Department of Transport, Esperance 6450 (Australia); Main, Cleve; Smith, Gerard [Animal Health Laboratory, Department of Agriculture and Food, Perth 6151, WA (Australia); Rosman, Kevin; Howearth, Lynette; Burn-Nunes, Laurie [Curtin University, Department of Imaging and Applied Physics, Bentley 6102, WA (Australia); Seow, Jimmy; Oxford, Cameron [Department of Environment and Conservation, Booragoon 6154, WA (Australia); Yun, Gracie; Gillam, Lindsay [Department of Health, East Perth 6004, WA (Australia); Crisp, Michelle [LED (Locals for Esperance Development), Esperance 6450, WA (Australia)

    2012-01-15

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. - Highlights: Black-Right-Pointing-Triangle Lead carbonate concentrate. Black-Right-Pointing-Triangle Successful use of Pb isotopes in identifying sources of Pb arising from transport and shipping. Black-Right-Pointing-Triangle Use of Pb isotopes in legal proceedings and their use in cleanup of residences. Black

  4. Evaluation of a novel automated water analyzer for continuous monitoring of toxicity and chemical parameters in municipal water supply.

    Science.gov (United States)

    Bodini, Sergio F; Malizia, Marzio; Tortelli, Annalisa; Sanfilippo, Luca; Zhou, Xingpeng; Arosio, Roberta; Bernasconi, Marzia; Di Lucia, Stefano; Manenti, Angela; Moscetta, Pompeo

    2018-08-15

    A novel tool, the DAMTA analyzer (Device for Analytical Monitoring and Toxicity Assessment), designed for fully automated toxicity measurements based on luminescent bacteria as well as for concomitant determination of chemical parameters, was developed and field-tested. The instrument is a robotic water analyzer equipped with a luminometer and a spectrophotometer, integrated on a thermostated reaction plate which contains a movable carousel with 80 cuvettes. Acute toxicity is measured on-line using a wild type Photobacterium phosphoreum strain with measurable bioluminescence and unaltered sensitivity to toxicants lasting up to ten days. The EC50 values of reference compounds tested were consistent with A. fischeri and P. phosphoreum international standards and comparable to previously published data. Concurrently, a laboratory trial demonstrated the feasibility of use of the analyzer for the determination of nutrients and metals in parallel to the toxicity measurements. In a prolonged test, the system was installed only in toxicity mode at the premises of the World Fair "Expo Milano-2015″, a high security site to ensure the quality of the supplied drinking water. The monitoring program lasted for six months during which ca. 2400 toxicity tests were carried out; the results indicated a mean non-toxic outcome of -5.5 ± 6.2%. In order to warrant the system's robustness in detecting toxic substances, Zn was measured daily with highly reproducible inhibition results, 70.8 ± 13.6%. These results assure that this novel toxicity monitor can be used as an early warning system for protection of drinking water sources from emergencies involving low probability/high impact contamination events in source water or treated water. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Progress and lessons learned from water-quality monitoring networks

    Science.gov (United States)

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  6. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study

    International Nuclear Information System (INIS)

    Nelson, Andrew W.; Knight, Andrew W.; Eitrheim, Eric S.; Schultz, Michael K.

    2015-01-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation – before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. - Highlights: • Natural radionuclides in ground water near unconventional drilling operations were investigated. • Natural uranium ( nat U), lead-210 ( 210 Pb), and polonium-210 ( 210 Po) levels are described. • No statistically significant increases in natural radioactivity post-drilling were observed

  7. Estimates of water source contributions in a dynamic urban water supply system inferred via a Bayesian stable isotope mixing model

    Science.gov (United States)

    Jameel, M. Y.; Brewer, S.; Fiorella, R.; Tipple, B. J.; Bowen, G. J.; Terry, S.

    2017-12-01

    Public water supply systems (PWSS) are complex distribution systems and critical infrastructure, making them vulnerable to physical disruption and contamination. Exploring the susceptibility of PWSS to such perturbations requires detailed knowledge of the supply system structure and operation. Although the physical structure of supply systems (i.e., pipeline connection) is usually well documented for developed cities, the actual flow patterns of water in these systems are typically unknown or estimated based on hydrodynamic models with limited observational validation. Here, we present a novel method for mapping the flow structure of water in a large, complex PWSS, building upon recent work highlighting the potential of stable isotopes of water (SIW) to document water management practices within complex PWSS. We sampled a major water distribution system of the Salt Lake Valley, Utah, measuring SIW of water sources, treatment facilities, and numerous sites within in the supply system. We then developed a hierarchical Bayesian (HB) isotope mixing model to quantify the proportion of water supplied by different sources at sites within the supply system. Known production volumes and spatial distance effects were used to define the prior probabilities for each source; however, we did not include other physical information about the supply system. Our results were in general agreement with those obtained by hydrodynamic models and provide quantitative estimates of contributions of different water sources to a given site along with robust estimates of uncertainty. Secondary properties of the supply system, such as regions of "static" and "dynamic" source (e.g., regions supplied dominantly by one source vs. those experiencing active mixing between multiple sources), can be inferred from the results. The isotope-based HB isotope mixing model offers a new investigative technique for analyzing PWSS and documenting aspects of supply system structure and operation that are

  8. A Two-Year Water Quality Monitoring Curriculum.

    Science.gov (United States)

    Glazer, Richard B.; And Others

    The Environmental Protection Agency developed this curriculum to train technicians to monitor water quality. Graduates of the program should be able to monitor municipal, industrial, and commercial discharges; test drinking water for purity; and determine quality of aquatic environments. The program includes algebra, communication skills, biology,…

  9. Ground water as the source of an outbreak of Salmonella Enteritidis

    Directory of Open Access Journals (Sweden)

    Ana Kovačić

    2017-09-01

    Full Text Available In September 2014, an outbreak of gastroenteritis was reported to the Public Health Institute of Šibenik and Knin County in Croatia. The outbreak occurred in the County center of Šibenik, a town with 50,000 inhabitants, and it lasted for 12 days. An epidemiological investigation suggested a nearby water spring as the source of the outbreak. Due to the temporary closure of the public water supply system, the inhabitants started to use untreated water from a nearby spring. Microbiological analysis revealed that the outbreak was caused by Salmonella enterica subsp. enterica serovar Enteritidis that was isolated from stool samples of the patients and ground water. The isolates were further analysed with pulsed-field gel electrophoresis using XbaI, which revealed an identical macrorestriction profile. Although 68 cases were reported, it was estimated that the actual number of affected persons was more than several hundred. In order to prevent further spread of disease, public advice was released immediately after the first epidemiological indication and a warning sign was placed at the incriminated water source, after microbiological confirmation. It is necessary to regularly monitor microbiological quality of ground water especially in urban areas and provide adequate education and awareness to the inhabitants regarding the risk of using untreated ground water.

  10. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R. [and others

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides.

  11. 1995 annual water monitoring report, LEHR environmental restoration, University of California at Davis

    International Nuclear Information System (INIS)

    Stewart, D.L.; Smith, R.M.; Sauer, D.R.

    1996-03-01

    This 1995 Annual Water Monitoring Report presents analytical data collected between January and December 1995 at the Laboratory for Energy-Related Health Research (LEHR) located at the University of California (UC), Davis. This report has been prepared by Pacific Northwest National Laboratory in compliance with the Water Monitoring Plan for the LEHR site, which contains the sample collection, analysis, and quality assurance/quality control procedures and reporting requirements. Water monitoring during 1995 was conducted in conjunction with the Remedial Investigation/Feasibility Study currently being implemented at the LEHR site as part of a US Department of Energy (DOE)-sponsored environmental restoration program. Based on a review of historical groundwater monitoring data compiled since the fall of 1990, the list of analytes included in the program was reduced and the schedule for analyzing the remaining analytes was revised. The revision was implemented for the first time in the summer monitoring period. Analytes eliminated from the program were those that were (1) important for establishing baseline groundwater chemistry (alkalinity, anions, Eh, total organic carbon, and chemical oxygen demand); (2) important for establishing sources of contamination; (3) not detected in water samples or not from the LEHR site; and (4) duplicates of another measurement. Reductions in the analytical schedule were based on the monitoring history for each well; the resultant constituents of concern list was developed for individual wells. Depending on its importance in a well, each analyte was analyzed quarterly, semi-annually, or annually. Pollutants of major concern include organic compounds, metals, and radionuclides

  12. Entropy Applications to Water Monitoring Network Design: A Review

    Directory of Open Access Journals (Sweden)

    Jongho Keum

    2017-11-01

    Full Text Available Having reliable water monitoring networks is an essential component of water resources and environmental management. A standardized process for the design of water monitoring networks does not exist with the exception of the World Meteorological Organization (WMO general guidelines about the minimum network density. While one of the major challenges in the design of optimal hydrometric networks has been establishing design objectives, information theory has been successfully adopted to network design problems by providing measures of the information content that can be deliverable from a station or a network. This review firstly summarizes the common entropy terms that have been used in water monitoring network designs. Then, this paper deals with the recent applications of the entropy concept for water monitoring network designs, which are categorized into (1 precipitation; (2 streamflow and water level; (3 water quality; and (4 soil moisture and groundwater networks. The integrated design method for multivariate monitoring networks is also covered. Despite several issues, entropy theory has been well suited to water monitoring network design. However, further work is still required to provide design standards and guidelines for operational use.

  13. Storm water monitoring report for the 1995 reporting period

    International Nuclear Information System (INIS)

    Braun, D.R.; Brock, T.A.

    1995-10-01

    This report includes sampling results and other relevant information gathered in the past year by LITCO's Environmental Monitoring and Water Resources Unit. This report presents analytical data collected from storm water discharges as a part of the Environmental Monitoring Storm Water Monitoring Program for 1994--1995 for facilities located on the Idaho National Engineering Laboratory (INEL). The 1995 reporting period is October 1, 1994 through September 30, 1995. The storm water monitoring program tracks information about types and amounts of pollutants present. Data are required for the Environmental Protection Agency and are transmitted via Discharge Monitoring Reports. Additional information resulting from the program contributes to Best Management Practice to control pollution in runoff as well as Storm Water Pollution Prevention Plans

  14. Land use change detection with LANDSAT-2 data for monitoring and predicting regional water quality degradation. [Arkansas

    Science.gov (United States)

    Macdonald, H.; Steele, K. (Principal Investigator); Waite, W.; Rice, R.; Shinn, M.; Dillard, T.; Petersen, C.

    1977-01-01

    The author has identified the following significant results. Comparison between LANDSAT 1 and 2 imagery of Arkansas provided evidence of significant land use changes during the 1972-75 time period. Analysis of Arkansas historical water quality information has shown conclusively that whereas point source pollution generally can be detected by use of water quality data collected by state and federal agencies, sampling methodologies for nonpoint source contamination attributable to surface runoff are totally inadequate. The expensive undertaking of monitoring all nonpoint sources for numerous watersheds can be lessened by implementing LANDSAT change detection analyses.

  15. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2006

    Science.gov (United States)

    Smith, Kirk P.

    2008-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2006 (October 2005 through September 2006). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir contents for the Cambridge Reservoir varied from about 59 to 98 percent of capacity during water year 2006, while monthly reservoir contents for the Stony Brook Reservoir and the Fresh Pond Reservoir was maintained at greater than 83 and 94 percent of capacity, respectively. If water demand is assumed to be 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2006 water year is equivalent to an annual water surplus of about 127 percent. Recorded precipitation in the source area was about 16 percent greater for the 2006 water year than for the previous water year and was between 12 and 73 percent greater than for any recorded amount since water year 2002. The monthly mean specific-conductance values for all continuously monitored stations within the drinking-water source area were generally within the range of historical data collected since water year 1997, and in many cases were less than the historical medians. The annual mean specific conductance of 738 uS/cm (microsiemens per centimeter) for water discharged from the Cambridge Reservoir was nearly identical to the annual

  16. Monitoring physical properties of a submarine groundwater discharge source at Kalogria Bay, SW Peloponnissos, Greece

    Directory of Open Access Journals (Sweden)

    Papathanassiou E.

    2012-04-01

    Full Text Available An impressive SGD in Kalogria Bay (SW Peloponnissos was surveyed for the first time in 2006, revealing the existence of 2 major and 2 minor point sources of freshwater (salinity ~l-2; the discharge was ~ 1000 m3 h−1. The major point source was located in a karstic cavity at 25 m depth. In July 2009, and for a period of one year, the site was monitored intensively. During summer, the underwater discharge was not very strong, the water was flowing from many dispersed points, and salinity range was 20–36. During autumn and winter, flow velocity increased considerably (> 1 m s−1, and the SGDs discharged water of low salinity (< 2. Gradually, the smaller SGDs ceased their operation, and the major SGD emanated brackish water during spring and summer, thus hampering the possibilities of freshwater exploitation, in a touristic area which suffers from great aridity and water demand is high during summer.

  17. Water level monitoring device in nuclear reactor

    International Nuclear Information System (INIS)

    Miura, Kiyohide; Otake, Tomohiro.

    1988-01-01

    Purpose: To monitor the water level in a pressure vessel of BWR type nuclear reactors at high accuracy by improving the compensation functions. Constitution: In the conventional water level monitor in a nuclear reactor, if the pressure vessel is displaced by the change of the pressure in the reactor or the temperature of the reactor water, the relative level of the reference water head in a condensation vessel is changed to cause deviation between the actual water level and the indicated water level to reduce the monitoring accuracy. According to the invention, means for detecting the position of the reference water head and means for detection the position in the condensation vessel are disposed to the pressure vessel. Then, relative positional change between the condensation vessel and the reference water head is calculated based on detection sinals from both of the means. The water level is compensated and calculated by water level calculation means based on the relative positional change, water level signals from the level gage and the pressure signals from the pressure gage. As a result, if the pressure vessel is displaced due to the change of the temperature or pressure, it is possible to measure the reactor water level accurately thereby remakably improve the reliability for the water level control in the nuclear reactor. (Horiuchi, T.)

  18. Programmes and Systems for Source and Environmental Radiation Monitoring

    International Nuclear Information System (INIS)

    2010-01-01

    The discharge of radionuclides to the atmosphere and aquatic environments is a legitimate practice in the nuclear and other industries, hospitals and research. Where appropriate, monitoring of the discharges and of relevant environmental media is an essential regulatory requirement in order to ensure appropriate radiation protection of the public. Such monitoring provides information on the actual amounts of radioactive material discharged and the radionuclide concentrations in the environment, and is needed to demonstrate compliance with authorized limits, to assess the radiation exposure of members of the public and to provide data to aid in the optimization of radiation protection. Uncontrolled releases of radionuclides to the atmosphere and aquatic environments may occur as a result of a nuclear or radiological accident. Again, monitoring at the source of the release and of the environment is necessary. In this case, monitoring is used both to assess the radiation exposure of members of the public and to determine the actions necessary for public protection, including longer term countermeasures. Source and environmental monitoring associated with the release of radionuclides to the environment is the subject of a number of IAEA Safety Standards, particularly IAEA Safety Standard RS-G-1.8 (Environmental and Source Monitoring for Purposes of Radiation Protection). This publication is intended to complement this Safety Guide and, by so doing, replaces Safety Series No. 41 (Objectives and Design of Environmental Monitoring Programmes for Radioactive Contaminants) and Safety Series No. 46 (Monitoring of Airborne and Liquid Radioactive Releases from Nuclear Facilities to the Environment). Like Safety Standard RS-G-1.8, this Safety Report deals with monitoring at the source and in the environment associated with authorized releases of radionuclides to the environment. It also deals with the general issues of emergency monitoring during and in the aftermath of an

  19. Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system.

    Science.gov (United States)

    Tanaka, Kazuhiko; Shi, Chao-Hong; Nakagoshi, Nobukazu

    2012-04-01

    The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy. In this study, the novel, simple and convenient water quality monitoring of Jialing-River in Chongqing, China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO4(2-), Cl(-), and NO3(-) and the cations such as Na+, NH4+, K+, Mg2+, and Ca2+, the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions, and the IEC with the enhanced conductivity detection using a post column of K+-form cation-exchange resin for determining HCO3(-)-alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions. According to the ionic balance theory between the total equivalent concentrations of anions and cations, the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system. As a result, the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.

  20. Hydrologic monitoring using open-source Arduino logging platforms in a socio-hydrological system of the drought-prone tropics, Guanacaste, Costa Rica

    Science.gov (United States)

    Hund, S. V.; Johnson, M. S.; Steyn, D. G.; Keddie, T.; Morillas, L.

    2015-12-01

    Water supply is highly disputed in the tropics of northwestern Costa Rica where rainfall exhibits high seasonal variability and long annual dry seasons. Water shortages are common during the dry season, and water conflicts emerge between domestic water users, intensively irrigated agriculture, the tourism industry, and ecological flows. Climate change may further increase the variability of precipitation and the risk for droughts, and pose challenges for small rural agricultural communities experiencing water stress. To adapt to seasonal droughts and improve resilience of communities to future changes, it is essential to increase understanding of interactions between components of the coupled hydrological-social system. Yet, hydrological monitoring and data on water use within developing countries of the humid tropics is limited. To address these challenges and contribute to extended monitoring networks, low-cost and open-source monitoring platforms were developed based off Arduino microelectronic boards and software and combined with hydrological sensors to monitor river stage and groundwater levels in two watersheds of Guanacaste, Costa Rica. Hydrologic monitoring stations are located in remote locations and powered by solar panels. Monitoring efforts were made possible through collaboration with local rural communities, and complemented with a mix of digitized water extraction data and community water use narratives to increase understanding of water use and challenges. We will present the development of the Arduino logging system, results of water supply in relation to water use for both the wet and dry season, and discuss these results within a socio-hydrological system context.

  1. Supplementary household water sources to augment potable ...

    African Journals Online (AJOL)

    This paper addresses on-site supplementary household water sources with a focus on groundwater abstraction, rainwater harvesting and greywater reuse as available non-potable water sources to residential consumers. An end-use model is presented and used to assess the theoretical impact of household water sources ...

  2. Learner's Guide: Water Quality Monitoring. An Instructional Guide for the Two-Year Water Quality Monitoring Curriculum.

    Science.gov (United States)

    Glazer, Richard B.; And Others

    This learner's guide is designed to meet the training needs for technicians involved in monitoring activities related to the Federal Water Pollution Act and the Safe Drinking Water Act. In addition it will assist technicians in learning how to perform process control laboratory procedures for drinking water and wastewater treatment plant…

  3. Monitoring algal blooms in drinking water reservoirs using the Landsat-8 Operational Land Imager

    Science.gov (United States)

    Keith, Darryl; Rover, Jennifer; Green, Jason; Zalewsky, Brian; Charpentier, Mike; Hursby, Glen; Bishop, Joseph

    2018-01-01

    In this study, we demonstrated that the Landsat-8 Operational Land Imager (OLI) sensor is a powerful tool that can provide periodic and system-wide information on the condition of drinking water reservoirs. The OLI is a multispectral radiometer (30 m spatial resolution) that allows ecosystem observations at spatial and temporal scales that allow the environmental community and water managers another means to monitor changes in water quality not feasible with field-based monitoring. Using the provisional Land Surface Reflectance product and field-collected chlorophyll-a (chl-a) concentrations from drinking water monitoring programs in North Carolina and Rhode Island, we compared five established approaches for estimating chl-aconcentrations using spectral data. We found that using the three band reflectance approach with a combination of OLI spectral bands 1, 3, and 5 produced the most promising results for accurately estimating chl-a concentrations in lakes (R2 value of 0.66; root mean square error value of 8.9 µg l−1). Using this model, we forecast the spatial and temporal variability of chl-a for Jordan Lake, a recreational and drinking water source in piedmont North Carolina and several small ponds that supply drinking water in southeastern Rhode Island.

  4. Levels-of-processing effect on internal source monitoring in schizophrenia.

    Science.gov (United States)

    Ragland, J Daniel; McCarthy, Erin; Bilker, Warren B; Brensinger, Colleen M; Valdez, Jeffrey; Kohler, Christian; Gur, Raquel E; Gur, Ruben C

    2006-05-01

    Recognition can be normalized in schizophrenia by providing patients with semantic organizational strategies through a levels-of-processing (LOP) framework. However, patients may rely primarily on familiarity effects, making recognition less sensitive than source monitoring to the strength of the episodic memory trace. The current study investigates whether providing semantic organizational strategies can also normalize patients' internal source-monitoring performance. Sixteen clinically stable medicated patients with schizophrenia and 15 demographically matched healthy controls were asked to identify the source of remembered words following an LOP-encoding paradigm in which they alternated between processing words on a 'shallow' perceptual versus a 'deep' semantic level. A multinomial analysis provided orthogonal measures of item recognition and source discrimination, and bootstrapping generated variance to allow for parametric analyses. LOP and group effects were tested by contrasting recognition and source-monitoring parameters for words that had been encoded during deep versus shallow processing conditions. As in a previous study there were no group differences in LOP effects on recognition performance, with patients and controls benefiting equally from deep versus shallow processing. Although there were no group differences in internal source monitoring, only controls had significantly better performance for words processed during the deep encoding condition. Patient performance did not correlate with clinical symptoms or medication dose. Providing a deep processing semantic encoding strategy significantly improved patients' recognition performance only. The lack of a significant LOP effect on internal source monitoring in patients may reflect subtle problems in the relational binding of semantic information that are independent of strategic memory processes.

  5. Determination of Key Risk Supervision Areas around River-Type Water Sources Affected by Multiple Risk Sources: A Case Study of Water Sources along the Yangtze’s Nanjing Section

    Directory of Open Access Journals (Sweden)

    Qi Zhou

    2017-02-01

    Full Text Available To provide a reference for risk management of water sources, this study screens the key risk supervision areas around river-type water sources (hereinafter referred to as the water sources threatened by multiple fixed risk sources (the risk sources, and establishes a comprehensive methodological system. Specifically, it comprises: (1 method of partitioning risk source concentrated sub-regions for screening water source perimeter key risk supervision areas; (2 approach of determining sub-regional risk indexes (SrRI, which characterizes the scale of sub-regional risks considering factors like risk distribution intensity within sub-regions, risk indexes of risk sources (RIRS, characterizing the risk scale of risk sources and the number of risk sources; and (3 method of calculating sub-region’s risk threats to the water sources (SrTWS which considers the positional relationship between water sources and sub-regions as well as SrRI, and the criteria for determining key supervision sub-regions. Favorable effects are achieved by applying this methodological system in determining water source perimeter sub-regions distributed along the Yangtze’s Nanjing section. Results revealed that for water sources, the key sub-regions needing supervision were SD16, SD06, SD21, SD26, SD15, SD03, SD02, SD32, SD10, SD11, SD14, SD05, SD27, etc., in the order of criticality. The sub-region with the greatest risk threats on the water sources was SD16, which was located in the middle reaches of Yangtze River. In general, sub-regions along the upper Yangtze reaches had greater threats to water sources than the lower reach sub-regions other than SD26 and SD21. Upstream water sources were less subject to the threats of sub-regions than the downstream sources other than NJ09B and NJ03.

  6. Hanford Site ground-water monitoring for 1995

    International Nuclear Information System (INIS)

    Dresel, P.E.; Rieger, J.T.; Webber, W.D.; Thorne, P.D.; Gillespie, B.M.; Luttrell, S.P.; Wurstner, S.K.; Liikala, T.L.

    1996-08-01

    This report presents the results of the Groundwater Surveillance Project monitoring for calendar year 1995 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that impacted groundwater quality on the site. Monitoring of water levels and groundwater chemistry is performed to track the extent of contamination, to note trends in contaminant concentrations,a nd to identify emerging groundwater quality problems. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of onsite groundwater quality. A three- dimensional, numerical, groundwater model is being developed to improve predictions of contaminant transport. The existing two- dimensional model was applied to predict contaminant flow paths and the impact of changes on site conditions. These activities were supported by limited hydrogeologic characterization. Water level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Radiological monitoring results indicated that many radioactive contaminants were above US Environmental Protection Agency or State of Washington drinking water standards at the Hanford Site. Nitrate, fluoride, chromium, cyanide, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichloroethylene were present in groundwater samples at levels above their US EPA or State of Washington maximum contaminant levels

  7. Azolla pinnata growth performance in different water sources.

    Science.gov (United States)

    Nordiah, B; Harah, Z Muta; Sidik, B Japar; Hazma, W N Wan

    2012-07-01

    Azolla pinnata R.Br. growth performance experiments in different water sources were conducted from May until July 2011 at Aquaculture Research Station, Puchong, Malaysia. Four types of water sources (waste water, drain water, paddy field water and distilled water) each with different nutrient contents were used to grow and evaluate the growth performance of A. pinnata. Four water sources with different nutrient contents; waste, drain, paddy and distilled water as control were used to evaluate the growth performance of A. pinnata. Generally, irrespective of the types of water sources there were increased in plant biomass from the initial biomass (e.g., after the first week; lowest 25.2% in distilled water to highest 133.3% in drain water) and the corresponding daily growth rate (3.61% in distilled water to 19.04% in drain water). The increased in biomass although fluctuated with time was consistently higher in drain water compared to increased in biomass for other water sources. Of the four water sources, drain water with relatively higher nitrate concentration (0.035 +/- 0.003 mg L(-l)) and nitrite (0.044 +/- 0.005 mg L(-1)) and with the available phosphate (0.032 +/- 0.006 mg L(-1)) initially provided the most favourable conditions for Azolla growth and propagation. Based on BVSTEP analysis (PRIMER v5), the results indicated that a combination of more than one nutrient or multiple nutrient contents explained the observed increased in biomass of A. pinnata grown in the different water sources.

  8. Experimental Research of a Water-Source Heat Pump Water Heater System

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available The heat pump water heater (HPWH, as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available water source. In order to study the thermal performance of the water-source heat pump water heater (WSHPWH system, an experimental prototype using the cyclic heating mode was established. The heating performance of the water-source heat pump water heater system, which was affected by the difference between evaporator water fluxes, was investigated. The water temperature unfavorably exceeded 55 °C when the experimental prototype was used for heating; otherwise, the compressor discharge pressure was close to the maximum discharge temperature, which resulted in system instability. The evaporator water flux allowed this system to function satisfactorily. It is necessary to reduce the exergy loss of the condenser to improve the energy utilization of the system.

  9. The role of executive function in children's source monitoring with varying retrieval strategies

    Science.gov (United States)

    Earhart, Becky; Roberts, Kim P.

    2014-01-01

    Previous research on the relationship between executive function and source monitoring in young children has been inconclusive, with studies finding conflicting results about whether working memory and inhibitory control are related to source-monitoring ability. In this study, the role of working memory and inhibitory control in recognition memory and source monitoring with two different retrieval strategies were examined. Children (N = 263) aged 4–8 participated in science activities with two sources. They were later given a recognition and source-monitoring test, and completed measures of working memory and inhibitory control. During the source-monitoring test, half of the participants were asked about sources serially (one after the other) whereas the other half of the children were asked about sources in parallel (considering both sources simultaneously). Results demonstrated that working memory was a predictor of source-monitoring accuracy in both conditions, but inhibitory control was only related to source accuracy in the parallel condition. When age was controlled these relationships were no longer significant, suggesting that a more general cognitive development factor is a stronger predictor of source monitoring than executive function alone. Interestingly, the children aged 4–6 years made more accurate source decisions in the parallel condition than in the serial condition. The older children (aged 7–8) were overall more accurate than the younger children, and their accuracy did not differ as a function of interview condition. Suggestions are provided to guide further research in this area that will clarify the diverse results of previous studies examining whether executive function is a cognitive prerequisite for effective source monitoring. PMID:24847302

  10. Hydrology and water-quality monitoring considerations, Jackpile uranium mine, northwestern New Mexico

    International Nuclear Information System (INIS)

    Zehner, H.H.

    1985-01-01

    The Jackpile Uranium Mine, which is on the Pueblo of Laguna in northwestern New Mexico was operated from 1953 to 1980. The small storage coefficients determined from three aquifer tests indicate that the Jackpile sandstone is a confined hydrologic system throughout much of the mine area. Sediment from the Rio Paguate has nearly filled the Paguate Reservoir near Laguna since its construction in 1940. The mean concentrations of uranium, Ra-226, and other trace elements generally were less than permissible limits established in national drinking water regulations or New Mexico State groundwater regulations. No individual surface water samples collected upstream from the mine contained concentrations of Ra-226 in excess of the permissible limits. Ra-226 concentrations in many individual samples collected from the Rio Paguate from near the mouth of the Rio Moquino to the sampling sites along the down-stream reach of the Rio Paguate, however, exceeded the recommended permissible concentration of Ra-226 for public drinking water supplies. After reclamation, most of the shallow groundwater probably will discharge to the natural stream channels draining the mine area. Groundwater quality may be monitored as: (1) Limited monitoring, in which only the change in water quality is determined as the groundwater flows from the mine; or (2) thorough monitoring, in which specific sources of possible contaminants are described

  11. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling.

    Science.gov (United States)

    McMillan, Lindsay A; Rivett, Michael O; Wealthall, Gary P; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting

  12. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling

    Science.gov (United States)

    McMillan, Lindsay A.; Rivett, Michael O.; Wealthall, Gary P.; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a

  13. Bacteriological assessment of urban water sources in Khamis Mushait Governorate, southwestern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sh AlOtaibi Eed L

    2009-03-01

    it is satisfactory for human drinking purposes. Contamination of desalinated water that is the main urban water source may occur during transportation from the desalination plant or in the house reservoir of the consumer. Improving and expanding the existing water treatment and sanitation systems is more likely to provide safe and sustainable sources of water over the long term. Strict hygienic measures should be applied to improve water quality and to avoid deleterious effects on public health, by using periodical monitoring programmes to detect sewage pollution running over local hydrological networks and valleys.

  14. Monitoring the waste water of LEP

    CERN Document Server

    Rühl, I

    1999-01-01

    Along the LEP sites CERN is discharging water of differing quality and varying amounts into the local rivers. This wastewater is not only process water from different cooling circuits but also water that infiltrates into the LEP tunnel. The quality of the discharged wastewater has to conform to the local environmental legislation of our Host States and therefore has to be monitored constantly. The most difficult aspect regarding the wastewater concerns LEP Point 8 owing to an infiltration of crude oil (petroleum), which is naturally contained in the soil along octant 7-8 of the LEP tunnel. This paper will give a short summary of the modifications made to the oil/water separation unit at LEP Point 8. The aim was to obtain a satisfactory oil/water separation and to install a monitoring system for a permanent measurement of the amount of hydrocarbons in the wastewater.

  15. Water: from the source to the treatment plan

    Science.gov (United States)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in

  16. G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management.

    Science.gov (United States)

    Birkett, C. M.; Ricko, M.; Beckley, B. D.; Yang, X.; Tetrault, R. L.

    2017-12-01

    G-REALM is a NASA/USDA funded operational program offering water-level products for lakes and reservoirs and these are currently derived from the NASA/CNES Topex/Jason series of satellite radar altimeters. The main stakeholder is the USDA/Foreign Agricultural Service (FAS) though many other end-users utilize the products for a variety of interdisciplinary science and operational programs. The FAS utilize the products within their CropExplorer Decision Support System (DSS) to help assess irrigation potential, and to monitor both short-term (agricultural) and longer-term (hydrological) drought conditions. There is increasing demand for a more global monitoring service that in particular, captures the variations in the smallest (1 to 100km2) reservoirs and water holdings in arid and semi-arid regions. Here, water resources are critical to both agriculture and regional security. A recent G-REALM 10-day resolution product upgrade and expansion has allowed for more accurate lake level products to be released and for a greater number of water bodies to be monitored. The next program phase focuses on the exploration of the enhanced radar altimeter data sets from the Cryosat-2 and Sentinel-3 missions with their improved spatial resolution, and the expansion of the system to the monitoring of 1,000 water bodies across the globe. In addition, a new element, the monitoring of surface water levels in wetland zones, is also being introduced. This aims to satisfy research and stakeholder requirements with respect to programs examining the links between inland fisheries catch potential and declining water levels, and to those monitoring the delicate balance between water resources, agriculture, and fisheries management in arid basins.

  17. Open Source Platform Application to Groundwater Characterization and Monitoring

    Science.gov (United States)

    Ntarlagiannis, D.; Day-Lewis, F. D.; Falzone, S.; Lane, J. W., Jr.; Slater, L. D.; Robinson, J.; Hammett, S.

    2017-12-01

    Groundwater characterization and monitoring commonly rely on the use of multiple point sensors and human labor. Due to the number of sensors, labor, and other resources needed, establishing and maintaining an adequate groundwater monitoring network can be both labor intensive and expensive. To improve and optimize the monitoring network design, open source software and hardware components could potentially provide the platform to control robust and efficient sensors thereby reducing costs and labor. This work presents early attempts to create a groundwater monitoring system incorporating open-source software and hardware that will control the remote operation of multiple sensors along with data management and file transfer functions. The system is built around a Raspberry PI 3, that controls multiple sensors in order to perform on-demand, continuous or `smart decision' measurements while providing flexibility to incorporate additional sensors to meet the demands of different projects. The current objective of our technology is to monitor exchange of ionic tracers between mobile and immobile porosity using a combination of fluid and bulk electrical-conductivity measurements. To meet this objective, our configuration uses four sensors (pH, specific conductance, pressure, temperature) that can monitor the fluid electrical properties of interest and guide the bulk electrical measurement. This system highlights the potential of using open source software and hardware components for earth sciences applications. The versatility of the system makes it ideal for use in a large number of applications, and the low cost allows for high resolution (spatially and temporally) monitoring.

  18. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.

    Science.gov (United States)

    Rathi, Shweta; Gupta, Rajesh

    2014-04-01

    Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.

  19. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  20. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  1. [Spatial and seasonal characterization of the drinking water from various sources in a peri-urban town of Salta].

    Science.gov (United States)

    Rodriguez-Alvarez, María S; Moraña, Liliana B; Salusso, María M; Seghezzo, Lucas

    Drinking water monitoring plans are important to characterize both treated and untreated water used for drinking purposes. Access to drinking water increased in recent years as a response to the Millennium Development Goals set for 2015. The new Sustainable Development Goals aim to ensure universal access to safe drinking water by 2030. Within the framework of these global goals, it is crucial to monitor local drinking water systems. In this paper, treated and untreated water from different sources currently consumed in a specific town in Salta, northern Argentina, was thoroughly assessed. Monitoring extended along several seasons and included the physical, chemical and microbiological variables recommended by the Argentine Food Code. On the one hand, treated water mostly complies with these standards, with some non-compliances detected during the rainy season. Untreated water, on the other hand, never meets microbiological standards and is unfit for human consumption. Monitoring seems essential to detect anomalies and help guarantee a constant provision of safe drinking water. New treatment plants are urgently needed to expand the water grid to the entire population. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Atomic Energy of Canada Limited monitoring tritiated water in air and water effluents

    International Nuclear Information System (INIS)

    Osborne, R.V.; Tepley, N.W

    1978-01-01

    Current on-line methods of monitoring effluents for tritium (as tritiated water, HTO) measure concentrations in air above 250 nCi/m 3 (approx. 10 kBq/m 3 ) and in water above 1 uCi/kg (approx. 40 kBq/kg). Some of the problems encountered in such monitoring are the presence of fission and activation products in the effluents and, particularly in water monitoring, the often dirty quality of the sample. In a new design of monitor, HTO is collected directly from air by a flow of liquid scintillator (LS). For water monitoring a flow of air continuously samples the water and transports HTO to the LS. The key features of the new design are that the high detection efficiency of LS is realizable, that the rate of use of LS is only approx. 2 mm 3 /s, that the controlled evaporation and metering of air provides the low flow of HTO needed for mixing with LS, and that accurate metering of a dirty effluent is not needed. The sensitivities for detecing tritium on-line are improved by at least an order of magnitude

  3. The Variation Characteristic of Sulfides and VOSc in a Source Water Reservoir and Its Control Using a Water-Lifting Aerator

    Directory of Open Access Journals (Sweden)

    Jian-Chao Shi

    2016-04-01

    Full Text Available Sulfides and volatile organic sulfur compounds (VOSc in water are not only malodorous but also toxic to humans and aquatic organisms. They cause serious deterioration in the ecological environment and pollute drinking water sources. In the present study, a source water reservoir—Zhoucun Reservoir in East China—was selected as the study site. Through a combination of field monitoring and in situ release experiments of sulfides, the characteristics of seasonal variation and distribution of sulfides and VOSc in the reservoir were studied, and the cause of the sulfide pollution was explained. The results show that sulfide pollution was quite severe in August and September 2014 in the Zhoucun Reservoir, with up to 1.59 mg·L−1 of sulfides in the lower layer water. The main source of sulfides is endogenous pollution. VOSc concentration correlates very well with that of sulfides during the summer, with a peak VOSc concentration of 44.37 μg·L−1. An installed water-lifting aeration system was shown to directly oxygenate the lower layer water, as well as mix water from the lower and the upper layers. Finally, the principle and results of controlling sulfides and VOSc in reservoirs using water-lifting aerators are clarified. Information about sulfides and VOSc fluctuation and control gained in this study may be applicable to similar reservoirs, and useful in practical water quality improvement and pollution prevention.

  4. Monitoring Water Quality in the Future, Volume 3: Biomonitoring

    NARCIS (Netherlands)

    Zwart D de; ECO

    1995-01-01

    In general terms the problems with the existing water quality monitoring approach concern effective and efficient monitoring strategies. In 1993 the project "Monitoring water quality in the future" started in order to address these problems which will only increase in the future. In the framework of

  5. Occurrence of anthropogenic organic compounds and nutrients in source and finished water in the Sioux Falls area, South Dakota, 2009-10

    Science.gov (United States)

    Hoogestraat, Galen K.

    2012-01-01

    Anthropogenic organic compounds (AOCs) in drinking-water sources commonly are derived from municipal, agricultural, and industrial wastewater sources, and are a concern for water-supply managers. A cooperative study between the city of Sioux Falls, S. Dak., and the U.S. Geological Survey was initiated in 2009 to (1) characterize the occurrence of anthropogenic organic compounds in the source waters (groundwater and surface water) to water supplies in the Sioux Falls area, (2) determine if the compounds detected in the source waters also are present in the finished water, and (3) identify probable sources of nitrate in the Big Sioux River Basin and determine if sources change seasonally or under different hydrologic conditions. This report presents analytical results of water-quality samples collected from source waters and finished waters in the Sioux Falls area. The study approach included the collection of water samples from source and finished waters in the Sioux Falls area for the analyses of AOCs, nutrients, and nitrogen and oxygen isotopes in nitrate. Water-quality constituents monitored in this study were chosen to represent a variety of the contaminants known or suspected to occur within the Big Sioux River Basin, including pesticides, pharmaceuticals, sterols, household and industrial products, polycyclic aromatic hydrocarbons, antibiotics, and hormones. A total of 184 AOCs were monitored, of which 40 AOCs had relevant human-health benchmarks. During 11 sampling visits, 45 AOCs (24 percent) were detected in at least one sample of source or finished water, and 13 AOCs were detected in at least 20 percent of all samples. Concentrations of detected AOCs were all less than 1 microgram per liter, except for two AOCs in multiple samples from the Big Sioux River, and one AOC in finished-water samples. Concentrations of AOCs were less than 0.1 microgram per liter in more than 75 percent of the detections. Nutrient concentrations varied seasonally in source-water

  6. Monitoring of water quality of selected wells in Brno district

    Directory of Open Access Journals (Sweden)

    Marková Jana

    2016-06-01

    Full Text Available The article deals with two wells in the country of Brno-district (Brčálka well and Well Olšová. The aim of work was monitoring of elementary parameters of water at regular monthly intervals to measure: water temperature, pH values, solubility oxygen and spring yield. According to the client's requirements (Lesy města Brno laboratory analyzes of selected parameters were done twice a year and their results were compared with Ministry of Health Decree no. 252/2004 Coll.. These parameters: nitrate, chemical oxygen demand (COD, calcium and magnesium and its values are presented in graphs, for ammonium ions and nitrite in the table. Graphical interpretation of spring yields dependence on the monthly total rainfall and dependence of water temperature on ambient temperature was utilized. The most important features of wells include a water source, a landmark in the landscape, aesthetic element or resting and relaxing place. Maintaining wells is important in terms of future generations.

  7. Tracing the source of emerging seepage water at failure slope downstream, Kampung Bharu Bukit Tinggi, Bentong, Pahang

    International Nuclear Information System (INIS)

    Lakam Mejus; Wan Zakaria Wan Mohd Tahir; Md Shahid Ayub; Jeremy Andy; Johari Latif

    2006-01-01

    This paper discusses method and monitoring result of the source of seepage water emerging (mud flow) at downstream toe of the failure slope at Kampung Bharu Bukit Tinggi, Bentong Pahang. In this investigation, a saline-tracer experiment was conducted by injecting its solution into a drain at an upstream section (old road to Janda Baik town) where a pipeline was found leaking in the vicinity of the roadside and flowing towards hill slopes. Some parts of flowing water was left undetected and seeped through the soil on its way to downstream area. Seepage water downstream was monitored by using a conductivity sensor hooked up to a CR10X data logger and optical back scattering conductivity probes. From the result, it is believed that the source of seepage water is related to the water from the leaking pipeline upstream. The travelling time for the leaking water to reach downstream slope failure was within 16-17 hours. Based on this preliminary investigation, one can conclude that seepage water is one of the main contributing factors that cause slope failure in the vicinity of the investigated hill slopes. Further investigation to understand the failure mechanism at this place by conducting multi-experimental approaches in different seasons, particularly during continuous rain storms. (Author)

  8. Automated Method for Monitoring Water Quality Using Landsat Imagery

    Directory of Open Access Journals (Sweden)

    D. Clay Barrett

    2016-06-01

    Full Text Available Regular monitoring of water quality is increasingly necessary to keep pace with rapid environmental change and protect human health and well-being. Remote sensing has been suggested as a potential solution for monitoring certain water quality parameters without the need for in situ sampling, but universal methods and tools are lacking. While many studies have developed predictive relationships between remotely sensed surface reflectance and water parameters, these relationships are often unique to a particular geographic region and have little applicability in other areas. In order to remotely monitor water quality, these relationships must be developed on a region by region basis. This paper presents an automated method for processing remotely sensed images from Landsat Thematic Mapper (TM and Enhanced Thematic Mapper Plus (ETM+ and extracting corrected reflectance measurements around known sample locations to allow rapid development of predictive water quality relationships to improve remote monitoring. Using open Python scripting, this study (1 provides an openly accessible and simple method for processing publicly available remote sensing data; and (2 allows determination of relationships between sampled water quality parameters and reflectance values to ultimately allow predictive monitoring. The method is demonstrated through a case study of the Ozark/Ouchita-Appalachian ecoregion in eastern Oklahoma using data collected for the Beneficial Use Monitoring Program (BUMP.

  9. Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers.

    Science.gov (United States)

    Metcalfe, Chris; Hoque, M Ehsanul; Sultana, Tamanna; Murray, Craig; Helm, Paul; Kleywegt, Sonya

    2014-03-01

    Contaminants of emerging concern (CEC) have been detected in drinking water world-wide. The source of most of these compounds is generally attributed to contamination from municipal wastewater. Traditional water sampling methods (grab or composite) often require the concentration of large amounts of water in order to detect trace levels of these contaminants. The Polar Organic Compounds Integrative Sampler (POCIS) is a passive sampling technology that has been developed to concentrate trace levels of CEC to provide time-weighted average concentrations for individual compounds in water. However, few studies to date have evaluated whether POCIS is suitable for monitoring contaminants in drinking water. In this study, the POCIS was evaluated as a monitoring tool for CEC in drinking water over a period of 2 and 4 weeks with comparisons to typical grab samples. Seven "indicator compounds" which included carbamazepine, trimethoprim, sulfamethoxazole, ibuprofen, gemfibrozil, estrone and sucralose, were monitored in five drinking water treatment plants (DWTPs) in Ontario. All indicator compounds were detected in raw water samples from the POCIS in comparison to six from grab samples. Similarly, four compounds were detected in grab samples of treated drinking water, whereas six were detected in the POCIS. Sucralose was the only compound that was detected consistently at all five plants. The POCIS technique provided integrative exposures of CECs in drinking water at lower detection limits, while episodic events were captured via traditional sampling methods. There was evidence that the accumulation of target compounds by POCIS is a dynamic process, with adsorption and desorption on the sorbent occurring in response to ambient levels of the target compounds in water. CECs in treated drinking water were present at low ng L(-1) concentrations, which are not considered to be a threat to human health.

  10. Contamination Control and Monitoring of Tap Water as Fluid in Industrial Tap Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1998-01-01

    Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems.......Presentation of results and methods addressed to contamination control and monitoring of tap water as fluid in tap water hydraulic systems....

  11. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring.

    Science.gov (United States)

    Gulson, Brian; Korsch, Michael; Winchester, Wayne; Devenish, Matthew; Hobbs, Thad; Main, Cleve; Smith, Gerard; Rosman, Kevin; Howearth, Lynette; Burn-Nunes, Laurie; Seow, Jimmy; Oxford, Cameron; Yun, Gracie; Gillam, Lindsay; Crisp, Michelle

    2012-01-01

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  12. Water quality monitoring for high-priority water bodies in the Sonoran Desert network

    Science.gov (United States)

    Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer

    2005-01-01

    This paper describes a network monitoring program for “high priority” water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...

  13. Volunteer water monitoring: A guide for state managers

    International Nuclear Information System (INIS)

    1990-08-01

    Contents: executive summary; volunteers in water monitoring; planning a volunteer monitoring program; implementing a volunteer monitoring program; providing credible information; costs and funding; and descriptions of five successful programs

  14. Monitoring water for radioactive releases in the United States

    International Nuclear Information System (INIS)

    Porter, C.R.; Broadway, J.A.; Kahn, B.

    1990-01-01

    The major radiological environmental monitoring programs for water in the United States are described. The applications of these programs for monitoring radioactive fallout, routine discharges from nuclear facilities, and releases due to accidents at such facilities are discussed, and some examples of measurements are presented. The programs monitor rainfall, surface water, and water supplies. Samples are usually collected and analyzed on a monthly or quarterly schedule, but the frequency is increased in response to emergencies. (author)

  15. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  16. Water Quality Monitoring in the Execution of Canal Remediation Methods in the Florida Keys

    Science.gov (United States)

    Serna, A.; Briceno, H.

    2016-02-01

    Monitoring data indicate relatively high nutrient concentrations in waters close to shore along the Florida Keys, and corresponding responses from the system, such as higher phytoplankton biomass, turbidity and light attenuation as well as lower oxygenation and lower salinities of the water column. These changes, associated to human impact, have become more obvious near canal mouths. Waters close to shore show characteristics closely related to those in residential canals, affected by quick movement of infiltrated runoff and wastewaters (septic tanks), tides and high water table. Many canals do not meet the minimum water quality (WQ) criteria established by the State of Florida and are a potential source of contaminants to near shore waters designated as Outstanding Florida Waters. Canal remediation is being conducted by the Monroe County targeting poor circulation and organic matter accumulation. The restoration technologies include reduction in weed wrack, enhanced circulation, organic removal and partial backfilling. The objective of WQ monitoring is to measure the status and trends of WQ parameters to evaluate progress toward achieving and maintaining WQ standards and protecting/restoring the living marine resources. Monitoring followed a Before-and-After-Control-Impact scheme (BACI). Field measurements, included diel observations and vertical profiles of physical-chemical properties (salinity, DO, %DO saturation, temperature and turbidity) and nutrient analysis. Comparing profiles between remediated and control canals indicated similar patterns in physicochemical properties, and suggesting larger seasonal than spatial variability. BACI diel observations, in surface and bottom waters of remediated canals indicated little difference for surface waters, but significant improvements for bottom waters. Most surface waters are well oxygenated, while bottom waters show a significant increase in DO following culvert installation.

  17. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, Taner [ORNL; March-Leuba, Jose A [ORNL; Powell, Danny H [ORNL; Nelson, Dennis [Sandia National Laboratories (SNL); Radev, Radoslav [Lawrence Livermore National Laboratory (LLNL)

    2007-12-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the {sup 235}U fissile mass flow of UF{sub 6} gas streams by using {sup 252}Cf neutron sources for fission activation of the UF{sub 6} gas and by measuring the fission products in the flow. The {sup 252}Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life ({approx} 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  18. Implementation of the Fissile Mass Flow Monitor Source Verification and Confirmation

    International Nuclear Information System (INIS)

    Uckan, Taner; March-Leuba, Jose A.; Powell, Danny H.; Nelson, Dennis; Radev, Radoslav

    2007-01-01

    This report presents the verification procedure for neutron sources installed in U.S. Department of Energy equipment used to measure fissile material flow. The Fissile Mass Flow Monitor (FMFM) equipment determines the 235 U fissile mass flow of UF 6 gas streams by using 252 Cf neutron sources for fission activation of the UF 6 gas and by measuring the fission products in the flow. The 252 Cf sources in each FMFM are typically replaced every 2 to 3 years due to their relatively short half-life (∼ 2.65 years). During installation of the new FMFM sources, the source identity and neutronic characteristics provided by the manufacturer are verified with the following equipment: (1) a remote-control video television (RCTV) camera monitoring system is used to confirm the source identity, and (2) a neutron detection system (NDS) is used for source-strength confirmation. Use of the RCTV and NDS permits remote monitoring of the source replacement process and eliminates unnecessary radiation exposure. The RCTV, NDS, and the confirmation process are described in detail in this report.

  19. Monitoring and Analysis of Nonpoint Source Pollution - Case study on terraced paddy fields in an agricultural watershed

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin

    2013-04-01

    The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords

  20. Evaluation of Nonpoint-Source Contamination, Wisconsin: Selected Topics for Water Year 1995

    Science.gov (United States)

    Owens, D.W.; Corsi, Steven R.; Rappold, K.F.

    1997-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP's) for controlling nonpoint-source contamination in eight rural and four urban watersheds. This report, the fourth in an annual series of reports, presents a summary of the data collected for the program by the U.S. Geological Survey and the results of several detailed analyses of the data. To complement assessments of water quality, a land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track nonpoint sources of contamination in each watershed and to document implementation of BMP's that were designed to cause changes in the water quality of streams. Each year, updated information is gathered, mapped, and stored in a geographic-information-system data base. Summaries of land-use, BMP implementation, and water-quality data collected during water years 1989-95 are presented. Storm loads, snowmelt-period loads, and annual loads of suspended sediment and total phosphorus are summarized for eight rural sites. Storm-load data for suspended solids, total phosphorus, total recoverable lead, copper, zinc, and cadmium are summarized for four urban sites. Quality-assurance and quality-control (QA/QC) samples were collected at the eight rural sites to evaluate inorganic sample contamination and at one urban site to evaluate sample-collection and filtration techniques for polycyclic aromatic hydrocarbons (PAR's). Some suspended solids and fecal coliform contamination was detected at the rural sites. Corrective actions will be taken to address this contamination. Evaluation of PAR sample-collection techniques did not uncover any deficiencies, but the small amount of data collected was not sufficient to draw any definite conclusions. Evaluation of PAR filtration techniques indicate that water-sample filtration with O.7-um glass-fiber filters in an aluminum filter unit does not result in significant loss

  1. Boiling water reactor life extension monitoring

    International Nuclear Information System (INIS)

    Stancavage, P.

    1991-01-01

    In 1991 the average age of GE-supplied Boiling Water Reactors (BWRs) reached 15 years. The distribution of BWR ages range from three years to 31 years. Several of these plants have active life extension programmes, the most notable of which is the Monticello plant in Minnesota which is the leading BWR plant for license renewal in the United States. The reactor pressure vessel and its internals form the heart of the boiling water reactor (BWR) power plant. Monitoring the condition of the vessel as it operates provides a continuous report on the structural integrity of the vessel and internals. Monitors for fatigue, stress corrosion and neutron effects can confirm safety margins and predict residual life. Every BWR already incorporates facilities to track the key aging mechanisms of fatigue, stress corrosion and neutron embrittlement. Fatigue is measured by counting the cycles experienced by the pressure vessel. Stress corrosion is gauged by periodic measurements of primary water conductivity and neutron embrittlement is tracked by testing surveillance samples. The drawbacks of these historical procedures are that they are time consuming, they lag the current operation, and they give no overall picture of structural integrity. GE has developed an integrated vessel fitness monitoring system to fill the gaps in the historical, piecemetal monitoring of the BWR vessel and internals and to support plant life extension. (author)

  2. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  3. A Water Quality Monitoring Programme for Schools and Communities

    Science.gov (United States)

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the…

  4. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Science.gov (United States)

    2010-07-01

    ... § 141.87 Monitoring requirements for water quality parameters. All large water systems, and all small- and medium-size systems that exceed the lead or copper action level shall monitor water quality... methods. (i) Tap samples shall be representative of water quality throughout the distribution system...

  5. Source Areas of Water and Nitrate in a Peatland Catchment, Minnesota, USA

    Science.gov (United States)

    Sebestyen, S. D.

    2017-12-01

    In nitrogen polluted forests, stream nitrate concentrations increase and some unprocessed atmospheric nitrate may be transported to streams during stormflow events. This understanding has emerged from forests with upland mineral soils. In contrast, catchments with northern peatlands may have both upland soils and lowlands with deep organic soils, each with unique effects on nitrate transport and processing. While annual budgets show nitrate yields to be relatively lower from peatland than upland-dominated catchments, little is known about particular runoff events when stream nitrate concentrations have been higher (despite long periods with little or no nitrate in outlet streams) or the reasons why. I used site knowledge and expansive/extensive monitoring at the Marcell Experimental Forest in Minnesota, along with a targeted 2-year study to determine landscape areas, water sources, and nitrate sources that affected stream nitrate variation in a peatland catchment. I combined streamflow, upland runoff, snow amount, and frost depth data from long-term monitoring with nitrate concentration, yield, and isotopic data to show that up to 65% of stream nitrate during snowmelt of 2009 and 2010 was unprocessed atmospheric nitrate. Up to 46% of subsurface runoff from upland soils during 2009 was unprocessed atmospheric nitrate, which shows the uplands to be a stream nitrate source during 2009, but not during 2010 when upland runoff concentrations were below the detection limit. Differences are attributable to variations in water and nitrate sources. Little snow (a nitrate source), less upland runoff relative to peatland runoff, and deeper soil frost in the peatland caused a relatively larger input of nitrate from the uplands to the stream during 2009 and the peatland to the stream during 2010. Despite the near-absence of stream nitrate during much of rest of the year, these findings show an important time when nitrate transport affected downstream aquatic ecosystems, reasons

  6. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  7. A Review of In-Situ and Remote Sensing Technologies to Monitor Water and Sanitation Interventions

    Directory of Open Access Journals (Sweden)

    Luis Andres

    2018-06-01

    Full Text Available The United Nations Sustainable Development Goals (SDGs, announced in September 2015, present a vision of achieving a higher level of human health and well-being worldwide by the year 2030. The SDG targets specific to water and sanitation call for more detailed monitoring and response to understand the coverage and quality of safely managed sources. It is hoped that improved monitoring of water and sanitation interventions will reveal more cost-effective and efficient ways of meeting the SDGs. In this paper, we review the landscape of approaches that can be used to support and improve on the water and sanitation targets SDG 6.1, “By 2030, achieve universal and equitable access to safe and affordable drinking water for all”, and SDG 6.2, “By 2030, achieve access to adequate and equitable sanitation and hygiene for all and end open defecation, paying special attention to the needs of women and girls and those in vulnerable situations”.

  8. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  9. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Guodong Sun

    2013-12-01

    Full Text Available This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source, which monitors the corrosion events in reinforced concrete (RC structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  10. Events as power source: wireless sustainable corrosion monitoring.

    Science.gov (United States)

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  11. Atmosphere and water quality monitoring on Space Station Freedom

    Science.gov (United States)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  12. Near real time water quality monitoring of Chivero and Manyame lakes of Zimbabwe

    Directory of Open Access Journals (Sweden)

    R. Muchini

    2018-05-01

    Full Text Available Zimbabwe's water resources are under pressure from both point and non-point sources of pollution hence the need for regular and synoptic assessment. In-situ and laboratory based methods of water quality monitoring are point based and do not provide a synoptic coverage of the lakes. This paper presents novel methods for retrieving water quality parameters in Chivero and Manyame lakes, Zimbabwe, from remotely sensed imagery. Remotely sensed derived water quality parameters are further validated using in-situ data. It also presents an application for automated retrieval of those parameters developed in VB6, as well as a web portal for disseminating the water quality information to relevant stakeholders. The web portal is developed, using Geoserver, open layers and HTML. Results show the spatial variation of water quality and an automated remote sensing and GIS system with a web front end to disseminate water quality information.

  13. Procedures for the collection and preservation of groundwater and surface water samples and for the installation of monitoring wells

    International Nuclear Information System (INIS)

    Korte, N.; Kearl, P.

    1984-01-01

    Proper sampling procedures are essential for a successful water-quality monitoring program. It must be emphasized, however, that it is impossible to maintain absolutely in-situ conditions when collecting and preserving a water sample, whether from a flowing stream or an aquifer. Consequently, the most that can reasonably be expected is to collect a best possible sample with minimal disturbance. This document describes procedures for installing monitoring wells and for collecting samples of surface water and groundwater. The discussion of monitoring wells includes mention of multilevel sampling and a general overview of vadose-zone monitoring. Guidelines for well installation are presented in detail. The discussion of water-sample collection contains evaluations of sampling pumps, filtration equipment, and sample containers. Sample-preservation techniques, as published by several government and private sources, are reviewed. Finally, step-by-step procedures for collection of water samples are provided; these procedures address such considerations as necessary equipment, field operations, and written documentation. Separate procedures are also included for the collection of samples for determination of sulfide and for reactive aluminum. The report concludes with a brief discussion of adverse sampling, conditions that may significantly affect the quality of the data. Appendix A presents a rationale for the development and use of statistical considerations in water sampling to ensure a more complete water quality monitoring program. 51 references, 9 figures, 4 tables

  14. In vitro bioanalysis of drinking water from source to tap.

    Science.gov (United States)

    Rosenmai, Anna Kjerstine; Lundqvist, Johan; le Godec, Théo; Ohlsson, Åsa; Tröger, Rikard; Hellman, Björn; Oskarsson, Agneta

    2018-08-01

    The presence of chemical pollutants in sources of drinking water is a key environmental problem threatening public health. Efficient removal of pollutants in drinking water treatment plants (DWTPs) is needed as well as methods for assessment of the total impact of all present chemicals on water quality. In the present study we have analyzed the bioactivity of water samples from source to tap, including effects of various water treatments in a DWTP, using a battery of cell-based bioassays, covering health-relevant endpoints. Reporter gene assays were used to analyze receptor activity of the aryl hydrocarbon receptor (AhR), estrogen receptor (ER), androgen receptor (AR), peroxisome proliferator-activated receptor alpha (PPARα) and induction of oxidative stress by the nuclear factor erythroid 2-related factor 2 (Nrf2). DNA damage was determined by Comet assay. Grab water samples were concentrated by HLB or ENV solid phase extraction and the water samples assayed at a relative enrichment factor of 50. The enrichment procedure did not induce any bioactivity. No bioactivity was detected in Milli-Q water or drinking water control samples. Induction of AhR, ER and Nrf2 activities was revealed in source to tap water samples. No cytotoxicity, PPARα or AR antagonist activity, or DNA damage were observed in any of the water samples. A low AR agonist activity was detected in a few samples of surface water, but not in the samples from the DWTP. The treatment steps at the DWTP, coagulation, granulated activated carbon filtration, UV disinfection and NH 2 Cl dosing had little or no effect on the AhR, Nrf2 and ER bioactivity. However, nanofiltration and passage through the distribution network drastically decreased AhR activity, while the effect on Nrf2 activity was more modest and no apparent effect was observed on ER activity. The present results suggest that bioassays are useful tools for evaluation of the efficiency of different treatment steps in DWTPs in reducing toxic

  15. Changes in water quality along the course of a river - Classic monitoring versus patrol monitoring

    Science.gov (United States)

    Absalon, Damian; Kryszczuk, Paweł; Rutkiewicz, Paweł

    2017-11-01

    Monitoring of water quality is a tool necessary to assess the condition of waterbodies in order to properly formulate water management plans. The paper presents the results of patrol monitoring of a 40-kilometre stretch of the Oder between Racibórz and Koźle. It has been established that patrol monitoring is a good tool for verifying the distribution of points of classic stationary monitoring, particularly in areas subject to varied human impact, where tributaries of the main river are very diversified as regards hydrochemistry. For this reason the results of operational monitoring carried out once every few years may not be reliable and the presented condition of the monitored waterbodies may be far from reality.

  16. Ballast Water Self Monitoring

    Science.gov (United States)

    2011-11-01

    Hydrogen peroxide  Menadione /Vitamin K The efficacy of these processes varies by water conditions such as pH, temperature and, most significantly...Hydrocyclone power consumption, voltage and current Hydrocyclone power consumption, voltage and current Menadione /Vitamin K Menadione Chemical analysis...and treatment monitoring - Menadione /Vitamin K concentration at injection - Menadione /Vitamin K dosage and usage - Menadione /Vitamin K

  17. Spatial assessment and source identification of heavy metals pollution in surface water using several chemometric techniques.

    Science.gov (United States)

    Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Zain, Sharifuddin Md; Habir, Nur Liyana Abdul; Retnam, Ananthy; Kamaruddin, Mohd Khairul Amri; Umar, Roslan; Azid, Azman

    2016-05-15

    This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time. The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  19. Feasibility study of the water Cherenkov detector as a D-T fusion power monitor in the system using neutron activation of flowing water. First experimental phase

    International Nuclear Information System (INIS)

    Verzilov, Yury M.; Ochiai, Kentaro; Nishitani, Takeo

    2003-09-01

    The technique of monitoring D-T neutrons using water flow is based on the reaction of the 16 O(n, p) 16 N. In order to significantly improve the D-T neutron monitoring system in the ITER reactor in comparison with the system that uses a γ-ray scintillation detector, a new approach was proposed. The basic idea of this approach is to utilize the Cherenkov light, produced by energetic β-particles from 16 N in water near the first wall of the fusion reactor, and then deliver the light by the optical fiber to the remote light detector. The proof of the principle experiment is divided into two phases. The main idea of the first experimental phase is to examine Cherenkov light measurements using a remotely located water and light detector. During the second phase the water radiator will be placed next to the neutron source, then the Cherenkov light will be transferred by an optical fiber to the remotely located light detector. For the purpose of the first experimental phase, a water Cherenkov detector was installed in the shielded measurement room. A closed water loop, with circulating water, was used to transport 16 N from the D-T source to the Cherenkov detector. The experiment was carried out at FNS/JAERI, with the accelerator set to a direct current mode, the source neutron yield around 2 x 10 11 n/s, and the water flowage approximately 2 m/s. The registered Cherenkov signal was identified as the light produced by β-particles from 16 N using the time decay and the energy spectra data. According to the present study, the water Cherenkov detector is very effective for measurements of the 16 N activity, due to high counting efficiency, absence of the scintillation detector and simplicity of the method. (author)

  20. A miniature discriminating monitor for tritiated water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R.A.H.; Ravazzani, A.; Pacenti, P. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy); Campi, F. [Nuclear Engineering Dept., Polytechnic of Milan (Italy)

    1998-07-01

    In detecting tritium in air (or other gas) for worker safety, it is important to discriminate between tritiated water vapour and elemental tritium, because the first is much more easily absorbed in the lungs. We haveinvented (patent pending) an innovative discriminating monitor which works better than existing designs, and is much smaller. The air (or other sample gas) passes over a large surface area of solid scintillator, which is surface-treated to make it hygroscopic. Tritiated water vapour in the air exchanges continuously, rapidly and reversibly with the water in the thin hygroscopic layer; which is of the order of 1 micron thick. The beta-emissions from tritium in the hygroscopic layer hit the solid scintillator, causing flashes of light that are detected by a photomultiplier. The new discriminating monitor for tritiated species in air offers superior performance to existing discriminating monitors, and is much smaller. It is planned to develop a portable version which could serve as a personal tritium monitor. (authors)

  1. Optimizing the Energy and Throughput of a Water-Quality Monitoring System.

    Science.gov (United States)

    Olatinwo, Segun O; Joubert, Trudi-H

    2018-04-13

    This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near-far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.

  2. Is drinking water from 'improved sources' really safe? A case study in the Logone valley (Chad-Cameroon).

    Science.gov (United States)

    Sorlini, S; Palazzini, D; Mbawala, A; Ngassoum, M B; Collivignarelli, M C

    2013-12-01

    Within a cooperation project coordinated by the Association for Rural Cooperation in Africa and Latin America (ACRA) Foundation, water supplies were sampled across the villages of the Logone valley (Chad-Cameroon) mostly from boreholes, open wells, rivers and lakes as well as from some piped water. Microbiological analyses and sanitary inspections were carried out at each source. The microbiological quality was determined by analysis of indicators of faecal contamination, Escherichia coli, Enterococci and Salmonellae, using the membrane filtration method. Sanitary inspections were done using WHO query forms. The assessment confirmed that there are several parameters of health concern in the studied area; bacteria of faecal origins are the most significant. Furthermore, this study demonstrated that Joint Monitoring Programme (JMP) classification and E. coli measurement are not sufficient to state water safety. In fact, in the studied area, JMP defined 'improved sources' may provide unsafe water depending on their structure and sources without E. coli may have Enterococci and Salmonellae. Sanitary inspections also revealed high health risks for some boreholes. In other cases, sources with low sanitary risk and no E. coli were contaminated by Enterococci and Salmonellae. Better management and protection of the sources, hygiene improvement and domestic water treatment before consumption are possible solutions to reduce health risks in the Logone valley.

  3. Type 2 diabetes and impaired glucose tolerance are associated with word memory source monitoring recollection deficits but not simple recognition familiarity deficits following water, low glycaemic load, and high glycaemic load breakfasts.

    Science.gov (United States)

    Lamport, Daniel J; Lawton, Clare L; Mansfield, Michael W; Moulin, Chris A J; Dye, Louise

    2014-01-30

    It has been established that type 2 diabetes, and to some extent, impaired glucose tolerance (IGT), are associated with general neuropsychological impairments in episodic memory. However, the effect of abnormalities in glucose metabolism on specific retrieval processes such as source monitoring has not been investigated. The primary aim was to investigate the impact of type 2 diabetes and IGT on simple word recognition (familiarity) and complex source monitoring (recollection). A secondary aim was to examine the effect of acute breakfast glycaemic load manipulations on episodic memory. Data are presented from two separate studies; (i) 24 adults with type 2 diabetes and 12 controls aged 45-75years, (ii) 18 females with IGT and 47 female controls aged 30-50years. Controls were matched for age, IQ, BMI, waist circumference, and depression. Recognition of previously learned words and memory for specifically which list a previously learned word had appeared in (source monitoring) was examined at two test sessions during the morning after consumption of low glycaemic load, high glycaemic load and water breakfasts according to a counterbalanced, crossover design. Type 2 diabetes (pglucose metabolism are not detrimental for global episodic memory processes. This enhances our understanding of how metabolic disorders are associated with memory impairments. © 2013.

  4. Loads and yields of deicing compounds and total phosphorus in the Cambridge drinking-water source area, Massachusetts, water years 2009–15

    Science.gov (United States)

    Smith, Kirk P.

    2017-09-12

    The source water area for the drinking-water supply of the city of Cambridge, Massachusetts, encompasses major transportation corridors, as well as large areas of light industrial, commercial, and residential land use. Because of the large amount of roadway in the drinking-water source area, the Cambridge water supply is affected by the usage of deicing compounds and by other constituents that are flushed from such impervious areas. The U.S. Geological Survey (USGS) has monitored surface-water quality in the Cambridge Reservoir and Stony Brook Reservoir Basins, which compose the drinking-water source area, since 1997 (water year 1998) through continuous monitoring and the collection of stream-flow samples.In a study conducted by the USGS, in cooperation with the City of Cambridge Water Department, concentrations and loads of calcium (Ca), chloride (Cl), magnesium (Mg), sodium (Na), and sulfate (SO4) were estimated from continuous records of specific conductance and streamflow for streams and tributaries at 10 continuous water-quality monitoring stations. These data were used to characterize current (2015) water-quality conditions, estimate loads and yields, and describe trends in Cl and Na in the tributaries and main-stem streams in the Cambridge Reservoir and Stony Brook Reservoir Basins. These data also were used to describe how stream-water quality is related to various basin characteristics and provide information to guide future management of the drinking-water source area.Water samples from 2009–15 were analyzed for physical properties and concentrations of Ca, Cl, Mg, Na, potassium (K), SO4, and total phosphorus (TP). Values of physical properties and constituent concentrations varied widely, particularly in composite samples of stormflow from tributaries that have high percentages of constructed impervious areas. Median concentrations of Ca, Cl, Mg, Na, and K in samples collected from the tributaries in the Cambridge Reservoir Basin (27.2, 273, 4.7, 154

  5. Challenges with secondary use of multi-source water-quality data in the United States

    Science.gov (United States)

    Sprague, Lori A.; Oelsner, Gretchen P.; Argue, Denise M.

    2017-01-01

    Combining water-quality data from multiple sources can help counterbalance diminishing resources for stream monitoring in the United States and lead to important regional and national insights that would not otherwise be possible. Individual monitoring organizations understand their own data very well, but issues can arise when their data are combined with data from other organizations that have used different methods for reporting the same common metadata elements. Such use of multi-source data is termed “secondary use”—the use of data beyond the original intent determined by the organization that collected the data. In this study, we surveyed more than 25 million nutrient records collected by 488 organizations in the United States since 1899 to identify major inconsistencies in metadata elements that limit the secondary use of multi-source data. Nearly 14.5 million of these records had missing or ambiguous information for one or more key metadata elements, including (in decreasing order of records affected) sample fraction, chemical form, parameter name, units of measurement, precise numerical value, and remark codes. As a result, metadata harmonization to make secondary use of these multi-source data will be time consuming, expensive, and inexact. Different data users may make different assumptions about the same ambiguous data, potentially resulting in different conclusions about important environmental issues. The value of these ambiguous data is estimated at \\$US12 billion, a substantial collective investment by water-resource organizations in the United States. By comparison, the value of unambiguous data is estimated at \\$US8.2 billion. The ambiguous data could be preserved for uses beyond the original intent by developing and implementing standardized metadata practices for future and legacy water-quality data throughout the United States.

  6. Ammonia pollution characteristics of centralized drinking water sources in China.

    Science.gov (United States)

    Fu, Qing; Zheng, Binghui; Zhao, Xingru; Wang, Lijing; Liu, Changming

    2012-01-01

    The characteristics of ammonia in drinking water sources in China were evaluated during 2005-2009. The spatial distribution and seasonal changes of ammonia in different types of drinking water sources of 22 provinces, 5 autonomous regions and 4 municipalities were investigated. The levels of ammonia in drinking water sources follow the order of river > lake/reservoir > groundwater. The levels of ammonia concentration in river sources gradually decreased from 2005 to 2008, while no obvious change was observed in the lakes/reservoirs and groundwater drinking water sources. The proportion of the type of drinking water sources is different in different regions. In river drinking water sources, the ammonia level was varied in different regions and changed seasonally. The highest value and wide range of annual ammonia was found in South East region, while the lowest value was found in Southwest region. In lake/reservoir drinking water sources, the ammonia levels were not varied obviously in different regions. In underground drinking water sources, the ammonia levels were varied obviously in different regions due to the geological permeability and the natural features of regions. In the drinking water sources with higher ammonia levels, there are enterprises and wastewater drainages in the protected areas of the drinking water sources.

  7. Land Cover Monitoring for Water Resources Management in Angola

    Science.gov (United States)

    Miguel, Irina; Navarro, Ana; Rolim, Joao; Catalao, Joao; Silva, Joel; Painho, Marco; Vekerdy, Zoltan

    2016-08-01

    The aim of this paper is to assess the impact of improved temporal resolution and multi-source satellite data (SAR and optical) on land cover mapping and monitoring for efficient water resources management. For that purpose, we developed an integrated approach based on image classification and on NDVI and SAR backscattering (VV and VH) time series for land cover mapping and crop's irrigation requirements computation. We analysed 28 SPOT-5 Take-5 images with high temporal revisiting time (5 days), 9 Sentinel-1 dual polarization GRD images and in-situ data acquired during the crop growing season. Results show that the combination of images from different sources provides the best information to map agricultural areas. The increase of the images temporal resolution allows the improvement of the estimation of the crop parameters, and then, to calculate of the crop's irrigation requirements. However, this aspect was not fully exploited due to the lack of EO data for the complete growing season.

  8. [Explicit memory for type font of words in source monitoring and recognition tasks].

    Science.gov (United States)

    Hatanaka, Yoshiko; Fujita, Tetsuya

    2004-02-01

    We investigated whether people can consciously remember type fonts of words by methods of examining explicit memory; source-monitoring and old/new-recognition. We set matched, non-matched, and non-studied conditions between the study and the test words using two kinds of type fonts; Gothic and MARU. After studying words in one way of encoding, semantic or physical, subjects in a source-monitoring task made a three way discrimination between new words, Gothic words, and MARU words (Exp. 1). Subjects in an old/new-recognition task indicated whether test words were previously presented or not (Exp. 2). We compared the source judgments with old/new recognition data. As a result, these data showed conscious recollection for type font of words on the source monitoring task and dissociation between source monitoring and old/new recognition performance.

  9. Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and other districts in Punjab, Pakistan.

    Science.gov (United States)

    Arshad, Nasima; Imran, Saiqa

    2017-01-01

    High levels of arsenic contamination in drinking water of two villages, Badarpur and Ibrahimabad of district Kasur, central Punjab, Pakistan is reported first time in present studies. Groundwater quality situation was found to be impaired when samples of different rural areas of district Kasur were monitored according to Pakistan Standards and Quality Control Authority (PSQCA) for all significant water quality constituents and analyzed for trace elements, physico-chemical, and microbiological parameters. Out of 35water sources, 97 % were found unsafe and only 3 % of the sources were within safe limits. High concentrations of arsenic, fluoride, and bacteria were found in 91, 74, and 77 % sources of drinking water, respectively. Very high concentrations of arsenic ranging 58-3800 μg/L were found in the water samples obtained from Badarpur and Ibrahimabad. A decrease in water contamination was observed with increase in source depth. The health issues like arsenicosis and skeletal/dental flourosis were observed in the residents of the monitored areas. Drinking water quality conditions of some rural areas of northen and southern districts of Punjab was also analyzed and compared with Kasur district. High levels of nitrates were found in the samples of Islamabad and Rawalpindi, while high levels of arsenic, iron, fluoride, and TDS were found in Bahawalpur district. Graphical abstract ᅟ.

  10. Radiological monitoring. Controlling surface water pollution

    International Nuclear Information System (INIS)

    Morin, Maxime

    2018-01-01

    Throughout France, surface waters (from rivers to brooks) located at the vicinity of nuclear or industrial sites, are subject to regular radiological monitoring. An example is given with the radiological monitoring of a small river near La Hague Areva's plant, where contaminations have been detected with the help of the French IRSN nuclear safety research organization. The sampling method and various measurement types are described

  11. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2015-08-01

    Full Text Available Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection; with this method, the flanking interference can be reduced and the detection distance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1 available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM, (2 high-resolution detection method in holes, (3 four-dimensional (4D monitoring technology for water inrush sources, and (4 estimation of water volume in water-bearing structures.

  12. Monitoring variable X-ray sources in nearby galaxies

    Science.gov (United States)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  13. Mechano-Magnetic Telemetry for Underground Water Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Daniel Orfeo

    2018-06-01

    Full Text Available This study reports on the theory of operation, design principles, and results from laboratory and field tests of a magnetic telemetry system for communication with underground infrastructure sensors using rotating permanent magnets as the sources and compact magnetometers as the receivers. Many cities seek ways to monitor underground water pipes with centrally managed Internet of Things (IoT systems. This requires the development of numerous reliable low-cost wireless sensors, such as moisture sensors and flow meters, which can transmit information from subterranean pipes to surface-mounted receivers. Traditional megahertz radio communication systems are often unable to penetrate through multiple feet of earthen and manmade materials and have impractically large energy requirements which preclude the use of long-life batteries, require complex (and expensive built-in energy harvesting systems, or long leads that run antennas near to the surface. Low-power magnetic signaling systems do not suffer from this drawback: low-frequency electromagnetic waves readily penetrate through several feet of earth and water. Traditional magnetic telemetry systems that use energy-inefficient large induction coils and antennas as sources and receivers are not practical for underground IoT-type sensing applications. However, rotating a permanent magnet creates a completely reversing oscillating magnetic field. The recent proliferation of strong rare-earth permanent magnets and high-sensitivity magnetometers enables alternative magnetic telemetry system concepts with significantly more compact formats and lower energy consumption. The system used in this study represents a novel combination of megahertz radio and magnetic signaling techniques for the purposes of underground infrastructure monitoring. In this study, two subterranean infrastructure sensors exploit this phenomenon to transmit information to an aboveground radio-networked magnetometer receiver. A flow

  14. Water: from the source to the treatment plan

    Science.gov (United States)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment

  15. Using high frequency CDOM hyperspectral absorption to fingerprint river water sources

    Science.gov (United States)

    Beckler, J. S.; Kirkpatrick, G. J.; Dixon, L. K.; Milbrandt, E. C.

    2016-12-01

    Quantifying riverine carbon transfer from land to sea is complicated by variability in dissolved organic carbon (DOC), closely-related dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) concentrations, as well as in the composition of the freshwater end members of multiple drainage basins and seasons. Discrete measurements in estuaries have difficulty resolving convoluted upstream watershed dynamics. Optical measurements, however, can provide more continuous data regarding the molecular composition and concentration of the CDOM as it relates to river flow, tidal mixing, and salinity and may be used to fingerprint source waters. For the first time, long-term, hyperspectral CDOM measurements were obtained on filtered Caloosahatchee River estuarine waters using an in situ, long-pathlength spectrophotometric instrument, the Optical Phytoplankton Discriminator (OPD). Through a collaborative monitoring effort among partners within the Gulf of Mexico Coastal Ocean Observing System (GCOOS), ancillary measurements of fluorescent DOM (FDOM) and water quality parameters were also obtained from co-located instrumentation at high frequency. Optical properties demonstrated both short-term (hourly) tidal variations and long-term (daily - weekly) variations corresponding to changes in riverine flow and salinity. The optical properties of the river waters are demonstrated to be a dilution-adjusted linear combination of the optical properties of the source waters comprising the overall composition (e.g. Lake Okeechobee, watershed drainage basins, Gulf of Mexico). Overall, these techniques are promising as a tool to more accurately constrain the carbon flux to the ocean and to predict the optical quality of coastal waters.

  16. Water quality monitoring: a case study of water pollution in minna ...

    African Journals Online (AJOL)

    This work investigates the level of purity in Minna water and its environs. Water samples were collected from four water sources; Federal University of Technology (FUT), Minna water tank (Treated water), Maikunkele (Borehole), Chanchaga (Water treatment plant) and Tagwai dam (Raw). The following analyses of pH, Total ...

  17. Source term estimation via monitoring data and its implementation to the RODOS system

    International Nuclear Information System (INIS)

    Bohunova, J.; Duranova, T.

    2000-01-01

    A methodology and computer code for interpretation of environmental data, i.e. source term assessment, from on-line environmental monitoring network was developed. The method is based on the conversion of measured dose rates to the source term, i.e. airborne radioactivity release rate, taking into account real meteorological data and location of the monitoring points. The bootstrap estimation methodology and bipivot method to estimate the source term from on-site gamma dose rate monitors is used. The mentioned methods provide an estimate of the mean value of the source term and a confidence interval for it. (author)

  18. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring.

    Science.gov (United States)

    Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de

    2017-11-05

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.

  19. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Tongxin Shu

    2017-11-01

    Full Text Available Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA, while achieving around the same Normalized Mean Error (NME, DDASA is superior in saving 5.31% more battery energy.

  20. An Expert System Applied in Construction Water Quality Monitoring

    OpenAIRE

    Leila Ooshaksaraie; Noor E.A. Basri

    2011-01-01

    Problem statement: An untoward environmental impact of urban growth in Malaysia has been deterioration in a number of watercourses due to severe siltation and other pollutants from the construction site. Water quality monitoring is a plan for decision makers to take into account the adverse impacts of construction activities on the receiving water bodies. It is also a process for collecting the construction water quality monitoring, baseline data and standard level. Approa...

  1. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  2. All-Sky Monitoring of Variable Sources with Fermi GBM

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Cherry, Michael L.; Case, Gary L.; Camero-Arranz, Ascension; Chaplin, Vandiver; Connaughton, Valerie; Finger, Mark H.; Jenke, Pater; Rodi, James C.; Baumgartner, Wayne H.; hide

    2011-01-01

    This slide presentation reviews the monitoring of variable sources with the Fermi Gamma Ray Burst Monitor (GBM). It reviews the use of the Earth Occultation technique, the observations of the Crab Nebula with the GBM, and the comparison with other satellite's observations. The instruments on board the four satellites indicate a decline in the Crab from 2008-2010.

  3. Environmental, political, and economic determinants of water quality monitoring in Europe

    Science.gov (United States)

    Beck, Lucas; Bernauer, Thomas; Kalbhenn, Anna

    2010-11-01

    Effective monitoring is essential for effective pollution control in national and international water systems. To what extent are countries' monitoring choices driven by environmental criteria, as they should be? And to what extent are they also influenced by other factors, such as political and economic conditions? To address these questions, we describe and explain the evolution of one of the most important international environmental monitoring networks in Europe, the one for water quality, in the time period 1965-2004. We develop a geographic information system that contains information on the location of several thousand active monitoring stations in Europe. Using multivariate statistics, we then examine whether and to what extent the spatial and temporal clustering of monitoring intensity is driven by environmental, political, and economic factors. The results show that monitoring intensity is higher in river basins exposed to greater environmental pressure. However, political and economic factors also play a strong role in monitoring decisions: democracy, income, and peer pressure are conducive to monitoring intensity, and monitoring intensity generally increases over time. Moreover, even though monitoring is more intense in international upstream-downstream settings, we observe only a weak bias toward more monitoring downstream of international borders. In contrast, negative effects of European Union (EU) membership and runup to the EU's Water Framework Directive are potential reasons for concern. Our results strongly suggest that international coordination and standardization of water quality monitoring should be intensified. It will be interesting to apply our analytical approach also to other national and international monitoring networks, for instance, the U.S. National Water-Quality Assessment Program or the European Monitoring and Evaluation Program for air pollution.

  4. Radionuclide Sensors for Water Monitoring

    International Nuclear Information System (INIS)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2004-01-01

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for loW--level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements

  5. Improved but unsustainable: accounting for sachet water in post-2015 goals for global safe water.

    Science.gov (United States)

    Stoler, Justin

    2012-12-01

    The advent and rapid spread of sachet drinking water in West Africa presents a new challenge for providing sustainable access to global safe water. Sachet water has expanded drinking water access and is often of sufficient quality to serve as an improved water source for Millennium Development Goals (MDG) monitoring purposes, yet sachets are an unsustainable water delivery vehicle due to their overwhelming plastic waste burden. Monitoring of primary drinking water sources in West Africa generally ignores sachet water, despite its growing ubiquity. Sub-Saharan Africa as a region is unlikely to meet the MDG Target for drinking water provision, and post-2015 monitoring activities may depend upon rapid adaptability to local drinking water trends. © 2012 Blackwell Publishing Ltd.

  6. Evaluating Monitoring Strategies to Detect Precipitation-Induced Microbial Contamination Events in Karstic Springs Used for Drinking Water

    Directory of Open Access Journals (Sweden)

    Michael D. Besmer

    2017-11-01

    Full Text Available Monitoring of microbial drinking water quality is a key component for ensuring safety and understanding risk, but conventional monitoring strategies are typically based on low sampling frequencies (e.g., quarterly or monthly. This is of concern because many drinking water sources, such as karstic springs are often subject to changes in bacterial concentrations on much shorter time scales (e.g., hours to days, for example after precipitation events. Microbial contamination events are crucial from a risk assessment perspective and should therefore be targeted by monitoring strategies to establish both the frequency of their occurrence and the magnitude of bacterial peak concentrations. In this study we used monitoring data from two specific karstic springs. We assessed the performance of conventional monitoring based on historical records and tested a number of alternative strategies based on a high-resolution data set of bacterial concentrations in spring water collected with online flow cytometry (FCM. We quantified the effect of increasing sampling frequency and found that for the specific case studied, at least bi-weekly sampling would be needed to detect precipitation events with a probability of >90%. We then proposed an optimized monitoring strategy with three targeted samples per event, triggered by precipitation measurements. This approach is more effective and efficient than simply increasing overall sampling frequency. It would enable the water utility to (1 analyze any relevant event and (2 limit median underestimation of peak concentrations to approximately 10%. We conclude with a generalized perspective on sampling optimization and argue that the assessment of short-term dynamics causing microbial peak loads initially requires increased sampling/analysis efforts, but can be optimized subsequently to account for limited resources. This offers water utilities and public health authorities systematic ways to evaluate and optimize their

  7. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  8. Well water quality in rural Nicaragua using a low-cost bacterial test and microbial source tracking.

    Science.gov (United States)

    Weiss, Patricia; Aw, Tiong Gim; Urquhart, Gerald R; Galeano, Miguel Ruiz; Rose, Joan B

    2016-04-01

    Water-related diseases, particularly diarrhea, are major contributors to morbidity and mortality in developing countries. Monitoring water quality on a global scale is crucial to making progress in terms of population health. Traditional analytical methods are difficult to use in many regions of the world in low-resource settings that face severe water quality issues due to the inaccessibility of laboratories. This study aimed to evaluate a new low-cost method (the compartment bag test (CBT)) in rural Nicaragua. The CBT was used to quantify the presence of Escherichia coli in drinking water wells and aimed to determine the source(s) of any microbial contamination. Results indicate that the CBT is a viable method for use in remote rural regions. The overall quality of well water in Pueblo Nuevo, Nicaragua was deemed unsafe, and results led to the conclusion that animal fecal wastes may be one of the leading causes of well contamination. Elevation and depth of wells were not found to impact overall water quality. However rope-pump wells had a 64.1% reduction in contamination when compared with simple wells.

  9. An on-line tritium-in-water monitor

    International Nuclear Information System (INIS)

    Singh, A.N.; Ratnakaran, M.; Vohra, K.G.

    1985-01-01

    The paper describes the development and operation of a continuous on-line tritium-in-water monitor for the detection of heavy water leaks into the secondary coolant light water of a heavy water power reactor. The heart of the instrument is its plastic scintillator sponge detector, made from 5 μm thick plastic scintillator films. The sponge weighs only about 1 g and is in the form of disc of 48 mm diameter and 8 mm thickness. The total surface area of the films is about 3000 cm 2 . In the coincidence mode of counting, the detector gives 1000 cps for the passage of 3.7 x 10 4 Bq/cm 3 (1 μCi/cm 3 ) of tritiated water. The background in 6 cm thick lead shielding in the laboratory is 0.2 cps, and inside the reactor building it is below 1 cps. The monitor presently scans 18 sample lines in sequence for 5 min each and gives a printout for the activity in each line. (orig.)

  10. An on-line tritium-in-water monitor

    Science.gov (United States)

    Singh, A. N.; Ratnakaran, M.; Vohra, K. G.

    1985-05-01

    The paper describes the development and operation of a continuous on-line tritium-in-water monitor for the detection of heavy water leaks into the secondary coolant light water of a heavy water power reactor. The heart of the instrument is its plastic scintillator sponge detector, made from 5 μm thick plastic scintillator films. The sponge weighs only about 1 g and is in the form of disc of 48 mm diameter and 8 mm thickness. The total surface area of the films is about 3000 cm 2. In the coincidence mode of counting, the detector gives 1000 cps for the passage of 3.7 × 10 4 Bq/cm 3 (1 μCi/cm 3) of tritiated water. The background in 6 cm thick lead shielding in the laboratory is 0.2 cps, and inside the reactor building it is below 1 cps. The monitor presently scans 18 sample lines in sequence for 5 min each and gives a printout for the activity in each line.

  11. Optimizing the Energy and Throughput of a Water-Quality Monitoring System

    Directory of Open Access Journals (Sweden)

    Segun O. Olatinwo

    2018-04-01

    Full Text Available This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN, with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near–far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.

  12. The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

    Science.gov (United States)

    Koterba, Michael T.; Waldron, Marcus C.; Kraus, Tamara E.C.

    2011-01-01

    Reservoirs. Modelers cited limitations in data, including too few years with sufficient stormflow data, and (or) a lack of (readily available) data, for selected tributary and reservoir hydrodynamic, water-quality, and biotic conditions. Reservoir monitoring also is too infrequent to adequately address the above water-quality endpoints. Monitoring data also have been effectively used to generally describe trophic states, changes in trophic state or conditions related to trophic state, and in selected cases, trends in water-quality or biotic parameters that reflect RWMA water-quality concerns. Limitations occur in the collection, aggregation, analyses, and (or) archival of monitoring data in relation to most RWMA water-quality concerns. Trophic, including eutrophic, conditions have been broadly described for each reservoir in terms of phytoplankton production, and variations in production related to typical seasonal patterns in the concentration of DO, and hypoxic to anoxic conditions, where the latter have led to elevated concentrations of iron and manganese in reservoir and supply waters. Trend analyses for the period 1981-2004 have shown apparent declines in production (algal counts and possibly chl-a). The low frequency of phytoplankton data collection (monthly or bimonthly, depending on the reservoir), however, limits the development of a model to quantitatively describe and relate temporal variations in phytoplankton production including seasonal succession to changes in trophic states or other reservoir water-quality or biotic conditions. Extensive monitoring for nutrients, which, in excessive amounts, cause eutrophic conditions, has been conducted in the watershed tributaries and reservoirs. Data analyses (1980-90s) have (a) identified seasonal patterns in concentrations, (b) characterized loads from (non)point sources, and (c) shown that different seasonal patterns and trends in nutrient concentrations occur between watershed tributaries and downstream reservoir

  13. Monitoring drinking water quality in South Africa: Designing ...

    African Journals Online (AJOL)

    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based on international standards. Water Service Authorities, which are either municipalities or district municipalities, are required to submit information regarding water quality and the management thereof ...

  14. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  15. 40 CFR 63.1086 - How must I monitor for leaks to cooling water?

    Science.gov (United States)

    2010-07-01

    ... monitor for leaks to cooling water? You must monitor for leaks to cooling water by monitoring each heat... system so that the cooling water flow rate is 51,031 liters per minute or less so that a leak of 3.06 kg... detected a leak. (b) Individual heat exchangers. Monitor the cooling water at the entrance and exit of each...

  16. Drinking Water Sources with Surface Intakes from LDHH source data, Geographic NAD83, LOSCO (1999) [drinking_water_surface_intakes_LDHH_1999

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a point dataset for 87 public drinking water sources with surface intakes. It was derived from a larger statewide general drinking water source dataset...

  17. Triangle Area Water Supply Monitoring Project, North Carolina—Summary of monitoring activities, quality assurance, and data, October 2013–September 2015

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2017-09-27

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2013 through September 2014 (water year 2014) and October 2014 through September 2015 (water year 2015). Major findings for this period include:More than 5,500 individual measurements of water quality were made at a total of 15 sites—4 in the Neuse River Basin and 11 in the Cape Fear River Basin. Thirty water-quality properties or constituents were measured; State water-quality thresholds exist for 11 of these.All observations met State water-quality thresholds for temperature, hardness, chloride, fluoride, sulfate, and nitrate plus nitrite.North Carolina water-quality thresholds were exceeded one or more times for dissolved oxygen, dissolved-oxygen percent saturation, pH, turbidity, and chlorophyll a.

  18. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces.

    Science.gov (United States)

    Chau, N D G; Sebesvari, Z; Amelung, W; Renaud, F G

    2015-06-01

    Pollution of drinking water sources with agrochemicals is often a major threat to human and ecosystem health in some river deltas, where agricultural production must meet the requirements of national food security or export aspirations. This study was performed to survey the use of different drinking water sources and their pollution with pesticides in order to inform on potential exposure sources to pesticides in rural areas of the Mekong River delta, Vietnam. The field work comprised both household surveys and monitoring of 15 frequently used pesticide active ingredients in different water sources used for drinking (surface water, groundwater, water at public pumping stations, surface water chemically treated at household level, harvested rainwater, and bottled water). Our research also considered the surrounding land use systems as well as the cropping seasons. Improper pesticide storage and waste disposal as well as inadequate personal protection during pesticide handling and application were widespread amongst the interviewed households, with little overall risk awareness for human and environmental health. The results show that despite the local differences in the amount and frequency of pesticides applied, pesticide pollution was ubiquitous. Isoprothiolane (max. concentration 8.49 μg L(-1)), fenobucarb (max. 2.32 μg L(-1)), and fipronil (max. 0.41 μg L(-1)) were detected in almost all analyzed water samples (98 % of all surface samples contained isoprothiolane, for instance). Other pesticides quantified comprised butachlor, pretilachlor, propiconazole, hexaconazole, difenoconazole, cypermethrin, fenoxapro-p-ethyl, tebuconazole, trifloxystrobin, azoxystrobin, quinalphos, and thiamethoxam. Among the studied water sources, concentrations were highest in canal waters. Pesticide concentrations varied with cropping season but did not diminish through the year. Even in harvested rainwater or purchased bottled water, up to 12 different pesticides were detected at

  19. Modeling diffuse sources of surface water contamination with plant protection products

    Science.gov (United States)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  20. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan.

    Science.gov (United States)

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B; Eqani, Syed Ali Musstjab Akber Shah

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150-200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Assessed Clean Water Act 305(b) Water Sources of Impairment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Identifies the sources of impairment for assessed waters under the Clean Water Act 305(b) program. This view can be used for viewing the details at the assessment...

  2. Remote Monitoring of Soil Water Content, Temperature, and Heat Flow Using Low-Cost Cellular (3G) IoT Technology

    Science.gov (United States)

    Ham, J. M.

    2016-12-01

    New microprocessor boards, open-source sensors, and cloud infrastructure developed for the Internet of Things (IoT) can be used to create low-cost monitoring systems for environmental research. This project describes two applications in soil science and hydrology: 1) remote monitoring of the soil temperature regime near oil and gas operations to detect the thermal signature associated with the natural source zone degradation of hydrocarbon contaminants in the vadose zone, and 2) remote monitoring of soil water content near the surface as part of a global citizen science network. In both cases, prototype data collection systems were built around the cellular (2G/3G) "Electron" microcontroller (www.particle.io). This device allows connectivity to the cloud using a low-cost global SIM and data plan. The systems have cellular connectivity in over 100 countries and data can be logged to the cloud for storage. Users can view data real time over any internet connection or via their smart phone. For both projects, data logging, storage, and visualization was done using IoT services like Thingspeak (thingspeak.com). The soil thermal monitoring system was tested on experimental plots in Colorado USA to evaluate the accuracy and reliability of different temperature sensors and 3D printed housings. The soil water experiment included comparison opens-source capacitance-based sensors to commercial versions. Results demonstrate the power of leveraging IoT technology for field research.

  3. Streamflow, groundwater, and water-quality monitoring by USGS Nevada Water Science Center

    Science.gov (United States)

    Gipson, Marsha L.; Schmidt, Kurtiss

    2013-01-01

    The U.S. Geological Survey (USGS) has monitored and assessed the quantity and quality of our Nation's streams and aquifers since its inception in 1879. Today, the USGS provides hydrologic information to aid in the evaluation of the availability and suitability of water for public and domestic supply, agriculture, aquatic ecosystems, mining, and energy development. Although the USGS has no responsibility for the regulation of water resources, the USGS hydrologic data complement much of the data collected by state, county, and municipal agencies, tribal nations, U.S. District Court Water Masters, and other federal agencies such as the Environmental Protection Agency, which focuses on monitoring for regulatory compliance. The USGS continues its mission to provide timely and relevant water-resources data and information that are available to water-resource managers, non-profit organizations, industry, academia, and the public. Data collected by the USGS provide the science needed for informed decision-making related to resource management and restoration, assessment of flood and drought hazards, ecosystem health, and effects on water resources from land-use changes.

  4. Space Station Environmental Health System water quality monitoring

    Science.gov (United States)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  5. Water monitoring and its information management system in China; Chugoku ni okeru suishitsu monitoring to joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    Quan, H.

    1996-01-10

    This paper summarizes the water monitoring system (WMS) in China applied mainly to surface water and operated within the competence of the Environmental Protection Agency. The WMS consists of a national water monitoring network and a water information system that monitors surface water periodically. The WMS comprises water monitoring stations classified from class 1 to class 4, which are located in 2,222 locations. Stations from class 1 to class 3 are operated by using computers, but class 4 stations are still incapable to use floppy disks to perform information transmission. When an information management system is completed at the China-Japan Friendship Environmental Protection Center being constructed by gratis assistance from the Japanese Government, transmission of water quality data will become possible by means of the cable line system in addition to the table system and the floppy system. The water quality data are published to general people in the forms of Chinese gazette for the environmental conditions, the environment yearbook, and the reports on environmental quality. However, the more important is to publish more publications to make people aware of the actual state of water pollution and have them cooperate in environment preservation. 4 refs., 1 fig.

  6. Open-source digital technologies for low-cost monitoring of historical constructions

    OpenAIRE

    Basto, Camilo; Pelà, Luca; Chacón Flores, Rolando Antonio

    2017-01-01

    This paper shows new possibilities of using novel, open-source, low-cost platforms for the structural health monitoring of heritage structures. The objective of the study is to present an assessment of increasingly available open-source digital modeling and fabrication technologies in order to identify the suitable counterparts of the typical components of a continuous static monitoring system for a historical construction. The results of the research include a simple case-study, which is pre...

  7. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  8. [Metallic content of water sources and drinkable water in industrial cities of Murmansk region].

    Science.gov (United States)

    Doushkina, E V; Dudarev, A A; Sladkova, Yu N; Zachinskaya, I Yu; Chupakhin, V S; Goushchin, I V; Talykova, L V; Nikanov, A N

    2015-01-01

    Performed in 2013, sampling of centralized and noncentralized water-supply and analysis of engineering technology materials on household water use in 6 cities of Murmansk region (Nikel, Zapolyarny, Olenegorsk, Montchegorsk, Apatity, Kirovsk), subjected to industrial emissions, enabled to evaluate and compare levels of 15 metals in water sources (lakes and springs) and the cities' drinkable waters. Findings are that some cities lack sanitary protection zones for water sources, most cities require preliminary water processing, water desinfection involves only chlorination. Concentrations of most metals in water samples from all the cities at the points of water intake, water preparation and water supply are within the hygienic norms. But values significantly (2-5 times) exceeding MACs (both in water sources and in drinkable waters of the cities) were seen for aluminium in Kirovsk city and for nickel in Zapolarny and Nikel cities. To decrease effects of aluminium, nickel and their compounds in the three cities' residents (and preserve health of the population and offsprings), the authors necessitate specification and adaptation of measures to purify the drinkable waters from the pollutants. In all the cities studied, significantly increased concentrations of iron and other metals were seen during water transportation from the source to the city supply--that necessitates replacement of depreciated water supply systems by modern ones. Water taken from Petchenga region springs demonstrated relatively low levels of metals, except from strontium and barium.

  9. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    Science.gov (United States)

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  10. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    Science.gov (United States)

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  11. Autonomous profiling device to monitor remote water bodies

    Digital Repository Service at National Institute of Oceanography (India)

    Madhan, R.; Dabholkar, N.A.; Navelkar, G.S.; Desa, E.; Afzulpurkar, S.; Mascarenhas, A.A.M.Q.; Prabhudesai, S.P.

    implications to human health, and requires frequent and effective monitoring, particularly during summer months (March–May) when water consumption is highest. These water bodies are frequently located in remote areas away from human habitation, making...

  12. Environmental and Source Monitoring for Purposes of Radiation Protection. Safety Guide (Spanish ed.)

    International Nuclear Information System (INIS)

    2010-01-01

    The purpose of this Safety Guide is to provide international guidance, coherent with contemporary radiation protection principles and IAEA safety requirements, on the strategy of monitoring in relation to: (a) control of radionuclide discharges under practice conditions, and (b) intervention, such as in cases of nuclear or radiological emergencies or past contamination of areas with long lived radionuclides. Three categories of monitoring are discussed: monitoring at the source of the discharge (source monitoring), monitoring in the environment (environmental monitoring) and monitoring of individual exposure in emergencies (individual monitoring). The Safety Guide also provides general guidance on assessment of the doses to critical groups of the population due to the presence of radioactive materials or radiation fields in the environment both from routine operation of nuclear and other related facilities (practice) and from nuclear or radiological emergencies and past contamination of areas with long lived radionuclides (intervention). The dose assessments are based on the results of source monitoring, environmental monitoring, individual monitoring or their combinations. This Safety Guide is primarily intended for use by national regulatory bodies and other agencies involved in national systems of radiation monitoring, as well as by operators of nuclear installations and other facilities where natural or human made radionuclides are treated and monitored. Contents: 1. Introduction; 2. Meeting regulatory requirements for monitoring in practices and interventions; 3. Responsibilities for monitoring; 4. Generic aspects of monitoring programmes; 5. Programmes for monitoring in practices and interventions; 6. Technical conditions for monitoring procedures; 7. Considerations in dose assessment; 8. Interpretation of monitoring results; 9. Quality assurance; 10. Recording of results; 11. Education and training; Glossary.

  13. EPA Office of Water (OW): STORET Water Quality Monitoring Stations NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  14. Tritium in water monitor for measurement of tritium activity in the process water

    International Nuclear Information System (INIS)

    Rathnakaran, M.; Ravetkar, R.M.; Abani, M.C.; Mehta, S.K.

    1999-01-01

    This paper presents the evaluation of a tritium in water monitor for measurement of tritium activity in the secondary coolant in pressurised heavy water reactor used for power generation. For this purpose it uses a plastic scintillator flow cell detector in a continuous on-line mode. It is observed that the sensitivity of the system depends on the transparency of the detector, which gradually reduces with use because of the collection of dirt around the scintillator. A simple type of sample conditioner based on polypropylene candle filter and filter paper is developed and installed at RAPS along with tritium in water monitor. The functioning of this system is reported here. (author)

  15. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  16. Water sampling techniques for continuous monitoring of pesticides in water

    Directory of Open Access Journals (Sweden)

    Šunjka Dragana

    2017-01-01

    Full Text Available Good ecological and chemical status of water represents the most important aim of the Water Framework Directive 2000/60/EC, which implies respect of water quality standards at the level of entire river basin (2008/105/EC and 2013/39/EC. This especially refers to the control of pesticide residues in surface waters. In order to achieve the set goals, a continuous monitoring program that should provide a comprehensive and interrelated overview of water status should be implemented. However, it demands the use of appropriate analysis techniques. Until now, the procedure for sampling and quantification of residual pesticide quantities in aquatic environment was based on the use of traditional sampling techniques that imply periodical collecting of individual samples. However, this type of sampling provides only a snapshot of the situation in regard to the presence of pollutants in water. As an alternative, the technique of passive sampling of pollutants in water, including pesticides has been introduced. Different samplers are available for pesticide sampling in surface water, depending on compounds. The technique itself is based on keeping a device in water over a longer period of time which varies from several days to several weeks, depending on the kind of compound. In this manner, the average concentrations of pollutants dissolved in water during a time period (time-weighted average concentrations, TWA are obtained, which enables monitoring of trends in areal and seasonal variations. The use of these techniques also leads to an increase in sensitivity of analytical methods, considering that pre-concentration of analytes takes place within the sorption medium. However, the use of these techniques for determination of pesticide concentrations in real water environments requires calibration studies for the estimation of sampling rates (Rs. Rs is a volume of water per time, calculated as the product of overall mass transfer coefficient and area of

  17. Active Seismic Monitoring Using High-Power Moveable 40-TONS Vibration Sources in Altay-Sayn Region of Russia

    Science.gov (United States)

    Soloviev, V. M.; Seleznev, V. S.; Emanov, A. F.; Kashun, V. N.; Elagin, S. A.; Romanenko, I.; Shenmayer, A. E.; Serezhnikov, N.

    2013-05-01

    determined variations in velocities of longitudinal and transverse waves. Both from 100-tons and 40-tons vibration sources there are distinctly determined annual and semiannual variations, and also variations of 120 and 90 days. There is determined correlations of revealed variations of P- and S-wave velocities with drowning of the upper part of the Earth`s crust because of season changes of water volumes in the biggest Novosibirsk water reservoir. There were carried out experiments on aperture widening of operating vibroseismic observations in seismic active zones of the South of Altay. All these results prove possibility of using moveable collapsible 40-tons vibration sources for active monitoring of seismic dangerous zones, nuclear power plants, nuclear waste storage etc.

  18. Applications of continuous water quality monitoring techniques for more efficient water quality research and water resources management

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Broers, H.P.; Geer, F. van

    2013-01-01

    Understanding and taking account of dynamics in water quality is essential for adequate water quality policy and management. In conventional regional surface water and upper groundwater quality monitoring, measurement frequencies are too low to capture the short-term dynamic behavior of solute

  19. An inverse source location algorithm for radiation portal monitor applications

    International Nuclear Information System (INIS)

    Miller, Karen A.; Charlton, William S.

    2010-01-01

    Radiation portal monitors are being deployed at border crossings throughout the world to prevent the smuggling of nuclear and radiological materials; however, a tension exists between security and the free-flow of commerce. Delays at ports-of-entry have major economic implications, so it is imperative to minimize portal monitor screening time. We have developed an algorithm to locate a radioactive source using a distributed array of detectors, specifically for use at border crossings. To locate the source, we formulated an optimization problem where the objective function describes the least-squares difference between the actual and predicted detector measurements. The predicted measurements are calculated by solving the 3-D deterministic neutron transport equation given an estimated source position. The source position is updated using the steepest descent method, where the gradient of the objective function with respect to the source position is calculated using adjoint transport calculations. If the objective function is smaller than the convergence criterion, then the source position has been identified. This paper presents the derivation of the underlying equations in the algorithm as well as several computational test cases used to characterize its accuracy.

  20. Type GQS-1 high pressure steam manifold water level monitoring system

    International Nuclear Information System (INIS)

    Li Nianzu; Li Beicheng; Jia Shengming

    1993-10-01

    The GQS-1 high pressure steam manifold water level monitoring system is an advanced nuclear gauge that is suitable for on-line detecting and monitor in high pressure steam manifold water level. The physical variable of water level is transformed into electrical pulses by the nuclear sensor. A computer is equipped for data acquisition, analysis and processing and the results are displayed on a 14 inch color monitor. In addition, a 4 ∼ 20 mA output current is used for the recording and regulation of water level. The main application of this gauge is for on-line measurement of high pressure steam manifold water level in fossil-fired power plant and other industries

  1. Liquid microjet - a new tool for environmental water quality monitoring?

    International Nuclear Information System (INIS)

    Holstein, W.; Buntine, M.

    2001-01-01

    Our ability to provide real-time, cost-effective and efficient technologies for water quality monitoring remains a critical global environmental research issue. Each year, ground and surface waterways around the world, the global marine environment and the especially-fragile interzonal estuarine ecosystems are being placed under severe stress due to ever-increasing levels of pollutants entering the earth's aquasphere. An almost revolutionary breakthrough in water quality monitoring would be achieved with the development of a real-time, broad-spectrum chemical analysis technology. In this article, a real-time mass spectrometric based water quality monitoring centre around in vacuo liquid microjet injection methodologies is presented

  2. NONPOINT SOURCES AND WATER QUALITY TRADING

    Science.gov (United States)

    Management of nonpoint sources (NPS) of nutrients may reduce discharge levels more cost effectively than can additional controls on point sources (PS); water quality trading (WQT), where a PS buys nutrient or sediment reductions from an NPS, may be an alternative means for the PS...

  3. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  4. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  5. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    water sources (31.96 - 47.31) falls within the classification “Bad” despite the slight increase during the dry season. The quality of water in the study area is poor and portends health risk; ... tributary that originates from the New Calabar River.

  6. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    Science.gov (United States)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  7. GNSS-Reflectometry based water level monitoring

    Science.gov (United States)

    Beckheinrich, Jamila; Schön, Steffen; Beyerle, Georg; Apel, Heiko; Semmling, Maximilian; Wickert, Jens

    2013-04-01

    Due to climate changing conditions severe changes in the Mekong delta in Vietnam have been recorded in the last years. The goal of the German Vietnamese WISDOM (Water-related Information system for the Sustainable Development Of the Mekong Delta) project is to build an information system to support and assist the decision makers, planners and authorities for an optimized water and land management. One of WISDOM's tasks is the flood monitoring of the Mekong delta. Earth reflected L-band signals from the Global Navigation Satellite System show a high reflectivity on water and ice surfaces or on wet soil so that GNSS-Reflectometry (GNSS-R) could contribute to monitor the water level in the main streams of the Mekong delta complementary to already existing monitoring networks. In principle, two different GNSS-R methods exist: the code- and the phase-based one. As the latter being more accurate, a new generation of GORS (GNSS Occultation, Reflectometry and Scatterometry) JAVAD DELTA GNSS receiver has been developed with the aim to extract precise phase observations. In a two week lasting measurement campaign, the receiver has been tested and several reflection events at the 150-200 m wide Can Tho river in Vietnam have been recorded. To analyze the geometrical impact on the quantity and quality of the reflection traces two different antennas height were tested. To track separately the direct and the reflected signal, two antennas were used. To derive an average height of the water level, for a 15 min observation interval, a phase model has been developed. Combined with the coherent observations, the minimum slope has been calculated based on the Least- Squares method. As cycle slips and outliers will impair the results, a preprocessing of the data has been performed. A cycle slip detection strategy that allows for automatic detection, identification and correction is proposed. To identify outliers, the data snooping method developed by Baarda 1968 is used. In this

  8. Propagation of Exploration Seismic Sources in Shallow Water

    Science.gov (United States)

    Diebold, J. B.; Tolstoy, M.; Barton, P. J.; Gulick, S. P.

    2006-05-01

    The choice of safety radii to mitigation the impact of exploration seismic sources upon marine mammals is typically based on measurement or modeling in deep water. In shallow water environments, rule-of-thumb spreading laws are often used to predict the falloff of amplitude with offset from the source, but actual measurements (or ideally, near-perfect modeling) are still needed to account for the effects of bathymetric changes and subseafloor characteristics. In addition, the question: "how shallow is 'shallow?'" needs an answer. In a cooperative effort by NSF, MMS, NRL, IAGC and L-DEO, a series of seismic source calibration studies was carried out in the Northern Gulf of Mexico during 2003. The sources used were the two-, six-, ten-, twelve-, and twenty-airgun arrays of R/V Ewing, and a 31-element, 3-string "G" gun array, deployed by M/V Kondor, an exploration industry source ship. The results of the Ewing calibrations have been published, documenting results in deep (3200m) and shallow (60m) water. Lengthy analysis of the Kondor results, presented here, suggests an approach to answering the "how shallow is shallow" question. After initially falling off steadily with source-receiver offset, the Kondor levels suddenly increased at a 4km offset. Ray-based modeling with a complex, realistic source, but with a simple homogeneous water column-over-elastic halfspace ocean shows that the observed pattern is chiefly due to geophysical effects, and not focusing within the water column. The same kind of modeling can be used to predict how the amplitudes will change with decreasing water depth, and when deep-water safety radii may need to be increased. Another set of data (see Barton, et al., this session) recorded in 20 meters of water during early 2005, however, shows that simple modeling may be insufficient when the geophysics becomes more complex. In this particular case, the fact that the seafloor was within the near field of the R/V Ewing source array seems to have

  9. Miniaturized Water Flow and Level Monitoring System for Flood Disaster Early Warning

    Science.gov (United States)

    Ifedapo Abdullahi, Salami; Hadi Habaebi, Mohamed; Surya Gunawan, Teddy; Rafiqul Islam, MD

    2017-11-01

    This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase, the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal.

  10. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    Science.gov (United States)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions

  11. LED-based UV source for monitoring spectroradiometer properties

    Science.gov (United States)

    Sildoja, Meelis-Mait; Nevas, Saulius; Kouremeti, Natalia; Gröbner, Julian; Pape, Sven; Pendsa, Stefan; Sperfeld, Peter; Kemus, Fabian

    2018-06-01

    A compact and stable UV monitoring source based on state-of-the-art commercially available ultraviolet light emitting diodes (UV-LEDs) has been developed. It is designed to trace the radiometric stability—both responsivity and wavelength scale—of array spectroradiometers measuring direct solar irradiance in the wavelength range between 300 nm and 400 nm. The spectral irradiance stability of the UV-LED-based light source observed in the laboratory after seasoning (burning-in) the individual LEDs was better than 0.3% over a 12 h period of continuous operation. The integral irradiance measurements of the source over a period of several months, where the UV-LED source was not operated continuously between the measurements, showed stability within 0.3%. In-field measurements of the source with an array spectroradiometer indicated the stability of the source to be within the standard uncertainty of the spectroradiometer calibration, which was within 1% to 2%.

  12. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    OpenAIRE

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks ...

  13. The structure of water quality monitoring in the disaster area

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    2012-01-01

    Described are monitoring systems of water environment at usual times and after the 2011 Tohoku Earthquake and Tsunami Disaster, and measures taken by the Ministry of the Environment (ME) for radioactive substances in the water environment. At usual times, the monitoring of hazardous substance in water environment is conducted by local governments. At/after the Disaster, ME conducted the monitoring investigation concerning the environmental quality standards and toxicants like dioxins in the river, sea and groundwater from late May to late July, 2011 because undesirable effects on health and life of the residents had been feared due to possible leak of hazardous substances in public water area and underground water of victim prefectures, Aomori, Iwate, Miyagi, Fukushima and Ibaraki. As the results, no high contamination due to the Disaster was found, and a part of regions exhibited the slight chemical contamination, where continuous and additional monitoring was to be kept locally with guidance of drinking the concerned well water. ME measured radioactive iodine and cesium at 29 places of Fukushima rivers to find <65 and <30,000 Bq/kg, respectively, of 4 spots of river bed material alone (late May); then Cs 32 Bq/L in water at 1 spot and <26,000 Bq/kg in bed at all places after rain (early July). In groundwater, no radioactive nuclides above were detected in any of 111 places of Fukushima Prefecture (late June to early August). Cs was not found in sea water of 9 places of concerned prefectures, but was in the sea bottom soil, <1,380 Bq/kg (middle June). As well, local governments measured those two radioactive nuclides in water and ambient dose rate of 551 sea bathing beaches (late May to early Oct.) and found only one beach (Iwaki City, Fukushima) inappropriate for swimming play. Hereafter, ME is still to investigate the bed material of public water area and to continue to monitor the marine environment in cooperation with related authorities. (T.T.)

  14. Occurrence of fibrates and their metabolites in source and drinking water in Shanghai and Zhejiang, China

    Science.gov (United States)

    Ido, Akiko; Hiromori, Youhei; Meng, Liping; Usuda, Haruki; Nagase, Hisamitsu; Yang, Min; Hu, Jianying; Nakanishi, Tsuyoshi

    2017-04-01

    Fibrates, which are widely used lipidaemic-modulating drugs, are emerging environmental pollutants. However, fibrate concentrations in the environment have not been thoroughly surveyed. Here, we determined concentrations of the most commonly used fibrates and their metabolites in source water and drinking water samples from ten drinking water treatment plants in Shanghai and Zhejiang, China, using solid-phase extraction and liquid chromatography-tandem mass spectrometry. All the target compounds were detected in at least some of the source water samples, at concentrations ranging from 0.04 ng/L (fenofibrate) to 1.53 ng/L (gemfibrozil). All the compounds except fenofibrate were also detected in at least some of the drinking water samples, at recoveries ranging from 35.5% to 91.7%, suggesting that these compounds are poorly removed by typical drinking water treatment processes. In a peroxisome proliferator-activated receptor α agonistic activity assay, the target compounds showed no significant activity at nanogram per litre concentrations; therefore, our results suggest that the fibrate concentrations in drinking water in Shanghai and Zhejiang, China do not significantly affect human health. However, because of the increasing westernization of the Chinese diet, fibrate use may increase, and thus monitoring fibrate concentrations in aquatic environments and drinking water in China will become increasingly important.

  15. Water sampling device for fuel rod failure monitoring

    International Nuclear Information System (INIS)

    Oogami, Hideaki; Echigoya, Hironori; Matsuoka, Tesshi.

    1991-01-01

    The device of the present invention accurately samples coolants in a channel box as sampling water even if the upper end of the channel box of a fuel assembly is positioned at the same height or lower than the upper end of an upper lattice plate. An existent device comprises an outer cap, an inner cap, an air supply pipe and a water sampling tube. In addition, the device of the present invention comprises a sealing material disposed at the end of the outer cap for keeping liquid sealing with the upper lattice plate and a water level monitoring pipe extended to lower than the inner cap passing through the liquid sealing of the outer cap for sucking the atmosphere in the outer cap. Pressurized air is sent through the air supply pipe, to lower the water level of the coolants in the outer cap and the water level monitoring pipe sucks the pressurized air, by which the inside and the outside of the channel box are partitioned. Subsequently, if the sample water is sampled by a sampling tube, sampling water which enables accurate evaluation for radioactivity concentration in the fuel assembly can be obtained. (I.S.)

  16. Patterns of source monitoring bias in incarcerated youths with and without conduct problems.

    Science.gov (United States)

    Morosan, Larisa; Badoud, Deborah; Salaminios, George; Eliez, Stephan; Van der Linden, Martial; Heller, Patrick; Debbané, Martin

    2018-01-01

    Antisocial individuals present behaviours that violate the social norms and the rights of others. In the present study, we examine whether biases in monitoring the self-generated cognitive material might be linked to antisocial manifestations during adolescence. We further examine the association with psychopathic traits and conduct problems (CPs). Sixty-five incarcerated adolescents (IAs; M age = 15.85, SD = 1.30) and 88 community adolescents (CAs; M age = 15.78, SD = 1.60) participated in our study. In the IA group, 28 adolescents presented CPs (M age = 16.06, SD = 1.41) and 19 did not meet the diagnostic criteria for CPs (M age = 15.97, SD = 1.20). Source monitoring was assessed through a speech-monitoring task, using items requiring different levels of cognitive effort; recognition and source-monitoring bias scores (internalising and externalising biases) were calculated. Between-group comparisons indicate greater overall biases and different patterns of biases in the source monitoring. IA participants manifest a greater externalising bias, whereas CA participants present a greater internalising bias. In addition, IA with CPs present different patterns of item recognition. These results indicate that the two groups of adolescents present different types of source-monitoring bias for self-generated speech. In addition, the IAs with CPs present impairments in item recognition. Future studies may examine the developmental implications of self-monitoring biases in the perseverance of antisocial behaviours from adolescence to adulthood.

  17. Service water electrochemical monitoring development at Ontario Hydro

    International Nuclear Information System (INIS)

    Brennenstuhl, A.M.

    1994-01-01

    Ontario Hydro (OH) is currently investigating the feasibility of using electrochemical techniques for the corrosion monitoring of service water systems. To date all evaluations have been carried out in a field simulator. The studies include examining the effects of; system startup after periods of stagnation, sodium hypochlorite injection, and zebra mussel settlement on metallic surfaces. Carbon steel and Type 304L stainless steel have been evaluated. Electrochemical potential noise (EPN), electrochemical current noise (ECN) potential and coupling current were semi-continuously monitored over a period of up to one year. Data obtained from the electrochemical noise monitoring has given OH valuable insights into the mechanisms of degradation in service water systems. The high sensitivity of the electrochemical noise technique, particularly to localized corrosion has proved to be the major attraction of the system

  18. Environmental monitoring of low-level radioactive materials

    International Nuclear Information System (INIS)

    Jester, W.A.; Yu, C.

    1985-01-01

    The authors discuss some of the current rationale behind the environmental monitoring of low-level radioactive materials are as follows: Committee 4 of the International commission on Radiological Protection (ICRP) defined three broad objectives for environmental monitoring: 1) assessment of the actual or potential exposure of humans to radioactive materials or radiation present in their environment or the estimation of the probable upper limits of such exposure; 2) scientific investigation, sometimes related to the assessment of exposures, sometimes to other objectives; 3) improved public relations. Various regulations have been written requiring environmental monitoring to ensure that the public is not being exposed to excessive amounts of radiation from natural sources or from human activities. An example of the monitoring of natural sources of radiation is a requirement of the Environmental Protection Agency's (EPA) National Interim Primary Drinking Water Regulations whereby U.S. water supply companies must have drinking water monitored at least once every four years for radionuclides, primarily the naturally occurring radium-226

  19. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  20. Reuse of drainage water in the Nile Delta; monitoring, modelling and analysis; final report Reuse of Drainage Water Project

    NARCIS (Netherlands)

    Staring Centrum, Instituut voor Onderzoek van het LandelijkGebied

    1995-01-01

    The effects of reusing drainage water have been evaluated and other options to increase the water utilization rate in Egypt explored. The results are an operational network for monitoring drainage water discharges and salinity along the major drains, a database for monitored drainage water

  1. Pilot Water Quality Monitoring Station in Dublin Bay North Bank Monitoring Station (NBMS): MATSIS Project Part I

    OpenAIRE

    O Donnell, G.; Joyce, E.; O Boyle, S.; McGovern, E.

    2008-01-01

    The lack of short-term temporal resolution associated with traditional spot sampling for monitoring water quality of dynamic coastal and estuarine waters has meant that many organisations are interesting in autonomous monitoring technologies to provide near real-time semi-continuous data. Such approaches enable capturing short term episodic events (which may be missed or alternatively skew datasets when using spot samples) and provide early warning of water quality problems. New policy driver...

  2. Fiber-optic based instrumentation for water and air monitoring

    International Nuclear Information System (INIS)

    MacCraith, B.D.

    1991-01-01

    In this paper real-time in-situ water and air monitoring capabilities based on fiber-optic sensing technology are described. This relatively new technology combines advances in fiber optic and optoelectronics with chemical spectorscopic techniques to enable field environmental monitoring of sub ppm quantities of specific pollutants. The advantages of this technology over conventional sampling methods are outlined. As it is the more developed area the emphasis is on water quality monitoring rather than air. Examples of commercially available, soon-to be available and laboratory systems are presented. One such example is a system used to detect hydrocarbon spills and leaking of underground hydrocarbon storage tanks

  3. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    Science.gov (United States)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  4. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    International Nuclear Information System (INIS)

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B.; Eqani, Syed Ali Musstjab Akber Shah

    2015-01-01

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  5. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, Avit Kumar [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Alamdar, Ambreen [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Katsoyiannis, Ioannis [Aristotle University of Thessaloniki, Department of Chemistry, Division of Chemical Technology, Box 116, Thessaloniki 54124 (Greece); Shen, Heqing [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ali, Nadeem [Department of Environmental Sciences, FBAS, International Islamic University, Islamabad (Pakistan); Ali, Syeda Maria [Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Bokhari, Habib [Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan); Schäfer, Ralf B. [Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, D-76829 Landau in der Pfalz (Germany); Eqani, Syed Ali Musstjab Akber Shah, E-mail: ali_ebl2@yahoo.com [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150–200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. - Highlights: • Predictions of trace metal concentration use geographically weighted regression • Human health risk

  6. Quality assurance and quality control procedures in river water radioecological monitoring

    International Nuclear Information System (INIS)

    Nalbandyan, A.; Stepanyan, A.

    2006-01-01

    For recent decades the issue of radioactive pollution of environmental components has acquired a global character as a result of nuclear weapon testing, accidents in NPPs, development of nuclear technologies and so on. A study object of this research is river water as it is known to be radionuclide transport and accumulation mediums and radioactive elements in river water are available as radioactive salts and mechanic and biological pollutants. Moreover, river water is widely used for various economic and commercial purposes and serves a drinking water supply source as well. The ongoing research is performed in the frame of a NATO/OSCE project 'South Caucasus River Monitoring'. The topicality of the problem dictates a necessity of getting credible and compatible results. For adequate radioactive pollution assessment, decisive are the application and keeping standard QA/QC procedures at all the stages of radioecological monitoring. In our research we apply the following ISO standard-based QA/QC procedures: sampling (emphasizing sample identification: sample collection site, date and method), sample transportation (keeping sample conservation and storing requirements), sample treatment and preparation in the lab, radiometric measurements of samples with regard for the time that past from sampling moment to analysis, control and calibration of analytic instruments, control analysis of samples. The obtained data are processed through standard statistic methods of QC to check measurement errors. Gamma-spectrometric measurements are maid using a Genie-2000 (Canberra) software that includes a separate program for measurement QC. The ultimate outcomes are arranged in special protocols (analysis and sampling tasks protocols, sampling task form, field measurement protocol, sample chain of custody form, sample analysis protocol) and compiled in appropriate databases

  7. Operating Experience Review of Tritium-in-Water Monitors

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Bruyere; L. C. Cadwallader

    2011-09-01

    Monitoring tritium facility and fusion experiment effluent streams is an environmental safety requirement. This paper presents data on the operating experience of a solid scintillant monitor for tritium in effluent water. Operating experiences were used to calculate an average monitor failure rate of 4E-05/hour for failure to function. Maintenance experiences were examined to find the active repair time for this type of monitor, which varied from 22 minutes for filter replacement to 11 days of downtime while waiting for spare parts to arrive on site. These data support planning for monitor use; the number of monitors needed, allocating technician time for maintenance, inventories of spare parts, and other issues.

  8. Look who's talking! Facial appearance can bias source monitoring

    OpenAIRE

    Nash, RA; Bryer, OM; Schlaghecken, F

    2010-01-01

    When we see a stranger's face we quickly form impressions of his or her personality, and expectations of how the stranger might behave. Might these intuitive character judgements bias source monitoring? Participants read headlines oreportedo by a trustworthy- and an untrustworthy-looking reporter. Subsequently, participants recalled which reporter provided each headline. Source memory for likely-sounding headlines was most accurate when a trustworthy-looking reporter had provided the headline...

  9. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    Science.gov (United States)

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  10. Sources of Phthalates and Nonylphenoles in Municipal Waste Water

    DEFF Research Database (Denmark)

    Vikelsøe, J.; Thomsen, M.; Johansen, E.

    The overall aim of the present study is to identify and evaluate the importance of sources of nonylphenoles and phthalates in waste water in a local environment. The investigations were carried out in a Danish local community, Roskilde city and surroundings. Nonylphenoles and phthalates were...... analysed in the waste water from different institutions and industries thought to be potential sources. These were: car wash centers, a hospital, a kindergarten, an adhesive industry and a industrial laundry. Furthermore, analysis of the deposition in the area were carried out. This made it possible...... to estimate the contribution from all of these sources to the waste water as well as the role of long-range air transport. Two local rivers were analysed for comparison. Finally, waste water inlet from the local water treatment plant, where the sources converge at a single point, were analysed. A mass balance...

  11. SWEET CubeSat - Water detection and water quality monitoring for the 21st century

    Science.gov (United States)

    Antonini, Kelly; Langer, Martin; Farid, Ahmed; Walter, Ulrich

    2017-11-01

    Water scarcity and contamination of clean water have been identified as major challenges of the 21st century, in particular for developing countries. According to the International Water Management Institute, about 30% of the world's population does not have reliable access to clean water. Consequently, contaminated water contributes to the death of about 3 million people every year, mostly children. Access to potable water has been proven to boost education, equality and health, reduce hunger, as well as help the economy of the developing world. Currently used in-situ water monitoring techniques are sparse, and often difficult to execute. Space-based instruments will help to overcome these challenges by providing means for water level and water quality monitoring of medium-to-large sweet (fresh) water reservoirs. Data from hyperspectral imaging instruments on past and present governmental missions, such as Envisat and Aqua, has been used for this purpose. However, the high cost of large multi-purpose space vessels, and the lack of dedicated missions limits the continuous monitoring of inland and coastal water quality. The proposed CubeSat mission SWEET (Sweet Water Earth Education Technologies) will try to fill this gap. The SWEET concept is a joint effort between the Technical University of Munich, the German Space Operations Center and the African Steering Committee of the IAF. By using a novel Fabry-Perot interferometer-based hyperspectral imager, the mission will deliver critical data directly to national water resource centers in Africa with an unmatched cost per pixel ratio and high temporal resolution. Additionally, SWEET will incorporate education of students in CubeSat design and water management. Although the aim of the mission is to deliver local water quality and water level data to African countries, further coverage could be achieved with subsequent satellites. Finally, a constellation of SWEET-like CubeSats would extend the coverage to the whole

  12. Design of a water quality monitoring network for the Limpopo River Basin in Mozambique

    Science.gov (United States)

    Chilundo, M.; Kelderman, P.; O´keeffe, J. H.

    The measurement of chemical, physical and biological parameters is important for the characterization of streams health. Thus, cost-effective and targeted water quality (WQ) monitoring programmes are required for proper assessment, restoration and protection of such systems. This research proposes a WQ monitoring network for the Limpopo River Basin (LRB) in Mozambique located in Southern Africa, a region prone to severe droughts. In this Basin both anthropogenic and natural driven processes, exacerbated by the increased water demand by the four riparian countries (Botswana, South Africa, Zimbabwe and Mozambique) are responsible for the degradation of surface waters, impairing their downstream use, either for aquatic ecosystem, drinking, industrial or irrigation. Hence, physico-chemical, biological and microbiological characteristics at 23 sites within the basin were studied in November 2006 and January 2007. The physico-chemical and microbiological samples were analyzed according to American Public Health Association (APHA) standard methods, while the biological monitoring working party method (BMWP) was used for biological assessment. The assessment of the final WQ condition at sampled points was done taking into account appropriate indexes, the Mozambican standards for receiving waters and the WHO guidelines for drinking WQ. The assessed data indicated that sites located at proximities to the border with upstream countries were contaminated with heavy metals. The Elephants subcatchment was found with a relatively better WQ, whereas the Changane subcatchment together with the effluent point discharges in the basin were found polluted as indicated by the low dissolved oxygen and high total dissolved solids, electric conductivity, total hardness, sodium adsorption ratio and low benthic macroinvertebrates taxa. Significant differences ( p < 0.05) were found for some parameters when the concentrations recorded in November and January were tested, therefore, indicating

  13. Monitoring Performance of a combined water recycling system

    OpenAIRE

    Castleton, H.F.; Hathway, E.A.; Murphy, E.; Beck, S.B.M.

    2014-01-01

    Global water demand is expected to outstrip supply dramatically by 2030, making water recycling an important tool for future water security. A large combined grey water and rainwater recycling system has been monitored in response to an identified knowledge gap of the in-use performance of such systems. The water saving efficiency of the system was calculated at −8ṡ5% in 2011 and –10% in 2012 compared to the predicted 36%. This was due to a lower quantity of grey water and rainwater being col...

  14. Use of satellite images for the monitoring of water systems

    Science.gov (United States)

    Hillebrand, Gudrun; Winterscheid, Axel; Baschek, Björn; Wolf, Thomas

    2015-04-01

    Satellite images are a proven source of information for monitoring ecological indicators in coastal waters and inland river systems. This potential of remote sensing products was demonstrated by recent research projects (e.g. EU-funded project Freshmon - www.freshmon.eu) and other activities by national institutions. Among indicators for water quality, a particular focus was set on the temporal and spatial dynamics of suspended particulate matter (SPM) and Chlorophyll-a (Chl-a). The German Federal Institute of Hydrology (BfG) was using the Weser and Elbe estuaries as test cases to compare in-situ measurements with results obtained from a temporal series of automatically generated maps of SPM distributions based on remote sensing data. Maps of SPM and Chl-a distributions in European inland rivers and alpine lakes were generated by the Freshmon Project. Earth observation based products are a valuable source for additional data that can well supplement in-situ monitoring. For 2015, the BfG and the Institute for Lake Research of the State Institute for the Environment, Measurements and Nature Conservation of Baden-Wuerttemberg, Germany (LUBW) are in the process to start implementing an operational service for monitoring SPM and Chl-a based on satellite images (Landsat 7 & 8, Sentinel 2, and if required other systems with higher spatial resolution, e.g. Rapid Eye). In this 2-years project, which is part of the European Copernicus Programme, the operational service will be set up for - the inland rivers of Rhine and Elbe - the North Sea estuaries of Elbe, Weser and Ems. Furthermore - Lake Constance and other lakes located within the Federal State of Baden-Wuerttemberg. In future, the service can be implemented for other rivers and lakes as well. Key feature of the project is a data base that holds the stock of geo-referenced maps of SPM and Chl-a distributions. Via web-based portals (e.g. GGInA - geo-portal of the BfG; UIS - environmental information system of the

  15. Preparation of water-equivalent radioactive solid sources

    International Nuclear Information System (INIS)

    Yamazaki, Ione M.; Koskinas, Marina F.; Dias, Mauro S.

    2011-01-01

    The development of water-equivalent solid sources in two geometries, cylindrical and flat without the need of irradiation in a strong gamma radiation source to obtain polymerization is described. These sources should have density similar to water and good uniformity. Therefore, the density and uniformity of the distribution of radioactive material in the resins were measured. The variation of these parameters in the cylindrical geometry was better than 2.0% for the density and 2.3% for the uniformity and for the flat geometry the values obtained were better than 2.0 % and better than 1.3%, respectively. These values are in good agreement with the literature. (author)

  16. Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies

    Science.gov (United States)

    Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

    2013-04-01

    Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such

  17. Designing monitoring for conservation impact assessment in water funds in Latin America: an approach to address water-data scarcity (Invited)

    Science.gov (United States)

    Nelson, J. L.; Chaplin-Kramer, R.; Ziv, G.; Wolny, S.; Vogl, A. L.; Tallis, H.; Bremer, L.

    2013-12-01

    The risk of water scarcity is a rising threat in a rapidly changing world. Communities and investors are using the new institution of water funds to enact conservation practices in watersheds to bolster a clean, predictable water supply for multiple stakeholders. Water funds finance conservation activities to support water-related ecosystem services, and here we relate our work to develop innovative approaches to experimental design of monitoring programs to track the effectiveness of water funds throughout Latin America. We highlight two examples: the Fund for the Protection of Water (FONAG), in Quito, Ecuador, and Water for Life, Agua por la Vida, in Cali, Colombia. Our approach is meant to test whether a) water funds' restoration and protection actions result in changes in water quality and/or quantity at the site scale and the subwatershed scale, and b) the suite of investments for the whole water fund reach established goals for improving water quality and/or quantity at the basin scale or point of use. Our goal is to create monitoring standards for ecosystem-service assessment and clearly demonstrate translating those standards to field implementation in a statistically robust and cost-effective way. In the gap between data-intensive methods requiring historic, long-term water sampling and more subjective, ad hoc assessments, we have created a quantitative, land-cover-based approach to pairing conservation activity with appropriate controls in order to determine the impact of water-fund actions. To do so, we use a statistical approach in combination with open-source tools developed by the Natural Capital Project to optimize water funds' investments in nature and assess ecosystem-service provision (Resource Investment Optimization System, RIOS, and InVEST). We report on the process of identifying micro-, subwatershed or watershed matches to serve as controls for conservation 'impact' sites, based on globally-available land cover, precipitation, and soil data

  18. Post-encoding emotional arousal enhances consolidation of item memory, but not reality-monitoring source memory.

    Science.gov (United States)

    Wang, Bo; Sun, Bukuan

    2017-03-01

    The current study examined whether the effect of post-encoding emotional arousal on item memory extends to reality-monitoring source memory and, if so, whether the effect depends on emotionality of learning stimuli and testing format. In Experiment 1, participants encoded neutral words and imagined or viewed their corresponding object pictures. Then they watched a neutral, positive, or negative video. The 24-hour delayed test showed that emotional arousal had little effect on both item memory and reality-monitoring source memory. Experiment 2 was similar except that participants encoded neutral, positive, and negative words and imagined or viewed their corresponding object pictures. The results showed that positive and negative emotional arousal induced after encoding enhanced consolidation of item memory, but not reality-monitoring source memory, regardless of emotionality of learning stimuli. Experiment 3, identical to Experiment 2 except that participants were tested only on source memory for all the encoded items, still showed that post-encoding emotional arousal had little effect on consolidation of reality-monitoring source memory. Taken together, regardless of emotionality of learning stimuli and regardless of testing format of source memory (conjunction test vs. independent test), the facilitatory effect of post-encoding emotional arousal on item memory does not generalize to reality-monitoring source memory.

  19. Toward implementation of a national ground water monitoring network

    Science.gov (United States)

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  20. National rural drinking water monitoring: progress and challenges with India's IMIS database

    OpenAIRE

    Wescoat, James; Fletcher, Sarah Marie; Novellino, Marianna

    2015-01-01

    National drinking water programs seek to address monitoring challenges that include self-reporting, data sampling, data consistency and quality, and sufficient frequency to assess the sustainability of water systems. India stands out for its comprehensive rural water database known as Integrated Management Information System (IMIS), which conducts annual monitoring of drinking water coverage, water quality, and related program components from the habitation level to the district, state, and n...

  1. Radiological waters monitoring in Rhineland-Palatinate

    International Nuclear Information System (INIS)

    Weller, D.

    1977-01-01

    Following an introduction the occurrence and origin of radioactive radiation in water and its consequences for the population, the resulting measuring programmes in Rhineland-Palatinate are described according to type and extent. The measured results are shown in tabular and summarized form, and their importance for environmental protection is discussed. It is found that the radioactivity of the waters in Rhineland-Palatinate so far determined is no cause for anxiety. The monitoring is being continued in the same manner and further developed according to needs. (orig.) [de

  2. A One Year Study on the Concentrations of Norovirus and Enteric Adenoviruses in Wastewater and A Surface Drinking Water Source in Norway.

    Science.gov (United States)

    Grøndahl-Rosado, Ricardo C; Yarovitsyna, Ekaterina; Trettenes, Elin; Myrmel, Mette; Robertson, Lucy J

    2014-12-01

    Enteric viruses transmitted via the faecal-oral route occur in high concentrations in wastewater and may contaminate drinking water sources and cause disease. In order to quantify enteric adenovirus and norovirus genotypes I and II (GI and GII) impacting a drinking source in Norway, samples of surface water (52), wastewater inlet (64) and outlet (59) were collected between January 2011 and April 2012. Samples were concentrated in two steps, using an electropositive disc filter and polyethylene glycol precipitation, followed by nucleic acid extraction and analysis by quantitative polymerase chain reaction. Virus was detected in 47/52 (90.4%) of surface water, 59/64 (92%) of wastewater inlet and 55/59 (93%) of wastewater outlet samples. Norovirus GI occurred in the highest concentrations in surface water (2.51e + 04) and adenovirus in wastewater (2.15e + 07). While adenovirus was the most frequently detected in all matrices, norovirus GI was more frequently detected in surface water and norovirus GII in wastewater. This study is the first in Norway to monitor both sewage and a drinking water source in parallel, and confirms the year-round presence of norovirus and adenovirus in a Norwegian drinking water source.

  3. Nationwide assessment of nonpoint source threats to water quality

    Science.gov (United States)

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  4. Radiological monitoring plan for the Oak Ridge Y-12 Plant: Surface Water

    International Nuclear Information System (INIS)

    1997-10-01

    The Y-12 Plant conducts a surface water monitoring program in response to DOE Orders and state of Tennessee requirements under the National Pollutant Discharge Elimination System (NPDES). The anticipated codification of DOE Order 5400.5 for radiation protection of the public and the environment (10 CFR Part 834) will require an environmental radiation protection plan (ERPP). The NPDES permit issued by the state of Tennessee requires a radiological monitoring plan (RMP) for Y-12 Plant surface waters. In a May 4, 1995 memo, the state of Tennessee, Division of Water Pollution Control, stated their desired needs and goals regarding the content of RMPs, associated documentation, and data resulting from the RMPs required under the NPDES permitting system (L. Bunting, General Discussion, Radiological Monitoring Plans, Tennessee Division of Water Pollution Control, May 4,1995). Appendix A provides an overview of how the Y-12 Plant will begin to address these needs and goals. It provides a more complete, documented basis for the current Y-12 Plant surface water monitoring program and is intended to supplement documentation provided in the Annual Site Environmental Reports (ASERs), NPDES reports, Groundwater Quality Assessment Reports, and studies conducted under the Y-12 Plant Environmental Restoration (ER) Program. The purpose of this update to the Y-12 Plant RMP is to satisfy the requirements of the current NPDES permit, DOE Order 5400.5, and 10 CFR Part 834, as current proposed, by defining the radiological monitoring plan for surface water for the Y-12 Plant. This plan includes initial storm water monitoring and data analysis. Related activities such as sanitary sewer and sediment monitoring are also summarized. The plan discusses monitoring goals necessary to determine background concentrations of radionuclides, to quantify releases, determine trends, satisfy regulatory requirements, support consequence assessments, and meet requirements that releases be ''as low as

  5. Sensors and OBIA synergy for operational monitoring of surface water

    Science.gov (United States)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation

  6. Topological clustering as a tool for planning water quality monitoring in water distribution networks

    DEFF Research Database (Denmark)

    Kirstein, Jonas Kjeld; Albrechtsen, Hans-Jørgen; Rygaard, Martin

    2015-01-01

    ) identify steady clusters for a part of the network where an actual contamination has occurred; (2) analyze this event by the use of mesh diagrams; and (3) analyze the use of mesh diagrams as a decision support tool for planning water quality monitoring. Initially, the network model was divided...... into strongly and weakly connected clusters for selected time periods and mesh diagrams were used for analysing cluster connections in the Nørrebro district. Here, areas of particular interest for water quality monitoring were identified by including user-information about consumption rates and consumers...... particular sensitive towards water quality deterioration. The analysis revealed sampling locations within steady clusters, which increased samples' comparability over time. Furthermore, the method provided a simplified overview of water movement in complex distribution networks, and could assist...

  7. Water quality monitoring in sub-Saharan African lakes: a review of ...

    African Journals Online (AJOL)

    This paper reviews the literature on various remote sensing platforms and techniques used for assessing and monitoring water quality in sub-Saharan Africa, and highlights their strengths and weaknesses. The use of remote sensing technology could enhance water quality monitoring, since remotely sensed data offer ...

  8. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Rachel Peletz

    2016-03-01

    Full Text Available Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies, served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05. Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  9. Characterising Bedrock Aquifer Systems in Korea Using Paired Water-Level Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2017-06-01

    patterns were identified from the water-level pairs: Type I of identical aquifer systems (77.8%, Type II of the different aquifer systems with different recharge flow paths (9.5%, and Type III of unmatched aquifer system pairs and correlations (12.7%. Type I and II could be used as verification of aquifer condition in the paired monitoring system. However, Type III shows the complexity of water-level fluctuation in different aquifer conditions. This study showed that confined or not-confined conditions are not directly related to the depth of wells in the aquifer. Therefore, the utilisation of groundwater as a water-supply source should be carefully designed, tested for its hydrogeologic conditions, and managed to ensure sustainable quantity and quality.

  10. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    Science.gov (United States)

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Vegetation water stress monitoring with remote sensing-based energy balance modelling

    Science.gov (United States)

    González-Dugo, Maria P.; Andreu, Ana; Carpintero, Elisabet; Gómez-Giráldez, Pedro; José Polo, María

    2014-05-01

    Drought is one of the major hazards faced by agroforestry systems in southern Europe, and an increase in frequency is predicted under the conditions of climate change for the region. Timely and accurate monitoring of vegetation water stress using remote sensing time series may assist early-warning services, helping to assess drought impacts and the design of management actions leading to reduce the economic and environmental vulnerability of these systems. A holm oak savanna, known as dehesa in Spain and montado in Portugal, is an agro-silvo-pastoral system occupying more than 3 million hectares the Iberian Peninsula and Greece. It consists of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is considered an example of sustainable land use, with great importance in the rural economy. Soil water dynamics is known to have a central role in current tree decline and the reduction of the forested area that is threatening its conservation. A two-source thermal-based evapotranspiration model (TSEB) has been applied to monitor the effect on vegetation water use of soil moisture stress in a dehesa located in southern Spain. The TSEB model separates the soil and canopy contributions to the radiative temperature and to the exchange of surface energy fluxes, so it is especially suited for partially vegetated landscapes. The integration of remotely sensed data in this model may support an evaluation of the whole ecosystem state at a large scale. During two consecutive summers, in 2012 and 2013, time series of optical and thermal MODIS images, with 250m and 1 km of spatial resolution respectively, have been combined with meteorological data provided by a ground station to monitor the evapotranspiration (ET) of the system. An eddy covariance tower (38°12' N; 4°17' W, 736 m a.s.l), equipped with instruments to measure all the components of the energy balance and 1 km of homogeneous fetch in the predominant wind

  12. 40 CFR 264.97 - General ground-water monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... has not been affected by leakage from a regulated unit; (i) A determination of background ground-water...) Represent the quality of ground water passing the point of compliance. (3) Allow for the detection of... elevation each time ground water is sampled. (g) In detection monitoring or where appropriate in compliance...

  13. History, contamination and monitoring of water bodies at the P/A Mayak

    International Nuclear Information System (INIS)

    Drozhko, E.G.; Sharalapov, V.I.; Posokhov, A.K.; Kuzina, N.V.; Postovalova, G.A.

    1993-01-01

    The facts concerning the history and contamination data of surface water at Mayak Production Association are given in the article. Data about the monitoring of contaminated water are presented. The monitoring program solved three main problems: assessment of the water quality of basins, examination of water quality in accordance with actual specifications, and reception of new data about the migration of the most important radionuclides

  14. Use of Portal Monitors for Detection of Technogenic Radioactive Sources in Scrap Metal

    Science.gov (United States)

    Solovev, D. B.; Merkusheva, A. E.

    2017-11-01

    The article considers the features of organization of scrap-metal primary radiation control on the specialized enterprises engaging in its deep processing and storage at using by primary technical equipment - radiation portal monitors. The issue of this direction relevance, validity of radiation control implementation with the use of radiation portal monitors, physical and organizational bases of radiation control are considered in detail. The emphasis is put on the considerable increase in the number of technogenic radioactive sources detected in scrap-metal that results in the entering into exploitation of radioactive metallic structures as different building wares. One of reasons of such increase of the number of technogenic radioactive sources getting for processing with scrap-metal is the absence of any recommendations on the radiation portal monitors exploitation. The practical division of the article offers to recommendation on tuning of the modes of work of radiation portal monitors depending on influence the weather factor thus allowing to considerably increase the percent of technogenic radioactive sources detection.

  15. Preliminary assessment of a water-quality monitoring program for total maximum daily loads in Johnson County, Kansas, January 2015 through June 2016

    Science.gov (United States)

    Rasmussen, Teresa J.; Paxson, Chelsea R.

    2017-08-25

    data. Base flow samples indicated that point sources are likely affecting nutrient concentrations and E. coli bacteria densities at several sites. Concentrations of all analytes in storm runoff samples were characterized by substantial variability among sites and samples. About one-half of the sites, representing different watersheds, had storm runoff samples with nitrogen concentrations greater than 10 milligrams per liter. About one-third of the sites, representing different watersheds, had storm runoff samples with total phosphorus concentrations greater than 3 milligrams per liter. Six sites had samples with E. coli densities greater than 100,000 colonies per 100 milliliters of water. Total suspended solids concentrations of about 12,000 milligrams per liter or greater occurred in samples from three sites.Data collected for this monitoring program may be useful for some general assessment purposes but may also be limited in potential to fully inform stormwater management activities. Valuable attributes of the monitoring program design included incorporating many sites across the county for comparisons among watersheds and municipalities, using fixed-stage samplers to collect multiple samples during single events, collection of base flow samples in addition to storm samples to isolate possible point sources from stormwater sources, and use of continuous monitors to characterize variability. Limiting attributes of the monitoring program design included location of monitoring sites along municipal boundaries to satisfy permit requirements rather than using watershed-based criteria such as locations of tributaries, potential pollutant sources, and implemented management practices. Additional limiting attributes include having a large number of widespread sampling locations, which presented logistical challenges for predicting localized rainfall and collecting and analyzing samples during short timeframes associated with storms, and collecting storm samples at fixed

  16. Water Sources for Cyanobacteria Below Desert Rocks in the Negev Desert Determined by Conductivity

    Science.gov (United States)

    McKay, Christopher P.

    2016-01-01

    We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community are consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm) the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.

  17. Economics of place-based monitoring under the safe drinking water act, part II: design and development of place-based monitoring strategies.

    Science.gov (United States)

    Brands, Edwin; Rajagopal, R

    2008-08-01

    The goals of environmental legislation and associated regulations are to protect public health, natural resources, and ecosystems. In this context, monitoring programs should provide timely and relevant information so that the regulatory community can implement legislation in a cost-effective and efficient manner. The Safe Drinking Water Act (SDWA) of 1974 attempts to ensure that public water systems (PWSs) supply safe water to its consumers. As is the case with many other federal environmental statutes, SDWA monitoring has been implemented in relatively uniform fashion across the United States. In this three part series, spatial and temporal patterns in water quality data are utilized to develop, compare, and evaluate the economic performance of alternative place-based monitoring approaches to current monitoring practice. Part II: Several factors affect the performance of monitoring strategies, including: measurable objectives, required precision in estimates, acceptable confidence levels of such estimates, available budget for sampling. In this paper, we develop place-based monitoring strategies based on extensive analysis of available historical water quality data (1960-1994) of 19 Iowa community water systems. These systems supply potable water to over 350,000 people. In the context of drinking water, the objective is to protect public health by utilizing monitoring resources to characterize contaminants that are detectable, and are close to exceeding health standards. A place-based monitoring strategy was developed in which contaminants were selected based on their historical occurrence, rather than their appearance on the SDWA contaminant list. In a subset of the water systems, the temporal frequency of monitoring for one ubiquitous contaminant, nitrate, was tailored to patterns in its historical occurrence and concentration. Three sampling allocation models (linear, quadratic, and cubic) based on historic patterns in peak occurrence were developed and

  18. Revised ground-water monitoring compliance plan for the 300 area process trenches

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, R.; Aaberg, R.L.; Bates, D.J.; Carlile, J.V.M.; Freshley, M.D.; Liikala, T.L.; Mitchell, P.J.; Olsen, K.B.; Rieger, J.T.

    1988-09-01

    This document contains ground-water monitoring plans for process-water disposal trenches located on the Hanford Site. These trenches, designated the 300 Area Process Trenches, have been used since 1973 for disposal of water that contains small quantities of both chemicals and radionuclides. The ground-water monitoring plans contained herein represent revision and expansion of an effort initiated in June 1985. At that time, a facility-specific monitoring program was implemented at the 300 Area Process Trenches as part of a regulatory compliance effort for hazardous chemicals being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interim-status facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The applicable monitoring requirements are described in the Resource Conservation and Recovery Act (RCRA), 40 CFR 265.90 of the federal regulations, and in WAC 173-303-400 of Washington State's regulations (Washington State Department of Ecology 1986). The program implemented for the process trenches was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. The plans for the program, contained in a document prepared by the US Department of Energy (USDOE) in 1985, called for monthly sampling of 14 of the 37 existing monitoring wells at the 300 Area plus the installation and sampling of 2 new wells. 27 refs., 25 figs., 15 tabs.

  19. Mathematical model and algorithm of operation scheduling for monitoring situation in local waters

    Directory of Open Access Journals (Sweden)

    Sokolov Boris

    2017-01-01

    Full Text Available A multiple-model approach to description and investigation of control processes in regional maritime security system is presented. The processes considered in this paper were qualified as control processes of computing operations providing monitoring of the situation adding in the local water area and connected to relocation of different ships classes (further the active mobile objects (AMO. Previously developed concept of active moving object (AMO is used. The models describe operation of AMO automated monitoring and control system (AMCS elements as well as their interaction with objects-in-service that are sources or recipients of information being processed. The unified description of various control processes allows synthesizing simultaneously both technical and functional structures of AMO AMCS. The algorithm for solving the scheduling problem is described in terms of the classical theory of optimal automatic control.

  20. Field Application of the Micro Biological Survey Method for the Assessment of the Microbiological Safety of Different Water Sources in Horn of Africa and the Evaluation of the Effectiveness of Moringa Oleifera in Drinking Water Purification.

    Science.gov (United States)

    Losito, Francesca; Arienzo, Alyexandra; Somma, Daniela; Murgia, Lorenza; Stalio, Ottavia; Zuppi, Paolo; Rossi, Elisabetta; Antonini, Giovanni

    2017-06-23

    Water monitoring requires expensive instrumentations and skilled technicians. In developing Countries as Africa, the severe economic restrictions and lack of technology make water safety monitoring approaches applied in developed Countries, still not sustainable. The need to develop new methods that are suitable, affordable, and sustainable in the African context is urgent. The simple, economic and rapid Micro Biological Survey (MBS) method does not require an equipped laboratory nor special instruments and skilled technicians, but it can be very useful for routine water analysis. The aim of this work was the application of the MBS method to evaluate the microbiological safety of different water sources and the effectiveness of different drinking water treatments in the Horn of Africa. The obtained results have proved that this method could be very helpful to monitor water safety before and after various purification treatments, with the aim to control waterborne diseases especially in developing Countries, whose population is the most exposed to these diseases. In addition, it has been proved that Moringa oleifera water treatment is ineffective in decreasing bacterial load of Eritrea water samples.

  1. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Liu, Sanly; Gunawan, Cindy; Barraud, Nicolas; Rice, Scott A; Harry, Elizabeth J; Amal, Rose

    2016-09-06

    In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now

  2. Monitoring bacterial faecal contamination in waters using multiplex ...

    African Journals Online (AJOL)

    Monitoring of sanitary quality or faecal pollution in water is currently based on quantifying some bacterial indicators such as Escherichia coli and faecal enterococci. Using a multiplex real-time PCR assay for faecal enterococci and Bacteroides spp., the detection of faecal contamination in non-treated water can be done in a ...

  3. Advanced technology heavy water monitors offering reduced implementation costs

    International Nuclear Information System (INIS)

    Kalechstein, W.; Hippola, K.B.

    1984-10-01

    The development of second generation heavy water monitors for use at CANDU power stations and heavy water plants has been completed and the instruments brought to the stage of commercial availability. Applications of advanced technology and reduced utilization of custom manufactured components have together resulted in instruments that are less expensive to produce than the original monitors and do not require costly station services. The design has been tested on two prototypes and fully documented, including the inspection and test procedures required for manufacture to the CSA Z299.3 quality verfication program standard. Production of the new monitors by a commercial vendor (Barringer Research Ltd.) has begun and the first instrument is scheduled for delivery to CRNL's NRU reactor in late 1984

  4. Surface water, particulate matter, and sediments of inland waters

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1985-01-01

    The Bundesanstalt fuer Gewaesserkunde (BfG) since 1958 runs a system for monitoring the surface water and sediments of Federal German waterways in its capacity as a directing water monitoring centre. The data recorded over the years show that the radioactivity released by the various emission sources leads to radionuclide concentrations in water, particulate matter, or sediments that generally are below the detection limits defined in the relevant legal provisions governing monitoring and surveillance of nuclear facilities effluents. Representative examples of measuring methods and results (as for e.g. for H-3) are given. (DG) [de

  5. Global Monitoring of Water Supply and Sanitation: History, Methods and Future Challenges

    Science.gov (United States)

    Bartram, Jamie; Brocklehurst, Clarissa; Fisher, Michael B.; Luyendijk, Rolf; Hossain, Rifat; Wardlaw, Tessa; Gordon, Bruce

    2014-01-01

    International monitoring of drinking water and sanitation shapes awareness of countries’ needs and informs policy, implementation and research efforts to extend and improve services. The Millennium Development Goals established global targets for drinking water and sanitation access; progress towards these targets, facilitated by international monitoring, has contributed to reducing the global disease burden and increasing quality of life. The experiences of the MDG period generated important lessons about the strengths and limitations of current approaches to defining and monitoring access to drinking water and sanitation. The methods by which the Joint Monitoring Programme (JMP) of WHO and UNICEF tracks access and progress are based on analysis of data from household surveys and linear regression modelling of these results over time. These methods provide nationally-representative and internationally-comparable insights into the drinking water and sanitation facilities used by populations worldwide, but also have substantial limitations: current methods do not address water quality, equity of access, or extra-household services. Improved statistical methods are needed to better model temporal trends. This article describes and critically reviews JMP methods in detail for the first time. It also explores the impact of, and future directions for, international monitoring of drinking water and sanitation. PMID:25116635

  6. The Role of Monitoring in Controlling Water Pollution

    Science.gov (United States)

    Hirsch, Allan

    1971-01-01

    The purpose of this paper is to provide an overview of trends in the national water pollution control effort and to describe the role of monitoring in that effort, particularly in relation to the responsibilities of the Environmental Protection Agency (EPA). I hope the paper will serve as a useful framework for the more specific discussions of monitoring technology to follow.

  7. Drinking water: a major source of lead exposure in Karachi, Pakistan.

    Science.gov (United States)

    Ul-Haq, N; Arain, M A; Badar, N; Rasheed, M; Haque, Z

    2011-11-01

    Excess lead in drinking water is a neglected source of lead toxicity in Pakistan. A cross-sectional survey in 2007/08 was made of water samples from drinking water sources in Karachi, a large industrial city. This study aimed to compare lead levels between untreated ground water and treated surface (tap) water in 18 different districts. Of 216 ground and surface water samples collected, 86% had lead levels higher than the World Health Organization maximum acceptable concentration of l0 ppb. Mean lead concentration in ground water [146 (SD 119) ppb] was significantly higher than in surface water [77.1 (SD 54) ppb]. None of the 18 districts had a mean lead level of ground or surface water below the WHO cut-off and ground water sources in 9 districts had a severe level of contamination (>150 ppb). Urgent action is needed to eliminate sources of contamination.

  8. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    Science.gov (United States)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  9. Monitoring water quality from LANDSAT. [satellite observation of Virginia

    Science.gov (United States)

    Barker, J. L.

    1975-01-01

    Water quality monitoring possibilities from LANDSAT were demonstrated both for direct readings of reflectances from the water and indirect monitoring of changes in use of land surrounding Swift Creek Reservoir in a joint project with the Virginia State Water Control Board and NASA. Film products were shown to have insufficient resolution and all work was done by digitally processing computer compatible tapes. Land cover maps of the 18,000 hectare Swift Creek Reservoir watershed, prepared for two dates in 1974, are shown. A significant decrease in the pine cover was observed in a 740 hectare construction site within the watershed. A measure of the accuracy of classification was obtained by comparing the LANDSAT results with visual classification at five sites on a U-2 photograph. Such changes in land cover can alert personnel to watch for potential changes in water quality.

  10. Monitoring Water Targets in the Post-2015 Development Goals

    Science.gov (United States)

    Lawford, R. G.

    2015-12-01

    The Water Sustainable Development Goal (SDG) provides a comprehensive approach to developing water services in a way that ensures social equity, health, well-being and sustainability for all. In particular, the water goal includes targets related to sanitation, wastewater, water quality, water efficiency, integrated water management and ecosystems (details to be finalized in September 2015). As part of its implementation, methods to monitor target indicators must be developed. National governments will be responsible for reporting on progress toward these targets using national data sets and possibly information from global data sets that applies to their countries. Oversight of this process through the use of global data sets is desirable for encouraging the use of standardized information for comparison purposes. Disparities in monitoring due to very sparse data networks in some countries can be addressed by using geospatially consistent data products from space-based remote sensing. However, to fully exploit these data, capabilities will be needed to downscale information, to interpolate and assimilate data both in time and space, and to integrate these data with socio-economic data sets, model outputs and survey data in a geographical information system framework. Citizen data and other non-standard data types may also supplement national data systems. A comprehensive and integrated analysis and dissemination system is needed to enable the important contributions that satellites could make to achieving Water SDG targets. This presentation will outline the progress made in assessing the needs for information to track progress on the Water SDG, options for meeting these needs using existing data infrastructure, and pathways for expanding the role of Earth observations in SDG monitoring. It will also discuss the potential roles of Future Earth's Sustainable Water Futures Programme (SWFP) and the Group on Earth Observations (GEO) in coordinating these efforts.

  11. Modeling Source Water TOC Using Hydroclimate Variables and Local Polynomial Regression.

    Science.gov (United States)

    Samson, Carleigh C; Rajagopalan, Balaji; Summers, R Scott

    2016-04-19

    To control disinfection byproduct (DBP) formation in drinking water, an understanding of the source water total organic carbon (TOC) concentration variability can be critical. Previously, TOC concentrations in water treatment plant source waters have been modeled using streamflow data. However, the lack of streamflow data or unimpaired flow scenarios makes it difficult to model TOC. In addition, TOC variability under climate change further exacerbates the problem. Here we proposed a modeling approach based on local polynomial regression that uses climate, e.g. temperature, and land surface, e.g., soil moisture, variables as predictors of TOC concentration, obviating the need for streamflow. The local polynomial approach has the ability to capture non-Gaussian and nonlinear features that might be present in the relationships. The utility of the methodology is demonstrated using source water quality and climate data in three case study locations with surface source waters including river and reservoir sources. The models show good predictive skill in general at these locations, with lower skills at locations with the most anthropogenic influences in their streams. Source water TOC predictive models can provide water treatment utilities important information for making treatment decisions for DBP regulation compliance under future climate scenarios.

  12. Tools for Trade Analysis and Open Source Information Monitoring for Non-proliferation

    International Nuclear Information System (INIS)

    Cojazzi, G.G.M.; Versino, C.; Wolfart, E.; Renda, G.; Janssens, W.A.M.; )

    2015-01-01

    The new state level approach being proposed by IAEA envisions an objective based and information driven safeguards approach utilizing all relevant information to improve the effectiveness and efficiency of safeguards. To this goal the IAEA makes also use of open source information, here broadly defined as any information that is neither classified nor proprietary. It includes, but is not limited to: media sources, government and non-governmental reports and analyzes, commercial data, and scientific/technical literature, including trade data. Within the EC support programme to IAEA, JRC has surveyed and catalogued open sources on import-export customs trade data and developed tools for supporting the use of the related databases in safeguards. The JRC software The Big Table, (TBT), supports i.a.: a) the search through a collection of reference documents relevant to trade analysis (legal/regulatory documents, technical handbooks); b) the selection of items of interests to specific verifications and c) the mapping of these items to customs commodities searchable in trade databases. In the field of open source monitoring, JRC is developing and operating a ''Nuclear Security Media Monitor'' (NSMM), which is a web-based multilingual news aggregation system that automatically collects news articles from pre-defined web sites. NSMM is a domain specific version of the general JRC-Europe Media Monitor (EMM). NSMM has been established within the EC support programme with the aim, i.e., to streamline IAEA's process of open source information monitoring. In the first part, the paper will recall the trade data sources relevant for non-proliferation and will then illustrate the main features of TBT, recently coupled with the IAEA Physical Model, and new visualization techniques applied to trade data. In the second part it will present the main aspects of the NSMM also by illustrating some of uses done at JRC. (author)

  13. PROFILE: Integrating Stressor and Response Monitoring into a Resource-Based Water-Quality Assessment Framework.

    Science.gov (United States)

    ROUX; KEMPSTER; KLEYNHANS; VAN; DU

    1999-01-01

    / South African water law as well as the country's water resource management policies are currently under review. The Water Law Principles, which were established as part of this review process, indicate a commitment to sustainable development of water resources and the protection of an ecological "reserve." Such policy goals highlight the limitations of traditional and current water-quality management strategies, which rely on stressor monitoring and associated regulation of pollution. The concept of an assimilative capacity is central to the implementation of the current water-quality management approach. Weaknesses inherent in basing water management on the concept of assimilative capacity are discussed. Response monitoring is proposed as a way of addressing some of the weaknesses. Following a global trend, the new policy goals emphasize the need to protect rather than to use the ability of ecosystems to recover from disturbances. This necessitates the adoption of response measurements to quantify ecological condition and monitor ecological change. Response monitoring focuses on properties that are essential to the sustainability of the ecosystem. These monitoring tools can be used to establish natural ranges of ecological change within ecosystems, as well as to quantify conceptually acceptable and unacceptable ranges of change. Through a framework of biological criteria and biological impairment standards, the results of response monitoring can become an integral part of future water resource management strategies in South Africa. KEY WORDS: Stressor monitoring; Response monitoring; Assimilative capacity; Ecosystem stability; Resilience; Biocriteria

  14. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  15. Experimental Research of a Water-Source Heat Pump Water Heater System

    OpenAIRE

    Zhongchao Zhao; Yanrui Zhang; Haojun Mi; Yimeng Zhou; Yong Zhang

    2018-01-01

    The heat pump water heater (HPWH), as a portion of the eco-friendly technologies using renewable energy, has been applied for years in developed countries. Air-source heat pump water heaters and solar-assisted heat pump water heaters have been widely applied and have become more and more popular because of their comparatively higher energy efficiency and environmental protection. Besides use of the above resources, the heat pump water heater system can also adequately utilize an available wat...

  16. Deformation Monitoring of the Spallation Neutron Source (SNS) Tunnels

    CERN Document Server

    Error, J J; Fazekas, J J; Helus, S A; Maines, J R

    2005-01-01

    The SNS Project is a 1.4 MW accelerator-based neutron source located at Oak Ridge National Laboratory in Oak Ridge, Tennessee. For shielding purposes, a 17 foot berm of native soil has been constructed on top of the accelerator tunnel system. This backfill has caused ongoing settlement of the tunnels. The settlement has been monitored by the SNS Survey and Alignment Group at regular intervals, in order to discover the patterns of deformation, and to determine when the tunnels will be stable enough for precise alignment of beam line components. The latest monitoring results indicate that the settlement rate has significantly decreased. This paper discusses the techniques and instrumentation of the monitoring surveys, and provides an analysis of the results.

  17. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  18. Role of water source in the growth of kale

    Science.gov (United States)

    Coates, M.

    2017-12-01

    Over the course of 2 months we watered Kale with tap water, water from turtle bayou, rain water, water from university lake, and deionized water. We found little difference between height and number of seedlings with different water treatments even though nutrient levels were different between these water sources.

  19. Consumer Perception and Preference of Drinking Water Sources.

    Science.gov (United States)

    Sajjadi, Seyed Ali; Alipour, Vali; Matlabi, Mohammad; Biglari, Hamed

    2016-11-01

    Understanding consumer perception of drinking water can contribute to improvements in water management and consumer satisfaction. The aim of this study was to assess the consumer perception of tap water quality and other drinking water sources in Gonabad as a small semiarid city. This study was performed in autumn and winter 2013. For collection data a researcher-made a questionnaire consisting of nine questions, based on demographic information prepared. Questions were asked for participants to provide information regarding household drinking water usage and patterns, opinion about tap water safety, taste and reasons for purchasing bottled water. For statistical analysis, analysis of variance (ANOVA) using SPSS version 16 was applied in this study. Results showed that demographic variables had a significant relationship with consumer satisfaction (p Consumer reasons for using domestic water softeners are: suitable taste (80%), easy availability (71%), economical (56%) and low health side effects (34%). According to these results it was clear that each consumer group, based on self-condition, prefers using a specific drinking water source.

  20. The NASA Goddard Group's Source Monitoring Database and Program

    Science.gov (United States)

    Gipson, John; Le Bail, Karine; Ma, Chopo

    2014-12-01

    Beginning in 2003, the Goddard VLBI group developed a program to purposefully monitor when sources were observed and to increase the observations of ``under-observed'' sources. The heart of the program consists of a MySQL database that keeps track of, on a session-by-session basis: the number of observations that are scheduled for a source, the number of observations that are successfully correlated, and the number of observations that are used in a session. In addition, there is a table that contains the target number of successful sessions over the last twelve months. Initially this table just contained two categories. Sources in the geodetic catalog had a target of 12 sessions/year; the remaining ICRF-1 defining sources had a target of two sessions/year. All other sources did not have a specific target. As the program evolved, different kinds of sources with different observing targets were added. During the scheduling process, the scheduler has the option of automatically selecting N sources which have not met their target. We discuss the history and present some results of this successful program.

  1. Development and evaluation of a helicopter-borne water-quality monitoring system

    Science.gov (United States)

    Wallace, J. W.; Jordan, R. A.; Flynn, J.; Thomas, R. W.

    1978-01-01

    A small, helicopter-borne water-quality monitoring package is being developed by the NASA/EPA using a combination of basic in situ water quality sensors and physical sample collector technology. The package is a lightweight system which can be carried and operated by one person as a passenger in a small helicopter typically available by rental at commercial airports. Real-time measurements are made by suspending the water quality monitoring package with a cable from the hovering helicopter. Designed primarily for use in rapidly assessing hazardous material spills in inland and coastal zone water bodies, the system can survey as many as 20 data stations up to 1.5 kilometers apart in 1 hour. The system provides several channels of sensor data and allows for the addition of future sensors. The system will also collect samples from selected sites with sample collection on command. An EPA Spill Response Team member can easily transport, deploy, and operate the water quality monitoring package to determine the distribution, movement, and concentration of the spilled material in the water body.

  2. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  3. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries.

    Science.gov (United States)

    Crocker, Jonny; Bartram, Jamie

    2014-07-18

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country's ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  4. When Are Mobile Phones Useful for Water Quality Data Collection? An Analysis of Data Flows and ICT Applications among Regulated Monitoring Institutions in Sub-Saharan Africa.

    Science.gov (United States)

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Fay, Annette; Cock-Esteb, Alicea; Khush, Ranjiv

    2015-09-02

    Water quality monitoring is important for identifying public health risks and ensuring water safety. However, even when water sources are tested, many institutions struggle to access data for immediate action or long-term decision-making. We analyzed water testing structures among 26 regulated water suppliers and public health surveillance agencies across six African countries and identified four water quality data management typologies. Within each typology, we then analyzed the potential for information and communication technology (ICT) tools to facilitate water quality information flows. A consistent feature of all four typologies was that testing activities occurred in laboratories or offices, not at water sources; therefore, mobile phone-based data management may be most beneficial for institutions that collect data from multiple remote laboratories. We implemented a mobile phone application to facilitate water quality data collection within the national public health agency in Senegal, Service National de l'Hygiène. Our results indicate that using the phones to transmit more than just water quality data will likely improve the effectiveness and sustainability of this type of intervention. We conclude that an assessment of program structure, particularly its data flows, provides a sound starting point for understanding the extent to which ICTs might strengthen water quality monitoring efforts.

  5. When Are Mobile Phones Useful for Water Quality Data Collection? An Analysis of Data Flows and ICT Applications among Regulated Monitoring Institutions in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Emily Kumpel

    2015-09-01

    Full Text Available Water quality monitoring is important for identifying public health risks and ensuring water safety. However, even when water sources are tested, many institutions struggle to access data for immediate action or long-term decision-making. We analyzed water testing structures among 26 regulated water suppliers and public health surveillance agencies across six African countries and identified four water quality data management typologies. Within each typology, we then analyzed the potential for information and communication technology (ICT tools to facilitate water quality information flows. A consistent feature of all four typologies was that testing activities occurred in laboratories or offices, not at water sources; therefore, mobile phone-based data management may be most beneficial for institutions that collect data from multiple remote laboratories. We implemented a mobile phone application to facilitate water quality data collection within the national public health agency in Senegal, Service National de l’Hygiène. Our results indicate that using the phones to transmit more than just water quality data will likely improve the effectiveness and sustainability of this type of intervention. We conclude that an assessment of program structure, particularly its data flows, provides a sound starting point for understanding the extent to which ICTs might strengthen water quality monitoring efforts.

  6. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  7. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Science.gov (United States)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling

  8. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  9. Multimedia Lead Exposure Modeling, and Water Monitoring Perspectives

    Science.gov (United States)

    Drinking water and other sources for lead are the subject of public health concern following the Flint, Michigan drinking water and East Chicago, Indiana lead in soil crises. In 2015, the U.S. EPA’s National Drinking Water Advisory Council recommended establishing a “...

  10. Investigation on supervising and monitoring of major radioactive pollution source

    International Nuclear Information System (INIS)

    Zeng Yibing; Zhang Zongrang; Men Meng; Zhang Peng

    2005-01-01

    Objective: In order to optimize the supervisory monitoring proposal of the major radioactive enterprises. Methods: The authors have worked out the public doses within the range of 0-1 km as well as 1-2 km through monitoring analysis of the radioactive pollutant enterprises on the samples of its surrounding air, water, soil and organism. Results: Generally the pollutant range of the enterprises runs from 0 to 1.5 km. Conclusion: Unnecessary working hours can be shortened as long as we keep the routine supervisory monitor of pollutant enterprises within the range of 2 km. (authors)

  11. Coupling of ground biosensor networks for water monitoring with satellite observations in assessing Leptospirosis

    Science.gov (United States)

    Skouloudis, A. N.; Rickerby, D. G.

    2012-12-01

    Leptospirosis became recently a major public-health problem that is closely related with the environment (Nature review Oct 2009, Vol 7, pp 736-747). This disease originates from zoonotic pathogens associated with asymptomatic rodent carriers. Unfortunately, it effects human populations via various direct and indirect routes. This disease can claim many victims with large outbreaks during natural disasters or floods occurring during seasonal conditions. The severity of the illness ranges from subclinical infection to a fulminating fatal disease. Improved water quality monitoring techniques based on biosensor, optical, micro-fluidic and information technologies are leading to radical changes in our ability to perceive and monitor the aquatic environment. Biosensors are capable of providing specific, high spatial resolution information and allow unattended operation that will be particularly useful for water borne related diseases. Current research on biosensors is leading to solutions to problems for several contaminants that were previously irresolvable due to their high degree of complexity. Networking of the sensors enables sensitive monitoring systems allowing real-time monitoring of pollutants and facilitates data transmission between the measurement points and central control stations for continuous surveillance and to provide an early warning capability. The application of intelligent biosensor networks for water quality monitoring and detection of localized sources of pollution are discussed together with the setting up of a methodology that utilizes images from satellite coupled with in-situ sensors for anticipating the zones of potential evolution of this disease and assessing the population at risk. Environmental and climatic conditions that are associated the outbreaks are described and the rational of combining earth observations coupled with advanced in-situ biosensors is explained. The implementation of sensor networks for data collection and exposure

  12. Developing the remote sensing-based water environmental model for monitoring alpine river water environment over Plateau cold zone

    Science.gov (United States)

    You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.

    2017-12-01

    Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key

  13. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2015-05-01

    Full Text Available Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA, the cluster analysis (CA and the discriminant analysis (DA were used to assess the water pollution status and analyze its spatio-temporal variation. Ten sites were classified by the high pollution (HP region and the low pollution (LP region, while 12 months were divided into the wet season and the dry season. It was found that the HP region was mainly in the small tributaries with small drainage areas and low average annual discharges, and it was also found that most of these rivers went through urban areas with industrial and domestic sewages input into the water body. Principal component analysis/factor analysis (PCA/FA was applied to reveal potential pollution sources, whereas absolute principal component score-multiple linear regression (APCS-MLR was used to identify their contributions to each water quality variable. The study area was found as being generally affected by industrial and domestic sewage. Furthermore, the HP region was polluted by chemical industries, and the LP region was influenced by agricultural and livestock sewage.

  14. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of waste water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program

  15. Aerosol behavior and light water reactor source terms

    International Nuclear Information System (INIS)

    Abbey, F.; Schikarski, W.O.

    1988-01-01

    The major developments in nuclear aerosol modeling following the accident to pressurized water reactor Unit 2 at Three Mile Island are briefly reviewed and the state of the art summarized. The importance and implications of these developments for severe accident source terms for light water reactors are then discussed in general terms. The treatment is not aimed at identifying specific source term values but is intended rather to illustrate trends, to assess the adequacy of the understanding of major aspects of aerosol behavior for source term prediction, and demonstrate in qualitative terms the effect of various aspects of reactor design. Areas where improved understanding of aerosol behavior might lead to further reductions in current source terms predictions are also considered

  16. Water Biosensor Challenge to Address Toxicity of Water

    Science.gov (United States)

    An ongoing concern for water treatment systems and resource managers is the need to monitor for the presence of increasing number of pollutants from agricultural, municipal, and industrial outfalls that are present in U.S. source waters. The associated environmental compounds can...

  17. Environmental Monitoring, Water Quality - TMDL Lakes

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The Clean Water Act Section 303(d) establishes the Total Maximum Daily Load (TMDL) program. The purpose of the TMDL program is to identify sources of pollution and...

  18. Comparison and Cost Analysis of Drinking Water Quality Monitoring Requirements versus Practice in Seven Developing Countries

    OpenAIRE

    Crocker, Jonny; Bartram, Jamie

    2014-01-01

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, ...

  19. Electrical Resistance Tomography to monitor vadose water movement

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.; LaBrecque, D.

    1991-01-01

    We report results of one test in which Electrical Resistance Tomography (ERT) was used to map the changes in electrical resistivity in the vadose zone as a function of time while water infiltration occurred. The ERT images were used to infer shape and movement of the infiltration plume in the unsaturated soil. We supplied a continuous water source at a point about 10 feet below the surface (at the end of a shallow screened hole) for only a short time--2.5 hours. This pulsed source introduced a open-quote slug close-quote of water whose infiltration was followed to about 60 foot depth during a 23 hour period. The ERT images show resistivity decreases as the water content of the vadose zone increased while water was added to the soil; the resistivity of the soil later increased after the supply of water was cut-off and the induced soil moisture began to subside

  20. Comparison and Cost Analysis of Drinking Water Quality Monitoring Requirements versus Practice in Seven Developing Countries

    Directory of Open Access Journals (Sweden)

    Jonny Crocker

    2014-07-01

    Full Text Available Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states, Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  1. Monitoring surface water quality using social media in the context of citizen science

    Science.gov (United States)

    Zheng, Hang; Hong, Yang; Long, Di; Jing, Hua

    2017-02-01

    Surface water quality monitoring (SWQM) provides essential information for water environmental protection. However, SWQM is costly and limited in terms of equipment and sites. The global popularity of social media and intelligent mobile devices with GPS and photography functions allows citizens to monitor surface water quality. This study aims to propose a method for SWQM using social media platforms. Specifically, a WeChat-based application platform is built to collect water quality reports from volunteers, which have been proven valuable for water quality monitoring. The methods for data screening and volunteer recruitment are discussed based on the collected reports. The proposed methods provide a framework for collecting water quality data from citizens and offer a primary foundation for big data analysis in future research.

  2. South Asia transboundary water quality monitoring workshop summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.; Rajen, Gaurav

    2003-04-01

    The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification

  3. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  4. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  5. Development of a laboratory prototype water quality monitoring system suitable for use in zero gravity

    Science.gov (United States)

    Misselhorn, J. E.; Witz, S.; Hartung, W. H.

    1973-01-01

    The development of a laboratory prototype water quality monitoring system for use in the evaluation of candidate water recovery systems and for study of techniques for measuring potability parameters is reported. Sensing techniques for monitoring of the most desirable parameters are reviewed in terms of their sensitivities and complexities, and their recommendations for sensing techniques are presented. Rationale for selection of those parameters to be monitored (pH, specific conductivity, Cr(+6), I2, total carbon, and bacteria) in a next generation water monitor is presented along with an estimate of flight system specifications. A master water monitor development schedule is included.

  6. A monitoring of chemical contaminants in waters used for field irrigation and livestock watering in the Veneto region (Italy), using bioassays as a screening tool.

    Science.gov (United States)

    De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo

    2014-03-01

    In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.

  7. Monitoring light source for CMS lead tungstate crystal calorimeter at LHC

    CERN Document Server

    Zhang Li Yuan; Zhu Ren Yuan; Liu Dun Can

    2000-01-01

    Light monitoring will serve as an inter calibration for CMS lead tungstate crystals in situ at LHC, which is crucial for maintaining crystal calorimeter's sub percent constant term in the energy resolution. This paper presents the design of the CMS ECAL monitoring light source and high level distribution system. The correlations between variations of the light output and the transmittance for the CMS choice of Y doped PbWO//4 crystals were investigated, and were used to study monitoring linearity and sensitivity as a function of the wavelength. The monitoring wavelength was determined so that a good linearity as well as adequate sensitivity can be achieved. The performance of a custom manufactured tunable laser system is presented. Issues related to monitoring precision are discussed. 29 Refs.

  8. Lead isotopes in tap water: implications for Pb sources within a municipal water supply system

    International Nuclear Information System (INIS)

    Cheng Zhongqi; Foland, Kenneth A.

    2005-01-01

    Residential tap waters were investigated to examine the feasibility of using isotopic ratios to identify dominant sources of water Pb in the Columbus (Ohio, USA) municipal supply system. Overall, both the concentrations, which are generally low (0.1-28 μg/L), and isotopic compositions of tap water Pb show wide variations. This contrasts with the situation for a limited number of available service lines, which exhibit only a limited Pb-isotope variation but contain Pb of two very different types with one significantly more radiogenic than the other. Most tap water samples in contact with Pb service lines have Pb-isotope ratios that are different from the pipe Pb. Furthermore, the Pb isotope compositions of sequentially drawn samples in the same residence generally are similar, but those from separate residences are different, implying dominant Pb sources from domestic plumbing. A separate pilot study at two residences without Pb service lines shows isotopic similarity between water and solders in each house, further suggesting that the major Pb sources are domestic in these cases and dominated by Pb from solder joints. Although complicated by the broad range of overall Pb-isotope variations observed and limited by sample availability, the results suggest that Pb isotopes can be used effectively to constrain the sources of Pb in tap waters, especially for individual houses where multiple source candidates can be identified

  9. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  10. Application of information technologies to water monitoring: Features and sectoral trends

    Energy Technology Data Exchange (ETDEWEB)

    Croci, E; Pesaro, G [Bocconi Univ., Milan (Italy). Ist. di Economia delle Fonti di Energia

    1991-04-01

    Social attention to water pollution is increasing. Because of the complexity of the natural, institutional, technological and economical aspects involved, an efficient policy for prevention and intervention needs to consider many variables. A good knowledge of the environmental situation and evolution is the basis for any action by both public and private acting agencies. Water monitoring allows the collection and elaboration of information through a process which goes from raw environmental data to public decisions. Monitoring can also present business opportunities for firms. The large Italian and multinational companies are entering the market and making agreements with small engineering firms with strong technological capabilities. In particular, the elaboration and automation of monitoring procedures represent important tendencies towards the improvement of environmental services. The institutional framework is very relevant in the definition of public and private choices, links and opportunities. A systematic approach to water monitoring can provide a better support to public decision makers.

  11. Differences in staining intensities affect reported occurrences and concentrations of Giardia spp. in surface drinking water sources.

    Science.gov (United States)

    Alderisio, K A; Villegas, L F; Ware, M W; McDonald, L A; Xiao, L; Villegas, E N

    2017-12-01

    USEPA Method 1623, or its equivalent, is currently used to monitor for protozoan contamination of surface drinking water sources worldwide. At least three approved staining kits used for detecting Cryptosporidium and Giardia are commercially available. This study focuses on understanding the differences among staining kits used for Method 1623. Merifluor and EasyStain labelling kits were used to monitor Cryptosporidium oocyst and Giardia cyst densities in New York City's raw surface water sources. In the year following a change to the approved staining kits for use with Method 1623, an anomaly was noted in the occurrence of Giardia cysts in New York City's raw surface water. Specifically, Merifluor-stained samples had higher Giardia cyst densities as compared with those stained with EasyStain. Side by side comparison revealed significantly lower fluorescence intensities of Giardia muris as compared with Giardia duodenalis cysts when labelled with EasyStain. This study showed very poor fluorescence intensity signals by EasyStain on G. muris cysts resulting in lower cyst counts, while Merifluor, with its broader Giardia cyst staining specificity, resulted in higher cyst counts, when using Methods 1623. These results suggest that detected Giardia cyst concentrations are dependent on the staining kits used, which can result in a more or less conservative estimation of occurrences and densities of zoonotic Giardia cysts by detecting a broader range of Giardia species/Assemblages. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  12. Experiences and recommendations in deploying a real-time, water quality monitoring system

    Science.gov (United States)

    O'Flynn, B.; Regan, F.; Lawlor, A.; Wallace, J.; Torres, J.; O'Mathuna, C.

    2010-12-01

    Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems--these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data points

  13. Experiences and recommendations in deploying a real-time, water quality monitoring system

    International Nuclear Information System (INIS)

    O'Flynn, B; O'Mathuna, C; Regan, F; Lawlor, A; Wallace, J; Torres, J

    2010-01-01

    Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems-–these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data

  14. Legislation and water management of water source areas of São Paulo Metropolitan Region, Brazil

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Gregolin Grisotto

    2010-12-01

    Full Text Available This paper presents the history of occupation in the water source areas in São Paulo Metropolitan Region (hereinafter SPMR and the evolution of the legislation related to this issue, from the point of view of the environmental and water management. A descriptive methodology was used, with searches into bibliographical and documental materials, in order to present the main laws for the protection of the water supply areas of SPMR and environmental and water management. It was possible to observe some progress in the premises of the both legislation and the format proposed for the management of the water source areas. However, such progress is limited due to the lack of a more effective mechanism for metropolitan management. The construction of the metropolitan management in SPMR would enlarge the capacity of integration between municipalities and sectors. The integration between the management of water and the land use management showed to be fundamental for the protection of the water sources. The new law for protection of the water sources, State Law nº 9.866/97, is decentralized and participative, focusing on non-structural actions and integrated management. However, the effective implementation of the law still depends on the harmonization of sectoral public policies, extensive coordination and cooperation among municipalities and the progress in the degree of the commitment of the governments.

  15. Surface water classification and monitoring using polarimetric synthetic aperture radar

    Science.gov (United States)

    Irwin, Katherine Elizabeth

    Surface water classification using synthetic aperture radar (SAR) is an established practice for monitoring flood hazards due to the high temporal and spatial resolution it provides. Surface water change is a dynamic process that varies both spatially and temporally, and can occur on various scales resulting in significant impacts on affected areas. Small-scale flooding hazards, caused by beaver dam failure, is an example of surface water change, which can impact nearby infrastructure and ecosystems. Assessing these hazards is essential to transportation and infrastructure maintenance. With current satellite missions operating in multiple polarizations, spatio-temporal resolutions, and frequencies, a comprehensive comparison between SAR products for surface water monitoring is necessary. In this thesis, surface water extent models derived from high resolution single-polarization TerraSAR-X (TSX) data, medium resolution dual-polarization TSX data and low resolution quad-polarization RADARSAT-2 (RS-2) data are compared. There exists a compromise between acquiring SAR data with a high resolution or high information content. Multi-polarization data provides additional phase and intensity information, which makes it possible to better classify areas of flooded vegetation and wetlands. These locations are often where fluctuations in surface water occur and are essential for understanding dynamic underlying processes. However, often multi-polarized data is acquired at a low resolution, which cannot image these zones effectively. High spatial resolution, single-polarization TSX data provides the best model of open water. However, these single-polarization observations have limited information content and are affected by shadow and layover errors. This often hinders the classification of other land cover types. The dual-polarization TSX data allows for the classification of flooded vegetation, but classification is less accurate compared to the quad-polarization RS-2 data

  16. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  17. Chemical and isotopic methods for characterization of pollutant sources in rain water

    International Nuclear Information System (INIS)

    Verma, M.P.

    1996-01-01

    The acid rain formation is related with industrial pollution. An isotopic and chemical study of the spatial and temporary distribution of the acidity in the rain gives information about the acidity source. The predominant species in the acid rain are nitrates and sulfates. For the rain monitoring is required the determination of the anion species such as HCO 3 , Cl, SO 4 , NO 3 and p H. So it was analyzed the cations Na + , K + , Ca 2+ and Mg 2+ to determine the quality analysis. All of them species can be determined with enough accuracy, except HCO 3 by modern equipment such as, liquid chromatograph, atomic absorption, etc. The HCO 3 concentration is determined by traditional methods like acid-base titration. This work presents the fundamental concepts of the titration method for samples with low alkalinity (carbonic species), for rain water. There is presented a general overview over the isotopic methods for the characterization of the origin of pollutant sources in the rain. (Author)

  18. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana

    Science.gov (United States)

    Cobbina, Samuel J.; Duwiejuah, Abudu B.; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel

    2015-01-01

    The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended. PMID:26343702

  19. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana

    Directory of Open Access Journals (Sweden)

    Samuel J. Cobbina

    2015-08-01

    Full Text Available The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga in northern Ghana. Seventy-two (72 water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg, arsenic (As, lead (Pb, zinc (Zn, and cadmium (Cd were determined using an atomic absorption spectrophotometer (AAS. Mean levels (mg/l of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg, 0.031 and 0.002 (As, 0.250 and 0.031 (Pb, 0.034 and 0.002 (Zn, and 0.534 and 0.023 (Cd, respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended.

  20. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana.

    Science.gov (United States)

    Cobbina, Samuel J; Duwiejuah, Abudu B; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel

    2015-08-28

    The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended.

  1. Radionuclide Sensors for Subsurface Water Monitoring. Final report

    International Nuclear Information System (INIS)

    Timothy DeVol

    2006-01-01

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitored in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program. Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media

  2. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes

    International Nuclear Information System (INIS)

    Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino

    2016-01-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009–2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100 ng L"−"1). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ"1"8O, δ"1"5N and δ"3"4S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100 ng L"−"1. The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ"1"5N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with

  3. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Esmeralda, E-mail: eestevez@proyinves.ulpgc.es [Dpt. Física (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Agrifood and Phytopathological Laboratory (Cabildo de Gran Canaria), 35413 Arucas, Canary Islands (Spain); Cabrera, María del Carmen, E-mail: mcarmen.cabrera@ulpgc.es [Dpt. Física (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); IMDEA Water Institute, Alcalá de Henares, Madrid (Spain); Fernández-Vera, Juan Ramón, E-mail: jrfernandezv@grancanaria.com [Agrifood and Phytopathological Laboratory (Cabildo de Gran Canaria), 35413 Arucas, Canary Islands (Spain); Molina-Díaz, Antonio, E-mail: amolina@ujaen.es [Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Robles-Molina, José, E-mail: jroblesmol@gmail.com [Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Palacios-Díaz, María del Pino, E-mail: mp.palaciosdiaz@ulpgc.es [Dpt. de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Canary Islands (Spain)

    2016-05-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009–2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100 ng L{sup −1}). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ{sup 18}O, δ{sup 15}N and δ{sup 34}S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100 ng L{sup −1}. The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ{sup 15}N and the lowest contaminants occurrence. The area is an example of a complex

  4. Reconnaissance of land-use sources of pesticides in drinking water, McKenzie River, Oregon

    Science.gov (United States)

    Kelly, Valerie J.; Anderson, Chauncey W.; Morgenstern, Karl

    2012-01-01

    The Eugene Water and Electric Board (EWEB) provides water and electricity to the City of Eugene, Oregon, from the McKenzie River. In the spring of 2002, EWEB initiated a pesticide monitoring program in cooperation with the U.S. Geological Survey as part of their Drinking Water Source Protection Plan. Approximately twice yearly pesticide samples were collected from 2002 to 2010 at a suite of sampling sites representing varying land uses in the lower McKenzie River basin. A total of 117 ambient samples were collected from 28 tributary and mainstem sites, including those dominated by forestry, urban, and agricultural activities, as well as the mouths of major tributaries characterized by a mixture of upstream land use. Constituents tested included 175 compounds in filtered water (72 herbicides, 43 insecticides, 10 fungicides, and 36 of their degradation products, as well as 14 pharmaceutical compounds). No attempt was made to sample different site types equivalently; sampling was instead designed primarily to characterize representative storm events during spring and fall runoff conditions in order to assess or confirm the perceived importance of the different site types as sources for pesticides. Sampling was especially limited for agricultural sites, which were only sampled during two spring storm surveys. A total of 43 compounds were detected at least once, with many of these detected only at low concentrations (urban stormwater drains. Urban sites also were associated with the highest concentrations, occasionally exceeding 1 microgram per liter. Many of the compounds detected at urban sites were relatively hydrophobic (do not mix easily with water), persistent, and suspected of endocrine disruption. In contrast, forestry compounds were rarely detectable in the McKenzie River, even though forest land predominates in the basin and forestry pesticide use was detected in small tributaries draining forested lands following application. Agricultural pesticide runoff was

  5. Water sources for cyanobacteria below desert rocks in the Negev Desert determined by conductivity

    Directory of Open Access Journals (Sweden)

    Christopher P. McKay

    2016-04-01

    Full Text Available We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community is consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.

  6. Evaluation of Universitas Indonesia’s Recharge Pond Performance and Potential Utilization for Raw Water Source

    Directory of Open Access Journals (Sweden)

    Nyoman Suwartha

    2012-05-01

    Full Text Available The UI recharge pond has been constructed 5 years ago. However, monitoring and evaluation activities on its performances are very lack. Aims of this study are to understand the recharge rate, and to evaluate existing quantity and water quality of the pond during dry and rainy season. Measurement of water depth, rainfall intensity, and evaporation is conducted to determine water availability, recharge rate, and water balance of the recharge pond. Amount of surface water is collected from recharge pond and river at three sampling point to determine existing water quality of the pond. The results showed that recharge rate of the pond between dry season (3.2 mm/day and wet season (6.1 mm/day are considered as insignificant different. The water balance of the recharge pond shows an excessive rate. Various physics and chemical parameters (turbidity, color, TDS, pH, and  Cl are found to have concentration lower than the water quality standard. The results suggest that the pond surface water is remain suitable to be recharged into aquifer zone so that sustaining ground water conservation campaign, and it is potential to be utilized as an additional  raw water source for domestic water demand of UI Campus Depok.

  7. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sehlke, G.

    2003-03-17

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead

  8. Best Management Practices Monitoring Guide for Stream Systems

    OpenAIRE

    Mesner, Nancy

    2011-01-01

    Best Management Practices Monitoring Guide for Stream Systems provides guidance on establishing a water quality monitoring program that will demonstrate the effectiveness of Best Management Practices (BMPs) to reduce nonpoint source pollution in stream systems.

  9. [Mineral waters from several Brazilian natural sources].

    Science.gov (United States)

    Rebelo, M A; Araujo, N C

    1999-01-01

    To divulge information on the chemical composition and physical-chemical features of some mineral waters from Brazilian natural sources that will be of useful protocol investigation and patient advice. The survey was based on bottle labels of non-gaseous mineral waters commercially available in the city of Rio de Janeiro. The íon concentration of each mineral was calculated from the salt content. 36 springs were enralled from different states of the country. The pH (25 degrees C), 4.1 to 9.3, varied on dependence of the source and it was linearey correlated with the cations calcium, magnesium and sodium and the anion bicarbonate. It was atributed to high alkalinity (about 70% of bicarbonate in the molecula-gram) of these salts. The calcium (0.3 to 42 mg/l), magnesium (0.0 to 18 mg/l) and bicarbonate (4 to 228 mg/l) contents are relatively low. The mineral content of the Brazilian springs enrolled in this survey is low; about 70% of the sources having calcium and magnesium less than 10 mg/l and 1.0 mg/l, respectively, similar to local tap water.

  10. Continuous Hydrologic and Water Quality Monitoring of Vernal Ponds.

    Science.gov (United States)

    Mina, Odette; Gall, Heather E; Chandler, Joseph W; Harper, Jeremy; Taylor, Malcolm

    2017-11-13

    Vernal ponds, also referred to as vernal pools, provide critical ecosystem services and habitat for a variety of threatened and endangered species. However, they are vulnerable parts of the landscapes that are often poorly understood and understudied. Land use and management practices, as well as climate change are thought to be a contribution to the global amphibian decline. However, more research is needed to understand the extent of these impacts. Here, we present methodology for characterizing a vernal pond's morphology and detail a monitoring station that can be used to collect water quantity and quality data over the duration of a vernal pond's hydroperiod. We provide methodology for how to conduct field surveys to characterize the morphology and develop stage-storage curves for a vernal pond. Additionally, we provide methodology for monitoring the water level, temperature, pH, oxidation-reduction potential, dissolved oxygen, and electrical conductivity of water in a vernal pond, as well as monitoring rainfall data. This information can be used to better quantify the ecosystem services that vernal ponds provide and the impacts of anthropogenic activities on their ability to provide these services.

  11. Synergies of multiple remote sensing data sources for REDD+ monitoring

    NARCIS (Netherlands)

    Sy, de V.; Herold, M.; Achard, F.; Asner, G.P.; Held, A.; Kellndorfer, J.; Verbesselt, J.

    2012-01-01

    Remote sensing technologies can provide objective, practical and cost-effective solutions for developing and maintaining REDD+ monitoring systems. This paper reviews the potential and status of available remote sensing data sources with a focus on different forest information products and synergies

  12. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    Science.gov (United States)

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    Michigan faces many challenges related to water resources, including flooding, drought, water-quality degradation and impairment, varying water availability, watershed-management issues, stormwater management, aquatic-ecosystem impairment, and invasive species. Michigan’s water resources include approximately 36,000 miles of streams, over 11,000 inland lakes, 3,000 miles of shoreline along the Great Lakes (MDEQ, 2016), and groundwater aquifers throughout the State.The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as tribes and universities, to provide scientific information used to manage the water resources of Michigan. To effectively assess water resources, the USGS uses standardized methods to operate streamgages, water-quality stations, and groundwater stations. The USGS also monitors water quality in lakes and reservoirs, makes periodic measurements along rivers and streams, and maintains all monitoring data in a national, quality-assured, hydrologic database.The USGS in Michigan investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface water and groundwater statewide. Water-resource monitoring and scientific investigations are conducted statewide by USGS hydrologists, hydrologic technicians, biologists, and microbiologists who have expertise in data collection as well as various scientific specialties. A support staff consisting of computer-operations and administrative personnel provides the USGS the functionality to move science forward. Funding for USGS activities in Michigan comes from local and State agencies, other Federal agencies, direct Federal appropriations, and through the USGS Cooperative Matching Funds, which allows the USGS to partially match funding provided by local and State partners.This fact sheet provides an overview of the USGS current (2016) capabilities to monitor and study Michigan’s vast water resources. More

  13. Implementations of Riga city water supply system founded on groundwater sources

    Science.gov (United States)

    Lāce, I.; Krauklis, K.; Spalviņš, A.; Laicāns, J.

    2017-10-01

    Drinking water for Riga city is provided by the groundwater well field complex “Baltezers, Zakumuiza, Rembergi” and by the Daugava river as a surface water source. Presently (2016), the both sources jointly supply 122 thous.metre3day-1 of drinking water. It seems reasonable to use in future only groundwater, because river water is of low quality and its treatment is expensive. The research on this possibility was done by scientists of Riga Technical university as the task drawn up by the company “Aqua-Brambis”. It was required to evaluate several scenario of the groundwater supply for Riga city. By means of hydrogeological modelling, it was found out that groundwater well fields could provide 120-122 thous.metre3day-1 of drinking water for the Riga city and it is possible further not to use water of the Daugava river. However, in order to provide more extensive use of groundwater sources, existing water distribution network shall be adapted to the change of the water sources and supply directions within the network. Safety of water supply shall be ensured. The publication may be of interest for specialists dealing with problems of water supply for large towns.

  14. [Water sources of Nitraria sibirica and response to precipitation in two desert habitats].

    Science.gov (United States)

    Zhou, Hai; Zhao, Wen Zhi; He, Zhi Bin

    2017-07-18

    Nitraria sibirica usually exists in a form of nebkhas, and has strong ecological adaptability. The plant species has distinctive function for wind prevention and sand fixation, and resistance drought and salt. However, the water condition is still a limiting factor for the plant survival and development. In order to understand the water use strategy of the plant in different desert habitats, we selected the N. sibirica growing in sandy desert habitat and gravel desert habitat to study the seaso-nal variation of plant water sources and response to precipitation at the edge of the oasis of Linze in the Hexi Corridor. We measured the oxygen stable isotope of the plant stem water and the different potential water sources (precipitation, soil water and ground water), and used the IsoSource model to calculate the proportion of water sources from the potential water. The results showed that there were significant seasonal variation characteristics of δ 18 O value and water source of stem water for the plant in the two habitats. In the sandy habitat, the plant used more ground water in the less precipitation seasons including spring and fall, and more than 50% of the water sources absorbed from ground water. However, under the condition of gravel habitat, the plant could not achieve the ground water level depth of 11.5 m, and its water source was controlled by precipitation, which had large seasonal variability. The water sources of N. sibirica had significant responses to the change of precipitation in the two desert habitats. Following the rapid decrease of soil water content after the precipitation events, the plant in the sandy habitat turned to use the abundant ground water as the main sources of water, while the plant in the gravel habitat only used the less water from precipita-tion infiltration to the deep soil. Therefore, different water use strategies of the plant in the two habitats were the main reason for the difference in growth characteristics, and it had a

  15. Monitoring light source for CMS lead tungstate crystal calorimeter at LHC

    CERN Document Server

    Zhang Liang Ying; Zhu, R Y; Liu, D T

    2001-01-01

    Light monitoring will serve as an intercalibration for Compact Muon Solenoid (CMS) lead tungstate crystals in situ at the Large Hadronic Collider, which is crucial for maintaining crystal calorimeter's subpercent constant term in the energy resolution. This paper presents the design of the CMS electromagnetic calorimeter monitoring light source and high-level distribution system. The correlations between variations of the light output and the transmittance for the CMS choice of yttrium-doped PbWO/sub 4/ crystals were investigated and were used to study monitoring linearity and sensitivity as a function of wavelength. The monitoring wavelength was determined so that a good linearity as well as adequate sensitivity can be achieved. The performance of a custom manufactured tunable laser system is presented. Issues related to monitoring precision are discussed. (12 refs).

  16. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    Science.gov (United States)

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity

  17. Water privatization, water source, and pediatric diarrhea in Bolivia: epidemiologic analysis of a social experiment.

    Science.gov (United States)

    Tornheim, Jeffrey A; Morland, Kimberly B; Landrigan, Philip J; Cifuentes, Enrique

    2009-01-01

    Water and sanitation services are fundamental to the prevention of pediatric diarrhea. To enhance both access to water and investment, some argue for the privatization of municipal water networks. Water networks in multiple Bolivian cities were privatized in the 1990s, but contracts ended following popular protests citing poor access. A population-based retrospective cohort study was conducted in two Bolivian cities. Data were collected on family water utilization and sanitation practices and on the prevalence of diarrhea among 596 children. Drinking from an outdoor water source (OR, 2.08; 95%CI, 1.25-3.44) and shorter in-home water boiling times (OR, 1.99; 95%CI, 1.19-3.34) were associated with prevalence of diarrhea. Increased prevalence was also observed for children from families using private versus public water services, using off-network water from cistern trucks, or not treating their water in-home. Results suggest that water source, water provider, and in-home water treatment are important predictors of pediatric diarrhea.

  18. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  19. Isotope-based partitioning of streamflow in the oil sands region, northern Alberta: Towards a monitoring strategy for assessing flow sources and water quality controls

    Directory of Open Access Journals (Sweden)

    J.J. Gibson

    2016-03-01

    Full Text Available Study region: This study is based on the rapidly developing Athabasca Oil Sands region, northeastern Alberta. Study focus: Hydrograph separation using stable isotopes of water is applied to partition streamflow sources in the Athabasca River and its tributaries. Distinct isotopic labelling of snow, rain, groundwater and surface water are applied to estimate the contribution of these sources to streamflow from analysis of multi-year records of isotopes in streamflow. New hydrological insights for the region: The results provide new insight into runoff generation mechanisms operating in six tributaries and at four stations along the Athabasca River. Groundwater, found to be an important flow source at all stations, is the dominant component of the hydrograph in three tributaries (Steepbank R., Muskeg R., Firebag R., accounting for 39–50% of annual streamflow. Surface water, mainly drainage from peatlands, is also found to be widely important, and dominant in three tributaries (Clearwater R., Mackay R., Ells R., accounting for 45–81% of annual streamflow. Fairly limited contributions from direct precipitation illustrate that most snow and rain events result in indirect displacement of pre-event water by fill and spill mechanisms. Systematic shifts in regional groundwater to surface-water ratios are expected to be an important control on spatial and temporal distribution of water quality parameters and useful for evaluating the susceptibility of rivers to climate and development impacts. Keywords: Stable isotopes, Hydrograph separation, Groundwater, Surface water, Snowmelt, Oil sands

  20. Ground-water monitoring at the Hanford Site, January-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Cline, C.S.; Rieger, J.T.; Raymond, J.R.

    1985-09-01

    This program is designed to evaluate existing and potential pathways of exposure to radioactivity and hazardous chemicals from site operations. This document contains an evaluation of data collected during CY 1984. During 1984, 339 monitoring wells were sampled at various times for radioactive and nonradioactive constituents. Two of these constituents, specifically, tritium and nitrate, have been selected for detailed discussion in this report. Tritium and nitrate in the primary plumes originating from the 200 Areas continue to move generally eastward toward the Columbia River in the direction of ground-water flow. The movement within these plumes is indicated by changes in trends within the analytical data from the monitoring wells. No discernible impact on ground water has yet been observed from the start-up of the PUREX plant in December 1983. The shape of the present tritium plume is similar to those described in previous ground-water monitoring reports, although slight changes on the outer edges have been noted. Radiological impacts from two potential pathways for radionuclide transport in ground water to the environment are discussed in this report. The pathways are: (1) human consumption of ground water from onsite wells, and (2) seepage of ground water into the Columbia River. Concentrations of tritium in spring samples that were collected and analyzed in 1983, and in wells sampled adjacent to the Columbia River in 1984 confirmed that constituents in the ground water are entering the river via springs and subsurface flow. The primary areas where radionuclides enter the Columbia River via ground-water flow are the 100-N and 300 Areas and the shoreline adjacent to the Hanford Townsite. 44 refs., 25 figs., 11 tabs.

  1. Drinking water quality and source reliability in rural Ashanti region, Ghana.

    Science.gov (United States)

    Arnold, Meghan; VanDerslice, James A; Taylor, Brooke; Benson, Scott; Allen, Sam; Johnson, Mark; Kiefer, Joe; Boakye, Isaac; Arhinn, Bernard; Crookston, Benjamin T; Ansong, Daniel

    2013-03-01

    Site-specific information about local water sources is an important part of a community-driven effort to improve environmental conditions. The purpose of this assessment was to gather this information for residents of rural villages in Ghana. Sanitary surveys and bacteriological testing for total coliforms and Escherichia coli (EC) using Colilert(®) were conducted at nearly 80 water sources serving eight villages. A focus group was carried out to assess the desirability and perceived quality of water sources. Standpipes accounted for almost half of the available water sources; however, a third of them were not functioning at the time of the survey. EC bacteria were found in the majority of shallow wells (80%), rivers (67%), and standpipes (61%), as well as 28% of dug wells. Boreholes were free of EC. Residents felt that the standpipes and boreholes produced safe drinking water. Intermittent service and poor water quality from the piped supply has led to limited access to drinking water. The perception of residents, that the water from standpipes is clean and does not need to be treated at home, is particularly troubling in light of the poor bacteriological quality of water from the standpipes.

  2. Water data to answer urgent water policy questions: Monitoring design, available data, and filling data gaps for determining whether shale gas development activities contaminate surface water or groundwater in the Susquehanna River Basin

    Science.gov (United States)

    Betanzo, Elin A.; Hagen, Erik R.; Wilson, John T.; Reckhow, Kenneth H.; Hayes, Laura; Argue, Denise M.; Cangelosi, Allegra A.

    2016-01-01

    Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, new technologies for oil and gas development or alternative energy sources may present new risks for water resources both above and below ground. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers and whether those data are currently available. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Susquehanna River Basin, a data-rich area expected to be a best-case scenario in terms of water data availability.

  3. The use of biomarkers as integrative tools for transitional water bodies monitoring in the Water Framework Directive context - A holistic approach in Minho river transitional waters.

    Science.gov (United States)

    Capela, R; Raimundo, J; Santos, M M; Caetano, M; Micaelo, C; Vale, C; Guimarães, L; Reis-Henriques, M A

    2016-01-01

    The Water Framework Directive (WFD) provides an important legislative opportunity to promote and implement an integrated approach for the protection of inland surface waters, transitional waters, coastal waters and groundwaters. The transitional waters constitute a central piece as they are usually under high environmental pressure and by their inherent characteristics present monitoring challenges. Integrating water quality monitoring with biological monitoring can increase the cost-effectiveness of monitoring efforts. One way of doing this is with biomarkers, which effectively integrate physical-chemical status and biological quality elements, dealing holistically with adverse consequences on the health of water bodies. The new Marine Strategy Framework Directive (MSFD) already incorporates the biomarker approach. Given the recent activities of OSPAR and HELCOM to harmonize existing monitoring guidelines between MSFD and WFD the use of similar methodologies should be fostered. To illustrate the potential of the biomarker approach, juveniles of flounder (Platichthys flesus) were used to evaluate the quality of the Minho river-estuary water bodies. The use of juveniles instead of adults eliminates several confounding factors such changes on the biological responses associated with reproduction. Here, a panel of well-established biomarkers, EROD, AChE, SOD, CAT, GST, LPO, ENA and FACs (1-Hydroxyrene) were selected and measured along with a gradient of different physical conditions, and integrated with trace elements characterization on both biota and sediments. In general, a clear profile along the water bodies was found, with low seasonal and spatial variation, consistent with a low impacted area. Overall, the results support the use of both the battery of biomarkers and the use of juvenile flounders in the monitoring of the water quality status within the WFD. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Determination of void fraction from source range monitor and mass flow rate data

    International Nuclear Information System (INIS)

    McCormick, R.D.

    1986-09-01

    This is a report on the calculation of the TMI-2 primary coolant system local void fraction from source range neutron flux monitor data and from hot leg mass flowrate meter data during the first 100 minutes of the accident. The methods of calculation of void fraction from the two data sources is explained and the results are compared. It is indicated that the void fraction determined using the mass flowrate data contained an error of unknown magnitude due to the assumption of constant homogeneous volumetric flowrate used in the calculation and required further work. Void fraction determined from the source range monitor data is felt to be usable although an uncertainty analysis has not been performed

  5. Identifying nitrate sources and transformations in surface water by combining dual isotopes of nitrate and stable isotope mixing model in a watershed with different land uses and multi-tributaries

    Science.gov (United States)

    Wang, Meng; Lu, Baohong

    2017-04-01

    Nitrate is essential for the growth and survival of plants, animals and humans. However, excess nitrate in drinking water is regarded as a health hazard as it is linked to infant methemoglobinemia and esophageal cancer. Revealing nitrate characteristics and identifying its sources are fundamental for making effective water management strategies, but nitrate sources in multi-tributaries and mixed land covered watersheds remain unclear. It is difficult to determine the predominant NO3- sources using conventional water quality monitoring techniques. In our study, based on 20 surface water sampling sites for more than two years' monitoring from April 2012 to December 2014, water chemical and dual isotopic approaches (δ15N-NO3- and δ18O-NO3-) were integrated for the first time to evaluate nitrate characteristics and sources in the Huashan watershed, Jianghuai hilly region, East China. The results demonstrated that nitrate content in surface water was relatively low in the downstream (nitrate was observed at the source of the river in one of the sub-watersheds, which exhibited an exponential decline along the stream due to dilution, absorption by aquatic plants, and high forest cover. Although dramatically decline of nitrate occurred along the stream, denitrification was not found in surface water by analyzing δ15N-NO3- and δ18O-NO3- relationship. Proportional contributions of five potential nitrate sources (i.e., precipitation; manure and sewage; soil nitrogen; nitrate fertilizer; nitrate derived from ammonia fertilizer and rainfall) were estimated using a Bayesian isotope mixing model. Model results indicated nitrate sources varied significantly among different rainfall conditions, land use types, as well as anthropologic activities. In summary, coupling dual isotopes of nitrate (δ15N-NO3- and δ18O-NO3-, simultaneously) with a Bayesian isotope mixing model offers a useful and practical way to qualitatively analyze nitrate sources and transformations as well as

  6. Real-time water quality monitoring at a Great Lakes National Park

    Science.gov (United States)

    Byappanahalli, Muruleedhara; Nevers, Meredith; Shively, Dawn; Spoljaric, Ashley; Otto, Christopher

    2018-01-01

    Quantitative polymerase chain reaction (qPCR) was used by the USEPA to establish new recreational water quality criteria in 2012 using the indicator bacteria enterococci. The application of this method has been limited, but resource managers are interested in more timely monitoring results. In this study, we evaluated the efficacy of qPCR as a rapid, alternative method to the time-consuming membrane filtration (MF) method for monitoring water at select beaches and rivers of Sleeping Bear Dunes National Lakeshore in Empire, MI. Water samples were collected from four locations (Esch Road Beach, Otter Creek, Platte Point Bay, and Platte River outlet) in 2014 and analyzed for culture-based (MF) and non-culture-based (i.e., qPCR) endpoints using Escherichia coli and enterococci bacteria. The MF and qPCR enterococci results were significantly, positively correlated overall (r = 0.686, p Water quality standard exceedances based on enterococci levels by qPCR were lower than by MF method: 3 and 16, respectively. Based on our findings, we conclude that qPCR may be a viable alternative to the culture-based method for monitoring water quality on public lands. Rapid, same-day results are achievable by the qPCR method, which greatly improves protection of the public from water-related illnesses.

  7. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    Current standard methods for surveillance of microbial drinking water quality are culture based, which are laborious and time-consuming, where results not are available before one to three days after sampling. This means that the water may have been consumed before results on deteriorated water....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP......, microbial quality in distributed water, detection of aftergrowth, biofilm formation etc. This PhD project demonstrated that ATP levels are relatively low and fairly stable in drinking water without chlorine residual despite different sampling locations, different drinking water systems and time of year...

  8. Evaluation of water resources monitoring networks: study applied to surface waters in the Macaé River Basin

    Directory of Open Access Journals (Sweden)

    Carolina Cloris Lopes Benassuly

    2012-04-01

    Full Text Available Knowledge of hydrological phenomena is required in water resources monitoring, in order to structure the water management, focusing on ensuring its multiple uses while allowing that resource´s control and conservation. The effectiveness of monitoring depends on adequate information systems design and proper operation conditions. Data acquisition, treatment and analysis are vital for establishing management strategies, thus monitoring systems and networks shall be conceived according to their main objectives, and be optimized in terms of location of data stations. The generated data shall also model hydrological behavior of the studied basin, so that data interpolation can be applied to the whole basin. The present work aimed to join concepts and methods that guide the structuring of hydrologic monitoring networks of surface waters. For evaluating historical series characteristics as well as work stations redundancy, the entropy method was used. The Macaé River Basin’s importance is related to the public and industrial uses of water in the region that is responsible for more than 80% of Brazilian oil and gas production, what justifies the relevance of the research made. This study concluded that despite of its relatively short extension, the Macaé River Basin should have higher monitoring network density, in order to provide more reliable management data. It also depicted the high relevancy of stations located in its upper course.

  9. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    Science.gov (United States)

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 1984 environmental monitoring report

    International Nuclear Information System (INIS)

    Day, L.E.; Miltenberger, R.P.; Naidu, J.R.

    1985-04-01

    The environmental monitoring program has been designed to ensure that BNL facilities operate such that the applicable environmental standards and effluent control requirements have been met. A listing, as required by DOE Order 5484.1 of BNL facilities, of environmental agencies and permits is provided in the Environmental Program Information Section 3.0, Table B. Since the aquifer underlying Long Island has been designated a ''sole source'' aquifer, the Environmental Protection Agency (EPA) Drinking Water Standards have been used in the assessment of ground water data. However, the limits prescribed in the regulations are not directly applicable to the monitoring well data since (1) the standards apply to a community water supply system, i.e., one serving more than 25 individuals, and (2) the standards represent an annual average concentration. Since the monitoring wells are not components of the Laboratory's water supply system, the EPA drinking water standards are employed as reference criteria to which the surveillance well data is compared. The standards also serve as guidance levels for any appropriate remedial action. 36 refs., 9 figs., 40 tabs

  11. Spotting Radioactive Sources Buried Underground Using an Airborne Radiation Monitoring System

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Wengrowicz, U.; Beck, A.; Marcus, E.; Tirosh, D.

    2002-01-01

    This article provides theoretical background concerning the capability of the Airborne Radiation Monitoring System [1]to detect fission products buried at 1-meter depth under the ground surface,at a flight altitude of 100 meters above ground.The 137 Cs source was used as a typical fission product. The System monitors radioactive contamination in the air or on the ground using two 2 inch NaI(Tl) scintillation detectors and computerized accessories for analysis purposes

  12. Belgrade waterworks groundwater source

    International Nuclear Information System (INIS)

    Sotic, A.; Dasic, M.; Vukcevic, G.; Vasiljevic, Lj.; Nikolic, S.

    2002-01-01

    Paper deals with Belgrade Waterworks groundwater source, its characteristics, conception of protection programme, contaminations on source and with parameters of groundwater quality degradation. Groundwaters present natural heritage with their strategic and slow renewable natural resources attributes, and as such they require priority in protection. It is of greatest need that existing source is to be protected and used optimally for producing quality drinkable water. The concept of source protection programme should be based on regular water quality monitoring, identification of contaminators, defining areas of their influences on the source and their permanent control. However, in the last 10 years, but drastically in the last 3, because of the overall situation in the country, it is very characteristic downfall in volume of business, organisation and the level of supply of the technical equipment

  13. Fecal Contamination in the Surface Waters of a Rural- and an Urban-Source Watershed

    DEFF Research Database (Denmark)

    Stea, Emma C.; Hansen, Lisbeth Truelstrup; Jamieson, Rob C.

    2015-01-01

    Surface waters are commonly used as source water for drinking water and irrigation. Knowledge of sources of fecal pollution in source watersheds benefits the design of effective source water protection plans. This study analyzed the relationships between enteric pathogens (Escherichia coli O157:H...

  14. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  15. IMPLEMENTATION OF OPEN-SOURCE WEB MAPPING TECHNOLOGIES TO SUPPORT MONITORING OF GOVERNMENTAL SCHEMES

    Directory of Open Access Journals (Sweden)

    B. R. Pulsani

    2015-10-01

    Full Text Available Several schemes are undertaken by the government to uplift social and economic condition of people. The monitoring of these schemes is done through information technology where involvement of Geographic Information System (GIS is lacking. To demonstrate the benefits of thematic mapping as a tool for assisting the officials in making decisions, a web mapping application for three government programs such as Mother and Child Tracking system (MCTS, Telangana State Housing Corporation Limited (TSHCL and Ground Water Quality Mapping (GWQM has been built. Indeed the three applications depicted the distribution of various parameters thematically and helped in identifying the areas with higher and weaker distributions. Based on the three applications, the study tends to find similarities of many government schemes reflecting the nature of thematic mapping and hence deduces to implement this kind of approach for other schemes as well. These applications have been developed using SharpMap Csharp library which is a free and open source mapping library for developing geospatial applications. The study highlights upon the cost benefits of SharpMap and brings out the advantage of this library over proprietary vendors and further discusses its advantages over other open source libraries as well.

  16. Discussion on application of water source heat pump technology to uranium mines

    International Nuclear Information System (INIS)

    An Qiang

    2011-01-01

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  17. Challenges for implementing water quality monitoring and analysis on a small Costa Rican catchment

    Science.gov (United States)

    Golcher, Christian; Cernesson, Flavie; Tournoud, Marie-George; Bonin, Muriel; Suarez, Andrea

    2016-04-01

    The Costa Rican water regulatory framework (WRF) (2007), expresses the national concern about the degradation of surface water quality observed in the country since several years. Given the urgency of preserving and restoring the surface water bodies, and facing the need of defining a monitoring tool to classify surface water pollution, the Costa-Rican WRF relies on two water quality indexes: the so-called "Dutch Index" (D.I) and the Biological Monitoring Working Party adapted to Costa Rica (BMWP'CR), allowing an "easy" physicochemical and biological appraisal of the water quality and the ecological integrity of water bodies. Herein, we intend to evaluate whether the compound of water quality indexes imposed by Costa Rican legislation, is suitable to assess rivers local and global anthropogenic pressure and environmental conditions. We monitor water quality for 7 points of Liberia River (northern pacific region - Costa Rica) from March 2013 to July 2015. Anthropogenic pressures are characterized by catchment land use and riparian conditions. Environmental conditions are built from rainfall daily series. Our results show (i) the difficulties to monitor new sites following the recent implementation of the WRF; (ii) the statistical characteristics of each index; and (iii) a modelling tentative of relationships between water quality indexes and explanatory factors (land-use, riparian characteristics and climate conditions).

  18. An integrated strategy for biological effects monitoring in Scottish coastal waters

    International Nuclear Information System (INIS)

    Park, R.A.; Dobson, J.; Richardson, L.; Hill, A.

    1999-01-01

    The paper summarises SEPA's current programme of water quality and biological effects monitoring and, using recent examples, discusses the current environmental issues affecting the condition of our coastal waters. (author)

  19. Robowell: An automated process for monitoring ground water quality using established sampling protocols

    Science.gov (United States)

    Granato, G.E.; Smith, K.P.

    1999-01-01

    Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage treatment plant infiltration bed that overlies a well-studied unconfined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S Geological Survey (USGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.

  20. Hydrograph monitoring and analysis for sustainable karst water management in Nyadeng Spring, East Borneo

    Science.gov (United States)

    Widyastuti, M.; Fatchurohman, H.; Fathoni, W. A.; Hakim, A. A.; Haryono, E.

    2018-04-01

    Karst aquifer stores abundant water resources within its matrix, conduits, and intergranular pores. Karst aquifer plays an important role in providing water supply, especially in the areas nearby that commonly dry and lack of surface water resources. Karst spring hydrograph analysis is very fundamental step to–assess and determines the condition of the catchment area in karst terrain. Recession curve is believed to be the most stable part in single flood hydrograph that represents the aquifer characteristics. Nyadeng is one of the most significant karst springs that located in Merabu Karst Area, East Borneo. Villagers in Merabu highly depend on Nyadeng Spring for fulfilled their freshwater need. Hydrograph monitoring has been initiated for one year in Nyadeng Spring as a preliminary action for karst water management in Merabu. Water level data series obtained using automatic water level data logger and then correlated with manual discharge measurement to generate stage-discharge rating curve. The stage-discharge rating curve formula for Nyadeng Spring calculated as y = 0,0102e5,8547x with r2 value = 0.8759. From the combination of several single flood events, Master Recession Curve (MRC) was generated to determine flow regime as the main consideration for karstification degree calculation. From the MRC result, flow regimes formula determined as Qt = 3.2-0.001t + 1.2(1-0.012t)+1.6(1-0.035t) indicated that one sub-regime with laminar flow and two sub-regimes with turbulent flow existed. From the MRC formula, the degree of karstification in Nyadeng Spring classified at seventh scale (developed karstification of the aquifer) based on Malik’s karstification degree (2012). The degree of karstification in Nyadeng Spring indicates that the aquifer formed by large conduit channels, fissures, and macro fissures which are able to provide significant water sources that can be utilized for multi purposes. Therefore, it is concluded that spring hydrograph monitoring provide

  1. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  2. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.

    Science.gov (United States)

    Schaffner, Monika; Bader, Hans-Peter; Scheidegger, Ruth

    2009-08-15

    Major rivers in developing and emerging countries suffer increasingly of severe degradation of water quality. The current study uses a mathematical Material Flow Analysis (MMFA) as a complementary approach to address the degradation of river water quality due to nutrient pollution in the Thachin River Basin in Central Thailand. This paper gives an overview of the origins and flow paths of the various point- and non-point pollution sources in the Thachin River Basin (in terms of nitrogen and phosphorus) and quantifies their relative importance within the system. The key parameters influencing the main nutrient flows are determined and possible mitigation measures discussed. The results show that aquaculture (as a point source) and rice farming (as a non-point source) are the key nutrient sources in the Thachin River Basin. Other point sources such as pig farms, households and industries, which were previously cited as the most relevant pollution sources in terms of organic pollution, play less significant roles in comparison. This order of importance shifts when considering the model results for the provincial level. Crosschecks with secondary data and field studies confirm the plausibility of our simulations. Specific nutrient loads for the pollution sources are derived; these can be used for a first broad quantification of nutrient pollution in comparable river basins. Based on an identification of the sensitive model parameters, possible mitigation scenarios are determined and their potential to reduce the nutrient load evaluated. A comparison of simulated nutrient loads with measured nutrient concentrations shows that nutrient retention in the river system may be significant. Sedimentation in the slow flowing surface water network as well as nitrogen emission to the air from the warm oxygen deficient waters are certainly partly responsible, but also wetlands along the river banks could play an important role as nutrient sinks.

  3. Monitoring of heavy metals in selected Water Supply Systems in Poland, in relation to current regulations

    Science.gov (United States)

    Szuster-Janiaczyk, Agnieszka; Zeuschner, Piotr; Noga, Paweł; Skrzypczak, Marta

    2018-02-01

    The study presents an analysis of water quality monitoring in terms of the content of heavy metals, which is conducted in three independent water supply systems in Poland. The analysis showed that the monitoring of heavy metals isn't reliable - both the quantity of tested water samples and the location of the monitoring points are the problem. The analysis of changes in water quality from raw water to tap water was possible only for one of the analysed systems and indicate a gradual deterioration of water quality, although still within acceptable limits of legal regulations.

  4. Development of water radiocontamination monitor using a plastic scintillator detector

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Madi Filho, T.; Hamada, M.M.

    1990-01-01

    An alpha, beta and gamma radiation water monitor was developed using a plastic scintillator detector with a sensitivity level of 15 bplastic scintillator detector with a sensitivity level of 15 Bq.L -1 and a counting efficiency of 25% for 131 I. It was proposed to be used in the radiation monitoring program of the research reactor swimming-pool of Sao Paulo. A simplified design and some properties of this monitor are presented. (author) [pt

  5. Economics of Water Quality Protection from Nonpoint Sources: Theory and Practice

    OpenAIRE

    Ribaudo, Marc; Horan, Richard D.; Smith, Mark E.

    1999-01-01

    Water quality is a major environmental issue. Pollution from nonpoint sources is the single largest remaining source of water quality impairments in the United States. Agriculture is a major source of several nonpoint-source pollutants, including nutrients, sediment, pesticides, and salts. Agricultural nonpoint pollution reduction policies can be designed to induce producers to change their production practices in ways that improve the environmental and related economic consequences of produc...

  6. Image processing developments and applications for water quality monitoring and trophic state determination

    International Nuclear Information System (INIS)

    Blackwell, R.J.

    1982-03-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics

  7. Influence of climate on alpine stream chemistry and water sources

    Science.gov (United States)

    Foks, Sydney; Stets, Edward; Singha, Kamini; Clow, David W.

    2018-01-01

    The resilience of alpine/subalpine watersheds may be viewed as the resistance of streamflow or stream chemistry to change under varying climatic conditions, which is governed by the relative size (volume) and transit time of surface and subsurface water sources. Here, we use end‐member mixing analysis in Andrews Creek, an alpine stream in Rocky Mountain National Park, Colorado, from water year 1994 to 2015, to explore how the partitioning of water sources and associated hydrologic resilience change in response to climate. Our results indicate that four water sources are significant contributors to Andrews Creek, including snow, rain, soil water, and talus groundwater. Seasonal patterns in source‐water contributions reflected the seasonal hydrologic cycle, which is driven by the accumulation and melting of seasonal snowpack. Flushing of soil water had a large effect on stream chemistry during spring snowmelt, despite making only a small contribution to streamflow volume. Snow had a large influence on stream chemistry as well, contributing large amounts of water with low concentrations of weathering products. Interannual patterns in end‐member contributions reflected responses to drought and wet periods. Moderate and significant correlations exist between annual end‐member contributions and regional‐scale climate indices (the Palmer Drought Severity Index, the Palmer Hydrologic Drought Index, and the Modified Palmer Drought Severity Index). From water year 1994 to 2015, the percent contribution from the talus‐groundwater end member to Andrews Creek increased an average of 0.5% per year (p < 0.0001), whereas the percent contributions from snow plus rain decreased by a similar amount (p = 0.001). Our results show how water and solute sources in alpine environments shift in response to climate variability and highlight the role of talus groundwater and soil water in providing hydrologic resilience to the system.

  8. Characterization and source apportionment of water pollution in Jinjiang River, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Yue, Weifeng; Song, Liuting

    2013-11-01

    Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) were combined to obtain a deeper understanding of temporal-spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal-spatial variations, respectively. Rotated PCA and receptor model (APCS-MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90% sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period.

  9. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  10. Estimating the Seasonal Importance of Precipitation to Plant Source Water over Time and Space with Water Isotopes

    Science.gov (United States)

    Nelson, D. B.; Kahmen, A.

    2017-12-01

    The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant

  11. Ship-borne measurements of microbial enzymatic activity: A rapid biochemical indicator for microbial water quality monitoring

    Science.gov (United States)

    Stadler, Philipp; Loken, Luke; Crawford, John; Schramm, Paul; Sorsa, Kirsti; Kuhn, Catherine; Savio, Domenico; Striegl, Rob; Butman, David; Stanley, Emily; Farnleitner, Andreas H.; Zessner, Matthias

    2017-04-01

    Contamination of aquatic ecosystems by human and animal wastes is a global concern for water quality. Disclosing fate and transport processes of fecal indicator organism (FIO) in large water bodies is a big challenge due to material intensive and time consuming methods used in microbiological water quality monitoring. In respect of utilization of large surface water resources there is a dearth of rapid microbiological methods that allow a near-real time health related water quality monitoring to be implemented into early warning systems. The detection of enzymatic activities has been proposed as a rapid surrogate for microbiological pollution monitoring of water and water resources (Cabral, 2010; Farnleitner et al., 2001, 2002). Methods such as the beta-D-Glucuronidase assay (GLUC), targeting FIO such as E. coli, were established. New automated enzymatic assays have been implemented during the last years into on-site monitoring stations, ranging from ground- to surface waters (Ryzinska-Paier et al., 2014; Stadler et al., 2017, 2016). While these automated enzymatic methods cannot completely replace assays for culture-based FIO enumeration, they yielded significant information on pollution events and temporal dynamics on a catchment specific basis, but were restricted to stationary measurements. For the first time we conducted ship-borne and automated measurements of enzymatic GLUC activity on large fresh water bodies, including the Columbia River, the Mississippi River and Lake Mendota. Not only are automated enzymatic assays technically feasible from a mobile vessel, but also can be used to localize point sources of potential microbial fecal contamination, such as tributaries or storm drainages. Spatial and temporal patterns of enzymatic activity were disclosed and the habitat specific correlation with microbiological standard assays for FIO determined due to reference samples. The integration of rapid and automated enzymatic assays into well-established systems

  12. Sources of trends in water-quality data for selected streams in Texas, 1975-89 water years

    Science.gov (United States)

    Schertz, T.L.; Wells, F.C.; Ohe, D.J.

    1994-01-01

    Sources of trends in water-quality data for selected streams in Texas for the 1975-89 water years were investigated in this study. The investigation of sources was confined to distinct geographic patterns in the trend indicators for one constituent or for a group of related constituents.

  13. Potential Impacts of Food Production on Freshwater Availability Considering Water Sources

    Directory of Open Access Journals (Sweden)

    Shinjiro Yano

    2016-04-01

    Full Text Available We quantify the potential impacts of global food production on freshwater availability (water scarcity footprint; WSF by applying the water unavailability factor (fwua as a characterization factor and a global water resource model based on life cycle impact assessment (LCIA. Each water source, including rainfall, surface water, and groundwater, has a distinct fwua that is estimated based on the renewability rate of each geographical water cycle. The aggregated consumptive water use level for food production (water footprint inventory; WI was found to be 4344 km3/year, and the calculated global total WSF was 18,031 km3 H2Oeq/year, when considering the difference in water sources. According to the fwua concept, which is based on the land area required to obtain a unit volume of water from each source, the calculated annual impact can also be represented as 98.5 × 106 km2. This value implies that current agricultural activities requires a land area that is over six times larger than global total cropland. We also present the net import of the WI and WSF, highlighting the importance of quantitative assessments for utilizing global water resources to achieve sustainable water use globally.

  14. Africa-wide monitoring of small surface water bodies using multisource satellite data: a monitoring system for FEWS NET: chapter 5

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Rowland, James; Verdin, James P.; Alemu, Henok; Melesse, Assefa M.; Abtew, Wossenu; Setegn, Shimelis G.

    2014-01-01

    Continental Africa has the highest volume of water stored in wetlands, large lakes, reservoirs, and rivers, yet it suffers from problems such as water availability and access. With climate change intensifying the hydrologic cycle and altering the distribution and frequency of rainfall, the problem of water availability and access will increase further. Famine Early Warning Systems Network (FEWS NET) funded by the United States Agency for International Development (USAID) has initiated a large-scale project to monitor small to medium surface water points in Africa. Under this project, multisource satellite data and hydrologic modeling techniques are integrated to monitor several hundreds of small to medium surface water points in Africa. This approach has been already tested to operationally monitor 41 water points in East Africa. The validation of modeled scaled depths with field-installed gauge data demonstrated the ability of the model to capture both the spatial patterns and seasonal variations. Modeled scaled estimates captured up to 60 % of the observed gauge variability with a mean root-mean-square error (RMSE) of 22 %. The data on relative water level, precipitation, and evapotranspiration (ETo) for water points in East and West Africa were modeled since 1998 and current information is being made available in near-real time. This chapter presents the approach, results from the East African study, and the first phase of expansion activities in the West Africa region. The water point monitoring network will be further expanded to cover much of sub-Saharan Africa. The goal of this study is to provide timely information on the water availability that would support already established FEWS NET activities in Africa. This chapter also presents the potential improvements in modeling approach to be implemented during future expansion in Africa.

  15. Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential

    Science.gov (United States)

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  16. EPA Team Helps Water Systems Comply with New Bacteria Monitoring Rule

    Science.gov (United States)

    An EPA team issued nearly 200 Administrative Orders in support of Pennsylvania and Virginia to ensure that small public water systems followed new requirements for more frequent bacteria monitoring of their water supplies.

  17. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    Science.gov (United States)

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption- Edge -Modulated Transmission Spectra for Water Contaminant...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption- Edge -Modulated Transmission Spectra for Water Contaminant Monitoring...contaminants, within a volume of sampled solution, requires sufficient sensitivity. The present study examines the sensitivity of absorption- edge

  18. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  19. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    Science.gov (United States)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  20. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles.

    Science.gov (United States)

    Singer, B C; Delp, W W

    2018-04-23

    The ability to inexpensively monitor PM 2.5 to identify sources and enable controls would advance residential indoor air quality (IAQ) management. Consumer IAQ monitors incorporating low-cost optical particle sensors and connections with smart home platforms could provide this service if they reliably detect PM 2.5 in homes. In this study, particles from typical residential sources were generated in a 120 m 3 laboratory and time-concentration profiles were measured with 7 consumer monitors (2-3 units each), 2 research monitors (Thermo pDR-1500, MetOne BT-645), a Grimm Mini Wide-Range Aerosol Spectrometer (GRM), and a Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System (FDMS), a Federal Equivalent Method for PM 2.5 . Sources included recreational combustion (candles, cigarettes, incense), cooking activities, an unfiltered ultrasonic humidifier, and dust. FDMS measurements, filter samples, and known densities were used to adjust the GRM to obtain time-resolved mass concentrations. Data from the research monitors and 4 of the consumer monitors-AirBeam, AirVisual, Foobot, Purple Air-were time correlated and within a factor of 2 of the estimated mass concentrations for most sources. All 7 of the consumer and both research monitors substantially under-reported or missed events for which the emitted mass was comprised of particles smaller than 0.3 μm diameter. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The National Water-Quality Assessment (NAWQA) Program planned monitoring and modeling activities for Texas, 2013–23

    Science.gov (United States)

    Ging, Patricia

    2013-01-01

    The U.S. Geological Survey’s (USGS) National Water-Quality Assessment (NAWQA) Program was established by Congress in 1992 to answer the following question: What is the status of the Nation’s water quality and is it getting better or worse? Since 1992, NAWQA has been a primary source of nationally consistent data and information on the quality of the Nation’s streams and groundwater. Data and information obtained from objective and nationally consistent water-quality monitoring and modeling activities provide answers to where, when, and why the Nation’s water quality is degraded and what can be done to improve and protect it for human and ecosystem needs. For NAWQA’s third decade (2013–23), a new strategic Science Plan has been developed that describes a strategy for building upon and enhancing the USGS’s ongoing assessment of the Nation’s freshwater quality and aquatic ecosystems.

  2. The Story Behind the Numbers: Lessons Learned from the Integration of Monitoring Resources in Addressing an ISS Water Quality Anomaly

    Science.gov (United States)

    McCoy, Torin; Flint, Stephanie; Straub, John, II; Gazda, Dan; Schultz, John

    2011-01-01

    Beginning in June of 2010 an environmental mystery was unfolding on the International Space Station (ISS). The U.S. Water Processor Assembly (WPA) began to produce water with increasing levels of total organic carbon (TOC). A surprisingly consistent upward TOC trend was observed through weekly in-flight total organic carbon analyzer (TOCA) monitoring. As TOC is a general organics indicator, return of water archive samples was needed to make better-informed crew health decisions and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to its health-based screening limit before archive samples could be returned on Soyuz 22 and analyzed. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were the source. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of silicon-containing compounds present on ISS. A toxicological limit was set for DMSD and a forward plan developed for operations given this new understanding of the source of the TOC. This required extensive coordination with ISS stakeholders and innovative use of available in-flight and archive monitoring resources. Behind the numbers and scientific detail surrounding this anomaly, there exists a compelling story of multi-disciplinary awareness, teamwork, and important environmental lessons learned.

  3. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake.

    Science.gov (United States)

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei

    2016-02-01

    Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The maladies of water and war: addressing poor water quality in Iraq.

    Science.gov (United States)

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  5. A versatile and interoperable network sensors for water resources monitoring

    Science.gov (United States)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act

  6. [Water environmental capacity calculation model for the rivers in drinking water source conservation area].

    Science.gov (United States)

    Chen, Ding-jiang; Lü, Jun; Shen, Ye-na; Jin, Shu-quan; Shi, Yi-ming

    2008-09-01

    Based on the one-dimension model for water environmental capacity (WEC) in river, a new model for the WEC estimation in river-reservoir system was developed in drinking water source conservation area (DWSCA). In the new model, the concept was introduced that the water quality target of the rivers in DWSCA was determined by the water quality demand of reservoir for drinking water source. It implied that the WEC of the reservoir could be used as the water quality control target at the reach-end of the upstream rivers in DWSCA so that the problems for WEC estimation might be avoided that the differences of the standards for a water quality control target between in river and in reservoir, such as the criterions differences for total phosphorus (TP)/total nitrogen (TN) between in reservoir and in river according to the National Surface Water Quality Standard of China (GB 3838-2002), and the difference of designed hydrology conditions for WEC estimation between in reservoir and in river. The new model described the quantitative relationship between the WEC of drinking water source and of the river, and it factually expressed the continuity and interplay of these low water areas. As a case study, WEC for the rivers in DWSCA of Laohutan reservoir located in southeast China was estimated using the new model. Results indicated that the WEC for TN and TP was 65.05 t x a(-1) and 5.05 t x a(-1) in the rivers of the DWSCA, respectively. According to the WEC of Laohutan reservoir and current TN and TP quantity that entered into the rivers, about 33.86 t x a(-1) of current TN quantity should be reduced in the DWSCA, while there was 2.23 t x a(-1) of residual WEC of TP in the rivers. The modeling method was also widely applicable for the continuous water bodies with different water quality targets, especially for the situation of higher water quality control target in downstream water body than that in upstream.

  7. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  8. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  9. Available data sources for monitoring non-communicable diseases and their risk factors in South Africa

    Directory of Open Access Journals (Sweden)

    M Wandai

    2017-04-01

    Full Text Available Background. Health information systems for monitoring chronic non-communicable diseases (NCDs in South Africa (SA are relatively less advanced than those for infectious diseases (particularly tuberculosis and HIV and for maternal and child health. NCDs are now the largest cause of premature mortality owing to exposure to risk factors arising from obesity that include physical inactivity and accessible, cheap but unhealthy diets. The National Strategic Plan for the Prevention and Control of Non-Communicable Diseases 2013 - 17 developed by the SA National Department of Health outlines targets and monitoring priorities. Objectives. To assess data sources relevant for monitoring NCDs and their risk factors by identifying the strengths and weaknesses, including usability and availability, of surveys and routine systems focusing at national and certain sub-national levels. Methods. Publicly available survey and routine data sources were assessed for variables collected, their characteristics, frequency of data collection, geographical coverage and data availability. Results. Survey data sources were found to be quite different in the way data variables are collected, their geographical coverage and also availability, while the main weakness of routine data sources was poor quality of data. Conclusions. To provide a sound basis for monitoring progress of NCDs and related risk factors, we recommend harmonising and strengthening available SA data sources in terms of data quality, definitions, categories used, timeliness, disease coverage and biomarker measurement.

  10. Simple tecniques of radiation protection for radon monitoring in air and water

    International Nuclear Information System (INIS)

    Napolitano, C.M.; Oliveira Sampa, M.H. de; Palacios, E.

    1978-01-01

    Simple techniques for 'in situ' radon concentration measurements in air and water using a scintillation chamber are discussed. The chamber was constructed with a comercial 'Pyrex' erlenmeyer flask by uniformely coating with powdered ZnS:Ag all the flask's internal surface, except its base. For air monitoring, the sample is introduced into the scintillation chamber and when the radioactive equilibrium between radon and its daughters of short half life is reached, the chamber is placed into a light-tight box that has a photomultiplier connected to a counting system. For water monitoring, the sample is placed in a plastic bottle and the bottle connected with a scintillation chamber for 5 hours. Afterwards, the gas of the chamber is counted and radon concentration in water is determined through the counting rate observed in the gaseous phase. The detection limits of these techniques in air and water monitoring were 7pCi/l and 1,5pCi/l [pt

  11. Pollution Sources in the nile and their environmental impacts

    International Nuclear Information System (INIS)

    Abd El- Bary, M.R.

    1999-01-01

    Over the past decades , the natural quality of water sources has been altered by the impact of various human activities and water uses. In Egypt, the Nile River which is considered as the main water source is still a recipient of most of the wastewater discharged by industrial effluents and several agriculture drains contains mixed wastes (sewage and industrial). These wastes includes a variety of pollutants which have considerable potential effect on both water ecosystem and human health. Monitoring of these pollutant is the first step for the improvement and protection of the Nile River .The Nile Research Institute designed a monitoring program includes collection and analysis of samples from 35 stations along the Nile River from Aswan to the Mediterranean Sea and from all points sources of pollution discharge their wastes into the Nile. The most important pollutant in these wastes are heavy metals, organic matters, inorganic compounds and micro organism causing disease

  12. WATER QUALITY INDEX FOR ASSESSMENT OF DRINKING WATER SOURCES FROM MEDIAŞ TOWN, SIBIU COUNTY

    Directory of Open Access Journals (Sweden)

    ROŞU CRISTINA

    2014-03-01

    Full Text Available The purpose of this study was to evaluate the drinking water sources quality from Mediaş Town, Sibiu County. In November 2013, 6 water samples were taken from different drinking water sources and each water sample was analysed to determinate physico-chemical parameters (using a portable multiparameter WTW 320i major ions (using DIONEX ICS1500 ion chromatograph and heavy metals (using Atomic Absorption Spectrophotometer model ZENIT 700 Analytik Jena. The investigated physico-chemical parameters were: temperature, salinity, electrical conductivity (EC, pH, total dissolved solids (TDS and redox potential (ORP. The analysed major ions were: lithium (Li+, sodium (Na+, potassium (K+, magnesium (Mg2+, calcium (Ca2+, fluoride( F-, chloride (Cl-, bromide (Br-, nitrite (NO2-, nitrate (NO3-, phosphate (PO43- and sulphate (SO42-. The investigated heavy metals were: lead (Pb, zinc (Zn, cooper (Cu, iron (Fe, cadmium (Cd, nickel (Ni, chromium (Cr and arsenic (As. The Water Quality Index (WQI was calculated using the analysed water quality parameters and it ranged from 76 (very poor water quality to 375 (unsuitable for drinking.

  13. Water levels in continuously monitored wells in the Yucca Mountain area, Nevada, 1985--88

    International Nuclear Information System (INIS)

    Luckey, R.R.; Lobmeyer, D.H.; Burkhardt, D.J.

    1993-01-01

    Water levels have been monitored hourly in 15 wells completed in 23 depth intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water- level measurements. The amount of transducer output that was converted to water levels ranged from zero for several intervals to about 98 percent for one interval. Fourteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed

  14. Design, Certification, and Deployment of the Colorimetric Water Quality Monitoring Kit (CWQMK)

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Je